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Abstract

The effects of network attacks may result in abrupt
changes in network traffic parameters. The speedy identi-
fication of these changes is critical for smooth network op-
eration. This paper illustrates a sequential analysis tech-
nique for detecting these unknown abrupt changes in asym-
metric network traffic. A novel sliding window based adap-
tive cumulative sum (CUSUM) algorithm is used to detect
the cause of such variations in network traffic. The signifi-
cance of the proposed algorithm is two-fold: (1) automatic
adjustment of the change detection threshold while minimis-
ing the false alarm rate, and (2) timely detection of an end
to the anomalous traffic. The validity of the proposed tech-
nique is investigated by experimentation on simulated data
and on 18 months of real network traces collected from
a class C darknet. Comparative analysis of the proposed
technique with a traditional CUSUM method demonstrates
its superior performance with high detection accuracy and
low false alarm rate.

1. Introduction

In recent years different threat monitoring techniques
have been developed to detect malicious activity includ-
ing intrusion detection systems, honeypots and black hole
monitoring. These techniques detect attacks by moni-
toring either used [17] or unused Internet address spaces
[1, 2, 8–10, 12, 14, 15]. In contrast to used address spaces
where there are live hosts connected to the Internet, an un-
used address is a routable Internet address which is not a
live production host, as a result the traffic observed on such
an IP address is by definition unsolicited and likely to be ei-
ther opportunistic or malicious, including traffic from nodes
infected by worms, traffic generated by random network
probing tools or viruses, backscatter traffic from distributed
denial of service attacks or unintentional traffic from mis-
configured nodes. Blocks of such unused Internet addresses

are commonly referred to as network telescopes, blackholes
or darknets by the research community.
Statistical analysis of network traffic parameters has

been successfully used in identifying new and ongoing at-
tacks. It is observed that during normal operations the prop-
erties of parameters describing the network traffic either re-
main constant or vary slowly over time [3,11]. On the other
hand malicious activity usually transforms these parameters
in such a way that their statistical properties no longer re-
main constant resulting in abrupt changes. The problem of
identifying malicious activities can thus be formulated as a
change point detection problem: to detect changes in the
traffic’s statistical properties as quickly as possible with a
minimal false alarm rate [3].
In this paper we use sequential analysis techniques to

identify changes in the behaviour of network traffic tar-
getting a darknet to unveil both ongoing and new attack
patterns. We propose an online sliding window sequen-
tial change-point detection algorithm based on the non-
parametric cumulative sum (CUSUM) method. We provide
a detailed analysis of the effectiveness of the algorithm us-
ing both synthetic data and 18 months of a real network
traffic collected from a dedicated unused class C address
block.

2. Related Work

Many researchers have used the observation that a ma-
licious activity usually transforms the network parameters
in such a way that their statistical properties no longer re-
main constant resulting in abrupt changes. In [5], Chan et al.
use a non parametric CUSUM algorithm to identify specific
worms which use a hit list of potential target IP addresses
to propagate through the network. Each incoming source
address is weighted based on heuristics and the total weight
in a given time window is calculated. A non-parametric
CUSUM is then applied on the total (weighted) source ad-
dress count. If the current weighted value is greater than
a predefined percentage of the mean then the calculated
CUSUM score is subjected to a threshold test in order to
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identify a worm outbreak. The success of the proposed al-
gorithm largely depends upon the threshold value which is
pre-selected by the authors. Moreover the specific use of the
proposed algorithm in detecting only hitlist worms makes it
less favourable in the analysis of network traffic containing
diverse anomalous activities.
In [4], Bo et al. also applied the non-parametric CUSUM

algorithm to identify worm attacks. In this paper the num-
ber of unique destination hosts that a given source attempts
to connect to in a given time interval is first calculated. The
algorithm is then applied on the calculated sequence to es-
timate the CUSUM score. The calculated score is then sub-
ject to a threshold test to identify the worm activity. The
authors have used a constant threshold value for detection
of worm attacks within a lab environment.
In [6, 16], the authors have used the non-parametric

CUSUM algorithm to detect denial of service attacks based
on SYN flooding. Chen et al. [7] provided a framework
to detect distributed denial of service (DDoS) attack using
a distributed change detection algorithm based on the non-
parametric CUSUM.
Siris et al. [13] used a parametric CUSUM change detec-

tion algorithm to detect TCP SYN flooding attack. Differ-
ent design parameters have been evaluated using two data
sets containing both high and low intensity attacks. The at-
tacks were generated synthetically and the real network traf-
fic is used as background noise. The authors have compared
two change point detection techniques namely the adaptive
threshold and parametric CUSUM algorithms. In both these
techniques the results were subject to a pre-selected thresh-
old test to identify the change points. Although both low
and high intensity attacks were used to analyse the perfor-
mance of the algorithm, the effect of varying attack char-
acteristics such as duration and frequency were not consid-
ered.
While these methods can detect anomalies that cause

abrupt changes in the network traffic parameters, identifi-
cation of an end of the attack is not provided. While timely
detection of an attack is critical, we argue that identification
of an end to the anomalous activity is equally important to
successfully detect subsequent attack patterns and to reduce
the false alarms. Moreover the use of a static threshold,
for detection of change points, subjects them to higher false
alarms in the event of different and diverse attack patterns.
We aim to overcome these problems using two different ap-
proaches and our proposed technique is distinguished from
previous work in the following regards:
1) We propose a variable sliding window based non-

parametric CUSUM algorithm to detect abrupt changes in
data series. The use of a sliding window improves the effi-
ciency of the algorithm by removing the effect of data points
related to the last detected change point thus only keeping
the normal data points within the sliding window at any

given point in time. It also assists in identifying when the
anomalous activity has ended, quickly removing its effect
and reducing the false alarm rate.
2) Our technique uses a dynamic threshold in order to de-

tect change points rather than pre-defined thresholds. Use
of a dynamic threshold allows the algorithm to perform bet-
ter during diverse anomalous activities.
3) The effectiveness of the proposed technique is proved

using not only synthetic data sets but also using 18 months
of real network traffic collected from a dedicated unused
class C address block. Although the proposed algorithm
can be used in detecting anomalous activities embedded in
normal network traffic, our aim is to use the proposed al-
gorithm to detect unusual behaviours in large collection of
unsolicited traffic observed on a dedicated class C Darknet.

3. Detection Mechanism

During malicious activity, it is expected that the statis-
tical properties of the traffic parameters no longer remain
constant, resulting in the abrupt change. These change
points can be detected using sequential analysis methods
such as the cumulative sum (CUSUM) change point detec-
tion algorithm. CUSUM is a sequential analysis technique
which assumes that the mean value of the parameter un-
der observation will transform from negative to positive in
the event of a change in its statistical properties. In this
section a sliding window based CUSUM algorithm will be
discussed for identification of abrupt changes in the traffic
behaviour.

3.1. Sliding Window

The analysis of time-varying parameters is usually per-
formed over parameter values covered by a window of in-
finite length, considering all the previous values, or by
analysing values within a window of finite but fixed length.
However the use of a fixed length window for change de-
tection in time-varying parameters might lead to incorrect
analysis either by delaying the detection of a change point
or even not detecting a change point in the first place. We
aim to tackle this problem by using a sliding window mech-
anism where its length is adjusted after a change in the pa-
rameter value is detected. Two different variable length slid-
ing window techniques are proposed. These techniques dif-
fer in their post change window adjustment strategy.
The basic idea in the proposed variable length sliding

window is to reduce window size to a minimum value when-
ever a change in system parameter is detected. The window
will remain in the fixed length state until a new change point
is detected or the current change point is terminated. After
the end of change point is detected, the window will either
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progressively expand, discarding all the pre-change param-
eter values or it can progressively expand continuing from
its pre-change size. In both cases parameter values respon-
sible for the current change point will be discarded. We
name these two techniques VALS-1 and VALS-2 respec-
tively (where VALS stands for variable length sliding win-
dow).
In VALS-1 the sliding window will start with a minimum

length ofWmin and will progressively expand to maximum
length Wmax given that there is no change in parameter
properties. After reachingWmax the window starts sliding.
Let us assume that the parameter properties have changed at
time ts and the change continues until time te after which
the parameter returns to a steady state. Upon detection of
this change the sliding window will reduce to constant size
Wcon at time ts such thatWcon > Wmin . At this stage the
window is initialized with the parameter value responsible
for the change. The window will remain in this state and
continue to slide until a new change is detected or the cur-
rent change expires. At time te, the window will start with
Wmin, initialize with post changed element and continue to
expand until it reachesWmax. The window will continue to
slide until a new change point is detected.
In VALS-2 the window behaviour is same as VALS-1

until the change has detected at time ts. At time ts, a suc-
cessful detection of a change will reduce the window size
to constant size Wcon. A second window W ′ will hold all
the parameter elements before change such that the length
of W ′ <= Wmax. The window will proceed as VALS-1
until the end of change is detected at te. At te, window
W ′ will expand if Length(W ′) < Wmax or slide if Length
(W ′) = Wmax, without considering parameter elements re-
lated to the change point. The window will continue to slide
until a new change point is detected

3.2. Change Point Detection Algorithm

In sequential analysis, change detection methods can
be categorized as offline or online change detection algo-
rithms. In an offline change detection algorithm the process
of data acquisition is completed before applying the algo-
rithm. Whereas the basic idea of an online change detection
algorithm is to detect change as early as possible which is
critical for network operations. Suppose that a random pro-
cess X is sampled at a fixed time interval t resulting in a
sequential observation Xt. After each sampling period a
decision is computed to decide whether or not there is a
transformation in process statistical properties resulting in
a change point. The test for signalling a change at time t0
from observations yi and yk, is based on log likelihood ra-
tio, Sn , shown in Equation 1

Sn =
k

∑

i=1

si (1)

where si = ln
Pθ1

(yi)

Pθ0
(yi)

(2)

where θ0 and θ1 specify two hypotheses with probabili-
ties Pθ0

and Pθ1
respectively. The value i = 1 represents

the first element within a sliding window and k represents
the last element in the sliding window at time t0. For the
change detection it is assumed that the log likelihood ratio
shows a negative drift before change and a positive drift af-
ter change. Therefore, the relative information for change
detection lies in the difference between the log likelihood
ratio and its current minimum value [3]. Thus the CUSUM
score can be represented as:

gk = Sk − mk (3)
where mk = min

1≤j≤k
Sj (4)

The CUSUM score given in Equation 3 is then compared
with threshold value h to identify a change. Thus the alarm
for the CUSUM algorithm is given by

ta = min{k : gk ≥ h} (5)
According to Basseville et al. [3], the decision rule given

in Equation 3 can be rewritten in a recursive manner as

gk =







gk−1 + ln
Pθ1

(yk)
Pθ0

(yk) if gk−1 + ln
Pθ1

(yk)
Pθ0

(yk) > 0

0 if gk−1 + ln
Pθ1

(yk)
Pθ0

(yk) ≤ 0
(6)

where g0=0. From Equation 2, the above equation can be
compacted into:

gk = (gk−1 + sk)+ (7)
Using the above equations the change point can be com-

puted. But due to the lack of a complete model of {yk},
it is difficult to compute gk as no prior information about
the underlying process distribution is available. One way
to solve this problem is to use a non-parametric approach
which does not make any assumptions about the underly-
ing process probability distribution. In the case of a non-
parametric CUSUM algorithm Equation 7 can be rewritten
as gk = (gk−1 + sk)+ , g0 = 0 and the corresponding de-
cision rule can be expressed as

dk (gk) =

{

0 if gk ≤ h
1 if gk > h

(8)

where dk is a decision at time k considering threshold value
h. If the CUSUM score, gk, is less than or equal to the given
threshold the decision will be zero indicating normal oper-
ation and if gk is greater than the threshold, the decision
will be one indicating a change in parameter properties. To
achieve this, it is necessary to transform sequence {yk} to
a new sequence {xk} so that it has a negative mean dur-
ing normal operation and a positive mean during malicious
activity. Thus

xk = yk − α (9)
where α is a constant and is considered to be a upper bound
on the mean of {yk}. Thus Equation 9 becomes
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xk = yk − α ∗ yk (10)
Where yk is the estimated mean at time k, which can be
calculated by

yk =
k − 1

k
yk−1 +

1

k
yk (11)

Thus with the help of Equations (8 -11) a change point can
be identified using the non-parametric CUSUM method.

3.3. Design Parameters

In order to identify a change the calculated CUSUM
score is compared with the threshold h, see Equation 8.
One way to achieve this is to pre-select a fixed value of the
threshold h. But due to the diversity in different network
traffic parameters it is difficult to select a single threshold
value suitable for all parameters. Also in the event of differ-
ent and diverse attack patterns the fixed threshold value re-
sults in an increase in detection delay or no detection at all.
The better alternative is to dynamically select the threshold
value to identify the start of an anomalous event. The dy-
namic threshold can be calculated as

Estart
n =

√

∑n
i=1 (xi − x)

N
(12)

The above equation sets the threshold value dynamically to
the standard deviation of the elements within a window of
size N at any given time t. It is observed that this method
gives optimal results once the sliding window has reached
its maximum size.
While timely detection of attacks is critical, identifica-

tion of an end to the anomalous activity is equally important
to successfully detect subsequent attack patterns and to re-
duce the false alarms. We have achieved this by comparing
the CUSUM score with another threshold value given by

Eend
n = 0.25 ∗ Estart

n (13)
According to above equation an alarm cannot be cancelled
until the CUSUM score is substantially reduced. In addi-
tion, to avoid missing alarms a separate counter τ is also
used along with Eend

n . The alarm is not cancelled until
timer τ reaches a specified value. Currently detection of the
end is limited to a single change point, subsequent detection
of the end of nested change points is a part of our future
work. Other design parameters including sliding window
size N and upper bound on mean α are selected based on
experimental analysis with synthetic data and will be dis-
cussed in the following section

4. Performance Evaluation and Results

In this section we compare the performance of our two
proposed sliding window based non-parametric CUSUM

algorithms with the traditional non-parametric CUSUM al-
gorithm without any window. For this we use both synthetic
traffic and real traces from a class C darknet. The perfor-
mance metrics considered include the detection probability
(the percentage of attacks for which alarm was raised) and
false alarm rate (the percentage of alarms not corresponding
to an actual attack). In addition we seek to investigate the
effect of window sizeN and upper bound on mean α on the
performance of our proposed algorithm.

4.1. Synthetic Data

The synthetic data set consists of around one thousand
data points distributed uniformly with mean 5200 and stan-
dard deviation 1200. This closely approximates the data
collected on a class C Darknet over a period of 18 months
and removes the effect of any outliers present in the data.
This data set is then used as background noise and attacks
were generated synthetically, which allowed us to control
the characteristics of the attacks and investigate the perfor-
mance of our proposed algorithms. Both high intensity at-
tacks, whose mean amplitude is 250% higher than the mean
traffic rate, and low intensity attacks, whose mean ampli-
tude is 50% higher than the mean traffic rate were generated
to test the effectiveness of the algorithm [13].
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(a) Synthetic data set (noise) without any attack traffic
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(b) Low intensity attacks with variable duration and frequency
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(c) High intensity attacks with variable duration and frequency

Figure 1. Synthetic data set
The proposed algorithm is tested on five synthetic data sets,
each containing different attack characteristics. Figure 1
shows some of the synthetic data sets used, the horizon-
tal axis represents observation period in unit time while the
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vertical axis represents the number of packets. Table 1 sum-
marises the characteristics of each data set. The attack du-
ration and attack frequency is specified in terms of observa-
tion period. For example attack duration of 10 means that
the attack will continue for 10 consecutive observation pe-
riods and attack frequency of 100 means that there will be
attack after every 100 observation periods.
Table 1. Characteristics of different data sets
Data
set

Attack
Intensity

Attack
Duration

Attack
Frequency

Number
of Attacks

1 high 10 100 9
2 high variable variable 27
3 low 10 100 9
4 low variable variable 24
5 variable variable variable 34

4.2. Experimentation

For the selection of design parameters both VALS-1 and
VALS-2 along with the traditional CUSUM algorithm with-
out any window is applied to all five synthetic data sets de-
scribed above. Experiments were performed with different
window sizes, N , ranging from 2 to 300, and upper bound
on mean, α, with values from 0.5 to 3. The motivation be-
hind this was to select the optimal vales for both N and α
giving least false alarms with high detection accuracy.
Effect of Upper Bound on Mean: In order to analyse the
effect of the upper bound on the mean, different attack sce-
narios including high, low and variable attack intensity were
considered. In the case of high intensity attacks analysis
with both fixed duration, fixed frequency attacks and vari-
able duration, variable frequency attacks were performed.
Due to space limitation, only attacks with variable duration
and variable frequency will be discussed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

dr of nowin
far of nowin

dr of VALS-1
far of VALS-1
dr of VALS-2
far of VALS-2

Figure 2. Effect of α: high intensity attacks
Figure 2 shows the results for data containing high intensity
attacks having variable attack duration and variable attack

frequency. Our intent was to investigate the effect of α on
algorithm performance in terms of its detection accuracy
and false alarm rate. The horizontal axis in these figures is
the α value and the vertical axis is detection rate (dr) or false
alarm rate (far). Each point in the graph corresponds to de-
tection rate or false alarm rate averaged over entire range of
window sizes for a specific α value.
Observe that VALS-2 gives better performance than both

VALS-1 and the traditional CUSUM. This is due to the pre-
change and post-change behaviour of the sliding window.
The removal of data points related to the current anoma-
lous activity and consideration of pre-anomalous data points
is the major factor in its superior performance. This
helps VALS-2 adapt to dynamic attack conditions, grad-
ually learning the normal behaviour. Whereas the restart
of the learning process in VALS-1 after the end of anoma-
lous activity and the presence of data points related to past
change points in the traditional CUSUM results in degrada-
tion of their performance under dynamic attack conditions.
In the case of high intensity attacks with fixed duration

and intensity it is observed that the traditional CUSUM al-
gorithm gives high detection and high false alarm rates as
compared to the proposed algorithms: VALS-1 and VALS-
2. On the other hand the performance of the proposed al-
gorithms is almost identical. Both detection and false alarm
rates tend to decline with the increase in α value. The high
detection accuracy of the traditional CUSUM comes at the
cost of a high false alarm rate. Comparatively the perfor-
mance of the proposed algorithms was optimal for α be-
tween 1.35 and 1.5, giving more than 95% detection rate
and less than 5% false alarm rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

dr of nowin
far of nowin

dr of VALS-1
far of VALS-1
dr of VALS-2
far of VALS-2

Figure 3. Effect of α: low intensity attacks
Let us now consider low intensity attacks. Both low in-

tensity attacks with fixed duration, fixed attack frequency
and variable duration, variable attack frequency were con-
sidered. Figure 3 shows the performance of different algo-
rithms when low intensity attacks having variable duration
and variable frequency were considered. The performance
of all three algorithms was almost identical in this case. The
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optimal result in this case is for α value between 1.35 and
1.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

dr of nowin
far of nowin

dr of VALS-1
far of VALS-1
dr of VALS-2
far of VALS-2

Figure 4. Effect of α: var. intensity attacks
For variable intensity attacks both high and low inten-

sity attacks were considered with variable duration and vari-
able frequency. The motivation was to analyse the perfor-
mance of algorithms under dynamic attack conditions. Fig-
ure 4 shows the performance of algorithms under such con-
ditions. Observe that VALS-2 gives better performance than
VALS-1 and the traditional CUSUM due to the reasons de-
scribed above. Moreover VALS-1 gives less false alarms
than the traditional CUSUMwith almost identical detection
rate. VALS-2 gives optimal performance for α between 1.3
and 1.5.
Effect of Window Size: Let us now consider the effect of
different sliding window sizes under different attack condi-
tions. For this only VALS-1 and VALS-2 will be consid-
ered.
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 0.6

 0.8
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dr of VALS-1
far of VALS-1
dr of VALS-2
far of VALS-2

Figure 5. Effect of N : high intensity attacks
Figure 5 shows the effect of window size N on the detec-
tion rate and false alarm rate during high intensity attacks
with variable duration and frequency. The horizontal axis in
these figures is theN value and the vertical axis is the detec-
tion rate or false alarm rate. Each point in the graph corre-

sponds to detection rate or false alarm rate averaged over en-
tire range of values for a specific window size. Observe that
the performance of VALS-2 is better than VALS-1. This
is due to the difference in pre-change and post-change be-
haviour of the sliding window as discussed previously.
In the case of low intensity attacks it is observed that both

the algorithms performed equally in both fixed and variable
cases with N ≥ 60 having the minimum effect on the algo-
rithms.
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dr of VALS-1
far of VALS-1
dr of VALS-2
far of VALS-2

Figure 6. Effect of N : var. intensity attacks
Figure 6 shows the performance of VALS-1 and VALS-2
during variable attacks.Observe that VALS-2 gives better
performance than VALS-1. It is observed that selecting
N ≥ 60 does not have any effect on the performance of
these algorithms. Based on the above discussion, the design
parameters used in the rest of the paper are N = 100 and
α = 1.375 unless otherwise noted.

4.3. Real Darknet Traffic

In this section, we will discuss the results of applying
the VALS-2 algorithm to 18 months of real network traces
collected from a class C darknet. Our intent is to use the
proposed algorithm to detect unusual behaviours in a large
collection of unsolicited traffic.
We will focus our discussion on the analysis of UDP traf-

fic observed on the Darknet during 15th October, 2006 and
20th April 2008. Figure 7 shows the UDP traffic observed
on the Darknet and change points detected using the pro-
posed VALS-2 algorithm. In Figure 7(a), the horizontal
axis represents observation period in days while the verti-
cal axis represents the number of UDP packets observed on
the Darknet. Figure 7(b) shows the result of applying the
VALS-2 algorithm to the UDP traffic. The vertical axis in
this case is the decision function, 1 indicates a change and
0 indicates no change or uniform behaviour. A total of 24
change points were detected. Due to space limitations we
will limit our discussion to the 6 most significant change
points.
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Table 2. Summary of UDP traffic observed on the Darknet
CP Date Number of Packets Sources Destination IP Destination Port
1st 23/02/08 27947 (80.0) 866 (80.0) x.x.x.60 (96.7) 13091 (94.6)
2nd 27/02/08 26757 (56.9) 587 (70.7) x.x.x.60 (62.5)

x.x.x.221 (33.2)
13619 (60.5) 136971 (27.6)

3rd 12/03/08 15827 (46.2) 509 (65.9) x.x.x.60 (96.4) 13276 (93.4)
4th 12/04/08 42544 (71.9) 537 (70.2) x.x.x.221 (97.8) 13398 (90)

13/04/08 18943 (52.9) 380 (61.5) x.x.x.221 (97.3) 13048 (70.3) 13403 (24.4)
14/04/08 13227 (43.3) 160 (31.7) x.x.x.221 (92.5) 13408 (83.8)
16/04/08 62025 (79.8) 991 (74.6) x.x.x.221 (96.7) 13763 (51.3) 13929 (37.5)
18/04/08 94607 (83.6) 1491 (80.6) x.x.x.221 (98.5) 13493 (77.3) 13888 (7.8)
19/04/08 56536 (74.1) 822 (68.1) x.x.x.221 (97.5) 13240 (91)
20/04/08 24330 (56.3) 949 (73.9) x.x.x.221 (98.1) 13954 (43.1) 13738 (33) 13145 (14.3)

5th 23/10/07 6645 (22.5) 78 (20.1) x.x.x.91 (15.2)
x.x.x.206 (15.2)
x.x.x.143 (10.9)

11434 (40)

24/10/07 7520 (23.6) 55 (16.1) x.x.x.28 (17.1)
x.x.x.221 (14.6)
x.x.x.160 (7.3)

1434 (51.9)

6th 28/08/07 1332 (4.4) 317 (43.48) Various 1026:1027:1028 (80.1)

UDP traffic on port 13xxx: The most significant UDP
activity was observed on destination ports 13xxx. It was
observed that all UDP packets for destination port 13xxx
were targeted on two destinations x.x.x.60 and x.x.x.221,
with latter getting more than 93% of the total traffic. A total
of 108596 unique payloads were recorded during this activ-
ity with 99.3% having a length of 27 bytes. Each source
sends multiple packets using the same source port. 92% of
the sources send the payload three times before modifying
the payload. The first change point related to this activity
was observed on 23rd February, 2008. More than 96% of
the UDP traffic was destined for address x.x.x.60, with more
than 94% targeted on port 13091.
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Figure 7. Darknet traffic trace
The second change point related to the same activity was

observed on 27th February, 2008. More than 95% of the
traffic targeted destinations x.x.x.60 and x.x.x.221 on ports
13619 (60.5%) and 136971 (27.6%). The third change point

was observed on 12th March, 2008 with 96.4% traffic des-
tined for x.x.x.60, destination port 13276 getting 93.4% of
the traffic. The fourth change point related to similar activ-
ity was observed on 12-20 April, 2008 with no activity on
15 and 17th April 2008. More than 98% of the UDP traffic
was destined for x.x.x.221. It is important to note that 98%
of source addresses related to these four change points were
observed on the darknet only on the day of the activity.
Table 2 summarises the above mentioned activity. The

value in bracket corresponds to the percentage of the total
traffic observed on a particular day. Even though we do
not know at this stage what really caused this activity, it
is the main cause of a huge spike in the number of UDP
packets collected by the darknet in the respective days. The
close proximity of these change points and their distinct be-
haviour is indeed due to some unknown but interesting phe-
nomenon which we aim to analyse in detail and is part of
our future work.
MS-SQL Slammer: In MS-SQL slammer worm attack

the attacker tries to exploit the buffer overflow vulnerability
without being authenticated by the server. The increased
MS-SQL slammer activity on Darknet was observed on
23rd and 24th October, 2007 (corresponding to 5th change
point in Table 2). During these days, port 1434 observed
40% and 51.9% of the total UDP traffic respectively.
MS Messenger NetSend spam: The MS Messenger Net-

Send Spam is generally related to the pop up messages on
MS machines warning about registry corruption and urg-
ing the user to follow a link to “fix” the problem. By de-
fault, that “messaging” service runs on UDP/1026 for Win-
dows 2000 and Windows XP, but it can be set to different
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ports. The increase in spamming activity was observed on
28th August 2007 (6th change point). Observe that even the
UDP traffic on that day is only 4.4% of the total traffic the
proposed VALS-2 algorithm has successfully detected the
change in UDP traffic behaviour.

5. Conclusions and Future Directions

We proposed and investigated two novel sliding window
based change detection algorithm for asymmetric traffic,
namely VALS-1 and VALS-2. The proposed algorithms use
a dynamic threshold in order to detect change points and
also identify the end of anomalous activity. Moreover the
effectiveness of the proposed technique is investigated using
both synthetic data and real network traffic collected from a
dedicated unused class C address block. Comparative anal-
ysis of VALS-1, VALS-2 and the traditional CUSUM al-
gorithm is performed under different attack conditions. It
is observed that while a simple method such as the tradi-
tional CUSUM can effectively identify change in the traffic
behaviour; it comes at the cost of a high false alarm rate.
A sliding widow based algorithm such as VALS-2 exhibits
better performance under dynamic attack conditions giv-
ing high detection and low false alarm rates. Analysis of
real network traffic reveals the robustness of the proposed
VALS-2 algorithm and its ability in identifying changes in
traffic behaviour due to different anomalous activities. In
contrast to previous work in the related area, our technique
neither requires sets of attacks to be detected nor detection
threshold be supplied by the user. This helps in success-
ful detection of change points related to different malicious
behaviours.
Our ongoing work focuses on extending the proposed

approach to multiple traffic parameters and correlation of
detected change points. Analysing the variations of change
points across different parameters may help in identifying
the degree of involvement of these parameters in the de-
tected change. This will not only help in automatically
identifying the primary cause of the change but also help
in automatically categorizing different attacks. Currently
the parameters used in the proposed algorithm are set man-
ually based on the analysis of labelled synthetic data. A fur-
ther extension is to devise a methodology for automatically
adapting these parameters.
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