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Abstract  

 

There is increasing epidemiologic and molecular evidence that cutaneous 

melanomas arise through multiple causal pathways. The purpose of this study was to 

explore the relationship between germline and somatic mutations in a population-based 

series of melanoma patients to reshape and refine the divergent pathway model for 

melanoma. Melanomas collected from 123 Australian patients were analyzed for MC1R 

variants and mutations in the BRAF and NRAS genes. Detailed phenotypic and sun 

exposure data were systematically collected from all patients. We found that BRAF-

mutant melanomas were significantly more likely from younger patients and those with 

high nevus counts, and were more likely in melanomas with adjacent neval remnants. 

Conversely, BRAF-mutant melanomas were significantly less likely in people with high 

levels of life-time sun exposure. We observed no association between germline MC1R 

status and somatic BRAF mutations in melanomas from this population. BRAF-mutant 

melanomas have different origins from other cutaneous melanomas. These data support 

the divergent pathways hypothesis for melanoma, which may require a reappraisal of 

targeted cancer prevention activities.   
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Introduction 

 

Cutaneous melanoma is a common form of cancer arising from the pigment cells of 

the skin. Risk factors for melanoma include large numbers of melanocytic nevi, fair skin 

and sunlight exposure (Siskind et al., 2005).  While solar ultraviolet radiation (UVR) is the 

principal environmental risk factor for these cancers, there is increasing evidence that the 

effect of sunlight on pigment cells is not the same for all people. Epidemiologic data 

support the concept that melanomas may develop through one of several pathways. 

Increasingly, it appears that the molecular profile (particularly for oncogenes BRAF and 

NRAS) of cutaneous melanomas reflects these causal pathways, typified by different 

patterns of associations with host and environmental risk factors (Curtin et al., 2005; 

Thomas et al., 2007; Whiteman et al., 2006; 2003). For example, a recent study 

suggested that melanomas occurring in younger people with high early-life ambient UVR 

exposure have a high frequency of BRAF mutation, whereas melanomas arising in 

people with high levels of lifetime UVR exposure are associated with NRAS mutations 

(Thomas et al., 2007).  

The melanocortin-1 receptor (MC1R) gene is a key determinant of human 

pigmentation and is highly polymorphic with specific variants linked to red hair and 

melanoma risk (Palmer et al., 2000; Sturm et al., 2003). Recently, a synergistic 

relationship between germline MC1R variants and somatic BRAF mutations was 

suggested (2006), whereby MC1R variant genotypes conferred a significantly increased 

risk of developing BRAF-mutant melanoma in skin not damaged by sunlight. Recent work 

by Fargnoli et al (2008) further examined the role of MC1R in the Italian population and 

found patients with MC1R variants had a higher risk of carrying BRAF mutations in 

tumors from chronically sun-exposed sites (OR 13.9, 95% CI = 1.5-133.3)  than 

intermittently sun exposed sites (OR 3.4, 95% CI = 0.8-14.0) although this was not 
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significantly different. They reported increased risks for BRAF–mutant melanoma 

associated with variants of MC1R, not only for R variants, but also for r.  

Here, we present the findings of the first study to explore the relationship between 

germline MC1R status and somatic BRAF mutations in melanomas from a susceptible 

population exposed to very high levels of ambient UVR. 
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Results 

 

Subject Characteristics 

For this analysis (n=123 patients), mean age at diagnosis was 56.4 years and 48% 

of patients were females. The percentages of histological subtypes were 62% SSM, 1.6% 

NM, 28% LMM and 8.9% unclassified melanoma. No acral lentiginous melanoma, 

spitzoid or nevoid lesions were included in this study. Tumors were generally thin; 85% of 

the lesions were Clark level I or II, and 74% had Breslow thickness <0.75 mm.  

 

BRAF and NRAS Mutational Frequencies 

Mutually exclusive BRAF-mutant and NRAS-mutant tumors occurred at 

frequencies of 31.5% and 3% respectively.  Detection of mutations was based on cut-offs 

imposed using DNA from whole blood buffy coat as wild-type controls (Figure S1)  and 

previous studies which have demonstrated the sensitivity of the Sequenom MassArray 

platform to detect mutant alleles as low as 1.5–3% of the analyzed sample (Vivante et al, 

2007). Due to the low number of tumors with NRAS mutations no further statistical 

analysis was performed using these samples.  

 

Clinical and Pathologic Characteristics of BRAF-mutant Lesions 

Overall, the mean age at diagnosis for patients carrying a BRAF V600 mutation 

was 47.6 years compared with 60.8 years for wild-type cases (t-test p<0.001) (Table 1), 

and similar patterns were observed within the pre-specified age groups (stratum <50 

years: mean age BRAF V600 35.4 years vs wild-type 42.9 years; stratum 50+ years 

mean age BRAF V600 58.6 years vs wild-type 66.5 years). There was no association 

between gender and BRAF V600 mutation. The prevalence of BRAF V600 mutations 

differed by histological subtype, with only 12% of LMM carrying BRAF mutations 
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compared with 45% of SSM and 50% of NM (Fishers Exact p=0.001). While 20% of in 

situ melanomas carried BRAF V600 mutations compared with 50% of invasive lesions 

(Chi-Square p=0.02), we found no evidence that the prevalence of BRAF V600 mutation 

increased further with increasing depth of invasion.  

 

Phenotypic and environmental factors associated with BRAF Mutations 

Compared with patients who had 0-15 nevi, those with 16-60 nevi were 10-fold 

more likely to have BRAF V600 mutant melanoma and patients with >60 nevi had 

similarly increased risks of harboring a mutation (Table 2). Furthermore, melanomas with 

evidence of adjacent neval remnants were more likely to have a BRAF V600 mutation 

(OR 2.7, 95% CI = 1.2-6.2). The ability to develop a tan was also associated with tumors 

that carried BRAF V600 mutations (OR 4.3, 95% CI 1.8-10.4). Freckling, hair and eye 

color were not significantly associated with BRAF V600 mutational status. 

We found no association between anatomic site (head and neck vs trunk and 

limbs) and BRAF V600 mutation, however we found that BRAF V600 mutant melanomas 

were statistically significantly less likely to occur in people in the highest groups of 

cumulative sun exposure or actinic keratosis counts (Table 2). Similarly, BRAF V600 

mutant melanomas were less common among people who reported large numbers of 

sunburns as adults, although this was not statistically significant. 

 To assess which of these phenotypic and environmental factors was most 

predictive of BRAF V600 mutation status, we fitted multivariable logistic regression 

models using a variety of supervised algorithms. Regardless of the approach to model-

fitting (forwards, backwards, stepwise), the final model included terms only for total nevus 

count and the presence of contiguous neval remnants (in addition to the sampling 

variables, age group and sex) as the best predictors of BRAF V600 mutation status for 

melanoma (Table 3). 
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 We repeated all of the analyses restricted only to the patients with invasive 

melanomas, and found essentially similar patterns to those reported above, albeit with 

reduced precision (Table S1). 

 

Frequency of MC1R Variants  

74.5% of melanoma patients carried one of the eight common MC1R variants, 

consistent with previous reports in this population. The estimated allele frequency of 

measured variants in this population is presented in Table 4. There was no association of 

MC1R variants with gender, histological subtype and invasive classification. 

 

Phenotypic and environmental factors associated with MC1R variants 

Of a number of phenotypic characteristics for which we sought associations with 

MC1R (Table S2) the only characteristic statistically significantly associated with MC1R 

status was freckling density on both the face and arms (few facial freckles OR 2.1, 95%CI 

0.8-5.5; many facial freckles OR 9.8, 95%CI 2.4-39.4 p=0.03). While not statistically 

significant due to small numbers, red hair was only observed in patients carrying MC1R 

variants. There was no increase in the number of total body nevi or actinic keratosis in 

patients carrying MC1R variants, nor was there any association with sun exposure (Table 

S2). 

 

BRAF and MC1R  

There was no association between germline MC1R variants and somatic BRAF 

V600 mutations in tumor samples (Table 5). Lesions were categorized into intermittently 

and chronically sun-exposed body sites but no difference in the rates of BRAF V600 

mutations was observed. As we found a lower incidence of BRAF V600 mutations in 

LMM lesions we repeated the analysis excluding this sub-type, we still found no observed 
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difference in the prevalence of BRAF V600 mutations amongst patients carrying MC1R 

variants (Table S3).  Due to the age structure of our cases we further investigated the 

relationships between MC1R and somatic BRAF V600 mutations overall and within broad 

strata of actinic keratosis and sun exposure history (Table 5). However, there was no 

observed difference in the prevalence of BRAF V600 mutations amongst patients 

carrying MC1R variants compared to patients with wild-type MC1R. We also excluded the 

possibility of the LMM subtype confounding the data by excluding them (Table S3). We 

further analyzed the relationship between germline MC1R variants and somatic BRAF 

mutations restricted only to patients with invasive melanomas and found no association 

between the prevalence of BRAF V600 mutations amongst patients carrying MC1R 

variants compared to patients with wild-type MC1R (Table S3).  
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Discussion 

 

We have analyzed melanoma samples from an Australian population to further 

explore the ‘divergent pathway model’ for melanoma. This model proposes at least two 

different causal pathways to melanoma development, one arm pertaining to host 

susceptibility and nevus growth and another arm associated with chronic sun exposure. 

Our results accord with this model, since we found that melanomas with and without 

BRAF V600 mutations displayed significantly different associations with a range of 

phenotypic, histological and environmental factors. We found that melanomas harboring 

BRAF V600 mutations were more likely among younger patients and those with high 

nevus counts, and were more likely to occur in melanomas with adjacent neval remnants. 

Melanomas with BRAF V600 mutations were less likely to occur in people with evidence 

of high-levels of life-time sun exposure such as self-reported sun exposure history and 

nurse counts of actinic keratosis. In keeping with this observation, melanomas of the 

lentigo maligna subtype exhibited a lower frequency of BRAF V600 mutations. Patients 

with tumors carrying BRAF V600 mutations had the ability to develop a tan, suggesting 

intact pigmentation pathways. While BRAF V600 mutant melanomas were more likely to 

occur in younger people, it was notable that such lesions were more likely to be invasive 

compared to wild-type melanomas. It has been suggested that BRAF V600 mutations are 

induced in melanocytes as a result of childhood sun exposure (Thomas et al., 2007). 

Presumably a proportion of these transformed cells progress to melanoma, accounting 

for the younger mean age of diagnosis. 

Only a few studies to date have examined determinants for BRAF V600 mutations 

in melanoma (Fargnoli et al., 2008; Landi et al., 2006; Thomas et al., 2007). Our findings 

are in substantial agreement with those of a study performed in North Carolina by 

Thomas et al (2007), although we observed no association between anatomic site and 
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prevalence of BRAF V600 mutations. It is important to note that the lack of association 

here most likely reflects the sampling strategy used in the parent study from which these 

samples were derived (Whiteman et al., 2003). Patients in the parent study were 

frequency sampled within strata of age, sex and anatomic site to ensure similar numbers 

of younger and older patients for each body site. In our sample, the mean age of patients 

with melanoma of the head and neck was actually younger (55 years) than that of 

patients with melanoma of the trunk (58 years). This was entirely due to the sampling, as 

our previous studies in the same population have shown that on average, patients with 

head and neck melanomas are significantly older than those with melanomas of the trunk 

(Siskind et al., 2005). Our findings differ from Fargnoli et al (2008), for which the 

published data (their Table 2) suggest no association between nevus count and BRAF 

mutation when nevus count was dichotomized at the median.  

We sought to explore the biological differences between in situ and invasive 

melanomas by reanalyzing the dataset restricted only to invasive melanomas. The 

findings are essentially unchanged, although with the reduced sample size, the precision 

of risk estimates is less than the originally reported findings (Table S1).  We sought to 

explore the effects of age and anatomical site in melanoma causation by intentionally 

sampling patients from within pre-defined strata. One consequence of this is that in 

Queensland at least, younger patients with melanocytic lesions tend to present for 

medical care early, especially for facial melanomas. As a result, most melanomas among 

young people are thin lesions, particularly on the head and neck.  

 Importantly, our findings differ from the studies by Landi and colleagues (Fargnoli 

et al., 2008; Landi et al., 2006), which were based on sequenced MC1R and BRAF 

genes and were restricted only to invasive melanomas.  We observed no association 

between germline MC1R status and the prevalence of somatic BRAF V600 mutations in 

melanomas, even after classifying lesions into intermittent and chronic sun-exposed 
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sites. We further investigated the relationships between MC1R and BRAF V600 

mutations using the number of actinic keratosis and self-reported sun exposure history as 

proxies for total sun exposure, however we found no evidence of any difference in the 

prevalence of BRAF V600 mutation by MC1R status. It is possible that the discordant 

study findings reflect underlying differences in the populations, although the small sample 

sizes for each study means that chance cannot be excluded. Clearly, further studies of 

substantially larger size are warranted to clarify the possible biological relationship 

between germline MC1R status and somatic BRAF mutations.  

 Strengths of our study include the population-base sampling frame and the 

detailed epidemiologic data (including nurse counts of nevi and actinic keratosis blind to 

genotype status) accompanying the tumor specimens. In particular, we intentionally over-

sampled younger patients with melanoma to ensure that we could account for possible 

age-specific differences in associations between likely causal factors and site of 

melanoma. The prevalence of somatic BRAF V600 mutation-positive samples (31.5%) 

was consistent with previous reports (Thomas et al., 2007), and the distribution of MC1R 

variants was very similar to earlier reports from Queensland (Duffy et al., 2004).  

A limitation of this study was the restricted number of samples for analysis, due to 

the use of tissue samples for earlier immunohistochemical investigations (Lee et al., 

2006; Richmond-Sinclair et al., 2008). To assess possible selection bias, we compared 

the prevalence of phenotypic (including skin type, hair and eye color, freckling density 

and counts of nevi and actinic keratosis) and histological (contiguous neval remnants, 

thickness, anatomic site) characteristics as well as the age and sex among those 

participants with tumor blocks available for analysis and those without. The distributions 

were similar in each group of patients (data not shown).   

A further limitation is that we did not perform full sequencing of the entire MC1R gene. 

However, our distribution of variants (Table 4) is very similar to the largest sequencing 
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effort so far completed in Caucasian populations (Kanetsky et al, 2006). The MC1R 

variants genotyped in the present study comprise over 93% of the non-synonymous 

changes observed in the Kanetsky study, which analyzed a far more ethnically diverse 

sample than our study (USA, Italy and Australia). Therefore we do not believe the rare 

MC1R variants not covered in our investigation would markedly affect our risk estimates; 

assessment in a large population-based sample is necessary to conclusively address this 

issue.  

In light of these findings we have refined and extended the divergent molecular 

pathway model by explicitly incorporating mutational events as well as additional 

environmental and phenotypic data (Figure 1). The initiation event in this model is early-

life sun exposure, which has previously been shown using migrant studies to hold the 

greatest risk for developing melanoma later in life (Whiteman et al., 2001). Work by 

Bauer et al (2007) has shown that congenital nevi, which develop independently of sun 

exposure, lack BRAF V600 mutations, while acquired nevi are associated with sun 

exposure in early life (English et al., 2006) and commonly harbor BRAF V600 mutations 

(Pollock et al., 2003).  

Several studies have speculated that host factors may underlie susceptibility for 

melanocyte proliferation and nevus formation. Work by Bataille et al (2007) explored 

telomere length in white blood cells as a possible predictor of nevus counts. Subjects with 

high nevus counts exhibited longer telomeres, and it has been inferred that such 

individuals may have increased cellular replicative potential. It is presumed that this is not 

just limited to melanocytes. Genome-wide linkage studies for nevus counts have 

identified several regions of linkage on chromosomes 2, 5, 8, 9, and 17. Of particular 

interest was the association of the CDKN2A locus with nevus formation (Falchi et al., 

2006; Zhu et al., 2007). Mutations and loss of p16 (one product encoded by CDKN2A) 
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are well documented in melanoma, and it appears that p16 contributes to melanoma 

pathogenesis through pathways that escape routine senescence. 

In conclusion, our work provides further support for the divergent pathway 

hypothesis for melanoma by demonstrating that BRAF V600 mutant melanomas occur 

more commonly in younger individuals and those with high nevus counts, and occur in 

melanomas with contiguous neval remnants. These findings suggest that a sub-group 

exists within the general population at risk of BRAF V600 mutant melanoma, and that 

these people may be characterized by distinct phenotypic attributes. Understanding the 

interacting roles of sunlight, susceptibility and BRAF mutation on melanoma development 

is the aim of our continuing research.  
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Materials & Methods 

 

Subjects 

We compared the prevalence of BRAF and NRAS mutations in formalin-fixed 

paraffin-embedded melanoma specimens from 123 patients ascertained from the 

Queensland Cancer Registry. Detailed description of subject selection and data collection 

for this study have been described previously (Whiteman et al., 2003). Briefly, eligible 

patients were residents of greater Brisbane, Australia (latitude 27oS) who were diagnosed 

with a histologically confirmed primary cutaneous melanoma between January 1, 1998, 

and December 31, 1999. Patients were intentionally sampled within pre-defined strata of 

age (<50 years, >50 years) and sex to ensure similar distributions for these variables in 

the ensuing epidemiologic analyses. Those with metastatic melanoma or a previous 

diagnosis of melanoma were not eligible. Of 452 eligible patients for the initial 

epidemiologic study, 387 (86%) completed questionnaires and 328 (73%) provided 

written informed consent to obtain specimens of archived melanoma tissue. This analysis 

was restricted to 123 patients for whom sufficient material was remaining for mutation 

analysis. The age and sex distribution of the 123 patients that were genotyped for BRAF 

was the same as for the 264 patients who were not. 

Approval to perform the study was given by the Human Research Ethics 

Committee of the Queensland Institute of Medical Research and the Queensland Cancer 

Registry. The declarations of Helsinki protocols were followed and all participants gave 

their written consent to take part.   

 

DNA Isolation 

Hematoxylin and eosin stained sections of each patient’s melanoma were 

assessed for areas of normal and tumor tissue, and the percentage of tumor cells was 
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recorded. Formalin-fixed paraffin-embedded tissue sections were dissected to select 

areas where melanoma cells dominated over stromal cells. Sections (20 μm) were cut 

from each tumor block and deparaffinized in xylene and washed twice in absolute 

ethanol. DNA was isolated using Qiagen DNeasy Tissue Kit (Qiagen, Germany), with 

additional proteinase K digestion at 55oC for 48 hours. DNA was extracted from whole 

blood buffy coat and melanoma cell lines using Qiagen DNeasy kits (Qiagen). DNA 

quantification was determined by spectrophotometry (Nanodrop, Wilmington, DE) and 

DNA quality was checked using 2% agarose gels (Amresco, Solon, OH). 

 

MC1R, BRAF and NRAS Genotyping 

Genotyping was performed using the MassArray platform (Sequenom Inc, San 

Diego, CA). An optimized multiplex assay of all common and a subset of rare known 

variants of MC1R were used as previously described (Duffy et al., 2004). Only non-

synonymous variants or insertions/deletions in MC1R were considered in this analysis. 

BRAF V600 and NRAS Q61 mutations were detected with single base extension 

or allele-specific assays, using the iPLEX genotyping format (Sequenom) (see Table S4 

for primer details). Samples were analyzed in duplicate with genotyping repeated three 

times to confirm mutation status.  Melanoma cell lines previously characterized in (Stark 

and Hayward, 2007) were used in this study as positive controls for the MC1R, BRAF 

and NRAS genotyping assays.  DNA from whole blood buffy coat was used as wild-type 

controls in the BRAF and NRAS genotyping assays (Figure S1). We have only examined 

the BRAF V600 mutations, other rare changes such as D594, L597, and L584 were not 

examined in this study. 

 

Phenotypic characteristics and sun exposure history 
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Relevant exposure data (including sun exposure history and skin sensitivity) were 

collected from study participants through a self-completed, structured questionnaire as 

described previously (Whiteman et al., 2003). In addition to background information, we 

asked participants to report their occupational history (including periods of study and 

unemployment) since leaving school. We asked participants to report how much time 

they spent outdoors in the sun in summer on work and non-work days for each period of 

employment. Participants were asked to report their nevus burden as a teenager and the 

number of previous treatments for keratinocyte cancers (basal cell carcinomas and 

squamous cell carcinomas).  Finally, a single trained research nurse who was unaware of 

the study hypotheses examined each participant. The nurse recorded hair and eye color 

and counted melanocytic nevi and solar keratoses. Nevi were defined as pigmented 

macules or papules of any size and distinguished from freckles and seborrheic keratoses. 

Numbers of nevi were counted on the head and neck, the upper limbs, and the trunk and 

were classified according to size as less than 5 mm or greater than or equal to 5 mm in 

diameter by use of a transparent plastic stencil. Freckles were defined as irregular but 

sharply demarcated macules, usually small (<4 mm), uniformly pigmented (tan/light 

brown), and usually occurring in clusters on exposed body sites. The density of freckling 

on the face was categorized on a four-point scale. Solar keratoses, defined as superficial, 

rough scaly areas with erythematous background and ill-defined margins were counted 

separately on the dorsal surfaces of the hands, forearms, and face. 

  

Statistical analysis 

We calculated the amount of sun exposure received on working days (hereafter 

“occupational exposure”) by multiplying the duration of each employment period (in 

weeks) by the number of days per week worked, and the number of hours per day spent 

outdoors in the sun on workdays.  Ambient recreational exposure was calculated in a 
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similar manner using self-reported estimates of sun exposure on non-work days in each 

employment period.  We summed occupational and recreational sun exposures across all 

employment periods after age 20 years up until age of diagnosis to derive cumulative 

totals for each pattern of exposure. Total ambient sun exposure for each participant was 

the sum of cumulative occupational and recreational sun exposure.  

We performed simple cross-tabulations and calculated Pearson’s chi-square 

and/or Fischer’s exact test (for cells with expected count of less than 5) as a measure of 

statistical association.  We used multivariable logistic regression to calculate odds ratios 

(ORs) and 95% confidence intervals (CIs) as measure of association between 

patient/tumor characteristics and BRAF mutation status (V600 mutant vs V600 wild-type). 

We included terms for age stratum (<50 years, >50 years) and sex to control for possible 

confounding introduced by the study design.  We conducted supervised model-fitting to 

identify the best model to predict BRAF V600 mutation status using forward, backward 

and stepwise elimination procedures. P-values less than or equal to 0.05 were 

considered as statistically significant and all such tests were 2-sided.  All analyses were 

performed using the SAS 9.1 statistical software package (SAS institute, Cary, NC). 
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Table 1. Clinical and pathologic characteristics of patients and lesions  
 
Characteristic 

 
BRAF 
V600 

 mutation 
n= 40 

BRAF 
V600 

wild-type 
n= 83 

MC1R  
(any 

variant) 
n= 90 

MC1R 
wild-type# 

n=33 

MC1R (r/wt 
or r/r) 
n=33 

MC1R (any 
R allele) 

n=57 

Age at 

diagnosis (y) 

Mean + SD, y 

 

47.5  

+ 14.1 

 

60.7  

+ 13.4 

 

56.1 

 + 14.7 

 

57.3  

+ 15.8 

 

56.3 

 + 15.8 

 

56  

+ 14.2 

Gender, n (%) 

Male 

Female 

 

17 (27) 

23 (39) 

 

47 (73) 

36 (61) 

 

49 (76) 

41 (69) 

 

15 (23) 

18 (31) 

 

18 (37) 

15 (37) 

 

31 (63) 

26 (63) 

Histological 

subtype,  

SSM 

NM 

LMM 

Not stated 

 

 

34 (45) 

1 (50) 

4 (12) 

1 (9) 

 

 

42 (55) 

1 (50) 

30 (88) 

10 (91) 

 

 

56 (74) 

1 (50) 

24 (71) 

9 (82) 

 

 

20 (26) 

1 (50) 

10 (29) 

2 (18) 

 

 

22 (39) 

0 (0) 

8 (33) 

3 (33) 

 

 

34 (61) 

1 (100) 

16 (67) 

6 (67) 

Pathological 

Classification,  

In situ 

Invasive 

 

 

12 (21) 

28 (42) 

 

 

45 (79) 

38 (58) 

 

 

39 (68) 

51 (77) 

 

 

18 (32) 

15 (23) 

 

 

14 (36) 

19 (37) 

 

 

25 (64) 

32 (63) 

Clark level 

1 

2 

>=3 

not stated 

 

13 (20) 

18 (46) 

8 (50) 

1 (33) 

 

52 (80) 

21 (54) 

8 (50) 

2 (67) 

 

46 (71) 

29 (74) 

12 (75) 

3 (100) 

 

19 (29) 

10 (26) 

4 (25) 

0 (0) 

 

15 (33) 

11 (38) 

7 (58) 

0 (0) 

 

31 (67) 

18 (62) 

5 (42) 

3 (100) 

Breslow 

thickness 

<0.75 mm 

>=0.75 mm 

not stated 

 

 

19 (46) 

7 (50) 

14 (21) 

 

 

22 (54) 

7 (50) 

54 (79) 

 

 

30 (73) 

11 (79) 

49 (72) 

 

 

11 (27) 

3 (21) 

19 (28) 

 

 

12 (40) 

6 (55) 

15 (31) 

 

 

18 (60) 

5 (45) 

34 (69) 
#Wild-type here denotes an MC1R allele that does not carry any of the eight variants we 

measured (listed in Table 4).
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Table 2. Association between phenotypic factors and BRAF V600 mutations in 
cutaneous melanoma 
 

Characteristic BRAF V600 mutation
n= 40 

BRAF V600 wild-type 
n= 83 

OR (95%CI)* 

Total nevus count 
 0-15 
 16-60 
 >60 
 missing 

 
2 (6) 
19 (41) 
17 (46) 
2 (40) 

 
33 (94) 
27 (59) 
20 (54) 
3  

 
1.0 (ref) 
10.9 (2.3-51.6) 
11.9 (2.3-61.2) 

Contiguous neval remnants 
 No 
 Yes 

 
17 (22) 
23 (49) 

 
59 (78) 
24 (51) 

 
1.0 (ref) 
2.7 (1.2-6.2) 

Propensity to tan 
   Light or no tan 
   Mod/Deep tan 
   missing 

 
13 (21) 
27 (45) 
 

 
48 (79) 
33 (55) 
2  

 
1.0 (ref) 
4.3 (1.8-10.4) 

Freckles Face 
 None 
 Few 
 Many 
 missing 

 
14 (36) 
14 (31) 
12 (32) 

 
25 (64) 
31 (69) 
26 (68) 
1 (100) 

 
1.0 (ref) 
0.7 (0.3-1.8) 
0.6 (0.2-1.6) 

Eye Color 
   Blue and green 
   Black or Brown 
   missing 

 
23 (33) 
15 (31) 
2 (40) 

 
47 (67) 
33 (69) 
3 (60) 

 
1.0 (ref) 
0.8 (0.3-1.9) 

Hair Color 
   Black/Brown 
   Blondes 
   Red 
 missing 

 
30 (33) 
9 (39) 
1 (11) 

 
60 (67) 
14 (61) 
8 (89) 
1 (100) 

 
1.0 (ref) 
1.1 (0.4-2.9) 
0.2 (0.0-1.9) 

Tumor site 
 Trunk and limbs 
 Head & neck 

 
13 (30) 
27 (35) 

 
36 (70) 
47 (65) 

 
1.0 (ref) 
1.4 (0.6-3.1) 

Ambient Sun Exposure 
   Low 
   Medium 
   High 
 missing 

 
17 (44) 
15 (37) 
8 (19) 

 
22 (56) 
25 (63) 
35 (81) 
1 (100) 

 
1.0 (ref) 
1.0 (0.4-2.7) 
0.5 (0.2-1.4) 

Total Number of Solar Keratosis 
   None 
   1-20 
   >20 
   missing 

 
22 (51) 
12 (34) 
4 (10) 
2 (40) 

 
21 (49) 
23 (66) 
36 (90) 
3 (60) 

 
1.0 (ref) 
0.6 (0.2-1.7) 
0.1 (0.0-0.5) 

Propensity to sun burn 
   Rare/Never/Some 
   Mostly Burn 
   Always Burn 
   missing 

 
13 (38) 
18 (42) 
9 (20) 
 

 
21 (62) 
25 (58) 
35 (80) 
2 (100) 

 
1.0 (ref) 
0.9 (0.3-2.5) 
0.3 (0.1-0.9) 

Number of sun burns since school 
   Never 
   1-5 
   6-20 
   >20 
 missing 

 
5 (56) 
16 (30) 
17 (36) 
2 (17) 
 

 
4 (44) 
37 (70) 
30 (64) 
10 (83) 
2 (2.5) 

 
1.0 (ref) 
0.3 (0.1-1.4) 
0.4 (0.1-2.0) 
0.2 (0.0-1.4) 

*Odds ratio and 95% confidence interval, adjusted for age stratum (<50, 50+) and sex
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Table 3. Association between risk factors and BRAF V600 mutations in cutaneous 
melanoma: stepwise logistic regression model 
 

Characteristic OR (95%CI)* 

Total nevus count 
 0-15 
 16-60 
 >60 

 
1.0 (ref) 
11.8 (2.4-57.7) 
9.7 (1.8-52.1) 

Contiguous neval remnants  
 No 
 Yes 

 
1.0 (ref) 
3.1 (1.2-8.1) 

*Odds ratio and 95% confidence interval, adjusted for age stratum (<50, 50+), sex and all 

other terms in table
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Table 4. Estimated allele frequency of MC1R variants  
Variant 
Allele 

Frequency (%) 
in Tumors 

 

Frequency (%) in 
South East 

Queensland population
 (Duffy et al., 2004) 

Frequency (%) in 
melanoma patients by 

direct sequencing 
(Kanetsky et al., 2006) 

R142H 1.5 0.4 1.0 

V60L 12.3 12.2 13.3 

D84E 1.2 1.2 1.8 

R151C 15.0 11.0 13.2 

R160W 6.9 7.0 9.8 

D294H 2.7 2.7 2.8 

V92M 10.8 9.7 10.0 

R163Q 5 4.7 4.2 

All other 

variants 

Not done 0.9 4.0 

    

r 28.1 26.6 27.5 

R 27.3 22.3 28.6 

r =V60L, V92M, R163Q 

R= R142H, D84E, R151C, R160W, D294H 
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Table 5. The lack of association between MC1R and BRAF  
                                BRAF V600 
MC1R   WT   Mutant  OR (95% CI)* 
All lesions  
WT/WT   21 (64)   12 (36)   ref 
Any variant   62 (69)   28 (31)   0.72 (0.28-1.82) 
Total   83   40                
            
Intermittent sun exposed lesions (Trunk and upper limbs and lower limbs) 
WT/WT   7 (64)   4 (36)   ref 
Any variant   28 (76)   9 (24)   0.4 (0.07-2.14) 
Total   35   13               
             
Chronic sun exposed lesions (Head, neck) 
WT/WT   13 (62)   8 (38)   ref 
Any variant   33 (63)   19 (37)   0.98 (0.31-2.93) 
Total   46   27               
            
Lower category of sun exposure (0-5 actinic keratosis) 
WT/WT   4 (40)   6 (60)   ref 
Any variant   17 (52)   16 (48)   0.68 (0.21-2.22) 
Total   21   22               
            
High category of sun exposure (6+ actinic keratosis) 
WT/WT   16 (73)   6 (27)   ref 
Any variant   43 (81)   10 (19)   0.69 (0.14-3.31) 
Total   59   16               
            
Low sun exposure (low exposure history) 
WT/WT   9 (47)   10 (53)   ref 
Any variant   38 (63)   22 (37)   0.76 (0.19-2.97) 
Total   47   32               
            
High sun exposure (High exposure history) 
WT/WT   12 (86)   2 (14)   ref 
Any variant   23 (79)   6 (21)   0.77 (0.21-2.84) 
Total   35   8               
*Odds ratio and 95% confidence interval, adjusted for age and sex. 
There were 2 lesions missing site location information, 5 lesions missing actinic keratosis information and 
1 lesion missing sun exposure history. 

#WT/WT here denotes an MC1R allele that does not carry any of the eight variants we measured (listed in 
Table 4). 
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Figure legend 
 
Figure 1.  The divergent molecular pathway model of melanoma development 

incorporates molecular, environmental and phenotypic data. 

 

 

 


