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TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

F.LIU, V.V.ANH, I.TURNER AND P.ZHUANG

Abstract. A time fractional advection-dispersion equation is obtained

from the standard advection-dispersion equation by replacing the first-
order derivative in time by a fractional derivative in time of order α(0 <
α ≤ 1) . Using variable transformation, Mellin and Laplace transforms,

and properties of H-functions, we derive the complete solution of this time
fractional advection-dispersion equation.

AMS Mathematics Subject Classification: 26A33, 49K20, 44A10.
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1. Introduction

A space-time fractional partial differential equation, obtained from the stan-
dard partial differential equation by replacing the second order space-derivative
by a fractional derivative of order β > 0 and the first order time-derivative
by a fractional derivative of order α > 0 has been recently treated by a num-
ber of authors. Wyss (1986) considered the time fractional diffusion equation
and the solution was given in closed form in terms of H-functions. Schneider
and Wyss (1989) considered the time fractional diffusion and wave equations.
The corresponding Green functions were obtained in closed form for arbitrary
space dimensions in terms of H-functions and their properties were exhibited.
Gorenflo, Iskenderov, and Luchko (2000) used the similarity method and the
Laplace transform method to obtain the scale-invariant solution of the time-
fractional diffusion-wave equation in terms of the Wright function. Benson,
Whearcraft and Meerschaert (2000a,b) considered space fractional advection-
dispersion equation. They gave an analytical solution featuring the α-stable er-
ror function. Liu, Anh and Turner (2002) presented a numerical solution of the
space fractional advection-dispersion equation. Mainardi, Luchko and Pagnini
(2001) considered the space-time fractional diffusion equation and provided a
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2 F. Liu, V. Anh and I. Turner

general representation of the Green functions in the terms of Mellin-Barnes inte-
grals in the complex plane. Anh and Leonenko (2000) proposed scaling laws for
fractional diffusion-wave equations with singular data. Angulo, Ruiz-Medina,
Anh and Grecksch (2000) introduced a fractional heat equation, where the dif-
fusion operator is the composition of the Bessel and Riesz potentials. Wyss
(2000) considered a fractional Black-Scholes equation and gave a complete solu-
tion of this equation. Some partial differential equations of space-time fractional
order were successfully used for modelling relevant physical processes (Giona
and Roman, 1992; Mainardi, 1994; Hilfer, 1995; Caputo, 1996; Benson, 2000a,b;
El-Sayed and Aly, 2002; Basu and Acharya, 2002).

In this paper, we consider the time fractional advection-dispersion equation.
This equation is obtained by replacing the time-derivative in the advection dis-
persion equation by a generalized derivative of order α with 0 < α ≤ 1. We
consider

∂αC(x, t)

∂tα
= −ν ∂C(x, t)

∂x
+D

∂2C(x, t)

∂x2
,

x > 0, t > 0, 0 < α ≤ 1 (1)

with the initial condition

C(x, 0) = C0(x), x ≥ 0 (2)

where ν ≥ 0, D > 0 and ∂αC(x,t)
∂tα is a fractional derivative.

Properties and more details about the fractional derivatives can be found in
Samko, Kilbas and Marichev (1993). Using variable transformation, the time
fractional advection-dispersion equation is reduced to a more familiar form. Us-
ing Schneider and Wyss’s (1989) and Wyss’s (2000) techniques we derive in this
paper the complete solution of this time fractional advection-dispersion equation
(TFADE).

2. The reduced time fractional advection dispersion equation

Eq. (1) can be expressed by the following integral equation (Wyss, 2000;
Schneider and Wyss, 1989):

C(x, t) = C(x, 0) +
1

Γ(α)

∫ t

0

(t− τ)α−1[−ν ∂C(x, τ)

∂x
+D

∂2C(x, τ)

∂x2
]dτ

(3)

with n− 1 < α ≤ n ,n = 1. To reduce (3.1) to a more familiar form, let

C(x, t) = u(ξ, t)exp(
νξ

2
√
D
), x =

ξ√
D

(4)
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with the initial condition:

C(x, 0) = C0(x) = u(ξ, 0)exp(− νξ

2
√
D
), ξ > 0. (5)

Let µ2 = ν2

4D , this leads to the equation

u(ξ, t) = u(ξ, 0) +
1

Γ(α)

∫ t

0

(t− τ)α−1[
∂2u(ξ, τ)

∂ξ2
− µ2u(ξ, τ)]dτ (6)

and

u(ξ, 0) = C0(
ξ√
D
)exp(− νξ

2
√
D
). (7)

3. The Green function for the reduced TFADE

According to the properties of the Laplace transform and (49), the Laplace
transform of (6) with respect to t gives for p > 0

ũ(ξ, p) = p−1u(ξ, 0) + p−α[
∂2ũ(ξ, p)

∂ξ2
− µ2ũ(ξ, p)] (8)

or

∂2ũ(ξ, p)

∂ξ2
− [µ2 + pα]ũ(ξ, p) = −p−1+αu(ξ, 0). (9)

Letting w2 = µ2 + pα , we have the equation

∂2ũ(ξ, p)

∂ξ2
− w2ũ(ξ, p) = −p−1+αu(ξ, 0). (10)

According to Schneider and Wyss (1989), Eq. (10) has the solution

ũ(ξ, p) =

∫ ∞

0

G̃α
µ(|ξ − y|, p)u(y, 0)dy, (11)

where

G̃α
µ(r, p) = pα−1κ(r, w) = pα−1κ(r,

√
µ2 + pα) (12)

and

κ(r, w) = (
r

2πw
)

1
2K 1

2
(wr). (13)

A direct transition to the time domain (i.e., inverting the Laplace transform)
does not seem to be feasible. This difficulty is circumvented by passing through
the intermediate step of the Mellin transform (33), connected with the Laplace
transform by (50). Thus, to invert the Laplace transform of Eq. (12) to find
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Green’s function Gα
µ(r, t), we first compute its Mellin transform according to Eq.

(50):

G∗α
µ(r, s) =

1

Γ(1− s)

∫ ∞

0

p−sG̃α
µ(r, p)dp (14)

or

G∗α
µ(r, s) = (

r

2π
)

1
2

1

Γ(1− s)

∫ ∞

0

p−s+α−1[µ2 + pα]−
1
4K 1

2
(r
√

µ2 + pα)dp.
(15)

Letting q = p
α
2 , we obtain

G∗α
µ(r, s) =

2

α
(
r

2π
)

1
2

1

Γ(1− s)

∫ ∞

0

q[2−
2s
α ]−1[µ2 + q2]−

1
4K 1

2
(r
√
µ2 + q2)dq. (16)

Using formula (42) with b = µ, ν = 1
2 , a = r , we have

G∗α
µ(r, s) =

1

α
√
π
(
2µ

r
)

1
2 (

2µ

r
)−

s
α
Γ(1− s

α )

Γ(1− s)
K s

α− 1
2
(µr). (17)

From the H-function representation (52), we have

H∗1,0
1,1(−s) = H∗1,0

1,1

(
z

∣∣∣∣ (1, 1)
(1, 1

α )

)
(−s) =

Γ(1− s
α )

Γ(1− s)
. (18)

Let φ(p) = 1
2exp[−

1
2µr(p

α+ p−α)] and ϕ(p) = p−
α
2 φ(p). From the properties

of the Mellin transform and Eqs. (38) and (41), we have

φ∗(s) =
1

α
K s

α
(µr), ϕ∗(s) =

1

α
K s

α− 1
2
(µr). (19)

Thus the Mellin transform G∗α
µ(r, s) can be written as

G∗α
µ(r, s) =

1√
π
(
2µ

r
)

1
2 (

2µ

r
)−

s
αϕ∗(s)H∗1,0

1,1(−s). (20)

From (38), (40) and (43), we have∫ ∞

0

ϕ((
2µ

r
)

1
α
t

z
)H1,0

1,1 (z
−1)

dz

z

M←→ [(
2µ

r
)

1
α ]−sϕ∗(s)H∗1,0

1,1(−s). (21)

Letting ζ = 1
z , we have∫ ∞

0

ϕ((
2µ

r
)

1
α
t

z
)H1,0

1,1 (z
−1)

dz

z
=

∫ ∞

0

ϕ((
2µ

r
)

1
α ζt)H1,0

1,1 (ζ)
dζ

ζ
. (22)

Therefore, the inverse Mellin transform leads to

Gα
µ(r, s) =

1√
π
(
2µ

r
)

1
2

∫ ∞

0

ϕ((
2µ

r
)

1
α ζt)H1,0

1,1 (ζ)
dζ

ζ
(23)
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or

Gα
µ(r, s) = 1√

π
( 2µr )

1
2

∫∞
0

((2µr )
1
α ζt)−

α
2 φ(( 2µr )

1
α ζt)H1,0

1,1 (ζ)
dζ
ζ

= 1
2
√
π
√
tα

∫∞
0

1√
ζα

exp[−µ2tαζα − r2

4 t
−αζ−α]H1,0

1,1 (ζ)
dζ
ζ . (24)

Letting σ = ζα and using the properties (61) and (62) of the H-function, we
obtain

Gα
µ(r, t)

= 1
2α

√
π
√
tα

∫∞
0

σ− 3
2 exp[−µ2tασ − r2

4 t
−ασ−1]H1,0

1,1

(
σ

1
α

∣∣∣∣ (1, 1)
(1, 1

α )

)
dσ

= 1
2
√
π
√
tα

∫∞
0

σ− 3
2 exp[−µ2tασ − r2

4 t
−ασ−1]H1,0

1,1

(
σ

∣∣∣∣ (1, α)
(1, 1)

)
dσ

= 1
2
√
π
√
tα

∫∞
0

exp[−µ2tασ − r2

4 t
−ασ−1]H1,0

1,1

(
σ

∣∣∣∣ (1− 3α
2 , α)

(− 1
2 , 1)

)
dσ.

(25)

Hence, the inverse Laplace transform of Eq. (11) leads to

u(ξ, t) =

∫ ∞

0

Gα
µ(|ξ − y|, t)u(y, 0)dy (26)

4. The complete solution of TFADE

In this section, we find the exact solution of the initial problem (1), (2) with
C0(x) = C0. Using the Green function (25) and the initial condition (7), we
have

u(ξ, t) = C0

∫∞
0

Gα
µ(|ξ − y|, t)exp(−µy)dy

= C0

2
√
πtα

∫∞
0

exp(−µy)dy

×
∫∞
0

exp(−µ2tασ − 1
4 (ξ − y)2t−ασ−1)H1,0

1,1

(
σ

∣∣∣∣ (1− 3α
2 , α)

(−1
2 , 1)

)
dσ

= C0

2
√
πtα

exp(−µξ)
∫∞
0

H1,0
1,1

(
σ

∣∣∣∣ (1− 3α
2 , α)

(−1
2 , 1)

)
dσ

×
∫∞
0

exp{−[ ξ−y−2µtασ

2
√
tασ

]2}dy.

(27)
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Letting η = 2µtασ−ξ+y

2
√
tασ

, we get

u(ξ, t) =

C0

2
exp(−µξ)

∫ ∞

0

√
σH1,0

1,0

(
σ

∣∣∣∣ (1− 3α
2 , α)

(− 1
2 , 1)

)
dσ

[
2√
π

∫ ∞

η1

exp{−η2}dη
]
(28)

where η1 = 2µtασ−ξ

2
√
tασ

.

Using the property (61) of the H-function, we obtain

u(ξ, t) =
C0

2
exp(−µξ)

∫ ∞

0

H1,0
1,1

(
σ

∣∣∣∣ (1− α, α)
(0, 1)

)
[erfc(η1)]dσ (29)

where the complementary error function, erfc(x) , is defined as

erfc(x) =
2√
π

∫ ∞

x

exp(−x2)dx. (30)

Using Eq. (4), we obtain the complete solution for time fractional advection
dispersion equation with 0 < α ≤ 1:

C(x, t) =
C0

2

∫ ∞

0

H0,1
1,1

(
σ

∣∣∣∣ (1− α, α)
(0, 1)

)
[erfc(η1)]dσ. (31)

The function

H1,0
1,1

(
z

∣∣∣∣ (1− α, α)
(0, 1)

)
is a probability density. From Eqs (59), (60) and (56), we have

H1,0
1,1

(
z

∣∣∣∣ (1− α, α)
(0, 1)

)
=

∞∑
k=0

(−1)k

Γ(1− α− αk)

zk

k!
, 0 < α ≤ 1.

(32)

5. Conclusions

The time fractional advection-dispersion equation is obtained from the clas-
sical advection-dispersion equation by replacing the first-order time derivative
by a fractional derivative of order α(0 < α ≤ 1).Using variable transformation,
the intermediate steps of Mellin and Laplace transforms, we derive the complete
solution of this time fractional advection-dispersion equation. Its Green function
includes a probability density function and a complementary error function.

Acknowledgements

This research has been supported by the ARC SPIRT grant C10024101 and
the National Natural Science Foundation of China 10271098.



Time fractional advection-dispersio 7

Appendix: Preliminaries

For the reader’s convenience we present here certain ideas and the essential
notions and notations concerning the Mellin and Laplace transforms, which are
used in the paper.

Appendix A: The Mellin transform

The Mellin transform of a sufficiently well-behaved function φ onR+ is defined
as follows (Samko, Kilbas and Marichev, 1993):

φ∗(s) = M{φ(t); s} =
∫ ∞

0

ts−1φ(t)dt (33)

and its inverse is given by the formula

φ∗(t) = M−1{φ(t)∗(s); t} = 1

2πi

∫ γ+i∞

γ−i∞
φ∗(s)t−sds, γ = Re(s).

(34)

The Mellin convolution relation is defined as

(h ◦ φ)(t) =
∫ ∞

0

h(
t

z
)φ(z)

dz

z
. (35)

The Mellin convolution theorem with respect to (35) takes the form

(h ◦ φ)∗(s) = h∗(s)φ∗(s). (36)

Substituting the expression (36) instead of φ∗(s) in (34) and taking (35) into
account we obtain the Parseval relation∫ ∞

0

h(
t

z
)φ(z)

dz

z
=

1

2πi

∫ γ+i∞

γ−i∞
h∗(s)φ∗(s)t−sds. (37)

If we denote by
M←→ the correspondence between a function and its Mellin

transform, then the following relations of the general types hold:

φ(at)
M←→ a−sφ∗(s), a > 0, (38)

taφ(t)
M←→ φ∗(s+ a), (39)

φ(tm)
M←→ 1

|m|
φ∗(

s

m
), m ̸= 0, (40)

exp(−ath − bt−h)
M←→ 2

h
(
b

a
)

s
2hK s

h
(2
√
ab),

Re(a) > 0,Re(b) > 0, h > 0, (41)

(t2 + b2)−
1
2νKν [a(t

2 + b2)
1
2 ]

M←→ a−
s
2 2

s
2−1b

s
2−νΓ(

s

2
)Kν− s

2
(ab),
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Re(a) > 0,Re(b) > 0,Re(s) > 0, (42)∫ ∞

0

h(
t

z
)φ(z)

dz

z

M←→ h∗(s)φ∗(s), (43)

where Kν(z) denotes the modified Bessel function of the second kind (Erde’lyi et
al., 1954). The Mellin transform formulae of some functions and the properties
of the Mellin transform can be found in Erde’lyi et al. (1954), Samko, Kilbas
and Marichev (1993).

Appendix B: The Laplace transform

The Laplace transform of a function φ(t), 0 < t < ∞, is defined as follows
(Samko, Kilbas and Marichev, 1993):

φ̃(p) = L{φ(t)} = L{φ(t); p} =
∫ ∞

0

e−ptφ(t)dt, (44)

and its inverse is given by the formula

φ(t) = L−1{φ̃(p); t} = 1

2πi

∫ γ+i∞

γ−i∞
eptφ̃(p)dp, γ = Re(p) > p0.

(45)

It follows that

L{tν ; p} = Γ(ν + 1)

pν+1
, ν > −1. (46)

One of the most useful properties of the Laplace transform is embodied in the
convolution theorem (Churchill, 1944), which states that the Laplace transform
of the convolution of two functions is the product of their Laplace transforms.

Thus if h̃(s) and φ̃(s) are the Laplace transforms of h(t) and φ(t), respectively,
then

L{
∫ t

0

h(t− τ)φ(τ)dτ} = h̃(p)φ̃(p). (47)

Now if φ is continuous, the fractional integral of order α of φ is

D−αφ(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1φ(τ)dτ, α > 0 (48)

which is a convolution integral. From (46), (47) and (48), we have

L{D−αφ(t)} = 1

Γ(α)
L{tα−1}L{φ(t)} = p−αφ̃(p), α > 0. (49)

The Mellin and Laplace transforms are related to each other by (Schneider
and Wyss, 1989)

φ∗(s) =
1

Γ(1− s)

∫ ∞

0

p−sφ̃(p)dp. (50)
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Appendix C: The H-function

An H-function is defined in terms of a Mellin-Bernes type integral as follows
(Mathai and Saxena, 1978, Anh and Lenenko, 2001):

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (a1, α1) . . . (ap, αp)
(b1, β1) . . . (bq, βq)

]
=

1

2πi

∫
L

H∗m,n
p,q (s)z−sds, (51)

where m,n, p and q are nonnegative integers such that 0 ≤ n ≤ p, 1 ≤ m ≤ q and
empty products are interpreted as unity. The parameters α1, ..., αp and β1, ..., βq

are positive real numbers, whereas a1, ..., ap and b1, ..., bq are complex numbers.
The Fox or H-function is characterized by its Mellin transform:

H∗m,n
p,q (s) = H∗m,n

p,q

[
z

∣∣∣∣ (aj , αj)j = 1, · · · , p
(bi, βi)i = 1, · · · , q

]
(s) =

A(s)B(s)

C(s)D(s)
,

(52)

where

A(s) =
m∏
j=1

Γ(bj + βjs), B(s) =
m∏
j=1

Γ(1− aj − αjs),

C(s) =
q∏

j=m+1

Γ(1− bj − βjs), D(s) =
p∏

j=n+1

Γ(aj + αjs). (53)

In (51) z−s = exp{−s·log|z|−iarg(z)} and arg(z) is not necessarily the principal
value. The parameters are restricted by the condition P (A)∩P (B) = Ø, where

P (A) = {poles of Γ(1−ai+αis)} = {
1− ai + k

αi
∈ C; i = 1, · · · , n, k ∈ N0},

P (B) = {poles of Γ(bi + βis)} = {
−bi − k

βi
∈ C; i = 1, · · · ,m, k ∈ N0},

N0 = {0, 1, · · · }.
The integral (51) converges if one of the following conditions holds (Hilfer,

2000; Anh and Lenenko, 2001):

L = L(c−i∞, c+i∞;P (A), P (B)), |argz| < wπ

2
, w > 0;

L = L(c−i∞, c+i∞;P (A), P (B)), |argz| < wπ

2
, w ≥ 0, cR < −Re(γ);

where

w =

n∑
j=1

αj −
p∑

j=n+1

αj +

m∑
j=1

βj −
q∑

j=1

βj ,

R =

q∑
j=1

βj −
p∑

j=1

αj ,
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γ =

q∑
j=1

bj −
p∑

i=1

ai +
p− q

2
+ 1.

The H-functions are analytic for z ̸= 0 and multivalued (single-valued on the
Riemann surface of logz). The H-functions may be represented as (Hilfer, 2000;
Anh and Lenenko, 2001):

Hm,n
p,q

[
z

∣∣∣∣ (a1, α1) · · · (ap, αp)
(b1, β1) · · · (bq, βq)

]
=

m∑
i=1

∞∑
k=0

cik
(−1)k

k!βi
z

bi+k

βi (54)

where

cik =

m∏
j=1,j ̸=i

Γ(bj − (bi + k)
βj

βi
)

n∏
j=1

Γ(1− aj + (bi + k)
αj

βi
)

q∏
j=m+1

Γ(1− bj + (bi + k)
βj

βi
)

p∏
j=n+1

Γ(aj − (bi + k)
αj

βi
)

(55)

whenever R ≥ 0 and the poles in P (A) are simple. Similarly,

Hm,n
p,q

[
z

∣∣∣∣ (a1, α1)...(ap, αp)
(b1, β1)...(bq, βq)

]
=

m∑
i=1

∞∑
k=0

cik
(−1)k

k!αi
z
− 1+ai+k

αi , (56)

where

cik =

m∏
j=1

Γ(bj + (1− ai + k)
βj

αi
)

n∏
j=1,j ̸=i

Γ(1− aj + (1− ai + k)
αj

αi)

q∏
j=m+1

Γ(1− bj + (1− ai + k)
βj

αi
)

p∏
j=n+1

Γ(aj + (1− ai + k)
αj

αi
) (57)

whenever R ≤ 0 and the poles in P (A) are simple.
In particular, if R > 0, we obtain from (54) that

H1,n
p,q (z) = H1,n

p,q

[
z

∣∣∣∣ (a1, α1)...(ap, αp)
(b1, β1)...(bq, βq)

]
=

1

β1

∞∑
k=0

(−1)k

k!

B(sk)

C(sk)D(sk)
z−sk , (58)

where sk = −b1 + k/β1 . In the case R < 0, we obtain from (54) that

Hm,1
p,q (z) = Hm,1

p,q

[
z

∣∣∣∣ (a1, α1)...(ap, αp)
(b1, β1)...(bq, βq)

]
=

1

α1

∞∑
k=0

(−1)k

k!

A(sk)

C(sk)D(sk)
z−sk , (59)

where sk = (k + 1− α1)/α1.
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The following identities for the H-function are well-known:

zkHm,n
p,q

[
z

∣∣∣∣ (a1, α1)...(ap, αp)
(b1, β1)...(bq, βq)

]
= Hm,n

p,q

[
z

∣∣∣∣ (a1 + kα1, α1)...(ap + kαp, αp)
(b1 + kβ1, β1)...(bq + kβq, βq)

]
, (60)

Hm,n
p,q

[
z

∣∣∣∣ (a1, α1)...(ap, αp)
(b1, β1)...(bq, βq)

]
= kHm,n

p,q

[
zk

∣∣∣∣ (a1, kα1)...(ap, kαp)
(b1, kβ1)...(bq, kβq)

]
. (61)
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