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Abstract

The fractal method has been successfully used to study many problems in Physics, Mathe-
matics, Engineering, Finance, even in Biology till now. In the past decade or so there has been
a ground swell of interest in unravelling the mysteries of DNA. How to get more bioinformations
from these DNA sequences is a challenging problem. The problem of classification and evolution
relationship of organisms are the central problems in Bioinformatics. And it is also very hard
to predict the secondary and space structure of a protein from its amino acid sequence. In this
paper, some recent results related these problems obtained through multifractal analysis and
iterated function system (IFS) model are introduced.

Key words: Measure representation, Multifractal analysis, IFS (RIFS) model, complete genome,
length sequence, protein.

1 Introduction

The concept of ”fractal” was proposed by Benoit Mandelbrot [1] in the later of 1970s. Fractal
geometry provides a mathematical formalism for describing complex spatial and dynamical struc-
tures [1, 2] (e.g. the strange attractor of a chaotic dynamical system is usually a fractal). The
fractal method has been successfully used to study many problems in Physics, Mathematics, En-
gineering, and Biology. Multifractal analysis was initially proposed to treat turbulence data. This
kind of analysis is a useful way to characterise the spatial inhomogeneity of both theoretical and
experimental fractal patterns [3] and play an important role in the fractal theory. In recent years
it has been applied successfully in many different fields including time series analysis and financial
modelling.

In the past decade or so there has been a ground swell of interest in unravelling the mysteries
of DNA. The heredity information of most organisms is encoded in a universal way in long chains
of nucleic acids formed by four different nucleotides, namely adenine (a), cytosine (a), guanine (g)
and thymine (t). The DNA sequence identifies a given species, distinguishing it from all other
species, even those with the same nucleotide composition. A large number of these DNA sequences
is widely available in recent times. One of the challenges of DNA sequence analysis is to determine
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the patterns in these sequences. It is useful to distinguish coding from noncoding sequences.
Problems related to the classification and evolution of organisms are also important. A significant
contribution in these studies is to investigate the long-range correlation in DNA sequences [4-19].
Berthelsen et al. [20] considered the global fractal dimensions of human DNA sequences treated as
pseudorandom walks.

Since the first complete genome of the free-living bacterium Mycoplasma genitalium was se-
quenced in 1995 [21], an ever-growing number of complete genomes has been deposited in public
databases. The availability of complete genomes induces the possibility to establish some global
properties of these sequences. A time series model was proposed by Yu et al. [22, 23, 24] to study
the correlation property of coding segments and length sequences of complete genome.

The global and visual methods can amplify the difference between a DNA sequence and a
random sequence as well as to distinguish DNA sequences themselves in more details [25]. For this
purpose, after the famous chaos game representation of DNA sequences proposed by Jeffrey et al
[26, 27], Hao et al. [25] proposed a visualisation method based on counting and coarse-graining
the frequency of appearance of substrings with a given length. They called it the portrait of an
organism. They found that there exist some fractal patterns in the portraits which are induced by
avoiding and under-represented strings. The fractal dimension of the limit set of portraits was also
discussed [28, 29]. The connection between the Hao’s scheme and the chaos game representation
is established through the multifractal property [30]. In [31], Yu et al. proposed the measure
representation of complete genomes followed by the multifractal analysis. The multifractal analysis
of the length sequences based on the complete genome was performed in [32].

A protein is composed of one or more chains that are covalently joined. The chain of amino
acids are called polypeptides. Twenty different kinds of amino acids are found in proteins. The
three-dimensional structure of proteins is a complex physical and mathematical problem of prime
importance in molecular biology, medicine, and pharmacology [33, 34]. The central dogma mo-
tivating structure prediction is that: ’the three dimensional structure of a protein is determined
by its amino acid sequence and its environment without the obligatory role of extrinsic factors’
[35, 36]. Once an amino acid sequence is known, the number of possible space structures it can fold
to is enormous. How to predict the high level structures (secondary and space structures) from the
amino acid sequence is a challenge problem in science, in particular to the large proteins. A number
of coarse-grained models have been proposed to provide insight to these very complicated issues
[36]. A well known model in this class is the HP model proposed by Dill et al. [37]. In this model
20 kinds of amino acids are divided into two types, hydrophobic (H) (or non-polar) and polar (P)
(or hydrophilic). In last decade the HP model has been extensively studied by several groups (e.g.
[34, 38, 39]). After studying the model on lattices, Li et al. [38] found there are small number of
structures with exceptionally high designability which a large number of protein sequences possess
as their ground states. These highly designable structures are found to have protein-like secondary
structures [34, 38, 40]. But the HP model may be too simple and lacks enough consideration on
the heterogeneity and the complexity of the natural set of residues [41]. According to Brown [42],
in the HP model, one can divide the polar class into three classes: positive polar, uncharged polar
and negative polar. So 20 different kinds of amino acids can be divided into four classes: non-polar,
negative polar, uncharged polar and positive polar. In this model, one gets more details than in
the HP model. We call this model a detailed HP model. In this paper we will adopt the detailed
HP model.

The fractal method has been used to study the protein backbone [43], the accessible surface of
protein [43, 44, 45, 46] and protein potential energy landscapes [47]. The multifractal analysis of
solvent accessibilities in proteins was done by Balafas and Dewey [48]. In [48], the model used to
fit the multifractal spectrum was also discussed. But the parameters derived in their multifractal
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analysis cannot be used to predict the structural classification of a protein from its amino acid
sequence.

The amino acid sequence of a protein is also called a protein sequence in this paper. Based the
idea of DNA walk model and different mapping, a decoded walk model was proposed to study the
correlation property of protein sequences by Pande et al. [49] using ”Bridge analysis” and Straint
and Dewey [50] using multifractal analysis. Deviations of the decoded walk from random behaviour
provides evidence of memory.

Inspired by the idea of measure representation of DNA sequence [31], we also proposed a visual
representation – measure representation of protein sequences based on the detailed HP model [51].

To our knowledge [52], it is much harder to simulate a measure than to fit its multifractal spec-
trum (because different measures may have the same multifractal spectrum). The iterated function
systems (IFS) model proposed by Barnsley and Demko [53] is a powerful tool in fractal theory
(many fractals such as the Cantor set can be generated by the IFS model). We found that the re-
current IFS (RIFS) model can be used to simulate the measure representation of complete genomes
while the IFS model can be used to simulate the measure representation of protein sequences. In
this paper, the estimated parameters in RIFS or IFS model are used to discuss the classification
and evolutionary tree of living organisms and the structural classification of large proteins.

2 Measure representation of complete genomes

We call any string made of K letters from the set {g, c, a, t} a K-string. For a given K there are
in total 4K different K-strings. In order to count the number of each kind of K-strings in a given
DNA sequence 4K counters are needed. We divide the interval [0, 1[ into 4K disjoint subintervals,
and use each subinterval to represent a counter. Letting s = s1 · · · sK , si ∈ {a, c, g, t}, i = 1, · · · ,K,
be a substring with length K, we define

xleft(s) =
KX
i=1

xi
4i
, (1)

where

xi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if si = a,
1, if si = c,
2, if si = g,
3, if si = t,

(2)

and

xright(s) = xleft(s) +
1

4K
. (3)

We then use the subinterval [xleft(s), xright(s)[ to represent substring s. Let NK(s) be the number
of times that substring s with length K appears in the complete genome. If the total number of
K-strings appeared in the complete genome is denoted as NK(total), we define

FK(s) = NK(s)/NK(total) (4)

to be the frequency of substring s. It follows that
P
{s} FK(s) = 1. Now we can define a measure

μK on [0, 1[ by dμK(x) = Y (x)dx, where

YK(x) = 4
KFK(s), when x ∈ [xleft(s), xright(s)[. (5)

It is easy to see
R 1
0 dμK(x) = 1 and μK([xleft(s), xright(s)[) = FK(s). We call μK the measure

representation of the organism corresponding to the given K.
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For simplicity of notation, the index K is dropped in FK(s), etc., from now on, where its
meaning is clear.

Remark: The ordering of a, c, g, t in (2) will give the natural dictionary ordering of K-strings
in the one-dimensional space. A different ordering of K-strings would change the nature of the
correlations. When we want to compare different organisms using the measure representation, once
the ordering of a, c, g, t in (2) is given, it is fixed for all organisms.

3 Length sequences based on the complete genomes

For the importance of the numbers, sizes and ordering of genes along the chromosome, one can
refer to Part 5 of Lewin [54]. Here one may ignore the composition of the four kinds of bases in
coding and noncoding segments and only considers the rough structure of the complete genome
or long DNA sequences. Provata and Almirantis [55] proposed a fractal Cantor pattern of DNA.
They map coding segments to filled regions and noncoding segments to empty regions of random
Cantor set and then calculate the fractal dimension of the random fractal set. They found that
the coding/noncoding partition in DNA sequences of lower organisms is homogeneous-like, while
in the higher eucariotes the partition is fractal. This result seems too rough to distinguish bacteria
because the fractal dimensions of bacteria they gave out are all the same.

Viewing from the level of structure, the complete genome of an organism is made up of coding
and noncoding segments. Here the length of a coding/noncoding segment means the number of its
bases. Based on the lengths of coding/noncoding segments in the complete genome, one can get
two kinds of integer sequences by the following ways:

i) Order all lengths of coding segments according to the order of coding segments in the complete
genome. This integer sequence is named coding length sequence.

ii) Order all lengths of noncoding segments according to the order of noncoding segments in the
complete genome. This integer sequence is named noncoding length sequence.

Let Tt, t = 1, 2, · · · , N, be the length sequence of coding or noncoding segments in the complete
genome of an organism. First we define

Ft = Tt/(
NX
j=1

Tj) (6)

to be the frequency of Tt. It follows that
P

t Ft = 1. Now we can define a measure μ on [0, 1[ by
dμ(x) = Y (x)dx, where

Y (x) = N × Ft, when x ∈ [t− 1
N

,
t

N
[. (7)

It is easy to see that
R 1
0 dμ(x) = 1 and μ([(t− 1)/N, t/N [) = Ft.

4 Detailed HP model and measure representation of protein se-
quences

Twenty different kinds of amino acids are found in proteins. In the detailed HP model they can
be divided in to four classes: non-polar, negative polar, uncharged polar and positive polar. The
eight residues designating the non-polar class are: ALA, ILE, LEU, MET, PHE, PRO, TRP, VAL;
the two residues designating the negative polar class are: ASP, GLU; the seven residues designating
the uncharged polar class are: ASN, CYS, GLN, GLY, SER, THR, TYR; and the remaining three
residues: ARG, HIS, LYS designate the positive polar class.
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For a given protein sequence with length L, s = s1 · · · sL, where si is one of the twenty kinds of
amino acids for i = 1, · · · , L, we define

ai =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if si is non-polar,
1, if si is negative polar,
2, if si is uncharged polar,
3, if si is positive polar.

(8)

So we can obtain a sequence X(s) = a1 · · · aL, where ai is a letter in the alphabet {0, 1, 2, 3}. Using
the same idea as in Section 2, we can define the measure representation μK of K-strings of the
given protein sequence.

5 Multifractal analysis

The most common numerical implementations of multifractal analysis are the so-called fixed-
size box-counting algorithms [56]. In the one-dimensional case, for a given measure μ with support
E ⊂ R, we consider the partition sum

Z�(q) =
X

μ(B)6=0
[μ(B)]q, (9)

q ∈ R, where the sum runs over all different nonempty boxes B of a given side � in a grid covering
of the support E, that is,

B = [k�, (k + 1)�[. (10)

The scaling exponent τ(q) is defined by

τ(q) = lim
�→0

logZ�(q)

log �
(11)

and the generalized fractal dimensions of the measure are defined as

Dq = τ(q)/(q − 1), for q 6= 1, (12)

and

Dq = lim
�→0

Z1,�
log �

, for q = 1, (13)

where Z1,� =
P

μ(B)6=0 μ(B) logμ(B). The generalized fractal dimensions are numerically estimated
through a linear regression of

1

q − 1 logZ�(q)

against log � for q 6= 1, and similarly through a linear regression of Z1,� against log � for q = 1.
D1 is called the information dimension and D2 the correlation dimension. The Dq of the positive
values of q give relevance to the regions where the measure is large, i.e., to the coding or noncoding
segments which are relatively long. The Dq of the negative values of q deal with the structure and
the properties of the most rarefied regions of the measure, i.e. to the segments which are relatively
short.

By following the thermodynamic formulation of multifractal measures, Canessa [57] derived an
expression for the ’analogous’ specific heat as

Cq ≡ −
∂2τ(q)

∂q2
≈ 2τ(q)− τ(q + 1)− τ(q − 1). (14)
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He showed that the form of Cq resembles a classical phase transition at a critical point for financial
time series. In the following we calculate the ’analogous’ specific heat of coding and noncoding
length sequences for the first time. The types of phase transitions are helpful to discuss the
classification of bacteria.

6 IFS (RIFS) model and moment method for the inverse problem

6.1 IFS (RIFS) model

In order to simulate the measure representation of the complete genome, Anh et al. [58] proposed
the iterated function systems (IFS) model and the recurrent IFS model. IFS is the name given by
Barnsley and Demko [53] originally to a system of contractive maps w = {w1, w2, · · · , wN}. Let E0
be a compact set in a compact metric space, Eσ1σ2···σn = wσ1 ◦ wσ2 ◦ · · · ◦ wσn(E0) and

En = ∪σ1,···,σn∈{1,2,···,N}Eσ1σ2···σn .

Then E = ∩∞n=1En is called the attractor of the IFS. The attractor is usually a fractal and the IFS
is a relatively general model to generate many well-known fractal sets such as the Cantor set and
the Koch curve. Given a set of probabilities pi > 0,

PN
i=1 pi = 1, pick an x0 ∈ E and define the

iteration sequence
xn+1 = wσn(xn), n = 0, 1, 2, 3, · · · , (15)

where the indices σn are chosen randomly and independently from the set {1, 2, · · · , N} with prob-
abilities P (σn = i) = pi. Then every orbit {xn} is dense in the attractor E [53, 59]. For n large
enough, we can view the orbit {x0, x1, · · · , xn} as an approximation of E. This process is called
chaos game.

Given a system of contractive maps w = {w1, w2, · · · , wN} on a compact metric space E∗,
we associate with these maps a matrix of probabilities P = (pij) which is row stochastic, i.e.P

j pij = 1, i = 1, 2, · · · ,N . Consider a random chaos game sequence generated by

xn+1 = wσn(xn), n = 0, 1, 2, 3, · · · ,

where x0 is any starting point. The fundamental difference between this process and the usual chaos
game Eq. (15) is that the indices σn are not chosen independently, but rather with a probability
that depends on the previous index σn−1:

P (σn+1 = i) = pσn,i

Then (E∗, w,P) is called a recurrent IFS (RIFS).
Let μ be the invariant measure on the attractor E of an IFS or RIFS, χB the characteristic

function for the Borel subset B ⊂ E, then from the ergodic theorem for IFS or RIFS [53],

μ(B) = lim
n→∞

[
1

n+ 1

nX
k=0

χb(xk)].

In other words, μB is the relative visitation frequency of B during the chaos game. A histogram
approximation of the invariant measure may then be obtained by counting the number of visits
made to each pixel on the computer screen.
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6.2 Moment method to estimate the parameters of the IFS (RIFS) model

The coefficients in the contractive maps and the probabilities in the IFS or RIFS model are the
parameters to be estimated for a real measure which we want to simulate. Vrscay [59] introduced
a moment method to perform this task. If μ is the invariant measure and E the attractor of IFS
or RIFS in R, the moments of μ are

gi =

Z
E
xidμ, g0 =

Z
E
dμ = 1. (16)

If wi(x) = cix + di, i = 1, · · · ,N , then the following well-known recursion relations hold for the
IFS model:

[1−
NX
i=1

pic
n
i ]gn =

nX
j=1

Ã
n
j

!
gn−j(

NX
i=1

pic
n−j
i dji ). (17)

Thus, setting g0 = 1, the moments gn, n ≥ 1, may be computed recursively from a knowledge of
g0, · · · , gn−1 [59].

For the RIFS model, we have

gn =
NX
j=1

g(j)n , (18)

where g
(j)
n , j = 1, · · · , N , are given by the solution of the following system of linear equations:

NX
j=1

(pjic
n
i − δij)g

(j)
n = −

n−1X
k=0

Ã
n
k

!
[
NX
j=1

cki d
n−k
i pjig

(j)
k ], i = 1, · · · , N, n ≥ 1. (19)

For n = 0, we set g
(i)
0 = mi, where mi are given by the solution of the linear equations

NX
j=1

pjimj = mi, i = 1, 2, · · · , N, and g0 =
NX
i=1

mi = 1. (20)

If we denote by Gk the moments obtained directly from the real measure using (16), and gk the
formal expression of moments obtained from (17) for IFS model and from (18-20) for RIFS model,
then through solving the optimal problem

min
ci,di,pi or pij

nX
k=1

(gk −Gk)
2, for some chosen n, (21)

we can obtain the estimated values of the parameters in the IFS or RIFS model.
From the measure representation of a complete genome or protein sequence, we see that it is

natural to choose N = 4 and

w1(x) = x/4, w2(x) = x/4 + 1/4, w3(x) = x/4 + 1/2, w4(x) = x/4 + 3/4

in the IFS or RIFS model. For a given measure representation of a complete genome or protein
sequence, we obtain the estimated values of the probabilities p1, p2, p3, p4 in IFS model or the
matrix of probabilities P = (pij) by solving the optimisation problem (21). Based on the estimated
values of the probabilities, we can use the chaos game to generate a histogram approximation of
the invariant measure of IFS or RIFS which we can compare with the real measure representation
of the complete genome or protein sequence.
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7 Applications to the biological sequence analysis

Till now more than 50 complete genomes of Archaea and Eubacteria are available in public
databases (for example in Genbank at web site ftp://ncbi.nlm.nih.gov/genbank/genomes/ or in
KEGG at web site http://www.genome.ad.jp/kegg/java/org list.html).

In [31], the multifractal analysis were performed on the measure representations of a large
number of complete genomes. For examples, the Dq and Cq curves of some organisms are shown in
Figures 1 and 2 respectively. From the measure representations and the values of the Dq spectra
and related Cq curves, it was concluded that these complete genomes are not random sequences.
For substrings with length K = 8, the Dq spectra of all organisms studied are multifractal-like
and sufficiently smooth for the Cq curves to be meaningful. With the decreasing value of K, the
multifractality lessens. The Cq curves of all bacteria resemble a classical phase transition at a
critical point. But the ’analogous’ phase transitions of chromosomes of non-bacteria organisms are
different. Apart from Chromosome 1 of C. elegans, they exhibit the shape of double-peaked specific
heat function.

Yu and Anh [23] proposed a time series model for the length sequences of DNA. After calculating
the correlation dimensions and Hurst exponents, it was found that one can get more information
from this model than that of fractal Cantor pattern [55]. The quantification of these correlations
could give an insight into the role of the ordering of genes on the chromosome. Through detrended
fluctuation analysis (DFA) [60] and spectral analysis, the long-range correlation was found in these
length sequences [24].

The multifractal analysis was also performed on the coding and noncoding length sequences
constructed from a complete genome [32]. From the shape of the Dq and Cq curves of length
sequences, it was seen that there exists a clear difference between the coding/noncoding length
sequences of all organisms considered and a completely random sequence. The complexity of
noncoding length sequences is higher than that of coding length sequences for bacteria. Almost
all Dq curves for coding length sequences are flat, so their multifractality is small whereas almost
all Dq curves for noncoding length sequences are multifractal-like. It is seen that the ’analogous’
specific heats of noncoding length sequences of bacteria have a rich variety of behaviour which is
much more complex than that of coding length sequences.

In [58], we simulated the measure representations of the complete genomes of many organisms
using the IFS and RIFS models. We found that RIFS is a good model to simulate the measure
representation of complete genome of organisms. For example, the histogram of substrings in the
genome of Buchnera sp. APS for K = 8 is given in the left figure of Figure 3. Self-similarity
is apparent in the measure. The histogram approximation of the generated measure of Buchnera
sp. APS using the RIFS model is shown in the right figure of Figure 3. It is seen that the RIFS
simulation traces very well the original measure representation of the complete genome.

Once the matrix of probabilities is determined, the RIFS model is obtained. Hence the matrix
of probabilities obtained from the RIFS model can be used to represent the measure of the complete
genome of an organism. Different organisms can be compared using their matrix of probabilities
obtained from the RIFS model. If P = (pij), P

0 = (p0ij), i, j = 1, 2, 3, 4, are the matrices of
probabilities of two different organisms obtained from the RIFS model for a fixed K, we propose
to define the distance between the two organisms as

Dist =

vuut 4X
i,j=1

(pij − p0ij)
2. (22)

The genetic distance defined between two organisms is based only on the parameters derived from
the fractal model, so that we can avoid artefacts associated with sequence alignment. The similarity
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based on the fractal model of the complete genome is global. In [61], we have done the phylogenetic
analysis of more than 50 genomes using the above definition of distance. The phylogenetic tree is
shown in Figure 5. The results from our phylogenetic analysis indicate that lateral gene transfer
[62] must have been very common in the early history of life and thus constitutes a major source
of variations in a substantial proportion of prokaryotic genome.

It is well known that all statistical method and nonlinear scale method require enough data
samples. The methods introduced in the previous sections can only be used to analyse long protein
sequences (corresponding to large proteins). The amino acid sequence of 32 large proteins are
selected from RCSB Protein Data Bank (PDB) (http://www.rcsb.org/pdb/index.html). These 32
proteins belong to five structure classes [63] according to their secondary structures: α, β, α + β
( α,β alternate), α/β (α, β segregate) and others (no α and no β) proteins. First we convert the
amino acid sequences of these proteins to their measure representations with K = 5 according to
the method introduced in Section 3. If K is too small, there are not enough combinations of letters
from the set {0, 1, 2, 3}, therefore there is no statistical sense. And if K is too big, the frequencies
of most substrings are zero. So we cannot obtain any biological information from the measure
representation. Considering the length of the selected proteins which ranges from 350 to 1000, we
think it is suitable to choose K = 5.

In [51], we found the IFS model is better than the RIFS model to simulate the measure rep-
resentation of protein sequences. The estimated parameters in the IFS model of 32 proteins are
given in Table 1. For example, we show the histograms of measure representation and simulated
measures of protein P.69 Pertactin (PDB ID: 1DAB) in Figure 4. From Figure 4, one can see that
the difference between measure representation and IFS simulated measure is very small. Once the
probabilities are determined, the IFS model is obtained. Hence the probabilities obtained from
the IFS model can be used to represent the measure representation of the protein sequence. From
Table 1, we find the probability p3 (which corresponding to the uncharged polar property) can be
used to distinguish the structural class of proteins from α class and β class (values of p3 of proteins
in class α are less than those of proteins in class β), and the probability p1 (which corresponds
to the non-polar property) can be used to distinguish the structural class of proteins from class
α + β and class α/β (values of p1 of proteins in class α/β are less than those of proteins in class
α+β). Hence we believe that the non-polar residues and uncharged residues play a more important
role than other kinds of residues in the protein folding process. This information is useful for the
prediction of protein structure.
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Table 1: The estimated prameters in the IFS model of all 32 proteins selected.

Class PDB ID p1 p2 p3 p4
1AVC 0.433053 0.057476 0.360621 0.148850
1B89 0.434701 0.090537 0.355757 0.119005
1BJ5 0.395675 0.171289 0.263892 0.169145

α 1HO8 0.425220 0.116664 0.324997 0.133119
1IAL 0.454049 0.145905 0.279686 0.120360
1QSA 0.429905 0.095604 0.366038 0.108453
2BCT 0.479382 0.051937 0.343780 0.124902
5EAS 0.438919 0.079522 0.386794 0.094765

1B9S 0.374272 0.055143 0.447158 0.123429
1DAB 0.443784 0.082010 0.399380 0.074825

β 1EUT 0.404940 0.086955 0.409295 0.098810
1FNF 0.392416 0.124496 0.393389 0.089700
1JX5 0.418789 0.121671 0.364252 0.095288
1MAL 0.369149 0.074231 0.483407 0.073214

1B90 0.412281 0.069013 0.413590 0.105117
1BBU 0.408854 0.203032 0.238907 0.149207

α+ β 1BYT 0.419483 0.124814 0.313159 0.142543
1CLC 0.411955 0.089417 0.393040 0.105588
1E7U 0.407123 0.186941 0.242776 0.163161

1A8I 0.435450 0.100694 0.329504 0.134352
1ACJ 0.437285 0.087811 0.359227 0.115677

α/β 1AOV 0.378102 0.092808 0.390054 0.139036
1BFD 0.503850 0.103505 0.303115 0.089530
1CRL 0.445648 0.061138 0.432773 0.060441

1DPI 0.434653 0.174507 0.229232 0.161609
1EFG 0.463732 0.090136 0.318268 0.127863
1EPS 0.455629 0.080760 0.366760 0.096850

Others 1F1O 0.438389 0.119861 0.290525 0.151225
1KVP 0.409277 0.105865 0.364443 0.120415
1PMD 0.384736 0.133984 0.386281 0.094999
1TPT 0.462826 0.143851 0.272910 0.120413
4ACE 0.437279 0.087855 0.359186 0.115681
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Figure 1: Dimension spectra of Chromosome 22 of Homo sapiens, Chromosome 2 of A. thaliana, Chromosome 3 of
P. falciparum, Chromosome 1 of C. elegans, Chromosome 15 of S. cerevisiae and M. genitalium.
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Figure 2: ”Analogous” specific heat of Chromosome 22 of Homo sapiens, Chromosome 2 of A. thaliana, Chromosome
3 of P. falciparum, Chromosome 1 of C. elegans, Chromosome 15 of S. cerevisiae, M. genitalium and complete random

sequence.
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Figure 3: The measure representation (left) and the RIFS simulation (right) of the complete genome of Buchnera
sp. APS when K=8.
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Figure 4: The measure representation (left) and the IFS simulation (right) of protein P.69 Pertactin (PDB ID:

1DAB)
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Figure 5: The phylogenetic tree of living organisms using the neighbour-joining method and the distance based on
the parameters in the RIFS model.
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