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Abstract 

This research work analyses techniques for implementing a cell-centred finite-volume time-

domain computational methodology for the purpose of microwave heating. Various state-of-

the-art spatial and temporal discretisation methods employed to solve Maxwell’s equations 

on multi-dimensional structured grid networks are investigated, and the dispersive and 

dissipative errors inherent in those techniques examined.  Both staggered and unstaggered 

grid approaches are considered.  Upwind schemes using a Riemann solver and intensity 

vector splitting are studied and evaluated.  Staggered and unstaggered Leapfrog and Runge-

Kutta time integration methods are analysed in terms of phase and amplitude error to identify 

which method is the most accurate and efficient for simulating microwave heating processes. 

The implementation and migration of typical electromagnetic boundary conditions from 

staggered in space to cell-centred approaches also is deliberated.  In particular, an existing 

Perfectly Matched Layer absorbing boundary methodology is adapted to formulate a new 

cell-centred boundary implementation for the ccFV-TD solvers.  Finally for microwave 

heating purposes, a comparison of analytical and numerical results for standard case studies 

in rectangular waveguides allows the accuracy of the developed methods to be assessed.  

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
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Over the years, numerous computational models have been investigated and developed for 

the solution of Maxwell’s equations for a variety of important applications in Science and 

Engineering [1-4].  Typically, researchers implement solution methodologies that simulate 

instantaneous electromagnetic fields, and these are used to obtain the steady-state 

electromagnetic wave phenomena inside a microwave heating apparatus.   

 

The scope of this research work focuses on the use of cell-centred time-domain finite-volume 

(ccFV-TD) solvers for investigating electromagnetic field behaviour during microwave heating 

processes.  For domestic and industrial microwave heating applications, the time-averaged 

electric and magnetic fields have to be computed.  From the computed time-averaged fields 

the power can be obtained easily, and hence, the microwave power distribution can be 

coupled with the forced heat equation to obtain the temperature distribution inside the 

dielectric medium.   

 

In this paper, numerous cell-centred time-domain schemes are presented and assessed in 

terms of computational speed, phase and amplitude error, in order to identify the most 

accurate and efficient method that can be used to obtain the time-averaged electric field 

distribution inside the load in a waveguide.  The time-averaged fields are computed for 

various case studies, and are compared to the results obtained using the classical finite-

difference time-domain (FD-TD) [5] and the analytic solutions where possible.  The 

computation of the power and subsequently the determination of the heat distribution inside 

the medium are left to future research by the authors.   

 

Historically, both the integral and point forms of the governing Maxwell’s equations have 

been approximated in Computational Electromagnetics (CEM).  The ccFV-TD methods 

discussed here are formulated from a discrete volume-surface representation of the 

governing equations.  When developing finite-volume or finite-difference stencils to locate the 

electromagnetic unknowns within a discrete cell, the approximations to the components of 

the electromagnetic fields are stored at different spatial locations.  For example, FD-TD uses 
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the Yee lattice to locate the components of the unknowns around a cell.  The electric and 

magnetic fields are staggered also in time in order to stabilise the explicit time marching 

scheme.  

 

Cell-centred schemes store all of the electromagnetic fields at the same spatial location, 

which is normally at the centre of the finite-volume cell.  Given that the spatial locations of the 

electric and magnetic field components are located at the same point, cell-centred schemes 

are much easier to manage, develop and implement in comparison with their staggered 

counterparts.  By the nature of the staggering of the unknowns in the FD-TD method, the 

inherent errors are reduced and this location in time and space of the electric and magnetic 

field components establishes a highly accurate scheme for structured grids.  Unfortunately 

due to this staggering, the FD-TD scheme is difficult to implement on unstructured grids, and 

in this case cell-centred schemes are more viable.  Nevertheless, rigorous consideration 

needs to take place to achieve sufficient accuracy in the cell-centred schemes.  Despite the 

fact that for each cell the unknowns are positioned at the same spatial location, it is still 

possible to stagger the electric and magnetic field components in time.  For cell-centred 

schemes this can stabilise the time marching of the numerical solver.  It is possible also that 

higher order approximations in both time and space have to be considered to obtain a more 

accurate ccFV-TD scheme.     

 

In the last decade, techniques from Computational Fluid Dynamics (CFD) have been 

adapted to CEM [4, 6, 7] with reasonable success.  In this work, the uses of intensity vector 

splitting (IVS) and Riemann solvers (RS) are analysed, and mathematical formulations are 

given.  Methods that employ techniques from CFD are known to be dissipative by nature.  

Munz et al [8] discuss a finite-volume solver for the Maxwell’s equations in curvilinear non-

orthogonal coordinates without the use of dimensional splitting.  The local wave propagation 

between adjacent grid cells is determined by the solution of Riemann problems.  A thorough 

analysis of the characteristic methods used to determine the required solution is given in [4] 

and the reader is referred there for the finer details. 
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The characteristic theory [4] requires the flux to be split into + and – states at a cell interface, 

then a number of different numerical approximations are applied to determine these states.  

In this work, the schemes used to approximate the states are presented in a way that can 

easily be generalised to a completely unstructured mesh framework.  However, in an attempt 

to gauge the accuracy and efficiency of the schemes investigated, it was decided to restrict 

the study here only to a structured mesh domain based on hexahedra, since the FD-TD 

method performs accurately on such grids and can be used for comparison.  The migration 

of the cell-centred finite-volume method to an unstructured case will be the subject of future 

research. 

 

Note that when these CFD type schemes are used to dampen any oscillatory behaviour due 

to spatial discretisation errors caused by the cell-centred strategy, it becomes necessary to 

employ higher order time integration techniques to resolve the differential system in time.  

Here 3rd and 4th order Runge-Kutta (RK3, RK4) methods are implemented on the cell-centred 

approaches to analyse their performance.  However, the schemes that do not contain the 

damping term are discretised in time using second order Leapfrog time marching schemes 

that are staggered and unstaggered in time.  Also, the schemes that utilise RK3 and RK4 

time integrations with damping are implemented without the inclusion of the damping term, 

so that the effect of the term from the CFD methodology can be analysed for CEM 

applications.     

 

In this paper, the solutions of typical waveguide problems are presented for two distinct case 

studies. The first concerns an empty waveguide study and the second a loaded waveguide 

study. The same numerical solvers are implemented in both cases.  Initially, a detailed 

description of the mathematical formulation is provided for the time domain cell-centred in 

space methods, and typical boundary condition implementation for the conducting walls, 

input plane, material interface and a new cell-centred absorbing boundary layer is 

deliberated. In the scattered region of the waveguide, an existing Perfectly Matched Layer 
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(PML) methodology [9] is reformulated and complemented for cell-centred schemes.  As a 

subsequence, this new PML formulation is adapted to the cell-centred finite-volume schemes 

to absorb any reflected impinging waves in the scattered field region of the waveguide.   

 

Primarily, the empty waveguide study allows the performance of the different Maxwell’s 

equation time-domain solvers to be analysed under free space conditions.  Depending on the 

spatial and temporal discretisation methods utilised, the schemes exhibit both dispersive and 

dissipative numerical errors.  Dissipative errors cause the loss of wave amplitude, while 

dispersive errors affect the wave propagation speed.  These errors are cumulative in nature 

and their analyses are provided in the form of phase and loss or gain in amplitude.  The time-

averaged electric fields inside an empty waveguide are investigated.  The computed fields 

are compared to both the FD-TD and exact solutions.  It is observed that the second order 

accurate in space and time cell-centred methods are competitive in terms of accuracy and 

efficiency when compared to the FD-TD solver. 

 

For the next case study, the waveguide is analysed when loaded with a dielectric material.  A 

number of simulations for a short-circuited rear end loaded waveguide are presented.  The 

simulation results are then compared to the analytic and FD-TD solutions.  A loaded multi-

mode waveguide is analysed also, and the results are compared to the FD-TD method.  It is 

shown that cell-centred schemes can be implemented in a straightforward manner to resolve 

the time averaged electric fields inside a waveguide structure, and capture the analytic and 

FD-TD solutions more than adequately.  The outcomes indicate that cell-centred schemes 

can be used with confidence for simulating the microwave power inside a load within a 

microwave apparatus.   

  

This paper is organised as follows.  In the next section, the mathematical formulation for 

discretising Maxwell’s equations using a finite-volume approach is presented, highlighting the 

different cell-centred schemes.  Followed by a detailed discussion of the EM boundary 

condition implementation.  Thereafter, the results for the different waveguide case studies 
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are presented and comparisons between the various methods are provided via a number of 

graphical illustrations that elucidate the dissipative and dispersive nature of the different 

schemes.  A table of amplitude and phase errors is provided also to highlight the evident 

differences between the methods.  Finally, the main conclusions of this work are 

summarised. 

 

2. Mathematical Formulations 

For the purpose of numerical simulation using a finite-volume methodology, the point form of 

the Maxwell’s equations:  

                                           JH
B

E +
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must be recast into a discrete volumetric form by integrating over a discrete finite-volume cell 

to obtain:            
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Unlike approximating an integral formulation based on the Stokes’ theorem [3, 10], the 

Divergence theorem together with the relevant vector identities are applied to (2), to obtain 

the following surface-volume representation:  
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The continuous eq. (3) is then approximated by the discrete form as follows:  
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where, n is the unit outward normal through a face of a particular cell (see Fig. 1).  In the 

equations, pζ  is the set of faces that constitute the pth cell in the computational domain. F∆S  

and ∆V  are the surface area of a particular face in pζ  and the volume of the pth cell, 

respectively.  If FE  and FH  represent the values at the midpoint of the face, the above 
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discrete surface integral approximation is second order in space. When all of the cells that 

constitute the mesh that describe the solution domain are visited, a system of ordinary 

differential equations (ODEs) results.  Numerous methods are applied to resolve this ODE 

system.   

 

Time discretisation can introduce either dispersion or dissipation errors (see [4]).  Numerous 

techniques are utilised to resolve (4) into time discrete form.  In [11] a number of approaches 

similar to the FD-TD technique have been investigated.  For a function φ , (5a-b) represent 

the staggered (SLF) and unstaggered (ULF) leapfrog discretisations respectively.  The SLF 

and ULF schemes are both )tO( 2∆ : 
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Methods using the discretisations in (5) have been used in the past to numerically solve for 

the electromagnetic fields governed by the Maxwell’s equations.  Using (5a), (4) can be 

written in discrete form as: 
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Similarly, (4) for the ULF discretisation becomes: 
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Eqs. (6) and (7) require the approximation to the electric and magnetic fields on the cell 

faces.  It is possible to postulate a number of interpolation and extrapolation schemes to 

approximate these cell face unknowns.  On structured grids, the simplest way to approximate 
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the unknowns at a cell face is by averaging the values about a particular face.  Such a 

technique yields a second order in space and time approximation to (6) and (7).  These 

particular finite-volume methods will be referred to as SLF (6), staggered in time and 

unstaggered in space, and ULF (7), unstaggered in time and space Leapfrog discretisations.  

 

At the pth cell in (4), intensity vector splitting (IVS) [4] is applied to replace the FEn ×  and the 

FHn ×  terms.  The idea of IVS is to include an extra term in the flux facial expression to 

dampen any numerical oscillations, and to capture any discontinuities (such as shocks and 

contact surfaces in CFD) in the solution.  Intensity vector splitting originally from CFD, is 

based on the + and – characteristics to approximate the unknowns at a cell face.  Eq. (8) 

shows the general form at a cell face F  of the IVS result:   
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where, the wave speed is given by 
µε

1c = .  Riemann invariants can also be applied to 

determine the left and right states at a cell face.  The Riemann solver (RS) was introduced by 

Shankar [6]: 
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In free space, it can be shown that RS reduces to IVS.  It is evident from IVS and RS that the 

+ and – characteristics, or the right (R) and left (L) states must be approximated for each cell 

face.  Note that IVS cannot be implemented with (6), since the values for the magnetic and 

electric fields are required at different time levels.  Numerical experimentation has shown that 

IVS and RS with (7) incurs large errors due to the time discretisation [4].  Therefore, higher 

order time stepping methods are to be implemented.  The following 3rd order Runge-Kutta 

(RK3) method is used for the numerical schemes discussed above: 
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A 4th order Runge-Kutta (RK4) method is implemented also, and is formulated below: 
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Substituting either of the IVS or RS results leads to numerical techniques referred to as RK3-

IVS (RK3-RS) and RK4-IVS (RK4-RS), respectively.  Note that (4) can be solved without the 

inclusion of damping, and this idea is pursued later in this section.  Furthermore, other 

Runge-Kutta methods can be used to resolve the system of ODEs from above.  These are 

not discussed here, but will be analysed in another paper where the schemes highlighted 

here will be applied on unstructured grids.    

 

 

 

 

 

 

 

 

Figure 1. A general cell within the computational domain; (a) 3D cell with unknown locations;  

(b) The characteristics at a face of a particular cell. 

 

For simplicity, Fig. (1) illustrates a typical cell within a 3D-structured computational domain.  

As depicted, the + and – characteristics for IVS, and the right and left states for RS are 

required on a particular cell face and different strategies can be derived to approximate the 

values at the cell face joining any two adjacent cells.  For example, an unknown ξ  can be 

approximated using the 0th order substitution:  
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Imposing the 0th order approximation in RK3/RK4-IVS/RS leads to two first order in space 

and 3rd order in time approximations known as RK3-1-IVS and RK3-1-RS, and two first order 

in space and 4th order in time approximations identified as RK4-1-IVS and RK4-1-IVS.  For a 

structured uniform mesh, it is possible to derive a general one-sided linear extrapolation 

model that is 2nd order in space:  

                  )(3),(3 2p1p2
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p1pp2
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p
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1

2

1 ++
+
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−=−= ξξξξξξ .                    (12) 

As for the 0th order extrapolations, using (12) the equivalent 3rd and 4th order in time and 2nd 

order in space numerical schemes are called RK3-2L-IVS/RS and RK4-2L-IVS/RS, 

respectively.  It is important to note that (12) is developed for uniform in x, y and z coordinate 

structured grids.  Such extrapolations are complicated to implement on unstructured meshes, 

and are demonstrated only to assess the errors between the different schemes.   

 

Given discrete data points, it is also possible to find least squares gradient approximations at 

cell centres [12].  Eq. (13) expresses a truncated representation of the Taylor series: 

                           )()δ()(δ rrrrr ξξ −+≈∇⋅ ξ .               (13) 

The above system can be cast into matrix form as dA =∇⋅ pξ .  The gradient that minimises 

2

P dA −∇⋅ ξ  with respect to the inner product on ℝk can be obtained by solving the normal 

equations.  The value of k  equals the number of neighbouring nodes utilised to obtain the 

gradient at the pth cell.  Although approximations for the gradients that utilise the hypercube (

k =26) have been investigated, in this paper the gradients were constructed using only 

adjacent cells of pζ  (ie. k =6).  Hence by evaluating (13), the gradients of the fields are used 

to approximate the characteristics at the cell faces.  Accordingly, (14) provides a 2nd order 

approximation for the + and – fields, or the right and left states and the subsequent methods 

are classified as RK3-2G-IVS, RK4-2G-IVS, RK3-2G-RS and RK4-2G-RS, depending on the 

time integration and whether intensity vector splitting or the Riemann solver is applied: 
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In (14), δ′  and δ ′′  are the vectors from the nodes (p) to )(p
2
1+  and  (p+1) to )(p

2
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respectively (see Fig. (1)).  Also, the gradients can be approximated using the Gauss-Green 

reconstruction [12]:   
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where, PV  is the volume of the pth cell and n is the unit outward normal to face F .  On 

structured grids, when the Gauss-Green reconstruction is used to approximate the values of 

characteristics at the cell faces in RK3/RK4-IVS and RK3/RK4-RS, the resulting equations 

reduce to that obtained by the least squares gradients (13).   

 

The RK3/RK4-2L-IVS/RS and RK3/RK4-2G-IVS/RS methods can also be applied without flux 

splitting (ie. IVS and RS).  These techniques will be referred to as the RK3/RK4-2L and 

RK3/RK4-2G schemes, which are the linear extrapolation and the spatial gradient 

approximations without intensity vector splitting and Riemann invariants, respectively. 

 

3. Implementation of Boundary Conditions 

In this section, the perfectly conducting wall, incident field, material interface and absorbing 

boundary conditions are treated.  On a perfectly conducting wall in a microwave heating 

apparatus, the following conditions need to be satisfied [13]: 

           0, =⋅=× Hn0En .                           (15) 

Eq. (15) makes the assumption that there is no loss through the perfect conductor.  If there is 

some loss associated with the conducting wall boundaries, then impedance conditions 

should be used instead of (15).  Fig. (2) shows the characteristics in the proximity of a 

perfectly conducting wall.  It can be seen from the figure, that at the wall, only one of the 

characteristics exists.  For the numerical treatment of the conducting wall boundary 

condition, a spurious external layer surrounding the whole computational domain is 

introduced, as shown in Fig (2).  The numerically simulated boundary information of (16) is 
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constructed in a way that ensures the conditions of (15) are enforced at the cell faces that lie 

on the conducting wall.  

 

 

 

 

 

Figure 2. Boundary condition treatment at a Perfectly Conducting Wall. 

 

Hence, the following spurious fields are constructed:   
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where, * represents the fields introduced externally to the original domain to satisfy the 

boundary conditions (15), when the standard discrete in space Maxwell’s equations (4) are 

used on the perfectly conducting boundary.  For the spurious field evaluations, t  and n  are 

the tangential and normal components of the electric and magnetic fields, respectively.  The 

conditions (16) are used in the ULF, SLF, RK3/RK4-2G and RK3/RK4-1-IVS/RS simulations.  

For the RK3/RK4-2L with and without IVS/RS, a secondary layer is introduced for the 

extrapolations.  For the second order linear extrapolation models, (17) has to be 

implemented together with (16):  
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Techniques such as RK3/RK4-2G-IVS/RS that employ the gradients for the approximations 

at the cell faces require (16) together with the following spurious field conditions to be 

satisfied: 
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Eq. (18) is necessary in the boundary information evaluation for schemes that obtain the 

facial values according to (14), since it satisfies (15) at a cell face that lies on a perfectly 

conducting wall boundary.  Given the above formulations, the boundary conditions on a 

perfectly conducting wall are guaranteed in (4) according to (15).  Similarly, other discrete 

conditions can be developed that provide continuity of the tangential magnetic fields and 

ensure zero tangential electric fields at a perfectly conducting wall, but these are not 

discussed here.   

 

  

 

 

 

 

 

Figure 3. A waveguide with incident and absorbing boundary conditions. 

 

A classical waveguide is demonstrated in Fig (3).  In the figure, S  and F  represent the 

scattered and full field regions inside a waveguide, respectively.  Typically, a fictitious 

dielectric is introduced inside the scattered region to absorb any reflected backward travelling 

waves. 

 

Fig. (4) illustrates the situation arising at the incident plane, where the electromagnetic fields 

are excited.  It is assumed that 0z  represents the location where the incident field is applied. 

T , S  and I  are the total, scattered and incident field classifications, respectively.  In the full 

field region of the waveguide the total fields have to be computed, while in the scattered field 

region only the scattered fields are computed.  Across an input plane this is achieved by 

adding the incident field to the scattered field in F , and subtracting the incident field from the 

total field in S  (see Fig. (4)).  This is sufficient to propagate a wave in the z-coordinate 

direction.  In this paper, a continuous TE10 incident field has been implemented for the input 
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boundary condition. At the input plane, the scattered and full fields were computed according 

to the following expressions:  
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sin(EE 000
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In (19), 0P  is the average input power, and a  and b  are the dimensions as labelled in Fig.3.   

Fig. (3) also illustrates an absorbing boundary layer.  There are two main types of absorbers, 

the MUR type absorbing boundary condition [14] and the Perfectly Matched Layer (PML) [9, 

15, 16].  The 1st order MUR type boundary condition is given as:  

            0φ
tc

1

z
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=
















∂
∂

−
∂
∂

=z

.               (20) 

where, c is the wavefront speed inside the waveguide.  In the past, this boundary condition 

has been widely implemented in the FD-TD scheme.  In this paper, it is employed in the FD-

TD and ULF numerical simulations.  While MUR type boundary conditions are obtained from 

splitting the wave equation into positive and negative travelling waves, the PML boundary 

condition is based on matching the impedance of the absorbing medium to the impedance of 

free-space.  There are a number of different types of PML boundary conditions, all of which 

are based on the following augmented Maxwell’s equations: 

        HJ
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t
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t

*
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where, 
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The Berenger type PML [16] absorber splits some of the components of the fields inside the 

absorption layer.  Such a methodology increases memory usage and is also more 

computationally exhaustive, as opposed to more recent PML absorbers that do not split the 

fields [9].  If (21b) is satisfied for the absorbing boundary condition, then the impedance of 

the PML equals that of free-space, and no reflections occur.  Now, (1) can be replaced by 

(21) in the discretisation, and new discrete in space equations can be obtained for the 

simulation of Maxwell’s equations within the absorbing material:  

            p

F

FF

*

pF

F

F S∆
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1

t
,-S∆
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1

t
JHn

D
JEn

B
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∂
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∂
∂

∑∑ .            (22) 

For the schemes discussed in this paper, (22) is implemented using a new cell-centred 

adaptation of the Petropoulos PML boundary condition [9].  For the absorbing boundary 

region, only the normal components need to be treated in (22).  The tangential components 

are still governed by (4).  Consequently, (22) can be discretised and formulated with and 

without IVS/RS.  

 

In the theory by Petropoulos, an extra term in the evaluations of the normal components 

inside the PML region has to be approximated.  This extra term consists of an integral from 

time zero to the current time step of the numerical solver.  The approximation of this time 

integral has to be carefully treated, so that the time stepping of the numerical solver is 

consistent with the computation of the time integral.  Hence, the step size in the numerical 

integration must coincide with the time marching of the discrete Maxwell’s equations solver 

(22).  The update for the numerical integration is therefore a sum, which is accumulated 

according to the time resolution of (22).  The PML formulation for the SLF technique is similar 

to that discussed in [9], the only difference being in the location of the spatial unknowns.  The 

SLF implementation for the normal component at a point p  of (for example) the magnetic 

field is formulated from (22) as follows: 
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In (23), the integral has to be approximated using numerical integration techniques.  For the 

SLF method, the components of the electric and magnetic fields are located at the nth and the 

(n+½)th time levels.  The numerical integration that approximates (23c) has to ensure that the 

scheme updates the integral at every ½ time steps.  For this reason, the numerical 

integration is performed using a two increment trapezoidal rule.  Given that at time zero the 

electric and magnetic fields are zero, then (23c) can be approximated as: 
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The following expression is obtained when (24) is substituted back into (23b) and resolved 

using SLF (5a): 
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Similarly, the normal component of the electric field within the PML region is defined as: 
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The following equations are generated for the 3rd order ODE solver, when the above theory is 

reformulated to cater for the RK time integrations: 
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where,                        
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For the 4th order Runge-Kutta method, the normal equations inside the PML are treated by 

the following discretisations: 
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For the different time levels of the RK3 solver, (27c-d) are updated at the nth, (n+1/3)th and 

(n+2/3)th time levels, while for the RK4 solver, (28c-d) are determined at the nth and the 

(n+1/2)th time levels.  For the Petropoulos approximation within the PML region, the F and G 

terms are obtained using a trapezoidal integration.  The number of steps taken to update the 

equations of  (27c-d) and (28c-d) depends on the number of time levels for which the time 

integration is considered (see eq. (10)).   
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Figure 4. The 2D Input Plane implementation. 

 

Fig. (5) depicts an interface between free-space and a material inside a waveguide.  To treat 

and propagate an electromagnetic wave across an interface in Fig. (5), the following 

conditions have to be satisfied across a material boundary: 

              0EEn =−× )( 12 ,                       (29a) 

           0)ε(ε 1122 =−⋅ EEn ,                          (29b) 

             0HHn =−× )( 12 ,              (29c) 

              0)( 12 =−⋅ HHn  .              (29d) 

On Cartesian grids, (29a) and (29c) imply that the tangential fields across a material interface 

have to be equal.  Eq. (29) assumes that the permeability of the different materials across 

and interface is constant.  In the past, schemes that utilise IVS/RS were developed to 

capture any discontinuities across such interfaces.     

 

 

 

 

Figure 5.  A free-space and material interface boundary. 

 

It is well known that discontinuities can occur in the derivatives of the electromagnetic fields 

across a material interface.  According to [17], plane wave assumptions can be made to 

capture the solution more accurately across a material interface in the FD-TD scheme.  The 

plane wave assumption at an interface proposed by Zhao is adapted for particular ccFV-TD 

schemes, and the theory is demonstrated via a simplified Taylor expansion: 
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where, xδ on a structured uniform grid is the distance from any cell-centre to any face.  

Assuming that the waves near an interface behave in a plane wave manner, the following 

condition has to be satisfied at a material interface [17]: 
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The (p+½) spatial location can be thought of as the material interface, and then by 

substituting (31) into (30), the following approximation at a dielectric interface is obtained: 
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Generally, 1β  is associated with the properties of free space and 2β  is associated with the 

properties of the dielectric material.  Eq. (32) can be shown to be a second order 

approximation to the facial values at the interface.  This technique is applied in the SLF, 

RK3-2G and RK4-2G approximations to propagate the numerical estimates across a 

dielectric boundary.  Note that if 21 ββ = , as is the case for free space cell faces, (32) is 

equivalent to averaging Pξ  and 1P+ξ  to obtain the required facial value.  Consequently, (32) 

can be employed everywhere within the ccFV-TD solver to estimate values at the cell faces. 

 

4. Results and Discussion 

A waveguide of dimension 0.1m x 0.05m x 0.4m was excited using a TE10 wave, with an 

average input power of 1WP0 = .  The ccFV-TD solvers established in the previous sections 

were used to simulate the electromagnetic wave phenomenon for fourteen periods, and 

fields for the last two periods were averaged and illustrated graphically.  The incident field 

has been smoothed according to the following Gaussian pulse to remove any rapid changes 

in the introduction of the TE10 fields [17]: 
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In (33), T  represents the wave period inside the waveguide.  In all of the studies, the time 

stepping of the numerical solver was constrained by the following relationship: 
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++
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where, cmax is the maximum wave speed expected in the waveguide, and xδ , yδ  and zδ  

are the minimum mesh dimensions in the x, y and z coordinate directions.  The domain of the 

waveguide was discretised into 96 000 (40 x 20 x 120) Cartesian cells.  In Tab. (1) the 

components together with their acronyms for each numerical solver investigated throughout 

this section are summarised.  

Acronym  Definition 

FD-TD Finite-Difference Time-Domain Method with beta correction at an interface 
and MUR type absorbing layer 

ULF Unstaggered in time and centred in space Leapfrog method with MUR type 
absorber 

SLF Staggered in time and centred in space Leapfrog method with Petropolous 
type PML absorbing layer 

Beta Any method that utilises beta correction at an interface between free-space 
and material 

1 One sided 1
st
 order in space extrapolation to approximate cell face unknowns  

2L One sided 2
nd
 order in space linear extrapolation is used in the numerical 

solver  

2G The gradients are calculated and used via the Taylor series to approximate 
the values at a cell face 

RK3 Time marching was performed using the 3
rd
 order Runge Kutta method and 

Petropolous type absorbing layer is used to absorb the waves in the scattered 
region of the waveguide 

RK4 The ODEs in time were approximated via the 4
th
 order Runge Kutta scheme 

and Pertropolous type absorber is used for the absorbing boundary condition 

RS The Riemann Solver equations were used to replace the terms at a cell face 

IVS Intensity-Vector Splitting was used to dampen any oscillatory behaviour in the 
numerical solutions 

Int or Interface Case of IVS, where IVS was applied only at a material interface 

Not Int or Not 
Interface 

IVS was applied everywhere inside the computational domain, except at a 
material interface 

Mat or Material IVS was applied inside the domain of the material, and not anywhere else 

 

Table 1. The definitions of the numerous numerical schemes that are exhibited. 

For the empty waveguide study, the instantaneous electromagnetic fields were monitored 

over a number of periods.  The fields were compared to the exact solution.  From the 

comparison, the phase difference was approximated using a least squares technique.  Given 

the exact solution, it was assumed that the computed fields had some phase error 
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associated with them.  Using this assumption, the exact solution was formulated using a 

phase angle relation: 

         φ)βztcos(ωEE 0C ++= ,    (37) 

where, CE  is the computed field value at a particular point in space and after some number 

of time steps. 0E  is the exact electric field amplitude, and φ  is the phase error.  β  and z  are 

dependent on the microwave heating apparatus.  At a point in space, the values were 

computed for a period of the microwave, and the phase error was approximated using a least 

squares technique.  Once the phase angle between the computed and analytic solutions was 

established, the amplitude error evident in the schemes was estimated using the standard 

norms.  The results for the different schemes are outlined in Tab. (2).  It should be noted that 

due to the implementation of the smoothing of (33), the results obtained from the simulations 

performed much better than expected.  At the input plane if no smoothing was applied, then 

the FD-TD method clearly outperformed the ccFV-TD schemes.  The schemes when 

implemented without smoothing had a tendency to oscillate around the analytic solution.  The 

reason for this is that the electromagnetic waves without (33) are not introduced into the 

apparatus in a smooth manner, but rather in an instantaneous way.  The time averaged 

solutions in the figures were obtained according to the expression: 
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For a TE10 empty waveguide, the xE  and zE  fields are zero, therefore (35) reduces to a time 

averaged yE  field: 
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In free-space, the RS scheme reduces to the IVS scheme, and hence in this case study, 

references will be made only to the IVS simulations.   

 

It is important to note that during the numerical simulations, not all of the xE , zE  and yH  

fields were zero, as expected for an empty TE10 waveguide.  It was found that the schemes 
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that utilise the IVS strategy produced a slight error of 0.1% in these fields.  This error was 

thought to be a side effect of the implementation of damping, and regarded as negligible in 

comparison with the yE  field.  In fact, the use of (35) instead of (36) to compute the time 

averaged fields revealed no significant change in the graphs.  From Tab. (2), it can be seen 

that the methods that utilise IVS tend to have larger amplitude errors.  This is due to the fact 

that the CFD type algorithms dampen any oscillatory behaviour, and through this process the 

amplitude of the wave is somewhat reduced also.  It is observed that RK4-1-IVS incurs large 

dissipation errors in the amplitude of the wave (see Fig. (6d)).  This is due to the lower order 

spatial discretisation utilised.  It is seen from Figs. (7c-d) that the introduction of IVS reduces 

the amplitude of the wave.  It is not evident in the full field region of the guide, but can be 

clearly seen in the scattered field region, when compared to RK4-2G.  There appears to be 

no obvious difference between RK3 and RK4 time integration techniques for the empty 

waveguide study.  This is observed in Tab. (2) and Figs. (7a-b). 

SCHEME AMPLITUDE ERROR PHASE ERROR CPU TIME  

 1-Norm 2-Norm inf-Norn Mean Variance Normalised 

FD-TD 0.0741637 0.0694287 0.0672323 0.6818206 0.0008836 0.0666667 

SLF 0.0681339 0.0643379 0.0643557 0.6784976 0.0007899 0.0797814 

RK4-2L 0.0672170 0.0620855 0.0550679 0.7249154 0.0008259 0.6464480 

RK3-2G 0.0647705 0.0624504 0.0660729 0.4855492 0.0007476 0.4557377 

RK4-2G 0.0647643 0.0624570 0.0662543 0.4855753 0.0007509 0.6289617 

RK3-1-IVS 0.0892745 0.1024925 0.1375204 0.5302919 0.0007921 0.6420765 

RK4-1-IVS 0.0892570 0.1024751 0.1374970 0.5303072 0.0007920 0.8715847 

RK3-2G-IVS 0.0879133 0.1015108 0.1274249 0.6106417 0.0006905 0.7404371 

RK4-2G-IVS 0.0879282 0.1015241 0.1274409 0.6106659 0.0006905 1.0000000 

Table 2.  Analysis of the different ccFV-TD methods.  Instantaneous amplitude and phase errors are  

illustrated for an empty waveguide. 
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Figure 6. A fourteen period time averaged continuous TE10 wave inside a waveguide;  

(a)FD-TD; (b) ULF; (c) SLF; (d) RK4-1-IVS. 

 

The phase errors in Tab. (2) are of less significance for microwave heating purposes.  Phase 

errors are related to the speed at which the wave travels along the waveguide.  The 

observed differences in phase are of the order of nanoseconds in time, and hence, when 

numerically computing electromagnetic waves for the purpose of microwave heating, 

nanosecond shifts in the solutions are of little importance.  Although, the phase analysis does 

provide a good estimate of the accuracy of the different ccFV-TD schemes.  It should be 

noted that the values in Tab. (2) were calculated after two periods.  Numerical error can be 

cumulative in nature, and hence, the clear distinctions between the observed and the 

calculated values (eg. RK4-1-IVS in Tab. (2) and Fig. (6d)).  From the table it can be 

observed that the RK type methods without IVS can capture the solution better than any 

other scheme highlighted here.  Though, it must be noted that this study does not reflect the 

situation when there is a material present.    
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Figure 7. A fourteen period time averaged continuous TE10 wave inside a waveguide;  

(a) RK3-2G; (b) RK3-2G-IVS; (c) RK4-2G; (d) RK4-2G-IVS. 

 

The Leapfrog time integration numerical simulations illustrated in Figs. (6a-c) are observed to 

be performing well, although, it can be shown that the ULF scheme (see Fig. (6b)) is 

conditionally unstable [4].  Since the ULF scheme was found to unstable when an object was 

present, it will not be discussed hereafter.  In Figs. (6a) and (6c) the only difference is the 

location of the spatial unknowns.  It is clear that in an empty waveguide the SLF method is 

more than comparable to the FD-TD scheme.     
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Figure 8. A fully loaded waveguide with jr 2.01−=ε ; (a) FD-TD; (b) RK4-2G-RS; (c) SLF; 

(d) SLF-beta; (e) RK3-2G; (f) RK3-2G-IVS. 

 

Results for the empty waveguide have been tabulated.  For the other studies conducted 

hereafter, results will be demonstrated graphically.  This is because for microwave heating 

purposes, the requirement is for time averaged solutions.  It is not possible to determine the 

phase error from values that have been averaged over a number of periods.  It should also 

be noted that in Tab. (1) the CPU time has been normalised against the biggest.  This is 

because the computations were performed on a workstation, with limited amounts of 

memory.  It is expected that given more memory (RAM), the performance of the schemes 

would dramatically increase.  The large differences observed between the low and high order 
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time integration methods is largely due to the fact that the storage requirements of the solver 

exceeded the available memory, and the computer was forced into using some virtual 

memory for the computations.  Future research will investigate unstructured methods for the 

solution of microwave heating problems.  These will be implemented on high performance 

computers with large amounts of memory, and hence, more comparable results with regards 

to CPU time will be demonstrated.   

 

Figs. (8-11) depict the results generated for a waveguide that is fully loaded from 0.25z =  

metres to 0.4z =  metres.  In Figs. (8-9) the permittivity of the load is jr 2.01−=ε , while in 

Figs. (10-11) the dielectric property of the material is jr 5.02 −=ε .  In the second case, the 

absorptivity of the material is much larger, and due to the material’s properties, more waves 

should reflect at the dielectric interface. The electric fields have been computed according to 

(36).  In all of the studies, the FD-TD scheme has been implemented with the beta correction 

(32) at an interface. 

 

Fig. (8d) shows the result for the SLF method under the plane wave assumption (28), and 

Fig. (9b) shows the beta correction when RK4 time integration is applied.  In these figures, it 

can be seen that for the first dielectric property investigated, the plane wave assumption is of 

little significance (see Figs. (8c-d) and (9a-b)).  

 

It can be seen in Figs. (8-9) that when using the beta correction at an interface, the results 

are comparable to the related schemes that do not utilise the beta correction.  However, the 

absorptivity of the material is increased, and the reflections due to the phase changes 

become more evident, it is clear that by applying the beta correction in the SLF and RK4-2G 

schemes, the results are smoother (see Figs. (10c-d) and (11a-b)).  
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Figure 9. A fully loaded waveguide with jr 2.01−=ε ; (a) RK4-2G; (b) RK4-2G-beta;  

(c) RK4-2G-IVS; (d) RK4-2G-IVS at interface; (e) RK4-2G-IVS at interface and material;  

(f) RK4-2G-IVS not interface. 
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Figure 10. A fully loaded waveguide with jr 5.02 −=ε ;  (a) FD-TD; (b) RK4-2G-RS; (c) SLF;  

(d) SLF-beta; (e) RK3-2G; (f) RK3-2G-IVS. 

 

By placing the unknowns E  and H  at the cell-centres, the schemes discussed in this paper 

evidently introduce oscillations in the numerical solutions, and these oscillations or errors 

cannot be completely removed without the inclusion of the damping effect in the discrete in 

space Maxwell’s equations. 
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Figure 11. A fully loaded waveguide with jr 5.02 −=ε ;  (a) RK4-2G; (b) RK4-2G-beta; 

(c) RK4-2G-IVS; (d) RK4-2G-IVS at interface; (e) RK4-2G-IVS at interface and material;  

(f) RK4-2G-IVS not interface. 

By placing the unknowns E  and H  at the cell-centres, the schemes discussed in this paper 

evidently introduce oscillations in the numerical solutions, and these oscillations or errors 

cannot be completely removed without the inclusion of the damping effect in the discrete in 

space Maxwell’s equations. 
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In Figs. (9c-f), the RK4 time integration with a number of applications of intensity vector 

splitting is established.  It is clear from Figs. (9) and (11) that when IVS is used everywhere 

inside the computational domain there is damping in the solution.  

 

Depending on the implementation of IVS (see Tab. (1)) within the numerical solver, the 

amount of reflection occurring at an interface can be subsequently affected.  Figs. (11c-f) 

illustrate that by using the IVS result at a dielectric interface, the wave is better 

approximated.  To reduce the loss of amplitude in the solution, the IVS result should only be 

used at an interface if there are gradient approximations present (14).  Although, this is not to 

say that given higher order spatial discretisations, and hence higher order gradient 

approximations, the IVS schemes would not preform adequately everywhere.  Higher order 

spatial discretisations will be the topic of future research. 

 

 

 

 

 

 

Figure 12. The waveguide set up with dielectric of the multi-mode study. 

 

The studies conducted so far have all been on a single mode waveguide.  The following sets 

of simulations were performed on the same waveguide with a load of permeability j2εr −= .  

The positioning of the load, incident field and PML absorbing layer is shown in Fig. (12).  The 

simulations were run for sixteen periods, where the last two periods were averaged 

according to (31).  The results shown are electric fields for the 0.025y =  plane.  Fig. (13) 

exhibits the contour plots of the fields.  

The material has height 0.05m, so that it completely fills the waveguide in the y-coordinate 

direction.  Similarly to the previous examples, the domain has 96 000 (40 x 20 x 120) cells.  

The time stepping is chosen according to the restriction described in the first study.   
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It is clear in Fig. (13) that the introduction of damping removes the noise apparent in the 

other schemes that do not utilise IVS.  FD-TD due to its staggered in space and time 

discretisation eliminates this error.  The introduction of the beta correction tends to smooth 

the solution (see Figs. (13c-d)).  For the SLF method with beta correction, the plane wave 

assumption was made on faces adjoining free space.  From the Figs. (13c-d) there is an 

evident difference in the noise inside the guide.  The effect of the beta correction slightly 

dampens the noise that is transmitted and reflected at a boundary.  The methods that utilise 

IVS in Fig. (13) clearly approximate the solution in a smooth manner.  Figs. (13e-f) 

demonstrate that the RK3-2G technique does not perform as well as the RK4-2G time 

integration procedure, whether with or without IVS.  It can be concluded that RK3-2G 

methods have high loss of amplitude in waveguides where all the components of the fields 

exist.  That is to say that when there is a load present, the lower order RK methods tend to 

have larger amplitude losses, even though they performed well in empty waveguide 

structures.  When IVS was applied at the interface of free space and the material alone, the 

trends in the solution were very similar that to the RK4-2G solution (sees Fig. (13g)).  The 

difference between the RK4-2G and the RK4-2G method that utilised IVS at an interface was 

the same as the difference between the SLF and SLF with beta correction techniques (see 

Figs. (13c-d)).  Therefore, in waveguides that exhibit full field behaviour, the solution can be 

obtained to higher accuracy by applying some correction to the interface between free space 

and the dielectric.  It should be noted that the FD-TD scheme demonstrated in Fig. (13a) also 

used the beta correction at the material interface.  When simulating electromagnetic waves 

inside microwave heating apparatuses, special care should be taken for the treatment of the 

boundaries.         
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Figure 13. Normalised 2D Contour plots of the electric field in a loaded multi-mode waveguide; (a) FD-TD; 

 (b) RK4-2G-IVS not interface; (c) SLF; (d) SLF-beta; (e) RK3-2G; (f) RK3-2G-IVS; 

(g) RK4-2G; (h) RK4-2G-IVS. 

 

In summary, from the previous case studies, the differences between the RK3 and RK4 time 

integration methods when applied to (4) were not obvious in Figs. (8-11).  When this case 

study is analysed, it is evident that the higher the order of the numerical solver in time, the 

better it is able to capture the FD-TD solution (in terms of Runge-Kutta methods).  Although 

the RK3 method requires less time than the RK4 method to approximate the solution, the 

solution obtained from the RK3 scheme may not be representative of reality.  Although, it is 

possible to reduce the spatial mesh size to reduce errors in the RK3 methods, the cost of the 

extra computations on the larger number of grid cells outweighs the extra iteration in time 

required in approximating the next solution for the RK4 time stepping.          

 



 34

In conclusion, the results indicate that cell-centred schemes can be applied to capture the 

electromagnetic phenomena inside a waveguide.  Methods such as ULF inherently incur 

large errors due to the discretisations, and therefore, are not recommended for real 

applications.  The introduction of IVS, or the Riemann solver may dampen the fields, and 

special care should be taken when lower orders of spatial approximations are used.  It was 

shown though that with special care and consideration, beta correction and IVS can be used 

in confidence to correct any oscillatory behaviour at material interfaces. 

 

5. Conclusion 

In this work, cell-centred finite-volume time-domain solvers for the Maxwell’s equations were 

investigated and a number of solution strategies have been applied to resolve the different 

waveguide studies.  It is well known that although the FD-TD method is very accurate, it is 

not straightforward to migrate it to unstructured domains.  A number of cell-centred schemes 

have been formulated for structured domains, and further research in the area will 

demonstrate how these schemes can be implemented on completely unstructured grids.   

 

An existing Petropolous type PML boundary region was investigated and the governing 

equations reformulated to enable it to be implemented in the new cell-centred solution 

methodology.  It was shown that such an absorbing layer could be applied when simulating 

microwave heating problems using a cell-centred approach.  The plane wave assumption 

around a material interface has been applied to schemes that do not utilise intensity vector 

splitting.  Depending on the time integration technique and the properties of the material, the 

results were improved using this strategy.  When intensity vector splitting or the Riemann 

solver was used, the results appeared to be smooth.  This was due to the damping effect that 

these techniques induced in the numerical solution.  Furthermore, it was shown that when 

using such techniques, care must be taken to insure that the solution is not overdamped, 

which could impose loss of significance in the solution.  Special boundary treatments to cater 

for lower order dielectric interface conditions were formulated and demonstrated.  Taking this 

into account, structured time-domain cell-centred numerical solvers for the solution of 
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Maxwell’s equations in both an empty and loaded waveguide have produced reasonable 

results that were able to capture the time averaged electric fields sufficiently accurately.   

These time averaged electric fields are required to predict the power, and hence, the heating 

distribution inside a load within a waveguide.               

 

This research demonstrates that for the purpose of microwave heating, cell-centred in space 

techniques can be applied to resolve the microwave power inside a dielectric material.  

Future research will analyse the techniques described here when applied on tetrahedral 

meshes both in a waveguide and a cavity structure.   
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