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Abstract

The notion of measure representation of protein sequences is introduced based on the de-
tailed HP model. Multifractal analysis and detrended fluctuation analysis are then performed
on the measure representations of a large number of long protein sequences. It is concluded that
these protein sequences are not completely random sequences through the measure representa-
tions and the values of the Dq spectra and related Cq curves. The values of the exponent from
the detrended fluctuation analysis show that the K-strings with the ordering in the measure
representation exhibit strong long-range correlation. For substrings with length K = 5, the Dq

spectra of all proteins studied are multifractal-like and sufficiently smooth for the Cq curves to
be meaningful. The Cq curves of all proteins resemble a classical phase transition at a critical
point. An IFS model is found to simulate the measure representation of protein sequences very
well. From the estimated values of parameters in the IFS model, we think the non-polar residues
and uncharged polar residues play a more important role than other kinds of residues in the
protein folding process.

PACS numbers: 87.10+e, 47.53+n

Key words: Measure representation, detrended fluctuation analysis, multifractal analysis,
’analogous’ specific heat, IFS model.

1 Introduction

The three-dimensional structure of proteins is a complex physical and mathematical problem of
prime importance in molecular biology, medicine, and pharmacology [1, 2]. A protein is composed
of one or more chains that are covalently joined. The chain of amino acids are called polypeptides.
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Twenty different kinds of amino acids are found in proteins. It is believed that the dynamical
folding process and stable structure, or native conformation, of a protein are determined by its
primary structure, namely its amino acid sequence [3, 4]. The 20 different amino acids in natural
polypeptides can be in any number and any order. Because the number of amino acids in a
polypeptide molecule usually ranges from 100 to 1000, the number of different protein molecules
that is possible is enormous. Once a amino acid sequence is known, the number of possible space
structures it can fold to is also enormous. How to predict the high level structures (secondary and
space structures) from the amino acid sequence is a challenge problem in science, in particular to
the large proteins. A number of coarse-grained models have been proposed to provide insight to
these very complicated issues [4]. A well known model in this class is the HP model proposed by
Dill et al. [5]. In this model 20 kinds of amino acids are divided into two types, hydrophobic (H)
(or non-polar) and polar (P) (or hydrophilic). In last decade the HP model has been extensively
studied by several groups (e.g. [2, 6, 7]). After studying the model on lattices, Li et al. [6] found
there are a small number of structures with exceptionally high designability which a large number
of protein sequences possess as their ground states. These highly designable structures are found
to have protein-like secondary structures [2, 6, 8]. But the HP model may be too simple and
lacks enough information on the heterogeneity and the complexity of the natural set of residues
[9]. According to Brown [10], in the HP model, one can divide the polar class into three classes:
positive polar, uncharged polar and negative polar. So 20 different kinds of amino acids can be
divided into four classes: non-polar, negative polar, uncharged polar and positive polar. In this
model, one considers more details than in the HP model. We call this model a detailed HP model.
In this paper we will adopt the detailed HP model.

Fractal geometry provides a mathematical formalism for describing complex spatial and dy-
namical structures [11, 12]. The fractal method has been successfully used to study many problems
in Physics, Mathematics, Engineering, and Biology in the past two decades or so. Multifractal
analysis is a useful way to characterise the spatial inhomogeneity of both theoretical and experi-
mental fractal patterns [13]. Multifractal analysis was initially proposed to treat turbulence data.
In recent years it has been applied successfully in many different fields including time series analysis
and financial modelling [14]. For the applications of fractal method to DNA sequences, one can
refer to [14-16] and the references therein. The fractal method has been used to study the protein
backbone [17], the accessible surface of protein [17-20] and protein potential energy landscapes
[21]. The multifractal analysis of solvent accessibilities in proteins was done by Balafas and Dewey
[22]. In [22], the model used to fit the multifractal spectrum is also discussed. But the parameters
derived in their multifractal analysis cannot be used to predict the structural classification of a
protein from its amino acid sequence.

The amino acid sequence of a protein is also called a protein sequence in this paper. Based the
idea of DNA walk model and different mapping, a decoded walk model was proposed to study the
correlation property of protein sequences by Pande et al. [23] using ”Bridge analysis” and Straint
and Dewey [24] using multifractal analysis. Deviations of the decoded walk from random behaviour
provides evidence of memory.

Inspired by the idea of measure representation of DNA sequence [14], in this paper we propose
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a visual representation — measure representation of protein sequences based on the detailed HP
model. The Detrended Fluctuation Analysis (DFA) [15, 25] is used to study the correlation property
when the measure representation of protein is viewed as a time series. The multifractal analysis
of the measure representation of protein will follow. To our knowledge [26], it is much harder to
simulate a measure than to fit its multifractal spectrum (because different measures may have the
same multifractal spectrum). The iterated function systems (IFS) model proposed by Barnsley
and Demko [27] is a powerful tool in fractal theory (many fractals such as the Cantor set can be
generated by the IFS model). Here we find the IFS model can be used to simulate the measure
representation of protein sequences.

2 Detailed HP model and measure representation of protein se-

quences

Twenty different kinds of amino acids are found in proteins. In the detailed HP model they can
be divided in to four classes: non-polar, negative polar, uncharged polar and positive polar. The
eight residues designating the non-polar class are: ALA, ILE, LEU, MET, PHE, PRO, TRP, VAL;
the two residues designating the negative polar class are: ASP, GLU; the seven residues designating
the uncharged polar class are: ASN, CYS, GLN, GLY, SER, THR, TYR; and the remaining three
residues: ARG, HIS, LYS designate the positive polar class.

For a given protein sequence with length L, s = s1 · · · sL where si is one of the twenty kinds of
amino acids for i = 1, · · · , L,, we define

ai =





0, if si is non-polar,
1, if si is negative polar,
2, if si is uncharged polar,
3, if si is positive polar.

(1)

So we can obtain a sequence X(s) = a1 · · · aL, where ai is a letter of the alphabet {0, 1, 2, 3}.
We call any string made of K letters from the set {0, 1, 2, 3} a K-string. For a given K, there

are in total 4K different K-strings. In order to count the number of each kind of K-strings in a
sequence X(s) from protein sequence s, 4K counters are needed. We divide the interval [0, 1[ into
4K disjoint subintervals, and use each subinterval to represent a counter. Letting r = r1 · · · rK , ri ∈
{0, 1, 2, 3}, i = 1, · · · ,K, be a substring with length K, we define

xleft(r) =
K∑

i=1

ri

4i
, (2)

and
xright(r) = xleft(r) +

1
4K

. (3)

We then use the subinterval [xleft(r), xright(r)[ to represent substring r. Let NK(r) be the number of
times that substring r with length K appears in the sequence X(s) (when we count these numbers,
we open a reading frame with width K and slide the frame one amino acid each time). We define

FK(r) = NK(r)/(L−K + 1) (4)
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to be the frequency of substring r. It follows that
∑
{r} FK(r) = 1. Now we can define a measure

µK on [0, 1[ by dµK(x) = Y (x)dx, where

YK(x) = 4KFK(r), when x ∈ [xleft(r), xright(r)[. (5)

It is easy to see
∫ 1
0 dµK(x) = 1 and µK([xleft(r), xright(r)[) = FK(r). We call µK the measure

representation of the protein sequence corresponding to the given K.
For simplicity of notation, the index K is dropped in FK(r), etc. from now on, where its

meaning is clear.

3 Detrended fluctuation analysis

The exponent in the detrended fluctuation analysis can be used to characterise the correlation of a
time series [15, 25]. We can order all the F (r) according to the increasing order of xleft(r). We then
obtain a sequence of real numbers consisting of 4K elements which we denote as F (t), t = 1, · · · , 4K .
We can view the sequence {F (t)}4K

t=1 as a time series. First the time series is integrated as y(k) =
∑k

t=1[F (t)−Fave], where Fave is the average over the whole time period. Next, the integrated time
series is divided into boxes of equal length, n. In each box of length n, a least-squares line is fit
to the data, representing the trend in that box. The y coordinate of the straight line segments is
denoted by yn(k). We then detrend the integrated time series, y(k), by subtracting the local trend,
yn(k), in each box. The root-mean-square fluctuation of this integrated and detrended time series
is calculated as

F(n) =

√√√√ 1
N

N∑

k=1

[y(k)− yn(k)]2 (6)

Typically, F(n) will increase with box size n. A linear relationship on a double log graph indicates
the presence of scaling

F(n) ∝ nλ. (7)

Under such conditions, the fluctuations can be characterised by the scaling exponent λ, the slope
of the line relating lnF(n) to ln n. For uncorrelated data, the integrated value y(k) corresponds
to a random walk, and therefore, λ = 0.5. A value of 0.5 < λ < 1.0 indicates the presence of
long memory so that a large value is more likely to be followed by a large value and vice versa. In
contrast, 0 < λ < 0.5 indicates a different type of power-law correlations such that large and small
values of time series are more likely to alternate.

4 Multifractal analysis

The most common algorithms of multifractal analysis are the so-called fixed-size box-counting
algorithms [28]. In the one-dimensional case, for a given measure µ with support E ⊂ R, we
consider the partition sum

Zε(q) =
∑

µ(B) 6=0

[µ(B)]q, (8)
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q ∈ R, where the sum runs over all different nonempty boxes B of a given side ε in a grid covering
of the support E, that is,

B = [kε, (k + 1)ε[. (9)

The exponent τ(q) is defined by

τ(q) = lim
ε→0

lnZε(q)
ln ε

(10)

and the generalized fractal dimensions of the measure are defined as

Dq = τ(q)/(q − 1), for q 6= 1, (11)

and
Dq = lim

ε→0

Z1,ε

ln ε
, for q = 1. (12)

where Z1,ε =
∑

µ(B) 6=0 µ(B) ln µ(B). The generalized fractal dimensions are numerically estimated
through a linear regression of

1
q − 1

lnZε(q)

against ln ε for q 6= 1, and similarly through a linear regression of Z1,ε against ln ε for q = 1. D1

is called information dimension and D2 is called correlation dimension. The Dq of the positive
values of q give relevance to the regions where the measure is large, i.e., to the K-strings with high
probability. The Dq of the negative values of q deal with the structure and the properties of the
most rarefied regions of the measure.

Some sets of physical interest have a non-analytic dependence of Dq on q. Moreover, this
phenomenon has a direct analogy to the phenomenon of phase transitions in condensed-matter
physics [29]. The existence and type of phase transitions might turn out to be a worthwhile
characterisation of universality classes for the structures [30]. The concept of phase transition
in multifractal spectra was introduced in the study of logistic maps, Julia sets and other simple
systems. Evidence of phase transition was found in the multifractal spectrum of diffusion-limited
aggregation [31]. By following the thermodynamic formulation of multifractal measures, Canessa
[32] derived an expression for the ’analogous’ specific heat as

Cq ≡ −∂2τ(q)
∂q2

≈ 2τ(q)− τ(q + 1)− τ(q − 1). (13)

He showed that the form of Cq resembles a classical phase transition at a critical point for financial
time series. In a later section, we will discuss the property of Cq for our measure representations
of protein sequences.

5 IFS model and moment method

5.1 IFS model

In order to simulate the measure representation of the complete genome, Anh et al. [33] proposed
the iterated function systems (IFS) model and the recurrent IFS model. IFS is the name given by
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Barnsley and Demko [27] originally to a system of contractive maps w = {w1, w2, · · · , wN}. Let E0

be a compact set in a compact metric space, Eσ1σ2···σn = wσ1 ◦ wσ2 ◦ · · · ◦ wσn(E0) and

En = ∪σ1,···,σn∈{1,2,···,N}Eσ1σ2···σn .

Then E = ∩∞n=1En is called the attractor of the IFS. The attractor is usually a fractal and the IFS
is a relatively general model to generate many well-known fractal sets such as the Cantor set and
the Koch curve. Given a set of probabilities pi > 0,

∑N
i=1 pi = 1, pick an x0 ∈ E and define the

iteration sequence
xn+1 = wσn(xn), n = 0, 1, 2, 3, · · · ,

where the indices σn are chosen randomly and independently from the set {1, 2, · · · , N} with proba-
bilities P (σn = i) = pi. Then every orbit {xn} is dense in the attractor E [27]. For n large enough,
we can view the orbit {x0, x1, · · · , xn} as an approximation of E. This process is called chaos game.

Let µ be the invariant measure on the attractor of the IFS, χB the characteristic function for
the Borel subset B ⊂ E, then from the ergodic theorem for IFS [27],

µ(B) = lim
n→∞[

1
n + 1

n∑

k=0

χB(xk)].

In other words, µ(B) is the relative visitation frequency of B during the chaos game. A histogram
approximation of the invariant measure may then be obtained by counting the number of visits
made to each pixel on the computer screen.

5.2 Moment method to estimate the parameters in IFS model

The coefficients in the contractive maps and the probabilities in the IFS model are the parameters
to be estimated for a real measure which we want to simulate. Vrscay [34] introduced a moment
method to perform this task. If µ is the invariant measure and E the attractor of IFS in R, the
moments of µ are

gi =
∫

E
xidµ, g0 =

∫

E
dµ = 1. (14)

If wi(x) = cix + di, i = 1, · · · , N , then the following well-known recursion relations hold [34]:

[1−
N∑

i=1

pic
n
i ]gn =

n∑

j=1

(
n

j

)
gn−j(

N∑

i=1

pic
n−j
i dj

i ). (15)

Thus, setting g0 = 1, the moments gn, n ≥ 1, may be computed recursively from a knowledge of
g0, · · · , gn−1. If we denote by Gk the moments obtained directly from the real measure using (14),
and gk the formal expression of moments obtained from (15), then through solving the optimisation
problem

min
ci,di,pi

n∑

k=1

(gk −Gk)2, for some chosen n, (16)

we can obtain the estimated values of the parameters in the IFS model.
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From the measure representation of a protein sequence, we see that it is natural to choose N = 4
and

w1(x) = x/4, w2(x) = x/4 + 1/4, w3(x) = x/4 + 1/2, w4(x) = x/4 + 3/4

in the IFS model. For a given measure representation of a protein sequence, we obtain the estimated
values of the probabilities p1, p2, p3, p4 by solving the optimisation problem (16). Based on the esti-
mated values of the probabilities, we can use the chaos game to generate a histogram approximation
of the invariant measure of IFS which we can compare with the real measure representation of the
protein sequence. In order to clarify how close the simulation measure is to the original measure
representation, we convert the measure to its walk representation. If tj , j = 1, 2, · · · , 4K , is the his-
togram of a measure and tave is its average, then we define Tj =

∑j
k=1(tk − tave), j = 1, 2, · · · , 4K .

So we can plot the two walks of the real measure representation and the measure generated by
chaos game of IFS model on the same figure.

6 Data and numerical results

The methods introduced in the previous sections can only be used for long protein sequences
(corresponding to large proteins). The amino acid sequences of 32 large proteins are selected
from RCSB Protein Data Bank (PDB) (http://www.rcsb.org/pdb/index.html). These 32 proteins
belong to five structure classes [35] according to their secondary structures: α, β, α + β ( α,β
alternate), α/β (α, β segregate) and others (no α and no β) proteins. The properties of these
proteins are given in Table 1. First we convert the amino acid sequences of these proteins to their
measure representations with K = 5 according to the method introduced in Section 2. If K is
too small, there are not enough combinations of letters from set {0, 1, 2, 3}, therefore there is no
statistical sense. And if K is too big, the frequencies of most substrings are zero. So we can not
obtain any biological information from the measure representation. Considering the length of the
selected proteins which ranges from 350 to 1000, we think it is suitable to choose K = 5. Then the
detrended fluctuation analysis of these proteins was performed. The values of the exponent λ in
the detrended fluctuation analysis are also given in Table 1.

The multifractal spectra Dq and the related spectra Cq of the measure representations of all 32
proteins are calculated and showed in Figure 1 and Figure 2 respectively.

Finally we simulated the measure representations of all 32 proteins using the IFS model and
moment method introduced in Section 5. The estimated parameters in the IFS model are given in
Table 2. For examples, we show the histograms of measure representation and simulated measures
of protein Human Serum Albumin (PDB ID: 1BJ5) in Figure 3 and their walk representations in
Figure 4; those measures of protein P.69 Pertactin (PDB ID: 1DAB) in Figure 5 and their walk
representations in Figure 6.

7 Discussion and conclusions

The idea of our measure representation of protein is similar to the measure representation
of complete genome [14]. It provides a powerful visualisation method for protein sequences in

7



more details than the HP model. If a protein sequence is completely random, then our measure
representation yields a uniform measure (Dq = 1, Cq = 0).

From the measure representation and the values of Dq and Cq, it is seen that there exists a clear
difference between the protein sequences considered here and completely random sequence. Hence
we can conclude that these protein sequences are not random sequences. This result coincides with
the result of Pande et al. [23].

From Figure 1, it is seen that the Dq spectra of all protein sequences are multifractal-like and
sufficiently smooth so that the Cq curves can be meaningfully estimated. From Figure 2, one can
see that the Cq curves of all protein sequences resemble a classical phase transition at a critical
point.

Through the detrended fluctuation analysis and from Table 1, the values of exponent λ range
from 0.70 to 0.83. These values are far from 0.5. Hence when we view our measure representations
of protein sequences as time series, they are far from being random time series, and in fact exhibit
strong correlation. Here the long-range correlation is for the K-strings with ordering in the measure
representation, and it is different from the residue correlations introduced by other people.

Figures 4 and 6 indicate that the difference between the walk representations of measure repre-
sentation and IFS simulated measure is very small. We find that IFS is a good model to simulate
the measure representation of protein sequences. From above, once the probabilities are deter-
mined, the IFS model is obtained. Hence the probabilities obtained from the IFS model can be
used to characterise the measure representation of the protein sequences. From Table 2, we find the
probability p3 (which corresponds to the uncharged polar property) can be used to distinguish the
structural class of proteins from α class and β class (values of p3 of proteins in class α are less than
those of proteins in class β), and the probability p1 (which corresponds to the non-polar property)
can be used to distinguish the structural class of proteins from class α+β and class α/β (values of
p1 of proteins in class α/β are less than those of proteins in class α+β). Hence we believe that the
non-polar residues and uncharged residues play a more important role than other kind of residues
in the protein folding process. This information is useful for protein structure prediction.

We also tried replacing the detailed HP model by the classification of residues used in [9] in our
frame. But it can not improve the results obtained from the detailed HP model.

The detailed HP model can also be used in the chaos game representation of linked protein
sequences from the complete genome [36].
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Table 1: The properties and the exponent λ in detrended fluctuation analysis of all 32 proteins
selected.

Class PDB ID Protein length exponent λ

1AVC Annexin VI 673 0.7668386
1B89 Clethrin Heavy Chain 449 0.8144683
1BJ5 Human Serum Albumin 585 0.7427572

α 1HO8 Vacuolar ATP Synthase subunit H 480 0.7721964
1IAL Importin Alpha 453 0.7197123
1QSA Soluble Lytic Transglycosylase SH70 618 0.7482758
2BCT β-Catenin 516 0.7193562
5EAS 5-Epi-Aristolochene Synthase 548 0.8192653

1B9S Neuramindase 390 0.7716008
1DAB P.69 Pertactin 539 0.7557988

β 1EUT Sialidase 605 0.7632415
1FNF Fibronectin 368 0.7087377
1JX5 Integrin α-Iib 452 0.7224556
1MAL Maltoporin 421 0.7831249

1B90 β-Amylase 516 0.7781916
1BBU Lysyl-tRNA Synthetase 504 0.7936335

α + β 1BYT Lioxygenase-3 857 0.7693996
1CLC Endoglaeanase Celd 639 0.7655830
1E7U Phosphatidylinositol 3-Kinase 961 0.7795467

Catalytic Subunit

1A8I Glycogen Phosphorylase B 841 0.8215442
α/β 1ACJ Acetylcholinesterase complexed with Tacrine 537 0.7390218

1AOV Apo-Ovotransferin 686 0.7503767
1BFD Benzoylformate Decarboxylase 528 0.7581296
1CRL Lipase (Triacylglycerol Hydrolase) 534 0.7358587

1DPI DNA Ploymerase I dCMP Complex-Chian 605 0.7550018
1EFG Elongation Factor G complexed with 691 0.7986233

Guanosine 5’-Diphosphate Chain A
1EPS 5-Enol-Pyruvyl-3-Phosphate Synthase Chain 427 0.7521843

Others 1F1O Adenylosuccinate Lyase 431 0.7942725
1KVP Capsid Protein Chimera 497 0.7643545
1PMD Peptidoglycan Synthesis 675 0.7451864
1TPT Thymidine Phosphorylase chain 440 0.7486859
4ACE Acetylcholinesterase 537 0.7388495
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Table 2: The estimated prameters in the IFS model of all 32 proteins selected.

Class PDB ID p1 p2 p3 p4

1AVC 0.433053 0.057476 0.360621 0.148850
1B89 0.434701 0.090537 0.355757 0.119005
1BJ5 0.395675 0.171289 0.263892 0.169145

α 1HO8 0.425220 0.116664 0.324997 0.133119
1IAL 0.454049 0.145905 0.279686 0.120360
1QSA 0.429905 0.095604 0.366038 0.108453
2BCT 0.479382 0.051937 0.343780 0.124902
5EAS 0.438919 0.079522 0.386794 0.094765

1B9S 0.374272 0.055143 0.447158 0.123429
1DAB 0.443784 0.082010 0.399380 0.074825

β 1EUT 0.404940 0.086955 0.409295 0.098810
1FNF 0.392416 0.124496 0.393389 0.089700
1JX5 0.418789 0.121671 0.364252 0.095288
1MAL 0.369149 0.074231 0.483407 0.073214

1B90 0.412281 0.069013 0.413590 0.105117
1BBU 0.408854 0.203032 0.238907 0.149207

α + β 1BYT 0.419483 0.124814 0.313159 0.142543
1CLC 0.411955 0.089417 0.393040 0.105588
1E7U 0.407123 0.186941 0.242776 0.163161

1A8I 0.435450 0.100694 0.329504 0.134352
1ACJ 0.437285 0.087811 0.359227 0.115677

α/β 1AOV 0.378102 0.092808 0.390054 0.139036
1BFD 0.503850 0.103505 0.303115 0.089530
1CRL 0.445648 0.061138 0.432773 0.060441

1DPI 0.434653 0.174507 0.229232 0.161609
1EFG 0.463732 0.090136 0.318268 0.127863
1EPS 0.455629 0.080760 0.366760 0.096850

Others 1F1O 0.438389 0.119861 0.290525 0.151225
1KVP 0.409277 0.105865 0.364443 0.120415
1PMD 0.384736 0.133984 0.386281 0.094999
1TPT 0.462826 0.143851 0.272910 0.120413
4ACE 0.437279 0.087855 0.359186 0.115681
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Figure 1: The multifractal spectra Dq of measure representations of 32 proteins selected.
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Figure 2: Cq curves of measure representations of 32 proteins selected.
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Figure 3: The measure representation (left) and the IFS simulation (right) of protein Human Serum
Albumin (PDB ID: 1BJ5).
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Figure 4: The walk representations of measures in Figure 3.
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Figure 5: The measure representation (left) and the IFS simulation (right) of protein P.69 Pertactin
(PDB ID: 1DAB)
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Figure 6: The walk representations of measures in Figure 5.

14


