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FPGA Implementation of Spectral Subtraction for Automotive
Speech Recognition

Jim Whittington, Kapeel Deo, Tristan Kleinschmidt, Michael Mason

Abstract— The use of speech recognition in noisy automotive
environments requires the application of speech enhancement
algorithms to improve recognition performance. Deploying
these enhancement techniques necessitates significant engineer-
ing to ensure algorithms are realisable in electronic hardware.
This paper describes advances in porting the popular spectral
subtraction algorithm to a Spartan-3A DSP field-programmable
gate array (FPGA) device suitable for integration in automotive
environments. Resource analysis shows the final design uses
only 13% of the total available general logic resources making
it suitable for integration with other in-car devices on a single
FPGA. Speech recognition experiments have been used to verify
the effectiveness of the FPGA implementation for in-car speech
recognition in comparison with an equivalent floating-point
implementation.

I. INTRODUCTION

A key challenge of deploying automatic speech recogni-
tion (ASR) in vehicular environments is the requirement to
perform well in the presence of high levels of noise. Most
current speech recognition systems are trained for use in
controlled scenarios (e.g. office environments or telephone-
based systems) – as a result these recognisers fail to produce
satisfactory recognition performance under more adverse
conditions such as in automotive environments.

Speech enhancement is one of the most common methods
for making ASR systems more robust. Such techniques
aim to reduce the levels of noise present in the speech
signals, allowing clean speech models to be utilised in the
recognition stage. This is a popular approach as little-or-no
prior knowledge of the operating environment is required for
improvements in recognition accuracy.

Complete speech enhancement systems for use in automo-
tive environments have been proposed in [1], [2]. Cheng et.
al. [1] implement an adaptive beamformer with most of the
processing performed on a PC, while Yu et. al. [2] propose
the software implementation of a dual microphone least
mean square (LMS) algorithm running on an Analog Devices
Blackfin Digital Signal Processor (DSP). Neither system
provides a low cost, single chip, single microphone solution,
which is of greatest interest to automotive manufacturers.

Spectral subtraction is an appropriate enhancement method
for in-car speech recognition as it requires simple processing
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and installation of only a single microphone. This technique
was originally proposed by Steven Boll in 1979 [3] and
since this time there have been numerous reviews of the
algorithm. There are only limited examples where spectral
subtraction has been specifically applied to noisy signals
recorded in an automotive environment. Lockwood et. al.
[4] and Wahab et. al. [5] have both concluded that spectral
subtraction techniques can be successfully used to enhance
speech signals in the presence of automotive environment
noise, however no hardware implementations were proposed.

The majority of current automotive electronics are pow-
ered by low-cost embedded processors that perform multiple
tasks including CAN network communications and HMI.
Currently only a small amount of automotive electronics are
based on field programmable gate arrays (FPGAs), primarily
due to their higher single-unit cost compared to an embedded
processor. The market is changing since the cost deferential
is insignificant considering the much higher performance of
an FPGA. This performance is coupled with the fact that even
modest-sized FPGAs may contain multiple instantiations of
embedded processors as well as other specialised hardware
elements such as a speech processing and enhancement
system. This eliminates the need for multiple devices, sim-
plifying overall design and cost. Recognising this market
opportunity, Xilinx, a leading FPGA vendor, has developed
the Xilinx Automotive (XA) product family specifically for
automotive applications [6], [7].

The suitability of FPGAs for the implementation of speech
enhancement processing has been demonstrated. For exam-
ple, Yiu et. al. [8] have implemented a multi-microphone
sub-band adaptive beamformer for speech enhancement in a
high-end Virtex-4 FPGA. This system showed “very similar”
enhancement performance to an equivalent floating-point
implementation and a very large improvement in process-
ing performance. Halupka et. al. [9] implemented a dual-
microphone, phase-based time-frequency masking speech
enhancement system on an Altera Stratix EP1S40 FPGA.
The FPGA implementation produced similar real-time speech
enhancement quality to equivalent floating-point software.
In both these cases no automotive test data was included
in the work, nor was the suitability for use in automotive
environments discussed.

This paper focuses on an FPGA implementation of spectral
subtraction optimised for in-car speech recognition. Section
II provides an overview of the spectral subtraction algorithm
and its optimisation for in-car speech recognition systems.
Section III describes the advances of a fixed-point FPGA im-
plementation of the algorithm since our previously published



work [10]. In-car speech databases used for verification and
evaluation are presented in Section IV. Experimental results
verifying the FPGA design are presented in Section V.
Discussion of these results and possible improvements to the
FPGA design are provided in Section VI.

II. SPECTRAL SUBTRACTION

A. Algorithm Description

In a noisy environment, speech s(n) is assumed to be
corrupted by additive background noise d(n) to produce
corrupted speech y(n) as follows:

y(n) = s(n) + d(n) (1)

where y(n) is the signal captured via microphone. This
signal is pre-emphasised, and then broken into frames using
a Hamming window. The Discrete Fourier Transform (DFT)
is taken for each frame i to produce the short-time frequency-
domain representation:

Y (i, ω) = S(i, ω) + D(i, ω) (2)

In spectral subtraction algorithms, a scaled estimate of the
magnitude (or power) spectra of the noise signal D̂(i, ω) is
subtracted from the corresponding spectra of the noisy signal
Y (i, ω) to give an estimate of the clean speech Ŝ(i, ω):

|Ŝ(i, ω)|γ = |Y (i, ω)|γ − α(i, ω)|D̂(i, ω)|γ (3)

where γ is the exponent applied to the spectra, with γ = 1
used for magnitude spectral subtraction or γ = 2 for
power spectral subtraction [11]. The noise estimate can be
determined through time-recursive or moving averages, min-
imum statistics or histogram techniques [12]. Since the noise
signal is estimated, frequency-dependent subtraction factors,
α(i, ω), are included to compensate for underestimating or
overestimating the instantaneous noise spectrum.

Should the subtraction in (3) give negative values (i.e. the
scaled noise estimate is greater than the instantaneous signal)
a flooring factor is introduced. This leads to the following
formulation of spectral subtraction:

|Ŝt(i, ω)|γ = |Y (i, ω)|γ − α(i, ω)|D̂(i, ω)|γ

|Ŝ(i, ω)|γ =

{
|Ŝt(i, ω)|γ |Ŝt(i, ω)|γ > β|Z(i, ω)|γ
β|Z(i, ω)|γ otherwise

(4)

where |Z(i, ω)| is either the instantaneous noisy speech
signal magnitude or the noise magnitude estimate, β is the
noise floor factor, and 0 < β � 1 [11]. Common values for
this parameter range between 0.005 and 0.1 [11], [13].

The enhanced magnitude spectrum is recombined with
the unaltered noisy speech phase spectrum. Each frame is
transformed to the time domain using an inverse DFT, and
adjacent frames are overlapped and added to resynthesise an
enhanced time-domain signal. The enhanced signal can then

be used for playback or as input to further speech processing
such as automatic speech recognition.

More details on the speech processing elements used in
this algorithm can be found in [10].

B. Optimising for In-Car Speech Recognition

The subtraction process indicated by (4) requires a lot
of real-time multiplications since the frequency-dependent
subtraction factors – and potentially the noise floor – are
calculated on a frame-by-frame basis. We seek to simplify
this equation through the following steps:

1) We assume the noise estimate |D̂(i, ω)|γ is sufficiently
accurate, and therefore over/undersubtraction factors
are not required (i.e. set α(i, ω) = 1 for all frames
i and frequencies ω).

2) We assume the initial N frames of each recording
contain noise only, and we average these frames to
produce a noise estimate which remains constant for
the remainder of the recording (i.e. the noise estimate
is calculated prior to signal enhancement and can be
represented as |D̂(ω)|γ).

3) We utilise the constant noise estimate for calculation
of the noise floor (i.e. the noise floor is also constant
for the entire utterance).

Following these simplifications to (4), the spectral subtrac-
tion equation used in the following FPGA implementation is:

|Ŝt(i, ω)|γ = |Y (i, ω)|γ − |D̂(ω)|γ

|Ŝ(i, ω)|γ =

{
|Ŝt(i, ω)|γ |Ŝt(i, ω)|γ > β|D̂(ω)|γ
β|D̂(ω)|γ otherwise

(5)

Equation (5) leaves only two parameters (γ and β) to be
further optimised for FPGA implementation of the spectral
subtraction algorithm.

C. Selection of Enhancement Parameters

Common values for γ and β are those noted in Section
II-A. The values of γ are typically used for their conceptual
meanings as opposed to recognition performance whilst β is
often chosen to optimise SNR given a particular value of γ.
Previously it was established [14] that in-car speech recog-
nition performance differs greatly with various combinations
of γ and β; therefore these values must be chosen carefully.

In order to reduce processing requirements of the FPGA
implementation detailed in Section III and [10], magnitude
spectral subtraction (γ = 1) was chosen. This avoids the need
for resource-intensive square and square root operations in
the FPGA. Further, previous experiments in [14] showed that
performing magnitude spectral subtraction provided better
speech recognition accuracy than power spectral subtraction
(if the β values were optimised for both values of γ).

Preliminary experiments using floating-point software
were performed to determine the optimal value of β to use
in the FPGA implementation. Using the first 5 experimental
folds from the evaluation protocol for the AVICAR database



0 0.2 0.4 0.6 0.8 1
36

38

40

42

44

46

48

50

52

X: 0.05
Y: 45.13

β

A
SR

 A
cc

ur
ac

y 
(%

)
X: 0.55
Y: 50.43

X: 0.5
Y: 50.35

Fig. 1. The effect of the noise floor scaling factor, β, on ASR accuracy
averaged over a range of automotive noise conditions.

[15], [16], values of β were varied in linear increments
through the range [0, 1] with γ = 1. The averaged results
across all the noise conditions in the AVICAR database are
shown in Fig. 1. It can be seen that a wide range of β values
ensure improvements over a system with no enhancement,
and that whilst the maximum recognition accuracy can be
obtained by setting β = 0.55, the performance is only
marginally better than at β = 0.5 (approximately 0.1%). It
should also be noted that individual noise conditions exhibit
very similar characteristics to Fig. 1 allowing a constant value
to be applied to all in-car noise scenarios. We choose β = 0.5
for the FPGA implementation as this value can be easily and
accurately represented in fixed-point notation.

III. FPGA IMPLEMENTATION

For our implementation, Xilinx devices and development
tools were chosen since they offer a clear pathway to an
automotive standard commercialisable platform. Cost is a
key factor to eventual widespread adoption in the automo-
tive field, while the spectral subtraction algorithm relies on
considerable DSP power. Thus, target devices must be cost-
effective while still providing relatively high-performance
DSP. With well over one million system gates, plus mem-
ory and XtremeDSPTM slices, Xilinx XA Spartan-3A DSP
FPGAs fit this requirement well [7], [17], [18]. In previous
work [10] we realised the spectral subtraction algorithm on
a higher-end Xilinx Virtex-4 SX FPGA device. This work
details the porting of the previous design onto a lower-
cost Spartan-3A DSP 1800A device. This device is a gen-
eral production equivalent to its Xilinx Automotive cousin.
Successful implementation in this device will demonstrate
capability for implementation on the other.

A. Design Process

Moving from an algorithmic description to a quality,
cost-effective FPGA solution is anything but trivial as was
outlined in the previous report on this work [10]. In summary,
this work consisted of the following broad steps:

1) Development of a MATLAB version of the spectral
subtraction algorithm using high-precision, complex
floating-point arithmetic.

2) Conversion to a fixed-point (data and operations) im-
plementation in MATLAB, mirroring the major blocks
expected in the FPGA implementation.

3) Comprehensive testing of the fixed-point MATLAB
design against the floating-point version, block-by-
block and at complete system level.

4) Implementation of the fixed-point design as Xilinx
System GeneratorTM (XSG) models.

5) Comprehensive testing of each major block of the XSG
design against its fixed-point MATLAB equivalent, and
testing of the complete XSG model against both the
fixed-point and floating-point MATLAB versions.

6) From the completed XSG model a hardware descrip-
tion language was generated, synthesised using Xilinx
ISE 9.2 tools, and implemented on a high-end Xilinx
Virtex-4 SX FPGA.

7) Following a check of the FPGA resource usage of the
design, the XSG model was analysed block-by-block
to identify resource inefficiencies and refined to use
more appropriate resources.

8) The performance of the Virtex-4 realisation was
checked against the XSG and floating-point models by
comparing output waveforms for a common input.

Once the Virtex-4 implementation was validated as appro-
priately equivalent to the spectral subtraction floating-point
algorithm, the design was synthesised for implementation
on the Spartan-3A DSP device. The outputs of the Virtex-4
and Spartan-3A DSP FPGAs were tested against each other
sample-by-sample for a variety of input waveforms including
basic ramps, modulated chirps, and various speech samples.
In all cases the outputs of the two FPGA designs were
identical, demonstrating the equivalence of the two hardware
implementations, and that the spectral subtraction algorithm
can be implemented in an automotive-rated FPGA.

B. Hardware Implementation of Enhancement Algorithm

A block diagram of the spectral subtraction algorithm is
provided in Fig. 2. Input signals consist of 16-bit speech
waveforms sampled at 16 kHz. For this specific implementa-
tion, a frame size of 512 samples was used with 50% overlap.

The pre-emphasis filter is a simple design consisting
of a delay, constant multiplication and sum. Framing and
windowing are achieved using a buffer, predefined Hamming
window, multiplication, and appropriate control logic.

For implementation of the DFT, a forward and inverse FFT
block is used. This block provides both real and imaginary
data outputs. As the FFT process is not required continuously
(only when a full frame of 512 samples is available), the
same block performs the IFFT after spectral subtraction. To
generate frequency-domain magnitude and phase data from
the FFT block output, a cordic arctan block is used.

At this point the algorithm calls for the magnitude data to
be raised to the power γ. This is potentially a very complex



Fig. 2. Block diagram of hardware implementation of spectral subtraction algorithm.

hardware operation, so as outlined in Section II-B, γ = 1
is used as it greatly simplifies the design yet still provides
suitable speech recognition performance.

The initial noise magnitude estimate is calculated from
the first eight frames using a circular buffer, and an addition
block. Each incoming frequency-bin data word is added
to the previously accumulated value for that frequency. To
obtain an average, the final sum must be divided by the
number of frames used in the calculation. In this case using
eight frames reduces this step to a simple three-bit shift.

The essence of the spectral subtraction technique occurs
through subtracting the stored noise magnitude estimate
|D̂(ω)| from the subsequent frequency magnitude for each
frame |Y (i, ω)| in the speech recording. The resulting frame
S is compared with a scaled version of the average noise
magnitude by the factor β which is known as the noise floor,
β|D̂(ω)|. Each element of the resultant frame S is retained
if it is greater than that of the noise floor, otherwise it is
replaced by the noise floor value. If a noise estimate is not
available (i.e. the current frame is one of the first 8 frames
of the signal), the incoming data frame is ignored and all
frequency elements are set to zero. As discussed previously,
β = 0.5 is used; being a multiplication factor, this can be
very simply implemented using a hardware shift operation
as wiring between two registers. The algorithm then raises
enhanced frames X to the inverse power of γ, potentially
complex hardware which is avoided by using γ = 1.

To produce a time-domain frame, the new magnitude and
previously retained phase frames are combined and converted
to real and imaginary cartesian coordinates by a cordic sin-

cos block and two multipliers, then input to the IFFT block
(the FFT/IFFT block discussed earlier).

Finally, the resulting time-domain frames are overlapped
and added, a reverse of the initial framing process, to produce
the final reconstructed speech signal.

C. Optimisation of Hardware Design

After proving the Xilinx Virtex-4 and Spartan-3A DSP
FPGA implementations produced identical results, the qual-
ity of the Spartan-3A DSP implementation was tested by
running speech recognition experiments using the AVICAR
database [15]. Table III (in the column ‘Initial’) shows test
results for this design under different driving conditions. In
most cases, the recognition accuracy of the FPGA design
matches the floating-point model closely except for the
idle condition where the accuracy is significantly below
the floating-point enhancement as well as the case without
enhancement. This indicated that the FPGA design was
a good initial implementation of the spectral subtraction
algorithm for most driving conditions, but not all.

To further optimise the FPGA implementation, each sub-
block of the initial design was analysed based on the total
number of bits used and the actual number of bits required.
From this, an optimal number of bits was realised for
each block being sufficient for processing all possible types
of speech input with minimum quantization error and no
arithmetic overflow. A comparison of the bit-widths in the
initial and optimised designs is provided in Table I (bit-
widths are represented as X.Y where X is the full width
and Y is the width of the fractional part).



TABLE I

BIT-WIDTH COMPARISON OF THE INITIAL AND OPTIMISED FPGA

DESIGNS OF THE SPECTRAL SUBTRACTION ALGORITHM.

Process Initial Optimised
Pre-emphasis 16.15 17.15

Framing & Windowing 16.15 18.15
FFT/IFFT 20.19 24.23

Spectral Subtraction 26.15 28.23
Reconstruction 16.15 18.15

Optimisation started with the pre-emphasis block. Due to
the nature of this operation, the output data can be almost
double the magnitude of the input, and so the data width
was increased accordingly by one integer bit. The FFT/IFFT
block was increased to its maximum allowed value of 24-
bits, set by the Xilinx IP core block. The motivation for this
was to reduce the loss of data resolution in the IFFT input
data which would normally be about 27-bits wide prior to
truncation. The width of the magnitude and phase extraction,
noise and noise floor calculation, enforcement of the noise
floor and polar to Cartesian blocks were all increased in
parallel to better suit the FFT output. These blocks are
referred to as the “spectral subtraction” blocks in Table I.
The output of the polar-to-Cartesian block is truncated to
24.23 to match the input of the FFT/IFFT block. The framing
stage (with Hamming window application) and the recon-
struction stage (Hamming window reapplication and overlap-
add blocks) were both increased in size by 2-bits, however
the output of the overlap-add block is still truncated to a
16.15 representation to match the implementation interface.

IV. EVALUATION DATA

In order to verify the effectiveness of the FPGA implemen-
tation, speech signals from two in-car speech databases were
used. These databases were the AVICAR database [15] and
an Australian In-Car Speech Database collected during this
work. These databases are briefly outlined in the following
sections.

1) AVICAR Database: The AVICAR database used in
these experiments consists of 55 native American English
speakers represented by 28 female and 27 male speakers.
Each speaker recorded 10 phone numbers (i.e. digit strings)
per noise condition in each recording session. The five noise
conditions include idle as well as driving at 35 mph and
55 mph with the windows up and down. Utterances were
recorded using an array of 7 microphones placed on the sun-
visor directly in front of the speaker.

More details on the AVICAR database can be found in
[15]. The evaluation protocol used in these experiments is
outlined in [16].

2) Australian In-Car Speech Database: The newly col-
lected database was collected using 50 speakers represented
by 30 male and 20 female speakers. Each speaker was
required to speak English as their first language, and have
lived in Australia for at least five years.

Each speaker recorded up to 6 utterances per noise con-
dition, with each utterance consisting of either a string of

TABLE II

NOISE CONDITIONS IN THE AUSTRALIAN IN-CAR SPEECH DATABASE.

Condition Description
C0 Car idle, sealed cabin, no HVAC

C1
Medium speed (50-60 km/h),

sealed cabin, no HVAC

C2
Medium speed (50-60 km/h),

sealed cabin, HVAC on high fan

C3
Medium speed (50-60 km/h),

driver window open, no HVAC

C4
High speed (90-100 km/h),

sealed cabin, no HVAC

C5
High speed (90-100 km/h),

sealed cabin, HVAC on high fan
C6 Car idle, sealed cabin, HVAC on high fan

navigation menu commands or single navigation addresses.
The utterances were collected under 7 driving scenarios com-
mon to Australian conditions. These conditions are shown in
Table II. In contrast to the AVICAR database, this database
also consists of data collected under HVAC (heating, ventilat-
ing and air-conditioning) conditions. It should be noted that
the 50-60 km/h conditions convert to approximately 35 mph,
with the 90-100 km/h conditions approximately 60 mph.

Utterances were recorded using an array of 8 microphones
mounted on the central roof console pointing downwards.
This location is an industry-favoured position due to ease
of integration with existing electronics whilst still provid-
ing good signal-to-noise ratios [19]. The microphones were
spaced symmetrically around the midline of the vehicle with
2 cm spacing between microphones. The average location
of the driver’s mouth was estimated (with reference to the
microphone closest to the driver) to be 35 cm to the right,
25 cm below, and 17.5 cm behind this reference microphone.

Like the AVICAR database evaluation protocol presented
in [16], the Australian In-Car Speech Database was broken
into 5 folds consisting of 10 speakers in order to facilitate
k-fold leave-one-out speech recognition experiments.

V. VERIFICATION OF FPGA DESIGN

To test the FPGA implementation, a method was required
to accept standard speech waveforms from a PC – where
they can also be passed through speech recognisers – and
collect the corresponding output data and pass it back to the
PC for storage and comparison. This requirement was met
through the use of the USB test harness detailed in [10].
The FPGA development platform used for this work was the
Xilinx Spartan-3A DSP 1800A development board.

A. Waveform Analysis

Initial testing of the accuracy of the FPGA design was
performed by comparing the output generated by the hard-
ware implementation against equivalent outputs produced by
the floating-point MATLAB implementation of the spectral
subtraction algorithm. Test inputs comprised in-car speech
signals from the AVICAR database [15] as well as synthe-
sised waveforms like the amplitude-modulated chirp signal
used in [10]. As an example, a typical AVICAR speech sam-
ple under the 35 mph with windows down noise condition
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Fig. 3. (a) Noisy speech signal from AVICAR database, (b) output of spectral subtraction algorithm, (c) difference between floating-point and initial
FPGA design, and (d) difference between floating-point and optimised FPGA design.

is shown in Fig. 3(a). The corresponding spectral subtraction
output is shown in Fig. 3(b). Since the output signals from the
hardware and software implementations were very similar,
sample-by-sample comparisons were performed with the
floating-point algorithm. These are shown in Fig. 3(c) and
(d) for the initial and optimised FPGA designs respectively.

Observing the waveforms in Fig. 3(a)-(b), it can be seen
spectral subtraction provides noticeable signal enhancement
of the noisy in-car speech. Prior to enhancement, the time-
domain structure of the speech signal is not visible – after
enhancement the regions of speech are more pronounced.

Analysing the difference signals created by the two FPGA
designs (Fig. 3(c)-(d)), the average gain of 13.5 dB represents
an approximate improvement of 2-bits from the initial design
to the optimised design. The continued presence of spikes in
the difference signal can be attributed to the Xilinx FFT block
outputting a quantised version of its internal scaling factor.
Through design optimisation, the frequency of the spikes has
been reduced to less than 1 in every 200 samples.

B. Speech Recognition Evaluation

The true test of effectiveness of the FPGA implementation
for use in in-car speech recognition is to evaluate the FPGA
processed waveforms using a speech recognition engine. In
these experiments we applied the floating-point and FPGA
implementations of spectral subtraction to the two in-car
databases described in Section IV. The centre microphone
(M4) is chosen for the AVICAR database, whilst the micro-
phone closest to the driver (M0) is chosen for the Australian
in-car speech database.

Context-dependent 3-state triphone hidden Markov mod-
els (HMM) were trained using the American English Wall
Street Journal 1 corpus to enable speaker-independent speech
recognition. The acoustic models were trained using 39-
dimensional Mel-Frequency Cepstral Coefficient (MFCC)
vectors – 13 MFCC (including C0) plus delta and ac-
celeration coefficients. Each HMM state was represented
using a 16-component Gaussian Mixture Model. Utterance
decoding was performed using the Hidden Markov Model

Toolkit (HTK) [20] on a PC (i.e. not implemented in the
FPGA). All speech recognition results quoted in this paper
are word accuracies (in %).

Speech recognition results are shown in Tables III and
IV for the AVICAR and Australian In-Car Speech databases
respectively. Analysing these results it can be seen that all
versions of the spectral subtractor provide improvements
in recognition performance across a range of in-car noise
scenarios. Most importantly the optimised FPGA design
performs very close to that of the floating-point algorithm,
proving this design is more than suitable for in-car speech
recognition systems.

The exception to these observations is the 50-60 km/h
with window down condition in the Australian In-Car Speech
database. It can be seen that the initial FPGA design failed to
deal with the noise and performance reduced by almost 20%
from the no enhancement case. Further analysis showed this
noise condition is highly susceptible to microphone vibration
due to wind (from the open window) which causes very high
amplitude values in the low-frequency range (compared to
higher frequencies). These high amplitudes were originally
unable to be handled by the lower-precision FPGA due to
overflow in some of the hardware blocks, particularly the
FFT/IFFT block. This shortfall of the original design was
corrected in the optimised FPGA design where the speech
recognition performance is less than 1% inferior to the
floating-point version and improves on the non-enhanced
case by around 7%.

C. FPGA Resource Utilisation

Table V shows the total resources required to implement
the spectral subtraction algorithm design in a Spartan-3A
DSP FPGA device. The ‘initial’ and ‘optimised’ designs are
identical in terms of the design architecture – the only differ-
ence is the bit resolution used within the design, explained
in Section III-C. Each sub-block of the original design was
optimised so that the number of bits used was sufficient for
processing a range of types of speech input with minimum
quantization error and no arithmetic overflow. Overall, the



TABLE III

IN-CAR SPEECH RECOGNITION RESULTS (% WORD ACCURACY) ON THE AVICAR DATABASE.

No Floating-Point Initial Optimised
Enhancement SS FPGA SS FPGA SS

Idle 71.52 74.81 70.54 74.66
35 mph, windows up 49.56 54.74 54.90 54.76

35 mph, windows down 37.18 40.85 41.61 40.86
55 mph, windows up 42.77 50.70 50.73 50.55

55 mph, windows down 24.61 30.71 30.82 30.67

TABLE IV

IN-CAR SPEECH RECOGNITION RESULTS (% WORD ACCURACY) ON THE AUSTRALIAN IN-CAR SPEECH DATABASE.

No Floating-Point Initial Optimised
Enhancement SS FPGA SS FPGA SS

Idle, no HVAC 84.89 86.88 86.17 86.88
Idle, HVAC 41.16 52.76 52.80 52.88

50-60 km/h, no HVAC 69.68 76.17 70.56 76.21
50-60 km/h, HVAC 34.06 48.31 47.61 48.39

50-60 km/h, no HVAC, window down 53.01 60.57 34.19 59.75
90-100 km/h, no HVAC 53.88 61.51 60.50 61.63

90-100 km/h, HVAC 30.54 45.24 45.68 45.35

TABLE V

SPARTAN-3A DSP 1800A FPGA RESOURCE USAGE SUMMARY.

Resource Type Available Usage (%)
Initial Optimised

Slices 16640 1622 (9%) 2196 (13%)
Flip Flops 33280 2581 (7%) 3093 (9%)

4-input LUTs 33280 2419 (7%) 3010 (9%)
BRAM 84 10 (11%) 10 (11%)
DCM 8 1 (12.5%) 1 (12.5%)

DSP48 84 21 (25%) 25 (29%)

‘initial’ design used 9% of the total (general FPGA logic fab-
ric) slices available, and 25% of the DSP48 XtremeDSPTM

blocks. The larger percentage use of the DSP48 blocks
is expected due to the intensive DSP requirements of the
algorithm. The percentage use of other key resources, block-
RAM (BRAM) and digital clock manager (DCM) blocks is
of a similar level to the slice usage. Optimisation of the
design resulted in a slight increase in resource usage to 13%
of slices and 29% of DSP48 blocks. The use of larger bit
widths within the various sub-blocks requires the allocation
of additional resources to implement the design.

VI. DISCUSSION

The performance-optimised fixed-point FPGA implemen-
tation of the spectral subtraction enhancement algorithm
closely matches that of a floating-point equivalent model run-
ning on a PC. This was verified through waveform analysis
and speech recognition experiments; the latter showed a max-
imum word accuracy variation between the two implementa-
tions of 0.82% which was in the 50-60km/h with driver’s
window down condition in the Australian In-Car Speech
database. In all other conditions across both databases, the

performance difference is less than 0.15%. Furthermore, in
all cases the optimised fixed-point design shows improve-
ments over the non-enhancement case of between 1.99% and
14.81%. The lowest levels of improvement occur in the idle
noise conditions where the noise level is at a minimum and
the non-enhanced speech recognition accuracy is at its peak.
This clearly demonstrates that the current fixed-point FPGA
design can provide a level of performance suitable for use
in automotive environments.

Despite the considerable improvement in speech recog-
nition accuracy of the optimised FPGA design, the greater
deviation from the floating-point case of the 50-60 km/h
with driver’s window down condition warrants further in-
vestigation. As previously mentioned, this noise condition
suffers from wind from the open window disturbing the
microphones, causing them to vibrate. This leads to very
high amplitudes in the low-frequency components of the
signal. Despite the optimised design reducing this effect
considerably, it appears that the output from the FFT block –
which has been set to the maximum bit-width available from
the Xilinx IP core used in this design – is still experiencing
some arithmetic overflow, causing the noise estimation and
subtraction processes to become less accurate.

The spikes observed in the difference between floating-
point and FPGA designs (Fig. 3(c)-(d)) appear to be another
artefact resulting from limitations of the FFT block. Using
the maximum bit-width available has reduced the occurrence
of these significant deviations, but has not eliminated them.
To improve the design further, a new, higher resolution
FFT/IFFT block would be needed – the implementation of
which would require significantly more FPGA resources.
Alternatively, a redesign of the pre-emphasis filter for greater



attenuation at low frequencies would lead to some improve-
ment in quality, at a more modest increase in resources.

Having successfully implemented the spectral subtraction
algorithm in a Spartan-3A DSP 1800 device, we have demon-
strated its suitability for instantiation in an equivalent Xilinx
Automotive FPGA (the XA3D1800A). Furthermore, the per-
formance of the fixed-point spectral subtraction implementa-
tion has been demonstrated to provide a clear improvement
in speech recognition accuracy in the presence of automotive
environment noise. However, another important considera-
tion is the FPGA resource usage, which will have an impact
on the cost of such a system should it be commercialised.

Moving from the ‘initial’ to the current, ‘optimised’, im-
plementation resulted in a slight increase in FPGA resources
used: from 9% to 13% of general logic fabric slices; and
25% to 29% of the specialised DSP48 blocks. Providing
the necessary performance improvement through increasing
bit widths in key blocks naturally requires increased logic
and DSP resources. The above increases were expected
and are of an order that is acceptable given the resultant
recognition accuracy improvement. Further improvements in
the performance could be made as noted, however, given
the current performance level, increasing the resource “cost”
may not be warranted. Overall, the current design uses less
than one seventh of the FPGA resources available in the
Spartan-3A DSP 1800 device, apart from the specialised
DSP48 blocks, of which over 70% remain free for other uses.
This low resource usage enables other processes (such as
CAN communications or HMI providing infotainment, driver
information and possibly driver assistance) to be incorporated
into a single FPGA. By amortising implementation costs over
a number of applications, overall manufacturing component
costs can be kept to a minimum.

Having verified the Spartan-3A DSP spectral subtraction
implementation on speech data collected in automotive envi-
ronments, the system is ready for real-time tests in a vehicle.
A stand-alone Spartan-3A DSP board has been developed
and these trials will be conducted in the near future.

VII. CONCLUSION

A fixed-point design of the frequency-domain spectral
subtraction enhancement algorithm has been successfully
implemented in a Xilinx Spartan-3A DSP FPGA. Speech
recognition experiments using data collected in automotive
environments have shown the performance of the fixed-point
FPGA implementation closely matches that of an equivalent
floating-point version running on a PC. In all tested cases the
FPGA implementation demonstrated a clear speech recogni-
tion improvement over a system without enhancement.

The previous Virtex-4 FPGA design was ported to a
Spartan-3A DSP FPGA and experimentation showed that
the performance of the initial design was satisfactory under
most noise conditions tested – but not all. Optimising the
implementation by increasing bit-widths in various parts
of the design have improved the performance such that it
matches the floating-point model under all tested driving
conditions whilst only utilising 4% more FPGA resources.

By proving the design in a Spartan-3A DSP device, it
has been demonstrated that it can be implemented in an
automotive grade FPGA. Furthermore, the design uses only
13% of the general logic resources available and 29% of the
specialised DSP blocks; it is clearly suitable for integration
on a single FPGA with other automotive processes such as
CAN communications or HMI.
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