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This paper reports on the performance of 58 11 to 12-year-olds on a spatial 
visualization task and a spatial orientation task. The students completed these tasks 
and explained their thinking during individual interviews. The qualitative data were 
analysed to inform pedagogical content knowledge for spatial activities. The study 
revealed that “matching” or “matching and eliminating” were the typical strategies 
that students employed on these spatial tasks. However, errors in making 
associations between parts of the same or different shapes were noted. Students also 
experienced general difficulties with visual memory and language use to explain their 
thinking. The students’ specific difficulties in spatial visualization related to obscured 
items, the perspective used, and the placement and orientation of shapes.  
INTRODUCTION 
In 2006, the (US) National Academies (National Academy of Sciences, National 
Academy of Engineering, Institute of Medicine, National Research Council) 
published a landmark report titled “Learning to Think Spatially” in which they 
proposed the importance of embedding spatial thinking in the contemporary 
curriculum. They described thinking spatially as knowing about space, 
representation and reasoning. Although the National Academies’ report was directed 
towards achieving spatial literacy across the curriculum, it is particularly applicable 
in mathematics. For example, there is a relationship between adolescents’ 
performance on spatial ability tasks and their performance in and preference for 
mathematics (Stavridou & Kakana, 2008). Thus, the purpose of this paper is to 
explore students’ thinking on mathematics tasks that incorporate visual 
representations, in particular, those that place a heavy demand on spatial ability. 
Henceforth, the term “graphics” will be used to refer to visual representations 
because the term “representations” has multiple meanings in mathematics education.  
INTERPRETING GRAPHICS  
Routinely, in mathematics, students are required to interpret graphics (e.g., maps. 
number lines, graphs) as well as text and mathematical symbols. However, our 
previous research has revealed that for many students the interpretation of graphics is 
problematic rather than routine (e.g., Lowrie & Diezmann, 2007). The interpretation 
of graphics is problematic for students for at least three reasons.  
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First, the interpretation of graphics is complex and requires particular knowledge and 
skills. Specifically, it involves the interaction between a visual symbol system and 
perceptual and cognitive (i.e., conceptualisation) processes (Winn, 1994). The 
symbol system is composed of visual elements (e.g., shapes) that represent objects or 
ideas and the spatial relationships among the elements within the graphic (e.g., one 
shape inside another). Mackinlay (1999) argues that there are six visual symbol 
systems comprised of particular combinations of perceptual elements and spatial 
relationships which he terms “graphical languages”. These are Map Languages (e.g., 
topographic map), Axis Languages (e.g., number line), Opposed Position Languages 
(e.g., bar chart), Connection Languages (e.g., network), Miscellaneous Languages 
(e.g., calendar), and Retinal List Languages (e.g., mental rotation task). This latter 
language presents mathematical information through a combination of perceptual 
elements (e.g., colour, shape, size, saturation, texture, orientation) and capitalizes on 
these retinal properties to encode this information (E.g., Figures 1 and 2).  

This is the net of a cube. 
 
 
 
 
 
Which one of these cubes could be 
made by folding the net? 
 

 What does this model look like from 
above? 
 
 
 
 

Educational Testing Centre, 2002, p. 9.  Queensland Studies Authority, 2002, 
p. 10. 

Figure 1: Net task: Spatial 
visualization. 

 Figure 2: Model task: Spatial 
orientation. 

 
The interpretation of graphics has dual perceptual and cognitive foci. Students need 
to make sense of various perceptual elements (e.g., shape, size, saturation, 
orientation, texture) and the spatial relationships among these elements. They also 
need to employ various spatial perception skills, such as eye-motor co-ordination; 
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figure-ground perception; perceptual constancy; position-in-space perception; 
perception of spatial relationships; visual discrimination or visual memory (Del 
Grande, 1990). In tandem, students need to employ the appropriate cognitive 
processes for the particular graphical language. For example, in Retinal List 
Languages, they might be required to employ particular spatial abilities such as 
spatial visualization (Figure 1) or spatial orientation (Figure 2). McGee (1979) argues 
that visualization and orientation are two distinct factors in spatial ability. 
Visualization and orientation are of particular importance in enabling the interpreter 
of a graphic to translate between different representations of the same object. In 
Figure 1, the translation is between the (2D) net of a cube and the drawn (3D) graphic 
of the cube. In Figure 2, the translation is between the (3D) model of a set of cubes 
and the (2D) bird’s eye view of the model. Henceforth, these two tasks will be 
referred to as “cube tasks” because both tasks involve the interpretation of cubes. 
Second, students experience particular difficulties in each of the graphical languages. 
For example, on structured number lines items (Axis languages), students’ difficulties 
included overlooking the relative position of an unnumbered mark to identify its 
numerical value (Diezmann & Lowrie, 2006). Whereas on a map (Map languages), 
students experienced difficulty identifying which landmarks they should use in the 
solution process (Diezmann & Lowrie, 2008). Thus, we anticipate that students will 
experience unique difficulties interpreting Retinal List languages because it is a 
distinct graphical language.   
Third, there is scant guidance for teachers to support students’ interpretation of 
graphics in mathematics. Thus, it should be worthwhile to explore students’ 
interpretation of graphics in relation to five aspects of pedagogical content 
knowledge (PCK) proposed by Carpenter, Fenema and Franke (1996): (1) what tasks 
students can typically solve and how they solve them; (2) an understanding of 
individual students’ thinking; (3) how students connect new ideas to existing ideas; 
(4) common errors made by students; and (5) what is difficult and what is easy for 
students. 
METHOD 
This investigation is part of a 3-year longitudinal study which sought to describe and 
monitor primary students’ capacity to interpret information graphics in mathematical 
test items. The aims of this study were:  

1. To describe students’ knowledge and thinking about cube tasks;  
2. To document the errors students made on cube tasks; and    
3. To identify the difficulties that students experienced on cube tasks. 

The Participants  
The participants were 58 primary students aged 11 to 12 years drawn from two 
schools in moderate socio-economic areas. Fewer than 5% of students had English as 
a second language. 
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The Interviews 
The interview tasks were a pair of Retinal List items (Figures 1 and 2) drawn from 
the 36-item Graphical Languages in Mathematics test (Diezmann & Lowrie, in 
press). This test comprises six sets of graphic items corresponding to each of the six 
graphical languages. The two selected Retinal List items are similar in that they each 
included the interpretation of 3D cubes. The items are dissimilar in that the Net task 
required students to identify the correct net for a cube whereas the Model task 
requires students to identify the bird’s eye view of a set of cubes. The students 
completed the two items during an individual interview and then explained their 
thinking. They also explained which of these tasks was more difficult for them. The 
analyses of data were guided by Carpenter et al.’s (1996) five aspects of PCK. It 
involved the thematic coding of students’ responses and frequency counts.  
RESULTS AND DISCUSSION 
The results focus on three research questions. The first question addresses three 
facets of PCK (Carpenter et al., 1996): (1) which tasks students can typically solve 
and how they solve them, (2) students’ thinking, and (3) connections students made 
between new ideas to existing ideas. The subsequent two questions focus on the other 
two aspects of PCK, namely (4) students’ errors and (5) difficulties respectively.   

1. What did students know about these cube tasks?  
These tasks were not particularly difficult for Grade 6 students (N=58) with 75.9% 
and 65.5% of students successful on the Net and Model tasks respectively. Thus, the 
Net task was relatively easy for students and the Model task was of moderate 
difficulty. Higher results had been anticipated because these tasks are designed for 
students one to two years older than this cohort.  
Across the two tasks, successful students used a variety of strategies. However there 
was one predominant strategy for each task. On the Net task (Figure 1), 68.1% of 
successful students (n=30) used a matching strategy. Paul’s response, in which he 
identified the same parts of the shape on two different graphics, was typical. 

I chose A (answer) because to make a cube, the one (shape) that’s in the middle of the 
cross (net) is the one that’s going to be on the top and A is the one on the top (matching).  

Matching was also part of the typical strategy employed for the Model task (Figure 2) 
with 60.5% of successful students (n=23) using a matching and eliminating strategy. 
Heather’s response of matching aspects of one representation to another and 
eliminating multiple choice answers was typical.  

First I had a look at the model and I had a quick look at the A B C and D and then I 
counted how many blocks were along that side and I saw that it was 3 and on this side it 
was 4 and one down so I had a look on here and I thought cause that one (Answer A) was 
too small, so 1 2 3 (counting cubes) and then I saw 1 2 3 4 (matching) and I got that so I 
thought it was probably B and then I just checked C and D and I didn’t think it was D 
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cause you would be seeing all the blocks and there’s not a space there (eliminating), I can 
see it there and C was too short going this way so I thought it must be B. 

The use of the matching and eliminating strategy appears to increase the likelihood of 
success on the Model task.  
The exploration of students’ thinking revealed two unanticipated results. First, 
notable in the successful (and unsuccessful) students’ responses was a difficulty 
using language to describe their thinking. There were considerable pauses and 
reference to vague language such as “it”, “that” and “there” as in Megan’s response:  

It folds down ... that would fold down to there and that would be on top like that and 
then it would be like that (emphases added).  

Second, only one student made a link between one of the tasks and prior knowledge 
Colin’s comment provides evidence of a connection between the Net task and a 
previous task in an earlier year albeit using concrete materials.  

Well we did this in Grade 5 folding the net of a cube and so and we did colour it in 
before so I learnt a bit about shapes and possible configurations … 

The paucity of explanations linking the tasks to prior knowledge is surprising given 
that a constructivist philosophy underpins the mathematics syllabus in this state and 
building on prior knowledge is a central tenet of constructivism. However, there are 
three plausible reasons why relevant prior experience might not have been described 
by the students. The students might have had no previous experience with similar 
tasks; they might have had previous experience with similar tasks but did not think to 
refer to these experiences in their explanations; or they may have failed to make a 
connection between prior knwoledge and these tasks. 

2. What errors do students make on the cube tasks? 
Students made four types of errors across these two tasks. On the Net task (Figure 1), 
the dominant error was incorrect association with 92.9% (n=13) of the 14 
unsuccessful students using this strategy. This code was assigned when students 
made an incorrect association between two parts of the same shape or between one 
part of a shape and the corresponding part on its alternative representation. For 
example, Sue made the correct assumption that the heart could be on the top but then 
made an incorrect spatial association between the hexagon and the heart.  

I picked B and the love heart could be on the top (correct) and then the hexagon would 
be on the side (incorrect it would be on the bottom) so that means that the diamond 
would be on the other side. 

Similar to the Net task, incorrect association was also the dominant error on the 
Model task (Figure 2). Seventy percent of the 20 unsuccessful students made this 
error. The second most frequent error on tis task was incorrect elimination which was 
made by 15% of students. Paul’s response was typical of an incorrect elimination 
error:  
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I chose C – it couldn’t be that one (A) because there’s more (cubes). I can see 3 blocks 
there and I can see another block there (pointing to the model).  It couldn’t be that one 
(B) because three down and two (incorrect elimination) there so I chose that one.  

Across the two tasks, one to two students also made errors because they assumed the 
diagram looked correct (without checking) or because they misread the graphic. 

3. What difficulties do students report experiencing on the cube tasks? 
After the students had completed the two tasks, they were asked to identify which 
task was harder for them and why. The results indicate that students perceived the 
Net task to be mode difficult than the Model task (Table 1). Students’ perceptions of 
task difficulty mirrored their performance with approximately 10% more students 
perceiving the Net task to be more difficult than the Model task (53.4% : 41.4%) and 
being successful on the Net than Model tasks respectively (75.9% : 65.5%).  
Net task was 
harder  

Model task was 
harder  

Both tasks were 
similar  

Students not 
questioned  

53.4% (n=31) 41.4% (n=24) 1.7% (n=1) 3.4% (n=2) 

Table 1: Relative difficulty of the tasks.  
A thematic analysis of students’ explanations of why particular tasks were difficult 
highlights the complexity of graphic interpretation and the specificity of difficulties 
with particular tasks. On the Net task, in which students were working from a 2D 
representation to a drawn 3D representation (Figure 1), students reported four 
difficulties: a lack of prior experiences; limited visual memory; difficulty imagining 
an obscured view; and difficulty imagining the placement and orientation of shapes 
when a net was folded (Table 2). On the Model task, in which students were working 
from a drawn 3D representation to a 2D representation (Figure 2), students reported 
two difficulties: imagining an obscured view and a bird’s eye view (Table 3).  
Lack of prior concrete experiences: “You have to have an (concrete) example or 
something because sometimes you’re not sure” (Bridget) 
Visual memory: “Hard to imagine them being folded and forgot which way each one 
went” (Rachel) 
Imagining an obscured view: “Didn’t see  the whole cube, you could only see three 
sides” (Molly) 
Imagining the placement and orientation of  shapes on a folded net: “Hard to work 
out which shapes were next to each other” (Alan) (placement); “You had to work out 
which way to fold them and whether you could turn them around” (Ned) (orientation)

Table 2: Type of difficulties and examples for the Net task. 
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Imagining an obscured view: “Because you can’t get the exact photo because you’ve 
got like blocks there and then you can’t see the blocks behind and you’ve got to sort 
of guess like those blocks or how many blocks there are.” (Isobel) 
Imagining a bird’s eye view: “It was just hard imagining what it would look like from 
above.” (Colin) 

Table 3: Type of difficulties and examples for the Model task. 
The students’ difficulties across both tasks highlight the importance of concrete 
experiences and strong visual perception skills particularly visual memory. Students’ 
difficulties with various aspects of imagining (obscured view, placement, orientation, 
bird’s eye view) suggest the importance of both spatial visualization and spatial 
orientation in these types of tasks. On the Model task, students’ difficulty imagining 
what blocks are hidden might have been exacerbated by the perspectives shown (See 
Parzysz, 1991 for a discussion of perspectives). On this task not only did students 
need to translate from a drawn 3D representation to a 2D representation but they also 
had to coordinate an orthogonal projection (model) with oblique projections 
(answers) (Figure 2).  
CONCLUSION  
The importance of spatial skills in our technological world is increasing with new 
devices becoming commonplace (e.g., Global Positioning Systems [GPS], new 
virtual worlds to traverse (e.g., Google earth), and new careers that rely heavily on 
spatial abilities (e.g., deep sea imaging). Hence, spatial literacy is indisputably a 
fundamental literacy in the 21st century. Our investigation of students’ performance 
on spatial visualization and spatial orientation tasks indicates six ways that educators 
can foster students’ spatial abilities and work towards spatial literacy for all students. 
First, ensure spatial skill development and a variety of spatial activities are embedded 
in the mathematics curriculum. Second, support students to develop their spatial 
vocabulary and provide opportunities for them to use this language. Third, foster the 
development of students’ visual memory and spatial abilities with particular attention 
to the visualization of obscured views, the placement and orientation of shapes, and 
different viewpoints. Fourth, provide concrete examples of tasks prior to expecting 
students to visualize tasks and encouraging them to make links to these previous 
experiences. Fifth, follow up on students’ difficulties and errors and provide practice 
tasks on each of the sub components of problem tasks. Finally, capitalize on 21st 
century technologies to provide opportunities to develop spatial literacy. For 
example, 3D games that include virtual avatars provide multiple opportunities for 
students to learn about orientation in an informal environment (Amorim, 2003).  
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