
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

Duncombe, David and Mohay, George M. and Clark, Andrew J. (2006) Synapse : 
auto correlation and dynamic attack redirection in an immunologically-inspired 
IDS. In: ACSW frontiers 2006 : proceedings of the Fourth Australasian 
Symposium on Grid Computing and e-Research (AusGrid 2006) and the Fourth 
Australasian Information Security Workshop (Network Security) (AISW 2006), 
January 2006, Hobart. 

 
          © Copyright 2006 Australian Computer Society 
Reproduction for academic, not-for profit purposes permitted provided this 
text is included.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10887736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Synapse: Auto-correlation and Dynamic Attack Redirection in an
Immunologically-inspired IDS

David Duncombe George Mohay Andrew Clark

Information Security Institute
Queensland University of Technology

GPO Box 2434, Brisbane 4001, Queensland, Australia
Email: d.duncombe@student.qut.edu.au, {g.mohay|a.clark}@qut.edu.au

Abstract

Intrusion detection systems (IDS) perform an impor-
tant role in the provision of network security, pro-
viding real- time notification of attacks in progress.
One promising category of IDS attempts to incorpo-
rate into its design properties found in the natural
immune system. Although previous attempts to ap-
ply immunology to intrusion detection have consid-
ered the issue of accuracy, more work still needs to be
done. We present an immunologically-inspired intru-
sion detection model in which the false positive rate is
moderated through a process of event correlation be-
tween multiple sensors. In addition, the model offers
a novel response mechanism. Previous research has
flirted with a variety of response mechanisms, includ-
ing those that are capable of tearing down connec-
tions, killing processes and dynamically updating fire-
wall rules. Although such mechanisms may prevent
or at least mitigate an attack before its full impact
is achieved, they work against the collection of in-
formation for investigatory or evidence purposes. To
overcome this limitation, a response strategy is pro-
posed in which the attack is dynamically redirected
to an isolated host deployed as a honeypot. In this
way, it becomes possible to mitigate the effects of the
attack while at the same time study the attack itself.

Keywords: intrusion detection, alert correlation, im-
munological.

1 Introduction

Intrusion detection systems (IDS) have an important
role to play in the provision of network security, pro-
viding real-time notification of attacks in progress
(McHugh, 2001; Verwoerd and Hunt, 2002). With
increasing complexity of software systems, there has
been increasing emphasis on combining and correlat-
ing heterogeneous IDS in order to provide better cov-
erage and accuracy (Haines, 2003).

One promising category of IDS attempts to incor-
porate into its design properties found in the natu-
ral immune system. The natural immune system has
evolved to protect organisms from pathogens such as
bacteria, viruses, and parasites. Although there are
significant differences between living organisms and
computers, the similarities have the potential to help
provide robust, distributed protection of computer
systems. Traditionally, the immune system has been

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Fourth Australasian Information Security
Workshop (AISW-NetSec 2006), Hobart, Australia. Confer-
ences in Research and Practice in Information Technology (CR-
PIT), Vol. 54. Rajkumar Buyya, Tianchi Ma, Rei Safavi-Naini,
Chris Steketee and Willy Susilo, Eds. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

considered to solve the problem of discriminating be-
tween self and dangerous nonself. Self describes the
body, and nonself describes material that is foreign
to the body. There are two main difficulties for the
natural immune system in its attempt to discriminate
between self and nonself. Firstly, self and nonself in
living organisms are comprised of the same basic ma-
terial: protein. Secondly, there are limited resources
available to the immune system. Similar difficulties
are also faced by computer systems. The sense of self
as applied to computer systems is very dynamic. Le-
gitimate changes to self are routinely made: for exam-
ple, new users and new programs can be introduced,
and users can change their work habits. In addition,
previously unseen patterns of legitimate activity often
arise. This is referred to as perpetual novelty (For-
rest, Hofmeyr, Somayaji, & Longstaff, 1996; Somayaji
& Forrest, 2000).

Although previous attempts to apply immunol-
ogy to intrusion detection have considered the issue
of accuracy, more work still needs to be done. We
present an immunologically-inspired intrusion detec-
tion model in which the false positive rate is moder-
ated through a process of event correlation between
multiple sensors. In addition, the model offers a novel
response mechanism in which the attack is redirected
to a honeypot using techniques similar to those cur-
rently employed by session hijacking tools. This re-
sponse mechanism enables the attacker’s activities to
be monitored from a relatively safe environment.

The remainder of the paper is organized as fol-
lows: Section 2 addresses related work in computer
immunology. Section 3 addresses the system design
of Synapse, while Section 4 describes its current im-
plementation. Section 5 then provides an evalua-
tion of the system using a well known attack tool
to demonstrate its success. Finally Section 6 presents
our conclusions, itemising current limitations and fu-
ture work.

2 Related Work

To provide comprehensive intrusion detection, a com-
puter system’s sense of self needs to be represented in
many ways. This reflects the natural immune sys-
tem’s ability to represent self in many ways for ex-
ample, the humoral response is targeted at intracellu-
lar infections while the cell-mediated response is tar-
geted at extracellular material (Forrest, Hofmeyr, &
Somayaji, 1997). An early example of applying im-
munology to intrusion detection looked at host-based
anomaly detection. The definition of self was based on
observing system call sequences. Of course, any non-
trivial program would likely produce very large sets
of system call sequences for a given execution. How-
ever, it was found that the local ordering of system
calls was consistent, and that short sequences of sys-
tem calls provided a compact signature for normal be-



haviour. The method used by this approach involved
two phases: a training phase and a testing phase.
During the training phase, a database of normal be-
haviour was constructed by monitoring programs un-
der normal operation, and recording the associated
sequences of system calls. During the testing phase, a
comparison was made between the sequence of system
calls found in both the running program and the nor-
mal database. All system calls not found in the nor-
mal database were regarded as mismatches. Anoma-
lies were flagged when a sufficient number of local mis-
matches were found (Forrest, Hofmeyr, Somayaji, &
Longstaff, 1996; Forrest, Hofmeyr, & Somayaji, 1997;
Hofmeyr, 1999). The immunological concepts imple-
mented in this research were implicit policy specifica-
tion (the acceptable behaviour of the application was
inherently defined by its normal operation), anomaly
detection (the system could detect unknown attacks),
and diversity (different normal databases were con-
structed for the same program, depending on the par-
ticular environment it was running under) (Hofmeyr,
1999). Although successful in detecting anomalous
behaviour, the research on system calls failed to in-
corporate many important properties of the immune
system.

A second example of applying immunology to in-
trusion detection borrows more intimately from the
immune system. It explores a model of distributed
detection called negative detection. In this model,
activity patterns are represented by strings of fixed
length. Negative detection learns the set of self strings
during a training phase, so that anomalous (nonself)
data can be distinguished during the test phase. Neg-
ative detection systems are comprised of many nega-
tive detectors, each represented by a string. Detectors
are referred to as negative because they are generated
to match nonself strings. In the training phase, de-
tectors are randomly-generated and compared to all
self strings. A detector that matches any self strings
will be deleted and replaced by another randomly-
generated detector. The system is left with a set of
detectors that match nonself.

Previous attempts at applying immunology to in-
trusion detection have considered the issue of false
positives to varying degrees. One answer to the prob-
lem of false positives was provided by Somayaji and
Forrest (2000). Their research applied an automated
response mechanism to system call tracing, such that
unusual behaviour caused system calls to be delayed
exponentially. Unlike previous implementations pro-
viding an automated response, where false positives
could trigger a disproportionate all-or- nothing re-
sponse, their implementation meant that occasional
false positives had only a negligible impact. Another
answer to the problem of false positives was provided
by Hofmeyr (1999). Three mechanisms were pre-
sented to overcome a high false positive rate. Firstly,
activation thresholds were defined to ensure that each
detector had to match a certain number of times be-
fore an anomaly was signalled. Secondly, because
activation thresholds required that a single detec-
tor match repeatedly, attacks launched from differ-
ent sources may not be detected by a single detec-
tor. Sensitization was defined to enable detection of a
burst of connections from multiple different locations.
Finally, costimulation was used to provide a second
signal of attack confirmation by a human operator
whenever a detector was activated. An improvement
on Hofmeyr’s (1999) approach was suggested by Qiao
and Weixin (2002) and their work is discussed further
below.

An artificial immune system model called ARTIS
has been developed by Hofmeyr and Forrest (2000)
that provides a general framework for a distributed
adaptive system which can potentially be applied to

many domains. ARTIS incorporates several prop-
erties from the natural immune system, including
distributed detection, diversity, robustness, implicit
policy specification, flexibility, scalability, signature-
based detection and anomaly detection.

The abstract model presented by ARTIS can be
applied to network intrusion detection by firstly con-
sidering an appropriate characteristic to be modelled.
Hofmeyr (1999) defined a concrete implementation of
the model called Lisys, in which connection informa-
tion and in particular TCP SYN packet header infor-
mation is used as an appropriate characteristic. These
connections are represented using “datapath triples”,
which consist of a source IP address, a destination IP
address, and a service port. Self is then considered to
be all legitimate “datapath triples” connecting either
to an internal or external computer, and everything
else is nonself. The base representation used by dat-
apath triples is a binary string of length 49. Each
detection node runs a local detection system, which
consists of a set of detectors. These detectors are ran-
domly generated at each node and are represented as
a binary string of length 49. During the tolerization
or training period, as each detector is generated, it is
compared and tolerized against a single training set
using the negative selection algorithm, whereby detec-
tors that match the training set die, and only those
detectors that fail to match the training set will sur-
vive. The training set consists of all new connections
on the network, and is presented to the detectors by
way of a broadcast mechanism which uses the Tcp-
dump line format to represent the connection. Each
node that receives a Tcpdump line in this fashion pro-
ceeds to extract the datapath triple parameters and
compress them into the base representation to allow
for easy comparison with the randomly generated de-
tectors. Note that this comparison makes use of ap-
proximate string matching using the r-contiguous bits
rule. Accordingly, a datapath triple may ‘match’ a
detector even though the two 49- length bit strings
are not identical. LANs are assumed to be broadcast,
and so the same traffic is seen by all local detection
systems. Once the detection system is running, the
same traffic is seen by all local detection systems.

Detectors are essentially intended to match non-
self or anomalous connections and once training has
been accomplished, if the training set was complete,
then legitimate network connections will not match
any of the generated detectors. However, it is un-
likely that the training set will exhibit all self strings,
and so it is possible that some strings will survive
tolerization only to match self. To overcome this, a
costimulation mechanism is adopted whereby a hu-
man operator is used to provide a second signal of
confirmation. When a detector becomes activated by
a broadcast Tcpdump line, a human operator is no-
tified, who is then given a period of time in which to
decide if the string really is nonself. If the operator
decides that the string represents a connection that
is indeed nonself, then a costimulation signal is sent
to the detector, promoting it to a memory detector
sensitive to any similar datapaths seen in the future.

The lifecycle of a detector can be summarised as
follows. A detector is comprised of a randomly gener-
ated bit string that remains immature for the length
of the tolerization period. If any match occurs dur-
ing this period, the detector dies and is replaced by
a new randomly generated detector. If the detector
survives tolerization, it becomes a mature, nave de-
tector with a life expectancy of 1/pdeath time-steps.
If the detector accrues enough matches to exceed the
activation threshold, it is activated. If the activated
detector does not receive a costimulation signal within
the costimulation delay period, it dies. If it does re-
ceive a costimulation signal, it enters a competition



with other local detectors to become a memory de-
tector. Once a detector becomes a memory detector,
it achieves immortality, and will only require a single
match for activation (Hofmeyr & Forrest, 2000).

Note that a ‘memory detector’ is a detector which
flags a matching Tcpdump line as anomalous auto-
matically without the need for any costimulation sig-
nal for confirmation. The reason is that a memory
detector has previously been accepted as a pathogen
indicator, having been promoted from the status of a
simple (mature or nave) detector to the status of a
memory detector precisely because on that previous
occasion costimulation had occurred and thus con-
firmed for evermore the malignant nature of the con-
nection represented by that datapath triple. Note
also that memory detectors have a threshold of one,
whereas simple detectors will typically have higher
thresholds as a guard against false alarms.

3 System Design of Synapse

One of the mechanisms used by Lisys to achieve a low
false positive rate is to employ a costimulation signal,
whereby a human operator indicates if the connection
is truly anomalous. This mechanism has two major
shortcomings. The first is that it is not autonomous
and accordingly, the accuracy and in particular the
success in limiting the frequency of false positives is
dependent on the experience and skill of the operator.
The second, which follows from the first, is that it is
not scalable. What is needed is a system that can
detect intrusions and execute an appropriate response
independently and automatically. The system design
we have adopted for the Synapse system addresses
both of these requirements that are needed in order
to provide such a system.

The natural immune system acts autonomously in
detecting and eliminating dangerous pathogens from
the body. There is no outside control or interference
in this process. Ideally, the model of distributed de-
tection should mirror this approach, so that the sys-
tem can detect intrusions independently. For Lisys to
faithfully represent the immune analogy, it must in-
corporate some type of automated costimulation sig-
nal.

This general approach was employed by Qiao and
Weixin (2002) to successfully reduce the false posi-
tive rate. They built an intrusion detection model
comprised of detectors and monitor agents. The de-
tectors were based on Lisys, and the monitor agents
were used to monitor the state of important subsys-
tems in the network. When a detector is activated,
a start signal awakens each monitor. If any of the
monitors detects an anomaly, a costimulation signal
is sent to the activated detector, causing it to become
a memory detector sensitive to any similar datapaths
encountered in the future. Qiao and Weixin’s (2002)
research succeeded in reducing the false positive rate,
however their detection system does not build directly
upon the existing Lisys implementation and does not
consider the issue of response. The present research
which has led to the development of the Synapse sys-
tem defines a new architecture that builds directly on
Lisys and addresses the issue of response.

3.1 The Correlation Engine, Automated Cos-
timulation Signals and the Console

The correlation engine is the central component of
the new architecture; it coordinates the entire event
correlation process within the system. At its most
basic level, the correlation engine provides an inter-
face between Lisys detectors and third-party monitor

agents. It accepts requests from Lisys to correlate un-
usual TCP connections with the activity reported by
these monitor agents. If the correlation is successful,
an automated costimulation signal is generated, ful-
filling the overall purpose of the correlation engine.
It is important to note that the correlation engine
makes the entire costimulation mechanism transpar-
ent to the monitor agents. The consequence of this is
that the monitor agents themselves do not need to be
modified to participate; rather, they simply need to
be inserted into the system and have the correlation
engine informed of their existence so their output logs
can be queried.

The costimulation signal plays a key role in reduc-
ing the false positive rate, and its automation reflects
the functioning of the natural immune system. The
correlation engine described above is responsible for
automating the costimulation signal. After Lisys has
flagged an anomalous connection, a request is sent to
the correlation engine causing it to query each mon-
itor agent in turn. The engine will only generate a
costimulation signal to indicate that an anomalous
connection is correlated with other anomalous activ-
ity as detected by a monitor agent if there is at least
one monitor agent that reports behaviour on the sys-
tem that is consistent with an attack scenario for that
connection.

The console presents the administrator with a
global view of alerts from all correlation engines on
the subnet onto a single display. The information
displayed on the console enables an administrator to
monitor suspicious events on the network in real-time
as they unfold. Such information includes details of
unusual connections, outcomes of interrogating mon-
itor agents (including whether a costimulation signal
was sent), and instances of memory detector activa-
tion.

We note that, consistent with the original Lisys
approach, there is one Lisys detector located at each
node. As a result, we likewise have a correlation en-
gine deployed at each node. We expect to investigate
how deployment of just one Lisys detector at, for ex-
ample, a firewall, compares with this approach.

3.2 Monitor Agents

Monitor agents are used to retrieve corroborative evi-
dence that helps to determine whether the anomalous
connection really is of malicious intent. Often, moni-
tor agents will be no more than third-party IDS sys-
tems that are capable of contributing a unique assess-
ment of security-relevant activities for a given host.
One beneficial side-effect of introducing such monitor
agents is that the detection system now becomes a
hybrid system, inheriting all the advantages afforded
by the coverage that is found with heterogeneous sen-
sors (Ranum, 2001). To best exploit the concept of
coverage in deploying monitor agents, it is important
to choose those agents which provide highly comple-
mentary strengths and weaknesses. Accordingly, for
proof of concept the present research has used two
very different IDS systems as monitor agents. The
first monitor agent used is Snort, a signature-based
network intrusion detection system (NIDS) capable
of identifying suspicious packets as they traverse the
network (see http://www.snort.org/). The second
monitor agent used is the advanced intrusion detec-
tion environment (AIDE) (see http://sourceforge.
net/projects/aide). AIDE is a free replacement for
Tripwire (see http://sourceforge.net/projects/
tripwire/), and is an anomaly-based host intrusion
detection system (HIDS) that monitors the integrity
of important files on the host.



3.3 Response Capability

Intrusion detection research so far has flirted with a
variety of response mechanisms, including those that
are capable of tearing down connections, killing pro-
cesses and dynamically updating firewall rules. De-
spite the range of responses provided, the general
strategy has been to respond as early as possible to
frustrate the attack in progress. Ironically, it is this
drive to respond early that exposes a weakness in the
system. Although early response strategies may pre-
vent or at least mitigate an attack before its full im-
pact is achieved, this works against the collection of
information for evidence purposes. The present re-
search aims to overcome this limitation by adopting
a response strategy that transparently redirects the
attack to an isolated host in order to study the at-
tacker’s activities. The notion of a honeypot, a host
whose value lies in being probed, attacked or compro-
mised, lends itself particularly well to this scenario.
Honeypots have become a significant area of research,
and are designed to learn the tools, tactics and mo-
tives involved in computer and network attacks (see
http://project.honeynet.org/). By deploying the
isolated host as a honeypot, it now becomes possible
to both mitigate the effects of the attack while at the
same time study the attack itself.

3.4 Summary

Figure 1 illustrates how the system is deployed in a
network. The system provides:
• attack or intrusion detection through auto- cor-

relation of Lisys alerts with monitor agent alerts;
and

• dynamic attack redirection to an isolated honey-
pot environment to allow further and safe inves-
tigation of the behaviour of the attack.

Note that the ‘Client’ in the figure is the attacker.
On detection of an anomalous connection (e.g., a not-
recently-seen connection between ‘Client’ and ‘Server’
machines), the correlation engine polls monitor agents
and on detecting a costimulation signal from one of
the monitor agents it recognizes that an attack is oc-
curring. At this point the correlation engine sends the
costimulation signal back to the detection node that
originally flagged the anomaly, which then promotes
the detector to a memory detector. The correlation
engine then causes the client-server session to be hi-
jacked - in a manner which is transparent to the client
- to the Honeypot machine where two things happen:
the effect of the attack is mitigated; and the attack
may be carefully examined.

Figure 1: Deployment of the system.

Note also that if a legitimate TCP session is redi-
rected (i.e. as a result of a false positive), the be-
haviour of the client is dependent entirely on how it

is implemented in software. Obviously, just as it is
important to minimise responses where connections
are terminated, it is similarly important to minimise
occurrences of the redirection of legitimate sessions.

4 Implementation of Synapse

The architecture outlined above has been imple-
mented as a software package called Synapse which
incorporates and adapts Lisys. In addition to inher-
iting all the benefits of the Lisys framework, Synapse
offers the ability to place an increased level of con-
fidence in diagnoses made. It displays data in real-
time indicating all unusual TCP connections found
by Lisys, and whether or not monitor agents agreed
with Lisys about whether the connection really was
unusual.

4.1 The Correlation Engine

As described in the previous section, the correlation
engine provides an interface between detectors and
monitor agents, and coordinates the event or alert
correlation process. The implementation details of
the correlation engine are presented in Figure 2. If a
detector recognises a novel TCP connection, a signal
is triggered to make the correlation engine on the tar-
get host interrogate local monitor agents. If any one
of the agents detect an anomalous condition, the cor-
relation engine will send a costimulation signal back
to the detector. Additionally, the correlation engine
sends a report to the console indicating the relevant
connection parameters as well as details of the corre-
lation outcome (i.e. whether the detector was costim-
ulated or not). Note that each participating host in
the network runs a correlation engine. This is consis-
tent with the model of distributed protection that is
found in the natural immune system, and is used so
that no single point of failure exists.

In the example in Figure 2, an attacker makes a
connection from external host 20.20.20.5 to the FTP
service on internal host 131.181.6.133. Recall that
all connections made to or from the network are cap-
tured in Tcpdump line format and are then broadcast
to all other participating detection nodes on the net-
work. Although this process is not explicitly depicted
in the example, it can be inferred that the detection
node at 131.181.6.142 has received the Tcpdump line
representing the attacker’s connection. At this stage,
the Tcpdump line is converted by the detection node
into a 49-bit string resembling the base representa-
tion, and is then compared with each detector in the
node’s detector set. A local detector is indeed ac-
tivated during this comparison, and a query is ac-
cordingly sent to the correlation engine on the tar-
get host of the attacker’s connection to confirm the
anomaly. The correlation engine then requests the
status of each monitor agent in turn. If the correla-
tion engine receives any indication of anomalous con-
ditions from at least one monitor agent, it will send a
costimulation signal back to the detection node that
originally flagged the anomaly. This signal has the
effect of promoting the detector to a memory detec-
tor, essentially installing a fingerprint against which
to match future connections that are similar to those
of the attacker’s connection.

4.2 The Automated Costimulation Signal

In order to properly understand the changes neces-
sary to automate the costimulation signal, it is useful
to look in detail at how the current implementation
of Lisys employs this signal. In Lisys, a human opera-
tor is used to provide the costimulation signal. There



Figure 2: The correlation engine.

are two interfaces by which a human operator can do
this: the CGI interface and the web server interface.
The CGI interface allows the operator to select from a
list of anomalies those datapaths that warrant a cos-
timulation signal. The web server interface fulfils the
same purpose as the CGI interface, but instead pushes
a list of hyperlinked anomalies to the operator’s in-
box. A simple web server is then deployed for the
sole purpose of accepting any HTTP requests made
by the operator, indicating that the current anomaly
should be costimulated. For the purposes of the cur-
rent discussion, we will focus on the web server inter-
face, which is referred to in the Lisys documentation
as the costimulation server.

Conceptually Lisys can be considered to consist of
two main subsystems: the detection subsystem and
the broadcast subsystem. The detection subsystem,
which represents the largest slice of the Lisys archi-
tecture, is implemented in the NodeServer class (so-
called because it wraps around a detection node and
exists to serve requests to interact with that node).
It is this NodeServer class that is responsible for gen-
erating hyperlinks in response to a mature detector
exceeding its activation threshold. Periodically, such
links are emailed to a specified recipient list. If a hu-
man operator clicks on the link, confirming that the
Tcpdump line really is an anomaly, the costimulation
server will send a costimulation signal back to the
node server.

In the implementation of Synapse, the costimula-
tion server is no longer needed. It has essentially been
replaced by the correlation engine. Before, the logical
flow of traffic was from the NodeServer class, to an
email inbox, and then (if clicked) to the costimulation
server. Now, the logical flow of traffic is directly from
the NodeServer class to the correlation engine there
is no intermediary involved.

This has important implications for the change in
format of the messages that are now sent from the
NodeServer class. There is no need to wrap the infor-
mation in an HTTP hyperlink, as no human operator
needs to click on the anomalous Tcpdump line. Fur-
thermore, the destination address of this information
(which used to be the costimulation server but is now

the correlation engine) need not be included in the
new request format, because it is used as a parameter
in creating the TCP socket connection that connects
directly with the correlation engine. Finally, the node
server address is no longer needed either. The Node-
Server class used to attach its own address to the
HTTP request so that the costimulation server would
know how to contact the node server that flagged the
anomalous connection in the first place. In Synapse,
the establishment of a socket connection allows the
correlation engine to automatically keep track of the
peer address.

Until now we have overlooked one important con-
sideration. In the original implementation of Lisys,
only a single costimulation server was used, and it
remained at a single address. The address of this
server was listed in a configuration file, and loaded
at runtime. Now, the situation is different. The re-
placement for the costimulation server, the correla-
tion engine, resides on all participating hosts. What
is needed is a way to determine the appropriate cor-
relation engine to connect to. Figure 2 shows that
the correlation engine queried is that which resides
on the local endpoint of the anomalous connection.
This makes sense – after all, what we are trying to do
is look for any signs of disruption on the machine that
is thought to be involved in an anomalous connection
in order to gain a greater sense of whether there is
really an intrusion on the machine (i.e. reduce the
false positive rate).

Note that it is possible for an anomalous connec-
tion to occur between two internal computers. In such
an instance, it would be reasonable to connect to both
internal computers, and either could then conceiv-
ably send a costimulation signal. Importantly, how-
ever, only one costimulation signal should be recog-
nized (even if both computers detect anomalous con-
ditions). This is because, due to the way Lisys is
implemented, recognizing two identical costimulation
signals causes unintended side-effects. Even though
both costimulation signals would identify the same
Tcpdump line to be used in costimulation, each will
be compared in separate iterations with all the de-
tectors in the detector set on the host that originally



flagged the anomaly. The detector that best matches
the Tcpdump line in each case will be promoted to a
memory detector – resulting in two memory detectors
in response to a single anomaly. The current imple-
mentation resolves this issue by always connecting to
the target of a connection. Figure 3 is a screen shot to
illustrate automated costimulation and the informa-
tion directed to the Synapse console. The first alert
indicates that a suspicious telnet connection was de-
tected between hosts 131.181.6.142 and 131.181.6.133.
In this instance, however, no monitor agents on the
target host found any unusual conditions, and accord-
ingly no costimulation signal was sent. The second
alert indicates that a suspicious FTP connection was
detected between the same two hosts above. This
time, a monitor agent on the target host detected a
buffer overflow exploit directed at the FTP server,
and accordingly a costimulation signal was sent. The
final alert illustrates the utility of this costimulation
signal the memory detector created when the sig-
nal was sent now alerts to the console whenever it is
activated by similar datapaths in the future.

4.3 Interfacing with Monitor Agents

Monitor agents were introduced in the previous sec-
tion as being the mechanism by which evidence is
retrieved to help determine whether the anomalous
connection is malicious. Two monitor agents were
put forward as being suitable candidates for deploy-
ment: Snort and AIDE. We consider here only the
Snort monitor agent. Snort offers an array of report-
ing facilities, and is capable of dumping alerts to both
text files and databases, among other formats. The
correlation engine interfaces with Snort through its
database output log, as this is a simple and efficient
way to search for information. After configuring Snort
to alert to the database, it becomes a relatively triv-
ial matter to have the correlation engine extract the
relevant data using an SQL statement. If this re-
turned data indicates that Snort has also flagged sus-
picious behaviour for the connection under considera-
tion, the correlation engine will send a costimulation
signal back to the node server.

4.4 Response Capability – Attack Redirec-
tion

In order to successfully redirect an existing attack ses-
sion to an isolated host, careful thought must be given
to the mechanisms that are required to carry out such
a task.

In particular, the nuances of the transport layer
protocol in use cannot be ignored. The transport
layer protocol is responsible for establishing, main-
taining and tearing down sessions; hence, any attempt
to manipulate the session must be done within the
constraints of such a protocol. The transport layer
protocol under consideration in the present research
is the TCP protocol. This is because the emergence
of TCP/IP as the predominant protocol stack has ce-
mented the use of TCP as the transport layer pro-
tocol of choice for reliable, end-to-end data trans-
fer. The underlying mechanics of the TCP protocol
do not, under normal circumstances, provide for the
case whereby packets in an existing session are redi-
rected midstream to a different destination endpoint.
Simple packet redirection at the network layer is not
sufficient, because the connection management pro-
cedures of TCP would be ignored. In practical terms,
the daemon that is listening on the alternative des-
tination endpoint would disregard packets redirected
to it because it would not recognise them as belong-
ing to any existing session it has under its control.
Even if such a daemon was modified to handle this

scenario through low-level raw socket I/O, the scala-
bility of this approach would be limited because each
daemon that accepts redirected packets would have
to be modified accordingly. One alternative approach
to packet redirection is to develop purpose-built soft-
ware that actively takes over the session from the
original daemon so that control can then be passed
to the impostor daemon. Such software would have
to send spoofed response packets to the attacker that
appear to come from the original daemon, and sim-
ilarly would have to intercept attacker request pack-
ets so they could be passed to the impostor daemon.
Additionally, it would have to deal with a number
of issues that arise as a result of desynchronising the
original TCP session. The sections that follow will
reveal that session hijacking software is particularly
well-suited to dealing with these very issues.

Session hijacking is a technique that is particu-
larly well suited to the goal of attack redirection
and is facilitated by a technique commonly known
as ARP cache poisoning. Although historically em-
ployed by the blackhat community to take over a con-
nection from a client once it has authenticated with
a server, the underlying logic found in session hijack-
ing software enables it to perform the operations that
will be necessary to redirect an attack. There are
many tools available that will perform session hijack-
ing; two of the most popular being Hunt (see http:
//packetstormsecurity.nl/sniffers/hunt/) and
JUGGERNAUT (see http://staff.washington.
edu/dittrich/talks/qsm-sec/P50-06.txt). Hunt
was chosen for further development in the present re-
search largely because of its richer feature set and
superior extensibility when compared to other open
source hijacking tools. Hunt is capable of advanced
connection management functions, providing the user
with the ability to set connections of interest, watch
connections, reset connections, and hijack connec-
tions without the proliferation of ACK storms. Hunt
can also resynchronise the TCP session with the orig-
inal client so the connection does not need to be reset.

In order to adapt Hunt to redirect attacks to a
honeypot, there are two main design goals that must
be achieved. Firstly, Hunt must be able to take over
the session from the server, instead of from the client.
Secondly, Hunt must be able to provide a proxy inter-
face between the attacker and the impostor daemon.
Although these modifications are sufficient to imple-
ment attack redirection in isolation, we must integrate
the software into Synapse. In Synapse, an anomalous
connection is flagged by the correlation engine after
it has consulted with monitor agents. For Hunt to
be integrated into such a system, the correlation en-
gine must inform it of the anomalous connections that
need to be redirected to the honeypot. In this fash-
ion, Hunt can automatically redirect connections that
are deemed to be intrusions.

Figure 4 illustrates a proof of concept example
where Hunt has been modified to allow a user to man-
ually redirect a specified connection to a third host. A
telnet connection is first established to the peer, and
the hostname command is issued. At this stage, the
user interacts with the modified Hunt to redirect the
connection. Now, when the command is issued again,
the output reflects the successful redirection of pack-
ets to the impostor daemon on the third host. The
example is completed with a simple directory listing.

5 Evaluation

To provide proof of concept of the Synapse system of
both the automated costimulation and the response
mechanism which hijacks the exploit for further ex-
amination - we have deployed the well known Bobek



Figure 3: The Synapse console.

Figure 4: An illustration of client redirection via session hijacking.



attack. The Bobek attack is one of a number of pub-
lished exploits that takes advantage of a format string
vulnerability in the Washington University FTP dae-
mon version 2.6.0. The specific vulnerability is doc-
umented in CERT Advisory CA-2000-13 (Havrilla,
2000). It is a remote root exploit that can be trig-
gered using the “anonymous” account. This essen-
tially enables remote users who possess the exploit
to gain root privileges on boxes running the affected
daemon. The exploit works by injecting specially-
crafted character format strings while executing the
“site exec” command, causing the return address to
point to malicious code loaded by the “pass” com-
mand.

In summary, the attack when deployed triggers a
Lisys alert to the correlation engine which then leads
to polling of Snort. A positive response from Snort
then causes activation of the response such that the
exploit session is successfully diverted from the server
under attack to the so-called honeypot where analysis
of the now quarantined or mitigated exploit is then
possible.

In more detail, the attack proceeds as follows:

a. the attack is launched

b. a Lisys detection node (i.e. a population of de-
tectors at a host in the network) flags the attack
connection as an unusual/anomalous connection,
based purely on the datapath triple (source IP +
destination IP + destination port). The under-
lying process that has occurred here is that the
Lisys broadcast subsystem, which broadcasts the
Tcpdump line of every relevant TCP connection
on the network, has broadcast the Tcpdump line
corresponding to the attack connection. The de-
tection node receives this Tcpdump line, com-
presses it into a 49-bit string (the so-called ‘base
representation’ discussed earlier) and compares it
to each mature detector in the detector popula-
tion. (Note that each such detector is considered
to represent nonself). Now, the connection corre-
sponding to the attack has matched at least one
mature detector, which in turn causes a CORRE-
LATE REQ message to be sent to the correlation
engine on the victim host.
The word relevant in the above refers to the fact
that certain traffic exists for which no stable def-
inition of self can be sought. Specifically, www
traffic is filtered out by default because it is ac-
ceptable for many new connections to be estab-
lished to the server each day. Also, all internal
Lisys/Synapse related traffic is likewise not con-
sidered by the detection system.

c. The correlation engine on the victim host then
polls Snort, and finds that Snort has indicated
an intrusion has just happened also. The cor-
relation engine then sends the COSTIMULATE
message to the Lisys detection node that origi-
nally flagged the anomaly.

d. The Lisys detection node that receives the COS-
TIMULATE message promotes the detector that
most closely matches the 49-bit datapath triple
(representing the attack connection) to a mem-
ory detector.

e. The correlation engine, after having sent the
COSTIMULATE message, then immediately
sends the HIJACK message to Hunt which is de-
ployed on the honeypot. Hunt then proceeds to
take over the connection, and all subsequent in-
teraction is between the attacker and the impos-
tor daemon on the honeypot with Hunt acting as
a proxy between the two.

Figures 5, 6 and 7 illustrate some of the network
traffic resulting from the above attack and confirm
successful detection of the exploit and its redirection.
The figures depict a selection of packet frames that
illustrate successful redirection of the attacker to the
honeypot.

The frames in the figures show that packets have
been redirected (there are no packets per se that ex-
plicitly confirm successful detection of the exploit).
In summary, Figure 5 is the last packet before redi-
rection, travelling from attacker to victim). It allows
us to see that (1) the real MAC address of the victim
host is 00:50:04:ab:98:ab and (2) that the acknowl-
edgment number of the attacker is 16755.

Figure 6 is the first packet after redirection, also
travelling from attacker to victim. It allows us
to see that (1) after redirection, the attacker ad-
dresses the frame to the nonexistent MAC address
ea:1a:de:ad:be:02 (even though the packet is still des-
tined for the victim host’s IP address) this shows
the ARP spoofing worked, and (2) the acknowledg-
ment number of the attacker is still 16755 (it hasn’t
received any data yet).

Figure 7 is the second packet after redirection, this
time travelling from victim to attacker. It allows us to
see that (1) Hunt is successfully spoofing packets back
to the attacker as though they are from the real victim
notice that, although the source IP address is still
the victim’s real IP address, the source MAC address
ea:1a:de:ad:be:02 is nonexistent and was inserted by
Hunt in that fashion. And (2) the sequence number
has been correctly spoofed by Hunt as 16755 (equal
to the attacker’s previous acknowledgment number).

6 Conclusions

The Synapse system provides attack and intrusion de-
tection through auto-correlation of Lisys alerts with
monitor agent alerts, and dynamic attack redirection
to an isolated honeypot environment to allow further
and safe investigation of the behaviour of the attack.
Its success in doing so has been demonstrated using
the well known Bobek exploit.

Future work will proceed in the following direc-
tions:

• Consistent with the original Lisys approach,
there is currently one Lisys detector located at
each node. We intend to investigate how deploy-
ment of just the one Lisys detector at, for exam-
ple, a firewall, compares with this approach.

• Enhancing the honeypot environment to provide
a more accurate rendition of the ‘victim’ server
environment based on honeyd,

• Incorporation of a richer set of monitor agents
into Synapse, and

• Enhancing the session redirection:

– by capturing a window of packets previous
to an exploit to allow attack replay; and

– by providing finer control over preventing
two machines from communicating than the
present ARP cache poisoning (which has
potential to provide denial of service).

7 References

AIDE. (2005). Project Info aide. Retrieved Septem-
ber 5, 2005, from the World Wide Web: http:
//sourceforge.net/projects/aide.



Figure 5: The last packet sent before redirection (from the attacker to the victim).

Figure 6: First packet sent after redirection (from the attacker to ‘victim’), redirected to the honeypot.

Figure 7: Second packet sent after redirection (from Hunt on the honeypot to attacker).



Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997).
Computer Immunology. Communications of the
ACM, 40(10), 88-96.

Forrest, S., Hofmeyr, S. A., Somayaji, A., &
Longstaff, T. A. (1996). A sense of self for Unix
processes. Paper presented at the 1996 IEEE
Symposium on Computer Security and Privacy,
Oakland, CA.

Haines Joshua, Dorene Kewley Ryder, Laura Tin-
nel, Stephen Taylor (2003). Validation of Sensor
Alert Correlators. IEEE Security & Privacy, vol.
1, 2003.

Havrilla, J. S. (2000). CERT Advisory CA-
2000-13 Two Input Validation Problems In
FTPD. Retrieved September 3, 2005, from
the World Wide Web: http://www.cert.org/
advisories/CA-2000-13.html.

Hofmeyr, S. A. (1999). An Immunological Model
of Distributed Detection and Its Application to
Computer Security. Unpublished PhD thesis,
University of New Mexico, Albuquerque.

Hofmeyr, S. A., & Forrest, S. (2000). Architecture
for an Artificial Immune System. Evolutionary
Computation, 8(4), 443-473.

Hunt. (2005). Packetstorm back to your roots.
Retrieved September 3, 2005, from the World
Wide Web: http://packetstormsecurity.nl/
sniffers/hunt/.

JUGGERNAUT. (2005). JUGGERNAUT. Re-
trieved September 3, 2005, from the World
Wide Web: http://staff.washington.edu/
dittrich/talks/qsm-sec/P50-06.txt.

McHugh, J. (2001). Intrusion and intrusion detec-
tion. International Journal of Information Secu-
rity, 1:14-35.

Qiao, Y., & Weixin, X. (2002). A Network IDS
with Low False Positive Rate. Paper presented
at the Congress on Evolutionary Computation,
Honolulu, HI.

Ranum, M. J. (2001). Coverage in Intrusion Detec-
tion Systems. Retrieved August 15, 2003, from
the World Wide Web: http://www.nfr.com/
resource/downloads/Coverage\ in\ IDS.pdf.

Snort. (2005). Snort the de facto standard for in-
trusion detection/prevention. Retrieved Septem-
ber 3, 2005, from the World Wide Web: http:
//www.snort.org/.

Somayaji, A., & Forrest, S. (2000). Automated Re-
sponse Using System-Call Delays. Paper pre-
sented at the 9th USENIX Security Symposium,
Denver, CO.

The Honeynet Project (2005). The Honeynet
Project. Retrieved September 8, 2005, from the
World Wide Web: http://project.honeynet.
org/.

Tripwire. (2005). Project Info Open Source Trip-
wire. Retrieved September 3, 2005, from the
World Wide Web: http://sourceforge.net/
projects/tripwire/.

Verwoerd, T., & Hunt, R. (2002). Intrusion detec-
tion techniques and approaches. Computer Com-
munications, 25(15), 1356-1365.




