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2 Introduction 
 
How various additives can increase some cardio-
vascular diseases and effects of transport for albumin 
and glucose through permeable membranes are some 
important studies in biomechanics. The rolling 
phenomena of the leucocytes gives rise to an 
inflammatory reaction along a vascular wall. Initiated 
by Eringen [5], a micropolar fluid is a satisfactory 
model for flows of fluids which contain micro-
constituents which can undergo rotation.  

 
2 Problem formulation 

 
We consider a fully developed flow of such a fluid 
bounded by two infinite parallel porous plates, shown 
in Figure 1. The details of  the governing equations 
are found in [1, 14]. They are : 
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moment of momentum 
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Here ρνν kk +=  is a characteristic of the viscosity 

of the fluid and N


 is the component of the gyration 
vector normal to the ( )yx  ,  plane. For consistency 
with other studies [10, 11] all physical parameters are 
taken as independent and constant. In our geometry, 
the flow is determined by the height h  between the 
two plates and the normal velocity at the walls 0≠q . 
Several studies, for example [15, 17], show the 
possibility of multiple solutions when suction q < 0 is 
imposed on each boundary.  
At either wall, the volume flow rate Q per unit wall 
width may be written as  

hUqLQ .. ==  (4) 

  

 
FIGURE 1. Schematic of flow. 

 
where U and L  are characteristic longitudinal  
velocity and length scales, respectively. Using these 
scales, we introduce the following dimensionless 
variables and parameters:  
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Here, 0≠Re  is the cross flow Reynolds number, 
where 0≤Re  corresponds to suction, and 0≥Re  to 
injection. 
To simplify the governing equations, we generalise 
Berman's similarity solution [3] to include the 
microrotation N , by assuming   

N.x;Vv;'V.xu =−== N  (6) 
where V  and N  are functions of y  only, and a 
prime denotes differentiation with respect to y . 
Using (6), equation (1) is identically satisfied, and 
equation (3) becomes : 
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Equation (7)  differentiated with respect to x  reduces 
to 02 =∂∂∂ yxp . , and equation (2) differentiated 
with respect to y  yields: 
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Using (6), equation (4) becomes 
( ) ( ) NNNVNNVVNNRe ′′++′′−=′−′ 213 2.  (10) 
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and equations (8) and (10) are to be solved subject to 
the following conditions: 
Velocity 
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For the microrotation boundary condition given in 
equation (12), we follow [6, 11] and assume a linear 
relationship between N  and the surface shear stress. 
In this work we use the value 0=s , corresponding to 
the condition  00 =),( xN . The latter represents the 
case where the particle density is sufficiently great 
such that microelements close to the wall are unable 
to rotate. 

 
3   Perturbation development 
 
Choosing the Reynolds number Re  as the perturbing 
parameter, we expand the similarity functions using 
regular perturbation expansions 
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and substitute them into the boundary-layer equations 
(8) and (10). By collecting terms in equal powers of  
Re , for the zeroth order, we obtain : 
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We introduce a vortex viscosity coupling coefficient 
)( 111 1 NNC += . In a recent study [12], we have 

shown that 1C  may only vary in the range  
10 1 <≤ C . In case of a newtonian fluid 01 =C  (and 

032 == NN ) , the first two terms for the velocity 
are deduced easily  (see [4, 16]). In our case  : 
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For a non zero value for 1C , equation (13a) may be 
integrated twice. This leads to  

( ) ( )ψϕ +−=+′′ yCGCF ... 211  (15) 
This equation is substituted in equation (13b) which 
leads to : 
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whose solution is : 
 ).(.. .. ψϕβα +++= −+ yeeG yryr  (17) 
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The constants ϕ ,ψ  and δ , ε  (this last constant 
appears in F ) are expressed in terms of  α  and β  
using the conditions on the microrotation function 
and two conditions on the velocity function for the 
lower plate. The constants α  and β  are then found 
using the conditions on the upper boundary. 

 
4   Numerical procedure 

 
Equations (8) and (10) represent two coupled two-
point non-linear differential equations The original 
two point boundary value problem is transformed into 
a first order system. An approximate solution is given 
by { } { }VVVVNNkWW k ′′′′′′′=== ,,,,,,; 61  and 

{ }61,; == kZZ k  is an improved solution. A first 
order Newton’s development around a former 
solution gives the two linear coupled equations : 
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with  
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Our numerical procedure is described in [2, 4]. This 
method may be related to those described in [10]. 

 
5   Results and Comments 
 
5.1 Perturbation development. We begin by 
comparing the solutions (14) and (18) with numerical 
results. In Figure 2, we draw the longitudinal velocity 
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for two cases :  050  60 21 .;. == NC  and 
20  40 21 .;. == NC  using (18). These results are 

compared with the velocities obtained using (14) for 
the cases 010.−=Re  and 025.=Re . These 
developments have been used indiscriminately in our 
numerical procedure. For all our investigations, the 
convergence is obtained in less than five iterations. 
We have used, in complement, a second convergence 
criterion based on a comparison of the RMS values of  
the sixth kZ  while the first criterion analyses the 
weights of different results participating to the 
solution (see [2, 4]). 
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FIGURE 2. Comparison between solutions (14; black 

and white dots) and (18; plain and broken 
lines): velocity profiles. 

 
The following graph summarizes the consequences of 
the formulae (14-18) in which we consider the 
variation of the main part of the wall shear stress 

)( 0F ′′  as a function of the parameters 2N , 1C  and 
Re . For a fixed value 801 .=C , an increasing value 
for 2N  increases the wall shear stress to an 
asymptotic value corresponding to an impermeable 
wall. For a fixed value of 402 .=N , if 1C  increases, 
the wall shear stress decreases and an injection 
( 0≥Re ) has the same effect. 
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FIGURE 3.  Comparison between solutions (14 ; 

black line from Re = 0 to +18.) and  (18). 
Variation of the wall shear stress )( 0F ′′ . 

 
5.2 The parameter values. A review of the literature 
[7, 8, 18] shows that  the vortex viscosity 1N  is often 
taken less than 0.2 but we found values of 4.5 in [9] 
or 50 in [6]. Our previous study [12] indicates that 
computations for large values for 2N  is typically 
stable and relatively easy to obtain. Therefore, we 
mainly considered the computationally more 
demanding range 022 .≤N  to investigate the effects 
of parameter variations. The other physical 
parameters are taken in the ranges : 

030030 .. +≤≤− Re  and, in contrast with [13] we 
specified 23 150 NN ≤≤ . . In the main literature, the 
physical parameter corresponding to the micro inertia 
density is often omitted [7, 8, 18].  
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FIGURE 4.  Profiles of the couple wall derivative 

)( 0N ′ , function of 2N  for various 3N  and 
wall injection values. 
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FIGURE 5. Profiles of the wall shear stress )( 0V ′′ , 

 function of 2N  for various 3N  and wall 
injection values. 

 
In Figures 4 and 5, we consider the influence of this 
parameter on the wall couple stress )( 0N ′  and the 
wall shear stress.  With 1C  =  0.5, our values are :   
 

 A B C D E 
3N  0.05 0.08 0.05 0.08 0.15 

Re  -10. -5. 10. 25. 25. 
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From Figures 4 and 5, we observe the asymptotic 
decreasing influence of 2N , and we do not encounter 
any problems in the various calculations. The 
influence of 3N  is negligible in comparison with the 
Reynolds number, which increases the absolute value 
of the wall shear stress. 
 
5.3 Effect of suction. For our geometry, if the 
suction number is near –14.0 or less, it is possible to 
obtain several solutions [15, 17].  We found this 
phenomena in the case of a sliding pad [2]. Here, we 
have attempted to obtain more detailed information 
for the case of moderate suction. No difficulty in 
obtaining numerical results was found using our 
perturbation developments as a first estimate for the 
solution. 
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FIGURE 6. Profiles of the couple wall derivative 

)( 0N ′  function of 2N  for two values for 3N . 
 
To observe the influence of 3N , we consider 

201 .=C  and suction corresponding to 020.−=Re . 
The parameter values chosen were 150  ;  1003 ..=N . 
From Figure 6, we see numerous discontinuities, the 
number of which decreases for a decrease in 3N . (In 
Figure 4, we did not detect any discontinuities for the 
case of injection). The variations are not monotone 
for 180050 2 .. ≤≤ N , and the last discontinuity is 
observed  for a value 7602 .≈N . 
 
Conclusion 
 
1. Our numerical procedure seems to be one among 

the most accurate and well adapted to the problem 
of a micropolar fluid flow between two parallel 
porous plates. 

2. Attempt to decrease the wall shear stress is 
obtained with injection or using fluids with large 
coupling coefficient values 1C . 

3. A large ratio for the viscosities 2N  or a low value 
for the micro inertia density are favourable to any 
calculation. 

4. Some discontinuities in couple wall derivative 
profiles )( 0N ′  can arise in case of a suction 
combined with moderate values for 3N . 

 
References 
 
[1] Ahmadi G. (1976), Self-similar solution of incompressible 

micropolar boundary layer flow over a semi-infinite plate, 
Int. J. Engng. Sci., Vol. 14,  pp 639-646 

[2] Bellalij M. & Desseaux A. (1996), Convergence of 
quasilinearization for a viscous flow near a sliding pad, Soc. 
of Eng. Sci., 33th annual meeting, Arizona State Univ., 
Tempe, USA. 

[3] Berman A. S. (1953), Laminar flow in channel with porous 
walls, J. Appli. Phys., Vol. 24, pp 1232-1235. 

[4] Desseaux A. (1997), La "quasilinéarisation" appliquée à un 
écoulement laminaire d'un fluide visqueux en présence d'un 
champ magnétique transversal - 16e CANCAM (Canadian 
congress applied mechanics), Quebec, Canada, Vol. 1, pp 
257-258. 

[5] Eringen A. C. (1966), Theory of micropolar fluids, J. Math. 
Mech, Vol. 16, N° 1. 

[6] Gorla R. S. R., Ameri A. (1985), Boundary layer flow of a 
micropolar fluid on a continuous moving cylinder - Acta 
Mech., Vol. 57, pp 203-214. 

[7] Hady F. M. (1996), On the solution of heat transfer to 
micropolar fluid from a non-isothermal stretching sheet with 
injection, Int. J. Num. Meth. Heat Fluid Flow, Vol. 6, pp 99-
104. 

[8] Hassanien A.  &  Gorla R. S. R. (1990), Heat transfer to a 
micropolar fluid from a non-isothermal stretching sheet with 
suction and blowing - Acta Mech., Vol. 84, pp 191-199. 

[9] Hassanien A., Shamardan A., Morsy N. M. & Gorla R. S. R. 
(1999), Flow and heat transfer in the boundary layer of a 
micropolar fluid on a continuous moving surface, Int. J. 
Num. Heat Fluid Flow, Vol. 9, pp 643-659. 

[10] Heruska M. W., Watson L. T. & Sankara K. K. (1986), 
Micropolar flow past a porous stretching sheet, Computer & 
Fluids, Vol. 14, N° 2, pp 117-129. 

[11] Jena S. K. & Mathur M. N.  (1981), Similarity solutions for 
laminar free convection flow of a thermo-micropolar fluid 
past a non-isothermal vertical plate, Int. J. Engng. Sci., Vol. 
19, N° 11, pp 1431-1439. 

[12] Kelson N. A. & Desseaux A., Flow of a micropolar fluid 
bounded by a stretching sheet, J. Aust. Math. Soc. Series B, 
to appear. 

[13] Ramachandran P. S., Mathur M. N. & Ojha S. K. (1979), 
Heat transfer in boundary layer flow of a micropolar fluid 
past a curved surface with suction and injection, Int. J. 
Engng. Sci., Vol. 17, pp 625-639. 

[14] Rees D. A. S. & Bassom A. P. (1996), The Blasius 
boundary-layer flow of a micropolar fluid, Int. J. Engng. Sci., 
Vol. 34, N° 1, pp 113-124. 

[15] Robinson W. A. (1976), The existence of multiple solutions 
for the laminar flow in a uniformly porous channel with 
suction at both walls, J. Engng. Math., Vol. 34, N° 1, pp 
113-124. 

[16] Skalak F. & Wang C. Y. (1975), Fluid dynamics of a long 
porous slider, ASME J. Appl. Mech., Vol. 10, N° 1, pp 23-40. 

[17] Skalak F. & Wang C. Y. (1976), On the nonunique solutions 
of laminar flow through porous tube or channel, SIAM J. 
Appl. Math., Vol. 14, N° 3, pp 535-544. 

[18] Soundalgekar V. M. & Takhar H. S. (1983), Flow of 
micropolar fluid past a continuously moving plate, Int. J. 
Engng. Sci., Vol. 21, N° 8, pp 961-965.

 


