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Abstract 

 

Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-

phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering 

(RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – 

UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H 

phenylene mode are found to transform and disperse as the laser excitation energy 

ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions 

only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain 

inhomogeneity and the distribution of chains with varying conjugation length; for 

PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL 
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probing of a local band gap of end-terminated polyynes. The IR spectra analysis 

confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS 

results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and 

the PPV phenylene mode. Furthermore, it was found that at various laser excitation 

energies the changes in Raman spectra features for trans-(CH)x segments included in 

an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter 

finding can be used to facilitate identification of trans-(CH)x in the spectra of complex 

carbonaceous materials.  
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1. Introduction 

 

Amorphous carbon (a-C) and diamond-like carbon (DLC) solids are 

characterised by a large variety of types and properties that stem from combinations 

of principally two hybridised forms of carbon sp2 and sp3 and, for carbon materials 

formed in presence of hydrogen, as for a-C:H, the resultant properties are also 

controlled by the hydrogen content. Isotropic materials like DLC or a-C can, in 

principal, contain inclusions of a basic polymer, the trans isomer of polyacetylene 

[trans-(CH)x] according to simulations by Bernasconi et al. [1]. This introduced the 

idea that C–C bonds in bulk trans-(CH)x undergo a gradual saturation via chain 

interlinking at high pressure, transforming into an a-C:H solid, and on the other hand, 

earlier experiments by Arbuckle et al. [2] showed that sp3 clustering occurs if defect 

concentrations in trans-(CH)x reach sufficiently high level. These findings can be 

related to the energetic mechanism of sp2 and sp3 bonding formation in a 

hydrogenated DLC [3]. The presence of trans-(CH)x in a carbonaceous solid was 

reported by López-Ríos et al. [4] for CVD synthesised diamond, and Dischler et al. 

[5] and Piazza et al. [6] identified trans-(CH)x inclusions in low temperature 

synthesised a-C:H. Assignment of a Raman peak at ca. 1140 cm-1 to ω1 C–C in plane 

bending mode and a peak at ca. 1490 cm-1 to ω3 C=C stretching mode  to those of 

trans-(CH)x was, at first, uncertain, since solution synthesised trans-(CH)x is known 

to be unstable at the elevated temperatures used in ordinary DLC deposition [4, 7, 8]. 

Some authors inferred that very short (less than 20 C=C units) temperature stable 

trans-(CH)x segments are formed between the diamond grains during deposition [4, 9, 

10]. Isotopic substitution experiments by Kuzmany et al. [11] and Michaelson et al. 

[12] confirmed the assignment of the ω1 and ω3 modes to trans-(CH)x. Recently Teii 
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et al. [13] made an effort to correlate the interaction between the hydrogen-rich 

plasma and the amount of trans-(CH)x in nanocrystalline diamond thin-films. 

Conclusive results, however, were not obtained since at present, the means to 

quantitatively identify the amount and/or the ordering of trans-(CH)x inclusions in a 

given a-C or DLC solid are not sufficiently defined.  

The purpose of this work is to present the resonant Raman scattering (RRS) 

investigation of basic a-C:H films in the near-infrared (NIR) to ultraviolet (UV) 

range, and to demonstrate that these films host trans-(CH)x inclusions (chains) 

characterised by intrinsic ordering and variable conjugation length; and to show that 

films also contain sp-hybridised carbon species and inclusions of poly(p-phenylene 

vinylene) (PPV) [14]. The sp-bonded species considered are short hydrogen-

terminated polyyne chains. Here we obtain experimental and theoretical results that 

demonstrate differentiation between the Raman modes of trans-(CH)x (core Ag modes) 

and the PPV phenylene mode in a-C:H. We illustrate that at various laser excitation 

energies (ћωL), the changes in Raman spectra features for trans-(CH)x segments 

included in an amorphous carbon matrix of an a-C:H are the same as in bulk trans-

polyacetylene. Figure 1 shows an example of the RRS for bulk trans-polyacetylene 

for different excitation laser wavelengths (ωL). This figure shows as the ћωL is 

increased from deep-red to blue excitation, the RRS bands change gradually from 

narrow, slightly asymmetric lines into more complex two-peak bands, each consisting 

of an un-shifted primary peak and an upward shifted satellite portion which becomes 

the prominent feature of the band at blue excitation [15]. In a-C:H too, the ω1 and ω3 

trans-(CH)x modes become transformed and change positions, (disperse [9]), shapes 

and intensities with changing ћωL, and these transformations strongly depend on the 

inherent degree of inhomogeneity of trans-(CH)x chains.      
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Fig. 1 - Resonant Raman spectra of bulk trans-(CH)x at 78 K taken for different laser 

excitation wavelengths. a)  ωL = 457.9 nm; b) ωL = 514.5 nm; c) ωL = 600 nm; d) ωL 

= 676.4 nm, adapted from Ref. 15. 

 

 

The distribution of trans-(CH)x segments with varying degrees of inhomogeneity 

(conjugation chain length, bond disorder) was computed employing the bi-modal 

chain distribution model proposed by Brivio and Mulazzi et al. [8, 15, 16] and the 

amplitude mode theory proposed by Ehrenfreund et al. [7]. We aim to elucidate a 

simple approach that is needed to facilitate extraction of trans-(CH)x contributions 

from core Raman spectra of a-C, DLC or any other carbonaceous materials.  
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The RRS has been successfully used to study inhomogeneity and disorder in 

amorphous carbon systems consisting of arbitrary combinations of sp, sp2 and sp3 

hybridised states [3, 7, 9, 17-19]. In this work the excitation energies over a wide 

range of energies from 1.58 eV to 5.08 eV were used, ensuring that the vibrational 

densities of states (VDOS) of the great majority of sp3, sp2 and sp carbon mixtures are 

measured.  

In an environment where energetic hydrogen ions are present, the probability for 

carbon atoms to enter into sp-type arrangement as either polyyne (–C≡C–)n, a 

semiconductor, or polycumulene (=C=C=)n, a semi-metal [20], is exceedingly low, 

since both species are highly unstable to hydrogen exposure [21] and temperature 

sensitive [5, 22, 23]. Identification of sp-hybridised inclusions in the hydrogenated 

sp2–sp3 aggregates are therefore, highly notable, since the sp self-organisation 

mechanism, even at present, remains largely unresolved [24-28]. We focused on 

detection of sp-hybridised segments using the RRS process, and critically consider 

recent findings by D'Urso et al. [19]. In addition, infra-red (IR) absorption spectra 

analysis was used to identify sp and trans-(CH)x species.   

 

 

2. Experimental 

 

Deposition of a-C:H films were performed on Si <111> wafers using a 

Helmholtz-type inductively coupled plasma (ICP) reactor operated on CH4/Ar mixture 

at temperatures of 380 – 400 K [29, 30]. The pressure was 6 × 10-2 Pa and the 

substrate was DC negatively biased at -250 to -300 V. The use of substrate bias this 

range was found to have adverse effects to the formation of sp or trans-(CH)x 
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segments. The formation of trans-(CH)x and sp bonded segments appears to be 

facilitated by the amount of atomic hydrogen in hydrocarbon plasma, and the ratio of 

55% CH4 to 45% Ar was found to be most favourable in this work. Deposition was 

performed at extremely low rate of ~30 nm/hour in a high density plasma, with the 

aim of obtaining high ordering of sp2 phase, and allowing for a higher concentration 

of free radicals and a higher degree of gas phase reaction taking place.  

The fabricated films were found to be of low intrinsic compressive stress ≤ 1 

GPa as determined using Stoney’s equation [31] from the substrate curvature with 

hardness of approximately 20 GPa and, a friction coefficient of 0.07 at 70% humidity 

measured by a nano-mechanical testing (UMIS). Electrical resistivity was in the range 

of 108 - 109 Ω cm-1 as measured by using a four-probe testing method. Films were 

~140 nm thick with a maximum refractive index of 2.2 in the UV – blue region, as 

measured by IR – UV spectroscopic ellipsometry (J. A. Woollam Co.). The hydrogen 

content in the films was determined from the analysis of IR absorption spectra as used 

by Liu et al. [32] (normal mode vibrational frequency calculations) and from the 

analysis of UV Raman spectra (ωL of 244 nm) as proposed by Casiraghi et al. [33] 

where the full width at half maximum (FWHM) of the G peak, G peak position and 

the dispersion of this peak at respective ћωL were used. This gave a hydrogen content 

of approximately 27 (± 2.5) at%.  

The IR spectra in the range 3400 – 2600 cm-1 range were obtained using Nicolet 

Nexus Fourier transform infra-red (FT – IR) spectrometer operated in transmission 

mode with subtraction of Si substrate background. For IR measurements, the same 

group (thickness, lattice orientation, and surface finish grade and backside surface 

roughness) of uncoated Si substrates was used, as for the film deposition experiments. 
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Standard Gaussian peak functions were used to fit the constituent bands in the 

selected spectral range after linear background subtraction.  

X-ray photoelectron spectroscopy (XPS), using Kratos AXIS Ultra 

photoelectron spectroscope with a monochromated Al Kα 1486.6 eV X-ray source, 

was used ex situ to obtain C1s spectra. The chamber vacuum level was maintained 

below 2.5 × 10-9 Pa and the spectrometer was calibrated by peak referencing of Au 

4f7/2 (binding energy = 84.0 eV) with respect to the Fermi level. XPS measurements 

were collected centred at 284.0 eV at pass energy of 40 eV, with a resolution of 0.05 

eV and dwell time of 250 msec; a total of 3 collection sweeps were used. Charge 

neutraliser was off and surface charging was not observed during the measurements. 

Information about the relative abundance of carbon hybridised fractions in the 

examined a-C:H materials was obtained by decomposition of C1s core electron 

binding energy spectra onto three constituent peaks: sp, sp2 and sp3. After the 

subtraction of Shirley background [34], Pearson VII line-functions corresponding to 

these peaks were fitted into the main C1s peak employing the constrained fitting 

procedure, where an sp constituent was fitted with an assigned binding energy 

(position) [35, 36] and, sp2 and sp3 constituents were fitted restricted to their 

respective energy separation gap [37] then, the value ratio of sp/sp2/sp3 was obtained 

based on integrated peak areas for the three hybridised line-functions. The presence of 

sp-hybridized species revealed by means of the XPS C1s analysis was verified by 

analysing 244 nm Raman [19, 38, 39]  and IR [5] results, and the sp3 content by using 

244 nm Raman results [17, 33].  

Unpolarised Raman spectra across the excitation energy range 5.08 eV to 1.28 

eV were obtained ex situ at 293 K using 244, 532, 633, and 785 nm Renishaw 

instruments and 325 and 442 nm Kimmon Raman instruments. All excitation 
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wavelengths excluding 785 nm were pulsed; the 785 nm was a continuous wavelength 

laser source. The frequency-doubled Ar ion laser was used for 244 nm, He/Cd for 325 

and 442 nm, the frequency-doubled YAG laser was used for 532 nm, He/Ne gas laser 

was used for 633 nm, and a diode laser source was used for 785 nm excitations. All 

measurements were taken in dynamic mode with a specimen moved linearly at speeds 

of up to 30 m/s and laser power was kept at or below 1 mW for all wavelengths 

minimizing the thermal damage. The acquisition time was varied between 10 s to 120 

s and the spectral resolution was 1 cm−1.  

There were two main options for fitting of the Raman spectra as noted by 

Casiraghi et al. [33]: an all Gaussians fit to Raman constituent bands, or a fit with a 

Breit–Wigner–Fano (BWF) line shape for the G peak and a Lorentzian for the D peak. 

The a-C:H samples selected for this study did not display significant 

photoluminescence (PL) background, nonetheless, we find that the use of the BWF 

line is not the most appropriate since the BWF Q coupling coefficient is influenced by 

the PL background, and the BWF lineshape tends to adjust its asymmetry reproducing 

a part of the PL slope [33, 40]. This does not lead to reproducible fitting of the Raman 

spectra. Alternatively, fully symmetric Gaussian line-shapes provide better, 

reproducible fit in the presence of a PL background. In the Raman spectra presented, 

the linear PL background was subtracted and all constituent peaks were fitted with 

Gaussian line-shapes using a nonlinear least squares fitting procedure [41]. 

 

 

3. Results and discussion 

 

3.1. Identification of π- conjugated polymeric inclusions in a-C:H 
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 Figure 2 shows the RRS spectra of an examined a-C:H film with PL 

background subtracted and fitted with Gaussian line-shapes to the constituent peaks.  
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Fig. 2 - Resonant Raman spectra of a-C:H at 293 K showing contributions from trans-

(CH)x (ω1 and ω3) modes, PPV (1175 cm−1 mode), and DLC (D, G, and T modes). An 

asymmetric peak visible at NIR–visible (green) ћωL at 950 cm−1 is the second order 

Si, from Ref. 14. 

 

 

The fitted bands are common DLC D and G modes for NIR and visible and the T 

mode for UV ћωL excitations [17]; and the two Ag zone center vibrational modes of 

trans-(CH)x, the ω1 and ω3 [7, 18, 42]. The weak ω2 mode that usually appear at 1275 

– 1295 cm-1 range (a peak labelled '1294', Fig. 1) was not present, nor the peak 

corresponding to the Bg mode of trans-(CH)x that is normally observed in 1000 – 

1100 cm-1 range (a peak labeled '1020', Fig. 1), however their contributions could be 

hidden by the tails of the fitted D and the ω1 bands. Fundamentally, the absorption for 

bulk trans-(CH)x occurs within 1.5 - 1.7 eV  range and corresponds to the zone centre 

Ag Raman modes at opening frequencies of 1060, 1280 and 1450 cm-1 [18, 42]. That 

is at N-IR ћωL. As the Raman excitation energy increases, and therefore moves away 

from the band gap resonance, the Raman sidebands exhibit radical lineshape changes 

as illustrated in Fig. 1 [15, 18, 43, 44]. Shoulders appear at the high frequency side of 

the primary ω1 and ω3 modes that eventually extend into secondary peaks at 

excitation energies well above the band gap at ћωL = 2.71 eV [18]. The RRS spectra 

disperses [9] and the resultant trans-(CH)x peaks change intensities, I and widths Γ, 

and the overall spectrum is in addition affected by light polarisation [45, 46]. The 

RRS of trans-(CH)x secondary peaks, such as the peaks appearing at ωL of 457.9 nm 

(noted as '1126' and '1500', Fig. 1) in bulk samples become more pronounced at 

higher excitation energy. However, the complexity of separating trans-(CH)x from the 
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host DLC modes leads us to analyse a single symmetric band distribution [43]. This 

approach was proved by Ehrenfreund et al. [7] to be sufficient to account for a double 

peak Raman structure.  

Together with common DLC and trans-(CH)x modes we find a peak positioned at 

1175 cm-1 when probed by 785 nm ωL which we assign to a CC–H bending mode of 

the ring in neutral poly(p-phenylene vinylene) (PPV) [47, 48]. The origin of this mode 

could, in fact, be due to defects in sp2 aromatic rings since in single crystals, only 

phonons with the wave vector rule k=0 contribute to Raman scattering. Defects lead to 

relaxation of this selection rule and therefore provide means for phonons from outside 

the centre of the Brillouin zone to contribute to the Raman scattering. If this 1175 cm-

1 mode indeed belongs to PPV chains, the other PPV zone centre vibrational modes 

found at higher frequencies in 1200 – 1330 and 1540 – 1625 cm-1 range will certainly 

be obscured by the host D and the G modes [49]. Owning to its large width, Γ1175 the 

1175 cm-1 vibrational mode could be effectively a combination of vinylene and a CC–

H ring bend modes since the zone mode frequency for vinylene is at approximately 

1145 cm-1 [47]. As the Raman excitation energy increases from NIR to UV range all 

peak positions shift to a higher vibrational frequency obeying phonon confinement 

rules [17], as shown in Figure 3(a) where peak dispersion, ∆ω is denoted as the shift 

in a peak position relative to base position at NIR excitation (ћωL=1.58 eV). Figure 

3(b) summarizes changes in widths for all fitted peaks. The gradual decrease in 

I(D)/I(G), the intensity ratio for the D and G peaks, from ~0.9 to 0.2, the pronounced 

reduction in ΓD and ΓG, and the G peak saturating [17] at approximately 1590 cm-1 for 

244 nm excitation indicate that a-C:H films hosting trans-(CH)x and PPV inclusions 

consist of a highly ordered and symmetric sp2 phase [17, 30]. 
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Fig. 3 a) - Peak dispersion, ∆ω and b) - peak widths, Γ for all constituent peaks as a 

function of the laser excitation energy ћωL, from Ref. 14. 

 

 

There is no T peak dispersion at higher excitation energies in agreement with 

earlier reports [17]. The band gap for PPV is in the range of 2.2 – 2.5 eV [48, 50] and 

therefore it is selectively probed by excitation energy corresponding to green light (ωL 

of 532 nm). Figure 4 illustrates relative changes of the fitted ω1, ω3 and 1175 cm-1 

bands in the spectra of a-C:H as a function of ћωL.  
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Fig. 4 - Changes in the fitted ω1, ω3 and 1175 cm-1 bands (intensity magnified by a 

factor of 5) relative to the laser excitation energy ћωL in the spectra of a-C:H. Light 

dotted line over ω1 and ω3 bands denotes the I(ω3)/I(ω1) trend. 

 

 

Figure 5(a) illustrates changes in the relative intensity of the 1175 cm-1 peak, 

I(1175) at different excitation energies; I(1175) is calculated as intensity of the 1175 

peak over the total intensity of all constituent peaks including the intensity of the T 

peak in the UV Raman spectra.  
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Fig. 5 a) - Evolution of relative intensities of the 1175 cm-1 peak, I(1175) and trans-

(CH)x contributions, IΣ(ω1, ω3) and b) relative intensities of ω1, I(ω1) and ω3, I(ω3) 

peaks as a function of the laser excitation energy ћωL. 

 

 

The I(1175) reaches its highest intensity position at ћωL=2.3 eV as revealed in Fig. 4, 

although Fig. 3(b) shows that changes in the peak width, Γ1175 are minor at this band 

bap frequency. This PPV peak at 1175 cm-1 is certainly of sp2 origin since its 

contributions disappear in UV excitation. 

The total relative intensity for trans-(CH)x contributions calculated as sum of 

relative intensities of ω1, I(ω1) and ω3, I(ω3) peaks and denoted as IΣ(ω1, ω3) is 

shown in Fig. 5(a). The magnitude of IΣ(ω1, ω3) gradually decreases from N-IR to 

UV ћωL. Individual trends of I(ω1) and I(ω3) contributions are shown in Fig. 4 and 
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Fig. 5(b). The trans-(CH)x features as I(ω1) and I(ω3) intensities (Fig. 4 and Fig. 5(b)) 

and peak widths, Γ (Fig. 3(b)) for the ω1 and ω3 peaks exhibit strong transformations 

as the excitation energy increases from NIR excitation to blue excitation, but is most 

pronounced with excitation energy corresponding to green light; that is I(ω1) and 

I(ω3) intensities becoming inversely related with a fall in the total intensity, IΣ(ω1, ω3) 

and Γω1 and Γω3 achieve a maximum in the blue–green excitation region. These are not 

related to tuning into the band gap frequency for trans-(CH)x that requires much less 

energy (in the NIR [18, 42]), but have been regarded as evidence of the presence of 

inhomogeneity (disorder) in trans-(CH)x chains.  

The disorder is due to a distribution of the electronic energy gaps and their 

respective frequencies; these are selectively probed via the variation of ћωL of RRS 

process, and result in the shift and broadening of phonon bands [7]. Major attempts to 

describe the inhomogeneity of trans-(CH)x via a distribution of chains with varying 

length of π-electron conjugation [51] employed a particle-in-the-box [52] and Hückel-

type calculations [53]. The bi-modal distribution model proposed by Brivio and 

Mulazzi et al. [8, 16] suggested a double peak distribution to arise from individual 

contributions of both long and short trans-(CH)x segments that show unequal resonant 

enhancement at a given excitation energy. The inhomogeneity of trans-(CH)x could 

also be described employing the distribution of the electron-phonon coupling constant 

λ, p(λ) [7, 54] of the amplitude mode (AM) theory proposed by Ehrenfreund et al. [7]. 

When other parameters are fixed, λ determines the Peierls relation for the energy gap 

Eg(λ) = W exp(-1/(2λ)) and laser frequencies, ωL, and where W is the width of the π- 

band. The maximum for p(λ) occurs at λ = λ0, whereas resonance induced changes in 

peak position, I and Γ result from the condition ћωL = Eg(λ) > Eg(λ0). We applied the 

AM model to study trans-(CH)x inclusions in a-C:H and the obtained results yielded λ 
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distribution range from ~0.17 for NIR to ~0.24 for UV, in good agreement with the 

AM model. The distribution of λ rises from finite localisation lengths and bond length 

disorder, consequently AM theoretical calculations indicate that trans-(CH)x segments 

probed by higher ћωL are of shorter π- conjugation lengths and of higher bond 

disorder. The AM findings are complemented by calculations determining the length 

of the segments using Brivio and Mulazzi bi–modal distribution model which offers 

empirical relations for dependence of the conjugation length (long and short) on the 

frequency of the ω1 and ω3 modes. It was found that the approximate length for both 

single C–C and double C=C bonds in probed trans-(CH)x segments is no less than 120 

bond lengths units at the estimation limit of the model; and to a minimum of 

approximately 8. Shorter chains are probed by higher excitation energies, as 

illustrated in Figure 6 [16] for the functional dependence of the π- electron gap, Ω, eV 

and the relative optical absorption on the chain lengths of trans-(CH)x segments.  

The average chain population is ~25 (± 5) bond length units owing to the 

uncertainties given by the Raman fitting and the bimodal distribution model [8]. All 

trans-(CH)x chains included in a-C:H are highly disordered as evidenced by wide ω1 

and ω3 Raman peaks reaching their maximum in the blue-green range, shown in Fig. 

3(b).  

 We have calculated the theoretical distribution for I(ω3)/I(ω1) vs. ћωL 

independent of a given trans-(CH)x chain length using the AM formalism that was 

previously completed by Ehrenfreund et al. [7] for the visible laser excitation to 

include N-IR and UV ћωL. Fitting of ω1 and ω3 spectral constituents delivered the 

inverse relationship between the I(ω3) and I(ω1) parameters, I(ω3)/I(ω1) relative to the 

laser excitation energy as illustrated in Fig. 4 and Fig. 5(b). Figure 7 shows that our 

experimental results obtained for the varying ћωL are in good agreement with the 
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theoretical distribution predicted by the AM model and with Ehrenfreund's 

experimental data. The observation of relative intensities of ω1 and ω3 bands, I(ω1) 

and I(ω3) (Fig. 4), and the theoretical distribution of I(ω3)/I(ω1) ratio (Fig. 7) relative 

to ћωL evidences that ω1 and ω3 peak resonance responses to excitation energy of 

green laser are essentially equal. These are indicated by equal magnitudes of I(ω1) and  

 

 

 

 

Fig. 6 - Calculated absorption spectra from long and short chains constituting trans-

(CH)x samples, adopted from Ref. 16. 

 

 

I(ω3) shown in Fig. 4 and the I(ω3)/I(ω1) ratio approaching 1.0 following the AM 

calculations graphically represented in Figure 7. This observation suggest that green 

Raman laser could become a wavelength of choice for natural identification of trans-

(CH)x inclusions in carbonaceous materials fitting both ω1 and ω3 contributions at 

equivalent intensities.  
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Fig. 7 - The intensity ratio of I(ω3)/I(ω1) vs. the laser excitation energy ћωL for trans-

(CH)x inclusions in a-C:H. Solid line is a theoretical calculation performed using the 

amplitude mode formalism [7]. 

 

 

3.2. Identification of sp-hybridized inclusions in a-C:H 

 

The observation that contributions belonging to sp-hybridised species could be 

deducted from the main XPS C1s core level electron spectra were first reported by 

Sergushin et al. [36] for X-ray studies of “carbyne” that suggested a much lower 

binding energy (BE) level for an sp-allotrope, relative to BE for elemental carbon 

contributions. Figure 8 shows the broad core-level XPS C1s spectra of a-C:H; in order 

to deduct the information about the relative abundance of carbon hybridised fractions 

in the examined materials, the spectra were decomposition onto three main constituent 
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peaks corresponding to sp, sp2 and sp3 hybridised states. An sp peak was fitted at an 

assigned BE of 283.5 eV in confirmation with previous reports [26, 35, 36], while sp2 

and sp3 constituents were fitted restricted to their respective energy separation gap, 

ΔBE, eV, defined as the difference between the binding energies of sp3 and sp2 

constituents: ΔBE = BEsp3 − BEsp2 and with 0.85≤ ΔBE ≤ 0.9 eV [37, 55] the 

following binding energy positions were obtained for sp2 at ~284.4 eV and sp3 at 

~285.3 eV. Due to ex situ XPS measurements and the exposure of samples to air two 

secondary peaks were added into the fitting of the main C1s spectra: a single C–O 

peak at ~286.8 eV and a carbonyl C=O peak at ~288.5 eV. The sp/sp2/sp3 value ratio  

 

 

 

 

Fig. 8 - XPS core-level C1s spectra of a-C:H; contributions for sp, sp2 and sp3 

fractions are shown together with C-O and C=O secondary peaks.  

 

 

was calculated on the basis of integrating peak areas for the three respective line-

functions and was found to be 0.03/0.67/0.30 or, when expressed as a percentage: 3% 

sp, 67% sp2 and 30% sp3; the absolute uncertainty of the measurements was high at 
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≤1.25% owning to variable ΔBE gap parameter used in the non-linear least squares 

fitting procedure. The FWHM for sp, sp2 and sp3 were found to be correspondingly 

~0.6 eV, ~1.2 eV and ~1.6 eV, to some extent wider that FWHM values reported for 

general a-C:H or ta-C:H materials.  

The Raman spectra in the range of 1900 – 2200 cm-1 are commonly identified 

with sp-hybridised species [24, 25, 38, 39]. Figure 9 shows the RRS of examined a-

C:H films; the spectra from 532 nm to 325 nm displays only minor perturbations in 

this range and the sp contributions become clearly visible when probed by 244 nm 

laser. Stability of polyyne and cumulene (sp-bonded) species is greatly influenced by  

 

 

 

 

Fig. 9 - Resonant Raman spectra of sp-hybridised (polyyne) segments in a-C:H.  

 

 

the hydrogen environment, and polyynes are known to be significantly more resistant 

to hydrogen exposure [21]. For that reason we consider polyynes to be prevailing 
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species in the studied a-C:H. Polyynes have been theoretically predicted [23, 56] to be 

more energetically stable than cumulenes, and such preferential stability have been 

evidenced experimentally [22, 57]. 

Recent works by Tabata et al. [58, 59] substantiated the assignment of Raman 

frequency modes centred at around 2000 cm-1 to hydrogen capped short H–(CC)n–H 

polyynic chains with n = 8 – 18, as did other workers on this subject [60, 61]. The 

assignment of the peaks at ~1950 cm-1 and 2070 cm-1 which appeared in the 244 nm 

spectrum to fixed-length polyynes is unjustified in our case, since the great majority 

of published work on the subject considers sp inclusions as completely detached. 

Satisfactory explanation for observation of polyynes exclusively under UV excitation 

(Fig. 8) could no longer be regarded exclusively resulting from the resonance 

enhancement of apparently smaller cross section area of one dimensional sp-bonded 

atoms, as we considered previously [38] relying on D'Urso et al. [19] findings, which 

suggested nearly an exponential increase of a combined sp–sp2 probing signal with 

respect to increasing ћωL. Recently released ab initio calculations within density 

functional theory by Ravagnan et al. [62] showed that experimental Raman spectra in 

the range of 1900 – 2200 cm-1 for torsionally strained sp-nanowires stabilised by sp2 

and sp3 terminations were highly sensitive to strain; changes to the relative orientation 

of the terminations were found to affect the strain, which subsequently, modulates the 

electronic states of the nanowires and Raman signal. The appearance of sp-bonded 

species under UV excitation only (VDOS probing) could be attributed to aligned sp-

hybridised atoms bridging a nanometric gap on sp2–sp3 matrix; such sp chains are 

most likely to be end-terminated by an sp2 or an sp3 hybridised fragment; sp-

stabilisation could be achieved in a form of end-termination or bridging. 
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Figure 10 illustrates C–H stretching band spectra in the range of 3400 – 2700 

cm-1 taken from a-C:H samples after a baseline correction.  

 

 

 

 

Fig. 10 - Decomposed IR stretching vibrations spectra of an a-C:H film. The 

constituent bonding groups are: sp1(3300) CH, sp2(3125) =C-H unsat/A/asym, 

sp2(3085) =CH2 unsat/O/asym, sp2(3050) =C-H sat/A/asym, sp2(3020) trans-vinelyne 

(CH) sat/O/sym, sp2(2995) trans-(CH)x sat/O/sym, sp3(2970) -CH3 sat/O/asym, 

sp2(2950) =CH2 sat/O/asym, sp3(2915) =CH, =CH2 sat/O/asym, sp3(2870) -CH3 

sat/O/sym, sp3(2855) =CH2 sat/O/sym. 

 

 

The configuration of constituent groups is shown in abbreviated form as: saturated 

(sat); unsaturated (unsat); aromatic (A); olefinic (O); symmetric (sym); and 

asymmetric (asym). The quantitative [5, 6, 32, 63] decomposition reveals 

contributions from the sp-bonded species at 3000 cm-1; the amount of sp-hybridised 

inclusions estimated using Liu et al. [32] calculations never exceeded 3% for all films 

deposited. 
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The trans-(CH)x mode is visible at 2995 cm-1, however the infrared absorption 

of this mode is expected to be significantly lower than other C–H modes fitted, as 

compared to free molecules. The relative intensity and FWHM of this mode was 

found closely related to hydrogen content in the films [13]; the mode contribution for 

the films studied was between 7 to 10%. The stretching mode corresponding to trans-

vinelyne was found at approximately 3020 cm-1 [50]. The amount of sp-bonded 

species in a-C:H was found to some extent related to hydrogen content in the films, 

the ion energy during deposition and deposition temperature; the amount of trans-

(CH)x and PPV inclusions was strongly influenced by plasma density and electron 

temperature.   

 

 

4. Summary and conclusions 

 

In summary, we have performed the RRS investigation on ICP fabricated a-C:H 

films and have demonstrated that the films host trans-(CH)x segments of various 

conjugation length, poly(p-phenylene vinylene) chains as evidenced by the 1175 cm-1 

Raman mode and, a small fraction of sp-hybridised carbon species as evidenced under 

UV excitations. We provided the theoretical basis for arguing that at various laser 

excitation energies the changes in Raman spectra features for trans-(CH)x segments 

included in the a-C:H matrix are practically identical to the changes observed in bulk 

trans-polyacetylene. This leads to reliable identification of trans-(CH)x inclusions in 

Raman spectra of a-C:H or any other complex carbonaceous material and, 

differentiation between the Raman active modes for trans-(CH)x and PPV.  
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We observed that relative intensities of trans-(CH)x core Ag modes (ω1 and ω3) 

are essentially equal when probed by excitation energy of green light laser. This is 

although supported by the theoretical distribution of I(ω3)/I(ω1) ratio relative to 

Raman excitation energy, overall exemplifying the approach for trans-(CH)x 

identification in carbonaceous solids.  

The length of trans-(CH)x segments in the films examined was found averaging 

~25 (± 5) C=C bond length units, with longer chains of up to 120 bond length units 

probed by NIR and shorter chains of ~8 units probed by UV ћωL; all trans-(CH)x 

inclusions irrespective of conjugation length displayed high degree of bonding 

disorder. We assigned the 1175 cm-1 peak to PPV CC–H bending mode of the ring 

and postulated the origin of this mode. Sp-hybridised species observed exclusively 

under UV excitation were identified as short polyynic chains bridging a nanometric 

gap on sp2–sp3 matrix; and these chains were believed to be end-terminated by an sp2 

or an sp3 hybridised fragments.  

The presence of sp-bonded inclusions in a-C:H was confirmed by means of XPS 

C1s core-electron spectra analysis, while the existence of sp, trans-(CH)x inclusions 

and trans-vinelyne segments was verified by FT-IR analysis.  

Finally, the inclusions of basic polymeric chains such as long trans-(CH)x and 

PPV were possible owning to highly ordered sp2 host component of a-C:H films. 

Such sp2 ordering was achieved via fabrication of a-C:H films in ICP reactor with 

high plasma density and low electron temperature compared to conventional DLC 

deposition systems. A parallel could be drawn with the report by Chen et al. [64] 

where unusual inclusions of silicon based spherical nanocrystallites into DLC matrix 

was possible due to similar ICP fabrication conditions, whereas the stability of sp-
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hybridised species in a-C:H could be attributed to relatively low temperature 

deposition process. 
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Figure captions 

 

Fig. 1 - Resonant Raman spectra of bulk trans-(CH)x at 78 K taken for different laser 

excitation wavelengths. a)  ωL = 457.9 nm; b) ωL = 514.5 nm; c) ωL = 600 nm; d) ωL 

= 676.4 nm, adapted from Ref. 15. 

 

 

Fig. 2 - Resonant Raman spectra of a-C:H at 293 K showing contributions from trans-

(CH)x (ω1 and ω3) modes, PPV (1175 cm−1 mode), and DLC (D, G, and T modes). An 

asymmetric peak visible at NIR–visible (green) ћωL at 950 cm−1 is the second order 

Si, from Ref. 14. 

  

 

Fig. 3 a) - Peak dispersion, ∆ω and b) peak widths, Γ for all constituent peaks as a 

function of the laser excitation energy ћωL, from Ref. 14. 

 

 

Fig. 4 - Changes in the fitted ω1, ω3 and 1175 cm-1 bands (intensity magnified by a 

factor of 5) relative to the laser excitation energy ћωL in the spectra of a-C:H. Light 

dotted line over ω1 and ω3 bands denotes the I(ω3)/I(ω1) trend.  

 

 

Fig. 5 a) - Evolution of relative intensities of the 1175 cm-1 peak, I(1175) and trans-

(CH)x contributions, IΣ(ω1, ω3) and b) relative intensities of ω1, I(ω1) and ω3, I(ω3) 

peaks as a function of the laser excitation energy ћωL. 
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Fig. 6 - Calculated absorption spectra from long and short chains constituting trans-

(CH)x samples, adopted from Ref. 16. 

 

 

Fig. 7 - The intensity ratio of I(ω3)/I(ω1) vs. the laser excitation energy ћωL for trans-

(CH)x inclusions in a-C:H. Solid line is a theoretical calculation performed using the 

amplitude mode formalism [7]. 

 

 

Fig. 8 - XPS core-level C1s spectra of a-C:H; contributions for sp, sp2 and sp3 

fractions are shown together with C-O and C=O secondary peaks.  

 

 

Fig. 9 - Resonant Raman spectra of sp-hybridised (polyyne) segments in a-C:H.  

 

 

Fig. 10 - Decomposed IR stretching vibrations spectra of an a-C:H film. The 

constituent bonding groups are: sp1(3300) CH, sp2(3125) =C-H unsat/A/asym, 

sp2(3085) =CH2 unsat/O/asym, sp2(3050) =C-H sat/A/asym, sp2(3020) trans-vinelyne 

(CH) sat/O/sym, sp2(2995) trans-(CH)x sat/O/sym, sp3(2970) -CH3 sat/O/asym, 

sp2(2950) =CH2 sat/O/asym, sp3(2915) =CH, =CH2 sat/O/asym, sp3(2870) -CH3 

sat/O/sym, sp3(2855) =CH2 sat/O/sym. 

 


