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ON SEMILINEAR STOCHASTIC FRACTIONAL DIFFERENTIAL

EQUATIONS OF VOLTERRA TYPE

V.V. ANH, N.N. LEONENKO, AND R. MCVINISH

A�������. This paper introduces a class of semilinear stochastic fractional differential
equations of Volterra type. The existence and uniqueness of their solutions is proved
and some basic properties of the solutions are studied. A simulation scheme is proposed
which converges uniformly in mean square for a special, but important, case.

1. I
��������


Fractional differential equations with noise input were studied in Gay and Heyde [14],
Viano et al. [23], for example, in the Gaussian case. Okabe [20] and Inoue [15] considered
a class of equations which contain the Stokes-Boussinesq-Langevin equation from hydro-
dynamics; some of these equations may be formulated in terms of fractional derivatives
(Mainardi [18]). Anh et al. [2] proposed a class of fractional differential equations driven
by Lévy noise and considered possible applications to finance and macroeconomics. Anh
and McVinish [3] studied the sample path properties of this latter class of models and pro-
posed a simulation scheme. Related to these models is the class of stochastic differential
equations driven by fractional Brownian motion (Lin [17], Kleptsyna et al. [16]).

One motivating factor in the introduction of fractional derivatives in stochastic equa-
tions is to induce long memory into the dynamics of the resulting process. This is dif-
ferent from the approach in which long memory arises through the noise term as in
stochastic differential equations driven by fractional Brownian motion with Hurst index
H > 1/2. However, in all these models, the process is not assumed to display condi-
tional heteroscedasticity, which is also an important property of observed data in many
applications (Barndorff-Nielsen [5]).

In this paper we present a class of semilinear stochastic fractional differential equations
obtained from the one-dimensional Itô stochastic differential equation by replacing the
first-order time derivative by a linear fractional (in time) operator. Long memory is
induced by the linear fractional operator under some condition (see Remark 1 below).
On the other hand, conditional heteroscedasticity may be realised via the volatility factor
of these equations. The existence and uniqueness of their solutions is proved. The main
result of the paper is a representation theorem from which an approximation scheme is
proposed to simulate the sample paths of the process for a special but important case.
Uniform convergence (in probability) of this approximation scheme is proved using a
combination of results from stochastic calculus and pathwise integration.

Date: 17 December 2002.
1991 Mathematics Subject Classification. Primary 60G10; Secondary 60M20.
Key words and phrases. stochastic differential equation, Volterra integral equation, fractional differ-

ential equation.
Partially supported by the Australian Research Council grant A10024117.

1



2 V.V. ANH, N.N. LEONENKO, AND R. MCVINISH

2. P������
�����

For a suitably regular function f (t), its Riemann-Liouville fractional derivative is de-
fined as

Dαf (t) =
1

Γ (n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1 f (τ ) dτ,(2.1)

α ∈ [n− 1, n) , n = 1, 2, . . . , and its Riemann-Liouville fractional integral is defined as

Iαf (t) =

∫ t

0

(t− τ)α−1 f (τ) dτ, α > 0.(2.2)

(Samko et al. [22], Djrbashian [12], Podlubny [21]). We will widely use the notion of
fractional Green function of a deterministic fractional differential equation of the form

Ly (t) = f (t) ,(2.3)

where the linear differential operator L with constant coefficients is given by

Ly (t) =
(
AnD

βn
t + ...+A1D

β1
t +A0D

β0
t

)
y (t) ,(2.4)

βn > βn−1 > ... > β1 > β0, n ≥ 1.(2.5)

As defined in Podlubny [21], p.150, the function G (t− τ ) satisfying the following condi-
tions:

a) LG (t− τ ) = 0 for every τ ∈ (0, t) ;

b) lim τ→t−0D
βk−1
t G (t− τ ) = δk,n, k = 0, 1, ..., n, δk,n being the Kronecker delta;

c) limτ,t→0+,τ<tD
βk
t G (t− τ) = 0, k = 0, 1, ..., n− 1

is called the Green function of equation (2.3). It was shown that this Green function is
given by

G (t) =
1

An

∞∑

m=0

(−1)m

m!

∑

k0 + . . .+ kn−2 = m
k0 ≥ 0, . . . , kn−2 ≥ 0

(m; k0, . . . , kn−2)

×
n−2∏

i=0

(
Ai
An

)ki
t(βn−βn−1)m+βn+

∑n−2
j=0 (βn−1−βj)kj−1

×E
(m)

βn−βn−1,βn+
∑n−2
j=0 (βn−1−βj)kj

(
−
An−1
An

tβn−βn−1
)
,(2.6)

where (m; k0, ..., kn−2) denotes multinomial coefficients (Podlubny [21], p. 158) and
Eρ,µ (x) is the two-parameter Mittag-Leffler function (Djrbashian [12], pp. 1-6), which
can be defined by the series expansion

Eρ,µ (z) =
∞∑

k=0

zk

Γ (ρk + µ)
, z ∈ C, ρ > 0, µ > 0.(2.7)

Its k-th derivative E
(k)
ρ,µ (z) is obtained as

E(k)ρ,µ (z) =
dk

dzk
Eρ,µ (z) =

∞∑

k=0

(j + k)!zj

j!Γ (ρj + ρk + µ)
.(2.8)
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The Green function solution of (2.3) is then given by

y (t) =

∫ t

0

G (t− s) f (s) ds(2.9)

if the integral (2.9) exists. We should note that the Green function G (t) , t ≥ 0, can also
be given in terms of its Laplace transform

g (p) =

∫ ∞

0

e−ptG (t) dt =
(
Anp

βn + . . .+A0p
β0
)−1

, p > 0.(2.10)

Remark 1. Anh et al. [2] consider f (t) in (2.3) as Lévy noise, that is, the derivative in
the distributional sense of Lévy motion L (t). The integral then exists as an L2- stochastic
integral if EL2 (1) < ∞ and βn > 1/2. If β0 < 1/2 in addition to βn > 1/2, we have
then, as t→∞, that X (t) converges to an asymptotic stationary solution

X (t) =

∫ t

−∞

G (t− s) dL (s)(2.11)

with spectral density

f (ω) =
σ2

2π
|g (iω)|2

=
σ2

2π

1
∑n
j=0

∑n
k=0AjAk |ω|

βj+βk cos
(
π
(
βj − βk

)
/2
) .(2.12)

It is clear that as |ω| → 0 the spectral density behaves as O
(
|ω|−2β0

)
and hence the

solution possesses long-range dependence for β0 > 0. As |ω| → ∞ the spectral density

behaves as O
(
|ω|−2βn

)
. The index β0 in O

(
|ω|−2β0

)
is the Hurst index, while βn in

O
(
|ω|−2βn

)
is a fractal index, which indicates the degree of fractality of a path. In fact,

the order O
(
|ω|−2βn

)
as ω →∞ will specify the Hausdorff dimension of the path via an

Abelian-Tauberian-type theorem (Bingham [6], Adler [1], p. 204).

Remark 2. For n = 1 the fractional Green function is

G (t) = A−11 tβ1−1Eβ1−β0,β1

(
−A0
A1

tβ1−β0
)
1(0,∞) (t) .(2.13)

An integral representation of (2.13) can be determined from

Eρ,µ (−x
ρ)xµ−1 =

1

π

∫ ∞

0

sin (π (µ− ρ)) + τρ sin (πµ)

1 + 2 cos (πρ) τρ + τ2ρ
τρ−µe−xτdτ(2.14)

for ρ < 1, µ ∈ (0, 1 + ρ) and x ∈ (0,∞) (see Djrbashian [12]). Hence, if n = 1, β1 ∈ [0, 1]
and β0 ∈ [0, β1) , the fractional Green function is completely monotonic. Anh and McVin-
ish [4] extended this result to general n. They note that G (t) is completely monotonic if
and only if βn ≤ 1. If n = 1 and (β1, β0) = (1, 0) , then the inverse Laplace transform of
G (t) is δ (λ−A0/A1) /A1; otherwise it is given by

µ (dλ) =
1

π

[ ∑
j Ajλ

βj sin
(
πβj

)
∑
k

∑
j AkAjλ

βk+βj cos
(
π
(
βk − βj

))
]
dλ.(2.15)
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A related property is hyperbolic complete monotonicity (Bondesson [7]). A function f (·)
is said to be hyperbolically completely monotone if the function f (uv) f (u/v) is completely
monotone in v + v−1 for all u. From Theorem 4 of Anh and McVinish [4] it follows that
the fractional Green function is hyperbolically completely monotone if βn ≤ 1/2. The
completely monotone property of the fractional Green function will be used extensively
throughout this paper. The hyperbolic completely monotone property will not be used
further.

3. S�����
��� ���������� �������
�� �������
���� ������
�

The class of processes we are concerned with is defined by the semilinear stochastic
fractional differential equation

AnD
βnXt + . . .+A0D

β0Xt = b (t,Xt) + σ (t,Xt)
.

W t,(3.1)

where
.

W t is Gaussian white noise and b, σ satisfy the standard Lipschitz and linear growth
conditions:

|b (t, x)− b (t, y)|+ |σ (t, x)− σ (t, y)| ≤ K |x− y| ,(3.2)

|b (t, x)|2 + |σ (t, x)|2 ≤ K2
(
1 + |x|2

)
.(3.3)

We will also assume that there exist x0 and y0 such that b (., x0) and σ (., y0) belong to
L2. The solution to (3.1) is interpreted as the solution to the integral equation

AnXt +An−1I
βn−βn−1Xt + . . .+A0I

βn−β0Xt = I
βnb (t, xt) + I

βnσ (t,Xt)
.

W t.(3.4)

We follow Coutin and Decreusefond [10] and state that, by a solution to (3.4), we mean
a real-valued, progressively measurable stochastic process X = {Xt, t ∈ I} such that X
belongs to L1/H (Ω× I, P ⊗ dt), and for any t, Xt is almost surely a solution of (3.4).
Here, if βn ≥ 1, then H is taken to be 1/2; otherwise, if βn ∈ (1/2, 1) , then H =
1/ (βn − 1/2). It is necessary to have βn > 1/2 for the stochastic integral in (3.4) to
exist.

The following theorem is a direct consequence of Coutin and Decreusefond [10], De-
creusefond [11].

Theorem 1. Under the above assumptions, there exists a unique continuous solution to
the semilinear stochastic fractional differential equation (3.1) if βn > 1/2.

The rest of this paper focuses on the properties of the case βn = 1. This is an important
case since the solution will then have the semimartingale representation provided βn−1 <
1/2.

Theorem 2. If βn = 1, βn−1 < 1/2, then the solution to (3.1) has the semimartingale
representation.

Proof. Obviously, I1σ (t,Xt)
.

W t is a local martingale and I1b (t,Xt) is of bounded vari-
ation. We define a local Hölder exponent of Xt as

hX (t) = sup
{
l : |Xt −Xs| ≤ C |t− s|l

}
(3.5)

for s sufficiently close to t. From Theorem 5.2 of Dudley and Norvaiša [13], any local
martingale has finite (2 + ε)-variation and hence from Lemma 4.3 of Dudley and Norvaiša
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[13], the local Hölder exponent of a local martingale is greater than or equal to 1/2, almost
everywhere. Lemma 1 of Anh and McVinish [3] then yields that, if Yt = I

αXt,

hY (t) ≥ min (hX (t) + α, 1 + α) .(3.6)

Thus Xt has local Hölder exponents greater than or equal to 1/2, almost everywhere. If
βn−1 < 1/2, then I1−βiXt, i = 0, . . . , n − 1, have local Hölder exponents greater than
one, almost everywhere. It follows that I1−βiXt, i = 0, . . . , n − 1, is almost everywhere
differentiable and hence of bounded variation. As a result, Xt has the semimartingale
representation.

4. R������
�����
 �������

In this section we make use of the idea presented in Carmona and Coutin [8], Car-
mona et al. [9] in representing convolutions involving completely monotone functions as
linear combinations of convolutions involving exponential functions. In the context of
Gaussian processes with completely monotone autocorrelation functions, this amounts to
representing the process as a linear combination of Ornstein-Uhlenbeck processes. This
type of representation can then be used to derive a simulation scheme for the process.
We first note that any solution of (3.4) must satisfy the integral equation

Xt =

∫ t

0

G (t− s) b (s,Xs) ds+

∫ t

0

G (t− s)σ (s,Xs) dWs,(4.1)

where G (t) is the Green function of the linear fractional differential equation (3.1). The
following proposition shows that we may replace the Green function by some suitable
approximation (see the Appendix for the definition of the spacesWp and other notations).

Proposition 1. Define X̃t as the solution to the integral equation

X̃t =

∫ t

0

G̃ (t− s) b
(
s, X̃s

)
ds+

∫ t

0

G̃ (t− s)σ
(
s, X̃s

)
dWs;(4.2)

then X̃t → Xt uniformly in mean square on [0, T ] if G̃→ G in W1.

Proof. Define the martingales

M (1)
t =

∫ t

0

σ (s,Xs) dWs,(4.3)

M
(2)
t =

∫ t

0

[
σ (s,Xs)− σ

(
s, X̃s

)]
dWs.(4.4)

From the triangle inequality, we get
∣∣∣Xt − X̃t

∣∣∣ ≤

∣∣∣∣
∫ t

0

[
G (t− s)− G̃ (t− s)

]
dM (1)

s

∣∣∣∣+
∣∣∣∣
∫ t

0

G̃ (t− s) dM (2)
s

∣∣∣∣

+

∣∣∣∣
∫ t

0

[
G̃ (t− s)−G (t− s)

]
b (s,Xs) ds

∣∣∣∣

+

∣∣∣∣
∫ t

0

G̃ (t− s)
[
b
(
s, X̃s

)
− b (s,Xs)

]
ds

∣∣∣∣ .(4.5)

We note as in Mikosch and Norvaiša [19] that, when they exist, the Itô stochastic integral
and Riemann-Stieltjes integral take the same value. Hence, the Itô integrals in (4.5) may
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be interpreted as Riemann-Stieltjes integrals if the martingales have finite norm ‖ . ‖(∞).
As this is true for martingales, we may apply the Love-Young inequality to get

∣∣∣∣
∫ t

0

[
G (t− s)− G̃ (t− s)

]
dM (1)

s

∣∣∣∣ ≤‖ G− G̃ ‖[1] sup
0≤s≤t

∣∣M (1)
s

∣∣(4.6)

and
∣∣∣∣
∫ t

0

G̃ (t− s) dM (2)
s

∣∣∣∣ ≤‖ G̃ ‖[1] sup
0≤s≤t

∣∣M (2)
s

∣∣ .(4.7)

In a similar fashion, we obtain for the Lebesgue integrals in (4.5)

∣∣∣Xt − X̃t

∣∣∣ ≤ ‖ G− G̃ ‖[1]

(
sup
0≤s≤t

∣∣M (1)
s

∣∣+ ct+ c

∫ t

0

|Xu| du

)
+ ‖ G̃ ‖[1] sup

0≤s≤t

∣∣M (2)
s

∣∣

+ sup
0≤s≤t

G̃ (s)

∫ t

0

∣∣∣X̃s −Xs

∣∣∣ ds.(4.8)

From the Burkhölder inequality and the conditions on σ (t, x),

E

[
sup
0≤s≤t

∣∣M (2)
s

∣∣2
]
≤ Λ

∫ t

0

E
∣∣∣σ
(
s, X̃s

)
− σ (s,Xs)

∣∣∣
2

ds ≤ Λc

∫ t

0

E
∣∣∣X̃s −Xs

∣∣∣
2

ds(4.9)

and

E

[
sup
0≤s≤t

∣∣M (1)
s

∣∣2
]
≤ Λ

∫ t

0

E |σ (s,Xs)|
2 ds ≤ Λc

(
1 +

∫ t

0

E |Xs|
2 ds

)
.(4.10)

An application of Hölder’s inequality then yields that

E

(
sup
0≤s≤T

∣∣∣X̃s −Xs

∣∣∣
2
)

≤ c

(
‖ G− G̃ ‖2[1]

[∫ T

0

E |Xs|
2 ds+ T

]

+ ‖ G̃ ‖2[1]

∫ T

0

E

(
sup
0≤u≤T

∣∣∣X̃s −Xs

∣∣∣
2
)
ds

)
.(4.11)

Applying the Gronwall inequality to (4.11) we have

E

(
sup
0≤s≤T

∣∣∣X̃s −Xs

∣∣∣
2
)
≤ C

(
‖ G̃ ‖[1], T

)
‖ G− G̃ ‖2[1](4.12)

and hence X̃t → Xt uniformly in mean square.

From Anh and McVinish [4], the fractional Green function G (t) is completely mono-
tonic and has an integral representation of the form (2.14). We follow Carmona et al. [9]
and approximate the integral representation by a linear combination of exponentials:

G̃ (t) =
∑

e−ηitµ {[λi, λi+1)} , ηi ∈ [λi, λi+1) .(4.13)

Carmona et al. [9] employ a quadrature rule and take

ηi =

∫ λi+1
λi

λµ (dλ)
∫ λi+1
λi

µ (dλ)
;(4.14)

however in our work we will simply take ηi = λi.
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Proposition 2. Let G̃ be defined by (4.13); then

‖ G− G̃ ‖[1]≤ 2

(∫

[r−M ,rN ]C
µ (dλ) + (r − 1)G (0)

)
.(4.15)

Proof. Let Ĝ (t) =
∫ rN
r−M

e−λtµ (dλ). The difference G̃ (t) − Ĝ (t) is zero at t = 0 and

monotonically increasing. The difference G̃− Ĝ can be bounded as
∣∣∣∣∣

∫ rN

r−M
e−λtµ (dλ)−

N∑

j=−M

e−r
jtµ
{[
rj , rj+1

)}
∣∣∣∣∣(4.16)

≤
N∑

j=−M

∫ rj+1

rj
e−r

jt
∣∣∣e−(λ−rj)t − 1

∣∣∣µ (dλ)(4.17)

≤ (r − 1)
N∑

j=−M

e−r
jtrjtµ

{[
rj , rj+1

)}
(4.18)

≤ (r − 1)
N∑

j=−M

µ
{[
rj, rj+1

)}
≤ (r − 1)G (0) .(4.19)

The difference G − Ĝ is monotonically decreasing with maximum at t = 0 given by∫
[r−M ,rN ]C

µ (dλ). Applying the definition of the norm then completes the proof.

This allows us to write the solution to (3.1) as the solution to the following coupled
system of stochastic differential equations:

Xt =
∑

π

Zt (λi)µ {[λi, λi+1)}(4.20)

dZt (λi)

dt
= −λiZt (λi) + b (t,Xt) + σ (t,Xt)

dWt

dt
(4.21)

subject to the initial condition

Zt (λi) = 0.(4.22)

As an application of the representation theorem, we consider the Itô formula for con-
tinuous semimartingales. Let f (t, x) : [0,∞)×R �→ R be of the class C1,2. Applying the

Itô formula to X̃t we have

f
(
t, X̃t

)
= f

(
0, X̃0

)
+

∫ t

0

ft

(
s, X̃s

)
ds

+
∑

i

µ {[λi, λi+1)}

∫ t

0

fx
(
s, X̃s

)
b
(
s, X̃s

)
ds

−
∑

i

µ {[λi, λi+1)}

∫ t

0

fx

(
s, X̃s

)
λiZs (λi) ds

+
∑

i

µ {[λi, λi+1)}

∫ t

0

fx

(
s, X̃s

)
σ
(
s, X̃s

)
dWs

+
1

2

∑

i

µ {[λi, λi+1)}
∑

j

µ {[λj , λj+1)}

∫ t

0

fxx
(
s, X̃s

)
σ
(
s, X̃s

)
ds.(4.23)



8 V.V. ANH, N.N. LEONENKO, AND R. MCVINISH

Note that

Zt (λ) =

∫ t

0

e−λ(t−s)b
(
s, X̃s

)
ds+

∫ t

0

e−λ(t−s)σ
(
s, X̃s

)
dWs(4.24)

and, if G′ ∈ L2, then

−
∑

i

µ {[λi, λi+1)}λiZt (λi)
m.s.
→

∫ t

0

G′ (t− s) b (s,Xs) ds+

∫ t

0

G′ (t− s)σ (s,Xs) dWs

(4.25)

as G̃ → G. The Lebesgue integrals converge almost surely from Propositions 1 and 2.
The stochastic integral converges in mean square and hence we can choose a subsequence
such that the stochastic integrals converge almost surely. Thus the left- and right-hand
sides of the equation below are modifications of each other. As they are also continuous,
the two processes are indistinguishable. The Itô formula for the case when βn = 1 and
βn−1 < 1/2 is then given by

f (t,Xt) = f (0, X0) +

∫ t

0

ft (s,Xs) ds+G (0)

∫ t

0

fx (s,Xs) b (s,Xs) ds

+

∫ t

0

fx (s,Xs)

∫ s

0

G′ (s− u) b (u,Xu) duds

+

∫ t

0

fx (s,Xs)

∫ s

0

G′ (s− u) σ (u,Xu) dWuds(4.26)

+G (0)

∫ t

0

fx (s,Xs)σ (s,Xs) dWs

+
1

2
G2 (0)

∫ t

0

fxx (s,Xs)σ (s,Xs) ds.

When βn−1 ≥ 1/2,Xt is not a semimartingale and the above Itô formula does not hold.
In this case we need to apply a stochastic Fubini theorem to the stochastic integral in
(4.23) and (4.1). From applying this stochastic Fubini theorem we obtain

∫ t

0

fx
(
s, X̃s

)∫ s

0

G̃′ (s− u)σ
(
u, X̃u

)
dWuds

=

∫ t

0

∫ t

s

G̃′ (u− s) fX
(
u, X̃u

)
duσ

(
s, X̃s

)
dWs(4.27)
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Taking the limit and applying the same argument as in the semimartingale case we have
the Itô formula

f (t,Xt) = f (0, X0) +

∫ t

0

ft (s,Xs) ds+G (0)

∫ t

0

fx (s,Xs) b (s,Xs) ds

+

∫ t

0

fx (s,Xs)

∫ s

0

G′ (s− u) b (u,Xu) duds

+

∫ t

0

σ (s,Xs)

∫ t

s

G′ (u− s) fx (u,Xu) dudWs(4.28)

+G (0)

∫ t

0

fx (s,Xs)σ (s,Xs) dWs

+
1

2
G2 (0)

∫ t

0

fxx (s,Xs)σ (s,Xs) ds.

We note that the two Itô formulae differ only in the terms (4.26) and (4.28) which are
equivalent in the semimartingale case.

5. A ��������
 ������

Our simulation scheme is based on the time discretisation of the system (4.20)-(4.21).
The time discretisation of (4.20) - (4.21) is carried out in the following manner:

Z∆0 = 0(5.1)

Z∆n∆ (λi) = e−λi∆Z∆(n−1)∆ (λi) + ∆b
(
(n− 1)∆, X∆

(n−1)∆

)

+σ
(
(n− 1)∆, X∆

(n−1)∆

) [
Wn∆ −W(n−1)∆

]
(5.2)

X∆
n∆ =

∑

π

Z∆n∆ (λi)µ {[λi, λi+1)}(5.3)

and Z∆t for t ∈ [n∆, (n+ 1)∆) is defined as Z∆n∆. Therefore, the approximation X∆
t is

a piecewise constant approximation to Xt. Note that we do not use the standard Euler
approximation in the simulations as we will require λi to take very large values for some
i.

Theorem 3. The approximation to Xt defined above converges uniformly in mean square
provided

∆1/2−ε
∫

K

λµ (dλ) + (r − 1) +

∫

KC

µ (dλ)→ 0(5.4)

for any ε > 0, where µ is the inverse Laplace transform of the Green function, K =(
r−M , rN

)
.

Proof. For notational simplicity, we will assume that b ≡ 0 and σ (t, x) = σ (x). The
necessary change to the proof required to cover the case of large values is direct. For
t = n∆ we may write (5.1)-(5.2) as the Riemann-Stieltjes integral

Z∆n∆ =

∫ n∆

0

n∑

m=1

e−λ∆(n−m)1{s∈((m−1)∆,m∆]}σ
(
X∆
s

)
dWs.(5.5)
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The difference between Z∆n∆ and Zn∆ is bounded as

∣∣Z∆n∆ − Zn∆
∣∣ ≤

∣∣∣∣
∫ n∆

0

f∆ (s)
[
σ (Xs)− σ

(
X∆
s

)]
dWs

∣∣∣∣(5.6)

+

∣∣∣∣
∫ n∆

0

f∆ (s)− e−λ(n∆−s)σ (Xs) dWs

∣∣∣∣ ,(5.7)

where

f∆ (s) =
n∑

m=1

e−λ∆(n−m)1{s∈((m−1)∆,m∆]}.(5.8)

Define the martingales

M1 (t) =

∫ t

0

[
σ (Xs)− σ

(
X∆
s

)]
dWs,(5.9)

M2 (t) =

∫ t

0

σ (Xs) dWs.(5.10)

Lemma 3 of Anh and McVinish [3] states that for any q > 1

‖ f∆ (s)− e−λ(n∆−s) ‖[q]≤ C
(
(λ∆)1−1/q + λ∆

)
.(5.11)

From applying the Love-Young inequality,
∣∣∣∣
∫ n∆

0

f∆ (s)− e−λ(n∆−s)dM2 (s)

∣∣∣∣ ≤ C ‖M2 (T ) ‖(2+ε)

(
λ∆+ (λ∆)1/2−ε

)
(5.12)

and from Theorem 5.2 of Dudley and Norvaiša [13], ‖ M2 (T ) ‖(2+ε) is finite, almost
surely. The second stochastic integral may be bounded using the Love-Young inequality
as in the proof of Proposition 1:

∣∣∣∣
∫ n∆

0

f∆ (s) dM1 (s)

∣∣∣∣ ≤ sup
0≤s≤t

|M1 (s)| .(5.13)

Hence,

sup
0≤s≤t

∣∣X∆
s −Xs

∣∣ ≤ C

(
sup
0≤s≤t

|M1 (s)|+ ‖M2 (T ) ‖(2+ε)
∑

i

µ {[λi, λi+1)}
(
λ∆+ (λ∆)1/2−ε

))

≤ C

(
sup
0≤s≤t

|M1 (s)|+ ‖M2 (T ) ‖(2+ε) ∆
1/2−ε

∫

K

λµ (dλ)

)
.

Using the conditional moment inequality

E (|X| | Y < z) ≤ E |X|Pr (Y < z)−1 ,(5.14)

we have for any A > 0

E

(
sup
0≤s≤t

∣∣X∆
s −Xs

∣∣2 |‖M2 (T ) ‖(2+ε)< A

)

≤ C

{
Pr
(
‖M2 (T ) ‖(2+ε)< A

)−1
E

(
sup
0≤s≤t

|M1 (s)|
2

)
+A2∆1−ε

(∫

K

λµ (dλ)

)2}

≤ C

{
Pr
(
‖M2 (T ) ‖(2+ε)< A

)−1
∫ t

0

E

(
sup
0≤s≤t

∣∣X∆
s −Xs

∣∣2
)
ds+A2∆1−ε

(∫

K

λµ (dλ)

)2}
.
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The function E
(
sup0≤s≤t

∣∣X∆
s −Xs

∣∣2 |‖M2 (T ) ‖(2+ε)< A
)

converges uniformly to

E
(
sup0≤s≤t

∣∣X∆
s −Xs

∣∣2
)

as A→∞. Then, by application of the Gronwall inequality,

E

(
sup
0≤s≤t

∣∣X∆
s −Xs

∣∣2
)
= O

(
δA +A2∆1−ε

∫

K

λµ (dλ)

)
,(5.15)

where δA → 0 as A→∞. As A is assumed to be large, but otherwise arbitrary, it follows
that X∆

t converges uniformly in mean square to Xt provided (5.4) holds.

6. C�
����
� �������

In this paper we have introduced the class of semilinear stochastic fractional differential
equations which can be obtained from the Itô stochastic differential equation by replacing
the time derivative by a fractional (in time) linear operator. These equations possess a
unique continuous solution. This paper has focused on the special case of βn = 1 which
arises as the limit of a system of Itô stochastic differential equations. This representation
theorem allows us to construct a change of variable formula even when the solution is
not a semimartingale. It also allows us to construct an approximation scheme which
converges uniformly in mean square.

It would be interesting to study the behaviour of the Fokker-Planck equation for the
system of Itô stochastic differential equations (4.20) - (4.21) and to determine if there
exists a limiting “fractional diffusion partial differential equation”. Such a result would
be useful for application of these processes in financial modelling and, in particular, may
allow us to construct a Black-Scholes-type formula.

7. A���
���

In this paper we have made considerable use of ideas from the theory of pathwise
integration. In this appendix we will review the concepts required for the proof of the
representation theorem and convergence of the approximation scheme. Firstly, we note
that the integral

∫ b

a

f (s) dM (s)(7.1)

can be interpreted as a pathwise integral whenever f is of bounded p−variation and M
is of bounded q−variation with p−1 + q−1 > 1. When this holds, the integral exists
(i) in the Riemann-Stieltjes sense whenever the paths of f and M have no discontinuities
at the same point;
(ii) in the Moore-Pollard-Stieltjes sense whenever the paths of f and M have no discon-
tinuities at the same point and same side;
(iii) always in the sense defined by Young.
Let π be a point partition of the interval I on which a function f is defined. The p-
variation vp (f) of f is defined as

vp (f) = sup
π

n∑

i=1

|f (ti+1)− f (ti)|
p .(7.2)

Define ‖ f ‖(p)= vp (f)
1/p and ‖ f ‖[p]=‖ f ‖(p) +sup |f |. The space of functions with

finite ‖ . ‖[p] is denoted by Wp and
(
Wp, ‖ . ‖[p]

)
defines a Banach space (see Theorem 4.2

of Dudley and Norvaiša [13]). Examples of stochastic processes with finite p−variation
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are martingales with p > 2 and Lévy motions without Brownian component for q > p ≥ 1
such that

∫

R\{0}

(1 ∧ |x|p) ν (dx) <∞(7.3)

and ν is the Lévy measure.
A fundamental inequality in the theory of pathwise integration is the Love-Young

inequality (see Dudley and Norvaiša [13], Proposition 4.26):
∣∣∣∣
∫ b

a

f (s) dM (s)

∣∣∣∣ ≤ Cp,q ‖ f ‖[p]‖M ‖(q),(7.4)

where Cp,q = ζ (p−1 + q−1). The above results will also hold if (p, q) = (1,∞) or (∞, 1),
in which case C1,∞ = C∞,1 = 1 (see Dudley and Norvaiša [13], Theorem 4.27).
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