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The least-squares linear inverse estimation problem for random fields is
studied in a fractional generalized framework. First, the second-order regu-
larity properties of the random fields involved in this problem are analysed
in terms of the fractional Sobolev norms. Second, the incorporation of prior
information in the form of a fractional stochastic model, with covariance op-
erator bicontinuous with respect to a certain fractional Sobolev norm, leads
to a regularization of this problem. Third, a multiresolution approximation
to the class of linear inverse problems considered is obtained from a wavelet-
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integral operators.
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1. INTRODUCTION

The problem of linear estimation of an input random field from the obser-
vation of a related output random field in a real system frequently arises in
different fields of application such as medical imaging, geophysical prospect-
ing, groundwater hydrology, physical chemistry, astronomy, etc. Formally,
the real system is usually represented in terms of an operator that can be
linear or non-linear. Different approaches have been introduced regard-
ing the statistical solution to the inverse problem in infinite-dimensional
spaces. Among others, the study of this problem in terms of Hilbert-space
stochastic processes has been carried out, for example, in [15] and [24];
a method based on Hilbert-space-valued random variables is presented in
[20]; the use of generalized random variables defined on distribution spaces
is considered in [19]; see also the review paper on statistical inversion meth-
ods in [10]. A wavelet-based approximation to this problem is presented
in [23], where a fractal-type prior model class (multiscale models) for the
input is considered. In [3] a different discretization of a stochastic linear
inverse problem is derived, in terms of wavelet-based orthogonal expansions
of the random input and the related random output. The extension of this
approach to the spatio-temporal case is given in [30].
In this paper, we introduce a fractional generalized approach to the least-

squares linear inverse estimation problem for random fields. This allows us
to define a wider class of solutions than the one associated with the usual
L2−topology of square-integrable functions. In particular, regularization
of the problem is accomplished considering a prior model class P given by
random fields with covariance operator bicontinuous with respect to a cer-
tain fractional Sobolev norm. This class includes generalized (improper)
and ordinary random fields, respectively defined by stochastic fractional-
order integro-differential and differential equations (see [29]). For example,
fractional Brownian motion, and related random fields such as fractional
Riesz-Bessel motion, introduced in [6] (see also [7] and [31]), are in class P.
These random fields are defined as solutions to fractional-order differential
equations in terms of fractional powers of the negative Laplacian operator.
The class of random fields with covariance operator defined by a positive
rational function of a self-adjoint elliptic differential operator on L2(Rd)
with smooth coefficients (in the stationary case, random fields with posi-
tive fractional-order rational spectra) is also included in class P (see, for
instance, [4] and [25]).
The study of the second-order regularity properties of the input and

output random fields referred to the continuous scale of fractional Sobolev
spaces allows the definition of the inverse of certain integral operators as a
bounded operator. This is the case, for example, of strictly positive com-
pact self-adjoint operators with respect to the L2−topology, with decrease
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rate of the eigenvalues equivalent to the one presented by embeddings be-
tween fractional Sobolev spaces. A stable solution to the corresponding
least-squares linear inverse estimation problem can then be derived. Here,
we consider a class of integral operators for which the regularization method
presented can be applied. Examples of integral operators in such a class
can be found in [4] and [25]. Moreover, the wavelet-based orthogonal ex-
pansion of the input prior model as well as the transformed wavelet-based
orthogonal expansion of the corresponding output provide a discretization
of the problem. The elements of class P can be represented as a linear
filter applied to white noise (see [4], [6], [29], and [31])). From the isom-
etry between the space L2(Rd) and the Hilbert space of random variables
generated by any white-noise random field ε on Rd, a multiresolution ap-
proximation to the space L2(Rd) induces a ‘random multiresolution-like
approximation’ to the Hilbert space of random variables generated by the
input generalized random field. Truncation of these orthogonal expansions
leads to a finite-dimensional formulation of the problem. The input and
output random fields are thus represented in terms of an orthonormal vec-
tor of random coefficients and the corresponding vector of deterministic
transformed wavelets coefficients. An approximation to the least-squares
linear estimate of the input random field is computed by solving the finite-
dimensional linear system of estimation equations defined in terms of the
above deterministic coefficients. In the Gaussian case, under certain con-
ditions, a reconstruction formula for the trajectories of the input random
field is derived similar to the one provided by the wavelet-vaguelette de-
composition introduced in [12] for the deterministic and ordinary cases.
In Section 2, we first refer to the ordinary formulation of the stochas-

tic linear inverse problem, and introduce some fundamental results in re-
lation to the fractional generalized framework, as well as a wavelet-based
orthogonal expansion of fractional generalized random fields. We formulate
in Section 3 the stochastic linear inverse problem in a fractional general-
ized framework, and derive a solution to this problem via its regularization
based on the considered fractional generalized prior model class. Discretiza-
tion of such a problem is derived in Section 4 in terms of the orthogonal
decomposition of the input prior model and the corresponding output in
terms of wavelets. Both representations lead to associated wavelet-based
decompositions of the square-roots of the prior input covariance operator,
the corresponding output, and their respective inverses. The least-squares
linear estimate of the input random field is then calculated in terms of
these wavelet decompositions. Truncation of the above series leads to a
finite-dimensional approximation to the problem. In the case where the
integral operator defining the problem does not have a continuous inverse
with respect to any fractional Sobolev norm, the wavelet-based orthogonal
expansion of the input prior model leads to a weak-sense approximation
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of the least-squares linear estimate. Finally, in Section 5, two important
examples are described where the integral operator of the problem rep-
resents fractional integration. In Example 1, we assume that the input
random field is of a fractal nature and, in particular, we consider fractional
Brownian motion as a prior model to regularize the problem. Example 2
is formulated in terms of the Riesz kernel (the Abel transform is a particu-
lar case), which is homogeneous and preserves most of the scale-space local
properties of wavelets (see [12]). In this case, the prior model is a fractional
generalized random field defined by a fractional-order integral equation, in
terms of the Bessel kernel.

2. PRELIMINARIES

In this section, we consider the basic formulation of the least-squares lin-
ear estimation method for ordinary stochastic linear inverse problems. To
translate this problem into a fractional generalized framework, we introduce
some fundamental results from [31] used below. Some preliminary results
in relation to wavelet-based orthogonal expansions of fractional generalized
random fields from [5], needed in Section 4, are also given.
Let {g(y) : y ∈ S} and {f(z) : z ∈ S} be two zero-mean second-order

random fields defined on a domain S ⊆ Rd related by the following first-
kind integral equation in the mean-square sense:

g(y) =

∫

S

k(y, z)f(z)dz = K(f)(y), y ∈ Sg ⊆ S, (1)

where k denotes the kernel of the integral operatorK transferring the infor-
mation from f to g. By Bgg, Bfg, and Bff we denote the covariance func-
tion of g, the cross-covariance function between f and g, and the covariance
function of f , respectively. We assume that some prior information on Bff
is available. The least-squares linear estimation of f from the observation
of g in a subset Sg ⊆ S is summarized in the following paragraphs.

A linear estimate f̂z of f(z), based on the information provided by the
observation of g in a subset Sg ⊆ S, is defined by

f̂z =

∫

Sg

lz(r)g(r)dr, (2)

where lz(·) is the weighting function summarizing the available information
{g(z) : z ∈ Sg} in the linear approximation of f(z). From the Orthogonal
Projection Theorem, the function lz associated with the least-squares linear
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estimate of f(z) satisfies the following equations:

Bfg(z,y) =

∫

Sg

lz(r)Bgg(r,y)dr, y ∈ Sg. (3)

Remark 2.1. In certain applications, there may exist some locations
where the input random field is also observed (see, for example, [11], in the
groundwater hydrology context). The available sample information then
consists of the observations of the output g in a subset Sg ⊆ S, and of the

input f in a subset Sf ⊆ S. A linear estimate f̃z of f(z) is defined in this
case by

f̃z =

∫

Sg

lgz(y)g(y)dy+

∫

Sf

lfz (y)f(y)dy,

where lg
z
(·) and lf

z
(·) now represent the weighting functions associated with

the observation sets Sg and Sf , respectively, in the linear approximation

of f at location z in S \ Sf . As before, in the case where f̃z represents the
least-squares linear estimate of f(z), these functions satisfy the following
equations:

Bfg(z,y) =

∫

Sg

lgz(x)Bgg(x,y)dx+

∫

Sf

lfz (s)Bfg(s,y)ds, y ∈ Sg,

Bff (z,v) =

∫

Sg

lg
z
(x)Bgf (x,v)dx+

∫

Sf

lf
z
(s)Bff (s,v)ds, v ∈ Sf . (3)

Usually, measurements are affected by additive noise. In this case, we
assume that the observation model is given by

y(x) = g(x) + ν(x), x ∈ Sy ⊆ S, (5)

where ν represents white noise with intensity σ, uncorrelated with the
random input f. The least-squares linear estimate f̂z of f(z), based on the
information provided by the observations {y(x) : x ∈ Sy}, is then defined
as

f̂z =

∫

Sy

lz(r)y(r)dr, (6)

with function lz(·) satisfying the equations

Bfy(z,x) =

∫

Sy

lz(r)Byy(r,x)dr, x ∈ Sy. (7)
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Here Byy = Bgg+Bνν represents the covariance function of the observation
process y, and Bνν the covariance function of the additive noise ν.
We now introduce some definitions and preliminary results from [31] on

fractional generalized random fields.
Let C∞0 (S) be the space of infinitely differentiable functions with com-

pact support contained in S, with S ⊆ Rd being a bounded C∞−domain,
that is, a bounded domain with C∞ boundary. Let Hα(Rd), α ∈ R, be

the fractional Sobolev space defined as the completion C∞0 (Rd)
‖·‖α

with
respect to the associated norm

‖φ‖2α =

∫

Rd

(1 + |λ|2)α|F(φ)(λ)|2dλ, φ ∈ Hα(Rd), (8)

where F(·) denotes the Fourier transform. In the following sections, we
consider the fractional Sobolev spaces on a bounded C∞−domain S

H̄α(S) =
{
φ ∈ Hα

(
R
d
)
: supp φ ⊆ S

}
= C∞0 (S)

‖·‖α
.

The dual space of H̄α(S) is the space H−α(S) of distributions defined on S
that coincide with the restriction to S of a function of the space H−α(Rd).
For α ∈ R, we denote by Uα and Vα the fractional dual Sobolev spaces
H̄α(S) and H−α(S), respectively.
The interpretation of the above-described least-squares linear inverse es-

timation problems in a fractional generalized framework is achieved via
the second-order regularity properties of the input and output random
fields referred to the continuous dual scales of fractional Sobolev spaces
{Uα, α ∈ R} and {Vα, α ∈ R} . Such properties are studied in terms of
the Hilbert space L2(Ω,A, P ) of real-valued zero-mean random variables
defined on the basic probability space (Ω,A, P ), with finite second-order
moments, and with the inner product

< X,Y >L2(Ω)= E[XY ], X, Y ∈ L2(Ω,A, P ). (9)

The following concept of a fractional generalized random field, given in
terms of the fractional Sobolev and the L2(Ω,A, P ) norms, establishes a
bridge between the topological properties induced by these two norms.

Definition 2.1. For α ∈ R, a random function Xα(·) from Uα
into L2(Ω,A, P ) is said to be an α−generalized random field (α−GRF)
if it is linear and continuous in the mean-square sense with respect to the
Uα−topology.

The minimum order α for which a generalized random function X can
be defined as a continuous linear functional from Uα into L2(Ω,A, P ) is
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referred to as the minimum fractional singularity order (respectively, −α
defines the maximum fractional regularity order) of X. In the ordinary
case, the singularity order is established in terms of the integrability in the
mean-square sense of a random field in a fractional Sobolev space. Thus,
if an ordinary random field X has minimum fractional singularity order
α ∈ R, then H̄α(S) is the largest space where X is mean-square integrable
or, equivalently, where its covariance operator RX can be defined. That is,

(RX (h), h) =

∫

S

∫

S

BXX (z,y)h(y)h(z)dydz <∞, ∀h ∈ H̄α(S), (10)

where BXX represents the covariance function of X . Moreover, an ordinary
random field has a non-positive singularity order, and the function h in
Eq. (10) is a distribution. In this case, therefore, BXX belongs to the
space of test functions where the distribution h is defined. In particular,
for −α > d/2, BXX is continuous and the random field X is continuous
in the mean-square sense (see [33] on Embedding Theorems for fractional
Sobolev spaces).
The minimum fractional singularity order of a fractional GRF Xα is

determined by the regularity properties of the functions belonging to its
reproducing kernel Hilbert space (RKHS) H(Xα), which is isometrically
equivalent to the Hilbert subspace H(Xα) of L2(Ω,A, P ). These spaces are
defined as follows. The space H(Xα) is defined as the closed span with
respect to the mean-square norm of the subspace {Xα(ϕ) : ϕ ∈ Uα} of
L2(Ω,A, P ). The space H(Xα) is defined as the space of functions u ∈ Vα
such that

u(φ) = E[Y Xα(φ)], φ ∈ Uα, (11)

for a certain Y ∈ H(Xα). The inner product in H(Xα) is defined as
< u, v >H(Xα)= E[Y Z], where Y and Z are the elements of H(Xα)
defining u and v, respectively, as in Eq. (11). The spaces H(Xα) and
H(Xα) are therefore isometric under the relationship given by Eq. (11).
The space H(Xα) also coincides with the closed span of {BXαXα

(φ, ·) =
E[Xα(φ)Xα(·)] : φ ∈ Uα} with respect to the mean-square norm, where
BXαXα

(·, ·) denotes the covariance function of Xα.
From the Kernel Theorem (see [16]), the covariance function BXαXα

of
the α−GRF Xα can be represented as

BXαXα
(ϕ, φ) =< (RXα

ϕ)∗, φ >Uα , ϕ, φ ∈ Uα,

where ∗ stands for the duality between Hilbert spaces (the Riesz Repre-
sentation Theorem), and RXα

is the covariance operator of Xα, that is, a
symmetric positive continuous linear operator from Uα into Vα. Hence, the
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RKHS of Xα can be defined as

H(Xα) = spL
2(Ω) {RXα

(φ) : φ ∈ Uα} .

The regularization method we develop in the next section is based on
the following concept of α−duality introduced in [31]:

Definition 2.2. For α ∈ R, we say that an α−GRF

X̃α : Vα −→ L2(Ω,A, P )

is the dual relative to Uα (or α−dual) of the α−GRF

Xα : Uα −→ L2(Ω,A, P )

if it satisfies:

(i) H(Xα) = H(X̃α),

(ii) < Xα(φ), X̃α(v) >H(Xα)=< φ, v∗ >Uα , for φ ∈ Uα, and v ∈ Vα, with
v∗ being the dual element of v with respect to the Uα−topology.

Note that the dual of X̃α relative to Vα is the α−GRF Xα. In the above
definition, H(Xα) and H(X̃α) represent, as before, the Hilbert spaces of

random variables associated with Xα and X̃α, respectively. We denote by
H(X̃α) the RKHS of the fractional GRF X̃α defined by

H(X̃α) = spL
2(Ω)

{
RX̃α

(v)(·) : v ∈ Vα
}
, (12)

where RX̃α
represents the covariance operator of X̃α. Under the existence

of the α−dual X̃α, the covariance operator RXα
of Xα is an isomorphism

from Uα into Vα, and can be factorized as follows:

RXα
= T T ′, (13)

where T is an isomorphism from L2(S) onto Vα, and T
′ represents the

adjoint operator of T (see [31]). Conversely, Xα is the α−dual of the

random field X̃α, and the covariance operator RX̃α
can also be factorized

as

RX̃α
= T̃ T̃ ′, (14)

with˜
T= [T′]−1 = [T −1]′. Thus, RXα

= R−1
X̃α

.
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Remark 2.2. Note that in the case where RXα
: Uα −→ Vα is an

isomorphism, its inverse operator defines the covariance operator of its
dual fractional generalized random field. Definition 2.2. then provides a
condition equivalent to the existence of the bounded inverse R−1Xα

: Vα −→
Uα of RXα

. In the case where the observation random field has duality order
α, the least-squares linear estimation problem associated with f admits a
solution in the space Uα as we show in Section 3.

Below, we finally describe the elements and results given in [5] for an
orthogonal representation of an α−GRF in terms of wavelets. Consider
a multiresolution approximation of L2(S) in terms of a modified ortho-
normal basis of L2(Rd) of wavelet functions with support contained in S
(see, for example, [26]). Such an approximation leads to the orthogonal
decomposition

L2(S) = V0
⊕

j≥0

Wj ,

where V0 represents the coarsest-scale space of interest generated by the
orthonormal basis of scaling functions {φk : k ∈ ΓS0 }, and whereWj , j ≥ 0,
are closed subspaces of L2(S) respectively generated by the orthonormal
wavelet bases {ψj:θ : θ ∈ ΛSj }, j ≥ 0. Thus, a function f in L2(S) can be
represented in terms of scaling coefficients with respect to the orthonormal
basis {φk : k ∈ ΓS0 }, and wavelet coefficients (detail coefficients) with
respect to the orthonormal bases {ψj:θ : θ ∈ ΛSj }, j ≥ 0, at different scales
(see [22]). The following result provides a sufficient condition that ensures
the convergence in the mean-square sense of a wavelet-based orthogonal
expansion of a fractional GRF.

Theorem 2.1. (see [5]) Let Xα be an α-GRF satisfying the duality con-
dition given in Definition 2.2. Then, Xα can be represented by the following
orthogonal expansion in the mean-square sense:

Xα (ψ) =
∑

k∈ΓS0

Xα

(
ϕk
)
ϕ
k
(ψ) +

∑

j≥0

∑

θ∈ΛSj

Xα

(
γj,θ

)
γj,θ (ψ) ,

for all ψ ∈ Uα, where ϕk = T (φk), ϕ
k = T̃ (φk), for all k ∈ ΓS0 , γj,θ =

T (ψj,θ), and γj,θ = T̃ (ψj,θ), for all θ ∈ ΛSj , j ≥ 0. Here T and T̃ are
defined as in (13) and (14), respectively.
The random coefficients

{
Xα

(
ϕk
)
: k ∈ ΓS0

}
∪
{
Xα

(
γj,θ

)
: θ ∈ ΛSj , j ≥ 0

}

are orthonormal in H(Xα).

A similar wavelet-based orthogonal expansion can be obtained for the
α−dual GRF X̃α of Xα.
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Corollary 2.1. Under the conditions of the above theorem, the follow-
ing orthogonal expansion for X̃α is obtained:

X̃α (h) =
∑

k∈ΓS0

X̃α (ϕk)ϕ
k (h) +

∑

j≥0

∑

θ∈ΛSj

X̃α

(
γj,θ

)
γj,θ (h) ,

for all h ∈ [Uα]∗, where the functions
{
ϕk : k ∈ ΓS0

}
,
{
ϕk : k ∈ ΓS0

}
,{

γj,θ : θ ∈ ΛSj , j ≥ 0
}
and

{
γj,θ : θ ∈ ΛSj , j ≥ 0

}
are defined as in The-

orem 2.1, and the series converges in the mean-square sense. The random
coefficients {X̃α (ϕk) : k ∈ ΓS0 } ∪ {X̃α

(
γj,θ

)
: θ ∈ ΛSj , j ≥ 0} are ortho-

normal in H(X̃α).

The systems {ϕk : k ∈ ΓS0 } ∪ {γj,θ : θ ∈ ΛSj , j ≥ 0} and {ϕk :

k ∈ ΓS0 } ∪ {γ
j,θ : θ ∈ ΛSj , j ≥ 0} constitute dual Riesz bases. These

bases provide scale-space local descriptions of the linear operators T and
T̃ , respectively, which lead to the following series representations of the
covariance operators RXα

and RX̃α
:

RXα
(ψ) (φ) =

∑

k∈ΓS0

ϕk (ψ)ϕk (φ)

+
∑

j≥0

∑

θ∈ΛSj

γj,θ (ψ) γj,θ (φ) , ∀ψ, φ ∈ Uα,

RX̃α
(h) (v) =

∑

k∈ΓS0

ϕk (h)ϕk (v)

+
∑

j≥0

∑

θ∈ΛSj

γj,θ (h) γj,θ (v) , ∀h, v ∈ Vα. (14)

Furthermore, the systems of orthonormal random coefficients in the above
orthogonal expansions can also be interpreted as orthonormal bases of
a ‘random multiresolution-like approximation’ of the spaces H(Xα) and

H(X̃α), respectively. The dual Riesz bases
{
ϕk : k ∈ ΓS0

}
∪
{
γj,θ : θ ∈ ΛSj ,

j ≥ 0} and
{
ϕk : k ∈ ΓS0

}
∪
{
γj,θ : θ ∈ ΛSj , j ≥ 0

}
then correspond to

the deterministic transformed wavelet coefficients of Xα and X̃α, with re-
spect to the orthonormal bases of random variables

{
Xα(ϕ

k) : k ∈ ΓS0
}
∪

{
Xα(γ

j,θ) : θ ∈ ΛSj , j ≥ 0
}
and

{
X̃α(ϕk) : k ∈ ΓS0

}
∪
{
X̃α(γj,θ) : θ ∈ ΛSj ,

j ≥ 0} , respectively. Indeed,
{
ϕk : k ∈ ΓS0

}
∪
{
γj,θ : θ ∈ ΛSj , j ≥ 0

}
and{

ϕk : k ∈ ΓS0
}
∪
{
γj,θ : θ ∈ ΛSj , j ≥ 0

}
constitute orthonormal bases of

the RKHSs of Xα and X̃α, respectively.
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3. FRACTIONAL GENERALIZED LINEAR INVERSE

ESTIMATION PROBLEM

The regularization method presented in this section is based on con-
sidering a fractional generalized framework to study the widest class of
solutions associated with the least-squares linear inverse estimation prob-
lem described above. Each element in such a class, that is, a solution to
a particular inverse problem under the general setup introduced in Section
2, is determined in the fractional Sobolev space that defines the domain
of the covariance operator of the observation random field according to its
minimum fractional singularity and duality orders (see Lemma 3.1). In ad-
dition, an important class K of integral operators for which this approach
is applicable is provided in Theorem 3.1. The fractional generalized frame-
work covers the ordinary and improper cases corresponding, respectively,
to non-positive and positive minimum fractional singularity orders of the
random fields involved in the integral equation (1).
Assume that the input and output random fields have minimum frac-

tional singularity orders β and α, respectively, with β ≥ α and α, β ∈ R.
The system integral equation (1) is defined in a fractional generalized frame-
work as

gα(φ) = fβ(K
′(φ)), ∀φ ∈ Uα = H̄α(S), (16)

where K′ : Uα −→ Uβ, denotes the adjoint of the integral operator K
defining such an equation. The fractional GRFs fβ and gα respectively
represent the random input and the corresponding random output. From
Eq. (5), the fractional generalized observation model is given in the case of
noisy data by

yα(φ) = gα(φ) + να(φ), ∀φ ∈ Uα = H̄α(S), (17)

where gα is defined as in Eq. (16). Here να represents a fractional general-
ized white noise on the space Uα, that is, a fractional GRF defined on Uα
with covariance function Bνανα given by

Bνανα(φ,ψ) = E [να(φ)να(ψ)] =< φ,ψ >Uα , ∀φ,ψ ∈ Uα, (18)

where < ·, · >Uα represents the inner product associated with the norm
(8). The generalized observation models (16) and (17) are given in terms of
the test functions of the space Uα with support contained in S. However,
in the case where the available information is obtained from a subdomain
Sg of S, the problem can be similarly handled considering the space of test
functions H̄α(Sg).

Remark 3.1. Note that, from Definition 2.1, gα and fβ are continuous in
the mean-square sense, which implies thatK′ presents convenient regularity
properties with respect to the involved fractional Sobolev norms.
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LetRfβgα be the covariance operator associated with the cross-covariance
function Bfβgα between fβ and gα. The adjoint R

′
fβgα

of Rfβgα is then de-
fined by

< [R′fβgα(φ)]
∗, ϕ >Uα=< φ, [Rfβgα(ϕ)]

∗ >Uβ= Bfβgα(φ,ϕ),

for all φ ∈ Uβ, ϕ ∈ Uα. Let Rgα be the covariance operator associated with
the covariance function Bgαgα of gα, defined by

< ϕ, [Rgα(ψ)]
∗ >Uα=< [Rgα(ϕ)]

∗, ψ >Uα= Bgαgα(ϕ,ψ), ∀ϕ,ψ ∈ Uα.

For each φ ∈ Uβ, the least-squares linear estimate f̂β(φ) of fβ(φ), based
on the information provided by {gα(ϕ) : ϕ ∈ Uα} (respectively, by {yα(ϕ) :
ϕ ∈ Uα} in the case of noisy data), is defined in terms of the linear operator

L′ : Uβ −→ Uα as f̂β(φ) = gα (L
′(φ)) (respectively, f̂β(φ) = yα (L

′(φ))
minimizing the mean-square error

E
[
fβ(φ)− f̂β(φ)

]2
.

From the Orthogonal Projection Theorem, in the case where the observa-
tion model is given by Eq. (16), L′ satisfies the following linear system of
estimation equations:

R′fβgα(φ) =Vα
Rgα(L

′φ), ∀φ ∈ Uβ, (19)

that can also be written in terms of the corresponding adjoint operators as

Rfβgα(ϕ) =
Vβ
LRgα(ϕ), ∀ϕ ∈ Uα. (20)

In addition, L′ is defined by

R′fβyα(φ) =Vα
Ryα(L

′φ), ∀φ ∈ Uβ, (21)

or equivalently,

Rfβyα(ϕ) =
Vβ
LRyα(ϕ), ∀ϕ ∈ Uα, (22)

in the case of observation model given by Eq. (17). Here, as before, R′fβyα
represents the adjoint of the covariance operator Rfβyα associated with the
cross-covariance function Bfβyα between fβ and yα, and Ryα represents the
covariance operator associated with the covariance function Byαyα of yα.
In the ordinary case, the adjoint operator L : Vα −→ Vβ has kernel l(·, ·)
given by Eq. (2) (respectively, by Eq. (7) in the case of noisy data).
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The following lemma provides the definition of the solution to Eq. (19)
(respectively, Eq. (21)), in terms of the covariance operator of the α−dual
of the information random field gα (respectively, yα).

Lemma 3.1. (i) Let gα be the fractional generalized random output of
Eq. (16). Assume that gα has duality order α. Then, Eq. (19) has a unique
stable solution in the RKHS of g̃α defined by

L′(φ) =
Uα

Rg̃αR
′
fβgα(φ), ∀φ ∈ Uβ, (23)

where Rg̃α : Vα −→ Uα denotes the covariance operator associated with
the covariance function Bg̃αg̃α of the α−dual g̃α, and R′fβgα : Uβ −→ Vα
represents the adjoint of Rfβgα : Uα −→ Vβ, associated with the cross-
covariance function Bfβgα between fβ and gα.
(ii) Similarly, in the case of noisy data, assume that yα defined by

Eq. (17) has duality order α. Then, the solution to Eq. (21) in the RKHS
of ỹα is defined by

L′(φ) =
Uα

RỹαR
′
fβyα(φ), ∀φ ∈ Uβ, (24)

where Rỹα denotes the covariance operator of the α−dual ỹα of yα, and
R′fβyα represents the adjoint of the covariance operator associated with the
cross-covariance function Bfβyα between fβ and yα. Such a solution is sta-
ble with respect to the considered fractional Sobolev geometries.

Proof. From Definition 2.2, the covariance operator of the α−dual GRF
g̃α (respectively, ỹα) defines the continuous inverse of the covariance oper-
ator of the observation random field with respect to the fractional Sobolev
norm ‖ · ‖α on Uα (see [31]). Therefore, Eq. (23) (respectively, Eq. (24))
provides a stable solution to Eq. (19) (respectively, Eq. (21)) on Uβ with
respect to the fractional Sobolev norms ‖·‖α and ‖·‖β. From Eq. (12), such

a solution lies in the RKHS of the α−dual of the observation random field.

From Lemma 3.1, the fractional duality order α determines the informa-
tion provided by the observation of gα useful for estimation of the input,
by means of the test functions in the space Uα. In the ordinary case, the
order α is non positive and, for each z ∈ S, the weighting function l(z, ·)
defining L is a distribution. That is, from fractional Sobolev Embedding
Theorems (see [33]), in the case where −β > d/2, operator L defined by

L(ψ) =
Vβ

RfβgαRg̃α(ψ), ∀ψ ∈ Vα,
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has a kernel l given by

L(ψ)(z) = lz(ψ) =

∫

S

lz(y)ψ(y)dy,∀ψ ∈ Vα, (25)

for each z ∈ S. Eq. (25) provides the solution with minimum fractional
singularity order to the corresponding ordinary least-squares linear inverse
estimation problem.
We now consider the class K of integral operators K that commute with

the Bessel potentials Iγ, γ > 0, and satisfy that operator

K−1Iγ = IγK
−1

is continuous with respect to the L2−topology, associated with the space of
square-integrable functions, for a certain positive γ ∈ R. Here, we consider
the weak-sense restriction of Iγ = (I−∆)−γ/2 to a bounded C∞−domain.

Remark 3.2. Since the Bessel potential is self-adjoint with respect to the
inner product defined in the space of square-integrable functions L2(Rd),
each bounded function of such an operator commutes with it. However,
the converse is false in general (see [9], pp. 145-148).

The class K includes, in particular, the subclass of integral operators
defined as fractional-order positive rational functions of an elliptic and self-
adjoint integer or fractional order differential operator commuting with the
negative Laplacian operator on L2(Rd), and with smooth coefficients. The
direct estimation problem related with this class has been studied in [25], in
the integer case, and in [4], in the fractional case. The subclass of fractional
integral operators defined by Riesz kernels (see, for example, [12] and [32])
is also included in K.
The following result provides a regularization method for stochastic lin-

ear inverse problems defined in terms of integral operators in K.

Theorem 3.1. Assume that the integral operator K belongs to the class
K, and that the prior information can be represented in the form of a frac-
tional GRF model in the class P (see Sections 1 and 2). Then, in the case
where the output g in Eq. (1) has minimum fractional singularity order α,
there exists a random input model fβ ∈ P, with fractional duality order
β ≥ α, which allows the inverse operator of K′ to be defined as a contin-
uous operator from Uβ into Uα. Therefore, the inverse of the covariance
operator of gα in Eq. (16) (respectively, Eq. (17)) can be defined as a con-
tinuous operator from Vα into Uα. The solution to Eq. (19) can then be
calculated as in Lemma 3.1. The solution to Eq. (21) is also given as in
Lemma 3.1 in the case where

‖Rνα‖ < ‖Rg̃α‖
−1. (26)
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Proof. Let β = α+γ, where α ∈ R is the minimum fractional singularity
order of the observation process, and γ ∈ R+ is the order defining K as an
element of the class K. In the case of data with no observation noise,

Rgα = KRfβK
′, (27)

where Rgα and Rfβ represent, respectively, the covariance operators of gα
and fβ. In the case of noisy data,

Ryα = KRfβK
′ +Rνα , (28)

where Ryα and Rνα represent, respectively, the covariance operators of yα
and να. Since the minimum fractional duality order of the selected model
fβ is β, the covariance operator Rfβ defines an isomorphism from Uβ onto
Vβ, and then Rfβ can be factorized as in Eq. (13), that is,

Rfβ = TfβT
′
fβ , (29)

where T ′fβ is the adjoint of the isomorphism Tfβ : L2(S) −→ Vβ. From

Eq. (29) and the definition of the class K, the operator T −1fβ
K−1 : Vα −→

L2(S) is continuous:

‖T −1fβ
K−1(φ)‖L2(S) ≤ C1‖K

−1(φ)‖Vβ = C1‖IβK
−1(φ)‖L2(S)

= C1‖Iα+γK
−1(φ)‖L2(S) = C1‖IγK

−1Iα(φ)‖L2(S)

≤ C1C2‖Iα(φ)‖L2(S) = ‖φ‖Vα , φ ∈ Vα,

where, as before, Ia = (I − ∆)−a/2. Hence, its adjoint (K−1)′(T −1fβ
)′ is

continuous and, from Eqs. (27) and (29), R−1gα is a continuous operator
from Vα into Uα. Similarly, using Eq. (28), it can be proved that R−1yα
is continuous from the continuity of R−1gα and condition (26) (see [18]).
That is, the fractional GRFs gα and yα satisfy the duality condition, and

Lemma 3.1 can be applied to obtain the solutions to Eqs. (19) and (21).

As commented in the introduction, the considered prior model class P
includes important cases of fractional stochastic models. In particular, the
fractal-type model class considered, for example, in [23], constitutes an
interesting example. The regularization properties of this class are very
similar to those presented by the usual smoothness regularizers.

4. WAVELET-BASED ORTHOGONAL APPROXIMATION

The elements of class P admit a wavelet-based orthogonal representation
as in Theorem 2.1. The orthogonal expansion of the input random field
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induces a transformed orthogonal expansion of the corresponding output.
Both orthogonal expansions provide multiresolution approximations of the
Hilbert spacesH(fβ) and H(gα) (in the sense pointed out in Sections 1 and
2). A discretization of the associated least-squares linear inverse estimation
problem is also obtained in terms of such orthogonal expansions.
We first consider the case where the integral operator K is in the class

K, and study conditions under which the orthogonal expansion of the input
random field in terms of wavelets induces an orthogonal expansion of the
same type for the output random field. Under these conditions, in the
Gaussian case and for α > d/2, a reconstruction formula for the trajectories
of the input random field can be derived using the orthogonal expansion of
the output random field obtained in the following result.

Lemma 4.1. Assume the conditions of Theorem 3.1, and that operator
K′ is defined from Uα onto Uβ. The fractional generalized input model fβ
then admits the following orthogonal expansion:

fβ(φ) =
∑

k∈ΓS0

fβ
(
ϕk
)
ϕ
k
(φ)+

∑

j≥0

∑

θ∈ΛSj

fβ
(
γj,θ

)
γj,θ (φ) , ∀φ ∈ Uβ, (30)

where
{
ϕ
k
: k ∈ ΓS0

}
∪
{
γj,θ : θ ∈ ΛSj , j ≥ 0

}
and

{
ϕk : k ∈ ΓS0

}
∪{

γj,θ : θ ∈ ΛSj , j ≥ 0
}
are dual Riesz bases respectively defined by

ϕk = Tfβ (φk), ϕk = (T −1fβ
)′(φk), k ∈ ΓS0 , and

γj,θ = Tfβ (ψj,θ), γj,θ = (T −1fβ
)′(ψj,θ), θ ∈ ΛSj , j ≥ 0,

with Rfβ = TfβT
′
fβ
. The corresponding fractional generalized output ran-

dom field gα can also be represented by

gα(ψ) =
∑

k∈ΓS0

gα
(
[K′]−1(ϕk)

)
[K(ϕk)] (ψ)

+
∑

j≥0

∑

θ∈ΛSj

gα
(
[K′]−1(γj,θ)

)
[K(γj,θ)] (ψ) (30)

=
∑

k∈ΓS0

fβ
(
ϕk
)
ϕk (K

′ψ) +
∑

j≥0

∑

θ∈ΛSj

fβ
(
γj,θ

)
γj,θ (K

′ψ) , (31)

for all ψ ∈ Uα.

Proof. Under conditions of Theorem 3.1, since K′ : Uα −→ Uβ is as-
sumed to be an onto mapping, the output g in Eq. (1) has minimum frac-
tional singularity order α. Then, from Theorem 3.1, there exists a random
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input model fβ ∈ P with fractional duality order β = α+ γ, for which the
fractional GRF model gα associated with g has fractional duality order α.
Therefore, from Theorem 2.1, fβ and gα can be represented by the orthog-
onal expansions given by Eqs. (30) and (??), respectively. Finally, using
the linear relationship between gα and fβ given by Eq. (16), we obtain the

transformed orthogonal expansion (32).

Under the conditions of Lemma 4.1, the dual equation to Eq. (16) can
be written as

g̃α(ψ) = f̃β
(
K−1(ψ)

)
, ∀ψ ∈ Vα, (33)

where f̃β and g̃α respectively represent the β−dual and the α−dual of the
fractional GRFs fβ and gα.

Remark 4.1. The orthogonal expansions (30) and (??) are given in
terms of the same system of orthonormal random coefficients that provides
a ‘random multiresolution-like approximation’ of the spaces H(fβ) and
H(gα). Therefore, we can simultaneously generate the input and output
random fields.

Remark 4.2. In the case of noisy data, under the conditions of Lemma 4.1,
the observation process yα has an α−dual ỹα. From Theorem 2.1, a similar
orthogonal expansion for yα can then be derived.

Operator L′ defining the least-squares linear estimate of the input ran-
dom field can be represented in terms of the deterministic transformed
wavelet coefficients appearing in the orthogonal expansions of the input
random field and the α−dual of the output random field, as we prove in
the following result.

Theorem 4.1. Under the conditions of Lemma 4.1, the solution to
Eq. (19) can be calculated from the following expansion:

L′(φ)(ψ) =
∑

k∈ΓS0

ϕk(K−1R′fβgαφ)ϕ
k(K−1ψ)

+
∑

j≥0

∑

θ∈ΛSj

γj,θ(K−1R′fβgαφ)γ
j,θ(K−1ψ)

=
∑

k∈ΓS0

ϕ
k
(φ)ϕk(K−1ψ) +

∑

j≥0

∑

θ∈ΛSj

γj,θ(φ)γ
j,θ(K−1ψ),(33)

for all φ ∈ Uβ and ψ ∈ Vα, where the systems of functions {ϕk : k ∈
ΓS0 } ∪ {γj,θ : θ ∈ ΛSj , j ≥ 0} and {ϕk : k ∈ ΓS0 } ∪ {γ

j,θ : θ ∈ ΛSj , j ≥ 0}
are defined as in Lemma 4.1.
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Proof. From the conditions assumed in Lemma 4.1, the β−dual f̃β of
fβ, and the α−dual g̃α of gα exist. Hence, from Eq. (15), the covariance

operator of f̃β admits the following series representation:

Rf̃β (φ) (ψ) =
∑

k∈ΓS0

ϕk (φ)ϕk (ψ) +
∑

j≥0

∑

θ∈ΛSj

γj,θ (φ) γj,θ (ψ) , ∀φ,ψ ∈ Vβ.

(35)
In addition, from Eqs. (35) and (33), the covariance operator of the α−dual
g̃α can then be represented as

Rg̃α (φ) (ψ) =
∑

k∈ΓS0

ϕk
(
K−1φ

)
ϕk
(
K−1ψ

)

+
∑

j≥0

∑

θ∈ΛSj

γj,θ
(
K−1φ

)
γj,θ

(
K−1ψ

)
, (35)

for all φ,ψ ∈ Vα. From Lemma 3.1(i) and Eq. (36), the solution to Eq. (19)
can be calculated as follows:

[L′(φ)](ψ) = [Rg̃αR
′
fβgα

(φ)](ψ)

=
∑

k∈ΓS0

ϕk(K−1R′fβgαφ)ϕ
k(K−1ψ)

+
∑

j≥0

∑

θ∈ΛSj

γj,θ(K−1R′fβgαφ)γ
j,θ(K−1ψ),

for all φ ∈ Uβ and ψ ∈ Vα. Now, for k ∈ ΓS0 and θ ∈ ΛSj , j ≥ 0,

ϕk(φ) =
(
Tfβ (φk), φ

)
=
(
φk,T

′
fβ (φ)

)
= [T ′fβ (φ)](φk),

ϕk(ψ) =
(
(T −1fβ

)′(φ
k
), ψ

)
=
(
φ
k
,T −1fβ

(ψ)
)
= [T −1fβ

(ψ)](φ
k
). (36)

Similarly,

γj,θ(φ) = [T ′fβ (φ)](ψj,θ),

γj,θ(ψ) = [T −1fβ
(ψ)](ψj,θ), (37)

for φ ∈ Uβ and ψ ∈ Vβ, where, as before, {φk : k ∈ ΓS0 } ∪ {ψj,θ :

θ ∈ ΛSj , j ≥ 0} are the orthonormal scaling and wavelet bases of L2(S)
previously considered. From Eqs. (37) and (38), the values {ϕ

k
(φ) : k ∈

ΓS0 } ∪ {γj,θ(φ) : θ ∈ ΛSj , j ≥ 0} and {ϕk(ψ) : k ∈ ΓS0 } ∪ {γ
j,θ(ψ) : θ ∈
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ΛSj , j ≥ 0} represent, respectively, the coordinates of the functions T ′fβ (φ)

and T −1fβ
(ψ) with respect to the othonormal basis {φ

k
: k ∈ ΓS0 } ∪ {ψj,θ :

θ ∈ ΛSj , j ≥ 0}.
Furthermore,

Rgα = TgαT
′
gα = KTfβT

′
fβK

′,

Rg̃α = (T −1gα )′T −1gα , and

R′fβgα = TgαT
′
fβ
. (38)

We finally obtain the last equality in Eq. (34), using Eqs. (37), (38) and
(39), as follows:

L′(φ)(ψ) = Rg̃αR
′
fβgα(φ)(ψ) =

(
(T −1gα )′T −1gα TgαT

′
β(φ), ψ

)

=
(
T ′fβ (φ),T

−1
gα (ψ)

)
=
(
T ′fβ (φ),T

−1
fβ

(K−1ψ)
)

=
∑

k∈ΓS0

ϕ
k
(φ)ϕk(K−1ψ) +

∑

j≥0

∑

θ∈ΛSj

γj,θ(φ)γ
j,θ(K−1ψ).

From Remark 4.2, a series representation for the solution L′ to Eq. (21)
can be derived in a similar way to Theorem 4.1.
A finite-dimensional formulation of the least-squares linear inverse esti-

mation problem considered here can be obtained by truncation, say at scale
j =M, of the wavelet-based orthogonal expansions of the input and output
random fields. In particular, the corresponding truncated series expansion
to (34) provides a finite-dimensional approximation to the least-squares
linear estimate of the input random field. Denoting by N(0) the number of
non-zero scaling coefficients, and by Q(j) the number of non-zero wavelet
coefficients at each scale j, the approximation of L′ at scale j =M is given
by

L′(φ)(ψ) =

N(0)∑

r=1

ϕkr(φ)ϕ
kr (K−1ψ) +

M−1∑

j=0

Q(j)∑

u=1

γj,θu(φ)γ
j,θu(K−1ψ)

=
[
ϕ(φ)T ,γ(φ)T

] [
ϕ̃(K−1ψ)T , γ̃(K−1ψ)T

]T
, (39)
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for all φ ∈ Uβ and ψ ∈ Vα. Here, [·]
T means the transposition of [·], and

ϕ(φ) =
[
ϕk1(φ), · · · , ϕkN(0)

(φ)
]T

,

γ(φ) =
[
γ0,θ1(φ), · · · , γ0,θQ(0)(φ), · · · , γM−1,θ1(φ), · · · , γM−1,θQ(M−1)

(φ)
]T

,

ϕ̃(K−1ψ) =
[
ϕk1(K−1ψ), · · · , ϕkN(0)(K−1ψ)

]T
,

γ̃(K−1ψ) =
[
γ0,θ1(K−1ψ), · · · , γ0,θQ(0)(K−1ψ), · · · , γM−1,θQ(M−1)(K−1ψ)

]T
.

In the last result in this section, we refer to the case where the integral
operator K is not necessarily in the class K. The wavelet-based orthogonal
expansion of the input random field model allows in this case the computa-
tion of a pointwise approximation on K(Vβ) to the functions in the image
space of the operator L′ defined by Eq. (19).

Theorem 4.2. Consider the fractional generalized observation model de-
fined by Eq. (16). Assume that a model for the input random field is given
by the fractional GRF fβ with fractional duality order β. Then, the image-
space of the operator L′ admits the following pointwise series approximation
on K(Vβ):

L′(φ)(Kψ) =
∑

k∈ΓS0

ϕk(Rfβφ)ϕ
k(ψ) +

∑

j≥0

∑

θ∈ΛSj

γj,θ(Rfβφ)γ
j,θ(ψ),

for all ψ ∈ Vβ and φ ∈ Uβ, with the system {ϕk : k ∈ ΓS0 } ∪ {γ
j,θ : θ ∈

ΛSj , j ≥ 0} being defined as in Lemma 4.1.

Proof. From Eqs. (37) and (38), for ψ ∈ Vβ, and φ ∈ Uβ, we obtain

L′(φ) (Kψ) =
(
T −1fβ

Rfβ (φ),T
−1
fβ

(ψ)
)

=
∑

k∈ΓS0

ϕk(Rfβφ)ϕ
k(ψ) +

∑

j≥0

∑

θ∈ΛSj

γj,θ(Rfβφ)γ
j,θ(ψ).

5. APPLICATIONS

To illustrate the approach described in Sections 3 and 4, we study here
two examples where the regularization method developed can be applied.
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In both examples the integral operator K belongs to the class K and rep-
resents fractional integration. In Example 1, the input model is given by
fractional Brownian motion. In Example 2, K is defined in terms of the
Riesz kernel, and the generalized input model is defined in terms of a frac-
tional integral equation involving a Bessel kernel. These two examples then
cover important models in applications (see, for example, [12] and [23]).

5.1. Example 1

We first consider the following stochastic integral equation:

g = Kf, (41)

with

K = (I −∆)−(ν+ρ)/2,

f(z) =
[
(−∆)−ρ/2ε

]
(z), z ∈ S ⊆ Rd,

g(z) =
[
(I −∆)−ρ/2X

]
(z), z ∈ S ⊆ Rd, (41)

where ρ, ν ∈ R+, S is a bounded C∞−domain, (−∆) denotes the negative
Laplacian operator on such a domain, ε is a Gaussian white noise on L2(S),
and X is defined by the stochastic fractional-order differential equation

(I −∆)ν/2(−∆)ρ/2X = ε. (43)

The weak-sense solution to Eq. (43) has been studied in [6] as an important
example of a fractional GRF, called fractional Riesz-Bessel motion (fRBm).
For ν ≥ 0 and 0 < ρ < d, the fRBm has fractional duality order ν + ρ.
In the case where ν + ρ > d/2, the weak-sense solution to Eq. (43) on S
becomes strong-sense.
Note that for different values of parameter ρ, the input random field

model considered for f covers Brownian motion and fractional Brownian
motion.
From Lemma 3.2 and Lemma 3.3 of [6], g has fractional duality order

ν +2ρ. That is, g defines a fractional generalized random field g−(ν+2ρ) on

U−(ν+2ρ) = H̄−(ν+2ρ)(S) and its fractional generalized dual g̃ν+2ρ exists
on V−(ν+2ρ) = Hν+2ρ(S). Therefore, its covariance operator Rg−(ν+2ρ) de-

fines an isomorphism from H̄−(ν+2ρ)(S) into Hν+2ρ(S). In addition, from
Theorem 9.5.10(a) of [14], it can be proved that (−∆)−ρ/2, with ρ ∈ (0, d),
is bicontinuous as an operator from H̄−ρ(S) into L2(S). The covariance
operator Rf of f is then a bicontinuous operator from H̄−ρ(S) into Hρ(S),
and, from [17] (p. 164), Rf is an isomorphism from H̄−ρ(S) into Hρ(S).
The considered input model for f then defines a fractional GRF f−ρ on
U−ρ = H̄−ρ(S) with fractional duality order ρ.
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Since K′ = [(I − ∆)−(ν+ρ)/2]′ = I ′ν+ρ , then K belongs to K. More-

over, K′ defines an isomorphism from H̄−(ν+2ρ)(S) onto H̄−ρ(S), and the
conditions of Lemma 4.1 are satisfied. Hence, from Theorem 4.1, operator
L′ defining the least-squares linear estimate of the input random field in
Eqs. (41) and (42) admits a wavelet-based series expansion as in Eq. (34),
with β = −ρ and α = −(ν + 2ρ). For each φ ∈ H̄−ρ(S), the coefficients of
L′(φ) in such an expansion can be calculated as defined below.
Let {φ

k
: k ∈ ΓS0 } ∪ {ψj,θ : θ ∈ ΛSj , j ≥ 0} be an orthonormal scaling

and wavelet basis of L2(S). For each k ∈ ΓS0 and θ ∈ ΛSj , with j ≥ 0,

ϕk(φ) =

∫

Rd

(
F(φ

k
)(λ)

|λ|ρ

)
F(φ)(λ)dλ,

ϕk(φ∗) =

∫

Rd

(F(φk)(λ)|λ|
ρ)F(φ∗)(λ)dλ,

γj,θ(φ) =

∫

Rd

(
F(ψj,θ)(λ)

|λ|ρ

)
F(φ)(λ)dλ,

γj,θ(φ∗) =

∫

Rd

(
F(ψj,θ)(λ)|λ|

ρ
)
F(φ∗)(λ)dλ, (43)

for all φ ∈ H̄−ρ(S) = U−ρ, where ∗ stands for the duality between frac-
tional Sobolev spaces with respect to L2(S), and F denotes the Fourier
transform. Let {un}n∈N be an orthonormal basis of L2(S). For each n ∈ N,
we define

ũn(ψ
∗) =

∫

Rd

F(un)(λ)F(ψ
∗)(λ)

(1 + |λ|2)(ν+2ρ)/2
dλ,

ũn(ψ) =

∫

Rd

(1 + |λ|2)(ν+2ρ)/2F(un)(λ)F(ψ)(λ)dλ,

(44)

for all ψ ∈ V−(ν+2ρ) = Hν+2ρ(S). The systems {ũn : n ∈ N} ⊆ Hν+2ρ(S)

and {ũn : n ∈ N} ⊆ H̄−(ν+2ρ)(S) are dual Riesz bases with respect to
L2(S). Eq. (34) is then calculated by using Parseval’s identity as follows:

L′(φ)(ũn) =
∑

k∈ΓS0

[∫

Rd

F(φk)(λ)F(φ)(λ)

|λ|ρ
dλ

] [∫

Rd

|λ|ρF(φk)(λ)F(un)(λ)

[1 + |λ|2]ρ/2
dλ

]

+
∑

j≥0

∑

θ∈ΛSj

[∫

Rd

F(φ)(λ)F(ψj,θ)(λ)

|λ|ρ
dλ

] [∫

Rd

|λ|ρF(un)(λ)F(ψj,θ)(λ)

[1 + |λ|2]ρ/2
dλ

]
,

for n ∈ N, and for each φ ∈ Uρ = H̄−ρ(S).
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From Lemma 4.1, we can generate the random variables {g−(ν+2ρ)(L
′φ) :

φ ∈ U−ρ} (see Eq. (??)), obtaining the least-squares linear approximation
of {f−ρ(φ) : φ ∈ U−ρ}. Then, for each φ ∈ U−ρ,

f̂−ρ(φ) = g−(ν+2ρ)

(∑

n∈N

L′(φ)(ũn)ũ
n

)

=
∑

k∈Zd

gk−(ν+2ρ)(ω)ϕk

(
I′ν+ρ

(
∑

n∈N

L′(φ)(ũn)ũ
n

))

+
∑

j≥0

∑

θ∈Λj

gj,θ−(ν+2ρ)(ω)γj,θ

(
I ′ν+ρ

(∑

n∈N

L′(φ)(ũn)ũ
n

))
, (45)

where Iν+ρ = (I − ∆)−(ν+ρ)/2, and the random coefficients {gk−(ν+2ρ) :

k ∈ ΓS0 } ∪ {g
j,θ
−(ν+2ρ) : θ ∈ ΛSj , j ≥ 0}, which coincide with the random

coefficients {fk−ρ : k ∈ ΓS0 } ∪ {f
j,θ
−ρ : θ ∈ ΛSj , j ≥ 0} of the wavelet-based

orthogonal expansion of f−ρ, are uncorrelated and all have the standard
Gaussian distribution. The system {ϕk : k ∈ ΓS0 } ∪ {γj,θ : θ ∈ ΛSj , j ≥ 0}
is defined as in Eq. (44). Similarly, the input model {f−ρ(φ) : φ ∈ Uρ} can
be generated from Eq. (30), with β = −ρ and {ϕ

k
: k ∈ ΓS0 } ∪ {γj,θ : θ ∈

ΛSj , j ≥ 0} defined as in Eq. (44). That is, for each n ∈ N,

f−ρ(v
n) =

∑

k∈ΓS0

fk−ρ(ω)

∫

Rd

F(φ
k
)(λ)F(un)(λ)(1 + |λ|

2)ρ/2

|λ|ρ
dλ

+
∑

j≥0

∑

θ∈ΛSj

f j,θ−ρ (ω)

∫

Rd

F(ψj,θ)(λ)F(un)(λ)(1 + |λ|
2)ρ/2

|λ|ρ
dλ,

where {vn : n ∈ N} ⊆ Hρ(S) and {vn : n ∈ N} ⊆ H̄−ρ(S) are dual Riesz
bases defined from the orthonormal basis {un : n ∈ N} ⊆ L2(S) similarly
to Eq. (45).

5.2. Example 2

We now consider the fractional generalized stochastic integral equation

gα(φ) = fβ(K
′(φ)), ∀φ ∈ Uα = H̄α(S),

where K = (−∆)−ρ/2 represents fractional integration. The model fβ
considered here for the input is improper, and it is defined as the fractional
generalized solution to the following fractional-order integral equation:

(I −∆)−β/2fβ = ε,
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where ε represents a Gaussian white noise. Then,

fβ(φ) = (I −∆)β/2ε(φ), ∀φ ∈ Uβ = H̄β(S),

with ε now interpreted as a generalized white noise on L2(S) (see Eq. (18)).
The random field gα is defined as the generalized solution to the fractional-
order integro-differential equation

[
(I −∆)−β/2(−∆)ρ/2

]
gα = ε,

where we denote α = β − ρ > 0. Then,

gα(φ) =
[
(−∆)−ρ/2(I −∆)β/2

]
ε(φ), ∀φ ∈ Uα = H̄α(S).

The fractional singularity and duality orders of the model fβ are both equal
to β. The fractional singularity and duality orders of gα are both equal to
α. As in the above example, a wavelet-based orthogonal expansion of fβ is
calculated in terms of the following dual Riesz bases:

ϕk(φ) =

∫

Rd

[1 + |λ|2]β/2F(φk)(λ)F(φ)(λ)dλ, and

ϕk(φ∗) =

∫

Rd

(
F(φk)(λ)

[1 + |λ|2]β/2

)
F(φ∗)(λ)dλ, k ∈ ΓS0 ;

γj,θ(φ) =

∫

Rd

[1 + |λ|2]β/2F(ψj,θ)(λ)F(φ)(λ)dλ, and

γj,θ(φ∗) =

∫

Rd

(
F(ψj,θ)(λ)

[1 + |λ|2]β/2

)
F(φ∗)(λ)dλ, θ ∈ ΛSj , j ≥ 0,

for all φ ∈ Uβ, where, as before, {φk : k ∈ ΓS0 } ∪ {ψj,θ : θ ∈ ΛSj , j ≥ 0} is
an orthonormal scaling and wavelet basis. The series expansion of operator
L′ can then be computed as follows: For φ ∈ Uβ and n ∈ N,

L′(φ)(ũn) =
∑

k∈ΓS0

[∫

Rd

[1 + |λ|2]β/2F(φk)(λ)F(φ)(λ)dλ

]

×

[∫

Rd

|λ|ρ[1 + |λ|2]α/2F(φk)(λ)F(un)(λ)

[1 + |λ|2]β/2
dλ

]

+
∑

j≥0

∑

θ∈ΛSj

[∫

Rd

[1 + |λ|2]β/2F(ψj,θ)(λ)F(φ)(λ)dλ

]

×

[∫

Rd

|λ|ρ[1 + |λ|2]α/2F(ψj,θ)(λ)F(un)(λ)

[1 + |λ|2]β/2
dλ

]
, (46)
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where {ũn : n ∈ N} ⊆ Uα and {ũn : n ∈ N} ⊆ Vα are dual Riesz bases
with respect to L2(S), defined from an orthonormal basis {un : n ∈ N} of
this space as in Eq. (45). From Eq. (47), the least-squares linear estimate

f̂β can be calculated similarly to Eq. (46).

6. CONCLUSION

The definition and study of deterministic or random functions with a
very irregular local behaviour has traditionally been carried out by using
the theory of distributions or generalized functions (see, for example, [16]).
The usual concept of generalized random field on C∞0 (S) is based on the
theory of countably, nuclear, and rigged Hilbert spaces (see also [27], [28]).
The concept of fractional GRF considered in this paper is based on the
abstract definition of generalized random field on a Hilbert space (see, for
example, [1][29]), and the theory of fractional Sobolev spaces. The frac-
tional generalized approach allows to measure, in the continuous real scale,
the degree of regularity or singularity in the mean-square sense of a random
function. Furthermore, under the duality condition, the Sobolev geometry
can be related to the geometry defined by the associated generalized co-
variance function via the RKHS. The duality condition is equivalent to
defining the covariance operator as an isomorphism between appropriate
fractional Sobolev spaces. The class of stochastic models satisfying such
a condition includes important cases mentioned in Section 1. In this pa-
per, we use such a class as the prior model class P to regularize stochastic
linear inverse problems defined in terms of an element K of the class K
(see Section 3). The fractional duality order of the generalized observation
model determines the function space where the solution to the least-squares
linear inverse estimation problem can be found. The computation of the
least-squares linear estimate of the input random field is achieved, in this
fractional generalized framework, using the wavelet-based series expansions
derived in Section 4.
In practice, the application of the method can be summarized in the

following steps:

Step 1. Measurement of the minimum fractional singularity order α of
the observation process.

Step 2. Determination of the parameter γ associated with K in class K.

Step 3. Selection of the fractional GRF model for the input random field
from the class P according to Steps 1 and 2 to allow the inversion of K.

Step 4. Calculation of the wavelet-based series expansion of L′ defining
the least-squares linear estimate of the input.
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Step 5. Approximation of the least-squares linear estimate of the input
fractional GRF in terms of the truncated wavelet-based series expansion
calculated in Step 4.

In the case where K is not in K, Theorem 4.2 of Section 4 provides
a weak-sense wavelet-based series approximation to L′, provided that the
prior information can be represented by an element of P.
As the class P includes ordinary and generalized stochastic models, the

presented approximation covers both cases, as we note in Sections 1 and 3.
Moreover, this class contains models important in applications such as frac-
tional Brownian motion, fractional Riesz-Bessel motion, fractional-order
rational functions of self-adjoint elliptic differential operators of fractional
order, etc. (see, for example, [4], [6], [7], [23], [25] and [35]). The class
K also includes important fractional integral transforms, as mentioned in
Section 3, such as the Riesz transform (in particular, the Abel transform)
and the Bessel transform (see, for example, [12] and [32]).
Finally, it must be noted that in certain applications, for instance in

groundwater hydrology, inverse problems usually involve compact opera-
tors, which do not have a continuous inverse with respect to the L2−topology.
However, a continuous inverse may exist with respect to a certain fractional
Sobolev topology. That is the case of positive rational functions of elliptic
and self-adjoint differential operators, and, in particular, of homogeneous
and self-adjoint integral operators with a positive rational Fourier trans-
form.
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