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Abstract  

A novel method is developed to capture and analyse several experimental flow regimes through a 

gross pollutant trap (GPT) with fully and partially blocked screens. Typical flow conditions and 

screen blockages are based on findings from field investigations that show a high content of 

organic matter in urban areas. Fluid motion of neutral buoyant particles is tracked using a high-

speed camera and particle image velocimetry (PIV) software. The recorded fluid motion is 

visualized through an image based, line integral convolution (LIC) algorithm, generally suitable 

for large computational fluid dynamics (CFD) datasets. The LIC method, a dense representation of 

streamlines, is found to be superior to the point-based flow visualization (e.g., hedgehog or arrow 

plots) in highlighting main flow features that are important for understanding litter capture and 

retention in the GPT. Detailed comparisons are made between the flow regimes, and the results are 

compared with CFD data previously obtained for fully blocked screens. The LIC technique is a 

useful tool in identifying flow structures in the GPT and areas that are subjected to abnormalities 

difficult to detect by conventional methods. The novel method is found to be useful both in the 

laboratory and in the field, with little preparation and cost. The enhancements and pitfalls of the 

LIC technique along with the experimentally captured flow field are presented and discussed.  

Keywords: Line integral convolution (LIC), gross pollutant trap (GPT), litter, 
flow visualisations 

 
Abbreviations: GPT, gross pollutant trap; CFD, computational fluid dynamics; LIC, line integral 

convolution; ADV, Acoustic Doppler Velocimeter; PIV, 
particle image velocimetry.  
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1. Introduction 
Stormwater is surface flow runoff 

from urban areas discharging into 

receiving waterways. The pollutants 

collected by stormwater along the path 

of urban runoff threaten the aquatic 

and terrestrial ecosystem (Borchardt 

and Sperling, 1997). This has led to 

the development of stormwater quality improvement devices (SQIDs) to 

efficiently trap gross and fine pollutants, for historical overview see Madhani et 

al. (2009a). Gross pollutants traps (GPTs) are a class of SQID designed to trap 

pollutants dimensionally greater than 5 mm. Gross pollutants are defined as 

visible waste such as litter and organic matter. A linear screening GPT, 

LitterBank, was recently developed by C-M Concrete Pty Ltd. It uses retaining 

screens to collect gross pollutants prior to the release of the stormwater into 

natural waterways (Fig. 1). Currently there are 20 LitterBanks operating at 

strategic stormwater locations throughout Queensland, Australia. 

Fig. 1: GPT – LitterBank in situ 

 

A review of the literature indicates that field monitoring and physical modelling 

of GPTs with either real or simulated pollutants are well documented, but the 

hydrodynamic details of velocity vector fields are limited more so in terms of the 

flow domain coverage (Madhani et al. 2009b). Engineering flow structures 

provide valuable insights into pollutant capture and retention characteristics due to 

regions of flow recirculation and critical (high and low) velocities. These flow 

features can cause erosion, containment and/or mobilization of pollutants 
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(Harwood 2002). The deposition pattern of particles has been shown to be directly 

related to the flow pattern observed at the water surface (Stovin et al. 1999). 

Although computational fluid dynamic simulation is an alternative, modelling 

uncertainties exist and validation is often incomplete due to lack of experimental 

data. 

 

Hydrodynamic characteristics have been investigated previously in an 

experimental rig consisting of a pipe inlet and a scale-model GPT (Madhani et al. 

2009b). Velocity profile measurements were taken at a fixed depth throughout the 

trap with an Acoustic Doppler Velocimeter (ADV).  Full domain flow coverage is 

extremely laborious using the ADV technique. Furthermore, fluid velocities closer 

to the free surface are not captured since the ADV probe requires to be submerged 

for proper operations (Madhani et al. 2009b). Consequentially, visual observations 

of surface flow features within the GPT had to be taken due to their likely 

importance for understanding litter capture and retention. 

 

Advancement of modern optical and digital processing methods has led to 

capabilities in capturing extensive flow field data rather than single point ADV 

measurements in experimental fluid mechanics. Several authors have used a 

similar PIV setup to investigate velocity flow fields in other fluidic devices 

(Kandikar et al., 2009; Li and Wang, 2009; Hossain et al., 2007). 

 

In this experiment, a method is developed to analyze several flow regimes through 

an experimental rig consisting of a rectangular channel inlet and a scale-model 

GPT to study pollutant-free flow in a trap. Typical flow conditions and blocked 

screens are based on findings from field investigations that show a high content of 
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organic matter in urban areas. Fluid motion of neutral buoyant particles is tracked 

using a high-speed camera and particle image velocimetry (PIV) software. The 

recorded fluid motion is visualized through an image based, line integral 

convolution (LIC) algorithm.  

 

Line integral convolution (LIC) is widely used in computational fluid dynamic 

visualization for highlighting both global and local flow features. Direct flow 

visualization (e.g., hedgehog or arrow plots) may be intuitive but impractical for 

large 2D or 3D datasets due to visual clutter caused by the dense rendering of 

arrow glyphs. Regions of high velocity where the arrow glyphs become long can 

also obscure the clarity of hedgehog visualization hence the smaller flow details 

can be missed. The LIC method, a dense representation of streamlines, is superior 

to the point-based (direct) flow visualization in providing full spatial flow domain 

coverage, but the use of streamlines to investigate a whole flow region is difficult 

since the coverage is highly dependent on the streamline seed points. Kao and 

Shen (1998) found that LIC images were superior to streamlines in revealing 

separation and reattachment lines on a model aircraft. However, techniques have 

been developed that employ streamline-seeding strategies which produce families 

of streamlines that cover more of the flow domain (Turk and Banks 1996). Further 

work is required to test this method on the experimental dataset.  

 

In this investigation, the experimental flow dataset is sufficiently large for a LIC 

technique to be used. An image based, line integral convolution (LIC) algorithm is 

used to highlight the flow features that are important for understanding litter 

capture and retention in the GPT. Detailed comparisons are made of the flow 

regimes and with previously obtained 2D CFD data (Madhani et al. 2009b). The 
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LIC technique with its enhancements and pitfalls, along with the captured flow, 

are presented and discussed in this paper. Most proprietary GPTs are designed and 

constructed based on criteria which are often unique to a specific treatment 

system. Such GPTs will have specific flow structures resulting from their unique 

patented characteristics that require their own testing program (Rushton et al. 

2007). This method is convenient and useful in the preliminary investigation of 

the flow structure within the GPT, particularly to establish regions of interest.  

 

While acknowledging some uncertainties in the two-dimensional depth coverage, 

this simplified approach permits the added benefit of investigating a range of flow 

regimes, which otherwise would be labour intensive.  

 

To the best of the authors’ knowledge, work relating to (a) dense, texture-based 

vector field visualization and (b) flows in GPTs similar to the one studied is 

limited. This is the first time that texture-based vector field techniques have been 

used to visualize experimentally collected vector fields.  

2. Field study  
Ian Cordery (2005) describes the change in the constitution of gross pollutants in 

Australian cities over the last thirty years. In the 1970s, street litter was composed 

of human derived waste and organic matter in equally quantities. The current 

trend however exhibits a larger proportion of organic matter. Australian data on 

gross pollutants first became available in 1986 (Nielsen and Carleton 1989). An 

extensive literature review on gross pollutants is conducted from this date and 

confirms the growing problem of organic matter. For example, volumetric data 

collected by Nielsen and Carleton (1989) for the Sydney region shows that 
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organic matter varied from 22% to 50%. A decade later for the same location, 

organic matter was found to comprise almost 80% with little variation (Van Drie 

2002).  

 
In Melbourne, Allison and Chiew 

(1995) correlated the composition 

of gross pollutants in terms of mass 

with urban land usage. In the two 

extremes cases, organic matter 

from light industrial and residential 

sites varied from 36% to 85% 

respectively. In mixed commercial 

and residential areas, organic matter was approximately 65%. Allison et al. (2000) 

showed volume and mass classifications to be similar and concluded that, 

irrespective of the methods used to analyse the concentrations of the gross 

pollutant components, the derived values were usually between 70 and 90 percent 

for organic matter and between 10 and 30 percent for human derived litter in 

mixed commercial, industrial and residential urban centres. A higher trend has 

been reported for Hobart (Chrispijn 2004).  

Fig. 2: Clippings from grass verge collected at a 
stormwater drain at Park Road, South Brisbane 
(2008) 

 

Mass data collected from the outer suburbs of Brisbane in mainly residential areas 

(70–98%) by Brisbane City Council (2004) and Greenway et al. (2005) reveal a 

similar amount of organic matter (93%). Here, most of the collected gross 

pollutant data relates to the contents of GPTs.  
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The high level of organic matter in stormwater is a cause for concern. 

Observations during the field study show that grass clippings are often left to 

accumulate along the roadside (Fig. 2). Furthermore, gross pollutants are also a 

transport mechanism for finer stormwater pollutants. Organic waste causes 

blockages to stormwater drains and contributes to the nutrients that enter 

waterways, creating oxygen-depleting substances that are detrimental to the 

aquatic habitat. Since city planners and architects are promoting the concepts of 

green walls and roofs in urban centres, buildings cladded with vegetation will 

increase the nutrient load in waterways. 

 
In this field survey, data are 

collected from the Brisbane central 

business district (CBD), South 

Brisbane, and the Burleigh Heads 

CBD. These sites are chosen to 

reflect a range of residential and 

commercial urban activities. The 

data are collected over a two-year 

period. Photographs and field 

notes are taken for analysis. The concentration of gross pollutants is determined 

by mapping the surface of the littered area on the photograph and using an area 

ratio method to derive a percentage value. In cases where organic matter and litter 

were well mixed and difficult to segregate, the waste components were visually 

approximated. 

Fig. 3: Results of the litter field survey taken from 
2006 to 2008. Comparison of gross pollutant 
(organic & litter) data are made with data collected 
from Sydney (Van Drie 2002), Melbourne (Lewis 
2002) and Los Angeles (Quasebarth et al. 2001; 
Lippner et al. 2000) 
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The results of the field survey consist of data collected from 75 stormwater drains 

and reveal a high percentage of organic matter (60–70%) in all areas, with the 

exception of the Brisbane CBD, where human derived litter such as fast-food 

packaging, plastic, and beverage 

containers predominates. The results 

are on a par with findings from other 

cities (Fig. 3). 

 

3. Physical Modelling  
Field monitoring of GPTs in Brisbane 

indicates that during wet weather a 

wide range of inlet, outflow and other 

operating conditions occur. For 

example, the extent and duration of 

rainfall influences the flow rate 

entering the trap. The tidal or flood 

levels of the downstream receiving 

waterways will determine the outflow 

level in the GPT (Fig. 4a). Due to 

infrequent cleaning, the retaining 

screens are often found to be blocked 

with organic matter (Figs 4b and 4c). 

Partially or fully blocked screens can 

radically change the litter retention 

characteristics and flow structure 

(b) Front view of a partially blocked screen with 
organic matter from incoming stormwater. 

Fig 4: Field surveys showing the GPT LitterBank 
with (a) high, and (b) low water tidal levels, 
partially and (c) fully blocked screens. 

(a) High tide downstream causes flooding in the 
GPT LitterBank. 

(c) Fully blocked screens. 
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within the GPT, leading, for example, to large recirculating flow patterns within 

the trap area accompanied by hydraulic short circuiting (Thackston et al. 1987) 

where the preferred outflow path is via the bypass channel. In this work, fully and 

partially blocked screens in the GPT are modelled with solid and perforated 

internal walls respectively. 

 

Depending on the operating conditions, the possible flow regimes inside the GPT 

can range from turbulent time-dependent free surface flows to more steady-state 

conditions, and this presents significant challenges for experimental or numerical 

studies aimed at understanding the flow and litter retention characteristics of the 

trap (Madhani et al. 2009b). To facilitate their study of steady-state flow 

conditions, Madhani et al. (2009b) developed an experimental approach using a 

downstream weir arrangement to control the nature of the flow and the variation 

in free surface height in the GPT. The weir height can also replicate the elevated 

outflow water levels into the receiving waterway due to rainfall or storm events. 

The experimental approach resulted in a matrix of flow regimes appropriate for a 

range of low to high operating GPTs (see Table 2 below). 

4. Experimental Method 
The experimental rig (50% scale model GPT) is placed in a square-section (19 m, 

0.6 m wide, 0.6 m deep) tilting flume at the QUT hydraulic laboratory. The flume 

inclination is set to horizontal and a constant flow rate is established via controller 

settings on the centrifugal pumps that circulate water from underground storage 

tanks into the flume. Flow rate readings are checked with periodical 

measurements in the collection tank at the flume outlet. Flow into the scale model 

GPT is through a horizontal 1.8 m length inlet rectangular channel with an 
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internal width of 146 mm. To promote smooth upstream flow conditions, three 

mesh screens 1 m apart are inserted at the upstream end of the flume.  

 
Table 1 shows materials used to 

replace normal screens in the 

GPT to represent typical 

blockages found in field studies. 

The percentage blockages are based on the amount of material obstructing the 

flow path. To study pollutant-free flow in a trap with fully blocked screens (i.e. 

100% blockages) the GPT model is fitted with solid internal walls. A perforated 

screen with 3 mm circular holes represents 68% blockages while a 5 mm 

rectangular mesh screen represents 33% blockages. 

Table 1: Material used in replaced of normal screens 
in the GPT to represent percentage of blocked 
screens. 

Material Blockages (%) 
Perspex solid walls 100 
Perforated screens (3 mm holes) 68 
5 mm mesh 33 
No screens 0 

 

The measurement runs for the matrix of flow rates based on field investigations 

are shown in Table 2. Flow rates of 1.3 l/s and 3.9 l/s are set with corresponding 

weir heights of 0.1 m and 0.3 m respectively, at the end of the flume terminus 

raceway. Some variations in flow conditions (± 10%) during the course of the 

experiments are unavoidable since the constant head tank is not fitted to the 

flume. Further details on the experimental setup are given by Madhani et al. 

(2009b). For higher flow regimes, the weir height is set at the floor level of the 

raceway (zero). 

 
Table 2: Experimental setup of flow regimes through a GPT with 
designated blocked screen runs  

 Flow 
regime 

Weir Inlet Flow Water Screen blockages % 

 height Velocity Rate depth in 100 68 33 
 (m) (m/s) (L/s) Trap (m)    

Low 0.108 0.09 1.3 0.1 R1 R3 R5 
 0.286 0.09 3.9 0.3 R2 R4 R6 
 0 0.39 6.13 0.1 R7 R9 R11 

High 0 2.14 35 0.3 R8 R10 R12 
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Flow structures within the GPT are obtained by tracking fluid particle motion with 

a high-speed camera (X-Stream TM XS-4), image acquisition (X-Vision version 

1.13.05) and processing using PIV software (IDT 2005a and b) suite (proVision-

XS version 3.08.30). The PIV system is supplied by Integrated Design Tools Inc. 

(IDT). The camera is connected to a PC Pentium 4Mhz. The camera has a ¼-inch 

format and is fitted with an 8 mm focal length CCTV lens manufactured by 

Computar (M0814-MP). The distance from the lens to the GPT floor is 1.5 m and 

the vertical view for the maximum water depth coverage is given by:  ,
V
Dvf =  

where f is the focal length, v is the factor dependent on the camera format, D is the 

distance from lens to object and V is the vertical (depth) view of field. A vertical 

view of field of at least 0.5 m is thus obtained for a given factor v = 2.7. Since the 

maximum water depth is 0.3 m, adequate focus is achieved for all experimental 

runs. 

 

The camera is mounted on a tripod and calibrated on a 40 mm gridded paper 

position inside the scale model GPT (IDT, 2005b). Illumination of the seeded 

particles is achieved by positioning 1000-watt portable halogen floodlights above 

the GPT and at the sides. An attempt is made to direct the light in a confined, 

almost planar area of the intake withdrawal field using slotted sheet metal to 

enhance the recorded image quality. A polarized lens is also used to reduce the 

reflection of light from the water surface and internal walls. 

 

The fluid motion of the particles is tracked within the GPT using neutral buoyant 

particle seeding (20–50 μm), which is introduced into the upstream inlet flow via 
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a feeding system. To avoid clumping of the particles, the outlet seeding tube has 

to be positioned just below the water surface, and each run is repeated several 

times. The acquisition rate varies between 30 to 90 Hz depending on the flow rate. 

 

The experimental video recordings from the acquisition software (X-Vision) are 

exported into the PIV image processing program (proVision-XS). A high 

resolution grid is constructed which covers the entire flow domain within the GPT 

to generate the x and y coordinates. The PIV program uses tracking algorithms to 

produce two-dimensional velocity vector fields in terms of the x and y 

coordinates. The non-uniform velocity data (x, y coordinates and point velocities 

Ux, Uy) are exported into a text file (filename.plt); typically, each file comprises 

5000 data points. 

5. The Line Integral Convolution (LIC) 
5.1 The line integral convolution method 

We begin by describing a vector field and its directional structure in order to 

define streamlines (Stalling and Hege 1995). Let v be a vector field, defined by 

 and let σ(u) be an integral path of v, such that: )(,: 222 xx νℜ→ℜν a

))(()( uu
du
d σν=σ     (1) 

By definition, the tangent vector of σ(u) coincides with v and thus σ(u) can be 

used to depict the orientation of v. For our purposes, it is useful to re-parameterize 

σ(u) by its arc-length s. We note that ds
du

= v(σ (u)) , and hence 

))(()( sf
ds
du

du
ds

ds
d σ≡

ν
ν=σ=σ

 (2) 

13 



Experimental 
video 

recordings of 
seeded flow in 

a GPT 

In other words, by normalizing v, we can calculate σ as a function of its arc-length 

s. This re-parameterization is only valid when |v| ≠ 0, i.e., for non-degenerate 

curves σ. A streamline through x can be calculated by solving the ordinary 

differential equation (1).  

 

Fig. 5: Overall view of the steps 
for producing the LIC image 

Map data to regular & 
uniform grid Gxy 

(SRFPACK) 

Construct smooth 
interpolation profiles F1 
and F2 through Ux, Uy  
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2D PIV data 
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New dataset on a 
regular and uniform grid
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Initialise output image 
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We describe the LIC method where the flow 

domain is represented by dense streamlines. 

This method has received considerable interest 

because global and local flow details are 

visualized throughout the spatial domain. The 

generation of LIC based textures or images of a 

vector field v can be described as the blurring of 

a white-noise input texture I along the 

streamlines of v. This method was originally 

developed by Cabral and Leedom (1993) and 

the modification proposed by Stalling and Hege 

(1995) is currently used here. Given a 

streamline σ, the LIC technique calculates the 

intensity O(x0) for a pixel located at x0 as 

follows:  

 
Output image 

∫
+

−
=

lx

lx
dssIskxO 0

0

))(()()( 0 σ   (3) 

 

O  

Enhancement of the 
LIC Image O 

Here, I denotes a random noise input texture 

image (we use a white-noise image) and k(s) is 
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a smoothing one-dimensional filter kernel; l is the length of both the forward and 

backward streamlines; O is the output (LIC) image. We use a box filter where k(s) 

= 1, x0-l ≤ s ≤ x0-l and 0 otherwise. The convolution integral (3) is discretized by 

taking L steps of length h along both forward and backward streamlines seeded 

from x0. This leads to the following: 

)(  ),()(
12

1)( 0 ihxxIxk
L

xO i

L

Li
ii σ=

+
= ∑

−=

 (4) 

Our method for generating LIC images of the vector field v has two parts: an 

interpolation process followed by the application of the LIC algorithm as 

described by Stalling and Hege (1995). The interpolation process allows the 

vector field v to be mapped onto a uniform Cartesian grid Gxy that is amenable to 

the LIC algorithm. Each point of the uniform grid corresponds to a pixel of the 

output LIC image O. In this case, the experimental process generates the vector 

field v with velocities located at irregularly scattered points. An overview of the 

steps performed in creating a LIC image from a scattered set of experimentally 

generated sampled velocities is shown in Fig. 5. 

 

The interpolation process is implemented to use two-dimensional cubic spline 

interpolations (Renka and Cline 1992), which are applied successively to the 

irregularly spaced stream (Ux) and crosswise (Uy) velocities to generate two 

surfaces Fx and Fy respectively. SRFPACK (ACM, 1996) is a fast, robust code for 

the interpolation of scattered data; it is used to carry out the interpolations. It is a 

FORTRAN 77-based code that allows for the triangulation and calculation of a 

smooth interpolant through scattered data points, optionally defined within a non-

convex domain i.e., arbitrary shaped boundaries. The interpolation consists of a 

set of three cubic surface patches, defined on each triangular element of a 
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Delaunay triangulation of the scattered data. (Note, each surface patch is defined 

on a sub-triangle obtained by joining the vertices to the triangle’s barycentre). 

Using the interpolating surfaces Fx and Fy, the stream and crosswise velocity 

components are calculated on the regular uniform grid Gxy, suitable for the LIC 

algorithm. We denote the interpolated vector field lying on Gxy as V = [Vx,Vy]T.  

 

We have typically generated LIC images of 600 x 800 pixels. The method begins 

with the initialization of the output image matrix O to zeros, the generation a 

random white-noise input image I and the normalization the vector field velocities 

V = [Vx,Vy]T to unity. If |[Vx,Vy]T |is near zero, [Vx,Vy]T is set to [0,0]T. The 

normalization enables the convolution integral (3) to be approximated using (4) 

by sampling the input image I at evenly spaced points xi along σ. The pseudo-

code below describes the LIC algorithm: 

 

STEP 1: Initialization 

Initialize the output image O to zeros, generate a random white-noise input image I. 

Normalize the vector field V = (Vx,Vy)T to unity – if a zero (or near zero) vector is encountered, 

set the vector at this location to [0,0]T. 

STEP 2: Streamline generation and convolution 

For each pixel pij in the output image O 

Generate a forward streamline Sf  of length L, seeded at pixel pij (see Note 1 below) 

Generate a backwards streamline Sb of length L, seeded at pixel pij (see Note 1 below) 

Construct S = Sf  U Sb 

Set Sum = 0 (accumulates the sum of all pixel values lying on the streamline S) 

For each point Sp on the streamline S 

determine the value pv of the underlying pixel p of the white noise image I  - we 

choose the closest pixel p to Sp 

Sum = Sum + pv 
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End 

Add Sum /(Number of pixels on the streamline S) to pixel pij of the output image O 

End 

 

STEP 3: Store or display output image O 

 
It should be noted that:  

1. If the streamlines Sf or Sb exit the domain or encounter a zero velocity 

vector, both streamline calculations are terminated after K < L steps. 

2. Along the streamline S at evenly spaced points xi, i=1,…, K ≤ L, not all of 

the points xi will lie on the nodes of the uniform grid G. In this case, we 

use bilinear interpolation across the rectangular cell containing xi to 

determine the underlying velocity vector. 

3. We use an accurate fourth-order Runge-Kutta integrator (RK4), with a step 

size h = 0.5, to calculate the points xi lying on the streamline S. The RK4 

method is a fourth-order method. 

4. With the integration step size set to h = 0.5, it is guaranteed that all pixels 

lying along the streamline S will be sampled, since pixels are separated by 

a unit distance. 

5.2 Enhancement of the LIC Image O 

The LIC algorithm repeatedly applies a low-frequency filter (see equation (4)) to 

the noise input image I. This blurs the image I along the input vector field V. 

Inherently, the low-pass filter averages the pixel intensities and hence image 

contrast is lost. One or more image processing techniques are usually applied to 

the LIC image O to reduce blurring and restore the image contrast. Typical 

enhancements include high frequency filtering to sharpen the image and 
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histogram equalization to restore contrast. Our implementation allows any general 

3x3 image filter to be applied to the LIC image along with histogram equalization. 

We have experimented with a range of high-pass filters in combination with 

histogram equalizations and our experience to date indicates that the application 

of the histogram equalization alone sufficiently enhances image quality. Hence, 

LIC images included at the end of this paper have been post-processed with 

histogram equalization. 

 

In the following section, we discuss the application of the LIC algorithm to the 

experimental PIV data sets. 

 

6. Results and Discussion  

We commence the discussion by choosing an experimental dataset to compare the 

captured vector field using vector plots with LIC images. Figs 6a and 6b show a 

captured flow field for dataset R3, using a camera and a PIV software. Fig. 6a, a 

sample of a single frame shot, shows the seeded flow in the GPT with neutrally 

buoyant particles. Fig 6b shows an average statistical image processed PIV vector 

plot. The vector plot in Fig. 6b is improved by importing the data into Matlab 

(version 2008a), and the resulting image is depicted in Fig. 6c. An attempt to 

visualise the data using an open source visualisation package (OpenDx) is also 

made with no significant improvement in comparison to Fig 6c. However, the 

application of LIC to the same dataset clearly shows superior flow domain 

coverage particularly for regions of low velocities (R3 in Figs 7 and 8). The flow 

structures in the R3 dataset are clear and well defined, indicating sufficient data 
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points were collected. The results 

demonstrate the potential of the method 

developed for the purpose of capturing 

and analysing flow in a GPT.  

 

To identify flow structures in the LIC 

images (Figs 7 and 8), comparisons are 

made with previous work of the same 

experimental setup (Madhani et al. 

2009b). Here, the main flow structures 

in a GPT with fully blocked screens for 

run R1 (Table 2) have been 

theoretically (CFD) and experimentally 

identified. The CFD flow field is shown 

in the form of streamlines and a vector 

plot in Figs 9a and 9b respectively. The 

main flow structures consist of the 

deflection of the entry jet into the 

bypass channel, and the existence of a 

large recirculation flow within the 

retention area of the trap (Fig. 9a). 

Smaller near-wall features were also 

observed (Fig. 9a), such as secondary 

recirculation (zone 4), flow separation 

(zone 5) and low-velocity corner eddies 

(a) R3 

(b) R3 

(c) R3.  
Fig. 6. A single frame capture of the experimental 
flow for R3 (Table 2) with (a) particle seeding, 
(b) the vector plot from the data processed by the 
PIV software and (c) the improved vector plot 
using Matlab (version 2008b) for R3 dataset. 
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(zone 7). These areas may contribute to litter retention, and are identified as flow 

structures that can be optimized in GPT design.  

 

Figs 7a and 9 generally show good comparisons between the LIC image and the 

CFD-generated flow domain for the R1 dataset. Most of the smaller flow features 

are visible unlike the previous ADV-measured flow which lacks spatial flow 

domain coverage (Madhani et al. 2009b). However, some irregularities or 

distorted flow patterns are noted behind the baffle (see zone 3 in Fig. 9a). This 

area is not clearly sighted by the camera and the reflective properties of the 

Perspex baffle would have influenced the low velocities captured. This behaviour 

is not shown for the R3 dataset since the internal structure of the GPT is coated 

with non-reflective paint. Also, small dark patches are occasionally observed in 

the LIC images (see corner behind baffle, R1 in Fig. 7a), which denote very low 

or zero velocities. Dark patches in the main flow which cause obvious 

discontinuities, are due to either a lack of seeding or to the fact that the overhead 

structures supporting the baffle and inner wall in the GPT obscure the camera 

sighting (Fig. 6a). 

 

In Figs 7 and 8, the overall flow behaviour in the GPT for the given range flow 

regimes appears to show some similarities in the flow structures for all the 

experimental runs (see flow feature zone 1, Fig. 9a). The common flow feature 

displayed is an inner recirculation in the trap retention area.  

 

For the experimental runs in which the inlet velocities are unaltered, slight 

differences are observed in the geometrical configuration of the inner recirculation 
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(see flow feature zone 1, Fig. 9a). These are attributed to the difference in water 

depth (see R1–R2, R3–R4 and R5–R6, Fig. 7). 

 

Some distinct differences are noted in the geometrical characteristics of the inner 

recirculation zones with the 33% blocked screens for the higher flow regime (Fig. 

7f). Here the momentum of the entry jet created vortex turbulence motion, 

resulting in water cascading vertically at the far corner of the retention area (see 

zone 7, upper right, Fig, 9a for location in Fig. 7f) as the water escaped through 

the screens. 

Consequently, the inner recirculation zone is distorted and displaced to the 

opposite side. Concerning litter capture and retention, preliminary experiments 

show that a portion of litter rapidly accumulates in this area. However, the 

turbulence in this flow regime would tend to break up the softer stormwater 

pollutants. 

  

Although the flow structure for the 68% blocked screen (R3 and R4 in Table 2) is 

similar to that of the 100% blocked screen, some differences are observed for the 

higher inlet flow regimes (6 L/s and 35 L/s). Unlike the case of a fully blocked 

GPT (Figs 8a and 8b), the jet entry was not strongly deflected into the bypass 

channel (Figs 8c-8f). Hence, the incoming litter is inclined to flow directly into 

the retention area of the GPT rather than escaping into the bypass channel. Such 

behaviour is observed with the preliminary litter experiments. 

 

Overall the LIC images are found to be useful in describing the flow structures 

within the GPT and for better understanding litter capture and retention. The 

greater flow detail in the LIC images highlighted areas of abnormalities or 
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distortions arising from poor capture techniques caused by issues relating to 

lighting, particle seeding or data acquisition rates. Further work is underway to 

improve the colour scheme in order to explore the threshold of the low velocities 

due to reflected light near the boundaries, which are earmarked by normalized 

vector plots. 

 

(a) R1 (b) R2 

(c) R3 

(e) R5 

(d) R4 

(f) R6 
Fig. 7. Image based vector fields (a) R1, 100% blocked, water depth 0.1m; (b) R2, 100% 
blocked, water depth 0.3m; (c) R3, 68% blocked water depth 0.1m; (d) R4, 68% blocked 
water depth 0.3m; (e) R5, 33% blocked water depth 0.1m; (f) R6, 33% blocked water depth 
0.3m; (See Table 2 for R1 to R6). Color map: red, yellow, green, blue and violet denotes high 
to low velocities respectively. 
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(a) R7 (b) R8 

(c) R9 

(e) R11 

(d) R10 

(f) R12 

Fig. 8. Image based vector fields (a) R7, 100% blocked, water depth 0.1m; (b) R8, 100% 
blocked, water depth 0.3m; (c) R9, 68% blocked water depth 0.1m; (d) R10, 68% blocked 
water depth 0.3m; (e) R11, 33% blocked water depth 0.1m; (f) R12, 33% blocked water depth 
0.3m; (See Table 2 for R8 to R12). Color map: red, yellow, green, blue and violet denotes 
high to low velocities respectively.  
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(a) R1. (b) R1. 

Feature zones 
1, inner recirculation; 2, diverticulum; 3, 4, dead zone (secondary recirculation); 5, flow 
separation; 6, mixing; 7, low-velocity corner eddies. 

 
 

Fig. 9. CFD global flow structures for run R1 in Table 2, in form of (a) streamlines and (b) vector 
plots. Source (Madhani et al. 2009) 

 

Conclusion 

A method is developed to capture and analyse several experimental flow regimes 

through a gross pollutant trap (GPT) with fully, partially and unblocked screens. 

The recorded fluid motions are visualized through an image-based, line integral 

convolution (LIC) algorithm and compared with conventional vector plots. The 

LIC method, a dense representation of streamlines, is found to be superior in 

highlighting flow features that are important for understanding litter capture and 

retention in the GPT. Overall, the results demonstrate the potential of the method 

in capturing and analysing flow in a GPT. This method was found to be very 

useful and applicable both in the laboratory and in the field, with little preparation 

and cost. For the application of field study, further investigation is required using 

organic particle seeding.  

 

Detailed comparisons are made between the flow regimes, with favourable results 

compared with the previously defined CFD flow structure for fully blocked 
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screens. The LIC technique is also a useful tool in identifying abnormal flow 

structures in a GPT, which are often difficult to detect by conventional methods.  

 

The experimental approach previously developed is also found to be useful in 

controlling a range of flow regimes in the GPT, which are necessary to perform 

experimental runs. Further work is underway to improve the technique of 

capturing the flow in the GPT and the method of producing LIC images to address 

issues with particle seeding and lighting thresholds. 
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