
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Haugaasen, Magnus & Nayak, Richi (2006) A Web Data Extraction Ap-
proach to Harvesting Data from Online Sources. In Li, Y, Looi, M, & Zhong,
N (Eds.) Advances in Intelligent IT: Active Media Technology 2006, 7-9
June 2006, Australia, Queensland, Brisbane.

This file was downloaded from: http://eprints.qut.edu.au/24613/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10891352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Nayak,_Richi.html
http://eprints.qut.edu.au/24613/

A Web data extraction approach to

harvesting data from online sources

Richi NAYAK and Magnus HAUGAASEN
School of Information Systems, Queensland University of Technology
Brisbane, Australia {r.nayak@qut.edu.au, magnus.haugaasen@gmail.com}

Abstract
With the Web becoming a main source of data representation, businesses have
opportunities to gather data from various independent web sources and condense
these data into specialized services. However, there is no unified structure of web
pages and therefore extracting data from sources can be a complex task. We
present a solution to locate and extract data from a large group of online
bookmaker pages to provide a real-time service to deliver price on sporting events.

1. Introduction

Recent years has seen a growing trend of enterprises specializing in collecting very
specific data from various Web sources and collaborate these data to form a business
concept independent from that of the source of the data. The idea of this paper is to
propose a real-time price service delivering odds on sporting events from a large group
of online bookmakers. On major sports, bookmakers offer the same events but at
different prices. Differences can often be up to 30% for a single outcome, either due to
bookmaker preferences (favourite – underdog), or due to volume of bets. The prices or
odds for events fluctuate on a frequent basis according to the movement in the market.
Since the number of bookmakers and customers is growing, it is becoming difficult to
track the movements of this huge market without the use of automated tools. There are
available services which can provide services for collection and comparison of data but
often the intervals between data collection is too large to pick up market changes [3].
 How to obtain information in html is researched much in traditional web
information retrieval. There are spider, crawler and robot [1,3,4] for general
information retrieval, and wrapper for each special web source [5]. Traditional spider is
improved in this paper to fetch the accurate and dynamic data of interest. This paper
presents a software solution which is able to scan and harvest data from bookmakers
web pages for prices on some sporting and horse racing events, and process the
collected data by incorporating the concept of web content mining.

2. The process to harvest data from online sources

The objective is to create a system which on an uninterrupted basis is able to lookup
target Web pages, extract required information and process this information by
matching and comparing data from various sources. The system provides users with

mailto:{r.nayak@qut.edu.au

information on risk free bets at real-time from sport events or from horseracing. It gives
the opportunity to the user to calculate stakes for arbitrage occurrences and possible
profit, and to select a particular event accordingly.

 2.1 General Features

Since we are focused towards collecting the dynamic data (subjected to rapid price
changes, e.g., betting data during a horse race), the data should be collected in short
intervals - almost real-time - to ensure the freshest possible data is included. In doing
so, the extraction method should create as low as possible load on target web servers,
and must run continuously with minimal need for user interaction into the process.
Another requirement is the quality of the data collected. When the objective is to deal
with products and prices, and subsequently provide the recommendation to users
according to the comparison and calculations based on these numbers, it is of
importance that these numbers are most accurate. The data generated by web content
extraction must be of a universal format such as XML that can be read by any
application on any system.

Figure 1: The Architecture and operation of the system

2.2 System architecture and the process

The system (figure 1) includes processes for (1) the data discovery to identify target
Web pages, (2) the extraction of relevant data from Web pages and (3) pre-processing
of data to generate useful information for end-users.

2.2.1 Data discovery and selection

The first step is to identify and select the possible data sources that form the base for
data extraction. This involves the fetching of web pages with information relevant to
one or more queries without any specific user request in mind. The application
developed in this project is very specific in its nature - the data is only related to the
bookmaker prices for certain sports. Since the links to most pages in this application
remain static and only the content within is dynamic, the page links were manually
localised through static assignment of URL’s for the web crawler scripts to access. In

this way, we reduce the number of pages visited, and restrict the data extraction from
pages of interest; thereby eliminating the need to deal with useless data.

Another method tried was keyword search through two approaches: (1) enter a
keyword in the Google search engine to fetch pages, and (2) perform a keyword search
in a web spider engine to retrieve pages. The Google search engine can point to the
current page through a regular link, however, it has no knowledge of sporting events
added after their web crawlers snapshot of the site. Also, search engine robots tend to
skip links that are dynamic containing elements such as ‘?’, ‘&’. Web crawlers also
face problems to localize the data of interest with high accuracy. An inaccurate data,
e.g., wrong price for an event, leads to a conflict.

2.2.2 Data extraction

There are many ways for discovering and extracting data from selected target web
pages such as the use of screen scraping, Web crawling with text mining, Web queries
and regular expressions for direct fetch. The screen scraping methods extract data
from the screen buffer of computer terminals which we request (in this case a web
page), and outputs the whole page regardless of web page structure. Other tools and
methods such as Web queries and Perl scripts might not be able to grab all frames and
iframes from a Web page. However, to use the screen scraper solution, one either has
to visit pages manually or have to write scripts to interact with web page. The Web
crawlers with text mining provide full functionality of gathering of Web pages and
extracting keywords from gathered documents or point to Web pages which have the
best match for a given keyword [1]. However, Web spiders do tend to collect the
inaccurate data as well as they can not access pages with dynamic links.
 An efficient way to extract data from target pages in a generic manner is
combining the Web crawling approach to fetch pages with a “do-it-yourself”
information extraction using regular expressions. The regular expressions allow
creating specific patterns for extracting specific data. These patterns can also be reused
indefinitely reflecting changes in dynamic content. We use PERL with additional
modules Crypt::SSLeay which ensures connectivity to secure Web pages (HTTPS) and
WWW::Mechanize which extends Perl original Web page access functionality
provided in the module LWP::Simple to give programmers the Web crawler
functionality. These modules provide functionalities such as crawling to specific depths
of the Website, manipulating forms such as tick boxes and radio buttons, pushing
buttons to name some, manipulate the user-agent field etc. To mimic a real-life internet
user we can manipulate the user agent field with the WWW::Mechanize so that it
reports itself to be a well known internet browser: $mech->agent_alias ('Windows IE
6'); $mech represents the WWW::Mechanize object we are dealing with followed by
the method which sets the user agent field: agent_alias (BROWSER_NAME). As a result, a
target website will identify us as a user which browses the internet with any browser.
 While web crawlers may perform useful tasks it can affect web sites it is
applied to. It is important to define a polite access interval and how often it is
necessary to refresh the data we collect [2, 6]. Our objective is (1) to keep the average
freshness of pages in its collection as high as possible (having the out-dated pages as
few as possible), and (2) to keep the average age of pages as low as possible (having
the local copies of pages as new as possible). We follow the proportional policy
defined in [2, 6] by re-visiting more often the pages that change more frequently. The
visiting frequency is directly proportional to the (estimated) change frequency. For

regular sporting events such as tennis and baseball we would visit pages on a slightly
higher interval than horse racing in which the odds fluctuate much more comparatively.
 The simple formulas for intervals are: (I + T) for regular sports; and (T) for
horse racing, where I is the set interval time that long the application will sleep before
initiating a new command for data to be extracted. T is the time the application takes to
process collected data before going in to the sleep state. The sleep interval for regular
sports is set to 30 seconds while horse racing data extraction has no interval. A simple
test was made with two scripts A and B that read the same page, but at different
intervals 30 and 5 minutes respectively. To get a good variance in prices this was tested
prior to the start of the game when price changes are highly anticipated. Script A can
only detect two changes during this half an hour while script B detects any changes
every 5 minutes. The gap in script A is a blind spot since we cannot with 100%
accuracy say that this data represents the current real-time data.

2.2.3 Data pre-processing

Event prices: The first step is to determine the price format used by the bookmaker in
which the data originated. There exist three different odds formats; Decimal, Fractional
and American. Any data extracted where the odds is represented in either a fractional
or an American format is transformed into the decimal format.
Contestant / team names: In order to match data from different sources it is important
that data such as team or player names are similar. Different bookmakers might present
a team with different name based on their own discretion. The text string with the team
name is transformed in a way so that an occurrence at one bookmaker with a similar
occurrence at another bookmaker is compared.
Outputting data: XML (well-formed) is used as a standard for any dataset resulting
from data extraction to allow the portability of respective data sets.

3. Conclusion

Extracting data from web pages have vast different opportunities. Choosing the right
method to extract this data is crucial, especially with regards to speed and precision.
This paper discusses a method of retrieving pages with a web crawler and extracting
data with custom written regular expression patterns for a particular application. We
successfully built an intelligent software solution with the use of advanced Web
techniques, which is able to harvest and process the data from bookmakers web pages
for prices on some sporting and horse racing events.

References
1. Baeza-Yates, R. and Castillo, C. (2002). Balancing volume, quality and freshness in web crawling,

Accessed: 29.08.2005, Online: http://www.dcc.uchile.cl/~ccastill/papers/baeza02balancing.pdf
2. Cho, J. and Garcia-Molina, H. (2003). Effective page refresh policies for web crawlers. ACM Portal,
3. Hemenway, Kevin and Calishain, Tara. Spidering Hacks. Cambridge, Massachusetts: O'Reilly, 2003
4. Mieczysław K (2003) Intelligent information retrieval on the web. Intelligent exploration of the web.
5. Muslea, I, S. Minton and C.A. Knoblock (1999). Hierarchical Wrapper Induction for Semistructured

Information. In Proc. of Intl. Conf. on Autonomous Agents, 1999.
6. Pandey, R C (2003) Web crawling and measurement: Monitoring the dynamic web to respond to

continuous querying Online: ACM Portal Accessed: 04.09.2005

http://www.dcc.uchile.cl/%7Eccastill/papers/baeza02balancing.pdf
http://www.dcc.uchile.cl/~ccastill/papers/baeza02balancing.pdf
http://rose.cs.ucla.edu/%7Echo/papers/cho-tods03.pdf

