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Abstract 

 

 The thermal evolution process of IrO2 - Ta2O5/Ti coatings with varying noble metal 

content has been investigated under in situ conditions by thermogravimetry combined with 

mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts 

(IrCl3·3H2O and TaCl5) onto titanium metal support were heated in an atmosphere containing 

20% O2 and 80% Ar up to 600 °C. The liberation of the chlorinated species followed by the 

mass spectrometric ion intensity curves showed that the two oxide phases do not develop 

independently.  

 The cracking of retained solvent, the combustion of organic surface species formed 

(and elemental carbon trapped in the film) was also followed by the MS curves. The 

formation of carbonyl- and carboxylate-type surface species connected to the noble metal 

were identified by Fourier transform infrared emission spectroscopy. These secondary 

processes -catalyzed by the noble metal- play an important role in the development of surface 

morphology of the films when used as anode materials in oxygen evolution reactions. 
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Introduction 

 

 Thermally prepared IrO2 –based coatings deposited on titanium metal supports are the 

most promising anodes in electrometallurgy where cheaper, but environmentally undesired 

materials like e.g. lead alloys, have to be dismissed. 1,2  More generally, other industrial 

processes where oxygen evolution is one of the electrochemical reactions occurring at the 

anode (e.g. electrochemical oxidation or incineration of organics in aquatic media), may 

represent important potential fields of application for the above electrode materials. 3,4  

Tantalum pentoxide is often suggested as the optimal stabilizing component of IrO2-based 

film anodes and, independently from this application, Ta2O5 films have a growing potential in 

microelectronics as capacitors in high density dynamic random access memories  

(DRAMs), 5-7  as light waveguides, 8-10  or as antireflection coatings. 11-14 

 Among the many IrO2-based film electrodes, an important advantage offered by mixed 

oxide coatings consisting of IrO2 and Ta2O5 is the remarkable catalytic activity for the oxygen 

evolution reaction, which allows to carry out the process of interest with lower energy 

consumption. 15-23  The decisive feature is, however, the service life of these electrodes, which 

are so far satisfactory for many practical applications, in spite of the fact that the performance 

can be still improved by proper optimization of the electrode film preparation.  

 The conventional thermal deposition method of film preparation involves the use of 

H2IrCl6·6H2O and TaCl5 precursors dissolved in hydrochloric acid and alcohol, respect- 

ively. 24  It was reported that oxide anodes prepared from organic solvent systems display 

better performance. 25,26  It was also shown that IrO2 - Ta2O5 coatings prepared at low 

temperature display a low stability due to incomplete thermal decomposition resulting in the 

dissolution of the coating during electrolysis. 27,28  At higher temperatures (>500 °C), 

however, partial oxidation of the base metal leads to low adhesion of the film to the support. 

Therefore, an in situ study of the thermolysis processes is indispensable in order to improve 
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the design of thermally prepared electrode coatings. In the present work the thermal evolution 

process of the IrO2 - Ta2O5 system prepared by the sol-gel method is studied in detail using 

thermogravimetry - mass spectrometry and infrared emission spectroscopy. 

 

Experimental section 

 

Thin film preparation. The precursor salts -IrCl3⋅3H2O (Fluka, Buchs, Switzerland) and 

TaCl5 (Sigma-Aldrich, Budapest, Hungary) were dissolved in 2-propanol and a 0.05M stock 

solution was prepared for each component. Mixtures of varying compositions of the precursor 

salts (using the 0.05 M stock solutions) were made from 0% Ir to 100% Ir (at mole fraction) 

with 10% Ir steps. The precursor salt mixtures were prepared onto titanium metal supports 

(size 4mm x 4mm, thickness 0.1mm) etched in boiling oxalic acid (10%) for 15 minutes, 

washed with distilled water, rinsed with acetone and dried at room temperature. The coatings 

were prepared by applying the precursor salt solution (after a 10-fold dilution with 2-

propanol) drop by drop onto the support and removing the solvent by hot air (60°C). This 

procedure was continued until a measurable quantity of the gel-like film (1-5 mg) 

corresponding to a relatively thick (400-800 nm) layer was deposited. 

Thermoanalytical investigations. Thermoanalytical investigations and the heat treatment of 

the gel-like coatings were carried out in a Netzsch (Selb, Germany) TG 209 type 

thermobalance in a flowing gas atmosphere containing 19.8% oxygen and 80.2% argon 

(Messer Griesheim, Hungary). The purity of the gas mixture was 99.995%, and the heating 

rate was 10 °C/min. In order to follow simultaneously the evolution of the gaseous 

decomposition products over the temperature range from ambient to 600 °C, the 

thermobalance was connected to a Balzers MSC 200 Thermo-Cube type mass spectrometer 

(Balzers AG, Lichtenstein). The transfer line to introduce gaseous decomposition products 



 5

into the mass spectrometer was a deactivated fused silica capillary (Infochroma AG, Zug, 

Switzerland; 0.23 mm o.d.) temperature controlled to 150 °C to avoid condensation of high-

boiling organic matter. 

Fourier Transform Infrared Emission Spectroscopic (IRES) analyses. FT-IR emission 

spectroscopic measurements were carried out in a Digilab FTS-60A spectrometer, which was 

modified by replacing the IR source with an emission cell. The infrared emission cell consists 

of a modified atomic absorption graphite rod furnace, which is driven by a thyristor-

controlled AC power source capable of delivering up to 150 amps at 12 volts. A platinum disk 

acts as a hot plate to heat the titanium sheets with the coatings on top. An insulated 125 µm 

type R thermocouple was embedded inside the platinum plate in such a way that the junction 

was < 0.2 mm below the platinum surface. The operating temperature was controlled to ± 2 

°C using an Eurotherm Model 808 proportional temperature controller, connected to the 

thermocouple. The emission spectra were collected at 50 °C intervals in the 150 - 500°C 

range. The spectra were acquired by coaddition of 64 scans at a resolution of 4 cm-1.  

 

Results and Discussion 

 

The thermogravimetric (mass loss, TG) and mass spectrometric ion intensity curves of 

4.100 mg TaCl5 gel on titanium metal support are given in Figure 1. The mass spectrometric 

ion intensity curves of the m/z = 35 (35Cl+), m/z = 41 (C3H5
+/C2HO+), and m/z = 44 (CO2

+) 

fragments are of utmost importance to reveal the complicated mechanism of decomposition. 

By comparing the curves, the following conclusions can be drawn. Below 100 °C residual 

solvent (2-propanol), crystallization water, and hydrogen chloride (as a result of an 

intramolecular hydrolysis) are released. 29  In the mass loss stage between 120 and 200 °C 

alcoholic fragments (C3H5
+/C2HO+) are liberated indicating the presence of residual solvent in 
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the film. A detailed analysis of the residual organic matter with diffuse reflectance Fourier 

transform infrared spectroscopic (DRIFT) technique has already been made. 29  Chlorinated 

species also evolve in this range and their liberation is continued up to 500 °C in a rather 

uniform rate resulting in an almost linear mass loss stage. It is interesting to note that a small 

amount of CO2 is also formed between 100 and 200 °C (at 161 °C with maximum rate), 

indicating the occurrence of combustion processes as well. The low temperature CO2 

formation is due to the burning (oxidative cracking) of residual alcohol. Since no organic 

cracking products are detected over 300 °C, it can be concluded that -in accordance with 

DRIFT data- no organic surface species are present in the temperature range of film 

solidification. Between 500 and 600 °C a dramatic change can be observed in the film 

evolution pattern. Chlorine is liberated in a fast reaction accompanied with the formation of 

CO2 with maximum rate at 544 °C. The appearance of CO2 in the gas phase is due to the 

combustion of elemental carbon formed and trapped in the film at lower temperature (between 

120 and 200 °C). 

 The thermal evolution pattern of 1.628 mg IrCl3 gel under identical experimental 

conditions is shown in Figure 2. Up to 150 °C residual alcohol and crystallization water is lost 

accompanied with a small amount of chloride formation (via intramolecular hydrolysis). 

Chlorine evolution takes place in two main stages at 319 and 561 °C. CO2 appears at about 

250 °C and is present until 450 °C as an evolved gas. The fact that the maximum rate of CO2 

liberation is observed at 400 °C (with an offset of some 80 °C with that of chlorine formation) 

indicates a combustion process independent of IrCl3 oxidation. 

In order to completely follow the process of thin film evolution, the changes in 

composition of the solid film should be followed as a function of the temperature, as well. 

Although infrared spectroscopy is a common tool to identify film composition, none of the 

traditional transmittance or reflectance methods can be used for the study of black, porous 
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films on metal supports. In infrared emission spectroscopy the infrared source is the heated 

sample itself. In principle, the emitted radiation (from thermally excited vibrational levels) 

can give exactly the same spectra as in absorption spectroscopy, but the signal to noise ratio 

(which is inherently low due to the low sample temperature) should be improved by the 

accumulation of spectra. Figure 3 shows the IRES spectrum of the IrCl3⋅3H2O gel heated at 

180 °C. In accordance with earlier studies, Ir-carbonyls, carboxylates and IrOx bands can be 

observed in the spectrum. 30  The bands of the organic surface species disappear by 400 °C, in 

harmony with the MS data. It can be concluded that -at variance with the Ta-system- 

complexation reactions take place in the presence of the noble metal. 

 The thermal evolution pattern of the 70% Ir-30% Ta system (Figure 4) shows close 

similarity to that of the 100 Ir system. The evolution of alcoholic fragments and CO2 in the 

low temperature range occurs at 94 °C, a temperature lower by 22 °C than in the former case. 

The temperature of CO2 evolution (352 °C) is also reduced by some 47 °C, while the first 

chlorine evolution stage is observed at 295 °C (reduced by 24 °C) and the second at 455 °C 

(reduced by 106 °C). It is interesting to observe that the film evolution process is finished 

(reaches its completeness) by 500 °C -a temperature lower by some 90 °C- indicating that the 

formation of the two oxide phases are not independent from each other.  

 The thermoanalytical curves of the 50%Ir-50%Ta system (Figure 5) differ 

significantly from those discussed above. The first chlorine evolution peak at 310 °C shows 

the close overlap of at least three independent processes, while the second one at approx. 475 

°C is significantly reduced in intensity. While both chlorine peak temperatures increased by 

some 15-20 °C, the CO2 peak temperature increased by 26 °C. It is more interesting, however, 

that the temperature range of CO2 evolution reduced by half (from some 150 °C to approx. 75 

°C). This drastic change indicates that the combustion of the organic surface species is 

catalyzed by the noble metal.  
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 The thermal decomposition curves of the 30%Ir-70%Ta system (Figure 6) shows a 

much simpler pattern. Chlorine evolution can be observed in the 250 - 410 °C range in two 

overlapping processes -a slower and a faster one- accompanied with mass losses of similar 

amounts. The CO2 evolution peak is rather sharp and of a symmetrical course, indicating 

combustion processes in the 370 - 420 °C range. It is also interesting to observe that the 

formation (solidification) of the mixed oxide film is finished by approx. 410 °C. 

 A comparison of the film evolution patterns reveal that the two oxide phases do not 

develop independently. This is due to the fact that tantalum pentoxide easily reacts with many 

other oxides to form mixed metal oxide phases of complex structure. 31  Although secondary 

ion mass spectrometric investigations confirmed the presence of iridium- and tantalum- 

containing mixed oxide clusters sputtered out of the film upon ion bombardment (e.g. IrTaO+, 

IrTaO2
+, IrTa+), their intensity was very low (around the noise level), only. 32 

The temperature difference between the maxima of the two chlorine evolution peaks 

shows a minimum in the 30 to 50 % Ir range (Figure 7). Again, a monotonous change could 

be expected if the two oxide phases developed independently. 

 The peak temperature of CO2 evolution shows a drastic decrease after the addition of 

10% Ir to the TaCl5 precursor (Figure 8). No significant change can be observed in the 

combustion temperature of organic surface species (and elemental carbon) at higher noble 

metal contents. It means that the combustion of organics is catalyzed by the noble metal and 

this process is practically independent of the evolution of the oxide phases.  

 The maximum temperature at which the removal (oxidative cracking) of residual 

solvent takes place is decreasing with the increase of the noble metal content, as well (Figure 

9). Again, the catalytic effect of the noble metal on this degradation process can be witnessed. 

The simultaneous formation of CO2 is an additional evidence of the fact that not only cracking 

but also a low temperature combustion of retained organics occurs.  
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Conclusion 

 

 Thermogravimetry - mass spectrometry combined with infrared emission spectroscopy  

can advantageously be used to follow the complicated process of film evolution. In addition to 

the development of the main (oxide) phases, side reactions that are of importance in the 

development of surface morphology (surface area, surface roughness, porosity) can be 

identified as well. These results are of importance when the experimental parameters 

necessary to obtain optimal electrochemical and surface properties are selected. In order to 

reveal the possible interactions between the two precursors, in situ investigations with e.g. 

small angle X-ray scattering and XPS are planned. 
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Legends 

 

Figure 1. TG (mass loss) and mass spectrometric ion intensity curves of TaCl5 gel on 

                 titanium support. 

Figure 2. TG (mass loss) and mass spectrometric ion intensity curves of IrCl3 gel on titanium 

                 support. 

Figure 3. FT-IR emission spectrum of an IrCl3 gel heated at 180 °C on a titanium support. 

Figure 4. TG (mass loss) and mass spectrometric ion intensity curves of the 70% Ir - 30% Ta 

                 system (sample mass: 1.591 mg). 

Figure 5. TG (mass loss) and mass spectrometric ion intensity curves of the 50% Ir - 50% Ta 

                 system (sample mass: 2.560 mg). 

Figure 6. TG (mass loss) and mass spectrometric ion intensity curves of the 30% Ir - 70% Ta 

                 system (sample mass: 1.990 mg). 

Figure 7. The difference in chlorine evolution peak temperatures as a function of the Ir 

                 content. 

Figure 8. The dependence of CO2 evolution peak temperature on the Ir content.  

Figure 9. The dependence of solvent evolution peak temperature on the Ir content.  

 

161

544

86

88

90

92

94

96

98

100

102

0 100 200 300 400 500 600

M
a
ss

lo
ss
  
/ 
%

Io
n
in
te
n
si
ty

Temperature  / °C

TGA
35 (

35
Cl)

41 (C3H5/C2HO)
44 (CO2)

 
 
 
Figure 1. Kristóf et al. 
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Figure 2. Kristóf et al. 
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Figure 3. Kristóf et al. 
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Figure 4. Kristóf et al. 
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Figure 5. Kristóf et al. 
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Figure 6. Kristóf et al. 
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Figure 7. Kristóf et al. 
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Figure 8. Kristóf et al. 
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Figure 9. Kristóf et al. 
 

 


