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Abstract

Trust network analysis with subjective logic (TNA-SL)
simplifies complex trust graphs into series-parallel graphs
by removing the most uncertain paths to obtain a canoni-
cal graph. This simplification could in theory cause loss of
information and thereby lead to sub-optimal results. This
paper describes a new method for trust network analysis
which is considered optimal because it does not require
trust graph simplification, but instead uses edge splitting
to obtain a canonical graph. The new method is compared
with TNA-SL, and our simulation shows that both methods
produce equal results. This indicates that TNA-SL in fact
also represents an optimal method for trust network analy-
sis and that the trust graph simplification does not affect the
result.

1 Introduction

Trust networks consist of transitive trust relationships
between people, organisations and software agents con-
nected through a medium for communication and interac-
tion. By formalising trust relationships, e.g. as reputation
scores or as subjective trust measures, trust between parties
within a domain can be derived by analysing the trust graph
consisting of all the paths linking the parties together. TNA-
SL (Trust Network Analysis with Subjective Logic) [7, 6]
takes directed trust edges between pairs as input, and can be
used to derive a level of trust between arbitrary parties that
are interconnected through the network. Even in case no ex-
plicit trust paths between two parties exists, subjective logic
allows a level of trust to be derived through the default vacu-
ous opinions. TNA-SL therefore has a general applicability
and is suitable for many types of trust networks. This can
also be combined with Bayesian reputation systems [5]. In
case of a complex network with dependent paths, TNA-SL
requires simplification of the trust graph into a DSPG (Di-
rected Series-Parallel Graph) before computing the derived
trust. The simplification consists of gradually removing the

most uncertain trust paths until the whole graph can be rep-
resented in a series-parallel form. As this process removes
information it could intuitively be considered sub-optimal.

In this paper we describe a new method for trust network
analysis which avoids this problem by splitting dependent
trust edges into independent parts, so that each part can be
taken into account during the computation. This approach
is considered optimal because it does not remove informa-
tion. Simulations show that thew new method produces the
same results as TNA-SL. This implies that the information
removed through trust graph simplification is irrelevant for
the trust network analysis, and that TNA-SL therefore pro-
duces optimal results.

2 Transitive Trust Paths

Trust transitivity means, for example, that if Alice trusts
Bob who trusts David, then Alice will also trust David. This
assumes that Alice is actually aware that Bob trusts David.
This could e.g. be achieved through a recommendation from
Bob to Alice as illustrated in Fig.1, where the indexes on
each arrow indicate the sequence in which the trust rela-
tionships/recommendation are formed.

Figure 1. Transitive trust principle

The trust scope is the specific type(s) of trust assumed in
a given trust relationship. In other words, the trusted party
is relied upon to have certain qualities, and the scope is what
the trusting party assumes those qualities to be.

Let us assume that Alice needs to have her car serviced,
so she asks Bob for his advice about where to find a good
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car mechanic in town. Bob is thus trusted by Alice to know
about a good car mechanic and to tell his honest opinion
about that. Bob in turn trusts David to be a good car me-
chanic. Bob’s trust in David is functional whereas Alice’s
trust in Bob is referral because Bob only refers to a me-
chanic. Both trust relationships are direct and have the same
scope, namely that of being a good mechanic. Alice’s trust
in David is indirect because it is derived, and functional be-
cause David will actually do the job. This situation is illus-
trated in Fig.1, where the indexes indicate the order in which
the trust relationships and recommendations are formed.

The examples above assume some sort of absolute trust
between the agents along the transitive trust path. In real-
ity trust is never absolute, and researchers have proposed to
express trust as discrete verbal statements, as probabilities
or other continuous measures. TNA-SL assumes that trust
relationships are expressed as subjective opinions.

3 Parallel Trust Combination

It is common to collect advice from several sources in
order to be better informed when making decisions. This
can be modelled as parallel trust combination illustrated in
Fig.2, where again the indexes indicate the order in which
the trust relationships and recommendations are formed.

Figure 2. Parallel combination of trust paths

Let us assume again that Alice needs to get her car ser-
viced, and that she asks Bob to recommend a good car me-
chanic. When Bob recommends David, Alice would like
to get a second opinion, so she asks Claire whether she
has heard about David. Intuitively, if both Bob and Claire
recommend David as a good car mechanic, Alice’s trust
in David will be stronger than if she had only asked Bob.
Parallel combination of positive trust thus has the effect of
strengthening the derived trust.

In the case where Alice receives conflicting recom-
mended trust, e.g. trust and distrust at the same time, she
needs some method for combining these conflicting rec-
ommendations in order to derive her trust in David. Our

method, which is described in Sec.6, is based on subjective
logic which is suitable for analysing such situations.

4 Structured Notation

Transitive trust networks can involve many principals,
and in the examples below, capital letters A,B,C and D will
be used to denote principals instead of names such as Alice
and Bob.

We will use basic constructs of directed graphs to rep-
resent transitive trust networks, and add some notation ele-
ments which allow us to express trust networks in a struc-
tured way.

A single trust relationship can be expressed as a directed
edge between two nodes that represent the trust source and
the trust target of that edge. For example the edge [A,B]
means that A trusts B.

The symbol “:” will be used to denote the transitive con-
nection of two consecutive trust edges to form a transitive
trust path. The trust relationships of Fig.1 is expressed as:

([A,D]) = ([A,B] : [B,D]) . (1)

Let us now turn to the combination of parallel trust paths,
as illustrated in Fig.2. We will use the symbol “�” to denote
the graph connector for this purpose. The “�” symbol visu-
ally resembles a simple graph of two parallel paths between
a pair of agents, so that it is natural to use it for this purpose.
In short notation, Alice’s combination of the two parallel
trust paths from her to David in Fig.2 is then expressed as:

([A,D]) = (([A,B] : [B,D]) � ([A,C] : [C,D])) (2)

5 Trust Graph Simplification

Trust networks can have dependent paths. Subjective
logic requires trust graphs to be expressed in a canonical
form that has no dependent paths. An example of graph
simplification is illustrated in Fig.3.

Figure 3. Network simplification by removing
weakest path

The expression for the dependent graph on the left-hand
side of Fig.3 would be:

([A,D]) = (([A,B] : [B,D])
� ([A,C] : [C,D])
� ([A,B] : [B,C] : [C,D]))

(3)
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The problem with Eq.(3) is that the edges [A,B] and
[C,D] appear twice. TNA-SL requires graphs to be ex-
pressed in a form where an edge only appears once. This
will be called a canonical expression, which is defined as
follows:

Definition 1 (Canonical Expression) An expression of a
trust graph in structured notation where every edge only
appears once is called canonical.

A method for canonicalisation based on network simpli-
fication was described in [6, 7]. Simplification consists of
removing the weakest, i.e. the least certain paths, until the
network becomes a directed series-parallel graph which can
be expressed on a canonical form.

Assuming that the path ([A,B]:[B,C]:[C,D]) is the weak-
est path in the graph on the left-hand side of Fig.2 , network
simplification of the dependent graph would be to remove
the edge [B,C] from the graph, as illustrated on the right-
hand side of Fig.3. Since the simplified graph is equal to
that of Fig.2, the formal expression is the same as Eq.(2).

An alternative canonicalisation method called edge split-
ting will be described in Sec.7. The next section describes
subjective logic operators for analysing trust networks.

6 Trust Computation with Subjective Logic

Subjective logic is suitable for analysing trust networks
because trust relationships can be expressed as subjective
opinions with degrees of uncertainty. TNA-SL requires
trust relationships to be expressed as beliefs, and trust net-
works to be expressed as a DSPG (Directed Series-Parallel
Graph) in the form of canonical expressions.

6.1 Subjective Logic Fundamentals

Subjective logic [3] is probabilistic logic that use opin-
ions as input and output variables. Opinions explicitly ex-
press uncertainty about probability values, and can express
degrees of ignorance about a subject matter such as trust.
An opinion is denoted by ωA

x which expresses A’s belief in
the truth of proposition x. Alternatively, an opinion can fo-
cus on an entity X expressed as ωA

X which can be interpreted
as “Party A believes that party X is honest and reliable re-
garding a specific scope”,which can be interpreted as A’s
trust in X within the given scope.

Binomial opinions are expressed as ω = (b,d,u,a)
where b, d, and u represent belief, disbelief and uncer-
tainty respectively, under the constraint that b,d,u ∈ [0,1]
and b+d +u = 1. The parameter a∈ [0,1] is called the base
rate, and is used for computing an opinion’s probability ex-
pectation value that can be determined as E(ωA

x ) = b + au.

More precisely, a determines how uncertainty shall con-
tribute to the probability expectation value E(ωA

x ). In the
absence of any specific evidence about a given party, the
base rate determines the default trust.

The opinion space can be mapped into the interior of an
equal-sided triangle as illustrated in Fig.4 where the three
parameters b, d and u determine the position of the opinion
point in the triangle, with ωx = (0.7, 0.1, 0.2, 0.5) as an
example.

a

ω  = (0.7, 0.1, 0.2, 0.5)x

x

xω

xE(  )

0.5 00

1

0.5 0.5

Disbelief1 Belief10
0 1

Uncertainty

Probability axis

Example opinion:

Projector

Figure 4. Opinion triangle with example

The base rate ax is indicated by a point on the probabil-
ity axis, and the projector starting from the opinion point is
parallel to the line that joins the uncertainty vertex and the
base rate point on the probability axis. The point at which
the projector meets the probability axis determines the ex-
pectation value of the opinion, i.e. it coincides with the point
corresponding to expectation value E(ωA

x ).
The probability density over binary event spaces can be

expressed as Beta PDFs (probability density functions) de-
noted by Beta(α,β ) [2]. Let r and s express the number of
past observations of x and x respectively, and let a express
the a priori or base rate, then α and β can be determined
as:

α = r +2a , β = s+2(1−a) . (4)

The following bijective mapping between the opinion
parameters and the Beta PDF parameters can be determined
analytically [3].

⎧⎪⎪⎨
⎪⎪⎩

b = r/(r + s+2)
d = s/(r + s+2)
u = 2/(r + s+2)
a = base rate of x

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

r = 2b/u
s = 2d/u
1 = b+d +u
a = base rate of x

(5)

This means for example that a totally ignorant opinion
with u = 1 and a = 0.5 is equivalent to the uniform PDF
Beta(1,1). It also means that a dogmatic opinion with u = 0
is equivalent to a spike PDF with infinitesimal width and
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infinite height expressed by Beta(bη , dη), where η → ∞.
Dogmatic opinions can thus be interpreted as being based
on an infinite amount of evidence.

After r observations of x and s observations of x with
base rate a = 0.5, the a posteriori distribution is the Beta
PDF with α = r + 1 and β = s + 1. For example the Beta
PDF after observing x 7 times and observing x once is il-
lustrated in Fig.5, which also is equivalent to the opinion
illustrated in Fig.4
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Figure 5. A posteriori Beta(8,2) after 7 observa-
tions of x and 1 observation of x

A PDF of this type expresses the uncertain probability
that a process will produce positive outcome during future
observations. The probability expectation value of Fig.5 is
E(p) = 0.8.

6.2 Operators for Trust Network Analysis

Subjective logic defines a number of operators[3, 8].
Some operators represent generalisations of binary logic
and probability calculus operators, whereas others are
unique to belief theory because they depend on belief own-
ership. This presentation focuses on the transitivity (also
called discounting) and the fusion (also called consensus)
operators that are used for trust graph analysis. The transi-
tivity operator can be used to derive trust from a trust path
consisting of a chain of trust edges, and the fusion opera-
tor can be used to combine trust from parallel trust paths.
These operators are described below.

• Transitivity is used to compute trust along a chain of
trust edges. Assume two agents A and B where A trusts
B, denoted by ωA

B , for the purpose of judging the trust-
worthiness of C. In addition B has trust in C, denoted
by ωB

C . Agent A can then derive her trust in C by dis-
counting B’s trust in C with A’s trust in B, denoted by
ωA:B

C . The symbol ‘⊗’ is used to designate this opera-
tor. The uncertainty favouring version of the transitiv-
ity operator [9] is expressed as:

ωA:B
C = ωA

B ⊗ωB
C

⎧⎪⎪⎨
⎪⎪⎩

bA:B
C = bA

BbB
C

dA:B
C = bA

BdB
C

uA:B
C = dA

B +uA
B +bA

BuB
C

aA:B
C = aB

C .

(6)

The effect of transitivity discounting in a transitive
chain is that uncertainty increases, not disbelief.

• Cumulative Fusion is equivalent to Bayesian updat-
ing in statistics. The cumulative fusion of two possi-
bly conflicting opinions is an opinion that reflects both
opinions in a fair and equal way. Let ωA

C and ωB
C be

A’s and B’s trust in C respectively. The opinion ωA�B
C

is then called the fused trust between ωA
C and ωB

C , de-
noting an imaginary agent (A,B)’s trust in C, as if she
represented both A and B. The symbol ‘⊕’ is used to
designate this operator. The cumulative fusion opera-
tor ωA�B

C = ωA
C ⊕ωB

C is expressed as:

ωA�B
C = ωA

C ⊕ωB
C

⎧⎪⎪⎨
⎪⎪⎩

bA�B
C = (bA

CuB
C +bB

CuA
C)/(uA

C +uB
C −uA

CuB
C)

dA�B
C = (dA

CuB
C +dB

CuA
C)/(uA

C +uB
C −uA

CuB
C)

uA�B
C = (uA

CuB
C)/(uA

C +uB
C −uA

CuB
C)

aA�B
C = aA

C
(7)

where it is assumed that aA
C = aB

C. Limits can be com-
puted [4] for uA

C = uB
C = 0. The effect of the cumulative

fusion operator is to amplify belief and disbelief and
reduce uncertainty.

7 Trust Network Canonicalisation by Edge
Splitting

The existence of a dependent edge in a graph is recog-
nised by multiple instances of the same edge in the trust
network expression. Edge splitting is a new approach to
achieving independent trust edges. This is achieved by split-
ting a given dependent edge into as many different edges as
there are different instances of the same edge in the trust
network expression. Edge splitting is achieved by splitting
one of the nodes in the dependent edge into different nodes
so that each independent edge is connected to a different
node.

A general directed trust graph is based on directed trust
edges between pairs of nodes. It is desirable not to put
any restrictions on the possible trust edges except that they
should not be cyclic. This means that the set of possible
trust paths from a given source X to a given target Y can
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contain dependent paths. The left-hand side of Fig.6 shows
an example of a trust network with dependent paths.

Figure 6. Edge splitting of trust network to
produce independent paths

The non-canonical expression for the left-hand side trust
network of Fig.6 is:

[A,D] = ([A,B] : [B,D])
� ([A,C] : [C,D])
� ([A,B] : [B,C] : [C,D])

(8)

In this expression the edges [A,B] and [C,D] appear
twice. Edge splitting in this example consists of splitting
the node B into B1 and B2, and the node C into C1 and
C2. This produces the right-hand side trust network in Fig.6
with canonical expression:

[A,D] = ([A,B1] : [B1,D])
� ([A,C1] : [C1,D])
� ([A,B2] : [B2,C2] : [C2,D])

(9)

Edge splitting must be translated into opinion splitting
in order to apply subjective logic. The principle for opin-
ions splitting will be to separate the opinion on the de-
pendent edge into two independent opinions that when cu-
mulatively fused produce the original opinion. This can
be called fission of opinions, and will depend on a fis-
sion factor φ that determines the proportion of evidence
assigned to each independent opinion part. The mapping
of an opinion ω = (b,d,u,a) to Beta evidence parameters
Beta(r,s,a) according to Eq.(5), and linear splitting into two
parts Beta(r1,s1,a1) and Beta(r2,s2,a2) as a function of the
fission factor φ is:

Beta(r1,s1,a1) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r1 = φ2b
u

s1 = φ2d
u

a1 = a

(10)

Beta(r2,s2,a2) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r2 = (1−φ)2b
u

s2 = (1−φ)2d
u

a2 = a

(11)

The reverse mapping of these evidence parameters into

two separate opinions according to Eq.(5) produces:

ω1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = φb
φ(b+d)+u

d1 = φd
φ(b+d)+u

u1 = u
φ(b+d)+u

a1 = a

(12)

ω2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 = (1−φ)b
(1−φ)(b+d)+u

d2 = (1−φ)d
(1−φ)(b+d)+u

u2 = u
(1−φ)(b+d)+u

a2 = a

(13)

It can be verified that ω1 ⊕ω2 = ω , as expected.
When deriving trust values from the canonicalised trust

network of Eq.(8) we are interested in knowing its certainty
level as compared with a simplified network, as described
in [6].

We are interested in the expression for the uncertainty of
ωA

D corresponding to trust expression of Eq.(9). Since the
edge splitting introduces parameters for splitting opinions,
the uncertainty will be a function of these parameters. By
using Eq.(6) the expressions for the uncertainty in the trust
paths of Eq.(9) can be derived as:

uA:B1
D = dA

B1
+uA

B1
+bA

B1
uB1

D

uA:C1
D = dA

C1
+uA

C1
+bA

C1
uC1

D

uA:B2:C2
D = bA

B2
dB2

C2
+dA

B2
+uA

B2

+bA
B2

uB2
D +bA

B2
bB2

C2
uC2

D

(14)

By using Eq.(7) and Eq.(14), the expression for the un-
certainty in the trust network of Eq.(9) can be derived as:

uA
D =

u
A:B1
D u

A:C1
D u

A:B2:C2
D

u
A:B1
D u

A:C1
D +u

A:B1
D u

A:B2:C2
D +u

A:C1
D u

A:B2:C2
D −2u

A:B1
D u

A:C1
D u

A:B2:C2
D

(15)

By using Eq.(12), Eq.(14) and Eq.(15), the uncertainty
value of the derived trust ωA

D according to the edge splitting
principle can be computed. This value depends on the edge
opinions and on the two splitting parameters φ A

B and φC
D .

As an example the opinion values will be set to:

ωA
B = ωB

D = ωA
C = ωC

D = ωB
C = (0.9,0.0,0.1,0.5) (16)

The computed trust values for the two possible simplified
graphs are:

(ωA
B ⊗ωB

D)⊕ (ωA
C ⊗ωC

D) = (0.895,0.0,0.105,0.5) (17)

ωA
B ⊗ωB

C ⊗ωC
D = (0.729,0.0,0.271,0.5) (18)

183183

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 19:39 from IEEE Xplore.  Restrictions apply.



The uncertainty level uA
D when combining these two

graphs through edge splitting as a function of φ A
B and φC

D
is shown in Fig.7
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Figure 7. Uncertainty uA
D as a function of φ A

B
and φC

D

The conclusion which can be drawn from this is that the
optimal value for the splitting parameters are φ A

B = φC
D =

1 because that is when the uncertainty is at its lowest. In
fact the uncertainty can be evaluated to uA

D = 0.105. This
is equivalent to the trust network simplification of Eq.(17)
where the edge [B,C] is completely removed from the left-
hand side graph of Fig.6.

The least optimal values for the splitting parameters is
when φ A

B = φC
D = 0, resulting in uA

D = 0.271. This is equiv-
alent to the absurd trust network simplification of Eq.(18)
where the edges [A,C] and [B,D], and thereby the most cer-
tain trust paths are completely removed from the left-hand
side graph of Fig.6.

Given the edge opinion values used in this example,
([A,B]:[B,C]:[C,D]) is the least certain path of the left-hand
side graph of Fig.6. It turns out that the optimal splitting
parameters for analysing the right-hand side graph of Fig.6
produces the same result as network simplification where
this particular least certain path is removed.

8 Discussion and Conclusion

We have described edge splitting as a new principle for
trust network analysis with subjective logic. This method
consists of splitting dependent trust edge opinions in order
to avoid dependent paths, which can be considered optimal
because it does not cause any loss of information. Our anal-
ysis and simulation have shown that edge splitting produces
the same result as the previously described TNA-SL method

of network simplification. This shows that network simpli-
fication with TNA-SL in fact does produce optimal results.

Our analysis was based on a fixed set of edge opinion
values. Because of the large number of parameters in-
volved, it is a relatively complex task to verify if our con-
clusion is valid for all possible trust edge opinion values, so
a complete study must be the subject of future work. The
present study has given a strong indication that trust net-
work simplification produces optimal results even though
edges are removed from the trust graph.
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