
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Tritilanunt, Suratose, Boyd, Colin, Foo, Ernest, & Gonzalez Nieto, Juan
(2006) Using coloured petri nets to simulate DoS-resistant protocols. In
Jensen, K (Ed.) CPN’06 7th Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, 24 - 26 October 2006, Denmark,
Aarhus.

This file was downloaded from: http://eprints.qut.edu.au/23982/

c© Copyright 2006 please consult authors

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10890721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Tritilanunt,_Suratose.html
http://eprints.qut.edu.au/view/person/Boyd,_Colin.html
http://eprints.qut.edu.au/view/person/Foo,_Ernest.html
http://eprints.qut.edu.au/view/person/Gonzalez_Nieto,_Juan.html
http://eprints.qut.edu.au/23982/


Using Coloured Petri Nets to Simulate DoS-resistant protocols

Suratose Tritilanunt, Colin Boyd, Ernest Foo, and Juan Manuel González Nieto
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Abstract. In this work, we examine unbalanced computation between an initiator and a responder
that lead to resource exhaustion (one type of denial-of-service, DoS) attacks in key exchange protocols.
We construct two models; one is the well-known Internet protocol named Secure Socket Layer (SSL)
protocol, and the other one is the Host Identity Protocol (HIP) which has built-in DoS-resistant mecha-
nisms. To examine such protocols, we develop a formal framework based on Timed Coloured Petri Nets
(Timed CPNs) and use a simulation approach provided in CPN Tools to achieve a formal analysis. By
adopting the key idea of Meadows’ cost-based framework and refining the definition of operational costs
during the protocol execution, our simulation provides an accurate cost estimate of protocol execution
comparing among those principals, as well as the percentage of successful connections from legitimate
users under four different strategies of DoS attack.

1 Introduction

Denial-of-service (DoS) attacks continue to be one of the most troublesome security threats to communication
networks. DoS attacks can be classified roughly into two types: flooding attacks and logical attacks. During
a flooding attack the adversary simply keeps sending messages to the victim so that the victim is unable to
process any genuine requests for service. Logical attacks try to be more clever and aim to exhaust either the
computational or memory resources of the victim by exploiting some feature of the communications protocol.

A general method to defend against logical DoS attacks is to authenticate connections before committing
significant resources to servicing the connection. In practice, though, secure authentication is a computa-
tionally expensive process and so the effort expended in authenticating has the potential to be turned into a
DoS attack in itself. Recognising this dilemma, protocol designers in the 1990s advocated a simplified form of
authentication to be used before full-fledged cryptographic authentication takes place. A canonical example
of this is the use of cookies first suggested by Karn and Simpson [18]. This mechanism can be recognised
as the principle of gradual authentication [25] in which the server uses multiple authentication mechanisms,
each successive one being more computationally expensive. Such methods have been incorporated into several
protocols for authentication and key exchange, most notably into the widely deployed IPSec protocols [1].

Design of key exchange protocols has long been considered a delicate problem, but the analysis becomes
even harder when DoS prevention is an additional requirement. Meadows [19] introduced a systematic frame-
work to analyse DoS resistance by computing and comparing the cost incurred by both parties at each step
in a (key exchange) protocol. Meadows analysed the STS protocol (a protocol without special DoS resistance
properties) and later Smith et al. [24] used Meadows’ framework to analyse the JFK protocol [1] in order to
demonstrate its DoS prevention capabilities.

Surprisingly, there has been little interest in the research community in applying Meadows’ framework to
different protocols. Moreover, the limited application so far has suffered from two significant shortcomings
which make the results of restricted value.

1. The cost analysis has only taken into account honest runs of the protocol. In principle, the adversary
(typically the client in a client-server protocol) can deviate arbitrarily from the protocol in order to
achieve an attack. By only taking into account honest behaviour it is quite likely the logical attacks will
be missed. While Meadows certainly recognised this fact, no research has yet examined the effectiveness
of the framework in detecting such potential attacks.



2. Meadows used only a coarse measure of computational cost, with three levels denoted as cheap, medium
or expensive. In practice it can be quite difficult to classify and compare operations in such a limited
way. For example, in Meadows’ classification digital signature generation and verification are counted
as of equal cost, yet in practice an RSA signature generation may take 2 or 3 order of magnitude more
effort than RSA signature verification.

Motivated by the above two limitations, this paper provides a refinement of Meadows’ cost-based frame-
work. For our sample protocols we use the Host Identity Protocol (HIP) [21], which has built-in DoS re-
sistance, and compare it with the well-known Secure Socket Layer (SSL) protocol. To develop a formal
framework of such protocols, we use CPN Tools [27] which is a general-purpose verification tool for model-
ing and analysing Coloured Petri Nets. Using CPNs as our formalism, we provide a formal specification of
two protocols to allow automatic searching of adversary and victim cost under different adversarial attack
strategies. Moreover, we set up another experiment for examining the tolerance of HIP under such attacks.

Comparing to the previous work on the analysis of HIP by Beal and Shepard [6] that employs a math-
ematical approach, simulation approaches are also valued in the research community since they have been
applied not only for exploring vulnerabilities in cryptographic protocols, but also guaranteeing security
services of such protocols. Using simulation approaches has several benefits over mathematical analysis; for
instance, simulation provides flexibility to the developer to adjust parameters for evaluating the system. Sim-
ulation also provides visualization to users who can see and learn what is happening during the simulation
of cryptographic protocols to gain more understanding for evaluating the correctness of those protocols.

The main contributions of this paper are:

– a refinement of Meadows’ cost-based framework to more accurately represent the cost of typical crypto-
graphic algorithms;

– the first formal specification and automatic analysis of Meadows’ framework;
– a cost-based model of SSL;
– a cost-based model of HIP protocol in Timed Coloured Petri Nets (Timed CP-Nets);
– simulation and analysis of HIP under normal conditions and under four scenarios of DoS attacks.

2 Background and Previous Work

The purposes of Section 2 are to provide the background on the Meadows’s cost-based framework, SSL and
HIP protocol, as well as the previous work on the analysis of security protocols using Coloured Petri Nets.

2.1 Meadows’s Cost-Based Framework

Meadows framework [19] works by comparing cost to the attacker and cost to the defender, defined using a
cost set. To model the protocol framework, we need to calculate the cost of the sequence of protocol actions,
comparing between the attacker and the defender. Once the actions of each protocol principal are classified
into the computational costs cheap, medium, or expensive, all actions of the protocol run can be compared.
The protocol is secure against DoS attacks, if the final cost is great enough from the point of view of the
attacker in comparison with the cost of engaging in the events up to an accepted action from the point of
view of the defender. Otherwise, we conclude that the protocol is insecure against DoS attacks.

Considering the characteristic of DoS attacks, there are two possible ways mentioned by Meadows [19]
to cause the defender to waste resources. First, the defender may process a bogus instance of a message
inserted by the attacker into a protocol. The cost to an attacker is the cost of creating and inserting the
bogus message, while the cost to the defender is the cost of processing the bogus message until an attack is
detected. Second, the defender participates in a protocol execution with bogus instances of the attacker. The
cost of this situation is equivalent to the cost of running the entire protocol until the defender can detect
the attack or the attack stops.

At this stage, we limit the abilities of an attacker during the protocol execution to take one of a small
number of possible actions when the protocol specifies that a message should be sent: the attacker either



continues normally with the protocol or partially completes the protocol. Intuitively this is the most obvious
ways for an adversary to make the defender use unwanted resources. In our examples, the adversary sends
messages at two points in the protocol; either attack the first message by flooding a large number of random
messages to overwhelm the resources of the responder, or attack its second message by faking its packets to
waste the responder resources for verifying it.

2.2 Protocol Notation

For the protocols presented in this section, we focus only important elements for the simplification of the
protocol description. Any data such as header information that are not relevant to the discussion of DoS
resistance are omitted. For complete descriptions of the protocols, the reader is referred to the full protocol
specifications. The protocol notation used for the remainder of this section are presented in Table 1.

Table 1. Protocol Notation

Messages Notation

I The principal who initiates the request message known as Initiator or Client

R The principal who responds to the request message known as Responder or Server

H(M) Unkeyed cryptographic hash of the message M

HK(·)(M) Keyed cryptographic hash of the message M , with key K(·)

EK(·){M} Symmetric encryption of message M with the secret key K(·)

DK(·){M} Symmetric decryption of message M with the secret key K(·)

PKR[M ] Asymmetric encryption of the message M by the public key PKR belonging to R

SKR[M ] Asymmetric decryption of the message M by the private key SKR belonging to R

SigI(·) Digital signature signed by the private key SKI belonging to the principal I

SigR(·) Digital signature signed by the private key SKR belonging to the principal R

LSB(t, k) Returns the k least significant bits of an output by taking a string t as input

0k A string consisting of k zero bits

p, q Large prime numbers

i, r A Diffie-Hellman secret parameter of I and R, respectively

g Group generator of order q used in Diffie-Hellman key exchange and key agreement protocol

s A periodically changing secret only known to the responder R

Ks A session key generated by key establishment protocol used to secure ongoing communications

HITI , HITR The host identity tag of I and R created by taking a hash over the host identity HII and HIR

CertR A certificate which contains a responder’s identity and a public key used for authentication

2.3 Secure Socket Layer (SSL)

Secure Sockets Layer (SSL) is a well-known Internet protocol developed by Netscape [12] for establishing and
transmitting secure data over the Internet. In order to establish a secure communication, an initiator and a
responder have to negotiate the cryptographic algorithms and optionally authenticate each other by using
public-key cryptosystems. SSL uses public-key encryption techniques not only for the mutual authentication,
but also for the protection of a session key generated during the SSL protocol handshake. This session key is a
short-term symmetrical key generated by an initiator and temporarily used during the secure communication.
The description of the SSL handshake is illustrated in Figure 1.



I R

1) create ClientHello Client Hello−−−−−−−−−−→ create CertR

CertR, gr , choose r ∈R [1 , 2 , . . . , q − 2 ]

2) verify CertR
ServerHelloDone←−−−−−−−−−− compute g i

choose i ∈R [1 , 2 , . . . , q − 2 ]

compute g i

compute Ks = DH (g ir )

3) encrypt PKR[Ks ]
PKR[Ks ]−−−−−−−−−−→ decrypt SKR[Ks ]

4) verify HMAC HMAC←−−−−−−−−−− compute HMAC = HKs (Data)

Fig. 1. SSL Protocol: DH Key Agreement without Client Authentication Mode is used

To provide an explanation of the SSL handshake, we shall use the Diffie-Hellman key agreement without
client authentication mode as an example because it is the most simplest mode (most general users do not
have a certificate). At the beginning of the SSL handshake, the initiator sends a Client Hello message to
the responder for establishing a secure connection. Following, the responder responds with its certificate
(CertR), and Diffie-Hellman key agreement parameter. Now the responder will send the ServerHelloDone
message indicating that the responder completes the hello-message phase. The server will then wait for the
initiator response.

In order to reply the responder, the initiator has to send the client key exchange message which contains
a session key (Ks). This session key is generated by using Diffie-Hellman key agreement protocol, DH(gir).
In order to send this key to the responder in a secure manner, the initiator uses the responder’s public
key (PKR) provided in the responder’s certificate to encrypt it; PKR[Ks ]. At this point, a third message is
completely done by the initiator.

To verify the initiator’s message, the responder starts to decrypt the message; SKR[Ks ], by using a private
key SKR to obtain a session key Ks. If this message is valid, the responder generates hashed-MAC (HMAC)
by using Ks, and sends it to the initiator for performing a key confirmation. At this point, the SSL handshake
is complete and the initiator and responder begin to exchange secure information.

2.4 Host Identity Protocol (HIP)

The host identity protocol (HIP) has been developed by Moskowitz [21]. Later, Aura et al. [3] found some
vulnerabilities and proposed guidelines to strengthen the security of HIP. The base exchange of HIP is
illustrated in Figure 2.

HIP adopts a proof-of-work scheme proposed by Jakobsson and Juels [15] for countering resource ex-
haustion attacks. In a proof-of-work, HIP extends the concept of a client puzzle, first proposed by Juels and
Brainard [17], and later implemented by Aura et al. [5] for protecting the responder against DoS attacks in
authentication protocols. Moreover, HIP allows the additional feature of the client puzzle that helps the re-
sponder to delay state creation [4] until the checking of the second incoming message and the authentication
has been done in order to prevent the responder against resource exhaustion attack.

2.5 Coloured Petri Nets

Coloured Petri Nets (CPNs) [9,16] are one type of high-level nets based on the concept of Petri Nets developed
back in 1962 by Petri [23]. CPNs is a state and action oriented model which consists of places, transitions,
and arcs.
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Precomputed parameters

choose r, s ∈R [1, 2, . . . , q − 2]

sign sigR1 = SigR(gr ,HITR)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1) create HITI ,HITR
HITI ,HITR−−−−−−−−−−→ check HITR

compute C = LSB(H (s,HITI ,HITR), 64 )

2) verify sigR1 HITI ,HITR, choose k ∈ [0, 1, . . . , 40] → puzzle = (C , k)

Find J such that
puzzle, gr , sigR1←−−−−−−−−−−

LSB(H (C ,HITI ,HITR, J ), k) = 0 k

choose i ∈R [1 , 2 , . . . , q − 2 ]

compute Ke = H (HITI ,HITR, g ir , 01 )

encrypt E1 = EKe{HII }
sign sigI = SigI (HITI ,HITR, J , g i ,E1 )

3) HITI ,HITR, compute C = LSB(H (s,HITI ,HITR), 64 )

J , g i ,E1 , sigI−−−−−−−−−−→ check LSB(H (C ,HITI ,HITR, J ), k)
?
= 0 k

compute Ke = H (HITI ,HITR, g ir , 01 )

decrypt E1

verify sigI

compute Ks = H (HITI ,HITR, g ir , 02 )

compute HMAC = HKs (HITI ,HITR)

4) verify sigR2 HITI ,HITR, sign sigR2 = SigR(HITI ,HITR,HMAC )

compute Ks = H (HITI ,HITR, g ir , 02 )
HMAC , sigR2←−−−−−−−−−−

check HKs (HITI ,HITR)
?
= HMAC

Fig. 2. HIP Protocol [21]

Over many years, cryptographic and security protocols have been modeled and verified using Coloured
Petri Nets [11, 14, 20, 22]. Neih and Tavares [22] implemented models of cryptographic protocols in the
form of Petri Nets. In order to explore vulnerabilities of such protocols, they allowed an implicit adversary
with limited abilities to launch attacks and then examined the protocol using exhaustive forward execution
technique. Doyle [11] developed a model of three-pass mutual authentication and adopted the forward state-
space searching technique from Neih and Tavares. In addition to Neih and Tavares’s model, Doyle allowed
more sophisticated abilities of an adversary; multiple iteration and parallel session attacks. Han [14] has
adopted CPNs specification for constructing a reachability graph to insecure states and examining the
final states in OAKLEY and the Open Network Computing Remote Procedure Call (ONC RPC) protocol.
In 2004, Al-Azzoni [2] has developed a model of Needham-Schroeder public key authentication protocol
and Tatebayashi-Matsuzaki-Neuman (TMN) key exchange protocol. In this work, Al-Azzoni has introduced
the new scheme to reduce the size of the occurrence graph for obtaining the practical result in the CPN
programming called Design/CPN tool. By examining a reachability test to insecure states, Al-Azzoni has
found several flaws of such protocols, for instance, an adversary is able to impersonate a legitimate user
during the protocol run without knowledge from such legitimate user.

To the best of our knowledge, there is no implementation of CPNs focusing on an exploration of vulner-
abilities based on unbalanced computation that might lead to DoS attacks in key exchange protocols.



3 Modeling Cryptographic Protocols with Coloured Petri Nets

We briefly explain the description of a Coloured Petri Nets representation for constructing CPN models. The
abilities of an individual adversary used in the simulation are also provided in this section.

3.1 CPNs Objects Description

Prior to demonstrate the model of cryptographic protocols, we shall describe the concept of fundamental
elements provided in the CPN Tools for constructing our cryptographic protocols. To implement a model
relating with the concept of states and actions as illustrated in Figure 3, some important constructions of
Timed CPNs including:

Fig. 3. An Example of CPNs Constructions

1. Place: is drawn as ellipse or circle which is represented states of a system. Each place has a colour set
which determines the type of data that the place can carry, i.e. type of users, type of messages.

2. Type: is used to specify the colour set of a token in each place. For example, a User colour set in our
protocol consists of an honest client (hc), four types of adversary (ad1-4), and a responder/server (sv).

3. Marking : is a state of a Timed CPNs. It consists of a number of tokens positioned on the individual
places. The marking of a place can be a multi-set of token values, for example, incoming requested
packets from multiple honest clients and different types of adversaries arrive to the same server.

4. Transition: represents actions of a system, which is drawn as rectangles. A transition is connected with
input places by incoming arcs and output places by outgoing arcs. Some examples of transition in our
model are hash function and encryption algorithms.

5. Arc: is used to connect transitions and places. Each arc contains a weight value called an arc expression
which represents the number of removed token from input places traveling to output places.

6. Arc Expression: determines the number of tokens which are removed from the input place and added to
the output place during occurrences of transitions. This action represents a dynamic behaviour which
can be seen as the traversing of messages in the cryptographic protocols.

3.2 Adversary’s Ability

In the simulation, our goal is to explore unbalanced computational vulnerabilities in the DoS-resistant
protocols. As a result, not only the honest client (hc) who initiate the legitimate traffic, and the responder
to participate in the protocol execution, but also we allow four types of adversary who have the similar
goal to deny the service of the responder by overwhelming the responder’s resource. The major different of
individual adversary is:



Type 1 adversary (ad1) computes a valid first message (may be pre-computed in practice), and then takes
no further action in the protocol. This type of adversary is used in the protocol simulation for both SSL
and HIP.

Type 2 adversary (ad2) completes the protocol normally until the third message is sent and takes no
further action after this. Type 2 adversary is used only in HIP in order for investigating the effect of the
client puzzle. The computations of this adversary include searching a correct client puzzle solution J ,
generating a session key Ke and encrypting a public key PKI , and finally computing a digital signature
SigI .

Type 3 adversary (ad3) completes the protocol step one and two with the exception that the adversary
does not verify the responder signature sigR1. The adversary searches for a correct client puzzle solution
J but randomly chooses the remaining message elements: an encrypted element Ke{HII } and a digital
signature sigI . The adversary takes no further action in the protocol. This type of adversary is used only
in HIP because SSL does not incorporate with the client puzzle.

Type 4 adversary (ad4) attempts to flood bogus messages at the third step of the protocol by choosing
the third message randomly. This type of adversary is used for both SSL and HIP.

To clarify the description of adversaries’ ability, the major goal of an adversary type 1 is to overwhelm
the server’s storage by sending a large number of requested packets, for example, a denial-of-service attack
via ping [7] and SYN flooding attack [8], while the major goal of an adversary type 2, 3, and 4 is to force the
server to waste computational resources up to the final step of the digital signature verification and digital
signature generation which are expensive operations.

During the protocol execution, individual adversary has a specified number of requested tokens at the
begining. Moreover, our simulation allows all adversaries to re-generate new bogus messages as soon as they
receive returned packets from the responder. That means adversaries have the power to constantly floods
new bogus messages to deplete the connection queue. This kind of attack can be considered as ping flooding
attacks [7], or TCP SYN flooding and IP spoofing attacks [8]. However, allowing this unlimited ability to
adversaries might cause more advantages over honest clients and a responder because adversaries are able to
launch such attacks until the responder gets congestion and terminates itself. Therefore, those adversasies are
able to deny any services to any websites by keep flooding bogus messages with unlimited power. That might
lead to difficult task not only for the defender to protect the communication network from DoS attacks, but
also the protocol engineering to develop efficient protocols to resist against such attacks.

In order to model DoS adversaries, one possible way to limit adversaries to gain more advantages and
control the system is to specify the attack timing period which can be seen as the time limitation. This
approach has an obvious result because the percentage of throughput will be very less during the attack,
meanwhile the output becomes the normal level when there is no attack in the network. Another approach is
to specify the resource in order to perform the attacks as well as to limit the capacity such as CPU, memory,
or bandwidth of adversaries. It means that adversaries must have enough resources available for launching
attacks. The later approach seems more interesting and useful to implement than the former one because
adversaries are able to perform attacks any times as long as they have available resources.

In our model, adversaries are able to perform the number of attacks depending on the available resources
specified at the initial state during the protocol simulation. Before launching the new attacks, adversaries
have to wait for a return message (token/available resource) from the responder. In normal situation, the
number of returned messages will be equivalent to the number of messages that the responder receives. That
means adversaries still have the same level of capability to perform DoS attack as long as the responder can
serve those packets. However, once the responder is in a full-loaded condition, the responder starts to reject
next arriving messages from any principals that causes adversaries to lose their packets (tokens) from the
system. Someone may argue this is not fair to the adversary, however, if we are not limit the DoS attacks
ability, the responder is always in a full-load condition and unable to serve any legitimate users, so we are
unable to measure the toleration of any key exchange protocols for resisting with DoS attacks.



4 Cost-Based Framework

In this section, we provide a cryptographic benchmark of some specific algorithms. This could be one promis-
ing technique used to measure a CPU usage which alternatively be used to represent more specific compu-
tational costs instead of an original representation. We can use the total computations for comparing a cost
of operations between an initiator and a responder as stated by Meadows. Finally, we present examples of
the SSL and HIP cost-based framework.

4.1 Refinement of Meadows’s Framework

An obvious limitation of the original formulation of the framework is that the computational costs are not
defined precisely, but consist instead of a small number of discrete values. Indeed Meadows herself called this
a “crude and ad hoc cost function” [19]. In order to obtain a more useful cost comparison we need to obtain
a more accurate estimate of the computational and/or storage costs required to complete the protocol steps.
How to do this is not as obvious as it may seem at first.

When comparing efficiency of different cryptographic protocols is it customary to count the number
of different types of cryptographic operations. For protocols that use public key operations it is common
to ignore most operations and count only the most expensive ones, which typically are exponentiations in
different groups (traditionally written as multiplications in elliptic curve computations). However, for the
protocols that interest us this is definitely not acceptable. As mentioned above, one common technique in DoS
prevention is to demand that clients solve puzzles which require the client to engage in some computational
effort, such as to iterate a hash function a large number of times. Although one hash computation takes
minimal time in comparison with a public key operation, ignoring a large number of hash computations
could make the cost function ignore completely the DoS prevention mechanism when a puzzle is used.
Therefore we need to be able to compare directly the cost of all different kinds of cryptographic operations.

Comparing operations like hashing and exponentiations directly seems very hard to do since they are based
on completely different types of primitive instructions. Therefore we have resorted to an empirical comparison
which compares benchmark implementation on common types of processors. While we acknowledge that the
detailed results may differ considerably for different computing environments (CPU, compilers, memory, and
so on) we believe that the obtained figures are indicative of the true cost in typical environments and allow
reasonable comparisons to be made.

For our cost estimates, we use the cryptographic protocol benchmarks of Wei Dai [10]. These include
tested speed benchmarks for some of the most commonly used cryptographic algorithms using Crypto++
library1 version 5.2.1 on a Pentium 4 2.1 GHz processor under Windows XP SP 1. More cryptographic
benchmarking has been done by Gupta [13] and Tan [26] on the specific processors; however, they did not
test public-key encryption.

Table 2 only presents the results for some specific cryptographic algorithms available for negotiating
during the three-way handshake on the SSL protocol and the HIP based exchange defined in HIP specification.
The units that we use in Table 2 are kilocycles per block (note that block size varies for different algorithms).
This allows direct comparison of CPU usage and may be expected to be similar on processors with different
clock speeds. This entails conversion from the original data which uses direct time measurements.

From the table, we are able to estimate the CPU usage in cycles per block for common hash functions
and the symmetric key encryption, and cycles per operations for the 1024-bit key lengths of public-key
encryption and Diffie-Hellman key exchange algorithm. Once we get a result, we scale it down by a factor of
1000 (kilo) and apply these costs in our formal specification and analysis. Before we can export these values
into CPN Tools, we round them into an integer representation because CPN Tools limits only integers in
the simulation process.

1 available at http://www.eskimo.com/∼weidai/cryptlib.html and http://sourceforge.net/projects/

cryptopp/



Table 2. Computational Cost of CPU and Time Usage of Specific Algorithms

Hash kCycle/Block nsec/bit Symmetrical Crypto kCycle/Block nsec/bit

SHA-1 (512bits/block) 1.89 1.84 DES (64bits/block) 0.75 5.86

MD5 (512bits/block) 0.59 0.58 Blowfish (64bits/block) 0.25 1.94

HMAC/MD5 (512bits/block) 0.59 0.58 AES (128bits/block) 0.53 2.05

Public-Key Crypto kCycle/ops nsec/bit Key Exchange kCycle/ops nsec/bit

RSA Encryption/Verification 383.66 187.08 Diffie-Hellman

RSA Decryption/Signature 9985.47 4869.11 Key-Pair Generation
4605.65 2245.80

DSA Signature 4569.62 2228.23 Diffie-Hellman

DSA Verification 5239 2554.64 Key Agreement
8100.69 3950.05

4.2 Experiment 1: SSL Cost-based Model

Figure 4 shows the simulation of the SSL protocol. As SSL is modeled hierarchically for simplicity of the
model and simulation, all nodes in the top page are related to individual subpages defined by the SSL
specification. In the top page, it consists of three network segmentations; the initiator (it could be either
the honest client who performs as a protocol specification or the adversary who does not play honestly), the
responder of the protocol, and the communication network. At this state, we do not permit the adversary to
reuse the previous messages to attack the responder, i.e. when the adversary attempts to flood new bogus
messages, the adversary has to participate with the construction by computing individual messages.

Because SSL protocol is modeled in the cost-based framework, every single state has been attached with
the computational cost-place for displaying the operational effort of that state during the protocol execution.
During the protocol execution, we record all operational costs of individual transitions by adding a CPU
usage data from Table 2.

At the begining, there are three types of user who can request for services; the honest client (hc), the
adversary type one (ad1) who attempts to attack the protocol by flooding initial request messages, and
the adversary type four (ad4) who attempts to attack the protocol at the third messages, indicated in the
user token. Morever, we are able to specify the number of messages sent simultaneously from the initiator,
define the string of messages, as well as investigate the computational cost2 when the message travels to
each operation in this token.

To examine our cost-based model, the initiator starts sending a request message to the responder. At
the initial phase, there is no operation to make a cost to the message. Once the responder receives a request
message, the responder has to choose the Diffie-Hellman (DH ) parameter used for generating a session key
and returns with the certificate in the second message. At this step, the responder has to store the received
information and open the connection until the responder receives the replied message from the initiator
because SSL session is the stateful protocol. This condition subjects to a flooding attack that presents a risk

2 It is important to note that the display cost at each state shows the total operation cost of that corresponding
state only, not an accumulation cost of all state. The reason is that it is easy to compare the cost of message
construction on the initiator’s machine with the cost of protocol engagement on the responder’s machine at every
single step of the protocol as suggested by Meadows [19].
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Fig. 4. SSL Cost-based Construction

to the responder to exhaust its connection queues. The stored information during the protocol run is shown
in the store-place under the MSG2 R position in the top page (figure 4).

Upon receipt of a reply message, the initiator has to select a DH value for calculating a session key used to
protect the communication. The initiator also requires to verify the responder’s certificate and subsequently to
extracts the public key for encrypting the DH value. At this phase, the adversary might send a large number
of bogus messages to the responder to exhaust the responder’s computational resources used for verifying
the initiator’s identity if the client authentication mode is selected. If no client authentication is required by
the responder, Type 4 adversary is able to choose message 3 randomly for depleting the responder’s resource
more easily. That is because the responder has to waste its resources to decrypt message 3 which is encrypted
using the public-key cryptosystem (the RSA decryption algorithm takes more magnitude of CPU usage than
RSA verification).

In the final step, the responder obtains the session key by using its private key to decrypt the initiator’s
message. If this process is success, the responder uses this session key to produce hashed-MAC (HMAC)
and returns it to the initiator for a key confirmation. Once the initiator receives this message, the initiator
decrypts it to check the correctness of the key.



Authentication Protocol Initiator
Responder

with Client Authentication without Client Authentication

hc 5376 14978 14594

SSL ad1 0 4606 4606

ad4 0 4990 14592

Table 3. Comparison of the SSL Computational Cost with and without Client Authentication

As described above, SSL has two vulnerabilities to the DoS attacks at two states, following message 1
and message 3. The first vulnerability is demonstrated in Figure 4 at the store position (at the middle right
under the transition MSG2 R). In the second vulnerability, the analyst can see the computational cost from
Table 3 when comparing the cost of computation between the initiator and the responder. The total cost of
the responder is greater than the initiator because the responder has to participate with the RSA decryption,
which is an expensive operation, in the third phase. Meanwhile the adversary does not spend resources to
verify the second message in the second step and employs only cheap computations (because we have not
defined the cost of the adversary to reuse, spoof, insert, or interrupt the message) to send the third message
to deny services.

To sum up, as SSL is designed with message efficiency rather than resistance to DoS attacks in mind,
these situations reveal the denial-of-service threats to the responder. Recently, there are several well-known
techniques used as a denial-of-service tool to attack the communication running over the SSL protocol.
One example is a SYN flooding attack [8] in which the adversary requires only little computational effort
for constructing bogus messages to deplete the responder’s resource, while the responder requires greater
magnitude compared to the adversary for handling these messages.

4.3 Experiment 2: HIP Cost-based Model

The purpose of this simulation is to compare computational cost of the protocol execution between all
principals with some possible ranges of puzzle difficulty (k) including k = 0 (which means that no puzzle is
required), easiest value k = 1 for contrasting the difference between ad3 and ad4, intermediate values k = 10,
k = 20, and k = 40 for a hardest value as instructed by the designer. Similar to the SSL-model, we insert a
cost-place to individual transition for displaying a computational cost of every single step. A measurement
of CPU usage has been used to indicate individual steps and compared the total cost among an initiator,
individual adversary type, and a responder as a key concept of cost-based analysis specified by Meadows for
comparing cost of protocol engagement of individual principal.

In this simulation, we allow individual initiator to initiate a request token only once, while the responder
is able to flexibly adjust the puzzle difficulty within defined values. Once the simulation has arrived to the
final step, we record a total computational cost of individual user comparing to the responder on specified
ranges of k. The HIP cost-based model is demonstrated in Figure 5.

During the protocol execution, the initiator sends a request message to the responder using the host
identity tag (HIT ) which is a hash of the host identifier (HI ) used in HIP payload and to index the corre-
sponding state in the end hosts. Therefore, the initiator only employs cheap operations at the beginning step.
We assume that the computation at this step can be precomputed, so, the cost at the first operation would
be negligible. Once the responder receives the requested message, the responder requires a hash operation
and some values from the precomputation for returning to the initiator in the second step. This operation is
estimated as a cheap operation similar to the initiator.

When the initiator receives the replied message in the MSG2 I subpage, the initiator first verifies the HIT
and responder’s signature. There are three possible outputs after verification depending on the user field; 1)
if the user is hc, the token will traverse to accept-place and the cost is equal to the HIT verification plus
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signature verification, 2) if the user is ad2, ad3, and ad4, the token will also traverse to accept-place but the
cost is only zero because it performs nothing at this step, and 3) if the user is ad1, the token will traverse
to fail-place because ad1 does not take any further actions after the first message has been sent, therefore,
the computational cost of ad1 is zero for the second stage.

The operations in message three of the initiator include the brute-force search to find the puzzle solution,
and the key generation. The cost of solving a puzzle depends on the value of k including k = 0, k = 1,
k = 10, k = 20, and k = 40 in the puzzle message field. However, hc, ad2, and ad3 are required to solve the
puzzle solution. Like ad1, the ad4 does not attempt to solve the puzzle, as a result, the puzzle difficulty does
not affect to the computational cost on this type of adversary. Another important thing to note is that, the
cost of the adversary to spoof, insert, or interrupt the message has not been defined in this phase. So, we
set the cost of randomly chosen messages in the case of ad3 and ad4 to be zero.

Considering the responder’s task, when the responder receives the third-step message from the initiator,
the responder begins to validate the puzzle solution which is defined as a cheap authentication process
because the responder performs only one hash calculation. If it is invalid, the process will stop and the
responder will drop the corresponding packet from the connection queue (the system will return a resource
to the responder). Otherwise, the responder performs the decryption to obtain an initiator’s public key.



The responder finally verifies the signature by using the initiator’s public key obtained in the previous step.
The result would be either valid or invalid. After the authentication has been completed, the responder and
the initiator will perform a key confirmation and start to exchange information. Table 4 summarizes the
computational cost when the puzzle difficulty is set to k=1 or k=10 comparing between every principal and
the responder. The experimental result shows that the most effective adversary is ad3 (the greatest different
threshold between ad3 and the responder) because ad3 can force the responder to engage in the expensive
tasks, i.e. digital signature verification.

Table 4. Comparison of Computational Cost of HIP with k=1 and k=10

Authentication Initiator Responder

Protocol k=1 k=10 J ,E1,sigI valid only J valid Everything invalid

hc 19973 22017 19591 - -

ad1 0 0 - - 2

HIP ad2 14982 17026 19591 - -

ad3 4 2048 - 4998 -

ad4 0 0 - - 6

Figures 6 illustrate the computational cost of the honest client, Type 2, and Type 3 adversary, respectively.
In that comparison charts, we measure the cost of those users who involve with solving the puzzle of the
difficulty level k = 0, 1, 10, 20, 40.

Comparison between Figures 6(a) and 6(b) shows that hc and ad2 incur similar computational costs for
the same value of k chosen. This illustrates well the effectiveness of HIP in achieving its aims in resisting
DoS attacks, at least against this type of adversary. On the other hand, ad3 and ad4 spend very small
computational resources compared with the responder because both adversaries use some random message
elements. This situation would bring the responder to the risk of DoS attacks if the value of k is not chosen
properly. Figure 6(c) indicates that a value of k a little above 10 would be appropriate to ensure that ad3
uses as much computation as the responder.

5 Timed Coloured Petri Nets (Timed CPNs)

We attempt to design cryptographic protocols more realistic by adopting the concept of Timed Petri Nets
into our implementation, i.e all cryptographic processes require some amount of time calculated by using
cryptographic benchmark of Crypto++ library developed by Wei Dai [10]. In the Timed Petri Nets, the
concept of the simulated time or the model time3, which is represented by the system clock in the tool, has
been introduced. Once we have attached the system time into tokens, we can see the sequence or action
of states that tokens move as a temporal analysis, that means only tokens which hold the current time as
presenting on the clock can be moved to the next step, while the others have to wait until the system clock
reaches their value.

To develop a model on CPN Tools, HIP is constructed as a hierarchical construction for simplicity of
the model and simulation. All nodes in the top page are related to individual subpages defined by the HIP
specification [21]. HIP is modeled in the cost-based framework, so each state has the computational cost
place to display the total cost of that state during the protocol simulation. Furthermore, the concept of the
responder’s resource is used in this evaluation. Once the responder has to deal with requests, the responder

3 More formal descriptions are available on the official website of CPN Tools, http://wiki.daimi.au.dk/cpntools/
cpntools.wiki
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Fig. 6. Comparison of Computational Cost on HIP with different ranges of k

spend one resource for individual request. It means that if incoming packets beyond the responder capacity,
the responder then rejects the further incoming packets until he has either done the legitimate traffics or
detected bogus messages and removed them from the storage.

In our model, we initially configure an individual message to contain four coloured sets; 1) User who
initiates the token, 2) NUM which is the number of messages sent simultaneously from the initiator, 3)
DATA which indicates the string of messages, and 4) COST which is used to display the computational
cost when the message is traveling to each operation. Similar to other models, the display cost at each state
shows the total operation cost of that corresponding state only, not an accumulation cost of all state. The
top page of HIP Timed-CPNs is constructed as demonstrated in Figure 5.

From Figure 5, the top page consists of three major segments; 1) an initiator’s network, 2) a communica-
tion channel, and 3) a responder’s network. Each transition represents the stage of protocol execution, which
consists of four stages in each principal because HIP is a four exchanging messages protocol, corresponding
to specified subpage. In each stage, it consists of CPN elements constructed as specified in HIP protocol
specification [21]. An example of responder’s subpage at the first stage is demonstrated in Figure 7

This responder subpage consists of two main important transitions which are used for arranging the order
of requested messages and verifying the validity of the responder’s host identity tag (HITR). Considering the
Queue and Count transition, the purpose of these transitions are to measure the number of arriving requested
packets in order for the responder to flexibly and appropriately adjust the puzzle difficulty associating to the
number of workloads. Moreover, in the situation when multiple requested messages arriving to this transition
simultaneously, the process of arranging the order of such packets is random based on CPN Tools.

Another transition in this subpage is CheckHITR. In order to process the job, the responder has to have
available memory resource. Otherwise, the responder will reject requested messages until some of them are
removed from the connection queue. In order to define the responder’s capability, we insert a resource place
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Fig. 7. The Responder’s Subpage at the First Stage

in this stage. We have to initially specify the number of available connection queue before activating the
simulation. This number represents the responder’s capacity (in the case of memory resources) in order to
serve initiator’s messages simultaneously without degradation of services. Note that, each packet requires
only one resource (one connection queue) during the process at the responder’s machine. Once those messages
are done and removed from the connection queue, they will return resource token to the responder’s machine.

In addition, the quantity at the resource place represent not only for available connection queue, but
indirectly represent CPU usage on the responder’s machine as well. We shall explain this concept by giving
an example. Comparing two messages in which message one is in the stage one, while message two is in the
stage three. The responder has to spend similar amount of connection queue, a token per message, for serving
both of them. However, in the case of CPU usage, the responder has to waste more power for message two
than message one because main tasks at stage three is to verify the puzzle solution and the signature, while
the task at stage one is only choosing the puzzle difficulty and return it to the initiator. By specifying the
time usage from Table 2 for individual cryptographic transition, we can imply that the longer period that
the message is processed in the responder’s machine, the more CPU usage does it take from the responder.

5.1 Experiment 3: Non-adjustable Client Puzzles

The purpose of the third experiment is to examine the minimal DoS-resistant mechanism. To achieve this,
we run the simulation under four specified attacks and the combination of four strategies (defined as All)



with the non-adjustable client puzzle. We initially fix k=1, i.e. the easiest value4, because hc prefers to spend
nothing expensive for establishing a connection under normal circumstances.

Additional from the experiment of a HIP cost-based model, we allow a responder to participate with a
pair of initiator (hc and an individual type of ad). We assume that the responder has to deal with different
strategies of adversary and different amount of packets which consist of both legitimate and bogus messages.
Considering to a number of packet, hc can initiate the amount of requests (C) at 80%, 100%, and 150% of
the responder’s capacity (R). Meanwhile, a single type of ad can flood the amount of bogus requests (Z) at
100%, 200%, and 1000% of the responder’s capacity (R).

In order to examine the tolerance of HIP protocol under different attack strategies, individual adversary
has been made a pair with an honest client during the protocol execution. Under four specified attacks, there
are three possible situations to cause a responder to waste computational resources by the adversary.

1. All values of the third message including a puzzle solution J , an encrypted part Ke{HII}, and a digital
signature sigI are valid. This will force the responder to process a gradual authentication and complete
the final step of the communication.

2. Only the client puzzle solution J is valid. This situation also causes the responder to perform the puzzle
solution verification, decryption, and the signature verification. The responder can detect the attack only
at the final step of authentication.

3. The client puzzle solution J is invalid, so the responder computes only a cheap hash function to verify
the solution and then this connection will be terminated whether the remaining messages are valid.

Finally, by inserting places for displaying the number of completed and rejected messages at the respon-
der’s network, the number of successful legitimate requests that the responder can serve under different
adversary’s abilities are measured as the percentage for the protocol evaluation.

The Experimental Results: Figure 8 represents the percentage of successful legitimate connections com-
pared among three different amount of bogus messages (Z=100%, 200%, and 1000% of the responder’s
capacity R) from five adversarial strategies (in the combination strategy, All, each of adversary type has the
same amount of bogus messages that makes the total number equivalent to the specified quantity). When
we prohibit the responder’s ability to adjust k, the percentage of successful messages from hc to obtain a
service will drop drastically when ad increases the number of bogus messages. Comparing different types of
ad, the most effective is ad4 who sends bogus messages to the responder by crafting messages randomly. This
is because ad4 can flood a large number of messages to overwhelm the responder’s resource quicker than the
others, which causes the responder to reject the next incoming messages from hc. Although packets from
ad will be detected and discarded by the responder, these packets can be re-generated and flooded by ad as
soon as ad receives returned packets from the responder at phase two.

Comparing ad1 and ad4, even though both of them craft random messages, ad4 can achieve the goal at
higher rate than ad1 because the responder can process the incoming request at step 1 and clear a queue
faster than at step 3. At step 1, the responder only participates in the protocol by choosing the puzzle
difficulty (k) and pre-computed information, and returns it to ad1. Although, ad1 can re-generate bogus
messages after receiving replied messages, this does not cause the responder to reject a large number of
messages because HIP mitigates such problem by adopting a stateless-connection. On the other hand, the
task of ad4, to fill-up the responder’s queue at step 3, can be achieved more easily than ad1 because the
process of checking a puzzle solution and a digital signature takes longer than a whole process at step 1.

Considering ad2 and ad3 who attempt to deny service at phase 3 by computing the puzzle solution, the
results show that ad3 succeeds at higher proportion than ad2. This is because ad3 can flood attack messages
faster than ad2 who must engage in the correct generation of message two. Nonetheless, both adversaries
can force the responder to engage in the signature verification. Although ad4 can flood large number of
messages at step 3 as well as ad2 and ad3, ad4 cannot force the responder to engage in expensive operations
because the responder is able to detect the message forgery at the cheap puzzle verification process. However,
4 If we choose k=0 which means no client puzzle is required, we cannot see the difference of costs between ad3 and
ad4 because the task of both adversaries will be the same.



(a) hc’s load = 80% of R (b) hc’s load = 150% of R

Fig. 8. Percentage of throughput from hc with k=1

without the assistance of puzzle difficulty, the percentage of successful messages in the case of hc and ad4 is
lower than the others because ad4 floods message three at the highest rate. As a result, the most effective
adversary to deny services on the responder would be ad4 that attacks the verification phase. Most key
agreement protocols incorporate verification tasks that would be susceptible to resource exhaustion attacks.

Finally, the result of the combination of all attack techniques shows that when the responder has to deal
with all types of adversary, the percentage of legitimate users served by the responder will fall significantly
with increment of bogus messages. Once we can identify the most effective scenario, we will apply this
technique to the fourth experiment for investigating the usefulness of puzzle difficulty.

5.2 Experiment 4: Adjustable Client Puzzles

The purpose of this experiment is to measure a toleration of the responder when adjustable client puzzles are
implemented. The result can be used to compare with the experiment on the cost-based model for comfirming
that whether Meadows’s cost-based framework is efficient for evaluating the DoS-resistant protocols or not.

To examine the protocol, we allocate two possible values, k = 1 and k = 10 for the responder. We choose
those two values because they do not put more computational effort to hc and the total amount of task is
still in the acceptable threshold comparing to tasks on the responder (see Figure 6). In order to allow the
responder to flexibly adjust puzzle difficulty between those two values more efficiently, we simply insert the
counter into the model for measuring the condition of a responder’s workload. Once the workload has reached
the maximum tolerance, the responder will increase the puzzle difficulty to the higher level for delaying the
incoming rate of requested messages.

At the beginning of the protocol assessment, we allow both hc and an individual type of ad to make
requests at the same time to the responder. However, the responder is able to process requests only one
message at a time. So, a concept of the responder queue is implemented for arranging an order of incoming
packets. Figure 9 illustrates a construction and a simulation of the HIP protocol by means of Timed CPNs.

Considering the initiator’s packet, there are different actions from initiators and the responder during
the protocol run. The hc initiates a request only once and keep waiting to process next steps. This delay is
described by means of Timed CPNs, i.e. every transitions which relates to cryptographic operations is defined
as a timed process. During the simulation, if requests from hc have been rejected under DoS circumstances,
hc gives up to open another session. On the other hand, there are two different situations that packets from
ad are rejected by the responder; 1) the responder detects the bogus messages during the verification steps,
and 2) the responder does not have enough resources for serving any requests. Once the responder detects
the attack and rejects those packets, ad will lose those packets from the system.



Fig. 9. Protocol Steps of HIP Timed CPNs Model

The Experimental Results: To adjust the puzzle difficulty, we allocate two possible values for the respon-
der to determine. Under normal circumstances, the responder selects k=1, which means the easiest puzzle
solution is required from the initiator. Once the responder receives more requested packets than its maximum
capacity to handle, the responder raises the puzzle difficulty. In the experiments described here, we choose
k=10. Because this puzzle technique is a hash-based puzzle, this value will help the responder to slow down
the incoming rate by requiring the work of the initiator to solve a puzzles at the factor of 210.

Similarly to the representation of Figure 8, Figure 10 illustrates that the number of attacking machines
that the responder can tolerate is increased to a higher proportion compared to the result of experiment 1.
Another interesting result is that the successful rate of an honest client’s message in the case of ad4 is higher
than for the fixed value k=1. The reason is that ad4 does not compute the puzzle solution, so, no matter
what the puzzle difficulty is, ad4 can flood the bogus messages at the similar speed as experiment 1. However,
at that amount of bogus messages, there are only messages from ad4 (no legitimate traffic because hc has
to spend some amount of time to solve the puzzle solution), or just a few messages from hc that arrive to
the connection queue before the responder increases puzzle difficulty. As a result, the responder can validate
the puzzle solution before the next group of messages has arrived. Undoubtedly, these bogus messages from
ad4 will be rejected at the first step of verification which requires only short period and removes such attack



(a) hc’s load = 80% of R (b) hc’s load = 150% of R

Fig. 10. Percentage of throughput from hc with k is chosen between 1 and 10

from the connection queue. However, this situation does not occur in the case of ad3 because they have to
spend some amount of time to solve the puzzle as well as hc.

6 Conclusion and Future Work

This work has achieved the aims of extending the Meadows’s cost-based framework to provide more accurate
representation of computational cost and shown the potential of automated analysis. Moreover, we have
explored unbalanced computational vulnerabilities on HIP which cause the responder to deplete resources
and then terminate all processes by developing formal analysis based on Meadows’s cost-based framework
and Time CPNs simulation-based analysis. By comparing experimental results from both techniques, we
have found a limitation of Meadows framework in order to define the ability of advanced adversaries and
address DoS vulnerabilities in DoS-resistant protocols.

In future work, we plan to extend this research by using the model checking capabilities of CPN tools to
automatically verify the system by traversing the model and checking whether the cost tolerance between
initiator and responder exceeds some reasonable threshold. Moreover, the power of adversaries can be ex-
tended in different ways in order to model more powerful attacks. For example, the advanced adversary,
who attemps to attack the protocol at the third message, can be extended to flood reused packets from pre-
vious connections, eavesdrop messages from a valid communication, or craft bogus messages using existing
messages including valid or invalid puzzle solutions as well as digital signatures. By inserting such advanced
abilities to the model, we also require a technique to measure and identify cost of those operations in order
to achieve a formal analysis.

In addition there are a number of other promising directions for this research.

– Our model can be used to analyse a variety of protocols to provide a comparison of the effectiveness of
different protocols in DoS prevention.

– Our model can be integrated into a model for security analysis of authentication and key establishment
properties to create a unified protocol analysis tool covering resistance to DoS attacks as well as more
traditional security goals.
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