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Malignant melanoma (MM) in humans develops within a complex aetiologic 

framework of genetic, host, and environmental factors (Goldstein & Tucker, 2001).  

The strongest environmental risk factor is sun exposure (Sulaimon et al., 2003). In 

the mouse, wild type animals are resistant to MM development even when exposed 

to repeated treatments with ultraviolet radiation (UVR) (Gallagher et al., 1984). 

However chronic UVR treatment regimens have increased MM penetrance by up to 

26% in mice carrying various transgenes capable of inducing spontaneous MM 

development, or melanocytic hyperplasia, e.g. Tyr-SV40Tag (Kelsall & Mintz, 1998; 

Klein-Szanto et al., 1994), TPras (Broome Powell et al., 1999) and Mt-Hgf/Sf 

(Noonan et al., 2000) mice. More recently, Noonan et al. (2001) showed that a single 

neonatal dose of 9 kJ/m2 was far more effective than chronic treatments at inducing 

MM in the Mt-Hgf/Sf transgenics. Kannan et al. (2003) used the neonatal UVR 

regimen on mice with melanocyte-specific activation of Hras on a background of 

either Ink4a or Arf nullizygosity.  At 22 weeks, Ink4a -/-:Tyr-Hras and Arf -/-:Tyr-Hras 

animals developed spontaneous MM, with an incidence of 35% and 53% respectively 

(Chin et al., 1997). Importantly, neonatal UVR exposure resulted in a marked 

increase in MM development only in the Arf -/-:Tyr-Hras animals (penetrance rose to 

88%) (Kannan et al., 2003), implying that a defect in the p53 pathway may be 

necessary for UVR-induced MM.  Arf -/-:Tyr-Hras tumours were characterized by 

Cdk6 amplification and Ink4a mutation, genetic lesions that were never observed in 

non–UVR induced MM. Notably, these secondary mutations indicate that these UVR-

induced MM may only arise on an activated Hras background when both the p53 and 

pRb pathways are compromised.  

It has previously been demonstrated that pigmented Tyr-SV40Tag mice 

treated with repeated neonatal UVR doses from days 3-10, show increased rates of 



 3

MM compared to untreated animals (Kelsall & Mintz, 1998; Klein-Szanto et al., 1994). 

However, these mice did not develop melanomas over their limited lifespan when 

treated with a single neonatal dose. All subsequent studies have used albino mouse 

strains for neonatal UVR experiments.  

Evidence suggests that the Ras pathway is pivotal for MM development. 

The RAS family is comprised of NRAS, HRAS, KRAS, which are all involved in the 

mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) 

signalling cascades (Busca et al., 2000). There is a high frequency of BRAF and 

NRAS mutation in melanocytic nevi and MM (e.g. Davies et al., 2002; Pollock et al., 

2003 and reviewed in de Snoo & Hayward, 2005; Rodolfo et al., 2004). Human 

cutaneous MM from chronically sun-exposed body sites commonly harbour NRAS 

mutations, thus supporting a possible role for solar UVR in their genesis (Jiveskog et 

al., 1998; van Elsas et al., 1996). As discussed above, activated Hras has been 

shown to be a potent amplifier of tumorigenesis in genetically modified mice carrying 

deletions of the Ink4a or Arf genes, however, to date there have been no reports 

assessing the capability of Hras alone to induce MM in mice treated with a neonatal 

dose of UVR. We thus treated brown mice (mixed C3H/Sv129 strain background) 

carrying a melanocyte-specific mutant Hras (G12V) transgene (TPras) (Powell et al., 

1995), with a similar neonatal UVR regimen to that used by Noonan et al. (2001).  

We used an apparatus that holds 3 Phillips FS40 (Andover, MA, USA) UVB lamps 

mounted 34 cm above the mice. Pups (2-3 days old) were exposed for 16 minutes, to 

give a total dose of 8.15 kJm-2 (UVA 320-400 nm, 2.36 kJm-2, UVB 280-320 nm, 5.77 

kJm-2, UVC 250-280, 0.02 kJm-2), a slightly lower dose than previously used (Noonan 

et al., 2001).  This is markedly higher penetrance and earlier average age of onset 

than that of the similarly treated Mt-Hgf/Sf transgenics (Noonan et al., 2001; Recio et 



 4

al., 2002). Previous experiments in which our pigmented TPras animals were 

exposed to a chronic UVR regimen (5.6-8.06 kJm2 biweekly for 38 weeks) did not 

induce MM (Broome Powell et al., 1999). To assess the reasons for the differences in 

UVR-induced MM susceptibility observed, we examined skin sections from adult 

TPras and neonatal TPras and wild type littermates. Adult TPras skin was highly 

pigmented, with scattered melanin in the upper dermis and large aggregates in the 

deep dermis (Fig 2a). In contrast, 2-day-old TPras skin  lacked visible melanin (Fig 

2b). The majority of melanocytes in neonatal skin of wild-type mice were located 

within hair follicles (Fig 2c), whereas there were noticeably more melanocytes in the 

extra-follicular dermis of TPras mice (Fig 2d).  

UVR-induced MM ranged in size from 0.4-1.2 cm2 and were heavily 

pigmented (Fig 2e). These lesions appear to originate in the dermis (Fig 2f), lack the 

classical junctional changes observed in human MM (Fig 2g), and contain large 

atypical melanocytes (Fig 2h). The dermal origin of these lesions reflects the location 

of the hyperplastic melanocytes in the adult animals (i.e. not along the basal layer as 

in humans) (Powell et al., 1995). Hyperplasia of the epidermis was frequently 

observed in UVR-treated mouse skin (Fig 2g).  

The mutation status of the Cdkn2a locus in these tumours was determined by 

immunohistochemistry (IHC) and analysis of tumour DNA and RNA (Fig 3 and table 

Ι). No genomic deletion was observed and both transcripts were expressed in 2 out 

of 3 tumours examined. Ink4a was detected in 5 out of 7 MM by IHC. The melanoma 

cell-line derived from one of the tumours lost Ink4a as it was passaged. 

This study confirms the importance of a single neonatal UVR dose, compared 

with chronic UVR regimens in adult mice, for MM induction. The reason neonatal 

melanocytes are more susceptible to transformation than adult melanocytes is 
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unclear, but it may be that they are immature and not fully differentiated, and/or, 

some are still located in the epidermis in newborn skin whereas in adult dorsal skin 

they are invariably located in the dermis (reviewed in Hirobe, 1995). 

In conclusion, our work has demonstrated that neonatal UVR treatments are 

probably as effective at inducing MM in pigmented mice as albino strains. 

Furthermore, we have shown that RAS activation alone is sufficient to predispose 

melanocytes to UVR-induced transformation, and, although the precise mechanism 

is yet to be determined, it does not always involve loss of Ink4a or Arf. It may be that 

activated Ras simply promotes melanocyte proliferation, or alternatively, that it may 

interfere with the DNA damage response and apoptotic pathways. This mouse model 

further consolidates the mounting evidence that NRAS or BRAF mutations co-

operate with solar UVR in the development of melanoma.  
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Figure 1  Melanoma penetrance in UVR-treated TPras mice. A single UVR 

dose of 8.15 kJm2 to neonatal skin cooperates with melanocyte-specific activated 

Hras (n=14, dashed line) to facilitate MM formation. Untreated animals (n=42) are 

represented by a solid line. Animals that died without developing MM are represented 

by a cross (UVR-treated) or a dash (untreated). There is a significant difference 

(p<0.001, log rank test) in MM incidence between the treated and untreated groups.  

 



 7

 



 8

Figure 2 Morphology and histopathology of melanomas from UVR-treated 

TPras mice. (a) H&E skin section from an untreated adult TPras mouse. Note the 

scattered melanin deposits throughout the dermis and large, dense melanin deposits 

in the deep dermis above the muscle layer, see arrow (b) H&E skin section from an 

untreated neonatal TPras mouse (2 days old). Note the lack of visible melanin. 

Brightfield images of untreated (2-day-old) mouse skin sections (c) wild-type and (d) 

TPras, stained for Tyrp1 (red) and counter-stained with Mayers’ haematoxylin (blue). 

The majority of wild type melanocytes are located within the hair follicles, see arrow. 

In contrast TPras melanocytes are more frequency observed in the extra-follicular 

dermis, see arrow.  (e) Cutaneous melanoma arising on the dorsal skin surface. 

Scale bar increments are of 1 mm. (f, g, h) H&E sections of a melanoma from an 

UVR-treated TPras mouse. Note the dermal origin of the lesion (f), hyperplasia of the 

epidermis and lack of epidermal junctional involvement, see arrow (g), atypical highly 

pigmented melanocytes within the tumour, see arrow (h). In all cases except (e), 

scale bar = 50 μm. 
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Figure 3 Molecular status of Cdkn2a locus in melanomas from UVR-treated 

TPras mice.   Products from semi-quantitative PCR analysis electrophoresed in 

ethidium bromide-stained agarose gels. Panels (a) and (b) show results of genomic 

PCR to assess relative copy number of the Ink4a and Arf genes respectively. The 

three lanes on the left contain DNA isolated from a melanoma cell line (derived from 

tumour MM-1), at passage 4, 7 and 19 respectively. Ink4a is initially present but 

subsequently lost as the culture is passaged. Exon 1β (Arf) was already lost at 

passage 4, indicating that is was deleted prior to exon 1α (Ink4a). At each of these 

passages, all cells were of melanocytic origin as assessed by morphology and 

pigmentation.  Lanes MM-1 and MM-2 represent two melanomas. Liver and water 

were used as controls. All TPras MM DNAs showed similar copy number of both 

exon1α (Ink4a, 300 bp) and exon1β (Arf, 283 bp) as judged by their ratios to Gapdh 

(220 bp). (c) Brightfield image of MM-3 showing strong nuclear staining for Ink4a 

(red) in the majority of tumour cells, using SC-1207 rabbit polyclonal antibody (Santa 

Cruz Biotechnology, Santa Cruz, CA, USA) diluted 1:300, counterstained with 

Mayers’ haematoxylin (blue) (scale bar = 50 μm). 
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Table I  Molecular status of Cdkn2a locus in melanomas from UVR-treated 

TPras mice. 

 
 
Sample ID 1α exon 1β exon 2 exon 3 exon ARF INK4a INK4a              A  
MM-1     <0.5-fold <0.5-fold ND 10-20 
MM-2     >2.0-fold >2.0-fold + 5-15 
MM-3     >2.0-fold >2.0-fold + 20-30 
MM-4      +++  20-30     
MM-5      ND 10-20 
MM-6      +  10-20 
MM-7      + 5-15 
Line A  −*   <0.5-fold ^ <0.5-fold ^ NA  

 

= not done due to lack of availability of RNA or DNA 

− = no PCR product observed, = PCR product observed 

Line A, cell line derived from MM-1, *= passage 4, ^=  passage 7 

ND = not detected, += positive, +++= strongly positive, NA = not applicable 

DNA and RNA were extracted using DNeasy and RNeasy Qiagen kits respectively. 

Cdkn2a copy number was assessed by multiplex semi-quantitative PCR with exon 

specific primers using Gapdh as control (primers available on request).  Expression 

levels of Ink4a and Arf were determined by Quantitect SYBR Green (Qiagen, 

Germany) real-time PCR, using a Rotorgene 3000 cycler (Corbett Research, 

Australia). Data was analysed using Rotorgene 6 software (Corbett research) with 

the Pfaffl equation method (Pfaffl, 2001).  β-actin was used as a PCR control, and 

MMs were compared to wild type skin expression, with the relative expression level 

assessed to be upregulated (>2.0-fold); roughly equal (within 0.5- to 2.0-fold); or 

downregulated (<0.5-fold). Lesions MM-4 and MM-5 originated in the same animal. 

Immunohistochemistry (IHC) for Ink4a was performed as described in Figure 3. 

 

Genomic PCR  qRT-PCR IHC Percent 
Stromal 
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