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Abstract 

The finite element and boundary element methods are employed in this study to investigate 

the sound radiation characteristics of a box-type structure. It has been shown [1] that modes 

of natural vibration of a box-type structure can be classified into six groups according to the 

symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate 

that such properties also reveal information about sound radiation effectiveness of each group 

of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber 

ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for 

typical modes from each group. Similar characteristics of modal radiation efficiencies 

between a box structure and a corresponding simply supported panel are observed. The 

change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It 

is found that the sound radiation directivity of each box mode can be correlated to that of 

elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical 

frequency of the plates of the box. The sound radiation pattern on the box surface also closely 

related to the vibration amplitude distribution of the box structure at frequencies above the 

critical frequency. In the medium frequency range, the radiated sound field is dominated by 

the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a 

peak at frequencies above the critical frequency, and gradually approaches unity at higher 

frequencies. 
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1. Introduction 

Sound radiation from vibrating structures has long been an interesting research topic. Many 

previous and recent researches focused on sound radiation of simple structural components 

such as flat plate panels [2], ribbed panels [3] or cylindrical shells [4, 5] because they are the 

few radiation problems that can be solved analytically. Efforts have also been made towards 

the numerical solution for sound radiation of three-dimensional structures of arbitrary shapes 

[6, 7]. However, little has been reported on sound radiation characteristics of box-type 

structures even though this type of structures has broad engineering applications. Box-type 

structures are typical structures used for machine covers, transformation tanks, etc, which 

usually consist of plate panels connected at their common edges and include more details like 

cut-outs and stiffening members. They are excited dynamically, vibrate and radiate sound to 

cause noise problems. This study aims to disclose the common features of modal vibration 

and sound radiation of box type structures so that effective control approaches can be 

implemented to address the noise problem of such structures. 

 

Computational techniques have been employed in the last few decades to solve the vibro-

acoustic problems of complex structures due to the rapid advanced of computer technologies 

and the increasing complexity of analytical work for complex problems. Boundary element 

method (BEM) has been proved to be an accurate approach to exterior acoustic problems, and 

is increasingly used for examining sound radiation characteristics of complex structures [8]. 

Boundary element methods in acoustics are based on numerical solution of the Helmholtz 

integral equation on the boundary of the geometry domain of a structure. Comparing to other 

numerical solutions, such as finite element analysis or finite difference method, BEM has 

great advantage in solving exterior sound radiation problems. By invoking the Sommerfeld 

radiation condition, only the finite boundary of a radiation structure needs to be discretized. 

Thus, much less computational effort is required. For instance, Seybert et al [9] employed 
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computational and experimental techniques to assess the accuracy of using finite element and 

boundary element analysis for predicting sound radiation from a box structure. In their work, 

only one panel of the box is flexible, the other panels are effectively rigid in the frequency 

range of their investigation. Most recently, Lin and Pan [1] showed that modes of natural 

vibration of a box-type structure (consisting of six flexural panels) can be classified into six 

groups according to the symmetry properties of the three panel pairs forming the box. 

Elementally sound sources such as monopole, dipole etc were identified in the box modes 

having large global or local volume displacements. 

 

In this paper, characteristics of sound radiation of a box-type structure in relation to the 

symmetrical properties in box vibration [1] are investigated. The study aims to illustrate the 

general physical features of sound radiation of a box-type structure rather than to develop a 

new analytical technique, in the hope that such understanding can lead to the noise control of 

practical engineering applications such as noise radiation from the cover of an air conditioner 

or from a transformer tank. Hence, existing BEM tool (i.e., the “Direct collocation BEM 

method”) based on SYSNOISE [10] is utilized in the study. The non-uniqueness problem in 

the direct collocation BEM [8] is overcome by the so-called CHIEF approach by applying 

over-determined nodal points inside the enclosed cavity and assigning zero pressure to those 

points. Details of the theoretical and computational basis of this method can be found in Refs. 

[8] and [10].  

 

Results of modal sound radiation of only one box-type structure are used in this study 

although vibration and sound radiation of other box structures have also been calculated. It is 

found [1] that the classification of mode shapes according to the symmetrical properties of a 

box structure is the same regardless of the box dimension. The mode shape and modal 

frequency of a box mode will adapt to the changing box dimension since it is governed by the 
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wave matching conditions between the plate bending wave and the panel dimensions of the 

box. Modal sound radiation of box structures of other dimensions will closely adapt to the 

change of box modal vibration, but it is still governed by the same principles outlined in this 

work and in Ref. [1]. Increasing complexity of vibration and sound radiation analysis arising 

from a practical structure with reduced symmetry can also be investigated by studying the 

effect of asymmetry of the structure on the vibration and sound radiation of a box-type 

structure using similar approaches employed in this work and in Ref. [1].  

 

The study of modal vibration and sound radiation of a box type structure also provides useful 

information for the prediction of noise and vibration response of such structures under 

external excitations. For instance, when a box structure is excited by a broadband noise inside 

the box or is driven by broadband forces at one or more panels, the vibration response of the 

box is the sum of resonance response of the box modes. The sound field external to the box is 

dominated by sound radiation of high radiation efficient modes (i.e., the large volume 

displacement modes). Therefore, the vibration response and noise radiation of a box structure 

driven by external sources can be predicted once the modal vibration and sound radiation 

characteristics of the box are known. Control of noise radiation from a box structure, e.g., the 

machine cover of an air conditioner, thus can be simplified to the control of modal vibration 

of a few large volume displacement modes (whose modal sound radiation dominates the 

sound field).  

 

Accuracy of the direct BEM method based on SYSNOISE is examined in the study for three 

simple cases where analytical solutions are available: (1) Radiation efficiencies for a number 

of simply supported panel modes (the (1,1), (1,2), (2,2), (1,6) and (1,7) modes) predicted by 

direct BEM approach were compared to those given by Wallace [2]. Good agreements were 

found for all corresponding radiation efficiency curves at low, medium and high wavenumber 
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ratios; (2) The radiation efficiency of a vibrating spherical surface (radius ma 1.0 ) 

predicted by direct BEM was compared to the analytical solution given by Ref. [11], the error 

is less than 0.02 percent for ka  up to 2.7 where k  is the acoustic wavenumber in air; and (3) 

Sound pressures at positions between 0.1m and 10m (in 0.1m increment) away from the 

vibrating spherical surface in Case B predicted by BEM were compared with those predicted 

by the analytical solution at one single frequency. The error range was found less than 1.3 

percent. Furthermore, the indirect variational method in SYSNOISE was also used to 

calculate the radiation efficiency of a few box modes at a number of random chosen 

frequencies, the results agree quite well to those obtained by direct collocation BEM method 

at those frequencies.  

 

Section 2 presents a detail description of the box structure used in this study and provides a 

brief summary of its modal vibration characteristics. The common features of modal radiation 

efficiencies for the six groups of box modes [1] are studied in Section 3. Patterns of modal 

sound radiation directivity from each group of modes are examined in Section 4 at 

frequencies ranging from far below to well above the critical frequency. Conclusions are 

given in Section 5.  

2. Description of the box structure and its modal characteristics:  

The box structure used in this study is the same as that used in Ref. [1]. It is a rectangular 

parallelepiped box consisting of three pairs of rectangular panels as shown in Fig. 1. The 

dimensions of the box are chosen to be the same as the panel-cavity system used in Ref. [12], 

where general conclusions of the interaction between internal sound field and a box structure 

were drawn. All plate panels have the same thickness of 2.5 mm, and are made of aluminum 

of Young’s modulus 210 /N 101.7E m , density 3/kg  2700ρ m  and Poisson’s ratio 

3.0ν  . The edges of the box are free in six degrees of freedom. A spherical coordinate 
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system with origin at the centre of the box ( 2/,2/,2/ zyx LLL ), as shown in Fig. 1, is used to 

describe the radiated sound pressure at (  ,,r ).  

 
 
 
 
 
 
Vibration characteristics of the box structure are studied and discussed in detail in Ref. [1]. A 

brief summary is given here as an introduction to the study of sound radiation characteristics 

of the box structure. The natural vibration modes of a box structure can be classified into six 

groups according to the symmetrical properties of the three panel pairs constituting the box 

[1]. Vibration distribution in a pair of panels is symmetrical if corresponding points in the 

two parallel panels move simultaneously inwards or outwards with respect to the un-

deformed box. It is asymmetrical if each two corresponding points move one inwards and the 

other outwards at the same instant. The mode shape distribution in the box panels and the 

natural frequencies were found to be governed by the wave matching condition between the 

plate bending wave and the physical dimension of the panels [1]. The panel pair whose 

dimensions best matching the plate bending wavelength at the modal frequency has the 

maximum amplitude distribution, and is termed the dominant panel pair. The other two panel 

pairs are non-dominant.  

 

Fig. 1  Coordinate systems of the box-type structure. 
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According to the symmetrical properties and vibration distribution of the three panel pairs 

constituting the box, the modes are classified into six groups: (1) Group (D_S, S, S), where 

the dominant panel pair and the two non-dominant panel pairs are all symmetrical; (2) Group 

(D_S, S, AS), where the dominant panel pair and one non-dominant pair are symmetrical, the 

other non-dominant pair is asymmetrical; (3) Group (D_S, AS, AS), where the dominant pair 

is symmetrical and the other two pairs are asymmetrical; (4) Group (D_AS, AS, AS), where 

all three panel pairs are asymmetrical; (5) Group (D_AS, AS, S), where the dominant panel 

pair and one non-dominant pair are asymmetrical, the other non-dominant pair is 

symmetrical; and (6) Group (D_AS, S, S), where the dominant panel pair is asymmetrical and 

the other two pairs are symmetrical. 

 
According to this classification, the box mode depicted in Fig. 2 can be described by 

HzSASASD 8.30
* ])2,2(),1,2(),1,2(_[ . In this description, the three elements in the bracket 

describe the modal vibration distribution of the three panel pairs of the box. The first element 

indicates that the panel pair perpendicular to the x axis of the global coordinate system is a 

dominant asymmetrical panel pair whose mode shape distribution is described by the (2, 1) 

mode of a simply supported panel. The first index in the parenthesis is the number of anti-

nodes in the y direction and the second index is the number of anti-nodes in z direction for the 

panel pair. The second element indicates that the panel pair perpendicular to the y axis also 

has the (2, 1) mode shape and vibrates asymmetrically. Symmetrical vibration is identified in 

the third panel pair (the pair perpendicular to the z axis) whose mode shape is described by 

the third element *)2,2(S . The asterisk following the indices indicates that the amplitude 

distribution of this panel pair is somewhat distorted from the (2, 2) mode of a simply 

supported panel. Finally, the frequency (30.8 Hz) following the bracket represents the natural 

frequency of the mode. Table 1 lists the first 33 non-rigid body modes of the box structure 

and the associated net volume displacements [1].  
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The classification of free vibration modes of the box has assisted the understanding of 

vibration characteristics of a box-type structure in terms of total and local volume 

displacements, and contributions from in-plane and out-of-plane vibration [1]. In this paper, it 

is shown that the symmetrical properties of the box vibration also correlate to modal sound 

radiation characteristics of the six mode groups. Modal radiation characteristics of the box 

structure are studied in this paper by the following two features:  

(1)  Modal radiation efficiency  as a function of the wavenumber ratio pkk /  for modes 

in the six groups, where pk  is the modal wavenumber of the dominant plate panels which 

is calculated by using the modal indices of the corresponding simply supported panel 

given in the mode shape description. The radiation efficiency is calculated from [10]: 

in

rad

W

W
 ,           (1) 

where radW  is the radiated sound power, which is obtained by integrating the active 

normal intensity over the radiating surface, inW  is the sound power radiated by a large 

Fig.2  Amplitude distribution of mode HzSASASD 8.30
* ])2,2(),1,2(),1,2(_[ ; 

(a) Contour plots; (b) Isometric view. 
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rigid piston with the same surface area of the structure and vibrating with the same root 

mean squared velocity [11]. It is calculated by integrating the square of the normal 

velocity over the surface of the box structure using the modal vector of the structure. The 

radiation efficiency   in Eq. (1) is actually a ratio, which can take values greater than 

unity. While it is called “radiation ratio” in some references [11], some more recent 

publications [8, 13] still use the name “radiation efficiency”. 

(2) Sound radiation pattern for each box mode is evaluated on a spherical surface of the 

radius mr  10  from the centre of the box. Modal radiation patterns at frequencies below 

and above the critical frequency are presented in this study to illustrate the successively 

change of directivity patterns. 

 
 

3. Modal radiation efficiency  

The radiation efficiency of the box modes in the low, medium and high frequency ranges is 

studied in this section. Slopes of modal radiation efficiency curves for the six groups of 

modes are compared to those of the corresponding simply supported panel modes in the low 

frequency range. Plateau or change in slope in the radiation efficiency curve of higher order 

box modes in the medium frequency range is examined. Effects of local volume 

displacement, mode shape, phase distribution of the dominant panel pair and the relative 

phase between the adjacent panels on the radiation efficiency of the box modes are also 

discussed.  

3.1 Characteristics of modal radiation efficiencies of the six mode groups  

Figs. 3(a) – 3(f) show the radiation efficiency  as a function of the wavenumber ratio   for 

typical modes of the six groups. Modes from each group are selected in this simulation such 

that they cover a range of radiation efficiency from the highest to the smallest values at low 

frequencies in their respective group in the frequency range of investigation. Natural 
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frequencies of modes used in this study cover the frequency range up to 109.7 Hz [14].  

Values of wavenumber ratios, corresponding to the modal natural frequencies, vary from 

059.0  for the lowest mode at 13.5 Hz to 159.0  for the highest mode at 109.7 Hz. It is 

shown that the radiation efficiency of all box modes has the similar trend ( 1 ) at 

frequencies above the critical frequency ( 1 ). Mode 23.0HzS(1,1)]D_S(1,1),[S(1,1),  from 

the first group (a monopole source) has the highest radiation efficiency for  1 (see Fig. 

3(a)) due to the large net-volume displacement generated by the modal vibration of the box 

mode. High modal radiation efficiency is also the case for the (1, 1) mode of a simply 

supported panel [2]. Modes in the first group generally have higher radiation efficiency than 

modes in the other groups at low   due to the globally net-volume displacement generated 

by modes in this group resulting from the (odd, odd) mode shape distribution in all three 

panel pairs. 

  

Modes having large local volume displacements also have the highest radiation efficiency in 

their respective groups for 1 . For example, mode HzSDASS 8.35)]2,1(_),1,1(),1,2([  whose 

modal vibration generates a large local volume displacement on each half of the box has the 

highest efficiency in its own group for 1  (see Fig. 3(b)). So are mode 

HzASASSD 7.52)]2,1(),2,1(),2,2(_[  (a quadrupole source, Fig. 3(c)), and mode  

Hz0.71
* )]2,2(AS),2,2(AS_D,)2,2(AS[  (an octopole source, Fig. 3(d)). It is observed that 

higher order modes usually have higher radiation efficiency   than that of lower order 

modes in the same group for 1  except for modes that generate large global or local 

volume displacements. This observation is consistent to that found for modal radiation of 

simply supported panels [2] with the exception of the group of net-volume displacement 

modes.  
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For (odd, odd) modes in a panel, lower order modes (e.g. the (1, 1) mode) always have higher 

net volume displacement and therefore, higher radiation efficiency than that of higher order 

Fig. 3  Radiation efficiencies of the typical modes from the six groups; (a) (D_S, S, S); (b) 
(D_S, S, AS); (c) (D_S, AS, AS); (d) (D_AS, AS, AS); (e) (D_AS, AS, S); (f) (D_AS, 
S, S). Node: In each figure, the slope of the simply supported panel modes is only valid 
for low value of . 
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modes for 1  [2]. In contrast, higher order net volume displacement modes of the box can 

have higher radiation efficiency than that of the lower order modes for 1  as indicated in 

Fig. 3(a). Such interesting sound radiation feature is attributed to the effect of relative phase 

between the different panel pairs on the modal sound radiation. For example, vibrations of all 

three panel pairs for mode 23.0HzS(1,1)]D_S(1,1),[S(1,1), are in phase (i.e. adjacent panels 

move together inwards or outwards with respect to the un-deformed box), which produces a 

strong net volume displacement sound source (a monopole source) to give higher radiation 

efficiencies. Mode 97.0HzD_S(3,1)]S(3,1),[S(1,3),  is also an efficient sound radiator due to the 

same reason, which generates comparatively large net-volume displacement [14] even though 

it has higher order mode shape distribution for all its panels. In contrast, the two non-

dominant panel pairs of mode 13.5Hz
* S(1,1)],S(1,1)[D_S(1,1), vibrate out of phase to the 

dominant panel pair leading to a weaker modal sound radiation. (Note that figures of the 

vibration distribution of the modes discussed above were presented in Ref. [1]). 

3.2 Slope of radiation efficiency curves in the low frequency range 

The radiation efficiency curves for each group of modes have similar slopes for low values of 

. This is because the modal vibration for each group of modes is such that the box forms 

approximately the same type of elementary sound sources, i.e. monopole, dipole, quadrupole 

and octopole in the low frequency range. The modal radiation patterns are discussed in more 

details in Section 4.  

(1) Group (D_S, S, S) 

Fig. 3(a) shows that radiation efficiency curves for modes in this group have the same slope 

as that of the (odd, odd) mode of a simply support panel (surface area 2115.1 m  and 2.5mm 

in thickness) in the low frequency range ( 1 ). All modes in this group have global net 

volume displacements and behave as monopole sound sources at low frequencies. A slope of 
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20dB/decade at low frequencies can be evaluated by the following relation from the radiation 

efficiency of (odd, odd) modes of a simply supported panel [2]: 

1,,
32 2

522

2

,  yx
yx

nm klklk
nm

llk


 ,        (2) 

where xl , yl  are the panel dimensions and m, n are the panel modal indices. The slope of 

radiation efficiency curve of the (1, 1) mode of the simply supported panel at low frequencies 

is shown by the thick solid line in Fig. 3(a).  

(2) Groups (D_S, S, AS) and (D_AS, S, S) 

Both the (odd, even) simply supported panel modes and these two groups of box modes have 

dipole radiation pattern in the low frequency range. For these two groups, as shown in Figs. 

3(b) and 3(f), the slope of modal radiation efficiency curves is the same as that of (odd, even) 

mode of a simply supported panel in the low frequency range. It is 40dB/decade as can be 

obtained from the relation [2]: 

1,,
3

8 4
522

34

,  yx
yx

nm klklk
nm

llk


 .        (3) 

The slope of radiation efficiency curve of the (1, 2) mode of the simply supported panel at 

low frequencies is shown in Figs. 3(b) and 3(f) by the thick solid line. 

(3) Groups (D_S, AS, AS) and (D_AS, AS, S) 

Slopes of radiation efficiency curves for modes in these two groups are similar to that of 

(even, even) modes of simply supported panels in the low frequency range. They are all 

quadrupole sound radiators in this frequency range. A slope of 60dB/decade can be evaluated 

from the radiation efficiency of (even, even) modes of a simply supported panel [2] as given 

by Eq. (4). This slope is shown in Figs. 3(c) and 3(e) by the thick solid line, which is 

evaluated for the (2, 2) mode of the simply supported panel. 

1,,
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2 6
522
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nm klklk
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
 .       (4) 



 

    15 
 

(4) Group (D-AS, AS, AS) 

Because of the three dimensional nature of a box-type structure, there is another type of 

elementary sound source in addition to the monopole, dipole and quadrupole mentioned 

above. It is termed “octopole” in this paper, which is a sound source that consists of two 

parallel quadrupoles, 180 degrees out-of-phase to each other. Due to the complexity in the 

radiation pattern for this type of sound sources, there is no existing analytical solution to be 

used for comparison. However, sound radiation characteristics of an octopole at low   can be 

explored by comparing its radiation efficiency curve to the slopes of a dipole and a 

quadrupole. In Fig. 3(d), radiation efficiencies of the (1, 2) and (2, 2) modes of the simply 

supported panel are plotted (in thick solid and dashed lines, respectively) alongside the sound 

radiation efficiencies of the typical modes from this group. It is observed that in the very low 

frequency range ( 1.0 ), radiation efficiencies of modes in this group have similar slope to 

that of the (1, 2) mode of a simply supported panel (i.e. a dipole), which is 40dB/decade. In 

the low and medium frequency range, the slope is similar to that of a quadrupole, which is 

60dB/decade. The only exception to this observation is mode 

Hz0.71
* )]2,2(AS),2,2(AS_D,)2,2(AS[ , whose slope is slightly steeper than the other modes 

in the same group in the medium frequency range and is proportional to 7k , or 70dB/decade. 

This is due to the large volume displacement generated locally at the eight box corners by the 

modal vibration (see Fig. 9 in Ref. [1] for visualization of this mode shape). 

3.3 The plateau in radiation efficiency curves of higher order modes in the 

medium frequency range 

Plateau or change in slope can be clearly observed in the radiation efficiency curves of higher 

order modes in each group at medium frequencies, e.g. mode Hz6.66
*  S(3,1)],S(1,3)[D_S(1,3),  

and mode 97.0HzD_S(3,1)]S(3,1),[S(1,3),  in Fig. 3(a). Simply supported panels show similar 

behavior, which manifests itself as waviness in the radiation efficiency curves of higher order 
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modes [2, 13]. For higher order modes of a simply supported panel, waviness in the modal 

radiation efficiency curve at medium frequencies is due to the interference of sound radiated 

by the vibrating lobes of higher order modes when the distance between nodal lines of a 

vibrating mode is in the same order of the acoustic wavelength. Sound radiation of higher 

order box modes is also subjected to such interference in the medium frequency range. In 

addition, the radiation efficiency of the box modes is affected by the interference of sound 

radiated by each panel pair and the interference of sound radiated by neighboring panels. For 

better understand of this mechanism, the slope change of radiation efficiency curves of two 

higher order modes – mode Hz6.66
*  S(3,1)],S(1,3)[D_S(1,3),  (see Fig. 3(a)) and mode 

93.0Hz
** ]S(2,4),AS(4,1),[D_AS(4,1)  (see Fig. 3(e)) in the medium frequency range 

(somewhere between 2.0  to 7.0 ) are examined.  

 

Although all three panel pairs of mode Hz6.66
*  S(3,1)],S(1,3)[D_S(1,3),  are symmetrical, only 

the first and the third pairs are important to the sound radiation because the second pair has 

much smaller vibration amplitude (see Fig. 5 in Ref. [1]). The two-dimensional cross section 

(parallel to the x-z plane) mode shape distribution of the first and the third panel pairs of this 

mode is shown in Fig. 4(a). Because of the higher order mode shape distribution of the panels 

and the out-of-phase distribution between adjacent cells of the neighboring panels, the net-

volume displacement generated by this mode is small [1]. This leads to a less effective sound 

radiator for low .  

 

A plateau in the radiation efficiency curve is observed in the medium  range resulting from 

wave interference. The plateau begins at somewhere between 32.0 and 37.0  where 

the increasing sound radiation efficiency of panel vibration is completely offset by the 

increasing wave interference between sound radiated by the component panels. At 32.0  
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where the acoustic wavelength  equals twice the distance of the third panel pair ( zL2 ), 

waves radiated by the third panel pair cancel each other in the normal direction of the panel 

pair in space. Because of the comparatively large vibration amplitude of the panel pair (the 

amplitude is about 2/3 of the amplitude of the dominant pair), the wave interference leads to a 

large decreasing slope of the radiation efficiency curve. When 37.0  where the acoustic 

wavelength  equals twice the distance of the dominant panel pair ( xL2 ), waves radiated 

by the dominant panel pair also cancel each other in the normal direction of the pair in space. 

As a result, the slope of the modal radiation efficiency changes from positive to either zero or 

negative. The plateau continues until 48.0  ( zL3
4 ) where the destructive wave 

interference in the normal direction of the third panel pair ends. After this , the slope 

becomes positive again due to the increasing constructive interference of waves radiated by 

the third panel pair and the decreasing destructive interference of waves radiated by the 

dominant panel pair. The wave cancellation of the dominant panel pair stops at 55.0  

( xL3
4 ). Above this , the radiation efficiency curve is dominated by the edge radiation 

leading to a near constant slope before the critical frequency. 

 

 

 
 
 
 

Fig. 4  2D cross section view of the mode shapes for (a) Mode 

Hz6.66 S(3,1)]S(1,3)*,S(1,3),-[D  in x-z plane; (b) Mode 

93.0Hz
** ]S(2,4),AS(4,1),[D_AS(4,1)  in x-y plane. 
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Sound radiation of mode 93.0Hz
** ]S(2,4),AS(4,1),[D_AS(4,1)  is dominated by the vibration 

of the two asymmetrical panel pairs due to the much smaller vibration amplitude of the 

symmetrical panel pair. The two-dimensional cross section (parallel to the x-y plane) mode 

shape distribution of the two asymmetrical panel pairs is shown in Fig. 4(b). The effect of 

wave interference for this mode can be observed after 24.0  ( yL2 ) where the modal 

sound radiation of the box is no longer a single sound source because the acoustic wavelength 

is less than twice of the largest box dimension. The rate of decreasing slope is small initially 

due to the comparatively smaller vibration amplitude of the non-dominant asymmetrical 

panel pair (about 1/4 of that of the dominant pair). The slope decreases much rapidly after 

32.0  ( xL2 ) because of the increasing phase difference of sound radiated by the 

dominant panels. The slope decreases continually but remains positive well pass 36.0  

( yL3
4 ) where wave cancellation in the normal direction of the non-dominant 

asymmetrical pair begins. The slope changes from positive to negative when the wavenumber 

ratio increases to 48.0  ( xL3
4 ) where wave radiated by the non-dominant panel pair 

cancels each other completely in their normal direction ( yL ). Destructive wave 

interference in the normal direction of the dominant panel pair also begins after this  . The 

plateau continues until 64.0  ( yL4
3 ) where wave cancellation in the normal direction 

of the non-dominant asymmetrical panel pair ends. After this , the slope of radiation 

efficiency is dominated by the edge radiation until the frequency reaches the critical 

frequency. 

 

Because all panels of this mode have low-high mode number and either (even, odd) or (even, 

even) mode shape distribution of simply supported panels, the mode has higher radiation 

efficiency than that of other modes in the group in the low and medium frequency ranges as 
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shown in Fig. 3(e). This observation is similar to the higher radiation efficiency of low-high 

number (even, odd) or (even, even) modes of simply supported panels when comparing to 

that of the low-low number modes [2]. Similar features can also be found in the modal 

radiation characteristics of other groups (Figs. 3(b)-3(f)).  

3.4 Modal radiation efficiencies in the high frequency range 

Radiation efficiencies of the box modes always have a peak at frequencies just above the 

critical frequency ( 1 ). This is also the case for single panels as reported in [2] and [3]. 

Above the critical frequency, modal radiation efficiency of a panel can be approximated by 

[3, 13]: 

1
])/(1[

1
2/12, 




kk p
nm .                   (5) 

 

In the case of single panels, the height of the peak increases with modal indices [13]. 

However, this is not always the case for the box modes due to the complex three dimensional 

mode shapes and the interference of sound radiated by the component panels, although the 

general trend can still be observed.  The radiation efficiency   converges to unity for all box 

modes at 1 , which is the same as that observed for simply support panel modes.  

3.5 The effect of volume displacements 

It was shown previously that the large volume displacement modes (either globally as 

monopole or locally as dipole, quadrupole and octopole) always have higher radiation 

efficiency than the other modes in their own group for small  . These modes are mode 

23.0HzS(1,1)]D_S(1,1),[S(1,1), , mode 35.8HzD_S(1,2)]AS(1,1),[S(2,1), , mode 

52.7HzAS(1,2)]AS(1,2),[D_S(2,2),  and mode Hz0.71
* )]2,2(AS),2,2(AS_D,)2,2(AS[  whose 

vibration mode shape is close to that of an ideal monopole, dipole, quadrupole and octopole, 
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respectively. Radiation efficiency curves of these modes are represented by the thin solid 

lines without marker in Figs. 3(a)-3(d).  

 

It is noticed that mode 43.5Hz
* S(2,1)]D_S(2,1),,[AS(3,1)  has much lower radiation efficiency 

than any other mode in the same group for small values of   (see Fig. 3(b)). The mechanism 

leading to this phenomenon can be explained from the vibration distribution of the box mode 

and the characteristics of modal radiation efficiencies of simple supported panels. In plate 

panels, the (odd, odd) modes have much higher radiation efficiency than that of (odd, even) 

modes at low frequencies. The radiation efficiencies of (odd, odd) modes also depend upon 

the net volume displacements [2]. While for this box mode, the mode shape of the only (odd, 

odd) panel pair is largely distorted from that of the (3, 1) simply supported panel mode and 

has the smallest amplitude within the three panel pairs. Very little net-volume displacement is 

generated locally by the (odd, odd) panel pair in addition to the zero net-volume displacement 

of the mode. Therefore, much less sound is radiated by the vibration of the mode at low  as 

compared to the other modes in the group.  

3.6 Effects of the mode shape distribution of the dominant panels: 

The importance of the mode shape distribution of the dominant panel pair to sound radiation 

characteristics of the box modes is studied by comparing the radiation efficiency of the 

fundamental mode in each of the six groups as shown in Fig. 5.  

 
Similar to radiation characteristics of simply supported panels, modes whose dominant panels 

have (odd, odd) mode shapes are more effective sound radiators than others for small . 

Modes having (even, odd) or (odd, even) shape dominant panels are better sound radiators 

than modes having (even, even) shape dominant panels. The only exception is the large 

(global or local) volume displacement modes discussed in the Section 3.5, which can have 

higher radiation efficiency than modes not in their own category at low . One example is 
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mode Hz7.52)]2,1(AS),2,1(AS),2,2(S_D[ which generates a large local volume displacement 

at each quarter of the box corresponding to the (2, 2) shape of the dominant panel pair. Thus, 

the mode can have higher radiation efficiency than modes having (odd, even) or (even, odd) 

shape dominant panels at low .  

 

 
 
 
 
 

3.7 Effects of the relative phase of the dominant panels and the adjacent 

panels 

The relative phase of the dominant panels and the adjacent panels also plays an important 

part in determining the sound radiation of the box modes. Effects of the relative phase of the 

dominant panels on sound radiation characteristics of the box modes are studied in this paper 

by comparing the radiation efficiency of mode 13.5Hz
* S(1,1)],S(1,1)[D_S(1,1),  and mode 

17.2HzS(2,1)]S(2,1),,[D_AS(1,1) . Both modes have the same dominant panel pair, and have 

the same (1, 1) mode shape installed in the dominant panels. However, because the dominant 

panel pair of the former is symmetrical and the latter is asymmetrical, the two modes have 

very different radiation patterns. The former behaves as a monopole and the latter as a dipole 

Fig. 5 Comparison between the modal radiation efficiencies of the 
fundamental modes in the six groups. 
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for low  so that the former has higher radiation efficiency than the latter mode at low . 

However, because the vibration of the two non-dominant panel pairs of mode 

13.5Hz
* S(1,1)],S(1,1)[D_S(1,1),  is out of phase to the dominant panel pair, a small net-volume 

displacement is generated [1]. This results in a much weaker monopole than an ideal one. On 

the other hand, most of the vibration energy of mode 17.2HzS(2,1)]S(2,1),,[D_AS(1,1)  is 

installed in the dominant panel pair, a relatively stronger dipole is formed (see Fig. 3(f)). A 

dipole has a 40 dB/decade increase in radiation efficiency while a monopole only has a 20 

dB/decade increase in radiation efficiency, the small different in radiation efficiency of the 

two modes at low  is quickly overcome by the faster increase radiation efficiency of mode 

17.2HzS(2,1)]S(2,1),,[D_AS(1,1) . Thus, the mode becomes a much effective sound radiator 

than mode 13.5Hz
* S(1,1)],S(1,1)[D_S(1,1),  in the medium frequency range.  

 

Similarly, mode 30.3Hz
* S(1,2)],AS(1,1)[D_S(2,1),  has higher radiation efficiency than mode 

30.8Hz
* ]S(2,2)AS(2,1),,[D_AS(2,1)  in both low and medium frequency ranges because the 

former is close to a dipole sound source and the latter is close to a quadrupole source. For the 

last pair of modes in Fig. 5, mode 52.7HzAS(1,2)]AS(1,2),[D_S(2,2),  has much higher 

radiation efficiency than mode 48.9Hz
* AS(2,2)],AS(2,2),[D_AS(2,2)  in the entire low and 

medium frequency ranges because the former is a strong quadrupole while the latter is a weak 

octopole.  

3.8 Radiation efficiencies of typical box modes and the corresponding 

simply supported panel modes 

In the previous sections, we found that the mode shape and phase distribution of the box 

panels determines the radiation characteristics of the structure. In this section, the relationship 

between modal radiation efficiencies of the box modes and those of the corresponding simply 
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supported panel modes are studied because mode shapes of simply supported panels are used 

to describe the vibration distribution of the box modes in this investigation.  

 

A simply supported panel having the same dimensions (surface area   1 15.1 2m and mm5.2  

in thickness) and same material properties of the largest panel(s) of the box is used in this 

simulation. The modal radiation efficiencies of three fundamental panel modes, namely: (1, 

1), (2, 1) and (2, 2) modes and their corresponding box modes are shown in Figs. 6(a) – 6(c). 

It is found that box modes are generally poorer sound radiators than the corresponding simply 

supported panel modes at low   except the large volume displacement (either globally or 

locally ) box modes discussed previously (see Figs. 6(a) – 6(c)). This is due to wave 

interference between sound radiated by the component panels of the box.  

 

 
 
 
 
 

On the contrary, the radiation efficiency of the large volume displacement box modes is 

higher than that of the corresponding single panel mode for 1 . This can be explained by 

the three dimensional nature of the box modal vibration. Sound radiation of the large volume 

displacement box modes resembles the three-dimensional (3D) elementary sound sources, i.e. 

3D monopole, dipole, quadrupole or octopole. On the other hand, sound radiation of simply 

supported panel modes can be represented by that of the two dimensional (2D) sources (2D 

Fig. 6  Radiation efficiencies of the fundamental simply supported panel modes and 
the corresponding modes of the box-type structure; (a) (1,1) mode; (b) (2,1) 
mode; (c) (2,2) mode. 
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monopole, dipole, etc). By comparing sound radiation of a 3D sound source such as a 

vibrating spherical source to that of a 2D source such as a circular baffled piston, the higher 

radiation efficiency of a large volume displacement box mode (e.g., mode 

23.0HzS(1,1)]D_S(1,1),[S(1,1), ) than that of a corresponding simply supported panel mode 

(e.g., the (1, 1) mode) can be understood.  

  

A spherical sound source is a zero-order non-directional sound source, which radiates sound 

equally in all directions. The radiated sound power of a spherical sound source is given by 

[15]: 

2

2

0
22

)(1

)(
2

ka

ka
cvaW SSphere 

  ,                  (6) 

where a, 2
Sv  are the radius and the squared of average surface velocity of the spherical sound 

source.  

 

On the other hand, sound radiated by a baffled piston is directional. The radiated sound 

power from a circular baffled piston is given by [11]: 

)]2([
2

1 2
0

2 kaRacCvW vPPiston  ,                  (7) 

where vC  represents the mechanical damping term of the baffled panel, Pv  is the average 

surface velocity of the piston and )2( kaR  is the resistive function which is given by [11]: 
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2
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kaR .                   (8) 

If we neglect the mechanical damping term in Eq. (7), the radiated sound power of the baffled 

piston at low frequencies becomes: 
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The non-dimensional radiation efficiency of the two sound sources can now be obtained from 

the radiated sound power of the sources as:  

,
])(1[2

)(

4 2

2

2
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2 ka

ka

cva

W

S

Sphere
S 
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

                  (10a) 

and 

,1,
4
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W

p

Piston
P 

                           (10b)  

where S  and P  is the radiation efficiency of the spherical and the circular baffled piston 

sound sources respectively. 

 

Comparing Eq. (10a) to Eq. (10b), we found that a spherical sound source has much higher 

radiation efficiency than a baffled piston for 1 . The higher radiation efficiency of other 

large volume displacement modes of the box as compared to the corresponding simply 

supported panel modes can also be explained in similar manners. 

 

4. Modal radiation directivities 

This section examines the successively change of sound radiation directivity patterns of the 

box modes. The radiation patterns of the large volume displacement modes of the box are of 

particular concern because of their high modal sound radiation efficiencies. Effects of the 

rigid body box oscillation due to flexural vibration of asymmetrical panel pair(s) of a box 

mode [1] on modal sound radiation of the box are examined for a typical mode from each of 

group (D_AS, AS, S) and group (D_AS, S, S).  

 

The edge (or strip) and surface radiation patterns of simply supported panels have been well 

discussed in many literatures (i.e. [3], [4], [11]). Similar radiation patterns can also be 

observed for the box modes although the control mechanism may not be identical. In this 
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paper, the term "edge radiation pattern" is defined as where the sound pressure distribution in 

space corresponding to the box edges is higher than that of other locations. The term "surface 

radiation pattern" is defined as where the sound pressure distribution in front of the panels is 

closely represented by the vibration mode shape and amplitude distribution of the box panels. 

(1) Radiation directivities of the large volume displacement modes 

Fig. 7 shows the evolution of radiation directivities of mode 23.0HzS(1,1)]D_S(1,1),[S(1,1),  at 

frequencies below and above the critical frequency. For this box mode, all the plate panels 

vibrate in phase producing a large net-volume displacement (see Fig. 4 in Ref. (1) for 

visualization of the mode). The net-volume displacement controls the sound radiation of the 

mode at low   ( 2.0 ) where the acoustic wavelength is much larger than the largest box 

dimension. The modal radiation directivity resembles a monopole radiation pattern in this 

frequency range (see Figs. 7(a) and 7(b)). However, because of the uneven vibration 

amplitude distribution in the three panel pairs, the radiation directivity differs lightly from 

that of a perfect spherical monopole. The distortion in the sound field increases as  increases 

due to the increasing sound pressure difference radiated by the three panel pairs as a result of 

increasing modal sound radiation efficiency. As  increases to where the acoustic wavelength 

becomes smaller than twice the largest box dimension ( 57.0 ), the strengthening wave 

interference leads to a smaller pressure distribution in the normal direction of each panel pair 

(see Figs. 7(c) and 7(d)).  

 

As the frequency increase further ( 17.0   ), the pressure distribution in space 

corresponding to the box corners is higher than that of the box edges, while pressure 

distribution corresponding to the edges are higher than that of the panel surfaces. This can be 

explained by the box-type configuration of the structure such that sound pressure in space 

corresponding to a box edge is the in-phase superposition of sound pressure radiated by the 
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two adjacent panels forming the edge, and sound pressure corresponding to a box corner is 

the superposition of the three adjacent panels forming the corner,. The pressure difference is 

insignificant at low  since sound radiation of the mode is net volume displacement control. 

However, the pressure difference increases as  increases and becomes prominence at higher 

 . Consequently, the modal sound radiation is dominated by the edge radiation pattern in the 

medium frequency range as shown in Figs. 7(c) and 7(d). As  increases above the unity, the 

edge radiation pattern diminishes and evolves to a surface radiation where six lobes 

perpendicular to the six panels emerges and characterizes the sound field pressure distribution 

(see Figs. 7(e) and 7(f)). In this  range, sound pressure distribution in front of each panel 

takes the form of the vibration mode shape and amplitude distribution of the panel. Other 

modes in group (D_S, S, S) also form monopole sound source in the low frequency range. 

 

 

 

For mode 35.8HzD_S(1,2)]AS(1,1),[S(2,1),  (see Fig. 6 in Ref. [1]), the six panels of the box 

vibrate such that the plane at 2/yLy   divides the box into two halves vibrating 

asymmetrically. The radiation directivity of this mode resembles a dipole source for 42.0  

(see Figs. 8(a) and 8(b)). However, when the acoustic wavelength becomes smaller than 

twice the plate edges of the dominant panels ( 42.0 ), edge radiation pattern emerges and 

affects the sound field pressure distribution. As  increases further, the edge radiation pattern 

Fig. 7. Radiation directivities of mode 23.0HzS(1,1)]D_S(1,1),[S(1,1),  at 

(a) 07.0 ; (b) 19.0 ; (c) 75.0 ; (d) 94.0 ; (e) 50.1 ; 
(f) 80.1 . 
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becomes prominence and dominates the sound field pressure distribution (see Figs. 8(c)-

8(e)). Concurrently, the pressure distribution in the normal direction of the asymmetrical 

panel pair reduces to a minimum due to both diminishing effect of volume displacement and 

wave interference of the asymmetrical panel pair, which begins at 63.0  ( yL3
4 ). As 

  increases and passes the unity, the edge radiation pattern diminishes and is replaced by the 

surface radiation pattern. The pressure distribution in space closely corresponds to the 

vibration amplitudes and mode shapes of the component panels (see Fig. 8(f)). The 

asymmetry of the box mode with respect to the plane at 2/yLy   leads to the minimum 

pressure distribution on the 2/yLy   plane for all values of  . Other modes in group (D_S, 

S, AS), modes in group (D_AS, S, S) also form dipole sound sources at low frequencies. 

 

 
 
 
For mode 52.7HzAS(1,2)]AS(1,2),[D_S(2,2),  (see Fig. 8 in Ref. [1]), the two planes at 

2/yLy   and 2/zLz   divide the box into four parts. Elements in each part vibrate in 

phase, and are out of phase with elements of the adjacent parts. Therefore, the mode has a 

quadrupole sound radiation pattern at low  (see Figs. 9(a)-9(c)). Other modes in group (D_S, 

AS, AS), modes in group (D_AS, AS, S) also form quadrupole sound sources in the low 

frequency range.  

Fig. 8  Radiation directivities of mode 35.8HzD_S(1,2)]AS(1,1),[S(2,1),  at (a) 09.0 ; 

(b) 15.0 ; (c) 60.0 ; (d) 75.0 ; (e) 21.1 ; (f) 80.1 . 
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The vibration distribution of mode 71.0Hz
* AS(2,2)]D_AS(2,2),,[AS(2,2)  (see Fig. 9 in Ref. 

[1]) divides the box into eight equal parts. Such vibration pattern leads to an octopole sound 

radiation pattern at 1 . The eight lobes of the octopole emerge from the eight corners of 

the box (see Figs. 10(a)–10(d)). After the critical frequency ( 1 ), the original octopole 

radiation pattern evolves into a complicated surface radiation pattern, where the sound field 

in front of each panel correlates to the vibration amplitude and mode shape of the 

corresponding panel (Figs. 10(e)-10(f)). Other modes in the same group also form octopole 

sound sources in the low frequency range.  

 
 
 
 
 

Fig. 9.  Radiation directivities of mode 52.7HzAS(1,2)]AS(1,2),[D_S(2,2),  at (a) 10.0 ; 

(b) 12.0 ; (c) 62.0 ; (d) 94.0 ; (e) 00.1 ; (f) 80.1 . 

Fig. 10  Radiation directivities of mode 71.0Hz
* AS(2,2)]D_AS(2,2),,[AS(2,2)  at 

(a) 12.0 ; (b) 54.0 ; (c) 86.0 ; (d) 07.1 ; (e) 50.1 ; (f) 80.1 . 
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(2) Effects of rigid body oscillations on sound radiation of box modes 

In Ref. [1], we identified two types of rigid body oscillations in the box modal vibration due 

to the flexural motion of asymmetrical panels, namely, the whole body piston-like oscillation 

and the whole body rotation oscillation. The mechanism leading to the rigid body oscillations 

has been explained [1]. The effect of the rigid body oscillation on the sound radiation of the 

box modes is studied in this section. Two typical modes are chosen for this study, one from 

group (D_AS, AS, S), the other is from group (D_AS, S, S).  

 

The mode shape distribution of mode 30.8Hz
* ]S(2,2)AS(2,1),,[D_AS(2,1)  is shown in Fig. 2. 

Vibration of the mode consists of two components: one is the flexural vibration of the box 

panels; the other is the whole body rotational oscillation about an axis connecting the 

geometry centre of the pair of the symmetrical panels. These two components are 

superimposed on each other such that the two quadrupoles produced by them are in opposite 

phase as shown in Fig. 11(a). However, because the vibration power of the rotational 

oscillation is less than two percent of the input power of the flexural vibration of the mode, 

the overall acoustic field is dominated by the sound pressure radiated by the flexural vibration 

of the panels even though both vibration motions have similar values of radiation efficiency 

as indicated in Figs. 11(b) to 11(d).  

 

 
 
 
 
 

Fig. 11  Rigid body rotational oscillation of mode HzSASASD 8.30
* ])2,2(),1,2(),1,2(_[  and its 

effect to the sound radiation pattern of the mode at 30.8 Hz; (a) Isometric view;  (b) 
Sound radiation pattern due to the box rotational oscillation only; (c) Sound radiation 
pattern due to flexural vibration only; and (d) Sound radiation pattern due to the 
combined vibration motions. 
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Vibration of mode 17.2HzS(2,1)]S(2,1),,[D_AS(1,1)  also consists of two components: one is 

the flexural vibration of the box panels; the other is the whole body piston-like oscillation in 

the normal direction of the asymmetrical panel pair. The two components are such that the 

dipole produced by one of them is in opposite phase to the dipole produced by the other as 

illustrated in Fig. 12(a). Contributions of the whole body piston-like oscillation and the 

flexural vibration of the box panels to the sound field are demonstrated in Figs. 12(b) – 12(d). 

Similar to that of the previous case, the vibration power of the piston-like oscillation is much 

less than that of the flexural vibration of the panel, the overall acoustic field is therefore 

dominated by the sound pressure radiated by the flexural vibration. The radiation efficiency 

of the box mode is smaller than that due to the flexural vibration along as a result of the out 

of phase interference between sounds radiated by the two vibration components. 

 
 
 
 
 
 
 
 

5. Discussion and concluding remarks 

The finite element and boundary element methods are used to study the characteristics of 

sound radiation from a box-type structure. This study shows that the classification of 

vibration modes of a box structure into six groups is also meaningful for the study of modal 

sound radiation of the complex vibration modes of the box structure.  

  

Fig. 12  Rigid body piston-like oscillation of mode HzSSASD 2.17)]1,2(),1,2(),1,1(_[  and its 

effect to sound radiation pattern of the mode at 250 Hz; (a) Isometric view; (b) Sound 
radiation pattern due to box piston-like oscillation only; (c) Sound radiation pattern 
due to flexural vibration only; and (d) Sound radiation pattern due to the combined 
vibration motions. 
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The general features of modal sound radiation in each group are disclosed and explained by 

the mode shape, symmetry properties and the phase relationship between the component 

panels of a box mode. Characteristics of modal sound radiation efficiency at different 

frequency ranges are discussed. It is found that in the low frequency range where the 

wavenumber ratio is small, modal radiation efficiencies of the box modes are controlled by 

volume displacements of the box vibration. The slope of modal radiation efficiency curves is 

similar to that of a simply supported panel mode having the same modal indices of the 

dominant panels of the box mode in this frequency range. In the medium frequency range 

where the acoustic wavelength is smaller than twice the box dimension but greater than the 

structural wavelength, plateau or change in slope is observed in the radiation efficiency 

curves of higher order box modes resulting by the interference of sound radiated by the 

component panels of the box. Volume displacement, mode shape distribution and the relative 

phase between panels control the radiation efficiency and sound pressure distribution of the 

box modes in the low and medium frequency ranges. Similar to that of simply supported 

panel modes, the radiation efficiency of all box modes reaches a peak above the critical 

frequency, and gradually converges to unity at 1 . Although higher order modes (other 

than the (odd, odd) modes) of a simply supported panel always have higher radiation peaks, it 

is not always the case for the radiation efficiency of the box modes due to the interference of 

sound radiated by the box panels. 

 

The change of radiation directivity patterns for the large volume displacement modes as a 

function of the wavenumber ratio is observed in this study. Simple sound radiation patterns 

(namely, monopole, dipole, quadrupole and octopole patterns) are identified in the six groups 

of modes at low frequencies ( 1 ). In the medium frequency range, edge radiation 

patterns become obvious, where lobes of high sound pressure levels emerge from the edges 

of the box. The edge radiation pattern becomes surface radiation patterns at frequencies 
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greater than the critical frequencies, where mode shape and amplitude distribution of the box 

panels characterizes the radiation pattern and pressure distribution in the sound field.  

 

In this work, common features of modal sound radiation of a box type structure are disclosed 

to provide an understanding to effectively control the noise radiation of such structures for 

industry applications. Although the results of only one box structure are used in the study, the 

vibration and sound radiation characteristics unveiled in this work and in Ref. [1] are also 

meaningful for box structures of other dimensions. Increasing complexity of vibration and 

sound radiation analysis arising from a practical box structure with reduced symmetry can 

also be analyzed using similar approach outlined in this work and in Ref. [1]. The 

information of modal vibration and sound radiation characteristics of a box structure provided 

by Ref. [1] and this paper can also be utilized to predict the vibration response and noise 

radiation of a box structure under external excitations. 

The effects of boundary conditions and geometrical perturbations of box type structures to 

the boundary coupling mechanism, vibration and sound radiation of an idealized box-type 

structure were studied previously by the first author [14]. The boundary coupling mechanism 

of a box-type structure has also been discussed briefly in Ref. [1]. It was found that the 

boundary energy flow for modes in groups (D_S, S, S) and (D_AS, AS, AS) is dominated by 

bending moment. The boundary conditions for mode in these two groups are mostly close to 

the simply supported conditions. Thus the modal vibration and sound radiation characteristics 

for these two mode groups are not affected by imposing simply supported boundary 

conditions to the box edges. For modes in the other groups, the boundary energy flow are 

governed by both shear force and bending moment. The vibration amplitude distribution in 

some panel pairs would be affected (slightly) if simply supported boundary conditions are 

imposed to their coupling boundaries due to the exclusion of the part of energy flow by the 

shear force coupling. However, the effect to the mode shape distribution of the box is 
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negligible since the mode shape distribution in the panels is controlled by the wave matching 

condition between the plate bending wave and the physical dimension of the box panels. As a 

result, the overall effect of simply supported boundary conditions (imposed to all or some 

box edges) to the modal vibration of a box type structure is insignificant.  

 

The detailed change at the box boundaries has little effect to the modal radiation efficiency 

and radiation directivity of the box modes at low frequencies. At low frequencies, the sound 

radiation is determined by the overall magnitude and local volume displacements. As a result, 

the radiation properties of the box structure can be reasonably described by simple monopole, 

dipole and quadropole sound sources as illustrated in Figs. 7 – 10. 

 

Due to the changing modal amplitude distribution when boundary conditions are imposed to 

the box edges, the modal radiation efficiency for modes in groups other than (D_S, S, S) and 

(D_AS, AS, AS) are affected by such changes although the general trend of modal radiation 

efficiency for each group remains unchanged as those presented in Fig. 3. Wavenumber 

analysis of sound radiation from baffled plate has shown that the near-field flexural vibration 

could affect the wavenumber spectrum of the modal vibration, thus the far-field radiation of 

the acoustically slow sound [13].  
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Table 1. Classification of the first 33 modes and associated net-volume displacements 

 
 

Group 

 
 

Mode shape description 

Net-volume 
displacement 

 


6

1

)(
n

n
m

mV  

 
 
 

(D_S, S, S) 

HzSSSD 5.13
* )]1,1(,)1,1(),1,1(_[  0.1180 

HzSDSS 0.18
* )]1,1(_),1,1(,)1,1([  0.1194 

HzSSDS 0.23)]1,1(),1,1(_),1,1([ 0.6355 

HzSSSD 1.54
* )]3,1(,)3,1(),1,3(_[  0.0633 

HzSDSS 3.57
* )]3,1(_,)1,1(),1,3([  0.1839 

HzSSSD 6.66
* )]1,3(,)3,1(),3,1(_[  0.0975 

 
 
 
 

(D_S, S, AS) 

HzSASSD 3.30
* )]2,1(,)1,1(),1,2(_[  0 

HzSDASS 8.35)]2,1(_),1,1(),1,2([ 0# 

HzASSSD 4.36
*])1,1(),2,1(),2,1(_[  0 

HzASSDS 5.40
*])3,1(),2,1(_),2,1([  0 

HzSSDAS 5.43
* )]1,2(),1,2(_,)1,3([  0 

HzSDSAS 7.45
* )]1,2(_),1,2(,)1,1([  0 

HzASSSD 0.76
* )]3,1(,)2,3(),2,3(_[  0 

 

(D_S, AS, AS) 

HzASASSD 7.52)]2,1(),2,1(),2,2(_[ 0# 

HzSDASAS 3.60)]2,2(_),1,2()*,3,2([ 0 
HzSASDAS 6.65)*]3,2(),2,2(_),2,3([ 0 

(D_AS, AS, AS) 
HzASASASD 9.48

* )]2,2(,)2,2(),2,2(_[  0 

HzASDASAS 0.61
* )]2,2(_),2,2(,)2,2([ 0 

HzASASDAS 0.71
* )]2,2(),2,2(_,)2,2([ 0# 

 
 
 
 

(D_AS, AS, S) 

HzSASASD 8.30
*])2,2(),1,2(),1,2(_[ 0 

HzASDASS 8.32
* )]2,1(_),2,1(,)2,2([ 0 

HzASSASD 7.34
* )]1,2(,)2,2(),2,1(_[ 0 

HzASASDS 0.42
*])2,1(),2,1(_),2,2([ 0 

HzSASDAS 2.49
* )]2,2(),1,2(_,)1,4([ 0 

HzASDSAS 2.50
* )]1,2(_),2,2(,)2,1([  0 

HzASSASD 6.76)]3,2(),2,2(),2,3(_[ 0 
 
 
 
 

(D_AS, S, S) 

HzSSASD 2.17)]1,2(),1,2(),1,1(_[ 0 
HzASDSS 5.19)]1,1(_),2,1(),2,1([ 0 
HzSASDS 9.20)]2,1(),1,1(_),1,2([ 0 

HzASDSS 7.60
* )]3,1(_,)2,1(),2,3([  0 

HzSSASD 7.61)]3,2(),1,2()*,1,3(_[ 0 

HzSASDS 3.72
* )]4,1(),3,1(_,)3,2([  0 

HzSSASD 9.74
* )]1,2(,)3,2(),3,1(_[  0 

Note: Panels n= 1, 2, 3, 4, 5 and 6 are those at x=0, Lx, y=0, Ly, and z=0, Lz, respectively. 

mV is the volume displacement associated with the normal amplitude displacement of the mth element in a panel. 

# indicates the mode generates a large volume displacement locally although the net volume displacement is nil.  
 
 
 


