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ABSTRACT

A specific form of the Fokker-Planck equation wahime- and scale-dependent dispersivity is
presented for modelling solute transport in saéatdteterogeneous porous media. By taking a
dispersivity in the form of separable power law @ggence on both time and scale, we are able
to show the existence of similarity solutions. Egiplclosed-form solutions are then derived for
an instantaneous point-source (Dirac delta fungtioput, and for constant concentration and
constant flux boundary conditions on a semi-innlomain. The solutions have realistic be-
haviour when compared to tracer breakthrough cunbserved under both field and laboratory
conditions. Direct comparison with the experimeradloratory data of [1] shows good agree-

ment between the source solutions and the meabtgaélthrough curves.

KEYWORDS: Time and scale dependent dispersivityilarity solutions, fractal, heterogene-

ity.
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1. Introduction

Transport of solute in the subsurface is controlbgdmany mechanisms including physical,
chemical and biological activities. The Fokker-Rlarequations are widely used models for
quantitative investigation of transport process€leir application entails the determination of
model parameters, usually estimated using labgratorfield data. An unresolved issue in
quantitative analysis of solute transport usingRbkker-Planck equation is that currently used

forms do not account for the variability of paraerstfound in the field.

Usually contaminant transport models assume a aondispersion coefficient that is calibrated
separately for each different downstream samplatia, resulting in different dispersion coef-
ficients for the same flow problem. In an attemptovercome this, alternative forms for the
dispersion coefficient have been developed witlea/\to uniquely calibrate it across all sam-
pling locations. In [2] a unique dispersion coeéit that was a function of the mean travel dis-
tance proved successful in modelling tracer dakabéing scale effects. Another approach is to
model dispersivity as being time dependent. Anedytsolutions for time-varying dispersion
coefficients have been presented by [3] in two disn@ns and [4] in three dimensions. The
mobile-immobile region model could be approximatey a one-dimensional advection-
dispersion equation with effective time-dependezibeity and dispersion coefficient, through
matching the zeroth-, first- and second-order mdameh both models ([5]). Time-dependent
dispersion coefficients are also used for desailbionclassical or anomalous dispersive trans-
port. For example [6] used a power-law functiomtodel dispersion in a fractal soil as did [7]

and [8] for diffusion on a Sierpinski carpet.

Scale or spatially dependent dispersion modelsgalath analytical solutions for instantaneous
source and Dirichlet boundary conditions in oneeafision can be found for a dispersivity pro-

portional to the actual distance travellgdin [9], [10], [11] and [1]. Both [9] and [11] alude
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the effect of molecular diffusion in their solutgnn the absence of an advection term, [12]
modelled dispersion on a fractal domain where tispaision coefficient was a power-law
function of distance with the power dependent @nfthctal dimension. Indeed, the concept of
representing transport in natural soils as a frgmtacess is well established as a possible ex-
planation to the scale-effect phenomenon ([13])teksive field tracer studies have revealed
features of the scale effect ([14], [15], [16]) ahé equally important issue of the time effect

([27], [18], [19], [20], [21]) as caused by poroumedia heterogeneity.

That dispersion in heterogeneous media is not dhestby a constant dispersion coefficient is
now well accepted. To gain further theoretical ensthnding [22] looked at an intermediate
flow regime between miscible and immiscible floim. this region either theory should describe
the flow and occurs in the limit of negligible moldar diffusion for miscible flow, and no in-

terfacial tension in immiscible flow [22]. Workinfgom the two-phase immiscible flow equa-
tions in the zero interfacial tension limit, thegrive a convection-diffusion equation with a non
constant dispersion term and therefore show thiealigt that for one-dimensional flow, the

dispersion coefficient is dependent on both flomglé and flow velocity.

In [23] they note that it is inconsistent to uselassical advection diffusion equation whereby
the concentration gradient is the driving force tloe flux, when the mechanisms responsible
for dispersion depend on velocity variation effectBhey suggest that the effects of velocity
fluctuations on dispersive mixing can be modellebagh a dispersion coefficient which is a
function of both space and time. Other reseaashléd to the development of a nonlocal form
of the flux to account for scale effects ([24], [2R6]). Nonlocal flux relationships incorpo-

rate a flow memory such that “ information fromigets surrounding the mixing zone can alter
the mixing profile” ([23]), and therefore providaspossible explanation as to “why dispersion

appears dependent on the scale of measuremeatpfdperties are also changing on this scale”
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[23]. Experimental ([23], [26]) results from colms of multi-layered glass beds provide strong

evidence to support a non-local model of dispetsion

While the scale and time effects of dispersion hgergerally been handled separately, there are
a few papers on diffusion in fractal media whicmsider a dispersion coefficient that is a com-
bined function of distance, and timet. In [18], [27] and [28] a dispersion coefficiewit the
form x™t! was used to derive instantaneous source solutibnsur paper we extend their ap-
proach to the modelling of one-dimensional adveetispersive transport by combining the
fractal spatial model of [13] with the temporal nebdrom [21]. This form of the dispersion
coefficient includes the time-dependent dispengivit[4] (m = 0), [2] (m = 0,4 = 1) and the
scale-dependent form of [9], [10], and [bh € 1,1 = 0). Hence, to some extent the combined

dispersion coefficient can be seen as generalibiege three forms.

Analytical solutions are derived for three typesofindary conditions, an instantaneous point
source, a constant concentration and a constanirfla semi-infinite domain. All the solutions

derived demonstrate known realistic behaviour aspaved to tracer breakthrough curves ob-
served under both field and laboratory conditidi'e. also show that the source solutions give

good agreement with the experimental breakthrougbes of [1].

For further experimental evidence and theoretioaéstigations of scale and time effects, see

([29], [30], [31], [32], [33]), though these twasises tend to be addressed separately.
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2. Solutetransport equation

For the one-dimensional transport of a conservaolete in a saturated flow field, the govern-

ing equation is given by [34]

oc_ 0 (Dacj_vac )

ot ox\ ox)  ox’

wherec is the solute concentratidd,is the hydrodynamic dispersion coefficient avids the
(constant) mean flow velocity (uniform porosity aseed). In order to incorporate the time and

space components, the dispersion coefficient igemrias (neglecting molecular diffusion)
D = a(xt)V" = D,D,(xX)D,(t)V", 2

whereD, is a constanD, (x) and D, (t) are the spatial and temporal components of thgedis
sion coefficient respectively is a constant in the range<in < 2 ([34]) anda is the dispersiv-

ity.

In particular we take the following functional fosrforD, (x) and D, (t)
D,(9) = X7, 3)
D,(t) = t", 4

which can be viewed as a combination of a fraatalesdependent dispersivity developed by
[13] and a temporal component of the dispersivitg tb [21]. While [13] useth=2d - 1 and
gaved = 1.0865 though this was later modified by [33}the range 1 <l < 2. Form= 1, the
dispersivity becomes a linear function of the sc@lds is supported by a survey on published
values of dispersivities conducted by [14]. Fa time-dependent component [21] (p. 88) have

suggested -1 4 < 0.
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Substitution of Egs. (2), (3) and (4) into Eg. (@3ults in

E_o"x

oX Vo ®)

Jdc_ d (Dltﬂxm o”cj Jc
X

whereD; = D,V". We note that Eq. (5) also applies for non-coretére flow in the case of a
linear absorption isotherm by replaciBg andV by D;/R andV/R whereR is the constant re-
tardation factor. Alternatively, one can simplyideft/R as a new time scale in Eg. (5). As dis-
cussed previously, Eq (5) witt = 0 has been used by [18], [27] and [28] to deéscEnoma-

lous, non-classical diffusion or fractal diffusion fractal domains.

3. Similarity solutions

In this section, we seek analytical solutions to &9 In particular we look for similarity solu-

tions of the form

f X
cxty=1&) X (6)
t t
wherea andb are constants, subject to the initial and famfiebundary conditions
t=0, c¢c=0, x>0 (7a)
x.o L _ o (7b)
0x
We shall derive solutions for either a constanteemtration boundary conditionat 0, i.e.,
x=0, c=c,, (7c)

a constant flux condition at= 0,
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x=0, Vco=Vc—D(0,t)?, (7d)
X

or for an instantaneous source solution. Defirvh{p be the total mass of solute in solution at

any given time
M :J':c(x,t) dx | (8)

then, in addition we only consider instantaneous@®solutions that are mass conserving.

Substituting Eq. (6) into Eqg. (5) gives

n — d 1+A+b(m-2 mgr 1+
—(af +béf') = d—f(t ADEM ! — 1PV ), (9)

wheref" signifiesdf/dé. To obtain similarity solutions, Eq. (9) requitbat

b=1, (10)
and

1-A-m=0, (11)

which enables Eq. (9) to be written as
—(af +&f) :i(lemf'—Vf), (12)
d¢

As mentioned earlier, [28] considered the sameedspn coefficient and similarity solutions
as represented by Eq. (12) for modelling fract#fudion in the absence of advection. In that
case, similarity solutions require only that (A + 1)/(2 -m). Equations (10) and (11) give a

dispersivity which behaves as= D, X" t'™, thus form = 1 we have the case af= D, x ([11]
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and [1]), while form = 0 we have the case of= Dot ([2]). We note in Eq. (12) thatis an un-

specified parameter. Its role is to differentiagveen the instantaneous source solutions and

the solutions arising from the other two boundamgditions given by Eqs (7c,d). These differ-
ent types of solutions are now considered sepgratels also worthwhile noting that the units

of D; depend on the parametarand are given by (L/T)".

3.1 Instantaneous Sour ce Solutions, c(x,t) = f(é)/t, £=x/t

From Egs. (6), (8) and (10) we have
M :tl‘aj f(&)dé&, (13)
0

which then requirea = 1 for the solutions to be mass conserving. Caquesetly, for these solu-
tionsM also represents the instantaneous source stramgtied at = 0. Witha = 1, Eq. (12)

is written as

d

_4d4 da
dé

a7 (Dgmtr-vi), (14)

(£1)=

which is solved subject to the condition deriveahirEq. (7b)

df
Lw, f-0 X o 15
& o i (15)

Integrating Eq. (14), using Eq. (15) and rearraggesults in

£ (g —vs-m)Di =0, (16)

1

which can also be integrated directly to give
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_ Vqﬂ_m ~ Ez—m o
f (&) —yexp{(l_ —) (2—m)Dj’ m#1,2, A=1m, (17a)
f(£) =)™ exp(—éj, m=1,4=0, (17b)
(&) :Llexp(—ij , m=2,A=-" (170)
Eﬁl D1§(

In Eq. (17),yis the constant of integration found by satisfyitgy (13) (witha = 1). For various

m, yis given by
1-m 2-m
y = M/J' exp Ve o ¢ dé, m#1,2,1=1m, (18a)
0 (1_ m)Dl (2_ m)Dl
y = M m=1,1=0 (18b)
DIV r@+Vv /D)’ ' '
)
Y

- MV/D)” m=2,1=—-1. (18¢)

r(1/D,-1)

Whenm = 2,D; is dimensionless andis only defined foD; < 1. The casen =1 is the solu-

tion presented by [10].

Finally the solutions foc(x,t) are found by combining Eqgs. (17) and (18) withf(é a =

b=1as
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c(xt) = ; : , mz1,2,A=1Im, (19a)

- VErm 2-m

1, ex'{ (i-mD, (2-m) Djdf
c(x 1) = M (fjml exg |, m=1,4=0 (19b)
©otDMPr(1+v /D)t Dt )’ ’ ’
(o)
c(x,t) = = - exp(—ij, m=2,A=-1. (19c¢)
= D, X

It is interesting to note that fon = 3/2 @ = 5/4 for [33]), Eq. (19a) can be fully integratied ).
This integrable case also has additional physigaifecance as wherd =5/4, (i.e., d= 1.3,

the fractal dispersivity has been shown by [13].(B6), p. 571 — 572) to give the best fit to the

field data from extensive tracer studies carriedumgler different conditions ([16]).

With m = 3/2 and, thereforej = -1/2, the integral in Eq. (18a) can be evaluatsig EqQ.

(3.478-4) of [35] as

jexp(— 2:; - 2\/;_ de = NKz(gx/Vj, (20)

where K, (Diﬁ) Is the modified Bessel function of the second lohdrder 2. Hencgis given

1

by y=M /4VK, (;N) ,and the solution foe(x,t) is
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c(x,t):Lexp{—ilz(fj +V(§j_ :l} m:f’, /]=__1. (21)
4tVK2(glﬁ) Dy \t t 2 2

For completeness we also note that Eq (19a) camtégrated fom = 0 wherebyl = 1. This is
the case where the dispersivity is taken as prampatt to the mean travel distance, or propor-

tional tot. Form = 0 then we have

_ M 2 1 3 _ _
C(X’t)_terfc(—v /\/31) /nDl exp{ 2D, x /t V)Z] m=0, A=1. (22)

The dispersivity at the centre of mass of the pluvherex = Vi, is, for allm, given bya /7t,
hence the real effect of on the above solutions is to change the shapeegblume around its
peak concentration. Thus) gives scope to reproduce the characteristic long tail of scale
dependent breakthrough curves. Finally, we see &#qgm (16) and (17) that solutions satisfying

the boundary condition of Eq (15) exist only fox 2. Whenm > 2, we still find thaf’ - 0 as

& - oo, butf - prather than zero and therefore do not correspordinite source strength.

3.2 Constant concentration boundary condition, c(x,t) = () , £=x/t

When a= 0it is then possible to find similarity solutionshigh satisfy a constant con-

centration boundary conditionat 0. In this case, Eg. (12) becomes

£ +(m+‘ﬂ_m—v‘(—mjf':o, (23)
g Dl Dl

which is solved subject to
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Integrating Eq. (23) and using Eq. (24b) gives

a _ e vem o oo e .
ag =7 exp{(l—m)Dl (2—m)Dj me b
L _
df _ o g Y _
a7 exp(lej | e

For the next integration of each of Eqgs. (25) vketaach case separately.

321 m#12 A=1-m

After a second integration of Eq. (25a) and usiwh] we have

B o Vzl—m _ ZZ—m
(& =y, ¢ exp{(l_m)Dl (z_m)Dj dZ

which, after applying the boundary condition Eqlg}, yieldsf($) as

o o Vzl—m ~ ZZ—m
ol ¢ exp{(l—m)Dl (2—m)Dj “

o Vq:—m _ EZ—m )
I ¢ exp{(l—m)Dl <2—m)Dj 4

f($) =

13

(24a)

(24b)

(25a)

(25b)

(25c¢)

(26)

(27)



10

11

12

13

14

14

322 m=1 A=0

Integration of Eq. (25b) leads to

\

\%
— 0 7_1
f(&) = yD> j 2™ etdz, (28)
D,

which, along with Eq. (24a), gives= ¢, /[D)'™ I'(V/D,))]. Therefore,

C o B
f(é) = W;D)-[ZZDI e dz

(29)
_o M(B/D,¢/D))

- T(BID)

wherel (f/D4,é/D,) is the incomplete gamma function. Eq (29) has dleen previously de-

rived by [11] and is given by their Eq. (34).
3.2.3 m=2 A=-1

Integrating Eq. (25c¢) results in
— D1 Py T 51 -z
f(&) = V(Vj jonz e’ dz, (30)

and, from the boundary conditiop,= c, /[(DIIV)MDl r@a+ 1/Dl)} , thus

(31)

() = C{l_ r(1+1/D, Vv /le)}

r(1+1/D,)

Whenm = 0, Eq. (27) is again fully integrable and gives
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coerfc( 52_3/ ]
f(&) = L . (32)
erfc NV
2D,

3.25 m=32 A=-12

Form= 3/2, the integral in the denominator of Eq. (27) ba evaluated using Eq. (3.478-4) in

[35] to give

_ c, \/_ w2 —v 72 ) 27?2
0= %k (4 /D, )I ¢ ( D, D, j A< (33)

where Kl(DiN) is the modified Bessel function of the second lohdrder 1.

3.2.6 Complete Solutions

In summary then the full solutions fofx,t) for the different cases @h whena = 0 are

given by Egs. (6), (27), (29), (31), (32) and (38) a

o o Vzl—m ~ ZZ—m
%fud exp{(l— m)D, (2—m)Dj %

c(x,t) = = = , m#1,2 (34a)
j <" {(1 m)D, (2—m)Dj d¢
coerfc()i//%/J
c(xt) = : m=0 (34b)
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c(xt)=c, [V j m=1, (34c)
M —
Dl
— Co\/\7 ® >-3I2 _ 2\/5_1/2 _ 211/2 _§
c(x,t) _W L/tz ex;{ o B jd( m=2, (34d)
4K,
D,
_ |, T(1+1/D, Mt ID)x) _
c(x,t) =c, |:1 = (1+1/D1) } m=2. (34e)

3.3 Constant flux boundary condition, c(x,t) =f(§) , £=x/t

Solutions for the solute flux boundary conditioe given by having Eq (25) satisfy, from Eqs

(2), (3), (4), (6) and (7d),

Ve, =Vf - (D™ t) (35)

&0’

It is clear from Eq (25) that fan> 1, ™ (& - 0 asé — 0, in which case Eq. (35) becomes

identical to the constant concentration boundanddmn. Hence, new solutions exist only for

m < 1 where from Eq (25§ ™' (§) — -yasé — 0. Applying Eqg. (35) to Eqg. (25a) results in

c(x,t) given by

® Vzl—m _ ZZ—m
%l exp{(l—m)Dl (2—m>Dj 4

o o ngl_m ~ <(2—m & !
[ eXp{(l— m)D, (2—m)Dj d*y

c(x,t) =

m<1, (36)

which, in the case oh = 0, becomes
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{x/t —Vj
c.erfc
c(xt) = m=0 (37)

\J2D,
v .1 [20, (-2}
erfc| ——— |[+—,[—2* eX
J2b, | VN 2D,

In Table 1 summarises all of the similarity solusaterived in the previous sections for the dif-

ferent boundary conditions and the combinationheftwo fractal parameters.

4. Discussion

4.1 Comparison of Instantaneous Sour ce Solutions with Experimental Data

To test the applicability of the source solutiongegi in the previous sections we use the
experimental data of [1]. Only a brief outline b&texperiments is given here, full details are to
be found in their paper. A conservative tracetjum, was injected into a saturated column
over a finite time period and scalexdc}) breakthrough curves were measurer at2, 4, 6 and
8 m downstream. The data from these breakthrouglesware shown in Fig. 1. As noted in [1]
and shown in their Fig. 7, the water flow rate thgl the column was compromised at the early
stages of the experiment and it was not until @tb the experiment that the flow rate returned
to a constant value. Since breakthrougk at2 m andx = 4 m commenced just after 1 h and 2
h, respectively, these data are not reliable féidaang the solutions and therefore more em-
phasis is placed on the= 6 and 8 m breakthrough data. The time periodHertritium injec-
tion at 9 min was much less than the travel timetli@ solute to reach eith&r= 6 or 8 m.
Hence, as far as the breakthrough curves=a6é and 8 m are concerned, the tritium could have
been injected as an instantaneous source anddhenge can use the solutions presented in

section (3.1). From Eqg. (6) with=Db = 1, the data in Fig. 1 can be used to consf{ftas
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shown in Fig. 2. It is clear that thxe= 6 m and 8 m data obey similarity while the 4 m data

does not quite make similarity for reasons givetiera

Since the peak concentration occurg atV, then, from Fig. 2y = 1.4 m . The scaled
mass of soluteM/c,, within the column can be calculated from the esrin Fig. 4 of [1] as
M/c, = 0.21 m. Fig. 2 shows the results of curve fiftthe parameted; for m= 0, 1 and 2
from Egs. (17), (18) and (22). Interestingly, we gegy little difference between the curves for
different values ofn. In fact, it suggests that the effectrofcan be compensated throuph
One could say that there is no way of distinguighirhich of the three sets af andD; pa-
rameters is the best. They are all equally plaugdyléhis data set. It is probably not surprising
that around the peaks the curves all look exabttysame since the position of the concentra-
tion peak is occurring at= Vt, hence the dispersion coefficient at the peak \@haDx"t"™
= D;V™. Thus, if we reduc®; by 1V (00.71) and ¥? (00.5) form = 1 and 2 respectively,

the dispersion coefficient is exactly the samédatgeak concentration.

In Figs. 1 and 2 we see very little effect duehie parametem since the advective term
in Eq. (5) tends to dominate the dispersive termHterduration of the experiment. In Fig. 3 we
reduce the flow velocity by an order of magnitude alot the breakthrough curvesxat 4 and
8 m. As in the previous figures the values fgrare chosen to have the same peak concentra-
tion for the differentm. With the lower flow velocity the effect oh on the shape of the curves,
and particularly the elongation of the breakthrougih is more significant. The smaller the

value ofm, the later the breakthrough commences and theegréee long time tail.
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4.2 Constant Concentration and Flux Boundary Conditions

In Figs. 4 and 5 we plot the profiles for the canstconcentration boundary conditions
for variousm andV = 0.1 m h™. The values oD are chosen to show the effect of differences
in magnitude betweevi andD; on the shape of the profiles. Fig 4 shows thaafbigh ratio of
V/D; = 50 " h'™, the profiles become steepemaincreases with the steepness of the profile
being due to the dominance of advection over dgper ForV/D; > 10,000 the profiles are
essentially independent of and given by an abrupt front positioned$n V. For lower ratios
as shown in Fig 5, not only does the shape of tbilgs vary considerably wit, but also the
mass of solute within the profile and the surfacadgent. From Eqg. (25) the following cases

can be classified for the behaviour of the gradierstsé — 0
@ m=0, f@O)=-y
(i) 0<m<1,f (0)=-w
(i) m=1, 0<VviD;<1, f(0)=-w
V/D; = 1, f(0) =y
V/ID; > 1, f (0)=0
(iv) m>1, f(0)=0.

Consequently, a large range of behaviour in th@eslud the concentration profiles can be ob-
tained through the parameters V andD;. It is interesting to note that there is not a stho
transition in the behaviour &f (0) for variousm across all the cases above. This is due to the
dispersion coefficient being zeroxat 0 form nonzero in which case Eq. (5) is singular. When
m = 0 this singular behaviour disappears du® tbeing no longer dependent grbut only a

function oft. By including molecular diffusion within the diggen coefficient form > 0 the
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singular behaviour would of course be removed btheexpense of obtaining straightforward
analytical similarity solutions. In the caserof= 1, [9] and [11] were able to include molecular
diffusion and find analytical solutions by Laplattansform techniques. It is unlikely that this
technique would work fom # 1 due to the explicit appearancetof”in the dispersion coeffi-

cient.

To determine the solute mass within the profile, imtegrate Eq. (5) ovex from zero toco
along with the boundary conditions Egs. (7b) and,(dnd rewrite in terms of the similarity

variables giving

ﬂj‘”ﬂdxz I:?df:v-{%gmf'({)} . (38)

ot’o ¢, =0
As discussed earlieé™ () - 0 asé — 0 for m > 1, whereby Eq. (38) reduces to
j: f(&)/c,dé=V.Whenm< 1, (&) - -yasé — 0 and the solute mass within the profile

is therefore greater thart since Eq. (38) becomeg f(&)/c,dé=V+Dylc,. Form=0 we

have

-2
exp()

and, withV/,/D, =0.1, Eq. (39) givesV /,/D, +y,/D, /c, =0.852 being much greater than

0.1. However as the rati(s)’/\/ﬁl increases, the right-hand side of Eq. (39) appresc

v 1,/D,.
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Figure 6 shows the shape of the concentrationlpsofor the flux boundary condition whem

= 0 (Eq. (37)) as a function of the dimensionleissaticeé / /2D, with a range of values for
the dimensionless paramedér /2D, . If V/,/2D, < 2, the concentration at tlxe= 0 boundary

will always be less thao, but whenV /,/2D, = 2 the exponential term in the denominator of

Eq. (37) becomes negligible and the profiles aea tldentical to those from a constant concen-

tration boundary condition given by Eq. (34b).

5. Summary

In this paper we have used a Fokker-Planck equatitma spatially and temporally varying
dispersion coefficient for modelling solute trangpon steady, saturated subsurface flow
through heterogeneous porous media. This new digmecoefficient generalises the traditional

constant dispersion coefficient widely used for elbdg transport processes in many fields.

For a Dirac delta function input, a constant-comi@ion input and a constant flux at the
boundary, similarity solutions are obtained witmgle explicit closed forms found for the pa-
rameter combinations o= 0,4 =1), m=1,4=0), (M= 3/2,A=-1/2) andih = 2,4 = -1).
The casan = 3/2,4 = -1/2 conforms to an average spatial fractal disien ofd =5/4= 1.3
found in extensive field and laboratory experim€fit8]). It was found that for the source solu-
tions, m has a significant effect on the shape of the soplime at large distances from the
source for high flow velocities, and for essemalll x for low flow velocities. In the case of a
constant concentration maintainedkat 0, a much greater effect wfon the shape of the con-
centration profiles is observed through both thdase concentration gradient and the mass of

solute contained within the profile. It was showattform > 1, (0) = 0 while for < m< 1,
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f (0) =0, yor -. Finally, the mass of solute contained within phefile for 0O< m< 1 is al-

ways greater than the solute masanfiar 1.
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Notation List

parameter (Eqg. (6))

parameter (Eqg. (6))

solute concentration (kg

solute concentration &t= 0

fractal parameter from Wheatcraft and Tyler (988
hydrodynamic dispersion coefficient (Eq. (2))
constant (Eq. (2))

DoV" = constant

spatial component of the dispersivity (Eq. (2))
temporal component of the dispersivity (EQ. (2))
similarity function (Eq. (6))

modified Bessel function of the second kind afey 1
modified Bessel function of the second kind afey 2
dispersivity parameter (Eq. (3))

total mass of solute in solution (Eq. (8))
parameter (Eqg. (2))

retardation factor

distance (m)

time (h)

mean water flow velocity (m

dispersivity (EQ. (2))

constant of integration

dispersivity parameter (Eq. (4))

similarity variable (Eg. (6))

gamma function
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Tablel
Dispersion Sour ce Solution Constant Concentrationat x =0 Constant Fluxat x=0
Coefficient
a=1 a=0 a=0
m#1, 2,A= 1-m 2-m o Vzlfm szm - Vi g }
X X m - {Mex - dd
1-m V(t) (t) 0 = ). ex‘{(l—m)ol e-mp | “ | o - L omn emn |
" -m)p, (2-m)p Ve & [ [emexg VT & }daol
D, XM h 1 1 .[0 ¢ ex 1-mD, (2-m)D, '3 0 (I-mDb, (2-m)D, \Y,
c(x,t) = — —
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tj exp d - ¢ dé
° (1-m)p, (2-m)D,
m=0,A=1 M 2 1 :| /t-V x/t-V
c(xt)=—————— [—exp| ~—— X /t-VY Xit- cerfc
terfcv /4/D, )\ 7D, [ 2D, c.ertel ) = J/2D,
D t = 1 -V l 2D1 _Vz
1 c(xt) = ————+% erfc + exp[ j
-V 2D, VN 2D,
erfc
2D,
m=1,4A=0 Ve x vV x
c(Xt) =——7 (—j expl —— r——
tD""r (1+v /D) \ t Dt D, Dt
Dix c(x,t)=c,
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