
Towards Model Round-Trip Engineering:

An Abductive Approach

Thomas Hettel1,2, Michael Lawley3, and Kerry Raymond1

1 School of Information Technology
Queensland University of Technology, Brisbane, Australia
t.hettel@student.qut.edu.au, k.raymond@qut.edu.au

2 SAP Research, CEC Brisbane, Australia
t.hettel@sap.com

3 The Australian E-Health Research Centre,
CSIRO ICT Centre, Brisbane, Australia

michael.lawley@csiro.au

Abstract. Providing support for reversible transformations as a basis for
round-trip engineering is a significant challenge in model transformation
research. While there are a number of current approaches, they require
the underlying transformation to exhibit an injective behaviour when re-
versing changes. This however, does not serve all practical transformations
well. In this paper, we present a novel approach to round-trip engineering
that does not place restrictions on the nature of the underlying transfor-
mation. Based on abductive logic programming, it allows us to compute a
set of legitimate source changes that equate to a given change to the tar-
get model. Encouraging results are derived from an initial prototype that
supports most concepts of the Tefkat transformation language.

1 Introduction

In the vision of model-driven software development, models are the prime arte-
facts. They undergo a process of gradual refinement turning high level descrip-
tions of a system into detailed models and finally code. As part of this process,
models are translated to various modelling languages most appropriately ex-
pressing important concepts of particular abstraction layers and from certain
perspectives. Once models have been translated, the results are subject to re-
vision and there is no easy way to reflect changes back to their original source.
However, propagating changes is indispensable in order to keep the intercon-
nected mesh of models in a consistent state.

While there are many different approaches to model synchronisation, they
place restrictions on the underlying transformation. Generally, transformations
are required to exhibit some injective behaviour such that unique source models
can be found for each and every change to the target model. However, there
are many practical transformations where such an injective behaviour is not
achievable (e.g., see Sec. 3.1) as important information is discarded in the trans-
formation process and not encoded in the target model. In general there are

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 100–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10892957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards Model Round-Trip Engineering: An Abductive Approach 101

Sold

Snew Tnew

Told

S T

Transformation
(Check)

Change
Translation

Transformation

RangeDomain

Fig. 1. Synchronisation through change translation: changes to the range in model T
are translated into corresponding changes to the domain in S

often many different ways to reflect changes to the target in terms of changes to
the source model and no simple decision can be made to prefer one over another.

To cope with such scenarios, this paper presents an approach to model round-
trip engineering (RTE) based on unidirectional, non-injective transformations.
Borrowing from abductive reasoning, a number of different source changes can
be computed that all equate to the desired target change. Building upon our
previous work on the formal foundations of model synchronisation [1], changes
performed on the target model are translated into changes to the source. Target
changes can either be relevant, manipulating the range of the transformation or
irrelevant, in which case the synchronised state is not impaired and no change
translation is necessary. In the following (w.l.o.g.) we only consider relevant
changes. Translating changes must ensure that applying the transformation to
the changed source yields exactly the range (relevant part) of new target model
(Fig. 1). No other changes, called side effects, are permissible. In this paper we
present an implementation of this change translation function.

The remainder of this paper is structured as follows. Sec. 2 introduces the
concept of abductive reasoning and outlines how it can be leveraged to solve
the round-trip engineering problem. Illustrating our approach, Sec. 3 introduces
the Tefkat model transformation language alongside a running example that is
used throughout this paper. The main contribution, Sec. 4, details how the idea
of abduction together with other techniques can be used to effectively reverse a
unidirectional transformation based on Tefkat to synchronise two models. The
presented ideas are then compared to related work in Sec. 5. Concluding, we
summarise and discuss our findings and provide an outlook to future work.

2 Abduction and RTE

Abduction was introduced as an epistemological theory to scientific knowledge
acquisition by C.S. Pierce [2]:

102 T. Hettel, M. Lawley, and K. Raymond

“The surprising fact, C, is observed. But if A were true, C would be
a matter of course. Hence, there is reason to suspect that A is true.”

Arriving at A is the process of abduction also paraphrased as the “inference
to the best explanation”. To illustrate this, consider the abductive feat achieved
by Johannes Kepler (1571–1630). He noticed that Mars’ orbit around the sun
did not comply to a circular trajectory that had been attributed to planetary
motion. After years of studying planetary motion and generalising from Mars to
all planets1, he came up with his theory that planets follow an elliptical trajec-
tory around the sun rather than a circular motion. Kepler’s laws of planetary
motion still hold today and correctly describe the orbits of planets and comets
discovered long after Kepler’s death.

Due to Pierce’s broad definition of abduction, contrasting it against induction
is difficult and largely depends on its concrete interpretation. Some philosophers
regard abduction as a special case of induction. Others maintain it is more
general and subsumes induction [3].

2.1 Abductive Logic Programming

In this paper we adopt the much narrower interpretation of abduction as pursued
by the logic programming and artificial intelligence community [4,5]. The main
difference is that an existing, possibly incomplete, but fixed background theory
is required. By making certain assumptions, the abduction process can complete
this theory so as to provide an explanation for an observed phenomenon. These
incomplete parts of the theory, for which it is not known whether they hold true
or not, are called abducibles.

Formally speaking, an abductive framework is a triple (P, A, I), where

– P is the program (or theory), a set of logic implications;
– A the set of abducibles, predicates used in P that can be assumed as required;

and
– I the set of integrity constraints over predicates in A.

In order to explain an observed phenomenon Q, the abductive query, a hypothesis
H ⊂ A is sought such that:

– H ∪P |= Q, the hypothesis applied to the program explains the observation;
– H ∪ P |= I, the hypothesis and the program comply with the integrity

constraints; and
– H ∪ P is consistent, i.e., the hypothesis does not contradict the program.

To arrive at an explanation, the abductive logic programming (ALP) proof proce-
dure [6] can be applied. It leverages an algorithm similar to backwards chaining,
which is for instance used in Prolog implementations. An abductive explanation
for Q is produced by unfolding it against the logic program or theory P . If the
1 This generalisation is not obvious as the orbits of the other known planets are less

eccentric and could crudely be approximated by a circle.

Towards Model Round-Trip Engineering: An Abductive Approach 103

procedure encounters an abducible, it is assumed as required (i.e. such that Q
succeeds) and the integrity checking phase is entered to verify that the hypoth-
esis does not violate the constraints. While doing so, other abducibles may be
encountered, assumed and checked as well. Eventually, the proof procedure will
terminate with a set of hypotheses that all constitute legitimate explanations
for Q with respect to the aforementioned criteria. However, it may also happen
that no explanation can be found. In this case, the observation Q cannot, under
no legitimate assumptions, be explained by the theory P .

2.2 Reversing and RTE as an Abductive Problem

The idea of abduction can be applied to reverse model transformations. This is
achieved by interpreting the new target model as the observed phenomenon Q,
which should be explained in terms of the transformation that corresponds to
the program P by hypothesising about the existence of source model elements,
which correspond to H and A respectively. Possible explanations are constraint
by the source meta-model in terms of the defined type hierarchy and cardinality
and nature of references (association vs. aggregation).

By extending the previous interpretation, also incremental RTE scenarios,
which are our primary concern, can be covered as illustrated in Fig. 2. Therefore,
we assume the old source and target models are accessible and only changes need
to be propagated. Moreover, it is assumed that the old target model is the result
of applying the transformation to the old source. In this case, the program P
corresponds to the old source and target models, the trace connecting both and
the transformation producing the new target from the new source. Changes to
the target are represented by the observation Q and are explained in terms of
source changes as part of the hypothesis H . As aforementioned, explanations
have to comply with the integrity constraints I, which are mainly derived from
the meta-model. This rather abstract interpretation of RTE as an abductive
problem will be further refined and elaborated on in Sec. 4.

S T

TraceSold Told

Snew Tnew
Observation

Q
Hypothesis

H

MS MT

Integrity
Constraints I

Program P

Conforms to

Conforms to

Transformation

Transformation

Fig. 2. Model round-trip engineering interpreted as an abductive problem. MS and
MT represent the meta-models of source model S and target model T respectively.

104 T. Hettel, M. Lawley, and K. Raymond

3 Tefkat

To illustrate how abduction can be leveraged to facilitate model synchronisation
based on a unidirectional, non-injective transformation between two models, the
Tefkat transformation language [7] is used. It provides a rule-based and declara-
tive way to specify transformations. Guaranteeing confluence of the transforma-
tion result, rules are automatically scheduled by the engine.

RULE class2table

FORALL Class c

WHERE c.persistent AND c.name = n

MAKE Table t FROM t4c(c)

SET t.name = append("tbl",n);

PATTERN hasAttribute(c,a)

FORALL Class c2

WHERE c.ownsAttr = a

OR (c.super = c2

AND c2.ownsAttr = a);

RULE attr2col

FORALL Class c, Attribute a

WHERE hasAttribute(c,a)

AND c.persistent

AND a.name = n

MAKE Table t FROM t4c(c),

Column col FROM col(c,a)

SET t.cols = col,

col.name = n;

Fig. 3. Model transformation rules given in Tefkat [7] for mapping UML class diagrams
onto relational database schema

Facilitating reuse of transformation fragments, Tefkat offers rule inheritance
and a concept called PATTERN for reusing pattern definitions. Rules consist of 3
parts (refer to Fig. 3 for examples). The source pattern (FORALL and WHERE), the
target pattern (MAKE and SET) and the trace (FROM) connecting both. Elements
that are matched as part of the source pattern can be used to uniquely identify
target elements through a function2. Using the same function in different rules
makes sure that a target object is only created once and can subsequently be
reused in other rules. For instance in the example depicted in Fig. 3 the function
t4c(c) in the MAKE statement of rule class2table creates one Table per Class
c. The same function is reused in rule attr2col for adding Columns to Tables. In
other words: Class c together with the function t4c uniquely identifies Table
t. This mapping produced during the transformation process is stored in the
trace, which can be queried for relations between source and target model.

3.1 Running Example

To illustrate the concepts introduced in the paper the following running example
is used, which is based on the popular UML to relational-database-schema map-
ping. The transformation (see Fig. 3) is not injective as there are at least two
different class diagrams that equate to the database schema depicted in Fig. 4.
One is also depicted in Fig. 4, another can be derived by flattening the class
hierarchy and effectively moving the name attribute to Student and Staff.
2 This does not mean that Tefkat is restricted to injective transformations in any way.

Rather the identity of target elements is restricted to one particular set of source
elements to allow different rules to define different aspects of one target element.

Towards Model Round-Trip Engineering: An Abductive Approach 105

name:String
Person

id:String

Student
persistent

salary:Int
faculty:String

Staff
persistent

name idtblStudent:

name salarytblStaff: faculty

Fig. 4. A simple UML class diagram and the corresponding relational database schema
with respect to the transformation depicted in Fig. 3

4 Reversing Transformations

There are a number of steps involved in reversing transformations. The following
subsections elaborate on each of these steps.

4.1 Logic Programming Representation

Employing abductive logic programming to solve the RTE problem requires that
models and transformation are represented in terms of first-order logic con-
structs. The source and target models are encoded using three different predi-
cates for instances, attributes and references. One further predicates is needed
to encode the trace:

– inst(o, t), where o is a unique object identifier and t refers to a specific type;
– attr(o, a, v), where o identifies the object, a the attribute and v the value;
– ref(o1, r, o2), where o1 is the source object and r the reference pointing to

object o2; and
– trace(i, t, s) where i is the name of the uniqueness function, t the target

element uniquely identified by i and the source elements s.

The following predicates encode (parts of) the UML class diagram as depicted
in Fig. 4.3 In the following, atoms are denoted by type writer font, whereas
variables are denoted by italics.

inst(person, class), ref(person, attributes, name),
attr(person, name, ‘Person’), inst(student, class),
inst(name, attribute), ref(student, super, person),
attr(name, name, ‘name’), . . .

Transformation rules can be interpreted as logic implications of the form Tgt(Y),
T race(X, Y) ← Src(X) where Src is the source pattern and X the elements
matched by it. Trace represents the trace part uniquely mapping source el-
ements X to target elements Y and Tgt the target pattern to be established.
3 Please note that the object identifiers were chosen to improve readability, but can

be completely arbitrary as far as abduction logic programming is concerned.

106 T. Hettel, M. Lawley, and K. Raymond

For instance, the class2table transformation rule can be represented as follows:

inst(t, table), attr(t, name, n), trace(t4c, t, c)←inst(c, class), attr(c, name, n),
attr(c, persistent, true).

Employing ALP requires that there is only one head predicate. Therefore, the
target pattern is collapsed into a single predicate and each rule is split in two
parts: the source part, which is amenable to abduction, and the target part,
which is used to match target patterns. Trace is included in the source part so
that changes to it can be abduced. Both parts are discussed in the following
sections. For instance, the rule class2table can be represented as follows:

Source part: class2table(t, n)←inst(c, class), attr(c, persistent, true),
attr(c, name, n), trace(t4c, t, c)

Target part: class2table(t, n)←inst(t, table), attr(t, name, n).

4.2 Matching Target Patterns

Transformation rules generally match source patterns and then create the cor-
responding target pattern. Considering only one application of one rule, say
attr2col, results in one instance of the target pattern being created. Removing
only parts of that pattern–only the column for instance–is not possible. There is
no way, the aforementioned rule can produce an isolated column. Only removing
(or creating) the whole target pattern constitutes a legitimate target change.
Therefore, changes can only be propagated on a target pattern basis. Either the
whole pattern is created or deleted.

Usually, target patterns overlap to produce an interconnected network for ob-
jects (see Fig. 5), rather than unconnected islands of target pattern instances.
For example, consider the transformation in Fig. 3. Assume there is one persis-
tent class with one attribute. Applying the transformation produces one table
with the corresponding name through rule class2table. Rule attr2col (re-)
creates the same table and adds a column to it. Through the overlapping of both
target patterns, the table is now supported by both rules whereas the column is
only supported by one.

cl
as
s2
ta
bl
e

attr2col

attr2col

name="tblStaff"
tblStaff:Table

name="name"
colName:Column

name="faculty"

colFaculty:Column
cols

cols

Fig. 5. Object diagram showing overlapping target patterns

Towards Model Round-Trip Engineering: An Abductive Approach 107

This overlapping effectively allows the removal of parts of target patterns, but
not arbitrary target elements. For instance, removing the column and retaining
the table in the previous example is a legitimate change, even though only a part
of the attr2col target pattern is removed. The other part, namely the table, is
still supported by class2table. Changing the source model such that attr2col
cannot be applied any more results in the deletion of the target instances that
were solely supported by this particular rule application. Other target elements,
supported by other rules, still remain.

Not only target patterns can be overlapping, but also source patterns. This is
also the case in our previous example. The same class is matched by
both rules. Therefore, solutions to deleting the column may also accidentally
delete the table, which, however, should be retained. Consider a source change
where the class is deleted, which results in the deletion of the column and the
table. To prevent such side effects, overlapping patterns can be actively retained
by “observing” their insertion. With respect to the example, deleting the column
requires the whole attr2col target pattern to be deleted and the table to be
retained by (re-)inserting class2table.

As changes can only be propagated on a target pattern basis, individual
changes need to be coalesced. This is done by matching the target patterns
against the old and new target model and requiring that with each pattern at
least one change (deletion or insertion) is matched. Based on these matches it
can be determined which patterns need to be deleted or inserted. For pattern
matches where only some of the elements were subject to deletion, all other el-
ements need to be supported by other rules and actively retained, as discussed
before.

4.3 Formulating the Abductive Query

Based on the target patterns that need to be created or removed, the abductive
query can be formulated. This step is straightforward for deletions in which case
the corresponding source pattern can be looked up in the trace.

For insertions, a more complex process is necessary. Target patterns may be
overlapping and even different rules can have the same target pattern. Therefore,
it may be possible that not all source patterns can be created to support all target
pattern matches. For instance, consider the following transformation:

RULE R1 RULE R2
FORALL X x FORALL Y y
MAKE Z z FROM f(x) MAKE Z z FROM g(y)

Assume a new instance of Z was created in the otherwise empty target model
and this change is now propagated. Both target patterns match this change.
However, as they use different uniqueness functions (f(x) in R1 and g(y) in R2)
only one of the rules can support the new Z. There is an exclusive choice to be
made. Even more complex scenarios are possible where there are two (or more)
sets of rules covering the same target patterns. Again, not all of them can and
have to support the target patterns.

108 T. Hettel, M. Lawley, and K. Raymond

Essentially, the abductive query is a conjunction of disjunctions of rules, where
all variables are bound to target elements. Disjunctions of transformation rules
represent the different alternatives. For propagating pattern deletions, rules are
negated (e.g. ¬attr2col(tblStudent, colName, ‘name’)) to require a set of source
changes that explain the absence of this particular pattern match in the new
target model. Positively mentioned (not negated) rules lead to explanations in
terms of source changes as to the pattern’s insertion in the new target model.

Consider our previous example where there was an alternative between rules
R1 and R2 to support a new instance of Z, say newZ. The abductive query Q can
be formulated as follows:

Q1 = R1(newZ) ∨R2(newZ).

In other words, an explanation is sought for the existence of newZ either through
applying R1 or R2.

Consider the running example (transformation Fig. 3, instances Fig. 4). As-
sume column name in table tblStudent was deleted. This results in the deletion
of rule attr2col(tblStudent, colName, ‘name’). As discussed before, in order to
retain table tblStudent and column id they have to be actively retained by
re-inserting their supporting rules into the query:

Q2 =¬attr2col(tblStudent, colName, ‘name’)∧
attr2col(tblStudent, colId, ‘id’) ∧ class2table(tblStudent, ‘Student’)

4.4 Abducing Source Changes

With the abductive query in place, this section now focuses on the computation
of the corresponding source changes that provide an explanation to the query.
Recall that an abductive framework is a triple (P, A, I), consisting of the program
or theory P , the set of abducibles A, and integrity constraints I. Moreover, there
is an abductive query Q, which was discussed before and a set of hypotheses H
explaining Q.

As part of the program P , a representation of the original (or old) source model
is required. As introduced in Sec. 4.1 three predicates are used to encode instances
(inst), references (ref) and attributes (attr) as parts of the source model. A forth
predicate (trace) represents the trace connecting source elements with their corre-
sponding target elements based on the FROM-statements in the transformation. To
distinguish between the old and new source model, the aforementioned predicates
are prefixed with old and new respectively.

Since the new source model is not known, it is formulated in terms of changes
(insertions ins and deletions del) to the old source model:

new inst(c, t)← old inst(c, t),¬del inst(c, t)
new inst(c, t)←¬old inst(c, t), ins inst(c, t)

with similar rules for attributes, references and trace. In words: instances (at-
tributes, references, or trace) are in the new model, if they are in the old and
have not been deleted, or if they are not in the old model but have been inserted.

Towards Model Round-Trip Engineering: An Abductive Approach 109

In terms of abductive logic programming, the changes to the source model is
the part of the theory or program that is incomplete. It is not known whether
a particular instance was inserted or deleted. However, the abductive proof pro-
cedure has the freedom to hypothesise about this in order to account for new
elements in the target model. The old source model is given and must not be
changed. Formally speaking, the predicates prefixed with ins or del in the above
rules are the abducibles in A, which can be assumed as required.

To complete the abductive program P , the transformation has to be in-
cluded. As introduced in Sec. 4.1 the transformation rules can be written as logic
implications, formulated over the predicates that make up the new source model.
Hence, all predicates referring to source elements have to be prefixed with new.
As the query Q is formulated over rules rather than individual target elements,
only the source side and the trace of the transformation rules are of interest:

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

class2table(t, n)← new inst(c, class),newattr(c,persistent,true),
new attr(c, name, n),new trace(t4c, t, c).

attr2col(t, col, n)← new inst(c, class),new inst(a, attribute),
new attr(c, persistent, true), hasAttribute(c, a),
new attr(a, name, n),new trace(t4c, t, c),
new trace(col4attr, col, [c, a]).

hasAttribute(c, a)← new inst(c, class),new ref(c, ownsAttr, a).
hasAttribute(c, a)← new inst(c, class),new ref(c, super, sc),

new ref(sc, ownsAttr, a).

To complete the abductive framework, a set of integrity constraints has to
be provided, which is necessary to get sensible answers from the system. These
integrity constraints are made up of three parts.

– Constraints concerning the uniqueness of the trace, i.e., there must be exactly
one set of source elements giving rise to one target element, regardless of the
function used.

– Constraints on the usage of ins and del, i.e. elements cannot be inserted and
deleted at the same time. Moreover, only existing elements can be deleted
and only non-existing elements can be inserted.

– Constraints concerning the types of elements, cardinality of references, con-
tainment, as derived from the meta-model.

With this set of rules given, the abductive query can be evaluated. This happens
in a fashion similar to backward chaining. However, abduction has the freedom
to assume the abducibles (the source changes) as required to succeed the query.
If the query cannot be succeeded, changes made to the target are not valid and
no source changes exist such that the desired target model can be produced by
applying the transformation. To avoid littering the source model with excess
elements, only minimal source changes are sought.

To illustrate the abduction process, consider the deletion of name column in
tblStudent. As per previous discussions, the corresponding query equates to

Q = ¬attr2col(tblStudent, colName, ‘name’)∧
attr2col(tblStudent, colId,‘id’) ∧ class2table(tblStudent, ‘Student’)

110 T. Hettel, M. Lawley, and K. Raymond

The proof procedure now unfolds the query against P (see previous page) and
first tries to fail attr2col(tblStudent, colName, ‘name’). Therefore, it tries to fail
new attr(student, persistent, true) by assuming the class was non-persistent
(del attr(student, persistent, true)), which is an abducible. Now the integrity
checking phase is entered, which declares this solution to be legitimate. However,
advancing other parts of the query will rule out this solution as it cannot explain
class2table(tblStudent, ‘Student’). There are more potential solutions that
need to be explored. Another alternative is to fail hasAttribute(student, name)
by assuming del ref(student, super, person). Again integrity check declares
this assumption to be viable and indeed it sustains advancing all other parts of
the query. The proof procedure will continue unfolding all parts of the query,
explore all alternatives and arrive at a set of alternative source changes.

4.5 Compensating Side Effects

Abductive explanations (source changes) may have different qualities when trans-
formed back to the target side. All will explain the observation, i.e., perform the
desired target change. However, some will do more and inflict further changes on
the target model. Assume that for some reason the name column in tblStudent
is to be removed. The corresponding alternative source changes proposed by the
abduction process are:

– H1 = {delete attribute name in Person},
– H2 = {delete Person},
– H3 = {delete inheritance relationship between Person and Student}.

The first two changes have side effects and cause tblStaff to lose its name
column. One solution seems to be to add additional constraints to I that re-
ject these solutions. However, this proves to be too short-sighted as possible
solutions may be overlooked. By temporarily accepting these side effects, but re-
quiring their compensation by insisting on reinserting the deleted elements, new
solutions can be generated. These new solutions are super-sets of the previous
solution. In a new abductive query an explanation is then sought for the obser-
vation that tblStudent does not have a name column any more but tblStaff
still has.

With this extended query, the system comes up with the following suggestions:

– H ′
1 = {delete inheritance relationship between Person and Student},

– H ′
2 = {move attribute name from Person to Staff},

– H ′
3 = {introduce a new, non-persistent class, move name there and make

Staff a subclass of the new class}
All of these changes exactly perform the requested target change and therefore
do not exhibit any side effects when transformed to the target model. Note that
we have no basis for choosing any one of these solutions as “superior” but the
user might have some criteria unknown to the tool.

Towards Model Round-Trip Engineering: An Abductive Approach 111

4.6 Implementation

In our first attempt to implement the outlined procedure for synchronising mod-
els we experimented with ProLogICA [8], which is a direct implementation of the
proof procedure in Prolog. It can essentially be applied to any Prolog program.
While it was easy to use and the rules needed were essentially the rules outlined
above, we quickly run into performance issues and answers took too long to
compute, making it infeasible for even quite small transformations and models.
Moreover, it required a set of “blank” object identifiers for use in creating new
instances of types. This resulted in an combinatoric explosion of isomorphic so-
lutions, where the only difference was the object identifier used to create a new
instance of a type.

Our second and current attempt is based on constraint handling rules (CHR)
as suggested by Abdennadher and Christiansen [9]. CHR implementations are
readily available in most Prolog environments. Given a set of re-writing rules,
constraints are rewritten until false was produced or no rules are applicable any
more. In this case the set of remaining constraints constitute the answer. Mod-
els are encoded as aforementioned but in addition are “closed” by a constraint
prohibiting the creation of new facts through rewriting. Moreover, modifications
to the transformation rules were necessary as CHR does not support negation
as failure. Instead explicit negation had to be used, which required splitting the
transformation rules in two parts. One for inserting and one for deleting. Even
though there was a larger number of rules involved to encode the RTE problem,
solutions were produced much more quickly. Moreover, using CHR also allows
us deal with attribute value manipulation, such as adding numbers, concatenat-
ing strings, etc. and comparisons of attribute values in source patterns. When
reversing such rules, a number of constraints can be provided restricting possible
values.

Even though the CHR-based approach seems to be far away from how the
abductive proof procedure works, it is in fact not that different. Essentially,
the same steps are executed but not necessarily in the same order. Queries are
still unfolded against the program. This unfolding, however, can be advanced in
a more breadth-first manner, building up constraints for explanations quickly,
rather than traversing the search space in a strictly depth-first fashion. We be-
lieve that this together with the fact that CHR implementations are mature and
directly translated, optimised and executed in Prolog, rather than executing an
ALP-interpreter, account for the big difference in performance.

5 Related Work

There are a number of existing approaches to model synchronisation and round-
trip engineering, imposing different restrictions on the underlying transforma-
tions. In general it is required that there is a one-to-one relationship between
source and target changes. How this is achieved depends on the concrete
approach.

112 T. Hettel, M. Lawley, and K. Raymond

There some approaches centred around a set primitive of injective functions
that can be combined to produce more complex transformations. These are guar-
anteed to be injective and can be easily reversed [10,11]. Injective functions, how-
ever, are quite limited and not even arithmetic operations can be used. To lift
restrictions on the transformation, Foster et al [12] present an approach based
on so-called lenses; pairs of functions defining the forward and the reverse trans-
formation. The forward function solely works on the source model and produces
the target model. Conversely, the reverse uses the old source model and the new
target to produce the new source model. Still, target changes together with the
old source model have to uniquely identify the new target model.

Yet another approach [13] that considers three models for synchronisation is
based on triple graph grammars [14], which govern the co-evolution of source and
target models. Any relationship—even non-functional relations—can be speci-
fied, but not necessarily executed. Changes are propagated by identifying the
matching pattern and then establishing or invalidating the corresponding pat-
tern in the other model. When invalidating patterns, all elements are deleted
that do not partake in another pattern match. Transformations are not required
to be bijective on an element level in order to be usable for this synchronisation
approach, as shown by Ehrig et al [15]. However, there must be a one-to-one
relationship between source and target patterns.

Fewer restrictions on the nature of the transformation are imposed by the
approach presented by Cicchetti et al [16]. It allows for non-injective partial
transformations. The reverse transformation, specified by the user, may not be
a function and hence there may be several source models for a given target model.
However, there is no way to ensure that the provided reverse is reasonable in
the sense that when transformed forward again all sources result in the changed
target model. Moreover, round-trips without any changes produce all possible
source models rather than just the original one.

Query/View/Transformation (QVT) [17] is a recent standard for model trans-
formation, which allows the declarative definition of relationships between source
and target models. Relations between models can be checked or enforced in both
directions. There is no restriction on the nature of these relationships. They do
not have to be one-to-one but can also be many-to-one or even many-to-many in
one or the other direction. In other words, there may be more than one source
model that corresponds to a given target model and vice versa. This is very sim-
ilar to the problems discussed in this paper. In fact, QVT model transformation
and RTE based on QVT can also be understood as an abductive problem, anal-
ogous to Sec. 2.2. We are certain that our technique can also be applied in the
context of QVT to support more than just the one-to-one relationships between
models.

Not directly related to model synchronisation, is an approach by Varró and
Balogh [18] where they propose a model transformation approach based on an
inductive learning system. By providing pairs of corresponding models, the in-
ductive logic programming systems derives a set of rules that transform one
model into another. As pointed out earlier, there is a close relationship between

Towards Model Round-Trip Engineering: An Abductive Approach 113

abduction and induction and therefore, there are also parallels between Varro
and Balogh’s approach on our approach. However, the premises are different.
We consider the theory (transformation) as give and immutable, and derive new
source models, as opposed to considering the models as immutable and trying to
derive a theory. Self-evidently, both approaches could be combined to result in
“synchronisation by example”, where the system tries to derive rules based on
pairs of source and target changes chosen by a user. This, however, presupposes
that all information required to make a choice is contained in the models and
the transformation. There may be scenarios where this is the case. As far as our
running example is concerned, this does not hold. Whether to delete a class or
to mark it non-persistent so as to delete a table is nothing that can be derived
from any of the models or the transformation. It rather depends on the meaning
a user assigns to the class in question and therefore is not amenable to logic
programming.

6 Conclusion and Future Work

In this paper we presented a novel approach to model round-trip engineering based
on abductive logic programming. Abductive reasoning, the inference to the best
explanation, allows us to compute hypotheses that together with a theory explain
an observed phenomenon. We showed how RTE can be interpreted as an abductive
problem. Changes to a target model represent the phenomena for which a set of
source changes is hypothesised that account for the target changes with respect
to the transformation. This was operationalised by translating the transformation
into first-order logic with rules of the form “source pattern implies target pattern”.
Models were represented using predicates for instances, attributes and references.
Abductive reasoning can then be applied to this first-order-logic program to result
in a set of source changes performing the desired target change. While performing
the target change, the proposed source changes may inflict further changes, side
effects, on the target model. In this case compensation can be applied to avoid side
effects and arrive at more solutions. The presented techniques are implemented in
Prolog using constraint handling rules (CHR), which also allow for dealing with
attribute value comparisons in the sense, that solutions may contain a number of
constraints restricting attribute values.

With the proposed techniques most of Tefkat’s features can be reversed. This
includes negation, LINKS/LINKINGs and PATTENs. Features that are not yet sup-
ported are recursive PATTENs or reflection. The presented ideas, however are not
limited to Tefkat. Also model synchronisation based on QVT or triple graph
grammars, which both allow the specification of non-functional relations, can be
interpreted as abductive problems.

Abduction was paraphrased as “inference to the best explanation” and there-
fore needs a way to assess the quality of the produced solution. Based on this
a list of likely or recommended solutions could then be presented to user or
picked automatically. We have investigated very simple heuristics based on the
size of the proposed changes, which worked surprisingly well. However, further

114 T. Hettel, M. Lawley, and K. Raymond

investigations are required. This heuristic could be directly integrated into the
abduction mechanism such that each choice-point creates a backlog of solutions,
while only the “best” solution is explored further. Such a merge of abduction
and A* search is subject to future work to improve performance and find “good”
solutions quickly. Furthermore, Hearnden et al’s [19] approach to incrementally
propagating source changes to the target model of the transformation, could
prove beneficial for incrementally checking for side effects of proposed source
changes.

References

1. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-
trip engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 31–45. Springer, Heidelberg (2008)

2. Pierce, C.S.: Collected Papers of Charles Sanders Peirce, vol. 2. Harvard University
Press, Cambridge (1931-1958)

3. Aliseda, A.: Abductive Reasoning: Logical Investigations Into Discovery and Ex-
planation. Springer, Heidelberg (2005)

4. Kakas, A., Denecker, M.: Abduction in Logic Programming. Computational Logic:
Logic Programming and Beyond, 402–436 (2002)

5. Kakas, A., Kowalski, R., Toni, F.: Abductive Logic Programming. Journal of Logic
and Computation 2(6), 719–770 (1993)

6. Kakas, A., Mancarella, P.: Generalized Stable Models: A Semantics for Abduction.
In: Proceedings of the 9th European Conference on Artificial Intelligence, ECAI
1990, Stockholm, Sweden, pp. 385–391 (1990)

7. Lawley, M., Steel, J.: Practical Declarative Model Transformation with Tefkat.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer,
Heidelberg (2006)

8. Ray, O., Kakas, A.: ProLogICA: a practical system for Abductive Logic Program-
ming. In: Proceedings of the 11th International Workshop on Non-monotonic Rea-
soning (2006)

9. Abdennadher, S., Christiansen, H.: An Experimental CLP Platform for Integrity
Constraints and Abduction. In: Proceedings of FQAS 2000, Flexible Query An-
swering Systems: Advances in Soft Computing series, pp. 141–152 (2000)

10. Mu, S.C., Hu, Z., Takeichi, M.: An Injective Language for Reversible Computation.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 289–313. Springer, Heidelberg
(2004)

11. Mu, S., Hu, Z., Takeichi, M.: An Algebraic Approach to Bi-directional Updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combina-
tors for Bi-Directional Tree Transformations: A Linguistic Approach to the View
Update Problem. ACM Transactions on Programming Languages and Systems
(2007)

13. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

Towards Model Round-Trip Engineering: An Abductive Approach 115

14. Königs, A.: Model transformation with triple graph grammars. In: Proceedings
of the Model Transformations in Practice Satellite Workshop of MODELS 2005
(2005)

15. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE
2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

16. Cicchetti, A., Ruscio, D.D., Eramo, R.: Towards Propagation of Changes by Model
Approximations. In: Proceedings of the 10th International Enterprise Distributed
Object Computing Conference Workshops, p. 24. IEEE Computer Society, Los
Alamitos (2006)

17. Object Management Group (OMG) formal/08-04-03: Meta Object Facility (MOF)
2.0 Query/View/Transformation (QVT) Specification Version 1.0 (November 2005)

18. Varró, D., Balogh, Z.: Automating model transformation by example using induc-
tive logic programming. In: SAC 2007: Proceedings of the, ACM symposium on
Applied computing, pp. 978–984. ACM, New York (2007)

19. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

	Towards Model Round-Trip Engineering: An Abductive Approach
	Introduction
	Abduction and RTE
	Abductive Logic Programming
	Reversing and RTE as an Abductive Problem

	Tefkat
	Running Example

	Reversing Transformations
	Logic Programming Representation
	Matching Target Patterns
	Formulating the Abductive Query
	Abducing Source Changes
	Compensating Side Effects
	Implementation

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

