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Abstract 

 

 The Raman spectrum of the basic carbonate-sulphate minerals known as 

leadhillite, susannite and caledonite have been measured and the spectra compared 

with the Raman spectra of cerussite, hydrocerussite and anglesite. Characteristic 

spectral patterns are observed for each mineral.  The wavenumber position of the 

hydroxyl stretching bands is used to estimate the hydrogen bond distances in the 

minerals. The hydrogen bond distances for leadhillite polymorphs vary from 2.783 to 

2.916 Å.  In comparison the estimated hydrogen bond distances for hydrocerussite are 

much longer with values of 2.961 and 3.127 Å.  The width of the hydroxyl stretching 

vibration provides an estimate of the variation of hydrogen bond distances for the OH 

groups in the mineral.  The variation in bond length is greater for the longer hydrogen 

bonds.  Characteristic sulphate and carbonate vibrations are also identified.   

 

Keywords: leadhillite, susannite, caledonite, macphersonite, cerussite, hydrocerussite, 

Raman spectroscopy 

 

 

INTRODUCTION 
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Many minerals can be formed through the acidic aqueous oxidation of lead in 

the presence of carbon dioxide. (GEE, C. et al., 1997; LIVINGSTONE, A. and SARP, 

H., 1984; PAAR, W. H. et al., 1986; REWITZER, C. and HOCHLEITNER, R., 1989; 

RUESENBERG, K. A. and PAULIS, P., 1996)  This lead corrosion can result in the 

formation of mixed anionic and cationic species such as leadhillite 

(Pb4SO4(CO3)2(OH)2) and its polymorphs susannite and macphersonite and caledonite 

(Cu2Pb5(SO4)3(CO3)(OH)6).  The structure of many of these minerals has been known 

for some time. (PALACHE, C., 1911; PALACHE, C. and GOLDSCHMIDT, V., 

1911; PALACHE, C. and LA FORGE, L., 1909; PALACHE, C. and LA FORGE, L., 

1911; RICHMOND, W. E. and WOLFE, C. W., 1938)  Other minerals than may form 

are lanarkite and hydrocerussite.  The mineralogy and weathering of historical lead 

slags and polluted soils from five historical smelting sites in Britain were examined 

using SEM with energy dispersive X-ray spectroscopy (SEM/EDX). (GEE, C. et al., 

1997)  Indeed the mineral diversity is caused by different composition of sources, age 

of slags, and different storage. Some sixty two phases were found in the slags. The 

most abundant phases were sulfates, carbonates, and oxides, followed by arsenates, 

phosphates, chlorides, sulfides, and elements. (RUESENBERG, K. A. and PAULIS, 

P., 1996)  The sulphates of lead are formed in the oxide zones of base metal 

sulphides.  Many complex species as with those of copper may form. The mixed 

anionic species (sulphate/carbonate) may form according to the partial pressure of 

carbon dioxide.  Studies of the chemistry of formation of these minerals are very rare.  

 

 

  Space  

group 

a b c β Z 

Leadhillite monoclinic P21/a 9.08 20.76 11.56 89.88 8 

Susannite trigonal P3  9.05  11.54  3 

Macphersonite monoclinic Pcab 10.38 23.10 9.53  8 

Caledonite orthorhombic Pmn21 20.088 7.1436 6.542  2 

Hydrocerussite trigonal Not 

known 

5.24  23.74  3 
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Table 1 Unit cell summary for leadhillite, susannite, macphersonite, caledonite 

and hydrocerussite (GIACOVAZZO, C. et al., 1970; GIACOVAZZO, 

C. et al., 1973; GIUSEPPETTI, G. et al., 1990; STEELE, I. M. et al., 

1998; STEELE, I. M. et al., 1999) 

 

The crystal structure of leadhillite and its polymorphs susannite and 

macphersonite are monoclinic. (GIUSEPPETTI, G. et al., 1990) The space groups and 

structural dimensions are given in Table 1.   Leadhillite shows a clear trigonal pseudo-

symmetry in a sub-cell. Leadhillite has a (001) layer structure with pairs of 

centrosymmetric carbonate sheets, each of them being formed by 8(PbCO3), 

alternating with pairs of centrosymmetric sulfate sheets, each of them being formed 

by 8[Pb(SO4)0.5OH]. The arrangements of the atoms in the carbonate sheet are 

practically coherent with the trigonal symmetry: and all Pb atoms are surrounded by 9 

carbonate O, and, with a short bond (2.2 Å), by 1 OH of the sulfate sheet. On the 

other hand, the atomic arrangements in the sulfate sheet deviate from the trigonal 

symmetry. (GIUSEPPETTI, G. et al., 1990) Susannite is composed of SO4 (= A), Pb 

(= B), and Pb-CO3 (= C) layers. (STEELE, I. M. et al., 1999) The stacking sequence 

of these layers along [001] is ...ABCCBABCCB... and is the same sequence found in 

the other trimorphs. The two C layers are equivalent to a slab of cerussite. The clear 

difference among the trimorphs is the relative orientation of SO4 tetrahedra within the 

layer A.  The crystal structure of macphersonite has many features in common with its 

polymorph leadhillite including three distinct types of layers. Layer A includes sulfate 

tetrahedra, Layer B is composed of Pb and OH, whereas Layer C is composed of Pb 

and CO3 with topologically identical to that in cerussite. In both macphersonite and 

leadhillite these layers are stacked along [010] as ...BABCCBABCC... The sulfate 

layer shows the greatest difference between the two structures and can be described 

by a pattern of up or down pointing tetrahedra.  Caledonite is orthorhombic. The CO3 

and SO4 groups provide the connections among the Pb polyhedra, and between these 

and the Cu-O chains (GIACOVAZZO, C. et al., 1973). 

 

 The vibrational spectroscopy of cerussite and anglesite has been reported.  

(COLEYSHAW, E. E. et al., 1994)  The infrared spectrum of the three polymorphs 

leadhillite, susannite and macphersonite has also been reported. (RUSSELL, J. D. et 

al., 1984)  The spectra were found to be very similar but could be used to distinguish 
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between the minerals.  The complexity of the IR absorption spectra was found to 

change with the structure and symmetry of the polymorphs. The frequency of the OH 

stretching band was found to increase, appearing at 3462, 3474, and 3484 cm-1, in the 

series susannite, leadhillite and macphersonite. Well-resolved carbonate and sulphate 

vibrations were observed.  In this work, a Raman spectroscopic study of the mixed 

anionic minerals of lead and lead-copper is made and a comparison is made with the 

spectra of cerussite, hydrocerussite and anglesite.   

 

 

EXPERIMENTAL  

 

Minerals: 

 

The minerals were obtained from the Mineralogical Research Company.  Leadhillite 

and caledonite originated from the Hard Luck Claim, near Baker, San Bernardino 

County, California.  Susannite originated from the Herzog Julius Shaft, Astfeld, 

Schlackental, Harz Mountains, Germany.   

 

Raman microprobe spectroscopy 

 

The crystals of the minerals were placed and orientated on a polished metal 

surface on the stage of an Olympus BHSM microscope, which is equipped with 10x 

and 50x objectives. The microscope is part of a Renishaw 1000 Raman microscope 

system, which also includes a monochromator, a filter system and a Charge Coupled 

Device (CCD). Raman spectra were excited by a Spectra-Physics model 127 He-Ne 

laser (633 nm) at a resolution of 2 cm-1 in the range between 100 and 4000 cm-1.  

Repeated acquisition using the highest magnification were accumulated to improve the 

signal to noise ratio in the spectra. Spectra were calibrated using the 520.5 cm-1 line of 

a silicon wafer. Spectroscopic manipulation such as baseline adjustment, smoothing 

and normalisation were performed using the Spectracalc software package GRAMS 

(Galactic Industries Corporation, NH, USA). Band component analysis was 

undertaken using the Jandel ‘Peakfit’ software package, which enabled the type of 

fitting, function to be selected and allows specific parameters to be fixed or varied 

accordingly. Band fitting was done using a Gauss-Lorentz cross-product function with 
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the minimum number of component bands used for the fitting process. The Gauss-

Lorentz ratio was maintained at values greater than 0.7 and fitting was undertaken 

until reproducible results were obtained with squared correlations of r2 greater than 

0.995. 

 

RESULTS AND DISCUSSION 

 

 The Raman spectra of the hydroxyl stretching region of the selected multi-

anionic minerals leadhillite, susannite, caledonite, hydrocerussite together with the 

cerussite (lead carbonate) and anglesite (lead sulphate) minerals are shown in Figure 

1. The spectroscopic analysis of the data is reported in Table 2.  The Raman spectrum 

of leadhillite in this region shows two bands at 3481 and 3386 cm-1 with band widths 

of 28.0 and 72.0 cm-1 respectively.  Studies have shown a strong correlation between 

OH stretching frequencies and both the O…O bond distances and with the H…O 

hydrogen bond distances. (EMSLEY, J., 1980; LUTZ, H., 1995; MIKENDA, W., 

1986; NOVAK, A., 1974) The elegant work of Libowitzky (1999) showed that a 

regression function could be employed relating the above correlations with regression 

coefficients better than 0.96. (LIBOWITSKY, E., 1999)  Two types of OH units are 

identified in the structure and the known hydrogen bond distances used to predict the 

hydroxyl stretching frequencies.  In this work we have used the Libowitzky function 

to predict hydrogen bond distances for the OH units in the crystal structure. In this 

way we calculate the hydrogen bond distances by the use of the Raman hydroxyl 

stretching bands. The data in Table 3 fundamentally distinguishes between types of 

OH units according to the hydrogen bond distances, namely strongly hydrogen 

bonded and weakly hydrogen bonded. (LIBOWITZKY, E., 1999) To the best of our 

knowledge, no neutron diffraction studies of these minerals have been forthcoming 

and hence no hydrogen bond distances are known.  Such information may also be 

obtained from well-performed X-ray diffraction studies.  In this set of data, the 

hydroxyl stretching frequencies have been used to predict the hydrogen bond 

distances for these minerals and by using the band width of the hydroxyl stretching 

frequencies estimates of the variation in the hydrogen bond distances predicted.   

 

The predicted hydrogen bond distances for the three polymorphs leadhillite, 

susannite and caledonite vary between 2.783 and 2.916 Å (Table 3).  These hydrogen 
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bond distances are a function of the distances between the sulphate and carbonate 

sheets. In contrast the predicted hydrogen bond distances for hydrocerussite are 3.127 

and 2.961 Å.  These hydrogen bonds are long. It is suggested that the carbonate sheets 

for hydrocerussite are further apart in comparison with leadhillite.  For each of the 

minerals it is apparent there are at least two hydrogen bonds. One bond is long 

compared with the other.  Table 3 also shows the variation in hydrogen bond 

distances as might be predicted from the width of the hydroxyl stretching band.  For 

leadhillite, for the wavenumber position of 3481 cm-1 the estimated hydrogen bond 

distance with variation of + 0.02Å. For the longer hydrogen bond the variation in 

hydrogen bond length is + 0.052 Å.  For caledonite the variation of the 2.828 Å 

hydrogen bond is + 0.032 Å.  The variation in bond length is greater for the longer 

hydrogen bonds.   

 

 

Mineral  Observed 

Raman  

band 

positions 

(cm-1)  

+2 cm-1 

Estimated 

hydrogen 

bond 

distance (Å) 

Estimated 

hydrogen 

bond 

distance 

variation (Å) 

 

leadhillite 

OH 1 3481 2.871 2.851 to 

2.895 

OH 2 3386 2.789 2.737 to 

2.876 

 

susannite 

OH 1 3513 2.916 2.850 to 

3.047 

OH 2 3377 2.783 2.756 to 

2.818 

 

 

caledonite 

OH 1 3439 2.828 2.796 to 

2.87 

OH 2 3417 2.811 2.803 to 

2.817 

OH 3 3379 2.785 2.775 to 
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2.796 

 

 

hydrocerussite 

OH 1 3576 3.127 3.002 to 

3.348 

OH 2 3536 2.961 2.925 to  

3.002 

 

 

Table 3 Correlation between hydroxyl stretching frequencies and estimated 

hydrogen bond distances. 

 

 In comparison to the Raman spectrum of the hydroxyl stretching region of 

leadhillite, the spectrum of the hydroxyl stretching region of susannite shows 

complexity with multiple bands observed.  The crystal structure of susannite is 

composed of layers of SO4 (= A), Pb (= B), and Pb-CO3 (= C) layers with the stacking 

sequence of these layers along [001] is ...ABCCBABCCB.  The observation if 

complexity in this region is attributed to disordering in this stacking sequence.  If the  

Theory of Libowitsky applies to Raman hydroxyl stretching bands (the original work 

applied the relationship between OH band position as measured using infrared 

spectroscopy and H-bond distances) then the multiple bands for susannite would 

suggest that multiple hydrogen bond distances are observed. 

 

The Raman spectrum of the hydroxyl stretching region of caledonite more 

closely resembles that of leadhillite.  Bands are observed at 3439, 3417 and 3379  

cm-1.  Such hydroxyl stretching wavenumbers would suggest that the H-bond 

distances for the OH units for caledonite are 2.823, 2.810 and 2.785Å which are in 

agreement with expected hydrogen bond distances.  For hydrocerussite two hydroxyl 

stretching bands are observed at 3576 and 3536 cm-1.  These wavenumber positions 

would indicate hydrogen bond distances of 3.126 and 2.961 for the hydrogen bonds 

formed between the OH units and the carbonate units in hydrocerussite.  The infrared 

bands for hydrocerussite are almost in an identical position to that of the Raman bands. 

Thus the use of Raman OH stretching bands for the calculation of hydrogen bond 

distances is justified. 
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 In the Raman spectrum of the 800 to 1500 cm-1 region bands are observed 

which are attributable to the CO and SO stretching (Figure 2 and Table 2).  The SO4 

stretching band for anglesite is observed at 978 cm-1 which compares well with the 

position of the bands at 964 cm-1 for leadhillite and 977 cm-1 for caledonite.  The 

Raman spectrum of caledonite shows an additional band at 950 cm-1.  The Raman 

spectrum of anglesite shows low intensity bands at 1060, 1068, 1135, 1141 and 1156 

cm-1.  The position of these bands is in excellent agreement with published data. 

(COLEYSHAW, E. E. et al., 1994; CRANE, M. J. et al., 2001; GRIFFITH, W. P., 

1970) The first two bands are assigned t the Ag modes and the last three to the Bg 

modes. There is some difficulty in finding the position of these bands for the mixed 

anionic carbonate-sulphate minerals because of the intense CO3 stretching bands.  

Low intensity bands are observed for leadhillite at 1014, 1030, 1097 and 1174 cm-1.  

These bands may be assigned to SO4 ν3 vibrational modes. These bands are broad 

with bandwidths of 8.8, 20.1, 17.2, 22.1 cm-1 respectively.  For susannite bands are 

observed at 1012, 1026, 1105 and 1154 cm-1.  For caledonite bands are observed at 

1101 and  1124 cm-1.   

 

The Raman spectrum of cerussite shows an intense band at 1054 cm-1 assigned 

to the CO3 symmetric stretching vibration. For cerussite the antisymmetric CO3 

stretching bands are observed at 1360, 1376, 1424 and 1477 cm-1.  The Raman 

spectrum of hydrocerussite shows an intense band at 1053 cm-1, attributed to the CO3 

symmetric stretching vibration.  A similar intense band is observed for leadhillite at 

1054 cm-1.  Low intensity bands are observed for susannite and caledonite at 1048 and 

1053 cm-1.  These two minerals are on a rock matrix and the reason why the intensity 

of the bands is low is ascribed to orientation effects. The Raman spectrum of 

hydrocerussite displays bands at 1365, 1375, 1378, 1420 and 1479 cm-1.  The bands 

are attributed to ν3 antisymmetric stretching vibrations.  For leadhillite a single band at 

1375 cm-1 is observed.  A very low intensity band is observed in this position for 

susannite and for caledonite two bands are observed at 1358 and 1392 cm-1.  A 

number of bands are observed for both hydrocerussite and caledonite in the 1674 to 

1736 cm-1 region.  These bands are attributed to overtones and combination bands. 

 

The Raman spectra of the low wavenumber region are reported in Figure 3. 

For anglesite two sets of bands are observed at 361, 440 and 451 cm-1 and at 608, 620 
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and 642 cm-1.  The bands are assigned to the ν2 and ν4 vibrational modes.  The 

position of the bands is in excellent agreement with published data. (COLEYSHAW, 

E. E. et al., 1994; CRANE, M. J. et al., 2001; GRIFFITH, W. P., 1970)  For leadhillite 

the out-of-plane bending modes are observed at 599 and 626 cm-1.  The in-plane 

bending modes are observed at 428 and 458 cm-1.  The Raman spectrum of susannite 

shows bands at 602 and 628 cm-1 and at 427, 450, 427 and 497 cm-1 for these 

vibrational modes. Similarly the Raman spectrum of caledonite shows bands at 426, 

456 and 475 cm-1 and at 605 and 628 cm-1. For cerussite two sets of bands are 

observed at 669, 674, 681 and 694 cm-1 and at 815, 825 and 838 cm-1. These two sets 

of bands are attributed to the ν4 and ν2 vibrational modes. For hydrocerussite, bands 

are observed at 671, 681 and 694 cm-1 and at 837, 866 and 887 cm-1.  In comparison 

for leadhillite bands are observed at 599 and 626 cm-1 and also at 852 and 859 cm-1. 

For caledonite, ν2 bands are observed at 825 and 848 cm-1.   

 

CONCLUSIONS: 

 

 Raman spectroscopy has enabled the spectroscopic analysis of the basic lead 

carbonate and sulphate minerals. Each phase has its own characteristic Raman 

spectrum enabling identification.   Raman spectroscopy allows the hydroxyl unit OH 

stretching vibrations of the four minerals to be obtained.  The position of the OH 

stretching vibrations was used to estimate the hydrogen bond distances in the mineral 

structure. Such measurements are normally obtained from well-performed X-ray 

diffraction or neutron diffraction studies.  The significance of this work rests with the 

identification of these phases on the surfaces of the corroded products of lead. Such 

corrosion products may be identified in old slag heaps and old water pipes. 
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