
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Truong, Dinh, Roe, Paul, & Bancroft, Peter (2005) Automated Feedback for
’Fill in the Gap’ Programming Exercises. In Young, A & Tolhurst, D (Eds.)
Proceedings of the Seventh Australasian Computing Education Confer-
ence (ACE2005), Australian Computer Society, Newcastle, NSW, pp. 117-
126.

This file was downloaded from: http://eprints.qut.edu.au/24025/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10890764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Truong,_Dinh.html
http://eprints.qut.edu.au/view/person/Roe,_Paul.html
http://eprints.qut.edu.au/view/person/Bancroft,_Peter.html
http://eprints.qut.edu.au/24025/

Automated Feedback for “Fill in the Gap” Programming Exercises

Nghi Truong, Paul Roe and Peter Bancroft
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia

nk.truong@student.qut.edu.au, {p.roe, p.bancroft}@qut.edu.au

Abstract
Timely feedback is a vital component in the learning
process. It is especially important for beginner students in
Information Technology since many have not yet formed
an effective internal model of a computer that they can
use to construct viable knowledge. Research has shown
that learning efficiency is increased if immediate
feedback is provided for students. Automatic analysis of
student programs has the potential to provide immediate
feedback for students and to assist teaching staff in the
marking process. This paper describes a “fill in the gap”
programming analysis framework which tests students’
solutions and gives feedback on their correctness, detects
logic errors and provides hints on how to fix these errors.
Currently, the framework is being used with the
Environment for Learning to Programming (ELP) system
at Queensland University of Technology (QUT);
however, the framework can be integrated into any
existing online learning environment or programming
Integrated Development Environment (IDE)..

Keywords: automated testing, Java, C#, dynamic analysis,
fill in the gap, XML, black box, white box, instant
feedback.

1 Introduction
Learning to program is a difficult process. Programming
is not a single skill but a multi-layered hierarchy of skills,
many layers of which need to be active at the same time.
Programming demands a great deal of implicit knowledge
which is difficult for lecturers to make explicit and which
cannot easily be transmitted directly to students. In order
to gain knowledge and become competent in the domain,
students need to go beyond explicit information to
construct experiential implicit knowledge (Affleck and
Smith, 1999). Programming cannot be learnt without
doing a lot of practice.

When learning to program, it is essential that students are
given the opportunity to practice in an environment where
they can receive constructive and corrective feedback
(Ben-Ari, 2001). Feedback is acknowledged as an
important factor in the learning process especially when

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference 2005, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 42.
Alison Young and Denise Tolhurst, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

available on request. However, with large class sizes, it is
difficult for teaching staff to synchronise their heavy
schedules to provide additional help when the students
need it.

According to Affleck and Smith (1999), one of the main
difficulties for beginning programmers is to access prior
knowledge and able to apply this knowledge to new
situations. Research has shown that the use of “fill-in the
gap” programming exercises is one of the best ways to
overcome the above problems (Lieberman, 1986). The
supplied skeleton code in the exercises is generally based
on known concepts; the missing code may contain new
concepts. Students need to understand the given code in
order to complete an exercise. They incorporate the
knowledge provided in the exercise skeleton with the new
knowledge to complete the exercise providing a new
solution. Thus, “fill-in the gap” programming exercises
help to close the gap between existing knowledge and
new knowledge (Van Merrienboer and Paas, 1990).
Furthermore, gap filling exercises reduce the complexity
of writing programs. The majority of novice programmers
have difficulty in starting their programs because they are
not used to thinking in an abstract way; they cannot
convert the text of a question into pseudo-code or code. If
a partial solution to a programming problem is provided
for the students, they get a better understanding of the
exercise requirements and have a better chance of
supplying the correct answer (Norcio, 1980). According
to the chunking hypothesis, the first element of a chunk
provides the key to the contents of the entire unit (Miller,
1956). Thus the fill in the gap approach builds up the
students’ confidence, improves motivation and engages
them more actively in the learning process.

The contribution of this paper is to describe a dynamic
component of a program analysis framework intended for
beginning students’ Java and C# programs. Analysing
“fill-in the gap” exercises is a novel aspect of the
framework which makes it distinctive from previous
related work. The framework can be used for both
tutoring and semi-automatic marking purposes. It carries
out both black box and white box tests to provide
feedback about the correctness of students’ solutions as
well as identifying logic and runtime errors and their
possible causes. The key characteristics of the dynamic
analysis framework are its extensibility and
configurability. Although the framework can be used as a
separate tool, it is currently integrated into the ELP
system which provides web based “fill in the gap”
exercises.

The framework affords benefits to both students and
teaching staff. While it is not able to completely replace

instructors or tutors, it helps students to learn in an
environment where formative feedback and correct
solutions can be obtained immediately. Students are able
to access as much tuition as they need at their own pace;
they are not limited to standard working hours or a
particular location by having to come to university to
consult teaching staff about their tutorial work. Students’
programs are assessed by executing them against a set of
test inputs, comparing the outputs with the expected
outputs and giving feedback. With the analysed result
provided by the framework, instructors only need to add
comments which focus on specific aspects of the
student’s work; thus the marking task is less time
consuming and laborious.

This paper is organized into seven sections. In Section 2,
the paper presents an overview of the ELP system and the
program analysis framework. In the following sections, it
describes the design, current implementation status and
limitations of the dynamic analysis framework with
reference to some concrete examples. Related work is
mentioned in Section 6. Future extensions and
improvements are briefly described in Section 7.

2 Background: The ELP
The ELP is a web-based programming environment. It
currently supports Java, C# and C programming
exercises. Students are presented with program template
exercises as web pages. They complete an exercise and
submit their answer to the server for compilation. The
executable format of the exercise is downloaded and run
on the student’s own machine. With Java programming
exercises, the resulting .class file of the exercise is packed
together with other necessary libraries in a Java Archive
(JAR) file; .exe files are used for C and C# exercises.
Figure 1 illustrates the integration between the ELP
system and the program analysis framework.

Figure 1: The ELP and the program analysis framework
integration

The ELP provides “fill-in the gap” exercises to help
beginning programmers to successfully write their

programs at an early stage of the learning process. Gaps
in the ELP system can be as small as an expression or as
big as a complete class. An example of a “fill-in the gap”
exercise is shown in Figure 2 in which the gap code is
shaded; only this gap code can be edited.

Figure 2: An example of a fill in the gap exercise

The program analysis framework consists of two separate
components: static analysis and dynamic analysis. Static
analysis is the process of analysing source code without
executing it whereas dynamic analysis involves executing
a student’s solution through a set of test data. The two
analyses are orthogonal to each other to provide more
helpful feedback for students and teaching staff. The
static analysis of the framework is used to check on the
quality of students’ solutions while the dynamic analysis
is used to test the correctness of their solutions. The static
analysis can be carried out both for gaps and whole
programming exercises. Neither of these analyses can be
used to diagnose a program which has syntax errors;
programs must compile first.

The key features of the programming analysis framework
are its configurability and extensibility. Analyses are
provided as a set of functions so that instructors can
specify which analyses should be carried out for each gap
in an exercise. Additional analyses can be easily plugged-
in at runtime. Unlike other systems, the framework
provides both positive and negative feedback to students
as we believe that positive feedback plays an important
role in engaging students in the learning process.

Figure 3 gives an overview of the program analysis
framework. The main focus of this paper is to describe in
detail the design and implementation of the dynamic
analysis component of the framework. The static analysis
framework is discussed in (Truong et al., 2004).

3 The Dynamic Analysis Design
This section first describes how students can perform
dynamic testing of their programs on the ELP system. We
then consider the different types of beginning students
programming exercises which played a major role in
designing the framework. The design of both black box
and white box tests are described.

Compiler

feedback

 ELP Web Server

Web based
programming

exercise
Exercise
Database

Static
Analysis

Dynamic
Analysis

Program analysis framework

import TerminalIO.*;

public class DisplayName {
 KeyboardReader reader = new
 KeyboardReader();
 ScreenWriter writer = new ScreenWriter();
 public void run() {
 writer.println("Hi, my name is Mary");
 }
 public static void main (String [] args)
 {
 DisplayName tpo = new DisplayName();
 tpo.run();
 }
}

Figure 3: An overview of the program analysis
framework

3.1 Overview
When a Java ELP exercise is completed and compiled,
students submit the exercise to the ELP web server for
testing. The resulting .class file of the exercise is
packaged together with test drivers, test configuration and
test inputs in a JAR file and subsequently downloaded
and run on the student’s own machine. When all tests
have successfully run, outputs are sent back to the server
for comparison with those generated by executing the
exercise's model solution with the same set of inputs.

The framework incorporates black box and white box
tests. Black box testing is the process of testing a program
against its specification with testers having no knowledge
of the implementation of the program. This knowledge is
however required in white box testing. Black box testing
is carried out by executing students’ programs through a
set of test data; gap outputs are captured and sent back to
the server to check for correctness. White box testing is
carried out on a student's solution, one gap at a time.
Outputs of each gap are compared with the outputs
produced by the corresponding gap solution. The
feedback to the student indicates any lack of functionality
in their solution, whether they have obtained the correct
results and logic errors and their possible causes. More
importantly, the framework also provides hints on how to
fix those problems.

3.2 Beginning Students’ Programming
Exercises

To ensure that the framework is useful for students, we
collected student programming exercises in three
introductory subjects in four consecutive semesters.
These exercises can be grouped into three categories:
console, object oriented and Graphical User Interface
(GUI) exercises. These categories and their subtypes are
shown in Table 1.

As mentioned earlier, analysing “fill in the gap” exercises
is the novel aspect of the framework and therefore it is
crucial for us to have an understanding of all possible gap
types. Analysis of the collected exercises revealed five
major gap types which vary from as small as an
expression to as big as multiple methods. Gap types

include expression gaps, declaration gaps, statement gaps,
block of statements gaps and gaps which are a complete
method.

Exercise Categories

Console
• only modify the format of the output.
• only perform arithmetic or string literal

operations and display the result.
• have loop and conditional statements.
• make use of arrays.
• perform file input and output.
Object Oriented
• concerned with access modifiers
• with user defined types
Graphical User Interface
• a user interface is provided.
• a user interface is not provided.

Table 1: Exercise types used in introductory
programming courses

3.3 Black Box Testing
The black box testing of the dynamic analysis framework
is designed to check if a student‘s program behaves
correctly, as specified in the exercise requirements. It is
carried out by executing the student’s completed program
and the model solution with the same test inputs. The
outputs are then compared with each other. As skeleton
code is provided for all fill in the gap exercises, it is only
necessary to compare the output produced by the gaps.
Special print statements are inserted at the start and
end of each gap to mark the outputs so that the individual
gap outputs can be extracted and analysed separately. The
feedback to the student indicates which tests do not yield
a correct result and suggests possible causes. Differences
in formatting of the student program outputs and the
model solution outputs are also reported. Figure 4 gives
an overview of black box testing.

According to Jackson (1991), complete automation of the
program grading process needs to have five important
properties. Firstly, there must be a way to distinguish
between important items that are relevant to the program
correctness and those less important. Secondly, the
system should be able to scope insignificant differences
in style. Thirdly, the system should perform range checks
for numerical items. Fourthly, the system should be able
to cope with important items in the program output being
in a different in order. Finally, the correctness of a
program should be independent of its output format.

To satisfy the above properties, a set of filters and
normalizers have been designed to process the outputs
before the comparison process. These filters and
normalizers make use of dynamic class loading so that
additional filters and normalizers can be added in the
future; thus the framework is extensible. Filters can be
used to extract all the important keywords or values that
are related to correctness and insert them into a set data
structure. The student set and the model solution set may
then be matched, taking order into account or not.

Model gap
solution

Inputs

Black
box test

White
box test

SE
Metrics

Structural
similarity

Feedback

Dynamic Analysis

Analysis
configuration

Student gap
solution

Static Analysis

Normalizers allow the framework to compare the outputs
of a student’s solution with those of the model solutions
while ignoring insignificant differences such as spaces or
tabs. By doing that the framework has provided a
mechanism to distinguish between important items that
are relevant to the correctness of the solution and those
that are irrelevant.

Figure 4: An overview of black box test

For example, the comparison process for exercises which
involve arithmetic operations and displaying the output
consists of two analysis steps: checking the results of the
calculations and examining the output message. In order
to first evaluate the correctness of the arithmetic, the
student’s program outputs and the model solution outputs
are filtered against a set of rules to extract all the key
values of the calculations. Then the two resulting sets of
values are sent to the matcher to compare. Checking the
format of the output can be as simple as exact match to as
complex as normalizing space, filtering keywords and
matching those keywords with a set of expected
keywords.

The process of comparing test output is fully configurable
by teaching staff which allows various correctness levels
of a programming problem rather than just right or
wrong. This also means that the framework is able to
provide more detailed feedback for students. The
feedback identifies which particular sections students
have done correctly and which are incorrect so that they
can easily locate errors in their program. Preston and
Shackelford’s (1999) research reveals a major reason for
the lack of success for most existing automated grading
systems - the lack of flexibility. Teaching staff are not
able to adjust the marking criteria and use their own
feedback which may better focus on a student’s work
rather than on the work being assessed. Making the

framework fully configurable gives teaching staff a great
level of control over the feedback and the assessment
process.

In order to enable black box testing, lecturers need to
provide a good test plan which consists of test classes and
test cases. They also need to configure filter, normalizer
and matching rules in the comparison process.
Additionally, they can set customized feedback for each
test class. Test classes are normally used to partition the
input domain of a program so that the programmer can
assume that a particular test of a representative value of
the class is equivalent to a test of any other values in the
same class. Test cases of a test class are representative
input values for that particular class. A good test case is
one which has a high probability of making a faulty
program fail. The main benefit of providing a good test
plan is that these test cases can be re-used in the white
box testing. Furthermore, it enables the testing process to
be carried out in an adaptive manner. For example, if a
student’s program fails in a test class, certain white box
tests will be carried out.

3.4 White Box Testing
The main reasons for white box testing are to discover
any possible logic errors which are not revealed in black
box testing or to detect gaps that have logic errors which
lead to the incorrect outputs in black box testing. White
box testing is carried out by inserting a student’s gap
solutions, one at a time into a test harness program. The
outputs of each gap are compared with the outputs
produced by the gap solution. This method allows the
framework to be able to indicate which gaps are
responsible for failed black box tests. This will provide
beginner programmers with better guidance in debugging
their programs.

In white box testing, gaps are considered as units of a
program which cannot stand alone. Each unit is inserted
into a test harness program so that it can be run. A test
harness is a program skeleton which is used to test a unit
that is dependent on it. The framework supports two
different types of test harness program: a default test
harness which is the exercise model solution and a
customized one which is provided by teaching staff. If the
default test harness program is used, white box testing
makes use of a regression testing technique in which the
student’s gap solution is considered as a new change for
the program. Unit testing is adopted when a customized
test harness program is preferred.

White box testing requires that each gap be wrapped in
adaptor code to provide more information. We identified
two types of gap behaviour: gaps in which the state of
variables are changed and gaps which only modify the
output of the program. In order to accommodate these gap
types, the framework provides three different types of
adapter code each providing a mechanism to carry out
white box testing. These mechanisms include: variable
state dumps, program assertions and print. Variable state
dumps and program assertions can be used to check the
state of variables before and after gap execution while the
print method is used to check those programs whose

Feedback

Normalized form
of model

solution output

Normalized form
of student

program output

Normalizer

Compare

Normalizer

Gap outputs

Gap outputs

Student program output

Student program Model solution

Gap outputs

Gap outputs

Model solution output

Filter Filter

Test driver program

Test input

gaps only modify the output. The state dump mechanism
provides a set of functions to record the type and value of
a variable at runtime. The program assertion mechanism
can be used to test certain conditions that need to be met
either before or after gap execution. The print
mechanism provides markers to distinguish the output
produced by each gap from the program outputs. The gap
outputs are then extracted and analysed for changes.

Figure 5 illustrates steps in white box testing when the
default test harness program is used. Each gap solution
with its adaptor code (which is provided by the lecturer)
is independently inserted into the exercise model solution
to produce a mixed program. The mixed program is then
compiled and executed as is the exercise model solution,
using the same set of inputs. The output of the student’s
tested gap is compared with the outputs of the model
solution gap to provide feedback to the student. The
feedback incorporates the lecturer’s customized feedback
and the test results. This will report on the differences in
the states of variables in the student’s solution and gap
model solution for gaps that have variables changing state
at runtime. For gaps which only modify the program
output, the feedback advises students on how similar their
gap outputs are to the gap model solution outputs.

Figure 5: An overview of white box testing

White box testing is slightly different when a customized
test harness program is used. Instead of producing the
mixed program, two test harness programs are generated:
one contains the student’s gap solution and the other
contains the gap model solution. These test harness
programs are then run by the test driver.

The strength of this approach is that it provides the ability
to isolate bugs in a particular gap. Unfortunately, it does
not work well if students declare their own identifiers. In
this case, gaps and code must be tested together.

To enable white box testing, lecturers need to provide
adaptor code for variable state dumps, program assertions
or prints. They also need to set up the matching rules for
the comparison process. A majority of test inputs are re-
used from black box testing; however additional test
inputs can be applied. Optionally, lecturers can provide
customized test harness programs when the default is not
sufficient. Customized feedback can be applied to white
box testing as well.

4 Implementation
This section reports on the technologies and techniques
which are used to implement the framework and its
current status.

4.1 The Client-Server Communication
Mechanism

The dynamic analysis framework uses request and
response messages to communicate between client and
server. Request and response messages are marked up
with XML and sent from client to server as a serialized
object. Figure 6 shows the communication between the
client and server of the dynamic analysis. Request and
response messages are numbered to represent the creation
sequence.

A TestRequest is sent to the server when a student
submits their work for testing. The server checks which
test configuration is set for the exercise; it packs all the
necessary test driver classes, testing inputs and the .class
file of the student’s solution into a JAR which is
subsequently sent back to the client as the payload of the
TestResponse message.

When a JAR is executed, a driver program runs each
separate black and white box test. After all tests are run,
the TCP/IP server sends the results back to the ELP web
server in an TestOutputRequest message then
terminates. The driver uses a timeout to guard against
infinite looping tests.

A GetTestFeedbackRequest is sent to the server when a
student requests the result from the ELP exercise editor
applet. The server replies with a
GetTestFeedbackResponse. If the feedback is available,
it is set as content in the response from the server which
is then displayed on the analysis tab in the applet;
otherwise a try again later message is displayed.

Mixed program

Student program
output

Model solution
output

Student solution

Feedback

Gap 2

Test driver program

Test input

Replace gap 1 with
student solution

Gap outputs

Gap outputs

Gap outputs

Adaptor code

Gap 1

Gap 1

Gap 2

Gap outputs Compare

Gap 1

Gap 2
Model solution

Figure 6: The communication between ELP and the
dynamic analysis testing framework

4.2 The Black Box Test Implementation
In this test, a student program solution and the exercise
model solution are invoked with the same test inputs. Gap
outputs from the student solution are extracted to
compare with the gap model solution outputs for
correctness. Special print statements are inserted
before and after gap code to mark the outputs produced
by the gap. However, the end gap print statement
might not always be displayed in student solution outputs
for gaps which have unexpected return, exit, break
and continue statements. In these cases, output from
the start gap marker to the next start gap marker is
compared. The delimiter is generated from the hash code
of a gap solution, gap identifier and the current system
time. This will ensure a different delimiter is produced
not only for each gap in a program but also for gaps
which have the same solutions as the constructed times
are different. These delimiters have XML-like format. An
open tag style delimiter is inserted at the beginning of the
gap and the close tag style is inserted at the end of the
gap.

A test driver program is used to invoke the student
program through a sequence of tests according to the test
plan specified by lecturers. At the beginning of each test,
the standard input of the test driver is set to read from a
text file which contains all the inputs for the test. Its
standard output is forwarded to a customized stream
which stores all students’ program outputs for that test.
This stream is sent to the TCP/IP server when the test
finishes and finally all test outputs are sent back to the
ELP web server for analysis through a HTTP connection.

When test outputs are received, individual gap outputs are
first extracted. These outputs and gap model solution
outputs are applied through a set of filter and normalizer
rules to extract all important keywords or values; these
keywords or values are then compared with each other to
provide feedback for students. The output is filtered and
normalized. The feedback states which tests do not yield

a correct result and which tests have a correct result but
have incorrect format. In order to reduce analysis time,
gap model solution outputs are filtered and normalized
when lecturers configure tests; the result is stored on the
server.

Currently there are two filters, two matchers and two
normalizers to compare students’ programs outputs with
the model solution output. Table 2 summarises all filters,
matchers and normalizers together with their sub-options.
Dynamic class loading is used for the filters, matchers
and normalizers; this makes the framework extensible as
additional filters and matchers can be easily plugged in.

Filters
• Number filter
• Keyword filter

o Case sensitive
Matchers
• Exact match
• Match disregard the order
Normalizer
• Space or tab

o Leading and trailing space
o Space or tab between words

• New line character
o Leading and trailing new line character

Table 2: Functions provided to check the result of black
box testing

The framework makes use of XML extensively. All
testing configuration and analysis feedback is stored in
XML on the server. The use of XML has brought several
advantages to the framework including: easy to
understand and manipulate, extensible, widely supported
and human readable (Mamas and Kontogiannis, 2000).

4.3 The White Box Testing Implementation
White box testing is carried out by inserting the student’s
gap solutions and gap model solutions one at a time into
test harness programs. The test harness program which
contains a student’s gap solution and the one which
contains the gap model solution are then compiled and
executed with the same set of test inputs. The student’s
gap outputs and the model gap outputs are compared.

The framework supports two types of test harness
program: the default test harness program which is the
exercise model solution and a customized one which is
provided by teaching staff. If the default test harness
program is used, multiple programs are generated with
the same class name because a Java class needs to be
stored in a file with the same name as the class name. The
.class files of these test harness programs are packed into
a JAR file in a directory structure to overcome the
existence of multiple files with the same name in the JAR
root directory and to maintain the hierarchical structure of
the exercise. Although customized test harness programs
have different names, the .class files of these programs
are also stored in a directory structure so that the
hierarchical structure of the exercise is maintained. Figure
7 gives an example of a directory structure in a JAR for

ELP
Web

Server

GetTestFeedbackReq(4)

GetTestFeedbackResp(5)

TestReq(1)

ELP exercise
editor applet

Downloaded Jar

Black & White
box tests

Driver
Process

TestResp(2)
(a JAR file)

TestOutputReq(3)
HTTP

an exercise which has two gaps in a class when there is
only one test carried out for each gap.

Figure 7: An example of the directory structure of a JAR

There are three different mechanisms which can be used
to perform white box testing: state dumps, program
assertions and print. State dumps and assertions are used
to track the change of variables in gaps while the print
approach is used to separate gap outputs from the test
harness program outputs. There will be no additional
outputs apart from the gap outputs with a customized test
harness. In contrast, where the exercise solution is used as
a test harness, test output and program output will be
mixed. For this reason, the print mechanism is used to
differentiate the outputs. The output of the gap is
extracted and compared with the output of the model gap
solution using the same matching mechanism as for black
box testing. As with black box tests, the print
statement which marks the end of gap output might be
missing when students make unexpected use of return,
exit, break and continue statements in their
solution. This problem is overcome by comparing the
output from the start gap marker to the end of the outputs.

A StateDump class is implemented to provide a set of
overloaded dump methods which dump out the state of
different variables at run time. This class also provides a
set of overloaded dumpExpression methods to dump out
the values of different expressions. Java assertions are
used in the assertion mechanism to test certain conditions
that need to be met either before or after gap execution.

States of variables in a program need to be serialized
XML string to be sent from the client to the server. This
allows the framework to perform dynamic analysis for
any programming language. There are four possible types
of variables that can appear in a program: primitive type,
reference type, array type (either primitive or user defined
object) and user defined type. Reflection is used to record
information of variables. With a user defined type, the
recorded information includes: object type, classes and
interfaces that the user defined type extends and
implements and all fields in the object’s class. Modifiers,
type and the name and value of a field are recorded.
Teaching staff can choose to set a deep serialization
which will recursively serialize a user defined class or
array of user defined class which is referenced in the
current class. Each element of an array of user defined
type is serialized.

Comparing the value of serialized objects is flexible and
extensible. Teaching staff are able to check on the type,
format and range of a numerical value. With an array type

variable, it is possible to compare only values in the array
regardless of an array elements’ position. With variables
of user defined type, teaching staff can choose to check
only fields whose values would be changed after gap
execution.

4.4 Framework Limitations
Currently the framework has two main limitations.
Firstly, it is not able to analyse GUI interface exercises.
Secondly, exercises which perform file input and output
operation can not be checked for correctness.

5 Examples
The following example shows how to configure black
box and white box tests for an exercise. The exercise has
two gaps and the states of the variables are changed after
gap two is executed thus the state dump mechanism is
used to carry out white box testing. Figure 8 shows the
exercise skeleton with the solution in the gaps.

Figure 9 gives the black box test configuration. The
exercise requires students to perform two arithmetic
operations thus the comparison process of black box
testing comprises of two steps: check the calculation
result and check the format of the output. Since all the
prompt messages in this exercise are provided by
teaching staff, only the values of the calculations for the
student program are compared with the model solution.
All the numbers from gap outputs are first filtered; these
numbers are then compared with a list of numbers
extracted from the gap solution without regard to order
but they need to be the same value and format.

In this example, the "in-line" attribute is set to true in the
white box test configuration which means the default test
harness program is used; otherwise an external program is
used. Two IntegerDivision classes are constructed, each
containing a student’s solution for gap one and gap two.
These classes are stored in a directory structure as shown
in Figure 7. The "type" attribute is used to determine
where the adaptor code is inserted in relation to the gap
by setting a value of pre, post or pre-post. In this example
the type set to post and the adaptor code is inserted at the
end of the gap. Each test is associated with one or more
sets of input and output data. One or more gaps can be set
as dependent on other gaps, which means they will need
to be successfully tested before the parent can be tested.
If one of the dependent tests fails, the parent gap is
marked as failing the white box test. This helps to locate
errors in student’s codes more accurately. An example of
a white box test configuration is shown in Figure 10.

Question:

Write a program that takes two integers as inputs and
displays their quotient and remainder. Do not assume
that the integers are entered in any particular order, but
be sure to divide the larger integer by the smaller integer.

/
IntegerDivision

G1
T1

IntegerDivision.class
G2

T1
IntegerDivision.class

Figure 8: A fill in the gap exercise with a model solution

 Figure 9: An example of a black box test configuration

Figure 10: An example of a white box test configuration

import TerminalIO.*;

public class IntegerDivision {

 KeyboardReader reader = new
 KeyboardReader();
 ScreenWriter writer = new ScreenWriter();

 public void run() {

 int value1, value2;
 int largest, smallest;
 int quotient, remainder;

 // get user inputs
 value1 = reader.readInt("Enter the
 first integer: ");
 value2 = reader.readInt("Enter the
 second integer: ");

 // find the largest and smallest
 if (value1 > value2) {
 largest = value1;
 smallest = value2;
 } else {
 largest = value2;
 smallest = value1;
 }

 // do calculations
 quotient = largest / smallest;
 remainder = largest % smallest;

 // output results
 writer.println(largest +" divided by
 " + smallest + " = " + quotient +
 " remainder " + remainder);
 }

 public static void main (String [] args)
 {
 IntegerDivision tpo = new
IntegerDivision();
 tpo.run();
 }
}

<blackbox>
<testclass id="1" name="Largest value
first">
<testcase id="1.1">
 <input filePath="inblackbox1.1.txt"/>
 <output filePath="outblackbox1.1.txt"/>
 <compare-options>
 <filters><NumberFilter/></filters>
 <matches>
 <matching
 order=”disregard”>exact</matching>
 </matches>
 </compare-options>
 <feedback/>
</testcase>
<testcase id="1.2">
 <input filePath="inblackbox1.2.txt"/>
 <output filePath="outblackbox1.2.txt"/>
 <compare-options>
 <filters><NumberFilter/></filters>
 <matches>
 <matching>exact</matching>
 </matches>
 </compare-options>
 <feedback/>
</testcase>
</testclass>
</blackbox>

<white-box>
<class name="IntegerDivision">
<gap id="1">
<dependency/>
<test name="1"
 description="Check largest and smallest">
 <driver in-line="true" type="post-code">
 <post-code><![CDATA[
 DumpState.dump(largest,"largest.so");
 DumpState.dump(smallest,"smallest.so");
]]></post-code>
 </driver>
 <testdata>
 <set id="1">
 <input filePath="inwhitebox1.1.1.txt"/>
 <output filePath="outwhitebox1.1.1.txt"/>
 </set>
 </testdata>
 <feedback/>
</test>
</gap>
<gap id=”2” declarativeGap=”no”>
<dependendents/>
<test name="1"
 description="Check the calculation">
 <driver in-line="true" type="post-code">
 <post-code><![CDATA[
 DumpState.dump(quotient,"quotient.so");
 DumpState.dump(remainder,"remainder.so");
]]></post-code>
 </driver>
 <testdata>
 <set id="1">
 <input filePath="inwhitebox1.2.1.txt"/>
 <output filePath="outwhitebox1.2.1.txt"/>
 </set>
 </testdata>
 <feedback/>
</test>
</gap>
</class>
</white-box>

Figure 11: The first gap solution and its adaptor code

The main aim of white box testing for the first gap is to
ensure the conditional statement is correct so that the
correct largest and smallest values are returned. The sates
of the largest and smallest are changed from 0 which is
the default initialized value of an integer in Java to some
values that are different from 0 after the gap is executed.
The state dump mechanism is used to record the states of
largest and smallest variables in the student’s
program in largest.so and smallest.so serialized objects
accordingly. These objects are sent back to the server for
comparison with the state of largest and smallest
variables in the model solution. Figure 11 gives an
example of the first gap solution and its adaptor code.

Similarly, the state of the quotient and remainder
variables in the student’s program are recorded in the
quotient.so and remainder.so serialized objects which
are subsequently sent back to the server to check if the
calculation is correct.

6 Related Work
Automatic grading systems are economical and effective.
This kind of system reduces the workload for instructors
and improves the student’s learning experience by
providing instant feedback. Because of these benefits,
widespread research has been carried out to develop
automatic grading systems. However, few systems
support the analysis of “fill in the gap” programming
exercises.

CourseMaster (CourseMaster, 2000), WebToTeach
(Arnow and Barshay, 1999), the automatic grader
(Morris, 2002) and datlab (MacNish, 2000) are systems
that have had an impact on the design of the matching
mechanism in this program analysis framework.

Course Master is a client server system for delivering
course based programming. It provides functions for
automatic assessment of students’ work, administration of
the resulting marks, solutions and course materials.
Student can submit their work to the server for an oracle
to check the program correctness which involves a
number of regular expressions to define the structures it
expects to find in the student program’s output. For each
set of test data, the teacher provides a set of regular
expressions to recognize required features of the output.

WebToTeach is a web based automatic homework
checking tool for computer science classes. It supports
Java, C, C++, Fortran, Ada and Pascal and incorporates
various types of exercises including writing a code
fragment, writing data for a test suit, writing a complete
single source program and writing several source files.

Students are given either a single text area or multiple
text areas on the web browser to provide the solution
depending on the exercise type. Upon submitting the
solution for the exercise, students are told immediately
whether it is correct. In the case of failure the student is
given information about the cause of failure. The outputs
from the student program are compared with a model
solution in 3 modes with additional options. The space
comparison mode has three options: exact comparison,
map sequence to a single space and strip all white space.
Exact comparison and eliminate empty lines are available
options for the line comparison mode. The student
program output can also be compared with the model
solution output in case sensitivity mode.

An automatic grading system for Java programming
assignments has been developed at Rutgers University to
be used in the introductory Computer Science course. The
system make uses of Java reflection classes, Java
inheritance mechanism and Perl regular expressions. Java
Reflection is used to find and execute a student program's
methods. The Java inheritance mechanism allows a
defective student method to be overridden with a known
good method so the evaluation can continue. Perl regular
expressions are used to check the program outputs and
source code for desirable or undesirable coding patterns.

The datlab system has been developed at University of
Western Australia for monitoring student progress in
computer science laboratories and providing timely
feedback on their work. The datlab system runs on a
server and continuously polls for requests at regular
intervals. Students submit requests to the system by
emailing the lecturer's account with datlab as the subject
line. These emails are then filtered and appended to the
requests line of the datlab system. A new thread is created
to handle each request. When the system finishes
analysing the student’s work, student records are updated
and a report is mailed back. The system makes use of
Java technologies to enable the process of running and
analysing a student’s work. These technologies include:
reflection, class loading and the runtime environment.
Code analysis relies on syntactic parsing and Java
checking mechanisms for compilation, loading and
execution. The process of comparing a student solution
against a model solution is done by the lecturer.

7 Conclusions and Future Work
In summary, the dynamic analysis framework is able to
analyse “fill in the gap” Java programming exercises. The
framework makes use of client-server communication
architecture where the execution of students’ programs
takes place on the students’ own machines while the
correctness evaluation is carried out on the server. The
framework consists of black box and white box testing.
With black box testing, a set of filters, normalizers and
matchers are provided to compare the output of students’
gap solutions with model solution output. White box
testing supports two types of test harness program: a
default test harness which is the exercise model solution
and a customized one which is provided by teaching staff.
Three different mechanisms are provided to carry out
white box tests including variable state dumps, program

if (value1 > value2) {
 largest = value1;
 smallest = value2;
} else {
 largest = value2;
 smallest = value1;
}
DumpState.dump(quotient, "largest.so");
DumpState.dump(remainder, "smallest.so");

assertions and print to accommodate two types of gap:
gaps in which the state of variables are changed and gaps
which only modify the output of the program. Variable
state dumps and program assertions can be used to check
the states of variables before and after gap execution
while the print method is used to check those programs
whose gaps only modify the output. Lecturers can set
customized feedback in both black box and white box
tests.

The framework currently has two limitations. Firstly, it is
not able to test for the correctness of exercises which
perform file input and output operations. Secondly, it is
not able to analyse GUI interface exercises.

In the future, more filters and matchers will be added. An
interface for assisting staff to configure tests for an
exercise will also developed.

Last but not least, an evaluation of the framework in a
class of 400 students has been scheduled for first
semester 2005 to coincide with the introductory
programming course at QUT. Students will be required to
complete their first five weeks tutorial exercises on the
ELP system. In order to ensure a majority of students will
participate in the evaluation, five of these tutorial
exercises are hands-in exercises which contribute ten
percent of their unit. In week five of the semester,
questionnaire forms will be distributed to obtain feedback
from students. In addition, the framework is being
continuously evaluated by teaching staff in the faculty
and consistently receives positive feedback.

8 References
Affleck, G. and Smith, T. (1999): Identifying a need for
web-based course support. Proc. Conference of the
Australasian Society for Computers in Learning in
Tertiary Education, Brisbane, Australia, Online.

Arnow, D. and Barshay, O. (1999): WebToTeach: An
Interactive Focused Programming Exercise System. Proc.
29th ASEE/IEEE Frontiers in Education Conference, San
Juan, Puerto Rico, 12a9-39, IEEE.

Ben-Ari, M. (2001): Constructivism in Computer Science
Education. Journal of Computers in Mathematics &
Science Teaching 20(1):24-73.

CourseMaster, School of Computer Science & IT, the
University of Nottingham, UK.
http://www.cs.nott.ac.uk/CourseMaster/cm_com/index.ht
ml. Accessed 29 Dec 2002.

Jackson, D. (1991): Using software tools to automate the
assessment of student programs. Journal of Computers &
Education 17(2):133-143.

Lieberman, H. (1986): An Example Based Environment
for beginning programmers. Journal of Instructional
Science 14(3):277-292.

MacNish, C. (2000): Java Facilities for Automating
Analysis, Feedback and Assessment of Laboratory Work.
Journal of Computer Science Education 10(2):147-163.

Mamas, E. and Kontogiannis, K. (2000): Towards
Portable Source Code Representations Using XML. Proc.

Seventh Working Conference on Reverse Engineering,
Brisbane, Australia, 172-182, IEEE Press.

Miller, G. A. (1956): The Magical Number Seven, Plus or
Minus Two: Some Limits on our Capacity for Processing
Information. Psychological Review 63:81-97.

Morris, D. S. (2002): Automatically grading Java
programming assignments via reflection, inheritance and
regular expressions. Proc. 32nd ASEE/IEEE Frontiers in
Education Conference, Boston, MA., 1: T3G-22, IEEE.

Norcio, A. F. (1980): Human Memory Processes for
Comprehending Computer Programs. Proc. IEEE
Systems, Man and Cybernetics Society, Cambridge,
Massachusetts, 974-977, IEEE.

Preston, J. A. and Shackelford, R. (1999): Improving on-
line assessment: an investigation of existing marking
methodologies. Proc. The 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and Technology in
Computer Science Education, Cracow, Poland, 29-32,
ACM Press.

Truong, N., Roe, P. and Bancroft, P. (2004): Static
Analysis of Students' Java Programs. Proc. Sixth
Australasian Computing Education Conference, Dunedin,
New Zealand, 30: 317-325, Australian Computer Society
Inc.

Van Merrienboer, J. J. G. and Paas, F. G. W. C. (1990):
Automation and Schema Acquisition in Learning
Elementary Computer Programming: Implications for the
Design of Practice. Journal of Computers in Human
Behavior 6(3): 273-289.

