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Abstract. In this paper we propose a method for vision only topologi-
cal simultaneous localisation and mapping (SLAM). Our approach does
not use motion or odometric information but a sequence of noisy visual
measurements observed by traversing an environment. In particular, we
address the perceptual aliasing problem which occurs using external ob-
servations only in topological navigation.

We propose a Bayesian inference method to incrementally build a
topological map by inferring spatial relations from the sequence of obser-
vations while simultaneously estimating the robot’s location. The algo-
rithm aims to build a small map which is consistent with local
adjacency information extracted from the sequence measurements. Lo-
cal adjacency information is incorporated to disambiguate places which
otherwise would appear to be the same.

Experiments in an indoor environment show that the proposed tech-
nique is capable of dealing with perceptual aliasing using visual obser-
vations only and successfully performs topological SLAM.

Keywords: Autonomous mobile robots, SLAM, correspondence prob-
lem, topological navigation, panoramic vision, colour histograms.

1 Introduction

Simultaneous localisation and mapping (SLAM) is one of the most researched
areas in robotics. Two different approaches exist to the SLAM problem: Metric
and topological [1]. The fromer aims to model the environment using a metric
map so geometrically accurate position estimation is achieved. Topological maps
are graphical models of the environment that capture key places and their con-
nectivity in an abstract and compact manner for localisation and path planning.

In both cases, probabilistic approaches have been successfully applied to deal
with the inherent uncertainties associated with robot perception, that would oth-
erwise trouble the map-building process. Beside measurement noise, topological
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mapping is complicated through perceptual aliasing which occurs when physi-
cally different parts in in the environment appear to be the same to the robot.
This phenomenon occurs as sensors may supply insufficient data to identify the
current state of the world because of sensory noise, limited field of view (aperture
problem) and repeated structures in the environment. Perceptual aliasing makes
it difficult for a robot to decide when it is visiting a new place or revisiting a
memorised place (loop closing) [1,2].

In this work, we address the problem of topological SLAM from a sequence of
visual measurements obtained from visited places only. In particular, we are in-
terested in the problem of loop closing in environments which contain physically
different places which appear to be the same. We approach this problem using
Bayesian inference to estimate the posterior distribution on topological maps
while simultaneously determining the place the robot currently occupies. The
inference method embeds a strategy to reliably deal with percptual aliasing by
distinguishing similar places on the basis of neighbouring information [3]. Using
neighbouring information to disambiguate physically different places which ap-
pear identical was proposed by Werner et al. [3]. However, it was only examined
on artificial topological graphs with deterministic observations.

Our approach is purely vision based so we suppose that actions (e.g. turn
left) and odometry cannot be sensed directly. In contrast to other vision based
methods [4,5] which aim to represent places highly distinctive using sophisti-
cated visual features such as SIFT [7], or SURF [8,9], we use colour histograms
only [10,11,12,13,14]. Colour histograms in conjunction with panoramic images
exhibit several attractive properties such as invariance to rotation around the
vertical axis. Moreover, colour histograms represent salient colour information
of images in a very compact manner and are very fast to extract and process.
Clearly, colour histograms are not very distinctive image features so we have the
scenario that similar visual appearance is shared by different places.

Research in topological SLAM has mainly been concerned with a particular
aspect to avoid the perceptual aliasing problem by improving the distinctiveness
of the appearance of places [4,5]. These approaches do not properly address
situations where places are indistinguishable even with perfect sensing. Other
approaches support the robot’s perceptual abilities using metric information
gained from odometry measurements or the robot’s actions [15,16,17].

2 Neighbourhood Information for Topological Mapping

Our algorithm represents a topological map by a labelled graph where vertices
represent places and edges reflect the connectivity between places [1]. The labels
of vertices refer to fingerprints which characterise the place in terms of sensor
data. The graph which corresponds to the surrounding is denoted environment
graph Genv and the map graph, which we want to infer, Gmap. The environment
graph is unknown and the only available information about it is a finite his-
tory henv = l0env, l

1
env, ... ∈ L∗

env of labels of visited vertices obtained from the
traversal of the environment graph (Here, * is the Kleene star).
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Our method exploits the neighbourhoods of places to disambiguate places
with similar appearance. The neighbourhoods of the environment graph are not
accessible directly as it is unknown. Local neighbouring information which is
contained in the history is accessible through sequences of length n, called n-
grams [3]. Consecutively visited vertices are represented by consecutive labels in
the history and, in turn, consecutive labels in the history must originate from ad-
jacent vertices in the environment graph. Hence, the set of n-grams Grams(h, n),
which can be obtained from a history, corresponds to a feature space on the
history.

In order to achieve reliable navigation, a robot requires an internal repre-
sentation that exhibits the properties of the environment with respect to the
selected representation (e.g. topological). In our case, a map graph is required
to be isomorphic with the environment graph. The map graph is isomorphic
with the environment graph if there is a bijective mapping such that each neigh-
bourhood of the map graph corresponds to a neighbourhood of the environment
graph and vice versa. However, it is not possible to compare neighbourhoods
of the map graph directly with neighbourhoods in environment graph as the
latter one is unknown. Consequently, we propose to measure the consistency
of graphs in the feature space; that means, the sets of n-grams of the graphs.
Hence, two graphs are n-consistent if they share the same set of n-grams [3]. For
noisy data the Hausdorff distance is used to measure the n-consistency of two
graphs G0 and G1 using Γ0 = Grams(h0, n) and Γ1 = Grams(h1, n) generated
from h0 ∈ L∗

0 and h1 ∈ L∗
1, so

dH(Γ0, Γ1) = max(max
γi∈Γ0

min
γj∈Γ1

d(γi, γj), max
γj∈Γ1

min
γi∈Γ0

d(γj , γi)). (1)

The smaller the Hausdorff distance the more n-consistent are graphs G0 and G1.
The distance of two n-grams γi and γj is computed using the maximum norm

d(γi, γj) = ||γi − γj ||∞ = max
k=0...n−1

(|γi,k − γj,k|) (2)

so the distance between two sets of n-grams is determined by the most significant
distance of two labels which are mapped to the same vertex.

3 Topological SLAM

In this section we describe our method for topological SLAM from a sequence
of visited places. The history of observations of visited places is the only infor-
mation about the environment. In particular, the robot has no access to metric
information such as odometry and no information about its actions but is aware
of performed U-turns. We suppose that the robot has explored the environment
and has recorded a history henv = l0env, ..., lM−1

env of M fingerprints of visited
places. After the exploration run the set Γenv = Grams(henv , n) is derived from
the history.
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3.1 Bayesian Map Inference

The space of topologies grows hyper-exponentially with the number of measure-
ments [15]. Thus, we use a Bayesian inference method to only infer topological
maps which are consistent with the observations. In Bayesian map inference ob-
servations are used to update or to newly infer the probability that a hypothesis
may be true using Bayes’ theorem. For the purpose of inferring a topological
map graph Gmap from a history henv we have

P (Gmap|henv) ∝ P (henv|Gmap)P (Gmap). (3)

We can assume the process of incrementally building a topological map is Marko-
vian – that is the current topological map contains all relevant information and is
conditionally independent of all earlier states. Consequently, we write Equation 3
in an incremental way

P (Gt+1
map|l0:t+1

env ) ∝ P (lt+1
env |Gt

map)P (Gt
map) (4)

to estimate the posterior distribution on topological maps P (Gt+1
map|l0:t+1

env ) from
the prior distribution P (Gt

map) using the measurement likelihood P (lt+1
env |Gt

map).
It is difficult to represent uncertainty directly in a topological map so we use
a sequential Monte-Carlo technique to represent uncertainty by maintaining a
collection of N map candidate samples which are randomly drawn from the
probability density function in the space of topological environment maps. A
collection of map samples

{
Gt+1

map,i, w
t+1
i

}N−1

i=0
is used to model the posterior dis-

tribution P (Gt+1
map|h0:t+1

env ) on topological maps. The weights wt+1
i are importance

factors which are normalised such that

N−1∑
i=0

wt+1
i = 1. (5)

Bayesian filters recursively estimate the posterior distribution P (Gt+1
map|l0:t+1

env )
from the proposal distribution P (Gt

map) and the perception lt+1
env using two dis-

tinct phases: Prediction and Update.

The prediction phase uses the map estimate from the previous time step to
estimate the map at the next time step. In our case, we can not predict the
next observation as the map is not known in advance so the probability which
vertex corresponds to the place the robot visits next is uniformly distributed
over the vertices contained in the map and an additional vertex which refers
to a new place. Therefore, for each sample Gt

map,i of the collection of samples
that models the posterior distribution P (Gt

map|h0:t
env) at t, map graph candi-

dates
{
G̃t+1

map,i,k

}|Vmap,i|

k=0
are generated where k refers to the vertex which the

new observation is predicted to correspond to. Gaussian white noise N (0, σg)
is added artificially to the labels of the map graph candidates to model the in-
herent uncertainties associated with robot perception. If an additional vertex is
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introduced it is labelled with the new observation. If the current location and
the place which is predicted to be occupied next by the robot are not connected
in the topological map yet, an edge is introduced to connect the corresponding
vertices.

The proposal distribution on topological maps is updated using the new obser-
vation. In Monte-Carlo approaches this is done by weighting the samples using
the data. We compute the weight of a topological map graph candidate G̃t+1

map,i,k

using the current observation lt+1
env and the set of n-grams Γenv, so

wi=P (lt+1
env , Γenv|G̃t+1

map,i,k)=P (lt+1
env |G̃t+1

map,i,k)P (Γenv|G̃t+1
map,i,k)P (G̃t+1

map,i,k). (6)

The term P (lt+1
env |G̃t+1

map,i,k) computes the probability of the measured label and
the label of the vertex k to be identical, so

P (lt+1
env |G̃t+1

map,i,k) = exp

⎛⎝−
(

lt+1
env − l̃k

σl

)2
⎞⎠ (7)

where l̃k ∈ L̃t+1
map,i,k and σl denotes a weighting factor.

The second term in Equation 6 considers the probability that map graph
G̃t+1

map,i,k is n-consistent with the information given in the history. Using Equa-
tion 1 the consistency probability is computed with

P (Γenv|G̃t+1
map,i,k) = exp

⎛⎝−
(

dH(Γenv, Γ̃ t+1
map,i,k)

σc

)2
⎞⎠ (8)

where Γ̃map,i,k = Grams(h̃t+1
map,i,k, n) is generated from h̃t+1

map,i,k ∈ L̃∗,t+1
map,i,k.

In parametric methods the probability of the model to represent the data is
increased when the number of parameters in the model is increased. In our case,
a map graph which consists of one component for each n-gram in Grams(henv , n)
would be consistent with the information from the history but is inappropriate
for navigation, containing too many vertices. Hence, the prior should favour
small topological maps. Consequently, the last term in Equation 6 penalises
map graphs which contain vertices with similar labels

P (G̃t+1
map,i,k) =

|Ṽ t+1
map,i,k|∏
a=0

|Ṽ t+1
map,i,k|∏
b=0

⎛⎝1 − φ

⎛⎝exp−
(

l̃a − l̃b
σl

)2
⎞⎠⎞⎠ (9)

where l̃a, l̃b ∈ L̃t+1
map,i,k and φ weights the influence of the penalty.

The posterior distribution on topological maps is computed by drawing N
samples from the proposal distribution.

3.2 Localisation

While building the map, the place the robot occupies is implicitly estimated
whenever the map graph is updated with a new observation. The vertex whose
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label is updated or additionally introduced using the observation indicates the
estimated location of the robot. If a new vertex is introduced the robot is hence
located at the place which corresponds to that vertex. The location, in turn,
is used to guide the mapping process by introducing adjacencies between the
current and the previous place occupied.

4 Experiments

Our experimental set up environment covers an indoor office environment area
of about 20,000 square meters (Wean Hall at Carnegie Mellon University), see
Figure 1. The robot uses a panoramic camera to acquire information about the
environment.

The experimental platform traverses the environment using the generalised
Voronoi graph (GVG) strategy developed by Choset and Nagatani [16]. It is
based on the Voronoi diagram which is a special kind of decomposition of a
metric space into segments and nodes determined by distances to a specified
discrete set of objects in the space. Our robot measures distances using sonar
readings.

Segments capture the points in the plane that are equidistant to two sites.
Travelling along the Voronoi segments, the robot can keep in the middle of
corridors while exploring the environment. The Voronoi nodes are the points
equidistant to three (or more) obstacles. In indoor environments this corresponds
naturally to T-junctions or intersections of corridors as shown in Figure 1. Once
such a locus point is identified, a panoramic image is taken.

Note, we use the GVG strategy only for exploring the environment and the
identification of places. Mapping and localisation is performed using purely visual
information. The GVG of our experimental environment is displayed in Figure 1.

In some areas of our experimental environment bright ceiling lights are in-
stalled whereas some other areas have wall lights. As a result, the images the
robot takes at each place suffer from loss of clarity of visual information within
shadows or near strong lights (over and under exposed regions). We use a method

2

CMU Wean Hall Floor 6

1 2 3 4 5
6

7
891011

Fig. 1. The floor plan of Wean Hall Floor 6 at Carnegie Mellon University (CMU).
Embedded is the topological graph (vertices and their connectivity) that reflects the
ground truth of the topological map that we wish the SLAM algorithm to infer.
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Fig. 2. An under exposed (left) image mea-
sured at place 10 in Wean Hall (see Figure 1)
and the enhancement (right) using Vonikakis
and Andreadis method [18].

Fig. 3. Distance matrix of the finger-
prints of places (see Figure 1). Blue
small distance, red big distance.

proposed by Vonikakis and Andreadis to enhance the acquired images by lighten-
ing under exposed regions and darkening over exposed regions without affecting
the correctly exposed ones [18]. Figure 2 shows the application of the enhance-
ment method for an under exposed image.

In our system, the visual appearance of a place is measured using colour
histograms. Usually a colour histogram is created by calculating an N -bin his-
togram for each of the R, G and B colour bands and so looses the 3D spatial
information of the RGB tuples in colour space. To retain the 3D spatial infor-
mation of the RGB tuples in colour space, we use 3D histograms in RGB space
where the histogram consists of N3 equally sized bins.

The number of n-grams we can extract at most from a history h of lenth m
is at most m − n + 1 whereby the maximum number of unique n-grams which
are derivable from a strongly connected graph is O(|L|n) [3]. However, using fast
vision techniques such as 3D colour histograms with 53 bins keeps the system
fast despite potentially big sets of n-grams. In comparison, a single standard
SIFT feature as is represented through a 128 dimensional vector, whereby thou-
sands of such features may be identified in a single image [7].

We have conducted several exploration runs and recorded a total of 50 images
of places and stored the fingerprints of the enhanced images in a data base. Fig-
ure 3 displays the similarity matrix of the fingerprints from the enhanced images.
It is apparent that the environment contains numerous topological ambiguities
when using colour histograms as fingerprints of the places.

Given the data base and the ground truth environment graph, we can simulate
arbitrary traversals of the environment. The robot starts at an initial vertex and
selects an arbitrary adjacent vertex as next place. According to the vertex the
robot occupies, a random observation from the data base is sampled. For the
following evaluations, 2×200 paths of length 70 were generated. One set of paths
uses fingerprints from the enhanced images and the other set uses fingerprints
from the original images. Each path represents an exhaustive exploration of the
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Fig. 4. The consistency measured using the Hausdorff distance of the inferred topolog-
ical maps and the corresponding simulated histories is displayed. Most of the inferred
maps using the enhanced visual perceptions are highly consistency respective the con-
sistency measure.

Fig. 5. The number of vertices of the inferred topological maps are histogrammed. Most
of the inferred maps have only small consistency errors which occur due to measure-
ment noise. A clear peak at 11 vertices is to see what corresponds to the environment
graph (see Figure 1).

environment. For each path the set Γenv of n-grams is derived before starting the
algorithm. Note, it is actually not necessary to assume an exhaustive exploration
of the environment as the inferred map is a representation of the environment
which is consistent to the measurements at a certain time.

We have applied the proposed SLAM method using 30 map candidates to
model the posterior distribution on topological maps and 3-consistency mapping.
The fingerprints of places are represented through 3D colour histograms with
53 bins from the enhanced images.

Figure 4 shows a histogram of the 3-consistency of the inferred maps of the
simulated random traversals. It can be seen that most of the inferred maps using
the enhanced images are very consistent with the information from the history,
whereby little divergence occurs as a result of measurement noise inherent to sen-
sor perception. Rare outliers may occur when the mapping process is misled due
its probabilistic nature so the inferred map is inconsistent with the observations.

The overall goal in topological mapping is to build an internal representa-
tion which is isomorphic to the environment. Here, we investigate whether the
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inferred map graphs are isomorphic to the environment graph in order to mea-
sure the quality of the proposed approach for topological mapping. In the case
of applying the image enhancement method, we found all map graphs (193, or
97%) with the same number of vertices as the environment graph to be isomor-
phic to the environment graph (see Figure 5). The results support the strategy
of the proposed algorithm to use the current position estimation with the new
observation to map the connectivity of the environment.

5 Discussion

In this paper we proposed a Bayesian approach for topological SLAM that does
not rely on any motion model or metric information, but uses a history of noisy
visual measurements from visited places only. Using colour histograms as fin-
gerprints of places makes our system fast but entails physically different places
to appear similar to the robot’s senses. In order to deal with this problem, the
sequential Monte-Carlo SLAM technique embeds a method to reliably disam-
biguate places which appear to be the same but in fact are different. The method
aims to maintain consistency with the observed data while minimising the num-
ber of vertices contained in the map. The consistency between a topological map
and the observations is measured using the Hausdorff distance.

Experiments in an indoor environment which is subject to severe ambigui-
ties due to repeated structures demonstrate the capability of the idea to use
neighbourhood clues in order to disambiguate otherwise identical vertices. Our
approach mostly infers topological maps with only small inconsistencies with
respect to the data. Moreover, most of the resulting maps are isomorphic to the
environment graph what supports reliable topologial navigation despite severe
perceptual aliasing.
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