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A FRACTIONAL STOCHASTIC EVOLUTION EQUATION DRIVEN

BY FRACTIONAL BROWNIAN MOTION

V. V. ANH AND W. GRECKSCH

A�������. This paper introduces a semilinear stochastic evolution equation which con-
tains fractional powers of the infinitesimal generator of a strongly continuous semigroup
and is driven by Hilbert space-valued fractional Brownian motion. Fractional powers of
the generator induce long-range dependence in space, while fractional Brownian motion
induces long-range dependence in time in the solution of the equation. An approximation
of the evolution solution is then constructed by the splitting method. The existence and
uniqueness of the solution and mean-square convergence of the approximation algorithm
are established.

1. I
��������


In many applications such as heat conduction and fluid flow in porous media, propaga-
tion of seismic waves, diffusion and transport of macromolecules in living tissues (Levin
[20], Barabasi and Stanley [6], Shlesinger et al. [23], Innaccone and Khokha [16], Carpin-
tera and Mainardi [9], Hilfer [15]), the non-homogeneities of the medium may alter the
laws of Markov diffusion in a fundamental way. In particular, the correlation function of
the diffusion process may decay to zero at a much slower rate than the usual exponen-
tial rate of Markov diffusion, resulting in long-range dependence (LRD) (Beran [8], Anh
and Heyde [3], Leonenko [19]). A class of models which are suitable for describing this
phenomenon in space and time is that of evolution equations:

dX (t, x) = AxX (t, x) dt+ f (t, x,X (t, x)) dt+ g (t) dB (t, x) ,(1.1)

X (0, x) = X0 (x) , x ∈ R,
where Ax is a fractional (in space) differential operator and B (t, x) is a fractional (in
time) Brownian motion. An application of the semigroup theory (Da Prato and Zabczyk
[22]), or the monotone operator theory (Krylov and Rozovskij [18], Grecksch and Tudor
[14]), or the Green function theory (Manthey [21], Anh and Leonenko [4]) can be invoked
to analyse Eq. (1.1). Here, we interpret Ax as the infinitesimal generator of a semigroup
S (t) of contractions and define the solution of (1.1) as

X (t, x) = S (t)X0 (x) +

∫ t

0

S (t− s) f (s, x,X (s, x)) ds+

∫ t

0

S (t− s) g (s) dB (s, x) ,

(1.2)

where the stochastic integral in (1.2) will be defined in Section 2.
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It is known that, in general, a fractional power of an infinitesimal generator is not an
infinitesimal generator again (Balakrishnan [5], Ahmed [1], Bensoussan et al . [7]). In par-

ticular, if A is an infinitesimal generator, then − (−A)α/2 generates a strongly continuous
semigroup only for α ≤ 1. Two fundamental examples are A = ∆, the Laplacian operator
(Feller [11]) and A = ∆ − I (Grecksch and Anh [13]). The resulting operators (−∆)α/2
and (I −∆)α/2 are inverses of the Riesz potential and the Bessel potential respectively
(Donoghue [10], Stein [24]). The operator (−∆)α/2 , which defines a dynamic model of
fractional Brownian motion (fBm) through the equation

(−∆)α/2X (t) = ε (t) , t ∈ R,(1.3)

ε (t) being white noise, plays an important role in the theory of LRD processes (Anh et

al. [2]). As noted above, − (−∆)α/2 generates a semigroup for 0 < α ≤ 1. But a process
with stationary increments defined by (1.3) displays LRD only for 1 < α < 3/2 (Anh et
al. [2]). Hence, in order to have the semigroup solution (1.2) which possesses LRD, the
operator Ax must take a different form. In this paper, we consider the composition

Ax = − (I −∆)γ/2 (−∆)α/2 ,(1.4)

which defines fractional Riesz-Bessel motion (fRBm) through the equation

(I −∆)γ/2 (−∆)α/2X (t) = ε (t) , t ∈ R(1.5)

(Anh et al. [2]). It is noted that the spectral density of fBm is given by

ffBm (λ) =
c

|λ|2α
, 1/2 < α < 3/2, c > 0, λ ∈ R

(cf. (1.3)), while that of fRBm is

ffRBm (λ) =
c

|λ|2α
(
1 + λ2

)γ , 1/2 < α < 3/2, γ ≥ 0, c > 0, λ ∈ R

(cf. (1.5)), which reduces to ffBm for γ = 0 and displays LRD by definition. We will show
that the operator (1.4) generates a strongly continuous semigroup (Proposition 1). The
solution of (1.1) will then possess spatial LRD via the operator (1.4) and temporal LRD
via fBm which drives the equation. The Hilbert space-valued fBm B (t, x) of (1.1) will be
defined in Section 2, together with the corresponding stochastic integral. The existence
and uniqueness of (1.2) as a generalised solution over a Gelfand triple of Hilbert spaces
will be established in Theorem 1.
In Section 3, a splitting method is described to approximate (1.2). The basic idea of the

splitting method consists of the construction of two sequences of equations with a time
discretisation. The first sequence contains equations which are defined with probability
1 and can be solved as a deterministic problem. The second sequence contains equations
with stochastic integrals and can be solved as a purely stochastic problem, such as by
simulation of a stochastic integral. The convergence of the approximation algorithm, in
the mean square sense, is provided in Theorem 2.

2. A ���������� �������
���� ������
 ���� �������
�� ��������� �
�

�������
�� B���
��
 �����


We consider the stochastic partial differential equation

dX (t, x) = − (I −∆)γ/2 (−∆)α/2X (t, x) dt+ f (t, x,X (t, x)) dt+ g (t) dB (t, x)(2.1)
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with X (0, x) = X0 (x) , x ∈ R. We want to define the generalised solution of (2.1) with
the help of semigroup theory.
Let us denote the Fourier transform of f by f̂ :

f̂ (x) =
1√
2π

∫

R

f (y) e−ixydy

for f ∈ L1 (R) ∩ L2 (R) . We define (−∆)α/2 by

(−∆)α/2 f (x) = 1√
2π

∫

R

eixy |y|α f̂ (y) dy

for f ∈ D
(
(−∆)α/2

)
= {f ∈ Lpw (R) ; f, |y|α f̂ (y) ∈ L1 (R)∩L2 (R) , 1√

2π

∫
R
eixy |y|α f̂ (y) dy ∈

Lpw (R)}, where Lpw (R) , p > 1, is the Banach space {f : f is measurable and
∫
R
|f (x)|pw (x) dx <

∞} and w (x) = (1 + x2)
−µ/2

, µ > 1. For simplicity of notation, we put m = νµ. The

operator (I −∆)γ/2 is defined by

(I −∆)γ/2 f (x) = 1√
2π

∫

R

eixy
(
1 + y2

)γ/2
f̂ (y) dy

for f ∈ D
(
(I −∆)γ/2

)
= {f ∈ Lpw : f, (1 + y2)

γ/2
f̂ (y) ∈ L1 (R) ∩ L2 (R) ,

1√
2π

∫
R
eixy (1 + y2)

γ/2
f̂ (y) dy ∈ Lpw (R)}.

We consider the Green function of the operator ∂
∂t
+ (I −∆)γ/2 (−∆)α/2:

p (α, γ, µ; t, x) =
1

2π

∫ ∞

−∞
exp

(
iλx− µt |λ|α

(
1 + λ2

)γ/2)
dλ,

1/2 < α < 3/2, γ ≥ 0, t ≥ 0, x ∈ R, and define

S (t) f (x) =

∫ ∞

−∞
p (α, γ, µ; t, x) f (x− y) dy,

S (0) f (x) = f (x)

for f in Lpw (R) . It is seen that

|S (t) f (x)| ≤
∫ ∞

−∞
|p (α, γ, µ; t, y) f (x− y)| dy

=

∫ ∞

−∞

∣∣p
(
α, γ, µ; t, t1/(α+γ)u

)
t1/(α+γ)

∣∣ ∣∣f
(
x− t1/(α+γ)u

)∣∣ du

≤
(∫ ∞

−∞
|p (α, γ, µ; 1, u)|p′

(
1 + u2

)νp′
2 du

)1/p′ (∫ ∞

−∞

∣∣f
(
x− t1/(α+γ)u

)∣∣p (1 + u2
)− νp

2 du

)1/p
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by Hölder’s inequality. Thus,
∫ ∞

−∞
|S (t) f (x)|p

(
1 + x2

)−νp

2 dx(2.2)

≤
(∫ ∞

−∞
|p (α, γ, µ; 1, u)|p′

(
1 + u2

)νp′
2 du

)p/p′

×
∫ ∞

−∞

(∫ ∞

−∞

∣∣f
(
x− t1/(α+γ)u

)∣∣p (1 + u2
)−νp/2

du

)(
1 + x2

)−νp/2
dx.

Lemma 1.
∫
|x|≥1 |p (α, γ, µ; 1, x)|

p′ |x|νp′ dx <∞ for m < p/q, q ∈ (1, 2] .

Proof. By integration by parts,

1

2π

∫ ∞

−∞
eixy

d

dy

(
exp

(
−µ |y|α

(
1 + y2

)γ/2)
dy
)
= (−ix) p (α, γ, µ; 1, x) .

Thus,
∫

|x|≥1
|p (α, γ, µ; 1, x)|p′ |x|νp′ dx

=

∫

|x|≥1

∣∣∣∣
1

2π

∫ ∞

−∞
eixy

(
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
)
dy

∣∣∣∣
p′

|x|(ν−1)p′ dx

≤
(∫

|x|≥1
|x|(ν−1)p′s′ dx

)1/s′
(2.3)

×
(∫

|x|≥1

∣∣∣∣
1

2π

∫ ∞

−∞
eixy

(
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
)
dy

∣∣∣∣
p′s
)1/s

.

By the Hausdorff-Young inequality,
(∫ ∞

−∞

∣∣∣∣
1

2π

∫ ∞

−∞
eixy

(
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
)
dy

∣∣∣∣
q′

dx

)1/q′

≤ A (q)

(∫ ∞

−∞

∣∣∣∣
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
∣∣∣∣
q

dy

)1/q
.

Thus, writing p′s = q′, inequality (2.3) becomes
∫

|x|≥1
|p (α, γ, µ; 1, x)|p′ |x|νp′ dx

≤ (A (q))q
′/s

(∫

|x|≥1
|x|(ν−1)p′s′ dx

)1/s′
(2.4)

×
(∫ ∞

−∞

∣∣∣∣
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
∣∣∣∣
q

dy

) q′

qs

.

We have ∫

|x|≥1
|x|(ν−1)p′s′ dx <∞ if (ν − 1) p′s′ + 1 < 0,(2.5)
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i.e. if m < p/q. Now,

d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
= −µ (sgn y)α

×
(
γyα−1

(
1 + y2

)γ/2
+ αyα+1

(
1 + y2

) γ
2
−1
)
exp

(
−µ |y|α

(
1 + y2

)γ/2)
.

Thus,
∫ ∞

−∞

∣∣∣∣
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
∣∣∣∣ dy <∞,

and also ∫ ∞

−∞

∣∣∣∣
d

dy
exp

(
−µ |y|α

(
1 + y2

)γ/2)
∣∣∣∣
q

dy <∞(2.6)

for some q ∈ (1, 2] . The lemma now follows from (2.4)-(2.6).

Lemma 2.
∫∞
−∞

(∫∞
−∞
∣∣f
(
x− t1/(α+γ)u

)∣∣p (1 + u2)
−νp/2

du
)
(1 + x2)

−νp/2
dx

≤ c
(
1 + t(m−1)/(α+γ)

)
‖f‖pw,p , c being a constant.

Proof. See Takano [25]

Lemma 3. S (t) is a bounded operator on Lpw (R) if (m− 1) / ((α+ γ) p) < 1 and m <
p/q for some q ∈ (1, 2] .
Proof. This result follows from (2.2) and Lemmas 1 and 2.

Lemma 4. S (t)S (s) = S (t+ s) for t, s ≥ 0, and S (t) f → f as t → 0+ for all f in
Lpw (R) in the L

p
w-norm.

Proof. See Takano [25]

The following result is thus obtained:

Proposition 1. {S (t) , 0 ≤ t <∞} is a strongly continuous one-parameter semigroup
for α+ γ > m−1

p
and m < p

q
for some q ∈ (1, 2] .

We now choose p = 2. Let
{
Bhj (t) , t ≥ 0

}
, j = 1, 2, ..., be independent centered

Gaussian processes with Bhj (0) = 0 on a given probability space (Ω,F , P ) , where we
assume

E
(
Bhj (t)−Bhj (s)

)2
= |t− s|2h µj , j = 1, 2, ...,(2.7)

µj > 0,
∞∑

j=1

µj <∞, h ∈ (1/2, 1) .(2.8)

The processes
(
Bhj (t)

)
are independent fractional Brownian motions with Hurst index h

and E
(
Bhj (1)

)2
= µj , j = 1, 2, ... It follows from Kleptsyna et al. [17] that

Bhj (t) =

(∫ 0

−∞

(
|t− r|h−1/2 − |r|h−1/2

)
dWj (r) +

∫ t

0

|t− r|h−1/2 dWj (r)

)
,(2.9)

where {Wj (t) , t ≥ 0} , j = 1, 2, ... are real independent Wiener processes with EW 2
j (t) =

µjt.
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Let H be a separable Hilbert space with scalar product (·, ·)H and {ej, j = 1, 2, ...}
denotes a complete orthogonal system in H. Then

∞∑

j=1

E
∥∥Bhj (t) ej

∥∥2
H
= t2h

∞∑

j=1

µj <∞

and the following definition is appropriate:

Definition 1. Bh (t) =
∑∞
j=1B

h
j (t) ej is called a H-valued fractional Brownian motion

where the sum is defined in mean square.

Lemma 5. The covariance operator of
{
Bhj (t) , t ≥ 0

}
, j = 1, 2, ..., is a positive nuclear

operator Q (t, s) with

tr (Q (t, s)) = 1

2

∞∑

j=1

µj

(
t2h + s2h − |t− s|2h

)
.(2.10)

Proof. See Grecksch and Anh [12]

Lemma 5 shows that Bh (t) is a H-valued Gaussian process and the trace of the co-
variance operator is given by (2.10).
Let us now consider f : [0, T ]× R× R→ R with

|f (t, x, y)|2 ≤ K2
(
1 + y2

)
,(2.11)

|f (t, x, y)− f (t, x, z)|2 ≤ K2 |y − z|2(2.12)

for all t ∈ [0, T ] , x, y, z ∈ R and K > 0 being a fixed constant. We assume that f is
measurable with respect to t, x. Also, let g be a measurable function defined on [0, T ]
with |g (t)| ≤ C, where C is a positive constant.
Assume that the initial condition X0 is a function in L2w (R) . We then define the

problem (2.1) by the integral equation

X (t, x) = S (t)X0 (x) +

∫ t

0

S (t− s) f (s, x,X (s, x)) ds+

∫ t

0

S (t− s) g (s) dB (s, x) ,

(2.13)

where S (t) is the semigroup established in Proposition 1 and the stochastic integral is
defined by

∫ t

0

S (t− s) g (s) dB (s, x) =
∞∑

j=1

∫ t

0

S (t− s) g (s) ej (x) dB
h
j (s) .

Let t ∈ [0, T ] be fixed and 0 = t0 < t1 < ... < tn = t, g (s) = gi for s ∈ [ti, ti+1). Then

Lemma 6.

E

∥∥∥∥
∫ t

0

S (t− s) g (s) dB (s, x)

∥∥∥∥
2

L2w(R)

≤ C2
t C

2t2n
∞∑

j=1

µj .
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Proof. Let m ≥ 1 be chosen arbitrarily. Then

E

∥∥∥∥∥

m∑

j=1

∫ t

0

S (t− s) g (s) ej (x) dB
h
j (s)

∥∥∥∥∥

2

L2w(R)

= E

∥∥∥∥∥

m∑

j=1

n−1∑

k=0

S (t− tk) gkej (x)
(
Bhj (tk+1)−Bhj (tk)

)
∥∥∥∥∥

2

L2w(R)

= E

(
m∑

j=1

n−1∑

k=0

S (t− tk) ej (x)
(
Bhj (tk+1)−Bhj (tk)

)
gk

×
m∑

j=1

n−1∑

k=0

S (t− tk) ej (x)
(
Bhj (tk+1)−Bhj (tk)

)
gk

)

L2w(R)

=
m∑

j=1

n−1∑

k=0

n−1∑

l=0

(S (t− tk) ej (t) , S (t− tl) ej (x))L2w(R) gkgl

×E
((
Bhj (tk+1)−Bhj (tk)

) (
Bhj (tl+1)−Bhj (tl)

))

≤ C2
t C

2
m∑

j=1

n−1∑

k=0

n−1∑

l=0

E
(
Bhj (tk+1)−Bhj (tk)

) (
Bhj (tl+1)−Bhj (tl)

)

= C2
t C

2
m∑

j=1

E

(
n−1∑

k=0

Bhj (tk+1)−Bhj (tk)

)2

= C2
t C

2
m∑

j=1

E
(
Bhj (t)

)2
= C2

t C
2t2h

m∑

j=1

µj

for all m, since E
((
Bhj (tk+1)−Bhj (tk)

) (
Bhj (tl+1)−Bhj (tl)

))
≥ 0. Consequently,

E

∥∥∥∥
∫ t

0

S (t− s) g (s) dB (s, x)

∥∥∥∥
2

L2w(R)

=
∞∑

j=1

E

∥∥∥∥
∫ t

0

S (t− s) g (s) ej (x) dB
h
j (s)

∥∥∥∥
2

L2w(R)

≤ C2
t C

2t2n
∞∑

j=1

µj.

We see that
∫ t
0
S (t− s) ej (x) g (s) dB

h
j (s) is properly defined and it is not difficult

to extend this definition of stochastic integral to general bounded measurable functions
g (s) .

Theorem 1. There is a unique L2w (R)-valued solution process {X (t, ·) , t ∈ [0, T ]} of
(2.13) with sup0≤t≤T E ‖X (t, ·)‖2L2w(R) <∞.

Proof. Let a be a real number with a ≥ 2K2C2
T . We note that

‖X‖ =
(
sup0≤t≤T e

−atE ‖X (t, ·)‖2L2w(R)
)1/2

is an equivalent norm on the Banach space

of all L2w (R)-valued processes {X (t, ·) , t ∈ [0, T ]} with
(
sup0≤t≤T E ‖X (t, ·)‖2L2w(R)

)1/2
<
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∞. We denote this space by M. Then the operator T defined by

T (X) (t, x) = S (t)X0 (x) +

∫ t

0

S (t− s) f (s, x,X (s, x)) ds+

∫ t

0

S (t− s) g (s) dB (s, x)

is an M-valued operator. For X,Y ∈M, it holds that

‖T (X)− T (Y )‖2 = sup
0≤t≤T

e−atE

∥∥∥∥
∫ t

0

S (t− s) [f (s, x,X (s, x))− f (s, x, Y (s, x))] ds

∥∥∥∥
2

L2w(R)

≤ K2C2
T sup
0≤t≤T

e−atE

∫ t

0

eas sup
0≤τ≤T

e−aτ ‖X (τ , ·)− Y (τ , ·)‖2L2w(R) ds

= K2C2
T sup
0≤t≤T

1

a

(
1− 1

eat

)
‖X − Y ‖2

≤ K2C2
T

a
‖X − Y ‖2 .

Thus, for a ≤ 2K2C2
T , T is a contraction in M . The Banach fixed-point theorem then

gives the statement.

3. A
 ������������


We consider a partition 0 = t
(r)
1 < t

(r)
2 < ... < t

(r)
Nr
= t ∈ [0, T ] with

limr→∞max0≤j≤Nr−1
(
t
(r)
j+1 − t

(r)
j

)
= 0. For brevity of notation, we shall write t

(r)
j = tj .

We introduce stochastic processes
{
Xr
j (s) , s ∈ [tj , tj+1)

}
with values in L2w (R) defined

by

Xr
j (s, x) = S (s− tj)X

r
j (tj , x) +

∫ s

tj

S (s− u) f
(
u, x,Xr

j (u, x)
)
du, j = 0, ..., Nr − 1,

(3.1)

where

Xr
j (tj, x) = S (tj − tj−1)X

r
j−1 (tj − 0, x) +

∫ tj

tj−1

S (tj − u) g (u) dB (u, x)(3.2)

and Xr
0 (0, x) = X0 (x) .

Analogous to (2.13) as the generalised solution of (2.1), the solution (3.1) can be defined
as the generalised solution of

∂

∂s
Xr
j (s, x) = − (I −∆)γ/2 (−∆)α/2Xr

j (s, x) + f
(
s, x,Xr

j (s, x)
)

with

Xr
j (tj , x) = S (tj − tj−1)X

r
j−1 (tj − 0, x) .

We can prove in a similar manner to the proof of Theorem 1 the following result:

Lemma 7. There is a unique solution process
{
Xr
j (s, x) , s ∈ [tj, tj+1)

}
of (3.1), (3.2)

with sups∈[tj ,tj+1)E ‖X (s, ·)‖
2
L2w(R)

<∞ for all j = 0, ..., Nr − 1 and r = 1, 2, ....
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If we introduce the process X̃r (s, x) = X̃j (s, x) for s ∈ [tj , tj+1), j = 0, ..., Nr−1, then
we can write for (3.1), (3.2) in the case s ∈ [tj, tj+1)

X̃r (s, x) = S (tj)X0 (x) +

∫ tj

0

S (tj − u) f
(
u, x, X̃r (u, x)

)
du

+

∫ tj

0

S (tj − u) g (u) dB (u, x) +

∫ s

tj

S (s− u) f
(
u, x, X̃r (u, x)

)
du(3.3)

for j = 0, ..., Nr − 1. We define

X̃r (t, x) = S (t− tNr−1) X̃
r (tNr−1, x) +

∫ t

tNr−1

S (t− u) f
(
u, x, X̃r (u, x)

)
du(3.4)

= S (t)X0 (x) +

∫ t

0

S (t− u) f
(
u, x, X̃r (u, x)

)
du

+

∫ tNr−1

0

S (t− tNr−1) g (u) dB (u, x) .

We want to prove that X̃r (t, x) is an approximation of X (t, x) .We first prove an a priori
estimate.

Lemma 8. There is a positive constant C̃ independent of r with E
∥∥∥X̃r (s, ·)

∥∥∥
2

L2w(R)
≤ C̃

for all r and s ∈ [0, t] .
Proof. We choose arbitrary numbers j ∈ {0, ..., Nr − 1} and r ∈ {1, 2, ...} . Since t is
finite, it follows from the proof of Proposition 1 that

‖S (u)‖ ≤ D(3.5)

for a fixed constant D > 0 and all u ∈ [0, t] . Then, from Schwarz’s inequality, the
properties of f, g and Lemma 6, we get

E
∥∥∥X̃r (s, ·)

∥∥∥
2

L2w(R)
≤ 4D2E ‖X0 (·)‖2L2w(R)

+4tjD
2

∫ tj

0

(
1 + E

∥∥∥X̃r (u, ·)
∥∥∥
2

L2w(R)
du

)

+4D2C2t2hj

∞∑

k=1

µk

+4 (s− tj)D
2

∫ s

tj

(
1 + E

∥∥∥X̃r (u, ·)
∥∥∥
2

L2w(R)

)
du

≤ 4D2

(
E ‖X0 (·)‖2L2w(R) + 2t

2 + C2t2h
∞∑

k=1

µk

)

+4tD2

∫ s

0

E
∥∥∥X̃r (u, ·)

∥∥∥
2

L2w(R)
du.

An application of the Gronwall lemma then gives the statement.

Theorem 2. It holds that

lim
r→∞

E
∥∥∥X̃r (t, ·)−X (t, ·)

∥∥∥
2

L2w(R)
= 0.
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Proof. It follows from (2.13) and (3.4) that

X̃r (t, x)−X (t, x) =

∫ t

0

S (t− u)
[
f
(
u, x, X̃r (u, x)

)
− f (u, x,X (u, x))

]
du

+

∫ t

tNr−1

S (t− tNr−1) g (u) dB (u, x) .

From (3.5), the Schwarz inequality, (2.12) and Lemma 6, we get

E
∥∥∥X̃r (t, ·)−X (t, ·)

∥∥∥
2

L2w(R)
≤ 2D2K2

∫ t

0

E
∥∥∥X̃r (u, ·)−X (u, ·)

∥∥∥
2

L2w(R)
du

+2D2C2 (t− tNr−1)
∞∑

j=1

µj .

An application of the Gronwall lemma then yields the statement for r→∞.
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