W Durham
University

AR

Durham E-Theses

Design frameworks : a basis for conceptual
understanding and reuse.

Boldyreff, Cornelia

How to cite:

Boldyrefl, Cornelia (1994) Design frameworks : a basis for conceptual understanding and reuse., Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1698/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/1698/
 http://etheses.dur.ac.uk/1698/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Cornelia Boldyreff
Design Frameworks - a Basis for Conceptual
Understanding and Reuse
Abstract

Software reuse is often advocated as a way of increasing productivity, quality and
maintainability. This thesis advocates the view that reuse of software structuring
concepts will allow reuse to take place at a much earlier stage in the software lifecycle,
the architectural design stage; and that reuse based on higher level abstractions than
simply code will lead to improved software design. However, reuse of such design
concepts requires an appropriate way of understanding existing software designs,
representing design concepts in such a way as facilitate reuse, and then encouraging
concept reuse on new projects. Here, this thesis puts forward a way of developing
structured concept descriptions based on a concept description form (CDF). This
is the main contribution of this research. The CDF is determined by analysing the
requirements that reuse of design concepts places on such a form. The CDF has
been developed to meet these requirements. Briefly the CDF allows existing software
systems to be described in terms of their underlying concepts with provisions for
describing design concepts at various levels of abstraction.

The CDF is then applied to a small number of examples, compared to other related
developments, and finally compared with a more conventional approach to repre-
senting software for reuse, faceted classification. As an illustration of usage, the
CDF is applied in a small scale study of software concepts used in compilers. As a
more substantial test bench, experiments are then undertaken applying the CDF in
an industrial application domain, that of steel production.

The main results of this work have been to establish the CDF as a viable form for
describing reusable software concepts; and to show that the CDF is capable of being
used in an industrial application to support software concept reuse. It is concluded
that the CDF provides a means of recording the understanding of design concepts
at various levels of abstraction and thus provides a basis for their reuse in future
designs.



The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Design Frameworks - a Basis for Conceptual

Understanding and Reuse

Cornelia Boldyreft
Ph. D. Thesis
University of Durham
" School of Engineering and Computer Science

Computer Science

June 17, 1994

10 AUG 1994



Acknowledgements

Many people have helped me with the work reported here. I would like to thank
Professor Patrick A. V. Hall, my original supervisor. Since joining the School of
Engineering and Computer Science at the University of Durham, I have received
much help from my colleagues; I would especially like to thank Malcolm Munro, my
supervisor, and Professor Keith Bennett, my advisor. I owe a deep debt of gratitude
to Professor Dr.-Ing. Peter F. Elzer; without his support and encouragement, I
would never have been able to undertake the software field studies which enabled

me to bring this work to fruition.

Many friends and members of my family have given me encouragement to complete
this thesis; and they know how grateful I am. I would like to dedicate this work to
the memory of my father, Dr. Ephraim Basil Boldyreff.



Declaration

The material contained in this thesis has not been previously submitted for a degree

in this or any other university.

Much of the work described in this thesis was carried out with the support of the
CEC under the ESPRIT programme on Project 1094, Practitioner. The collab-
orators in this project were Asea Brown Boveri AG (ABB), Computer Resources
International, PCS Computer Systeme GmbH, Brunel University, the Technical Uni-
versity Clausthal (TUC), and the University of Liverpool. Professor Dr.-Ing. Peter
Elzer, formerly at ABB, now at TUC, and Dr. Jan Witt at PCS were responsible
for the original ideas which formed the starting point of the research within the
Practitioner Project. While the author did not participate in the development of
the original questionnaire for describing reusable software concepts, its development
and refinement through application provided the main research focus of the author’s
work in the project leading to the development of the concept of design frameworks
by the author. Unless otherwise stated, all the research work carried out in support

of this thesis has been the responsibility of the author.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without her prior written consent and information derived from it should

be acknowledged.



Contents

1 Introduction 1
1.1 Perspective . . . . .. . .. . . e e 1

1.1.1 A Short History of Software Reuse Research and Associated

Publications . . . . . ... ... ... ... .. ... . . ..., 3

1.1.2  Influences from General Engineering . . . .. ... ... ... 6

1.2 Contribution to the Subject . . . . . ... .. .. ... ........ 7
1.2.1  Genesis of the Research and its Goal . . . . . .. ... .. .. 9

1.3 Aimsand Planof Thesis. . . . . .. ... .. ... ... ....... 11
1.3.1  Research Method and Criteria for Success . . ... ... ... 12

1.4 The Relationship Between this Research and the Practitioner Project 15

2 Approaches to Software Reuse: Design-for-Reuse and Design-with-
Reuse 16

2.1 Background to Software Reuse Research . . . . .. ... ... .... 16

2.1.1 TheNatureofReuse. . . . . ... ... ... ......... 17



2.1.2 Motivations for Reuse of Software . . ... ... ....... 20

2.1.3  Supporting Software Reuse in Practice . . . ... .. ... .. 23
2.2 Specific Background for the Research within the Practitioner Project 35

2.3  Identification of Research Directions in Reuse and Outstanding Issues 38

2.4 Conclusions . . . . .. . . i i it e e e e e 43
Representation of Software Concepts for Reusability 44
3.1 Introduction and Overview . . . . . . . .. .. .. .. ... ... 44
3.2 Background: Review of Interconnection Languages . .. ... .. .. 45
3.2.1 Goguen’s Library Interconnection Language: LIL . .. .. .. 47
3.2.2 The SySL - ECLIPSE System Structure Language . . . . . . . 49

3.2.3 Related Language Developments to Support Reuse at a High
Level of Abstraction . . . . . . . . ¢ v v v v i vt v v v v u 50

3.3 Requirements for a Language to Support Reuse of Software Concepts 53

3.4 The CDF - A Standard Form for the Description of Software Concepts 59

3.4.1 Provision for the Recording of the Concept Derivation . ... 63
3.4.2 Provision for Recording the Concept Specification . . . . . .. 65
3.4.3 Provision for the Recording of the Concept Decomposition . . 68
3.4.4 Provision for the Recording of the Concept Links . ... ... 69

3.4.5 CDF OVEIVIEW . v v v v v o e e e e e e e e e e e e e e e e 70

i



3.5 The CDF and Related Developments . . . ... ............ 75

3.5.1 Relation of CDFs to Faceted Classification . . .. ... .. .. 79
3.6 Conclusions . .. ... ... ... 82
A Simple Example Applying the Concept Description Form 84
4.1 Introduction totheDomain . .. ... ... ... .. .. ... ..., 85
4.2 Background and Overview of Domain Analysis . . . . ... ... ... 87
4.2.1 Step 1l - Prepare Domain Information . . . . ... ... ... .87
422 Step2- AnalyzeDomain. ... ... ... .. ......... 88
4.2.3 Step 3 - Produce Reusable Workproducts . . . .. ... .. .. 89
4.3 Details of the Software Concepts Studied . . . . . .. .. ... .. .. 89
4.4 Consideration of Design-with-Reuse using Compiler Concepts. . . . . 93
4.5 Conclusions . . . . .. . . 0 i e 96

A Large-scale Application to Support Reuse of Software Concepts

in the Domain of Steel Production 97
5.1 Introduction . . . ... .. .. . i i e 97
5.2 Background and Overview of Domain Analysis Studies . . ... ... 99
5.2.1 Introduction to the Domain and Scope of Studies . .. .. .. 99
5.2.2 Requirements for Software Reuse in this Domain. . ... ... 104

5.3 Specific Domain Analyses . ... .. ... ... .. ... ... . ... 111

iii



9.4

3.5

9.6

5.3.1 Initial Studies - First Applications of the CDF in Describing
Software Concepts . . . . . . . . . v i ittt 112

5.3.2 Domain Analysis Study Two - the Salzgitter Software Field
Studies . . . . . . . e e e e e e e e e e e 130

5.3.3 Final Study - Consolidation and Development of an Improved
Framework . . ... ... .. . .. . . .. 139

Consideration of Design-with-Reuse Using Steel Production Concepts 148

5.4.1 Offer Preparation Usingthe CDFs . ... ... ........ 150
5.4.2 Use of Models in Control System Design . . ... ....... 157
Results of CDF Application in the Steel Domain . . . . ... ... .. 159
Conclusions . . . . . . . v v v v i i e e 160

An Evaluation of the Concept Description Form and its Application

to Support Reuse 162
6.1 CDF Development . . . ... ... .. .. 0o, 163
6.2 Using the CDF in Practice . . . . ... ... ... .. ... ...... 165
6.2.1 Recording Concept Derivations . . ... ... ... ...... 167
6.2.2 Recording Concept Decompositions . . . . .. ... ...... 169
'6.2.3 Recording Concept Interfacing . . . . ... .. .. ....... 172
6.3 The Need for a More Standardised and Formalised Description of

6.4

Software . . v . v i i e e e e e e e e e e e e e e e e 173
The CDF’s Support for Reuse of Known Design Structures . . . . . . 175

v



6.4.1 Further Considerations Regarding the Use of Frameworks in

Design . . . . . e e e e e e e e e e e e 180

6.5 Concluding Remarks . . ... .. .. ... .. .. .. ... 0 .... 185

7 Appraisal of Research 187
7.1 Contribution of this work to Software Engineering . . . . . .. .. .. 187
7.2 Implications of this Work for Design Theory . . ... ... ...... 189
7.3 Directions for Future Research . . . . . ... ... .. ... ...... 193
7.4 Summary of Thesis . . . . . . . . v v v it et e 196
7.5 Conclusions . . . . v v v v v i e e e e e e e e e e e e e 198
References 201
A An Overview of the Practitioner Project 219
A.l1 An Introduction to the Practitioner Project . . ... ... ... ... 220
A.2 Overview of Practitioner Project’s Modelling of Reuse . . . . . . . .. 224

A.2.1 The Questionnaire - Software Concept Descriptive Form . . . 226

A22 TheThesaurus . ... .. .. . oo v it i v eeennn 229
A.2.3 Practitioner METAMODEL of Reuse . . . .. ......... 238
A.3 Design-for-Reuse Methods . . . . ... ... ... ........... 240
A.4 Design-with-Reuse Methods . . . . .. ... ... ........... 243



A.4.1 The Role of Design Frameworks . . . ... ... ........ 244

A.5 Author’s Contribution to the Practitioner Project . . .. ... .. .. 247
A.6 Listings of Author’s Contributions to the Practitioner Project . . . . 248
A.6.1 Internal Publications . .. ... ................. 248
A.6.2 External publications . . . . . . . . . .. ... v . 249

Listings of Main Headings of Practitioner Project Questionnaire 252

Abstract Syntax of the CDF and Informal Semantics of CDF En-

tries 254
C.1 Abstract Syntaxof the CDF . . . . . ... ... ... ... ... ... 254
C.2 Informal Semantics of CDF Entries . . . . . . . . . v v v v v ... 257
An Example CDF 264

D.1 CDF describing the software concept of a Tandem Mill Automation

Customer Requirements for Galvanizing Line Control System -

DVL2 269
E.1 Basic Data and Requirements for DVL2 . ... ... ......... 269
E.2 Basic Requirements System Control . . . . .. ... ... ....... 270
E.2.1 Automation . . .. ... ... it 270
E.2.2 Man Machine Communication . ... ... ........... 271

vl



E.23

E.2.4

E.2.5

E.2.6

Alarm System . . . . . . . . . . e e 271

Data Acquisition . . . . . . . . . . e 271
Interface with Production Control System . . ... ... ... 272
I/OSystem . . . v v v i i e e 272

vii



List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

Two Cases of Concept Interfacing . . . ... ... ...........

3-D Concept Levels of Abstraction with Vertical and Horizontal De-

COMPOSILIONS « + v v v v v v v e v e e e e e e o o e e e e e e e e
Overview of Work Relating to CDF Development . ... ... ....
Progressive Revelation of Concept Details . . . .. ... ... ....

Software Life Cycle Work Processes and Work Products Related to
the CDF . . . . . . e e e e e e e e e

Progressive Unfolding of CDF Sections . . . . ... ... ... ....
CDF for Order Processing System . . . . . . . .. . v v v v v v v v

CDF for Order Processing in Strip Processing Line . ... ... ...

The phases of a sequential compiler . . . . ... ... .........

Domain Specific Concepts in Compiler Construction . . . . . . .. ..

viii



4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

9.17

Overview of the concept of the BLISS/11 Compiler . ... ... ... 93

The BLISS/11 Compiler CDF Unfolded . . . .. ... ... ... ... 94
Areasofa BasicSteel Mill . . . . .. ... ... ... ... ..... 101
Structure of Control System Design Reflecting Areas . . ... .. .. 101
Nucor Crawfordsville Project Main Processes and Plant Areas . . . . 102
Layered Model of Process Control System . ... ........... 107
CDFs Resulting from Williams Report . . . ... .. .. ....... 122

Decomposition of ALP_1 - Continuous Annealing Line Plant PODAS 123
Decomposition of Hot Dip Galvanizing Line Process Control . . . . . 125
Decomposition of a steel mill control system . .. ........... 127
OSI Layers Used as Framework for Relating Existing Network Design 129
System Structure Diagram for Tandem Mill Control System C... 134

Conceptual Derivations for Concepts in Cold Working Control Systems136

SPB Located in the Automation System . . ... ........... 137
Alternative Derivation for Rolling System Control Concepts . . . . . 138
Levels of Control and Areas of Control . . . ... ........... 143
Steel Mill System’s Characteristic Flows . . . ... ... ....... 145

Populated Design Framework Relating Steel Domain Design Concepts 147
Related CDFs and Related Thesaurus Entries . . .. ... ...... 151

1X



5.18 The Work Process of Offer Preparation . . . ... ........... 153

5.19 Modelling in Control System Design. . . . ... ... ......... 158
6.1 Models of Component Reuse . . . . .. ... ... ........... 177
A.l Data Flow Diagram of the PRESS . . . . . . ... .. ......... 223
A.2 Typical Thesaurus Entry as Viewed Using the PRESS Browser . . . . 232
A.3 Faceted Classification . . . . . . . . . . . . . .. . . . . e 235
A.4 Data Flow Diagram of the Practitioner Metamodel . ... ... ... 239
A.5 Data Flow Diagram of the Domain Analysis Process Used to Populate

the PRESS . . . . . . . o e 242
A.6 Data Flow Diagram of Design Process with the PRESS . . ... ... 245
A7 PRESSUSEIS . . v v v v v i et i e e e e e e e et e e e e e e s e e e 246



List of Tables

3.1 Comparison of CDF with Other Approaches . . ... ......... 78
5.1 Models of Hierarchical Control Systems with Levels . . . . ... ... 128
5.2 Terms of Interest in Customer’s Text . . . .. .. ... ........ 150
5.3 PRESS Contents Retrieved. . . . . . . ... ... ... ... ..... 152

X1



Chapter 1

Introduction

This chapter sets the context for this research within the field of Computer Science
known as Software Engineering and, in particular, within the area of Software Reuse.
Research directions and outstanding issues are summarized. The need for work on
improved means of software description to support reuse is discussed; and the specific

concerns to be addressed by this thesis are outlined.

1.1 Perspective

The distinction between Computer Science and Software Engineering, based on the
distinction between any science and engineering, is that of theory versus its appli-
cation in practice. But it must not be forgotten.that engineering is not just applied
science; it is in its own right a creative and innovative undertaking; see, for exam-
ple, McDermid’s remarks in [99] made in the context of developing a definition of
software engineering. As the engineer, Petroski, has remarked the principal object
of engineering is the world that engineers themselves create, not the given world of
nature [116]. Taking Computer Science as the study of the theories of computational

machines and computational functions, and the mathematical modelling associated
1

@

-+



with those machines and functions (an amplification of Brady’s characterisation
found in [38]), Software Engineering can be taken as the creative and innovative
application of theories and models of computational machines and functions in the
development of software systems along with the theory of other sciences, both natu-
ral and artificial (in the sense of [144]), depending on the intended application of the
developed systems. The point that science and engineering are linked in developing
computer applications was made as early as 1966 [107] by the then president of the

Association of Computer Machinery:

A concern with the SCIENCE of computing and information processing,
while undeniably of the utmost importance and an historic root of our
organization (i.e. the ACM) is, alone, too exclusive. While much of what
we do is or has its root in not only computer and information science,
but also many older and better defined sciences, even more is not at all
scientific but of a professional and engineering nature. We must recog-
nize ourselves - not necessarily all of us and not necessarily any one of us
all the time - as members of an ENGINEERING profession, be it hard-
ware engineering or software engineering, a profession without artificial
and irrelevant boundaries like that between ”scientific” and ”business”

applications.

The recognition that the systems designer is not simply an applier of scientific theory,
as postulated by the traditional application paradigm, also comes from insights into
the design process that can be found in the account of the part that theory plays
in design given by Greif [70]. Theories are artificial tools for thought from this

viewpoint, as Greif explains in the following quotation:

Even if they are complez, scientific theories, methods and experiments
simplify practical problem conditions. It would be therefore naive if the
designer would trust too much in theories and theoretical design concepts
if he wants to solve practical problems. He should know - and this is an

application problem shared by all social, natural, and technical sciences -

2



that theories are idealized representations of reality or artificial tools for
thought. ...

In other words theories are frameworks that systematically guide pro-
cesses of problem solving. The practical success of the designer therefore
depends not only on the quality of the theory but also on his knowledge
of the task and application situation, together with his theoretical back-
ground knowledge, theoretical creativity, and - last but not least - his

practical and soctal competences in marketing the artifact.

The thesis which follows gives a concrete interpretation of this rather abstract view
of design with respect to software design through the development and application of
a means of structuring descriptions of software concepts to support their reuse. The
notions of a software concept and an associated design framework will be elaborated
more fully in the body of this thesis. This thesis is written from the perspective of
a software engineer and its central concern is software reuse. This is relatively new
research area in software engineering although its importance has been recognised

increasingly over the last ten years.

1.1.1 A Short History of Software Reuse Research and

Associated Publications

In the report of the Alvey Committee, a vision of an information system factory
can be found [10]. One of the factory’s five main subsystems is envisaged to be a
database or knowledge base of available software and hardware components. Already
the need to reuse existing software and hardware components in order to compete
effectively in producing IT application systems was appreciated. The Alvey Com-
mittee believed that in the medium term, from five to ten years (i.e. by 1992 at the
upper limit), that the nature of system development would be changed by the devel-
opment of reusable software and hardware modules, rigorously tested and formally
documented. Their report highlighted the need for a shift of attention from the

source code representation of programs to requirements and designs, and stressed

3



that projects must be far more concerned with the higher level representations. Here
the text notes parenthetically that such a shift of attention is entirely compatible
with an approach which emphasises the reuse of existing components. The work
on reuse within the ECLIPSE project funded under the Alvey programme can be
traced to these concerns expressed in the report, particularly the need for methods of
structuring software components for ease of configuration, addressed in part within
ECLIPSE by the development of SySL (System Structure Language) on which the

research for this thesis draws.

The Alvey committee’s vision of software component brokerage unfortunately has
yet to be realised; the practical problems of organising software reuse on a large
scale are still not sufficiently well understood for its widespread practice in this way

to be commercially viable. This thesis will not address these problems.

In the year following the publication of the Alvey report, the ITT workshop on reuse
brought together many of pioneering researchers in the field of software reuse in the
USA. Here Freeman established many of the basic concepts of reusability with his
proposed programme of reusability research [64]. He defined a hierarchy of objects
of reusability, i.e. any information needed by a developer in the process of creating
software. His hierarchy consists of five levels: environmental (technology transfer
and utilization knowledge), external (development and application area knowledge),
functional architectures (generic systems and functional collections), logical struc-
tures (software architectures) and code fragments. As Freeman pointed out, reusable
information is not qualitatively different from that found in well-documented soft-
ware engineering work products; and he argued that this implies that the core of the
reusability problem is to make sure that systems are properly represented. Many of
the key papers from this workshop were reproduced in the 1984 IEEE Transactions
on Software Engineering special issue devoted to Software Reusability (18] and in
Freeman’s IEEE Tutorial on Software Reusability [81]. Sufficient research was un-
dertaken in this period for another IEEE Tutorial on Software Reuse by Tracz to
appear in the following year [82]. The Tracz tutorial contains a reprint of a report
of U.K. workshop on software reuse held in 1986 where work in progress under the

Alvey and other initiatives was discussed [132]. At this time, reuse research in the



U.K. was divided between those advocating formally specified components and those
focusing on organisational issues related to reuse. Much of the work reported was

in progress.

In 1989, the ACM Press published two volumes on Software Reusability edited by
Ted J. Bickerstaff and Alan J. Perlis [2]. These two volumes bring together several
of the key papers on software reusability that have been written during the eight-
ies. Many of these papers have already appeared in the lesser known volume, ITT
Proceedings of the Workshop on Reusability in Programming (1983), in the IEEE
Software Reusability Tutorial edited by Freeman (1986) and other IEEE publica-
tions such as IEEE Transactions on Software Engineering and [EEE Software. In
the first volume, there can be found a framework for reusability technologies, dis-
cussed in Chapter 2, and the conclusion with respect to future directions that the
fundamental problem preventing the successful reuse of design information is finding

the right representation of that design information [20].

In bringing together so much existing material, the two editors made some efforts
to concentrate on the Very Large Scale Reuse (VLSR) Problem. Although they
contrast this with the narrow code-oriented viewpoint, they do not go far enough
in characterising the need for appropriate abstractions as the key issue in making
VLSR possible. The principal merit of these volumes is the division of the papers
into the two broad classes of theory and practice; and it is notable that theory has
been put before practice although an astute reader will notice that the dates at
which the original papers were written do not necessarily reflect this ordering. It
is clear from these volumes that both the theory and practice of reuse of software
are in their infancy. Nevertheless, these two volumes form a good introduction for
any software engineer wishing to become acquainted with the research and practical

applications in the field of software reuse.

A very notable omission from both the ACM and IEEE publications is material
describing European research and practice of software reuse; this has been recently

addressed by the following publications [72, 56, 159].



The research in this thesis builds on the foundations of existing research in reuse with
its established theme of representational issues affecting reuse. The research in this
thesis is concerned with the representation of software design concepts in order to
facilitate their reuse and with the processes of designing for reuse and designing with
reuse. As far back as the report of the Alvey committee the representational aspects
of reuse have been recognised as requiring attention. This thesis seeks to develop
a new perspective on the role of reuse in software development and argues that
reuse is a fundamental part of design. A broader perspective of software engineering
research now views the whole of the software life cycle as inherently encompassing
both software reuse and maintenance [51]. A long-term action identified as part of
this agenda is the building of a unifying model for software system development.
The considerations of how best to design for reuse and with reuse found in this

thesis are contributions to the groundwork required for such a unified model.

1.1.2 Influences from General Engineering

Software development as an engineering process can usefully draw upon the results
of studies in Design Theory from general engineering research [106]. The research
reported here has done so; see particularly chapter 5 of this thesis. From an engineer-
ing perspective, the activity of design is itself amenable to be being designed. Thus,
the potential exists to develop theories of design with the possibility of radically

changing the nature of existing design practice.

Moreover it is important to understand that engineering method is not the same as
scientific method. For a far ranging discussion of the differences between scientific
method and the engineering design method, see [58]. In considering how software
design is to proceed in order to support the reuse of software concepts explicitly,
one goal of this research is an improved understanding of design approaches with

respect to the processes and the products of software engineering.

It is increasingly recognised that software engineering is an engineering discipline

concerned with the development of large software systems, for example, see Som-



merville’s Preface to [147]. These large system developments could not be accom-
plished without the co-operative working of several software engineers. With the
advent of Computer Aided Engineering, many process models of development with
associated method and tool support have emerged [110, 39, 101], but comparable
models, methods and tools for large scale software engineering design are lacking
(62, 143]. As McDermid has pointed out, most improvements in our technology
for large scale software system development have depended upon the finding of im-
proved abstractions or structuring techniques for describing software [99]. He identi-
fies structuring and abstraction as the two key weapons for mastering the difficulties
of building large scale software systems. Looking for improved abstractions and ap-
propriate structuring techniques to support software concept reuse has provided a

starting point for the research reported here.

1.2 Contribution to the Subject

The key issue addressed by this research in software reusability is software concept
description within design frameworks. The notion of a software concept used in this
thesis is derived from that developed within the Practitioner project which will be
discussed in Chapter 2. For now, the reader may rely on their everyday understand-
ing of the term concept applied to software. For example, in [35], the first part is
entitled Basic Concepts. Here Bornat introduces software structuring concepts such
as sequences of instructions and procedures and anticipates the discussion on struc-
tured instructions such as repetition and choice. These are fundamental software
concepts. In a particular software application area, more complex software concepts
have been described; for example, in financial applications, the software concept
of a spreadsheet is a recently developed concept. Of course, these concepts, such
as repetition and choice or a spreadsheet, have a usage that extends beyond their
realisation in software; but it is by virtue of the fact that they can be realised in
software that they are spoken of as software concepts in this context. The notion of

a design framework will also be developed in subsequent chapters. In this context, a



design framework is an abstraction over known design structures which in the case
of software will be the structuring concepts found in software designs. This issue
of software concept description within design frameworks has been tackled through
the development of a means for the recording and relating software concepts within
design frameworks. It will be shown how design frameworks provide a means of
describing generic architecture for classes of applications and a vehicle for reusing
architectural principles and guidelines in the development of new systems. Briefly

put they promise a partial solution to the following problem stated in [21]:

The engineering of large systems by interconnecting reusabdle software
components from diverse sources in a systems integration activity is prob-
lematic. Although the technology for large systems integration ezists (viz
applications frameworks and applications generators), there are few well

developed methods which address the engineering of large systems.

The approach taken in this research has been to investigate means of capturing
the architectural structures of system models used in system design by studying
typical examples and by experimenting with various descriptive forms. Standard
frameworks (e.g. the multi-phase compiler model, the OSI reference model, the
Purdue University model of hierarchical control systems in steel production) relating
various system designs in specific domains have been investigated. The research has
concentrated on system models employed in the domain of steel production. A
particular interest has been to determine how frameworks can be abstracted from
known systems models, and to determine the role that levels of abstraction within

a framework play in design.

Currently research in software reuse is focused on the reuse of software components -
what might be characterised as "reuse-in-the-small”; the contribution of this research
is to show how "reuse-in-the-large” can be supported by providing an approach
which looks beyond components to frameworks within which architectural designs
relating components can be reused. This approach far from replacing component

composition allows it to proceed in a more appropriate context.



1.2.1 Genesis of the Research and its Goal

Very early on in the work, an interest developed in what can be termed the com-
position problem. When reuse takes place in the context of a library of software
components, how is the designer to effectively create a new system from an assort-
ment of retrieved components? One approach which originally seemed obvious was
that this was simply an interfacing problem. However, in design terms, the introduc-
tion of interface transforming components seems inelegant, and in practical terms
this approach is likely to give rise to inefficient systems encumbered by additional
interface transforming components. The strongest objection to this approach is that
systems so composed are difficult to understand and reason about because they are
lacking a conceptual unity. Rather than developing the approach of generating sys-
tems from components composed with the software equivalent of "glue”, a study has
been undertaken of the process of design with a particular concern for how designers
apply decompositional approaches to design and how the reuse of existing decompo-
sitions can be supported. In this area, the work of Alexander, especially his Notes
on the Synthesis of Form [9], and the work of Jones (DESIGNN METHODS
seeds of human futures) [85] have been found to be particularly relevant as both
give characterisations of the design process which are discussed in greater detail in

Chapter 6.

As the research is concerned with the reuse of software concepts as realised in existing
software, a study has been made in parallel of how best to describe software concepts.
In the context of developing guidelines for the description of software concepts, the
problem arose of how to decompose existing systems into their immediate parts for
the purpose of description prior to entering these software concepts into a library. A
canonical form of software concept description has been developed; this descriptive
form is simply used recursively to describe any immediate parts until the descriptions
pertain to atomic software concepts, but use of the form to describe software has

been problematic.

The research brought together software process concerns with software product con-

cerns when an attempt was made to give more thought to how a reuse support

9



system would be used in practice by designers. The importance of structuring a
design problem so that it could be attacked at various levels of abstraction was evi-
dent in the accounts of design theory that were studied. Here it was found that the
use of reference models employed in standards development and the looser concept
of frameworks could be generalised and applied to systems development. Further
confirmation of this approach was provided by acquiring the reports from Purdue
University which describe Steel Plant control systems using a four level model. The
availability of such a model proved to be of great assistance when the task of describ-
ing software concepts from existing systems documentation of applications from the
Steel Production domain was tackled. Experience in the Steel Production domain
has shown that where systems have been designed in the framework of a common
system model, the model itself provides insight into understanding the software
concepts and their interfaces that are likely to found on examination of the existing
software. This model is especially helpful when attempting to identify the concept’s
interfaces; particularly where the description of the concept is restricted to a par-
ticular level or levels of the model. Further work on this model has formed the

practical application of concept description form developed as part of this research.

The subtext of this thesis is the all pervasive nature of design concerns in reuse
of software concepts - be they architectural concepts or component concepts - in
systems engineering. So although studying how design concepts can be derived
from existing system models, and subsequently reused in the design of new systems,
an attempt has been made where possible to relate this research within the wider

context of existing theories of design.

It is not the intention of this research to develop a new theory of design; the aim is
simply to improve understanding of the design process in the context of software en-
gineering. The work has been confined to examining what is useful to apply towards
solving the specific design problems of software engineering. Some consideration has
been given to accounts of the design process in general; and having identified three
essential aspects of design - cognition, conceptualisation and construction, the re-

search has been concentrated within the conceptualisation phase.

10



1.3 Aims and Plan of Thesis

In the Chapter 2, a more detailed survey of reuse research and the specific research
work undertaken in an ESPRIT project, the Practitioner project, is made; and
the research supporting this thesis is related to wider research concerns in domain
analysis and software reusability which can be characterised as design-for-reuse and
design-with-reuse respectively. This thesis develops an approach to reuse that ad-

dresses both design-for-reuse and design-with-reuse. The nature of design is such

that the two objectives of design:

o understanding and recording what has already been accomplished, i.e. existing

design concepts, and

e understanding and recording what is to be developed building on existing

conceptual foundations, i.e. new design concepts

can be interpreted as evidence that implicitly all design involves reuse. This thesis

aims to provide a means whereby such implicit reuse can be made more explicit.

In Chapter 3, work on the representation of software concepts in the context of
identified reuse requirements is given consideration. The ability to utilize abstract
representations is crucial to design [104] and software reuse [64, 93] et al. There is a
need for investigations into the appropriate levels of abstraction in particular fields
of design discourse [64]. This chapter establishes the adequacy of a canonical form
for describing reusable software concepts - the concept description form developed
within the ESPRIT Practitioner Project by the author. This form is then used in
Chapters 4 and 5 to describe software concepts abstracted from existing software

systems through a process of domain analysis including investigative software field

studies.

Chapter 4 describes a small scale application of the concept description form. Here
the form is used to describe design concepts used in the construction of language pro-

cessors. Chapter 5 gives results of a larger scale application in an industrial setting.

11



While the concept description form has the potential to support design generally in
other fields of engineering, the reported large scale application is limited to software
engineering design in the area of metallurgy (chosen because the metallurgy business
division of the industrial partner taking the role of internal customer on the project
where this research was carried out volunteered to participate). Here the application
of the research to give some realistic content to the work has been an examination
of software system concepts within a particular application domain of metallurgy,

that of process control in steel production.

Chapter 6 evaluates these applications and presents a further development of the
work on concept description forms whereby sets of forms describing related soft-
ware concepts can be interpreted as constituting a design framework. Such design
frameworks provide a means for expressing the results of software investigations
in a structured form to facilitate their understanding and subsequent reuse in new
developments. The role that concepts play in structuring design has been a key
concern for this investigation. Building on insights into the role that language plays
in facilitating understanding and recording of designs and their communication, and
the thesis (of Frege, see Chapter 2) that only in the context of a proposition does
a word refer, this thesis argues that software concepts can only be understood in
context. The concept description form developed and applied within these chapters
provides a means of recording the contextual understanding of designs, so that the

reuse of software concepts in design may be supported explicitly.

Chapter 7 discusses the contribution of this work in the field of Software Engi-
neering and the broader implications of this research in the context of research on
Design Theory. It indicates directions for future research; and it concludes the thesis

evaluating how and to what extent its overall aims have been fulfilled.

1.3.1 Research Method and Criteria for Success

The research method employed in this study has been derived from the following

design strategy: understand the requirements of the problem, develop and evaluate a

12



solution with respect to the original requirements and its application in practice. In
this case, the main problem tackled has been to develop an adequate representational
form for software concept descriptions that supports their reuse and to apply this
form in domain analysis to support software concept reuse in practice. The form
developed is seen primarily as a means of supporting software concept reuse in
design, both in design-for-reuse and design-with-reuse. In both the development and
application of the form, an analysis of requirements has been made and a solution

proposed and demonstrated.

The representational form has been employed in the description of sets of software
concepts which have subsequently been used to constitute design frameworks. The
design framework developed here has been applied in the domain of steel production
in a series of studies. These studies have been an essential part of the research
in order to validate and refine the design framework itself. Thus this thesis is an
application of Software Engineering, and while methods from Computer Science have

been applied in the work described, they are not a primary concern for evaluation.

This research on software concept reuse supported by practical application has re-
quired significant research on the software concepts and state of design practice in

the domain of Steel Production.

The expected results of this research arise from four main aims:

to develop further a generic form for describing software concepts;

o to establish the adequacy of the representational form for describing reusable

software concepts;

e to employ the form in small and large scale applications and evaluate the form
as a means of supporting software concept reuse through populating a design

concept database;

e to gain an understanding of the inherent role that concept reuse plays in design
and to make this more explicit through providing a means of recording design

frameworks.

13



The first two aims will succeed if the arguments in Chapter 3 are accepted. The
third aim is based on the case made in Chapter 4 of this thesis, supported by a more
thorough going application in the development of a design framework and analysis
of its usage in practice found in Chapter 5. The final aim is dependent on the

comprehensibility of this thesis taken as a whole.

In developing a representational form to support software concept reuse, a rationale
has been developed which relates the representational form to identified require-
ments, particularly, the needs for abstraction and structuring in design. Validation
of this approach to support software concept reuse has been achieved in two ways:
one through application by the author in a series of case studies and subsequent
demonstrations based on these, and two through consultation with domain experts.
Consultation with domain experts has been especially important in order to validate
the results of the case studies as the author had little knowledge of metallurgy and

steel production before undertaking this research.

The originality of this research lies in its identification of the implicit nature of reuse
in design and its development of a concept description form to make such reuse in
design more explicit. The approach of employing high level concept descriptions
in design is not original; however, the approach developed and demonstrated here
with respect to supporting software concept reuse in design is original. Moreover,
before this work was undertaken, published accounts of software concept reuse in
the domain studied were not available although as discussed in Chapter 5 the need
for these was recognised. So the domain studies carried out to support this thesis
constitute an original contribution to the application of software engineering in this

domain.

14



1.4 The Relationship Between this Research and

the Practitioner Project

Much of the work described in this thesis was carried out with the support of the
CEC under the ESPRIT programme on Project 1094, Practitioner. The collab-
orators in this project were Asea Brown Boveri AG (ABB), Computer Resources
International, PCS Computer Systeme GmbH, Brunel University, the Technical Uni-
versity Clausthal (TUC), and the University of Liverpool. Professor Dr.-Ing. Peter
Elzer, formerly at ABB, now at TUC, and Dr. Jan Witt at PCS were responsible
for the original ideas which formed the starting point of the research within the
Practitioner Project. While the author did not participate in the development of
the original questionnaire for describing reusable software concepts, its development
and refinement through application provided the main research focus of the author’s
work in the project leading to the development of the reusable design frameworks
by the author. Unless otherwise stated, all the research work carried out in support

of this thesis has been the responsibility of the author.

15



Chapter 2

Approaches to Software Reuse:
Design-for-Reuse and

Design-with-Reuse

The aim of this chapter is to provide a more detailed discussion of the background
and scope of the work, both from the standpoint of general research in software
reuse and the specific research projects with a concentration on the Practitioner
Project, in order to set the context within which the research supporting this thesis

was undertaken.

2.1 Background to Software Reuse Research

In this section, the topic of reuse is discussed under three main headings in an

attempt to answer the following three questions:

o What is reuse?

16



o Why reuse software? and

e How is it accomplished?

The concept of reuse is explored generally; and in the context of software engineering,
the reuse of software concepts is examined as the most general case of reuse. The
potential benefits of reuse are expounded. An abstract model of the reuse process
with respect to software is elaborated, and various approaches to assisted reuse of

software are described.

2.1.1 The Nature of Reuse

The history of ideas, intellectual progress, provides a paradigm for reuse. Here
progress is effected by developing and refining the ideas of others. If "learning to
speak is learning to think” i.e. language is a precondition for thought, then it is
language which underlies our intellectual progress individually as well as collectively;
or as the developmentalists say: "Ontogeny recapitulates phylogeny.” Generally an
armoury of ideas which allows problems to be attacked and solved underlies progress
in a particular field. A less combative approach to reuse might describe this armoury
of ideas as a treasure house implying that ideas have an intrinsic value. The armoury
of ideas can be divided into theory and praxis: agreed principles and accepted

practice.

In the field of Software Engineering, the theory largely derives from the application
of mathematics, particularly logic; whilst the practice is based on application of
engineering methods. On the bookshelf of a software engineer can be found titles
such as: Programming from First Principles; Principles of Program Design; The
Science of Programming; Principles of Programming Languages; Principles of Com-
piler Design; Compilers Principles, Techniques, and Tools; The Theory of Computer
Science; Fundamental Structures of Computer Science along with A Practical Hand-
book for Software Development; The Art of Computer Programming; Software Tools;
Spectfication Case Studies; Numerical Recipes in C; Strategies for Real-Time Speci-

17



fication and so on. Thus the software engineer combines both formal and informal

methods and established principles with proven practice and custom.

The value of studying existing software has been well established amongst software
engineers with the publication of algorithms and annotated software sources. This
literature forms a rich source of software concepts. Knuth has argued persuasively
that better understanding of programs can be achieved by considering programs as
works of literature [92); he proposes adoption of a literate programming approach to

software construction as follows:

The practitioner of literate programming can be regarded as an essayist,
whose main concern is with exposition and style. Such an author, with
thesaurus in hand, chooses the names of variables carefully and ezplains
what each variable means. He or she strives for a program that is com-
prehensible because its concepts have been tntroduced in an order that is
best for human understanding, using a mizture of formal and informal

methods that nicely reinforce each other.

Note his linkage of comprehensibility with the order and manner of introduction of

the underlying program concepts.

Literature is one medium for passing on concepts from one generation to the next;
it is part of our cultural heritage. Program literature as proposed by Knuth ensures
software concepts are available for reuse from one generation of programmers to the
next; however, current practice falls short of this ideal. Developers often lack the
time and training to explicate reflectively the conceptual foundations of the systems

they develop.

Over the years, however, some consensus concerning the building blocks of software
has been achieved eliminating the need to start each development anew. Reuse of
common code sequences through macros and the generalised high level language
constructs such as structured statements e.g. conditional statements and repetitive

statements together with the subroutine library concept have provided the engi-

18



neering foundations of software construction. And our collective understanding of
the behaviour of programming language statements has also contributed to these

foundations. Denvir has made this point as follows [53]:

The equations and rules governing the behaviour of program language
statements are the 'Ohm’s and Kirchoff’s laws’ of programming; just
as Ohm’s and Rirchoff’s laws do not hold for non-metallic conductors
or conductors mounted on tmperfect insulators, so our rules of program
statements do not apply if we use materials outside the collection whose

behaviour we have defined.

The standardisation of programming languages, graphics, database and communica-

tions software is an indicator of some maturity of these areas of software technology.

The widespread employment of software packages provides further evidence of soft-
ware reuse although standardisation is lacking amongst packages. While much study
has been devoted to formulating the design principles of system software: operating
systems, language processors, editors, database systems, etc, most major appli-
cations software subfields lack descriptions of their general design principles and

construction methods. As Jones has remarked in [86]:

The programming community, therefore, finds itself constantly faced with
reinventing concepts which should be available from standard references,

but in 1984 are not.

The situation has not altered much in the intervening years. In order to describe
general design concepts, it is necessary to abstract these from studying a number of
systems. Shaw has outlined the case for such higher level abstractions in software

engineering [140].

The key to reusability of software is abstraction (see [93, 64, 168, 150] and others).

The potential reuser of software must be able to find a connection between what

19



is already known and what is known to be required, between theories and concepts
realised in existing software and those comprising a solution to the requirements,
by abstracting away unnecessary detail. This paradigm applies not only to software
development, but to problem solving generally. The classic reference is Polya’s

handbook on heuristics: How To Solve It [118].

Taking the view that concept formation underlies understanding, three important
principles facilitate the understanding of software systems: decomposition, unifica-
tion and abstraction. Decomposition is the separation of a complex system into its
elements or simpler constituents. Unification is the process of organising discrete
elements of systems into groups; it forms the basis of later generalisations. Abstrac-
tion is the process of forming concepts which allow general classes of elements to be
described independent of any system in which they occur. Here a free translation of
Vygotsky’s account of the process of concept formation [164] has been made relating

it to software systems understanding.

A recognised advantage of abstraction in the software life cycle is to separate the
specification from any particular implementation. For the purposes of reuse, the
specification gives a clear statement of the theory and concepts underlying the
software separated from any implementation details; and makes possible their re-
employment in the specification of other software. The specification forms a descrip-
tive theory of the software allowing reasoning about the properties and behaviours

of the software which may be relevant for reuse.

2.1.2 Motivations for Reuse of Software

The usual reasons put forward for the reuse of software are often economic, such
as increased productivity, and to do with improving software quality, such as in-
creased reliability of software, for example, see Lubars quoted below. While these
reasons are undoubted important, they are best addressed by getting to the heart of
the matter and improving the software development process itself by formulating a

more systematic approach to design in which design structuring techniques explicitly

20



supporting reuse are an important element. Below various requirements are listed
with supporting texts to give an indication of why software reuse holds out some
promise and why this promise provides a motivation for the development of a reuse

based design structuring technique.

There is a requirement for software development approaches which result in reliable
systems. Reuse of well-tested components results in more reliable and economic
systems [97]. The cost of developing reliable software components can be amortized
over several products if the component is reused. That reusability can satisfy this

requirement is supported by the following quotes from Lubars [97]:

Software reusability can be used to achieve much higher levels of software
reliability by amortizing the debugging costs among the products incor-
porating the reusable component. This largely depends on developing the
component to be reusable from the beginning, and debugging it to the

desired level of reliability before releasing it.

and Hoare [77):

Reliable assembly of prespecified parts is an essential mark of maturity

in any engineering discipline.

There is a requirement for progressive software development approaches which en-
able us to tackle larger more complex system construction projects by building on
our previous efforts. Significant progress will not be possible if all projects continue
to start from scratch and carry on reinventing the wheel as the following quote from

Burstall and JA Goguen [43] concludes:

Another important factor for the practical utilization of abstract specifi-
cation languages, is to build up a library of specifications which can then
be used in putting together other larger specifications. ... Without such a
library, every program specification effort will have to start from scratch,

and there will be no significant progress.

21



There is requirement for more control in the software development process; and this
will come from a better understanding of software development in practice. One
aspect of this is the need for control of sharing found in practice as recognised by

Dijkstra [55] in the following quote:

What the manager sees as “keeping options open” is seen by the scientist
as ”"sharing”: different programs sharing code, different proofs sharing
arguments, different theories sharing subtheories, and different problems
sharing aspects. The need for such sharing is characteristic of the design
of anything big. The control of such ”"sharing” is at the heart of the
problem of “scaling up” and it is the challenge to the computing scientist
or mathematician to invent the abstractions that will enable us to ezert

this control with sufficient precision.

Dijkstra here is alluding to the problem of scaling up the application of mathematics

to computing, e.g. assistance with program transformation and theorem proving.

There is a requirement for established mechanisms for the recording of software
product knowledge, its structure, components and functions, and channels for its
transmission. This knowledge often based on practical experience gained during
the development process that is lost if there are no means for its recording and

transmission to other practitioners.

Belady and Lehman distinguish between process knowledge and product knowledge
[17]; between knowledge of methods, techniques and tools appropriate for the process
of designing software, and the understanding of the software product: its compo-

nents, structure, functions both individually and collectively and their interactions.

It is the latter knowledge often based on practical experience gained during the
development process that is lost if no established mechanisms and channels exist for
its recording and transmission to other practitioners for subsequent reuse. It is this
final requirement that the structured approach to concept description developed in

this thesis seeks chiefly to address.

22



2.1.3 Supporting Software Reuse in Practice

Various systems developed to support reuse are reviewed below with respect to their

underlying models and methods. To aid the discussion a very general model of the

reuse process is given initially.

The Reuse Process Underlying the reuse of software concepts is the process of
reuse which addresses both the identification of reusable concepts and their deploy-
ment in new applications. Because identification and deployment are likely to take
place at different times, it is assumed that concepts are somehow stored and held
for retrieval later, for example, in a library or database. The reuse process can be

summarized involving six main activities as follows:

1. Recognition,

2. Decomposition/Abstraction,
3. Classification,

4. Selection/Retrieval,

5. Specialisation/Adaption, and

6. Composition/Deployment.

The first three activities serve to build up the reuse concept collection; while the

latter three serve to make use of the reusable concepts in design.

Initially the opportunity for software reuse will need to be recognised. This may
reflect an accumulation of existing software and a recognition that many similar sys-
tems have been developed in a particular application domain. Working from exist-
ing software, this may involve the decomposition of large software systems into their

component concepts and extraction of specific reusable software concepts. From

a number of similar specific software concepts, it may be possible to abstract a

23



reusable software concept that is generic in some sense, perhaps because it has been
parameterised, or perhaps because it has been abstracted a level above the level at

which it was originally deployed.

There will potentially be many reusable concepts. These will need to be catalogued
and stored for retrieval later as required; the appropriate technology for this will
need to be made available. The concept description could form the basis of its
storage and retrieval. A common method for describing concepts is the classification
of the concepts according to some schema. Approaches to document classification
in library and information science, particularly the method of faceted classification,
may be used to provide a basis for the classification of textual descriptions of software

concepts [123).

In putting together a new application, a search for suitable concepts must be un-
dertaken. Once found, these may require specialisation or adaptation before being

composed to form the new application.

This process is depicted by a data flow diagram in Figure 2.1 - The Reuse Process.
This general model of the reuse process is based on a fuller analysis of the reuse
process and the information involved in reuse which can be found in [72]. This
rather abstract view of the reuse process is used below to relate various approaches
to supporting reuse as well as to characterise four areas of research covering reuse

and design in software development.

Systems Supporting Reuse - Their Underlying Models and Methods
Reuse Support Systems relate to the process of reuse described although some may
focus on particular aspects of the reuse process such as recognition and decompo-
sition, description, classification and selection whilst others may focus on the selec-
tion, specialisation and composition phases. In so far as a Reuse Support System
addresses the complete reuse process, it is similar in form to a Project Support En-
vironment (PSE) that provides facilities to support the full project life cycle from

capture of requirements through to operational support and maintenance of the

24



ACTUALLY OR POTENTIALLY
REUSABLE OBJECTS

REUSABLE OBJECT
(generic)

CLASSIFICATIO
3.

CATALOGUE and
LIBRARY

REUSABLE OBJECT

(generic)

REUSABLE OBJECT
(specific)

COMPOSITION/
DEPLOYMENT

6.

APPLICATION
REALISATION

Figure 2.1: The Reuse Process

25



project software products.

PSEs are often described as integrated where tools have compatible interfaces with
the users, other tools and the host environment. In most integrated PSEs (IPSEs),
the basis of internal tool integration is an information management system. In a
deeper sense of meaning, IPSEs are integrated by embodying an underlying model of
the development process which enforces a uniform discipline on the development, a

common model of the objects of development and methods to support these models.

Similarly a Reuse Support System may be integrated by its underlying model of the
reuse process, the model of the objects of reuse describable in the system, and the
methods employed to support these models. At the centre of these support systems,
there is a collection, e.g. a library, of reusable objects which provides the basis of

internal integration.

A broad distinction has been made between Reuse Support Systems depending
whether they are based on the principle of composition or the principle of gen-
eration; in their framework for reusability technologies (reproduced in Figure 2.2 -
A Framework for Reusability Technologies), Biggerstaff and Richter classify typi-
cal systems using these two principles. (This figure has been adapted from [20].)
In this framework, typical systems based on composition technologies such as li-
braries of subroutines, object oriented systems and UNIX pipe architectures are
contracted with typical systems based on generation technologies such as Very High
Level Languages, Programmer Oriented Languages, CRT Formatter Generators,

File Management Generators, and Language Transformers.

Both principles, composition and generation, are important and a Reuse Support
System which emphasizes one over the other is incomplete and of limited applicabil-
ity. While such frameworks can play an important role in helping to classify existing
research concerns in Reuse Support System development, there is danger of research
into reuse becoming constrained by a false dichotomy such as composition versus
generation in this case. This view also restricts itself to component reuse viewing

reuse based on generation technologies as execution of component generators.

26



Features Approaches to Reusability
Component Building Blocks Patterns
Reused
Nature of Atomic and Immutable Diffuse and Malleable
Component Passive Active
Principle of . .
Composition Generation
Reuse
Emphasis Application Organisation Language Application | Transformation
Component & Composition| pageq Generators Systems
Libraries Principles Generators
Typical - Object -CRT - Language
P - Libraries of . ! - VHLLs Formatter e
Systems . Oriented -POLs Transformers
Subroutines . - File
- Pipe
Architecture Management

Figure 2.2: A Framework for Reusability Technologies

27




A preferable distinction is between systems that support small-scale reuse and those
that support large-scale reuse; here the interest is focused on the scale of reuse en-
visaged in two ways: scale of coverage throughout the software development process
and scale of reusable products from the process. This allows reuse to be considered
in the overall context of research concerned with improving the development process
for software products and allows both composition and generation to be considered

in combination.

The software life cycle gives an abstraction of the software development process;
through a process of refinement, ideas are transformed into programs [95]. Lehman
et al have characterised this process of refinement as a chain of linguistic transfor-
mations. The first step is the abstract formulation of conceptual requirements; and
the final step is the concrete realisation of the software as executable code. Thus
in describing software reuse, an axis of abstraction associated with the stages of
the development process can be identified, and reuse of software products can take
place at these various levels. Along side this, there is a scale of granularity. So with
respect to design reuse, at the large end of the scale is the reuse of complete system
designs while at the small end is reuse of simpler constituent component designs.
IPSEs that capture and preserve representations of the software at each stage in the
life cycle provide the basis for reuse of software at the appropriate level of abstrac-
tion and granularity. Hence the link between IPSE development and reuse as found

in the Alvey programme and in the ECLIPSE project discussed below.

Developing a systematic approach to programming led many to look for ways in
which the activity of programming could be automated in the seventies. An impor-
tant aspect of this work came from applying approaches from Artificial Intelligence
to Software Engineering. Two major reuse research projects of long standing can
be seen as developments emerging from these concerns: Draco (University of Cali-
fornia, Irvine) and The Programmer’s Apprentice (MIT). The Draco project placed
its emphasis on the development of domain languages obtained through a process of
domain analysis. From the domain languages, general design models are abstracted
and these form the basis of specific application models obtained through a process

of transformation. The Programmer’s Apprentice project placed its emphasis on a

28



library of plans obtained through a process of transformations performed on exist-
ing programs. From the plan library, a plan is selected and then transformed into
a program. The plans are all represented using a uniform representation, the Plan

Calculus, a combination of data and control flow, and the predicate calculus.

In both projects, transformational approaches were used, i.e. software descriptions
at a high level of abstraction, general design models and plans, were refined via a
chain of linguistic transformations into implementations. Uniformity of representa-
tion was achieved through translation. Both these projects resulted in the develop-
ment of systems and approaches to reuse discussed in greater detail below. Both
projects resulted in very limited transfer to industrial use; the effort required to de-
velop domain languages and plan libraries with associated transformation systems
is considerable. More modest approaches following Draco and the Programmer’s

Apprentice are also discussed below.
The Draco System

The Draco system and its approach to the construction of software from reusable
components dates from earlier work on the transformational approach to software
development [103]. The Draco approach is founded on the reuse of analysis infor-
mation and design information in specific domains. This approach proceeds by a
process of domain analysis to identify domain specific objects and operations fol-
lowed by domain design of implementations of the objects and operations in terms of
domains already known to Draco. It follows that underlying the Draco approach is a
more fundamental analysis of the division of the universe of discourse into primitive

and derived domains.

Reuse is effected by an analyst supplying a specification in a domain language al-
ready known to the Draco system as a result of previous domain analysis; and if
there is a match between objects and operations required and those of a known
domain, it is possible for a designer interacting with Draco to obtain implementa-
tions of these based on refinements of known designs. The designer decides which

refinements to use and what kind of structure will result from the refinement chosen.

29



Refinements are recorded and may be replayed.

The Draco project was the first to recognise the importance of domain analysis to
support reuse. Neighbors notes that building about 12 full usable Draco domains re-
inforced the idea that both domain analysis and design are very hard. The domains
built spanned augmented transition networks, dictionary construction, generation
of sentences in natural language, limited facilities for simulating parallel processing
and a reuse module definition language; these are given in [65]. Freeman has pro-
vided a conceptual analysis of the Draco approach which relates Draco to particular
software engineering principles such as abstraction, structuring, working system-
atically, modeling, compartmentalisation of knowledge and reusability [65]. The
comprehensive coverage of Draco from the specification in a domain language down
to the generation of code is arguably the reason why this approach has not had a
greater success. The effort needed to develop high level domains in terms of known
lower-level domains is considerable, and the lower-level domains need to be in place

for the whole enterprise to work.

The Pegasus Tool also developed at the University of Calfornia, Irvine addresses the
acquisition and reuse of software designs, and has been implemented in InterLisp
[87]. It essentially consists of a database of software designs, an acquisition subsys-
tem and a retrieval subsystem. The tool is able to handle descriptions in both text
and graphic modes. The common description language used to represent designs is
based on a subset of the Klone language, a knowledge representation language devel-
oped at BBN [37]. Retrieval is effected by means of a query language which allows
the user interactively to formulate queries using database instances as templates. It
is acknowledged that this system only addresses the design phase of the software
development process, and the scale of designs considered is small, for example, sort-
ing algorithms. This approach while much more modest than that of Draco does
not appear to have been subjected to any reported application. The tool developed
simply provides the mechanisms for supporting design reuse; the difficult task of ac-
tually developing the descriptions of the characteristics and behaviours of software

concepts and artifacts is not addressed.

30



More recently, Freeman and Prieto-Diaz have addressed the classification of soft-
ware for reuse [123]. Prieto-Diaz and Freeman have constructed a prototype library
gystem based on the classification system reported in the above cited paper with
about 200 program descriptors; this system is a UNIX based implementation using
the University of California’s Troll/USE prototyping tool as the underlying database
system. The system does not directly support the phases of adaptation and com-
position although the system attempts to rank reusable components using a reuse
effort estimation metric. This prototype has been the basis of a scaling-up exercise
to produce a version for use in a production environment at GTE Laboratories [127]

to support classification and selection of code components.
The Programmer’s Apprentice

It has long been recognised that the techniques of Artificial Intelligence particularly
those of Intelligent Knowledge Based Systems offer some scope for codifying the
expertise of programmers and automating some aspects of the software development
process. Charles Rich and his colleagues at MIT for several years have been engaged
in such a programme of research known as The Programmer’s Apprentice [135,
136, 134, 137]. A crucial part of this research has been the development of an
appropriate formalism for representing software components; to this end, the project
developed the Plan Calculus. The Plan Calculus allows extended flowchart schemata
to represent algorithms and data structures as well as sets of axioms in the predicate
calculus. In the Programmer’s Apprentice implementation, plans are stored in a plan
library indexed by the specifications, and their relationships with other plans. Two
special purpose modules have been implemented to transform plans into programs
and programs into plans. This research has been rather narrowly focused on the
reuse of plans within the Lisp programming community although in recent years
the focus has been broadened with work on The Requirements Apprentice [133]. It
remains for this approach to be realistically applied in some particular application
domain. The effort required to do this does not appear to have been considered by
the authors. Most recently this group has introduced research towards developing
The Designer’s Apprentice [166]. Here again, the effort required to scale up this

approach towards a practical application is not considered.

31



ECLIPSE, DRAGON and CAMP

Three other projects developing models, methods and tools to support reuse from
this period are the ECLIPSE project, the DRAGON project and the CAMP project.

The approaches taken by these projects are discussed below.

As part of the UK Alvey Software Engineering research programme, the work on
the ECLIPSE project was in part explicitly concerned with developing methods and
tools to support the reuse of existing software. Sommerville and Wood’s work on
clagsification has been the basis for a prototype implementation of a components
catalogue [149]. This prototype has been developed using Prolog and catalogues a
set of software components from the UNIX operating system. The system compo-
nents are a dictionary of 300 verbs and nouns describing UNIX component functions
and objects, a library of 300 or so component descriptions manually produced from
the UNIX documentation, a user interface which allows the user to form requests by
inputting keywords into skeleton frames, and the pattern matching strategies imple-
mented in Prolog. This system is concerned with effective classification to support
improved retrieval. Representation and composition issues were partially addressed
by the development of SySL (System Structure Language) (already mentioned and
reviewed in more detail in chapter 3). Interfacing of reusable software components
was addressed by the development of the Component Description Language (CDL).
This was largely an experimental vehicle offering a mechanism for designing large

Ada systems at the component level [36].

Some aspects of developments in the ESPRIT Dragon Project can be traced to reuse
research initiated in the ECLIPSE project such as the library and classification
scheme described above. Tools were developed to support access to a software
component catalogue and component information store. These are coupled with a
design support tool, the Designer’s Notepad [148]. This tool supports the description
of informal linkages amongst the retrieved components and any other elements of the
design. The Dragon project embodied a transformational approach to reuse [94]. All
the tools developed by this project are general purpose. The tools were customised

to support components represented in DRAGOON, Distributed-Reusable-Ada-OO0-

32



Notation, as part of the research within Dragon.

The CAMP (Common Ada Missile Packages) Project [12] consisted of three distinct

phases:

1. CAMP-1 Feasibility Study (Sept 84 - Sept 85): Identify commonality in missile
flight software systems, design parts, and design supporting Parts Engineer-
ing System (PES). Ten missile flight software systems were studied; 454 parts
were identified. A parts taxonomy was also identified; two classes were distin-
guished: domain dependent parts and domain independent parts. In CAMP,

a part is an Ada package, subprogram or task usable in a stand-alone fashion.

2. CAMP-2 Implementation and Demonstration (Sept 85 - May 1988): The
CAMP software developed was distributed to over 125 USA government agen-
cies. Some measures of increased productivity were obtained when the CAMP
team re-engineered an eleventh missile flight software using the PES and parts.

The PES provides designers with three main functions:

e identification function: either an application approach or an architectural

approach may be used,

e cataloguing function: this covers catalogue maintenance and catalogue

locating,

e constructor function: this is based on design templates for parts and rules

for part construction.

The application approach to identification involves the engineer giving specific
features of the missile; whilst the architectural approach allows the engineer
to step through a missile model represented by the hierarchical missile parts
taxonomy. Twelve constructors were identified and made available: Kalman
filter, data types, finite state machine, navigation subsystem, navigation com-
ponent, pitch autopilot, lateral directional autopilot, data bus interface, task
shell, time-driven sequencer, event-driven sequencer, and process controller.
The aim has been to generate customized (i.e. application specific) software

components from standard designs.

33



3. CAMP-3 Refinement and Technology Transition (July 1988- October 1990):
As part of this work, thought was given to means of ensuring that the reuse

is practised. Three steps were recognised:

o identify more domain-specific parts,
e establish reuse guidelines,

e require reuse if possible.

It was recognised that the order is important. Requiring mandatory reuse

before guidelines and parts are available is useless.

The fact that this project chose a very limited application area, i.e. missile soft-
ware flight systems, and succeeded, has influenced the work reported in this thesis
to restrict itself to a specific domain in applying the approach to describing soft-
ware concepts that has been developed. CAMP considered both classification and
composition through provision of a hierarchical missile taxonomy developed to give
guidance in the part identification and in the part construction from the construc-
tors. The productivity tests made by CAMP are relevant to domain analysis. They
found that as time progressed with experience that they got substantially better
at producing new parts for their PES. The CAMP project can be seen as applying
many of the initial concepts of how to carry out domain analysis as formulated in the
Draco approach; however, the focus of this work remained small scale only consider-
ing the reuse of parts rather than whole system designs. CAMP gave consideration
to the system context for reusable parts through its hierarchical taxonomy, but this
was seen as a framework for guiding development and classification of parts rather

than as an object of reuse in its own right.
Summary of Approaches to Reuse Support

The paradigm of component reuse is overwhelmingly the dominant view of reuse
support approaches. All of the above provide examples of component based ap-
proaches to software reuse. In these approaches, the software engineer is assumed

to be the principal agent developing the system architecture. This may take place

34



before the designer searches for reusable components, or alternatively the designer
may develop the architecture based on knowledge obtained about existing compo-
nents. This thesis will argue that more than component reuse based approaches
are needed to support the designer in the very early stages of design. The research
carried out in support of this thesis is focused on moving away from the component
based approaches to reuse towards a more comprehensive form of reuse encompass-
ing the reuse of the design frameworks themselves. In the work described here the
emphasis has been on supporting reuse at the initial stage of design where the de-
signer is searching for appropriate abstractions and structures to apply in the first
formulation of design. This is an area largely ignored by the approaches reviewed
above, but one which has been addressed within the Practitioner project discussed

in the section that follows.

2.2 Specific Background for the Research within

the Practitioner Project

The Practitioner Project was collaboration between Asea Brown Boveri AG and PCS
Computer Systeme GmbH in Germany, Computer Resources International in Den-
mark, and three universities: Brunel University, the Technical University Clausthal
and the University of Liverpool. The project completed its work in November 1991.
The ultimate goal of this five year project was the development of a support sys-
tem for the pragmatic reuse of software concepts; and a major result of the project
was the development and demonstration of the Practitioner REuse Support Sys-
tem (PRESS). The project was concerned with the reuse of software concepts from
designs through to code, focusing on concepts realised in existing software rather
than the formulation of practices to be applied in the development of new reusable

software.

Initially there were three major areas of concern within Practitioner:

35



1. description of software concepts, selection of appropriate forms of description
to support reuse, and assistance with description by analysis of existing soft-

ware documentation and source code;

2. classification, storage and retrieval of software concept descriptions to enable
a software engineer to select the software design or code appropriate to meet

specific requirements;

3. development of methods and tools to support the software engineer in the

construction of software systems from reusable software concepts.

The research supporting this thesis contributed primarily to the first and third of

these concerns.

The notion of a software concept as a potentially reusable object comes from ac-
counts of software engineers’ design experience; often, an engineer is able to formu-
late a solution to a new system requirement by following up informal ideas based on
an understanding of existing software. These reusable ideas are the software con-
cepts of the individual practitioner, i.e. software engineer; they may be fundamental
ideas from Computer Science such as a queue or a stack, or operational ideas such
as order processing, or very specific application ideas such as material tracking in a
strip processing line. The working definition of software concept developed by the

project [119] and used by author throughout this research is given below:

an abstract task, described by its purpose (and/or goal), the related 0b-
jects and/or functional principles of the underlying mechanism (which

will be typically, but not necessarily, of an algorithmic nature).

At the highest level of description, a task is equated with an application. A software
concept may be much less complex than an application; for example, the software

concept, calculation of rolling forces, is an abstract task realised in software in the

Steel Production domain.

36



Terminology analysis was the method used to establish the terms used in a particular
domain to describe its software concepts. A faceted thesaurus was developed and
subsequently used both in indexing of software concepts and in retrieval of stored

concepts from a library.

In parallel with the terminology analysis, existing domain software was described
using a structured form developed by the project, the questionnaire; development of
the questionnaire is one of the main concerns of the research supporting this thesis.
Although software concept descriptions are given a standardised structure via the
project’s form, use of a particular language or descriptive method to describe the
concept is not dictated. It is assumed that the application oriented descriptions of

concepts in the forms would be in the domain language, typically a natural language.

Over the first two years of the project during Phase I of the research, the emphasis
was on collection of software concepts in specific application domains and investiga-
tion into appropriate descriptive methods to support reuse. Various approaches to

reuse support were investigated, and two pre-prototype reuse support systems were

developed using UNIX and the PCTE.

Phase II was concerned with the development of a prototype Practitioner REuse
Support System (PRESS). In developing a reuse support system, the project was
determined to reuse existing software concepts. A standard language for interactive
text searching, CCL, has been used in the PRESS to support the searching for soft-
ware concepts. The ISO Guidelines for thesaurus construction formed the starting
point for the PRESS on-line thesaurus. The PRESS has been implemented using an
existing database management system for the software concept store and thesaurus.

The user views these through browsers built from a standard windowing system.

This prototype was experimentally evaluated during Phase III. The process of offer
preparation was identified as one where reuse of software concepts could have an
immediate impact. Responding to calls for tender, by preparing offers, i.e. pro-
posals to build the required software, is an area where reuse typically has not been

considered; and yet it provides a short enough illustration of reuse without being

37



too simplistic for demonstration purposes while at the same time bearing enough
resemblance to the design process as a whole to make realistic use of the Practitioner
methods and tools. In conjunction with experimental use of the PRESS to support

preparation of offers, aspects of modelling the economics of reuse were studied.

In the final Phase IV of the project, the prototype PRESS was refined in light
of the experience gained and in light of various research studies. Addressing the
methodological aspects of populating the PRESS and employing it in the design
of new systems - design-for-reuse and design-with-reuse - were the main concerns
of these research studies. This thesis draws on the author’s contribution to work
within the Practitioner project. In particular, it is based on the research carried out

by the author in the following areas:

o refinement of the questionnaire to describe software concepts,

development of methods to support design-with-reuse and design-for-reuse,
e studies of designs in the domain of Steel Production and

development of PRESS demonstrations.

A fuller account of the Practitioner project can be found in Appendix A. In particu-
lar, this describes in more detail the approaches to designing-for-reuse and designing-
with-reuse which have been formulated and applied by the author in the course of
this research. A more general account of research directions in reuse and the out-

standing issues to be addressed by this thesis is given in the following section.

2.3 Identification of Research Directions in Reuse

and Outstanding Issues

Four main areas of research in reuse can be identified and characterised in terms of

design as follows:

38



Recognition/Abstraction (Reuse Representation) - Design-for-reuse-in-the-small

o Classification of Reusable Objects - Design-for-reuse-in-the-large

e Specialisation/Adaptation of Reusable Objects - Design-with-reuse-in-the-small

System Composition with Reusable Objects/Reuse Process - Design-with-

reuse-in-the-large

With respect to the models, methods, tools being developed in the area of reuse
research, there has been a move from ad hoc reuse towards more systematic reuse;
that is, reports in the literature have shifted from accounts of how reuse has been
accomplished towards formulation of rules and guidelines and more speculatively to-
wards principles and theories of reuse, e.g. see [79, 16]. Many early research reports
were on the experience of reuse; and now there is more concentration on understand-
ing and improving the reuse process. Several reuse models, methods and associated
tools have been developed as reviewed earlier in this chapter. However, these ap-
proaches to reuse with the exception of the Practitioner project have concentrated
on component based reuse and ignored the reuse possibilities at the initial stages of
design formulation. Ultimately, this thesis will show that examining reuse potential
here as well as throughout the development of software will lead to a better overall

understanding of design.

A key research issue is the role that representations play in facilitating reuse. It
is recognised that standardised languages allow communication of collective expe-
rience and knowledge in the Software Development Process. Specialised languages
whilst bringing power of expression may impose barriers to widespread software
reuse. Translation may not be feasible; discontinuities may exist. There have been
many language specific approaches to reuse, for example, many reuse projects have
developed reusable software in Ada; of the projects reviewed here, the ECLIPSE
reuse work, Dragon and CAMP had this concern. A fuller review of Ada reusability
efforts can be found in [156]. The promise of formal methods as a basis for universal
representations supporting reuse remains to be fulfilled although this continues to be

an area of active research, for example, Tracz’ LIL based development, LILEANNA,

39



combining Gogeun’s proposed approach to reuse with the specification language de-
veloped for Ada, Anna [155]. Work on very high level representations for design
reuse is reviewed in more detail in Chapter 3; this research holds out the promise of
supporting reuse early on in the development lifecycle especially during the phase
of design known as conceptual design [110] when the designer must attempt to de-

termine the initial structure of the system at various levels of abstraction.

Many outstanding issues in reuse research remain to be tackled. The work described

in this thesis is concentrated on two areas:

¢ Recognition and Abstraction, and

e the System Composition and the Reuse Process.

Better means for describing generic software concepts, both structure and function,
are required. Systematic approaches to abstracting concepts from existing software
need to be developed; the development of domain analysis techniques to facilitate
reuse provides a starting point. A helpful characterisation of domain analysis has

been provided by Biggerstaff:

Domain analysis is the building up of a conceptual framework, informal

tdeas and relations: the formalization of common concepts.

(quoted in [157]).

Much more work remains to be done formulating a systemic approach to domain

analysis, but the foundations are becoming established [128].

The description of software concepts requires conversion of application domain spe-
cific knowledge into agreed descriptive theory. Often such theory is unarticulated in
a particular application domain; or worse, no such codified knowledge exists. Here

work on specification discussed below is relevant.

40



Better means are required for describing the compositions of components to form
software systems and for describing the derivation of specific instances from generic

models.

A better understanding of software construction is required. The distinction between
horizontal and vertical composition in the development process and the possibility
of reuse at a variety of levels as described by Goguen [69] requires demonstration.
The notion of software evolution is a promising basis for theory which will allow

more control to be exerted over the software development process.

It can be seen that better means of description are required to support reuse; intu-
itively, this follows from the primacy of language in the history of ideas. It can be
related to more general concerns in software engineering to do with specification of

software systems as discussed below.

Several authors have compared the activities of program description and theory
construction. Zemanek makes this point quite clearly by recalling the development
of Wittgenstein’s philosophical studies of language [174]. While it is the case that
the computer system perfectly realises the world of the Tractatus, it is only in
the context of a particular application domain that a program has a meaning, as
Wittgenstein realised later in the Philosphical Investigations with his detailed
study of how words are employed in various language games. Wittgenstein’s insight

here is a development of Frege’s motto:

Ouly in the context of proposition does a word refer. (Nur im Zusam-

menhange eines Satzes bedeuten die Worter etwas.)

[66]

7emanek summarises this view as follows:

There will be forever a gap between the formal universe in our systems

and the informal reality, between the domain of programs and algorithms

41



and the life of people and communities - a gap which remains to be bridged

by the human being, before and outside the mechanical and formal tools.

In their paper, "Putting Theories Together to Make Specifications”, Burstall and
Goguen [42] arrive at the following speculative conclusion that the main intellec-
tual task of programming is elaborating the theories which describe all the concepts
used in the actual program. This paper is an informal introduction to the develop-
ment of the Clear language intended for describing theories in a structured manner.
Burstall and Goguen speculate that while Clear is intended as a tool for program

specification, it could also be used to represent knowledge.

Maibaum and Turski reiterate and develop this point that specification-building
is similar to theory construction [158]. In so far as the specification represents in
abstract terms a view of the application domain, the specification binds the program
to its application domain. They present a programme for converting domain specific

knowledge into a descriptive theory and program specification.

Below is a list adapted from one given in Maibaum and Turski which outlines the

main steps involved the conversion process:

1. Catalogue all concepts in terms of which the domain-specific knowledge is

expressed.

2. Categorise the catalogued concepts with respect to their functionality (find

out which ones are constants, relations and functions).

3. Establish structural and hierarchical dependencies between the categorised

concepts.
4. Discover which concepts are primitive and which are derived.
5. Check if all primitive concepts are indeed included in the catalogue.

6. Check the consistency of the resultant descriptive theory and if possible its

completeness.

42



This list in brief provides a basis for the work of studying how to describe soft-
ware concepts in a particular application domain. Although these principles have
been developed with respect to the specification of new software, they are equally
applicable to studies of existing software in order to understand and determine the
concepts on which it has been based. The work reported here seeks to draw on these
guidelines and apply them in the description of software concepts embodied in exist-
ing software systems. The process outlined by Maibaum and Turski is preparatory
to making a formal specification of a software system. Formally re-specifying the
software concepts has not been part of this research. The studies reported here have
been based on describing software concepts as realised in existing software already

specified, but often lacking a clear identification of its underlying concepts.

2.4 Conclusions

This chapter has reviewed general research in reuse and specific research projects
concerned with supporting reuse with particular emphasis on the Practitioner project.
Its aim has been to provide the background and motivation for the research of this
thesis. Four areas of reuse research have been identified, and the concern of this
thesis have been located within these as being primarily one of reuse representation

to support system composition at the conceptual level of design.

In the following chapter, consideration will be given to the requirements that sup-
porting software concept reuse places on a language and a development of the ques-
tionnaire to meet these requirements will be presented. Subsequent chapters will
be concerned with the application of this work and an evaluation of its usage in

practice.

43



Chapter 3

Representation of Software

Concepts for Reusability

This chapter discusses in greater detail the form of software concept descriptions
developed to support software concept reuse. The requirements for a language to
support software concept reuse are elaborated and the form of software concept
descriptions developed as part of this research is discussed in the light of these

requirements in order to establish its adequacy.

3.1 Introduction and Overview

To support reuse of software concepts, a representational form with a certain amount
of minimum expressive power is required. Here an elaboration of what is required
will be made and it will be shown how the concept description form, the CDF, can be
considered as such a representational form. The case will be made for classifying the
CDF as an Interconnection Language - a class term that will be used here to cover
languages based on developments of the Module Interconnection Language (MIL)

concept originally proposed in [54]. A short survey of interconnection languages is

44



included here as background. Two developments of MILs that have influenced the
development of the CDF: Goguen’s proposal for a Library Interconnection Language,
LIL [69] and the System Structure Language, SySL [146, 149], are examined. Both of
these developments arguably could provide the expressive power needed to represent

reusable software concepts, but each has drawbacks which will be discussed below.

Other contemporary work on languages to support reuse is also reviewed, and this
provides an additional basis for comparison to the approach taken in developing
the CDF. This work includes the framework architecture language and the simple
component description language, Alfa, investigated by Henderson and Warboys [75,
76]. Their work is relevant to the discussion of the CDF because of its support for
the abstract description of system architecture. There is also a close resemblance
between the CDF as a canonical form for the description of software concepts to
support their reuse and the notion of the canonic software component defined in
the Pi-language using the concept of a concurrently executable module (CEM) and
Weber’s approach to describing the integration of reusable software components

[167].

3.2 Background: Review of Interconnection Lan-

guages

Interconnection languages provide the conceptual background to the development of
the CDF'; these are reviewed below, and two of these which particularly influenced
the CDF’s form are described separately in greater detail using the same example,

i.e. the concept of order processing in a strip processing line.

The composition of systems from existing components through a process of intercon-
nection was first explicitly addressed by DeRemer and Kron [54] in the mid-seventies
with their formulation of the basic principles of a Module Interconnection Language

(MIL) and their recognition that such a language allowed large systems to be pro-

45



grammed by means of specifying the interconnection of their parts independent of
the programming of their parts, that is, modules. DeRemer and Kron characterised
this distinction as Programming-in-the-large versus Programming-in-the-small. Pro-
gramming in the large requires more than the separation of specification of modules
interfaces from their corresponding module implementation as realised in several
languages developed in the the late seventies, notably Wirth’s Modula and the Ada
language; in addition, it requires a means of separately specifying the system archi-
tecture, that is, the interconnections or structure of modules to form a composite

system.

A related concern in the development of systems is their effective construction; this
led to the development of software build systems such as Feldman’s pioneering make
[62] tool which enables regeneration of software systems from separately compiled
modules. Tichy extended MIL principles and brought them together with develop-
ments in configuration management and version control techniques [154]; this work
has been the basis for various support tools developed as part of IPSE projects:
the Gandalf project at CMU [68], the Adele project at LGI, Grenoble [61] and the
ECLIPSE project in the UK [146]. A more thorough survey of MILs with examples
has been provided by Prieto-Diaz and Neighbors [124]. The major contribution of
MILs is that they provide a means of expressing the architectural design of a system

and can be used to control the configuration of specific system implementations.

A development of MIL principles by Goguen [69] has been to propose the use of
MILs not only to assemble code components, but also to assemble modularised
formal specifications of components. Goguen has made an important distinction
between horizontal and vertical composition. MILs address horizontal composition
of systems, that is connection of components at a given level; vertical composition is
concerned with moving between levels of abstraction, say from the system design to
its implementation. Goguen’s insight has been to integrate transformational design,
that is vertical composition, with horizontal structuring. Here by transformational
design, we mean the view of programming as a series of linguistic transformations

[95] from a high level specification to an executable form.

46



Within the ECLIPSE project, Sommerville and Thomson have developed the system
structuring language, SySL [149]. Like LIL, SySL allows the description of systems
at various levels of abstraction to describe the static structure of systems. These
two languages, LIL and SySL, are discussed below in greater detail as they have

influenced the development of the CDF for representing the structure of software

concepts.

3.2.1 Goguen’s Library Interconnection Language: LIL

Central to Goguen'’s proposal of LIL is the need for a common formalism to underlie
the integration of the multitude of entities associated with the software development
process: code, documentation, requirements, specifications, designs, project data,
etc. The advantage of such a common ground is that it ensures representations and
assumptions about them will be compatible. As Goguen notes, Cohen and Jackson
argued strongly that the ESPRIT Programme should be based on a common formal
ground [50].

Goguen has proposed a library interconnection language, LIL, as means of assem-
bling large programs from existing entities; thus reuse is achieved by interconnecting
instances of the same entity in more than one program. Reuse in the context of a
development environment with a database of entities ranging from requirements,
specifications, design histories, code to project status information is not simply lim-
ited to reuse of code components. In Goguen'’s proposal integration of these diverse

entities is achieved by describing them all in a common formalism: LIL.

LIL provides for formulation of high level specifications and description of general
parameterization mechanisms. An important feature of LIL is that through the use
of theories, semantic descriptions consisting of either formal or informal axioms, may

be associated with entities or entity interfaces.

There are three major semantic concepts which characterise LIL:

47



e theories which associate semantic descriptions (either formal or informal) with

components
e views which describe semantically correct bindings at software interfaces

e composition, both horizontal and vertical.

In LIL, theories declare the properties that an actual parameter must have when
substituted for a formal parameter. Views express that a given entity satisfies a given
theory in a particular way. Explicit connection commands are used to express how
to compose a system from its components. The basic LIL entity is the package; it is
structured like a theory but unlike a theory actually has implementations associated

with it. In LIL, packages and theories may both be parameterised.

Below is an example albeit incomplete illustration of LIL where it is used to describe
an Order Processing System in a Strip Processing Line (SPL below).

theory ORDER is
types ORDER.TYPE
functions

vars
axioms

end ORDER

view SPL.ORDER.DEF :: ORDER = SPL_ORDER is

— defines a view of SPL_.ORDER as an ORDER

types (ORDER.TYPE =SPL_ORDER )

end SPL.ORDER_DEF

generic package ORDER_PROCESSING[ORDER.TYPE :: ORDER] is
~ order processing package with interface requirement ORDER

types

functions

vars O : ORDER;...
axioms

end ORDER_PROCESSING

make ORDER_PROCESSING_IN_A SPL is
ORDER_PROCESSING{SPL.ORDER.DEF] end

— here we instantiate the parameterzed ORDER_PROCESSING
— with the actual parameter SPL.ORDER_DEF

— which defines a view of SPL_.ORDER as an ORDER.

In the above example, horizontal composition is achieved with each theory and

package description by decomposing the description into the parts listed such as

43



types, functions, vars and azioms. Vertical composition is achieved through the use

of make and view.

3.2.2 The SySL - ECLIPSE System Structure Language

The SySL language developed as part of the Alvey ECLIPSE Project allows the
description of software structure in terms of its components and is supported within
the Eclipse Integrated Project Support Environment by various tools. These tools
and the SySL language have been described in [146, 149, 148]. The account given
here is based on [149].

In SySL, systems are described by use of a class construct; and structure is de-
scribed in terms of dependencies on other subsystems. Subsystems may themselves

be described by further classes. A system description in SySL consists of two parts:

e a generic part defining the class and

¢ a descriptive part i.e. the instantiation of the generic part.

The first part may be viewed as a template for a number of potential systems; thus,
SySL may be used to describe software families. The instantiation of the generic
part gives details of the specific software components which comprise the system and
their interfaces. Assertions are used to associate attribute information with classes
or particular components; for example, these are used to express constraints such as

both optional components in a class cannot be absent.

SySL allows the user to distinguish between systems and components; compo-
nents need not have a structure. Interfaces to both systems and components are
defined by means of a provides clause and requires clause with an additional ex-
ternal clause to indicate dependencies on components defined elsewhere required

for configuration.

49



Below is an example of an incomplete SySL description of an Order Processing
System in a Strip Processing Line. This example illustrates the structuring features
of SySL discussed above. Note that conventionally in SySL, class names are given
in capital letters.

class ORDER_PROCESSING_SYSTEM is (order_processing-system.in.strip-process.line)
structure ORDER.PROCESSING.SYSTEM is

DIALOGUE_SYSTEM,

COMMUNICATION PROCESSOR,

ORDER_PROCESSING,

DATA _RECORDING,

GROUP.LEVEL.CONTROL,

MATERIAL.MANAGEMENT

end structure

structure ORDER_.PROCESSING ia

end structure

system order_processing system-in strip-processline : ORDER_.PROCESSINGSYSTEM is
DIALOGUESYSTEM => operator.interface,

COMMUNICATION PROCESSOR = datacommunication.subsystem,
ORDER_PROCESSING = order-management,

DATA _RECORDING = reporting-and.logging,

GROUPLEVEL.CONTROL = set_point_processing,

MATERIAL MANAGEMENT = material tracking

end system

component order.management : ORDER.PROCESSING is

end component

SySL does not treat systems and components in an orthogonal fashion; SySL does
not appear to address the forming of component classes even though this could be
easily done with the machinery SySL already has for class definition, i.e. explicit

enumeration.

It must be admitted that SySL is not intended for the description of system struc-
tures to support their reuse. Its intended area of application is as an aid to system

understanding during the development and construction of large software systems.

3.2.3 Related Language Developments to Support Reuse
at a High Level of Abstraction

With their development of the framework architecture language, Henderson and

Warboys aim to address the needs of the system engineer who must take two distinct

50



views of the system to be developed: one in terms of the business needs to be
satisfied and the other in terms of the technology with which they can be met
[75]. This is a simplification as in many domains both the business needs and
the technological solutions may be themselves expressed from several viewpoints
[41]. Where the reported work of the Practitioner project [22] strongly supports
Henderson and Warboys in their assertion that a common language is required with
which to communicate proposed solutions to those who need to be convinced that
they satisfy their business needs and to those who will be charged with the task
of realising the solutions technically, i.e. the implementors. They stress that it
is also necessary that the language be at a very high level of abstraction, i.e. is
very noncommittal about design details. The basic notion at the heart of their
language is that of a component as a provider of services. Primitive components
are defined in terms of the services they require and supply. The language they
propose expresses systems in terms of the services they provide using "+” to denote

horizontal composition and ”,” with square brackets to denote vertical compositions.

Henderson and Warboys attempt to ensure that their language is sufficiently for-
mal to allow a simple calculus of manipulations of system structure descriptions
to be made. They propose that existing systems be analysed and described using
the Framework Architecture approach and that these descriptions be exploited in
determining the potential for component reuse. Through use of their flatten opera-
tion, they remove system structure and reusing system structures does not appear
to be part of their approach even though they do provide a means of representing

hierarchical structures and composing subsystems in hierarchies.

In another paper, Henderson and Warboys describe Alfa [76]. In Alfa, as above,
components are defined in terms of services that they require and supply; and sys-
tems are defined as structures of components. Alfa appears to be a development
of the earlier framework architecture language. An innovation is the introduction
of generic components to describe any one of the possible versions (or implemen-
tations) of a component; thus the required interface of a generic component is the
maximum interface that will support whichever actual version instantiates it and

the supplied interface is the minimum. A mechanism for treating structured com-

ol



ponents and generic components as "Black Boxes” is also introduced; this enables
a determination whether or not one component can be used to implement another,
i.e. by supplying at least the services supplied and requiring at most the services
required. In Alfa, interfaces are described using C++ function prototypes which
the authors found adequate but not ideal. It is noteworthy that they would like to

return to a more abstract view of interfaces,.

Another development to support reuse at a high level of abstraction can be found in
Weber’s notion of the canonic software component defined in the Pi-language using
the concept of a Concurrently Executable Module (CEM) and Weber’s approach to

the integration of reusable software components [167].

Weber contends that integration is central to the concept of reuse and focuses on
establishing the technical basis of integration in terms of canonic forms for de-
scribing reusable software components and architectures. Weber views integration
as consisting of an analysis of parts and their subsequent synthesis into the new
whole. In the paradigm formulated, software integration must be based on provi-
sions built into software for its later integration. This is the basis of a properly
engineered integration; insufficiently prepared software can only be integrated after
its proper reengineering. Analysis of software parts presupposes that software is
properly structured, specified and documented. Structuring provides the basis for
decomposition into component part; specification is an aid to understanding func-
tionality; and documentation provides for different realms of reasoning about the
system from different angles. Weber claims that not all - and sometimes even none -
of these provisions are really built into existing systems. For synthesis of software, an
integration framework is required. This provides for both interconnection defining
static (i.e. structural) relations and interoperation defining dynamic relations dur-
ing execution. Weber introduces one type of these - a software "component model”
and explains how it supports the reuse of software. Weber’s work has been included
here because his emphasis in the software component integration framework is on

structural relations.

In Weber’s concept of reuse, the integrated component, C with functionality S5, is

52



the result of integrating components, CI with functionality S1, and, C2 with func-
tionality 52, under the integration framework, 7, where the integrated component C

serves as the integration framework. This relationship is expressed as follows:
C(S) = { C1(S1), C2(S2) } under .

Weber introduces term canonic software component to denote an abstract entity
that exhibits the properties common to all components ever to be reused. Weber
considers that any development of understanding of functionality requires a formal
denotation of the semantics for each component. Thus he bases his canonic software
component on the concept of a Concurrently Executable Module (CEM) as defined

in the Pi-language.

He argues that such uniformity in describing software components is essential in
large-scale software production with reuse. Without it, analysis and synthesis would
be unmanageable and not amenable to automation. He acknowledges that currently
as no canonic form of semantics exists, reusers must rely on hard-to-understand do-
main semantics. He characterises practical software reuse in industry as a mixture
of "constructive” means, i.e. a priori denotation of interfaces, and analytic means, a
posteriori determination of existing component interfaces. Here his characterisation
appears to follow the distinction that will be made below in discussing reorganisa-
tion of software concepts and interface checking between synthetic construction and

analytic reconstruction.

3.3 Requirements for a Language to Support Reuse

of Software Concepts

There are two important aspects of reuse which must be expressible in a language

aiming to support the reuse of software concepts in design:

93



e reuse of software construction principles via generic models of system archi-

tecture, and

e reuse of software theories (either formal or informal) via generic components.

It is of course also important that any language covering the generic cases will also
support the reuse of specific system architectural and component concepts. For
example, when designing a compiler, a software engineer can reuse the established
principles of compiler construction and these give the designer generic models or
frameworks of compiler design into which various component design concepts such as
the lexer, the parser, code generator, optimizer etc may be slotted. These component
design concepts may themselves be pre-existing i.e. reusable components. In the case
of a particular component, say the parser, its design may have been automatically
derived as a result of well understood theory, in this case, that of parser generation.
The software engineer might also design the compiler working within very specific
constraints, for example, to reuse an existing back-end for code generation within a

family of existing compiler models.

From the above, three requirements can be identified, as follows:

R1 a means of describing generic system models and relating specific system designs

derived from a generic model,

R2 a means of describing generic component concepts and relating the derivation of
specific components from generic components which have well understood the-
ories (this derivation is an example of what Goguen calls vertical composition),

and

R3 a means of describing the composition of reusable components to form the
system design at a particular level of abstraction (Goguen’s horizontal com-

position).

As the concern is to support the reuse of design concepts which can be described

at various levels of abstraction as well as being structures of component parts at

54



any particular level, support in the language for describing vertical and horizontal

composition is essential.

A more general way of expressing the requirement for vertical and horizontal com-
position is to consider that systems are built from parts. Once built, systems them-
selves can be conceived as part of some larger system. New systems may be designed
in an evolutionary manner by small partial changes, i.e. new parts for old; or by
developing new configurations of existing parts, or by a combination of these. Both
Henderson and Warboys, and Weber in the papers cited above make the point that
ultimately every system is a component in some higher level system. An essential
element of any design language is support for the hierarchical whole-part structuring

of system descriptions at various levels of abstraction.

In addition, as well as capturing the structure of composite concepts, a means of
describing the interrelation of their parts at a particular level is required. For any
particular concept, it is important to describe its external interface; and for a com-
posite concept, as well as describing the internal interfaces of its parts, it is required

to spell out the interface bindings i.e. to relate external and internal interfaces.

There are two distinct cases where the designer developing a new system design with
the software concepts could benefit from some support for interface checking. One
is where existing software concepts are brought together in a new composition; the
other case is where one or more existing software concepts are substituted within
an existing concept decomposition. The distinction between these two cases can
become blurred, for example, depending on the number of substitutions. However,
from the standpoint of interface checking, particularly where the designer’s intent
is to preserve the primary concept’s overall specification (i.e. the latter case), it is
an important distinction. In the first case, i.e. the case of a new composition from
the component concepts and their given interfaces, it is possible to reason infor-
mally about the composition and the most appropriate interface bindings required
to achieve the desired overall new system. When combining concepts, the designer
must determine how the new concept’s overall function can be achieved by interfac-

ing the chosen set of concepts. In the second case, substitution of existing concepts in

35



a known decomposition, it is necessary to compare the existing interfaces’ bindings
needed with the given interfaces of the concepts to be substituted and to determine
whether or not a reasonable interconnection is possible. In substituting each new
concept within a given concept decomposition, the designer must check that the new
concept has the appropriate interfaces to fit within the known decomposition. The
first case can described as synthetic construction of a new concept and the second as
analytic reconstruction of a new concept. These two cases are illustrated in Figure

3.1 - Two Cases of Concept Interfacing.

Synthetic Construction via Analytic Reconstruction via
Piecemeal Composition Known Decomposition

Possible %

substitute = ¥= A

concepts
for A

Figure 3.1: Two Cases of Concept Interfacing

It is also possible to describe the same concept from several different viewpoints
where these viewpoints are related as different conceptual levels of abstraction.
These notions, levels of conceptual abstraction, and horizontal and vertical struc-
turing through composition, are not simply two ways of describing the same thing.
Each design concept found at a particular conceptual level of abstraction may have
its particular design from its specification down to its implementation, its own ver-
tical composition, i.e. be described at various levels of abstraction in its design from
its specification down to its implementation, as well as being horizontally composed
of parts within these levels. To make this distinction clearer, in Figure 3.2 - 3-D
Concept Levels of Abstraction with Vertical and Horizontal Decompositions, a fig-

ure from [152] has been adapted to illustrate how the concept of a modern computer

96




can be described as using three dimensions:

1. levels of abstraction in the concept description,
2. a hierarchy of whole-part descriptions, and

3. levels of abstraction going from the specification to the implementation; these

constitute the levels of a particular design abstraction.

py 2
Levelsofa / Implementation level
particular design
abstraction

Design levels

Requirements level

Level 5 Problem-oriented language level high level languages ///

Level 4 Assembly language level assembly language //
Six . . operating system /
Levels Level 3 Operating system machine level instructions /
of /
Modern Level 2 Conventional machine level machine instructions /
Computer /
Design Level | Microprogramming level microcode instructions /

Level 0 Digital logic level logic components, gates /

Hierarchical Decomposition

into Component Parts

Figure 3.2: 3-D Concept Levels of Abstraction with Vertical and Horizontal Decom-
positions

First the concept of a modern computer is described from a number of viewpoints
such as it is conceived by hardware and software designers at a number of levels - this
gives the levels of abstraction to the concept. At each level, component parts can

be identified and composed horizontally, e.g. basic logic components into integrated

57



circuits at the digital logic level; and in describing a particular integrated circuit,
its functional specification can be given as well as its more detailed design and

implementation forming its vertical composition.

The Practitioner project’s goal of supporting reuse of software concepts as realised
in existing software systems imposes a further requirement of providing a means of
linking the elements of the software concept description with software life cycle doc-
uments associated with the existing software which embodies these concepts, so that
the reusers have the possibility of improving their software concept understanding

by refering to existing software documents including code.

From the above discussion, three further requirements have emerged giving a total

of six requirements for the CDF, as follows:

R1 Generic Architecture Derivation a means of describing generic system mod-

els and relating specific system designs derived from a generic model,

,R2 Generic Component Derivation a means of describing generic component
concepts and relating the derivation of specific components from generic com-
ponents which have well understood theories (this derivation is an example of

what Goguen calls vertical composition),

R3 Concept Compositions a means of describing the composition of reusable
components to form the system design at a particular level of abstraction

(Goguen’s horizontal composition),

R4 Interfacing Concepts a means of describing interfacing concepts used in the

construction of a composite concepts at a sufficient level of abstraction,

R5 Conceptual Viewpoints a means of describing the design from different view-
points where these may be related as conceptual levels of abstraction in the

application domain, and

R6 Explicit Links to SLC products a means of linking the concept description
with the software life cycle documentation if concepts in existing software are

being described.

58



In the following section, it is shown how the CDF has been developed in order to

meet the requirements identified above.

3.4 The CDF - A Standard Form for the De-

scription of Software Concepts

Software concepts as realised in existing software systems are of course implicitly
described by the software which implements them and its accompanying documen-
tation such as requirements statements, specifications, detailed designs, manuals
and other reference material about the software and its development, underlying
concepts, etc. One of the aims behind the development of the CDF has been to
conceive a filter through which the reuser could access relevant material needed to

support the reuse of software concepts in the development of new systems.

The CDF is a development of a form for describing software concepts to support
reuse, known as the questionnaire, which was proposed in [59]. The main entry
headings of the questionnaire are listed in Appendix B. Initially as developed the
questionnaire followed very closely the software documentation standard of one of
the industrial partners’ business divisions. This early form was found to be largely in
line with best practice as described in the IEEE Recommended Practice for Software
Design Descriptions [26]. The advantages of using a standard form of descriptions
such as the IEEE Std 1016 or an internal company standard are that the informa-
tion needed for planning, analysis and implementation as well as maintenance and
evolution of the software system can organised and accessed easily. In addition,
adherence to the standard form ensures that records of design details which have

been preserved provide a common basis for reuse.

However, neither the early questionnaire form nor the IEEE Std 1016 explicitly
recorded versions of concepts or the relationship between generic design concepts

and specific instances derived from them. The original questionnaire only made

59



provision for describing a concept’s historical development, mainly through links to
reference documents. While this could provide a means of indicating the historical
derivation, it was inadequate for relating generic concepts to specific concepts. There
was also no way of relating alternative descriptions of the same software concept
found in similar software systems. In CDF, concept versioning was introduced and
the recording of the derivation relation which relates a particular version of a concept

to its parent concepts was made much more prominent.

The questionnaire’s entries for describing concept interfaces were based on identify-
ing data inputs and outputs, control inputs and outputs, and reactions to exceptions.
This level of detail was not recommended in the IEEE Std 1016 and in early ex-
periences using the questionnaire it was found hard to supply without study of the
detailed design. In the CDF, the specification of concept interfaces was streamlined

as detailed below.

Both the questionnaire and the IEEE Std 1016 address the recording of the concept
decomposition. In the IEEE Std 1016, the decomposition description records the
division of the software system into design entities. In the questionnaire, there is an
entry for recording a concept’s immediate parts where these are those concepts (or
functional entities) out of which the concept is composed. In addition, immediate
parts are classified as either active, i.e. functions, procedures, tasks, etc., or passive,
i.e. data items, files, etc. Here as with interfaces, the approach in the CDF develop-
ment has been to streamline the description of a concept’s decomposition and make
it more explicit. The rationale for this again came from experience of applying the
earlier questionnaire and the desire not to preclude decompositions based on object

oriented approaches to design where the active/passive classification is difficult to
make.

The deficiencies in the questionnaire identified above can be summarized as follows:

D1 no explicit recording of concept versions,

D2 no recording of relationship between generic design concepts and specific in-

stances derived from them,

60



D3 historical development inadequate for relating generic concepts to specific con-

cepts,
D4 no way of relating alternative descriptions of the same concept,
D5 interface description is too detailed,

D6 active/passive classification of immediate parts is restricting.

To overcome these deficiencies, during the CDF development, concept versioning
was introduced and concept interface specification and concept decomposition de-
scription were streamlined. In addition, the recording of two important relations
amongst concepts, concept derivation and concept decomposition, was made more
prominent. These relations give rise to two important conceptual mappings for any
particular concept version; a derivation map showing its history and a usage map

showing its employment within other concepts.

Figure 3.3 gives an overview of the author’s work relating to the development of the
CDF. As a result of studying Interconnection Languages and other language devel-
opments to support reuse at a high level of abstraction, six major requirements were
identified. In addition, as a result of analysing accounts of users of the Practitioner
questionnaire and comparing it to IEEE Std 1061, a number of deficiencies in the
questionnaire were recognised. The CDF has been developed from the questionnaire
to satisfy these requirements and overcome these deficiencies. In what follows, more
details of how the CDF supports the recording of these aspects of concept descrip-
tion will be given and the relevant parts and associated entries of the CDF will be

related to the requirements identified earlier and the deficiencies listed above.

The CDF has four main parts; these are as follows:

CDF1. Concept Version and Derivation,
CDF2. Concept Specification,

CDF3. Concept Decomposition, and

61



Results of Studying
MILs and Other
Developments
Identification of
Requirements
Results of RItORS RI0RS
. . Development of
Experience Using the Questionnaire
the Questionnaire into CDF

Identification of
Deficiencies in

Dlto D6

Results of Questionnaire

Comparison of

Questionnaire
with IEEE1061

Figure 3.3: Overview of Work Relating to CDF Development

CDF4. Concept Links.

The latter two parts are optional. The Concept Decomposition is only included
if the concept being described is non-atomic and has been decomposed in further
concepts. The Concept Links are filled in if the concept can be linked to an existing
implementation and software documentation and/or other references to giving a
more detailed description. Note that in the list above and in the following discussion
of the CDF, a link has been established with a concrete syntax developed by the
author and given in Appendix C by prefixing each part of the CDF with the decimal

numbering used in the concrete syntax of Appendix C.

The CDF supports the description of more than one version of a software concept
through the use of version numbers. In the first part, the concept name and version
number are recorded followed by a more detailed description of its derivation. Al-
though the CDF records the concept name and version number, these may need to

be revised by the administrator of the concept database when a particular CDF is

62



installed to ensure the integrity of the name space of the concept database.

From the reuser’s point of view, a concept has a name and may exist in several
versions each identified by a version number. Together, the concept name and ver-
sion number identify a unique concept description, a completed CDF. Graphically,
the CDF for the first version of a concept (V1 in the figure) can be unfolded as
follows into four headings as shown in Figure 3.4. Note that this graphical form was
proposed in order to allow the reuser to unfold the concept description recorded in

the CDF to the level of detail required [31].

[ Concept _]

Concept | Vi ]

Congept [vi
Derivation
Specification
Decomposition

Links

Figure 3.4: Progressive Revelation of Concept Details

3.4.1 Provision for the Recording of the Concept Deriva-

tion
The derivation covers the following aspects of the software concept:

CDF1.3.1 Description of Purpose,
CDF1.3.2 Authorising Person,
CDF1.3.3 Created by Person,

63



CDF'1.3.4 Date of Creation or Entry,
CDF1.3.5 Source Concept Versions, and

CDF'1.3.6 Creation Processes Used.

The first of these entries, Description of Purpose, is intended to record the require-
ments that gave rise to the concepts’ development. It gives an account of what role
of the concept plays in the context of a particular application domain. This infor-
mation is helpful to the reuser in determining whether or not this concept may be
useful in meeting the requirements for which the concept is being considered during
design-with-reuse. The terms used in the entry may also be helpful in the retrieval

process.

The entries concerned with recording the authorising person, the concept creator
and the date of creation or entry in the concept base of the PRESS are not so
relevant to assisting the reuser in retrieving or understanding the concept. They are
used to give guidance on the accuracy and currency of the CDF's held in the concept
base of the PRESS and allow the development of the concept base over time to be

monitored.

The final two entries in this part of the CDF are related to the first two require-
ments noted above. The first of these allows the derived from relation to be estab-
lished between a new concept and existing concepts. This relation is important for
understanding the intellectual development of a concept. Typically these will be
references to other concept descriptions. The second entry allows the intellectual
processes leading to the development of a new concept such as generalisation or
specialisation be noted. Tools used in creating the software concept such a parser
generator or 4GL should be recorded. These may well be references to other concept
descriptions. With these two entries, it is possible to establish relations between con-
cepts and record more than their immediate description, as by using a set of CDF's
related through either of these entries, a design history of related concepts can be
described. It is possible to systematically trace the derivation of a concept through

following the derived from relation amongst a set of CDF's by inspecting in turn the

64



concepts from which each concept has been derived. Such information is often over-
looked in standard design description techniques, but is important to the potential
reuser as an aid to understanding the concept. This is particularly the case where
a generic version of the concept has been abstracted from several specific concept,

and subsequently can be given as the source concept in their respective CDF's.

3.4.2 Provision for Recording the Concept Specification

The concept specification is concerned with describing what the software concept
does and its interfaces that are required and provided externally. The following

entries are found in this part of the CDF:

CDF2.1 Definition,
CDF'2.2 Interfaces Provided,

CDF2.3 Interfaces Required.

The definition entry of this part of the CDF makes provision for recording the spec-
ification of the software concept either formally or informally. Where the concept
specification has been parameterised this can be recorded under the entry, generic

parameters. Provision is made for recording the following items under this entry:

CDF2.1.1 Function,
CDF2.1.2 Formalism,
CDF2.1.3 Generic Parameters, and

CDF2.1.4 Description.

Of these, only the last is required to be present in a filled in CDF as this is the most

minimal definition of the software concept.

65



Through the CDF, external interfaces are recorded and distinguished as being ei-
ther required or provided. The interfaces are simply listed under the last two entries
by giving the name and version number of the relevant interfacing concept. These
may be described in additional CDF's depending on the degree of domain analysis
undertaken. Where additional CDF's have been completed, the subsequent interfac-
ing concept descriptions can be either formal or informal. These external interfaces
are bound to interfaces of the component concepts through entries in the Concept

Decomposition described below.

A case can be made for giving formal semantics to the concept interface descrip-
tions as this would allow interface checking as discussed below, but the case is not
clear-cut. In the above discussion on requirements, two cases can be distinguished
where interface description is required. In both cases where the matching of in-
terface descriptions is required, using given CDF's, the designer must rely on the
informal semantics of the interface names and the specific semantics of their asso-
ciated concept descriptions if these exist; the thesaurus can help if the names and
descriptions use related terms. Conventional typing of the interfaces is unlikely to
be of much relevance, unless it is in terms of high level domain abstractions that
have been standardised. For example, matching the interface types in terms of basic
data types such as real and integer or UNIX tool byte streams is likely to be at too
low a level. At this stage the interface semantics must be specified in terms that en-
able the designer to understand it at an appropriate level of abstraction compatible
with the application concept’s overall description. These considerations anticipate
work in progress by Henderson and Warboys who acknowledge there is not yet a
clear solution to the conflict between giving more formal semantics to interfaces and

remaining sufficiently abstract to support high level design.

For example, consider the case of designing a compiler based on a given abstract
machine defined by its abstract machine code, a form of intermediate code. Compil-
ers using an intermediate code are commonly constructed in two parts, a front-end
which translates the input source language to the intermediate code and a back-end
which translates the intermediate code to the output target language. Informally, it

is easy to determine that these two concepts, the compiler front-end and the compiler

66



back-end, can be interfaced. Detailed inspection may show that the intermediate
code of the front-end does not quite correspond to that of the back-end. In this case,
some adaptation of one or other of the concepts may be required: or alternatively,
the designer may choose to introduce a bridging concept to perform the requisite
code transformations. At the conceptualisation stage, such devails need not con-
cern the designer and the informal determination of compatibility of interfaces is

sufficient.

Pahl and Beitz comment on the appropriate level of detail at which to consider
interfaces [110]. Too low a level may exclude concepts that could be useful if the
interface is widened. Thus they counsel against narrowing the interfaces early on in
the design process. As the concern in the CDF is with supporting concept descrip-
tion, this is another argument for keeping the interfaces descriptions informal. More
generally, the case for deferring the detailed description of interfaces can be made

along the same lines as the general case for deferring decisions in design as long as
possible [153].

However, the case is not so clear-cut. From a practical standpoint, empirical studies
reported in [14] have shown that a high percentage (around 68%) of errors that
appear at the system integration and test phase are program-module-interface errors
[113]). Clearly, it would greatly assist designers if such errors were found much
earlier on in the design process. It has been proposed that interconnection languages
could solve this problem by taking their interface semantics from an underlying
specification language; for example, see Goguen’s LIL proposal in which OBJ is
recommended for this purpose. This solution is open to users of the CDF provided
descriptions in an appropriate specification language are available when completing

the entries in this part.

67



3.4.3 Provision for the Recording of the Concept Decom-

position

The CDF like the earlier questionnaire provides a recursive method of software
description; concepts are decomposed into other concepts which are described by
further CDF's until the concepts identified are atomic and can be defined directly
without any further decomposition. In this way, a set of CDFs can be used to

describe a concept that has a hierarchical whole-part structure.

In the concept decomposition part of the CDF, a separate entry is made for each

component concept. The entry contains the following details:

CDF3.1.1 Concept Being Instantiated given by concept name and version number,
CDF3.1.1.3 Instantiation Paramenters or Specialisation,

CDF3.1.1.4 Purpose Served or Reason for Incorporation, and

CDF3.2 Interface Bindings.

The middle two items have been included to give the reuser insight into how a partic-
ular concept has been instantiated within another software concept and to indicate
its purpose or reason within the decomposition. This information may be useful to
the potential reuser in understanding why a particular concept decomposition has

been made.

The interface bindings are used to links the interfaces of each component concept
with the main concept’s provided and required interfaces and to establish any inter-
nals interface links with other component concepts. This entry consists of two lists,

as follows:

e external concept interface bindings, and

e internal concept interface bindings.

68



It should now be clear how the CDF supports both horizontal and vertical com-
position. Each concept is horizontally decomposed into its immediate component
parts and their interfaces are described. Thus, the CDF can be used a means of
describing the composition of reusable components to form the system design con-
cept as required above, and as a means of describing interfacing concepts used in

the construction of a composite concepts as required above.

In addition, each individual concept description given by means of the CDF can be
vertically decomposed into a high level description of its purpose, a specification, a

more detailed design and finally links to an implementation as detailed below.

3.4.4 Provision for the Recording of the Concept Links

This part of the CDF does not contain actual descriptions; rather it addresses the
final requirement identified above as it provides a means of linking the concept
description with the software life cycle documentation as well as other references
which have been used in the descriptions found in the other parts of the CDF filled

in for a particular software concept.

In this part, provision is made for recording the following entries:

CDF4.1 Code Module,
CDF4.2 Data Definition,

CDF4.3 Documentation and

CDF4.4 Test Package.

All of these entries are optional although where the software concept being described
has been realised in existing software, establishing these links as a matter of record

will meet the reuser needs which resulted in the above requirement.

69



Where the software concept being described has an associated implementation, the
first two entries in this part of the CDF allow links to be established with the source
code and any relevant data definition documents. The fourth entry allows links to
any test package to be used with the concept. The documentation entry is used
for any of the other software documentation or reference works which have been
consulted in preparing a particular CDF. These links allow the reuser to follow up
and reuse code if available as well as simply trace a particular CDF back to its

original sources.

3.4.5 CDF Overview

One way of viewing the CDF is simply as a structured form for recording abstracts
of existing software documentation concerning a particular software concept. In a
sense, this is quite a valid view as in order to complete the various entries on the
CDF for a software concept realised in an existing application, the domain analyst
could abstract the relevant information from the associated software documentation.
For example, in the CDF, the concept’s description of purpose could be abstracted
from the original requirements documentation. The specification given in the CDF
could be abstracted from the original software specification. The decomposition
into component concepts could be abstracted from the original high level design
documentation. The links to existing documents in the final part of the CDF are
not abstracts, but these enable any links to existing documentation to be made
explicit. For example, the test procedures developed during the test activities of
the construction phase could be used to complete the entry recording links to a test
package. Figure 3.5 gives an overview of how work products associated with each
phase of the software life cycle can be used in completing various entries in the CDF.

This figure presents a simplified view of the software life cycle adapted from [98].

The CDF has an abstract syntax defining its structure independent of any concrete
representation such as the graphical form developed by the author and used in

Figures 3.6, 3.7 and 3.8. The CDF abstract syntax can be found in Appendix

70



ymceeccceccsseccavacosaansocarane eecenna,

:’ ‘; Waork producty’ New Concept Description -
: Product Planning j : documents DO - D4
' .
H .
: Y : Requirements Part 1
.
E Clarify design task “ specification and Concept Version and Derivation
' H
: Determine scope of system . System faxonoiy Do
\
' ;
)
! . . Draft overall
+. Cognition N . ’
.................... systen design D1
yemeeesccscccaceen ceamesececcccconeranan .
.
,
+
! System Specification Functional specitication Part 2
1
H Determine Functional Structure functional structure and Concept Specification
.
H Identify Component Concepts component concepts D2
: ]
‘
: .
», Conceptualisation H
ceesceeee - .ee .:. ..................
R necscccesann §ooomemmmemeeoeee . - - Part 3
: . , . 1 E Detailed design with Concept Decomposition
2 Detailed architectural design . interface specitications
H Component specialisation : andd bindings D3
' J 3
‘ ! :
: y :
1] . B
! X ' Complete system sources, Purt 4 - Links
' Modlule implementation and test j H . P . ¥ .
! S ) ) | - integration and test 4.1 Code Module
stem integration and fest .
; Sy 5 g ) : procedures 4.2 Data Definition
stem Documentation .
v\ yste J o documentation D4 4.3 Documentation
\, Construction ; K 4.4 Test Package
............... eedeenactnniannansnacs
')

( Reuse review of work products ’

Figure 3.5: Software Life Cycle Work Processes and Work Products Related to the
CDF

71



C reproduced with minor modifications from [26]. This appendix also includes an
alternative concrete form with informal annotations detailing what is expected under
each entry on the CDF. This was prepared for the benefit of engineers concerned
with filling in CDFs during the Practitioner project. Appendix D contains a short
example CDF which was filled in by the author during the domain analysis of control
systems used in steel production. Here the CDF has been used to describe a software
concept working from an account given in the literature rather than existing software

documentation.

The semantic content of CDE’s individual entries is undefined in the general case.
In so far as any entry has a semantics, this comes from the language used to fill-in
that entry. For example, a concept specification may be given using a particular
specification language or it may be described in natural language. However, de-
spite this lack of semantics, below a case will be made for considering the CDF as
an interconnection language. The CDF will also be compared to related develop-
ments, including some interconnection languages, some of which like the CDF aim

to support software reuse at a high level of abstraction.

Within an application domain, using the CDF to record design concepts, the po-
tential to record networks of concepts exists. In this way, the CDF sets describing
related concepts can be thought of as means of mapping out the conceptual space
in a particular application domain given by the conceptual levels of abstraction at
which they are described. This enables the requirement of describing the design from
different viewpoints where these may be related as conceptual levels of abstraction

in the application domain to be met through completing a number of related CDF's.

Figure 3.6 illustrates the CDF without any detailed contents, simply to show in
general the way in which a concept description is given a structure through the
CDF. Through the derivation relation, a means is provided to link generic concepts
at one level of abstraction with specific instances. In Figures 3.7 and 3.8, a simplified
graphical view of the CDF's required to describe an order processing system in a strip
processing line is given. In these two figures, the view of all of the essential relations

recorded using the CDF can be seen. These relations are as follows:

12



Concept

[v1

Derivation

Specification

Description of Purpose

Decomposition

Links

Authorising Person

Created by Person

Date of Creation or Entry

Source Concept Versions

Creation Processes Used

Description of Purpose:

....<Filled in here>.....

—>»+ Component Concept:

Lam| Definition

Interfuces Provided

Interfaces Provided:

Concept

[vi]

Interfaces Required

Component Concept:

Component Concept:

> Concept

[vi]

Concept

[vi]

Concept Being Instantiated

3 I Concept

1vil

Instuntistion Parameters or
Specialisation

Purpose Served or
Reasop for [neorporatjon

Interface Bindings

Key:

Unfolds to

Figure 3.6: Progressive Unfolding of CDF Sections

73




1. version,
2. derivation,

3. decomposition, and

4. named links (serving as a catch-all for all the relations recorded in part 4 of

the CDF).

The concept, Order Processing System, described graphically in Figure 3.7 is the
source concept for the concept of Order Processing in a Strip Processing Line de-

scribed in Figure 3.8. This can be seen by looking at the box underneath the label

Derivation in Figure 3.8.

Concept Order Processing

System

Version 1

Derivation

Process Control
System

Level 3 Control
Svstem

System

Order Processing

Links

Code Module

Data Definition

Test Package

Documentation

Decomposition

Dialogue
System

Communication
Processor

Order
Processing

Data
Recording

Group Level
Control

Material
Management

Figure 3.7: CDF for Order Processing System

These CDF's have been prepared by the author based on the study of earlier question-

naires filled in by engineers at ABB working from existing software documentation.

74




Concept Order Processing System in Strip Processing Line Version 1

Derivation Decomposition

Order Processing Level 3 Control

System System Operz_ltor
Interface

Data Comm.
Subsystem

Order

Order Processing Management
System in Strip

Processing Line

Reporting and

Logging
Links Set Point
Processing
Code Module Test Package Material
Tracking
Data Definition

Documentation

Figure 3.8: CDF for Order Processing in Strip Processing Line

3.5 The CDF and Related Developments

The CDF as presented here provides a means of describing the interconnection of
software concepts. Using the CDF, a concept can be described in terms of the
component concepts of which it is composed. The CDF also allows the interfaces
provided and required by a concept to be identified; and the internal and external
interface bindings to be described. In a set of CDFs, large hierarchically structured
system concepts can be described through decomposition at successive levels. Using
the derivation relation, a set of CDF's can also describe the derivation of specific

concepts from generic concepts at different levels of abstraction.

A software concept is a more abstract notion than a module; and it has not been the
intention to consolidate the design and construction process in a single description as
with module interconnection languages. Its support for describing interconnections
between software concepts has been detailed above. On this basis, the claim is made

that the CDF can be classified as an interconnection language, although it is not

75



claimed that the CDF is a module interconnection language. To move the CDF as a
language in this direction by giving more semantic content to its parts would defeat
its purpose. During the phase of design known as conceptual design, such detail
is not required. It is acknowledged that many aspects of existing interconnection

languages influenced the development of the CDF.

From the work on LIL, the notions of horizontal and vertical composition were taken
and support for these was established as a requirement. Unlike the LIL proposal
within the CDF, these aspects of composition, i.e. its vertical and horizontal nature,
are treated very loosely. The LIL proposal provides general parameterization mech-
anisms to support vertical composition that require much more explicit description

of parameters than has been envisaged to support conceptual design using the CDF.

The way in which the LIL proposal aims to support both formal and informal axioms
allowing whatever mixture seems most appropriate for a particular application has
been more widely applied to arrive at the CDF’s derivative approach to semantics,

i.e. CDF entries derive their semantics from the language used to fill them in.

Developing the CDF further along the lines of the LIL proposal was ruled out as ex-
tensive reverse engineering of existing software would have been required to describe

the software concepts realised in a LIL-like formalism.

From SySL, the distinction between interfaces provided and interfaces required,
found in many module interconnection languages, has been taken over and used
in the CDF where it is applied in general to any concept’s interfaces. The CDF
goes beyond SySL in allowing interfaces to be treated as concepts in their own
right with associated CDF' descriptions. Unlike SySL, interfaces have been further
distinguished as external and internal; the external interfaces of a concept are those
described at the top level in its specification while internal interfaces are those of

its component parts.

The CDF bears some similarity to the architecture frameworks language of Hender-

son and Warboys. The middle part of the CDF with decomposition is equivalent to

76



the notation for architectural frameworks given by Henderson and Warboys; how-
ever, their development in the form of the Alf language constitutes a departure from
the minimalist form of the CDF. Their work does not address the establishment of

links with existing software documents which is a key element of the CDF,

Finally, the CDF as a canonical form for describing software concepts, both com-
ponent concepts and architectural concepts can be compared with the proposals of
Weber based on CEM descriptions to support integration of reusable software com-
ponents. Here for purposes of comparison to the CDF, it is simply noted that the

constituent parts of a CEM are as follows:

the export interface,
the body,
the import interface, and

the common parameters of the export and import interfaces

and that these correspond quite closely with the constituent parts of the CDF’s

notion of Concept Specification, i.e.

Interfaces Provided,
Function,
Interfaces Required, and

Generic Parameters

which are reordered here for ease of comparison.

In a wide ranging discussion, Weber advocates that industry move towards reuse-
oriented software engineering with the canonical software component providing the
conceptual basis. He goes further introducing the notion of component archetypes,
where these are classes of reusable components with some commonality in their

domain semantics. In many respects these resemble generic component concepts

77



Table 3.1: Comparison of CDF with Other Approaches

[ Requirement | LIL [ SySL | AFL/Alfa [ CEM | CDF ]
R1 Generic Architecture Derivation | Yes Yes No Yes Yes
R2 Generic Component Derivation | Yes No No Yes Yes
R3 Concept Compositions Yes Yes Yes Yes Yes
R4 Interfacing Concepts Yes Yes Yes Yes Yes
R5 Conceptual Viewpoints No No No No Yes
R6 Explicit Links to SLC products | Possible | Partial | No Unclear | Yes

described by the CDF. Their intended use is to refer to a proper placement of
a particular reusable component into a classification schema. From the text, it
is not quite clear how archetypes will provide a classification schema in practice.
In his example from electrical engineering, standard component types are simply

enumerated.

In addition, he introduces the notion of canonic software architecture and archi-
tecture archetypes; these bear a resemblance to specific architectural concepts and
generic architectural concepts described using the CDF. As examples of architecture
archetypes, Weber mentions the proposed Systems Application Architecture (SAA)

from IBM and the European Software Factory’s reference framework.

Weber’s proposals are rather visionary and have yet to be realised in a practical
application. Yet in these proposals there is enough resemblance between his canonic
forms and the CDF to confirm the approach taken to describing software concepts
using the CDF. His emphasis on formally defining the integration of software com-
ponents as a means of describing the embedding of prefabricated software parts into
a gystem environment goes beyond conceptual design towards the phase of embod-
iment in design, i.e. the actual construction of software systems, an area which is

outside of the realm of the work reported here.

Table 3.1 compares the CDF with these other developments with respect to the six

requirements identified earlier in this chapter.

Finally, consideration is given to comparing the CDF to faceted classification as a

means of representing software concepts.

78



3.5.1 Relation of CDFs to Faceted Classification

Above in earlier sections, the CDF has been compared to various languages notably
those identified as interconnection languages as well as recent developments to aid
in the description of reusable software at a high level of abstraction. The principle
advantage of the CDF over these developments was identified as its accommodation
for descriptions at various levels of conceptual abstraction. In Appendix A, the ap-
proach within the Practitioner Project of combining concept description based on
existing documents with a faceted thesaurus is explained in detail. However, faceted
classification might be sufficient in itself for the purpose of describing reusable com-
ponents. In what follows, consideration will be given to the question whether or not
faceted classification on its own provides an alternative to the CDF used in con-
junction with a faceted thesaurus to record the results of domain analysis. It could
be that restructuring of software documents into the CDF is not required if the
classification system provided by using facets itself describes the domain concepts
and their relations adequately. Here it is argued that faceted classification on its

own is insufficient for this purpose.

Taking the concepts described above in terms of a set of CDF's, two hierarchies of
relations can be obtained using the derived and decomposed relations. The CDF's
also describe richer relationships between concepts via versions and interfaces but

for the time being these will be ignored.

Applying faceted classification to the software concepts described using the approach
described in Prieto-Diaz’s account given in [125], does not result in any ordering on
the classified items. The class of an individual item is determined by selecting the
term under each facet which best characterises that item. For software classification,
a partial listing of terms and facets can be found in the above cited paper by Prieto-

Diaz.

An ordering can be imposed by constructing a faceted thesaurus as was done in
the Practitioner project and has been illustrated in Appendix A, but the terms in

the thesaurus must correspond to concept descriptors to have the result of imposing

79



an order on the concepts in the domain. In addition, expressing the relationships
of derivation and decomposition among concepts is problematic. Here is the crux
of the problem. The thesaurus relation of narrow term to broader term is not one
of part to whole expressed by the decomposition relation, nor does it correspond

exactly to that of generic to specific expressed by the derived from relation.

There may appear to be analogies between the thesaurus relation BT (broader than)
and the CDF relation derived from, the thesaurus relation NT (narrower than) and
the CDF relation decomposed into, and the thesaurus relation UF (use for), i.e.
synonym for, with the CDF relation version of. Further consideration shows that
the analogies are superficial. The terms compared using BT and NT are all of the
same type, i.e. fall under the same facet. Whereas the derived from relation applied
to concepts is that relating a general concept to a specific instance concept, not
objects of the same type. The relation decomposed into relates a whole to its part;
these also are of different types. The term for a part is not narrower that than for
a whole, it describes an object of a different type. For example, the term, code
generator, is not a narrower term for the term, compiler, even though a compiler’s
decomposition may include a code generator. Nor is the term, compiler, a broader
term for the BLISS/11 Compiler; in fact proper names are not conventionally entered

1n thesauri.

An alternative to the thesaurus order can be obtained by employing the method
of conceptual graphs described by Prieto-Diaz, but this involves ordering the terms
under a facet by placing them on the nodes of a directed-acyclic-graph and placing
weightings on the edges. In the example shown, the graph employs the convention
of distinguishing some terms as supertypes; these appear at the top of the graph
with other terms connected as leave nodes. The graph shown thus has a depth of 3
levels (root - supertypes - nodeterms). A workable example applicable to software
classification is lacking. This approach is equivalent to ordering the terms under
a facet using the thesaurus relations using BT, NT and UF at one level and the
weightings impose a further ordering on the narrower terms which using standard
thesaurus relations could be achieved by appending the level number to the thesaurus

relation, NT, and exploiting the fact that if A is a narrower term of B, then B is a

80



broader term of A. The latter convention allows a deeper ordering of terms if the

thesaurus is then interpreted a directed graph.

A further problem is that the concept categories are usually synthesized from the
term entries under the given facets. That is the terms used in faceted classification
are not necessarily themselves denotations for concepts, so any relationships defined
amongst these terms are not necessarily reflections of relations between concepts
per se. It is certainly unclear to the author how the weightings between terms can
be translated into a classification system with an interpretation of ordered classes
based on conceptual graphs of individual terms out of which these class headings

have been synthesized.

The use of CDF allows specific relations identified between software concepts to be
clearly expressed. A categorisation of concepts can be obtained using the faceted
thesaurus as explained in Appendix A, but it will not be able to show the same
relations among concepts as a set of CDFs. The faceted thesaurus in the PRESS in
practice has not been employed for this purpose. It is instead used in understand-
ing the domain terminology and for indexing of CDF's to support their subsequent

retrieval.

A further disadvantage of the faceted classification approach on its own is that it
requires each item be given a single classification based on selection of a set of terms
from the relevant facets used. This is in line with a rule of standard classification
practice which is to place each item in a single category. As such, the approach
results a consistent placement of similar items. Under the CDF relations, such
consistency is not required nor expected, the same concept may be be variously
derived and may have a number of quite different decompositions. Maintaining
consistency between sets on CDFs is not a goal of the work as described here as in

many domains, various conceptual approaches are used in practice.

81



3.6 Conclusions

This chapter has analysed the requirements for a language to support software con-
cept reuse and developed the Concept Description Form, the CDF, out of earlier
work to meet these requirements. It has been shown how this development is po-
tentially adequate for recording software concept descriptions at a sufficient level of
detail that supports the possibility of their reuse in conceptual design. Its support
for describing both horizontal and vertical compositions of software concepts allows
it to be classified as an interconnection language. This underlies its use as a basis for
the design frameworks approach to reusability which will be proposed in subsequent
chapters, where in the practical application of the CDF, a design framework will be

developed and populated using sets of CDF's.

Because of the abstract nature of software concepts employed in conceptual design,
the CDF has not been developed along more formal lines particularly with respect
to specification of interfaces between concepts. It remains simply a minimal form
deriving semantics from its contents. Here the approach taken is confirmed by that
of Henderson and Warboys and classic Construction Theory [110]. The horizontal
and vertical compositions of software concepts described by related sets of CDFs
are intended simply to sketch out designs in the conceptual space of an application
domain. The next chapter provides further illustrative examples of the CDF and

outlines its usage through a small scale application.

The CDF has been developed specifically to support the description of software
concepts as realised in existing software with the intention that such descriptions
obtained using the CDF will provide a basis for conceptual understanding and allow
subsequent reuse of these software concepts in future designs. The originality of
the CDF lies in its support for recording descriptions of software concepts at vari-
ous levels of abstraction, for recording the relations among software concepts, and
linking software concepts with existing software lifecycle documentation if relevant.
Through studying relations among a set of software concepts, the potential reuser is

provided with a contextual basis for understanding the software concept and for its

82



subsequent reuse. None of the existing work reviewed above has been concerned to
address this aspect of software concept description. In the subsequent chapters, the
applications of the CDF in practice will illustrate the nature of the sort of concep-
tual understanding that sets of CDFs can, in fact, be used to record, and it will be

demonstrated how such sets of CDF's can be used to support both design for reuse

and design with reuse.

83



Chapter 4

A Simple Example Applying the

Concept Description Form

This chapter consists of a simple application of the CDF for illustrative purposes.
The domain to be studied is one which is well understood and documented and few
problems have been encountered in carrying out the domain analysis. In conclusion,

consideration is given to how the CDI's obtained could be used to support reuse.

There are two principal questions which the work described in this chapter sets out

to answer; they are as follows:

1. Can the CDF be used to record the results of analysing a well understood and
documented domain where the goal is not only to describe individual software
concepts but more importantly to describe the relations amongst the software

concepts in the domain?

2. How useful are the CDF's obtained as a result of the work in actually supporting

design for reuse and design with reuse?

The application to be described here can be thought of as constituting a control

84



experiment. If the work undertaken in applying the CDF in this simple case doesn’t

allow the above questions to be answered positively then the practical utility of the
CDF is doubtful.

4.1 Introduction to the Domain

The software concepts to be analysed are those employed in compiler design. The
multi-phase compiler is one of the few architectural concepts that has achieved
widespread acceptance and in which every software engineer is expected to have
been trained [114]. Following Perry and Wolf, in this simple application of the CDF,
this familiarity is assumed. Their classic multi-phase compiler model distinguishes
five phases: lexical analysis, syntactic analysis, semantic analysis, optimisation and
code generation. The phases progressively transform the source program input into

the target program output as illustrated in the figure below. Generally, a compiler

Source program

l

Lexer

Parser

Semantic
Analyser

Optimiser
y

ode
ienerator

Target program

Figure 4.1: The phases of a sequential compiler

built using this model will employ the following component concepts corresponding

to these five phases:

85



1. lexical analyser or lexer,

2. syntactic analyser or parser,
3. semantic analyser,

4, optimiser, and

5. code generator.

The way in which the components are organised together in a particular compiler
depends on the architectural concept employed in its construction. For example,
one which will be described here is a simple sequential compiler where each phase of
the compilation process is carried out in a fixed sequence and the components are
connected in sequence with the output of one becoming the input of the next. This
overview lacks details. For example, it doesn’t say if the concept of a sequential
compiler is derived from a more general concept, nor does it say how the component
concepts are connected together and it omits to say what the principal interfaces of

the concept are.

For these levels of detail, a more detailed analysis of the relevant software concepts
is needed, and here for illustrative purposes, the CDF will be used to record the
results. The resultant completed CDF set will then be available for consultation
and provide such detailed information to potential reusers of the concepts. In the
example that follows, application of the CDF is considered stage by stage. Initially
the application of the CDF is considered from the standpoint of relevant domain
analysis necessary to identify principal sources of reference about the concepts, and
finally consideration is given to showing how the various accounts of the concepts

found in the reference source can be recorded using the CDF.

86



4.2 Background and Overview of Domain Anal-

ysis

The broad steps in Domain Analysis have been outlined by Prieto-Diaz [123] as

follows:

1. prepare domain information,
2. analyze domain,

3. produce reusable workproducts.

Below consideration is given to each of these steps in turn.

4.2.1 Step 1 - Prepare Domain Information

In the first step, it is relevant to determine the domain, its principal sources of

knowledge and its requirements for reuse support.

There are several textbooks which describe the software concepts relevant to the
construction of a sequential compiler. One classic reference is that by Aho, Sethi
and Ullman: Compilers Principles, Techniques and Tools [4]; this book itself is
descendant of an earlier work by Aho and Ullman [5]. The five phase sequential
compiler presented above is a simplification of the multi-phase compiler presented
by Aho, Sethi and Ullman in their introductory chapter. The body of the textbook
considers how each phase is realised in principle with specific reference to an actual
compiler that is presented. Chapter 12 of their book describes how the components
corresponding to the various phases have been connected together in various specific
existing compilers. Thus this text provides all the information required to construct
a set of CDFs covering the principal software concepts used in compiler design.

As well as enabling general concepts to be described, the information on specific

87



compilers enables the specific concepts derived from these more general concepts to

be described.

A thorough-going analysis of the software concepts relevant to the design of com-
pilers can be obtained by studying this book and follow-up studies on the specific
compilers would be needed to supplement the brief accounts found in the main text.
Here it is not considered necessary to carry out such a study in depth. In order to
illustrate the use of the CDF only a few concepts will be described, and in order to
focus on the CDF, the concept descriptions themselves have been kept quite short.
To simplify the presentation, the CDFs will be presented using the graphical form
proposed in [31] and already introduced in Chapter 3.

An important aspect of carrying out a domain analysis in order to support reuse
would normally be to establish the needs for such reusable design concepts to support
reuse in a the domain of interest. Here this study is somewhat artificial because as
remarked earlier, the design concepts used in compiler construction are already well
known to the experienced compiler writer and have been described in a number of
textbooks. However, a novice compiler designer might still find it useful to be able
to consult a set of CDF's to gain an overview of the material presented in a standard
reference work such as Aho, Sethi and Ullman. Such an overview could also serve

as an introduction to students of Software Engineering.

4.2.2 Step 2 - Analyze Domain

The second step in Domain Analysis involves studying the sources of knowledge
identified in light of the requirements in order to identify the concepts in terms of
which the domain-specific knowledge is expressed. In this study where the domain-
specific knowledge is concerned with compiler construction, the object has been to
identify the generic models employed in compiler construction and generic compo-
nent concepts found in common decompositions. These are directly described in the
literature. If this were not the case, then initial studies of specific software systems

in order to abstract the design concepts would be necessary at this step in order to

88



determine conceptual basis of the domain.

CDFs will be used to record the concepts and their relations found as a result of
this second step. At this stage, the CDFs need not contain detailed specifications
or links to realizations such as code although in some cases, it may be possible to
establish such links at this stage. If specific existing systems are studied, then the

concepts analyzed will obviously have known realizations.

The Practitioner Project augmented this second step with studies of the termi-
nologies used in the domain to determine the domain vocabularies used to describe
concepts from various viewpoints. Such a study has not been undertaken here as the
main source was not available in machine-readable form, and in any case preliminary

reading determined that it does employ a reasonably consistent vocabulary.

4.2.3 Step 3 - Produce Reusable Workproducts

The final step involves filling in the details necessary to support reuse of the con-
cepts identified. It consists of developing the reusable workproducts required by the
reusers in the domain. Here this involves adding information to the CDFs to the
level needed; this has been determined earlier by the reuse requirements that the

CDFs are primarily for illustrative and perhaps educational purposes.

4.3 Details of the Software Concepts Studied

The principal software concepts described in the Aho, Sethi and Ullman book can

be summarised as follows:

1. compiler,

2. simple one-pass compiler,

89



3. lexical analyzer,

4, parser,

5. simple type checker,

6. run-time support package, and

7. code generator.

These concepts have been identified by studying the details found in the book’s
contents pages and initial chapters. The book also mentions ”cousins” of compil-
ers such as preprocessors, assemblers, loaders and link-editors as well as compiler-
construction tools such as parser generators, scanner generators, syntax-directed
translation engines, automatic code generators, and data-flow engines. These ”cousin”
concepts are used when the book describes the "context” of a compiler within a lan-
guage processing system which may consist of preprocessors, a compiler, an assem-
bler, a loader and link-editor. Brief descriptions of the following specific compilers

can also be found in the book:

1. EQN, a preprocessor for typesetting mathematics,
2. Pascal compilers,
3. C compilers,

4. the BLISS/11 compiler, and

5. a Modula-2 optimizing compiler.

Using the relations derived from, version of and decomposed into which the CDF
supports, the following potential candidates for recording have been identified and
can be related as shown in the Figure 4.2 employing the graphical view of a concept

introduced in Chapter 3.

Here there are six CDFs; reading from left to right and starting at the top of the

figure, these describe the following concepts:

90



Concept: Language Processing System I Version 1

Concept: Multi-Phase Compiler

l Version 1

Decomposition

Derivation

Language

Processing System

Links

Corle Module Test Puckage

Data Definition Documentation

Derivation

Decomposition

Semantic
Analyser

Multi-Phase
Compiler
Links
Code Module
Datw Definition

Documentation

Optimiser

Code Generata

Sy%o

iill

I-table
age

Test Package

Concept: Sequential Compiler ] Version 1

Concept: Simple One-Pass Compiler

Version 1

Derivation

Multi-Phase
Compiler

Decomposition

Derivation

« Sequential

Decomposition

Semuntic
Sequential aalyser Simple One-Pass
Compiler Compiler
BuckEnd
Links Links
Code
G
Code Module Test Package ienerafor Code Module Test Package
Data Definition Documentation Data Definition Documentation
Concept: Front End Version 1 Concept: Back End Version |
Derivation Decomposition Derivation Decomposition
L‘&}(l Lgr)x]lwr Code Optimiser
Front End Back End
ac
Syntax-directec
Translator Coxle Generutor
Links Links
Code Module Test Package Code Module Test Package
Data Definition Documentation Data Definition Documentation

Figure 4.2: Domain Specific Concepts in Compiler Construction

91




1. Language Processing System,
2. Multi-Pass Compiler,

3. Sequential Compiler,

4. Simple One-Pass Compiler,
5. Front End, and

6. Back End.

The first concept, Language Processing System, sets the overall context of a com-
piler. The next concept, Multi-Phase Compiler, encapsulates the basic architectural
concept with which most software engineers are familiar. The third concept is a
specialisation in the form of a sequential compiler, and the fourth is a specialisa-
tion of the third. The fifth and sixth are concepts used in the construction of a
simple one-pass compiler which is a special case of a sequential compiler. Note at
this point, the concept descriptions are not based on specific existing compiler doc-
umentation. These general system models are the result of step two of the domain

analysis process outlined above.

With respect to the detailed description of reusable work products, here the subse-
quent recording of details is confined to considering a specific concept, that of the
BLISS/11 compiler shown here in Figure 4.3. As the book explains, this concept
is derived from the concept of a simple one-pass compiler which has already been
recorded and shown in Figure 4.2. Note although the BLISS/11 compiler is de-
scribed by Aho, Sethi and Ullman as a single pass compiler; the mapping between
the five components of this concept and those of the Simple One-Pass Compiler
concept given in Figure 4.2 are not obvious. A more detailed description of these
components is given in the book, and this together with the more detailed descrip-
tion by the compiler’s authors would need to be recorded to clarify the derivation

relationship between the BLISS/11 Compiler and a Simple One-Pass Compiler.

Figure 4.4 shows some of the recorded detail taken from the account of the BLISS/11
Compiler given in Chapter 12 of Aho, Sethi and Ullman’s book. The concept’s two

92



Concept: The BLISS/11 Compiler [ Version 1
Derivation Decomposition
Simple One-Pass LEXSYNFLOW
Compiler
DELAY
The BLISS/11 TNBIND
Compiler
OD
Links CoPE
FINAL
Code Module Test Package
Data Definition Documentation

Figure 4.3: Overview of the concept of the BLISS/11 Compiler

main interfaces have been revealed by unfolding the the CDF’s Specification section
and then unfolding the two sections: Interfaces Provided and Interfaces Required.
Unfolding the Links section followed by unfolding the Documentation section reveals

the two main references used in obtaining the detailed description of this concept.

As this application of the CDF is primarily for illustrative purposes a more detailed

filling in of the CDF's identified above will not be undertaken here.

4.4 Consideration of Design-with-Reuse using Com-

piler Concepts

In order to make the above set of CDF's available to reusers, they could be installed in
the PRESS. This would involve the domain engineer selecting appropriate indexing
terms based on text analysis. Once installed, the potential reuser with a compiler
development task could retrieve these concepts through a search featuring any of the

indexing terms chosen. Once at least one of the compiler CDFs has been retrieved,

93



Concepr: The BLISS/11 Compiler

Derivation

Specification

—_— Definition

Deconposition
Ao

Intertaces Provided

Links

Interfaces Reyuired

Codle Molule

Data Definition

Interfaces Provided:
/ Concept: Relocatable PDP/11 Machine Codle
oeenls

Interfaces Requured:

Concept BLISS/11 Source Code

Documentation

Test Package

Documentation.

Reterence 1+ Section 12.5 of Aho. Sethr and
Ullman's Compilers Principles, Techniques

and Tools, Addison-Wesley. 1986.

Reference 2: Wulf et al., The Design ot an
Optimizing Compiler, Elsevier, 1975.

Figure 4.4: The BLISS/11 Compiler CDF Unfolded

94




the potential reuser will access to all of its related concepts.

For example, for a given concept, all of its related concepts could be displayed. If a
specific concept has been selected, the reuser has the possibility of considering more
general concepts which may not have occurred to the reuser as potential solutions
by inspecting the concept’s derivation. In the case of the concept Simple One-Pass

Comgpiler, the derivation recorded in the CDFs is as follows:

Simple One-Pass Compiler is derived from
Sequential Compiler is derived from
Multi-Phase Compiler is derived from

Compiler.

The reuser could trace this derivation by systematically inspecting the concepts given
under the Derivation heading in the graphical form of the CDF. After inspecting
these and reviewing the more detailed descriptions, the reuser may decide that a

Multi-Phase Compiler with a number of passes is more appropriate.

On the other hand, if a more general concept has been selected initially, the reuser
might find through inspection of its related concepts a specific concept which may

be exactly what is needed.

Through the other relations recorded, an inspection of the component concepts could
be made and the relations between the main concepts’ interfaces and the component
concept interfaces could be inspected. In the case where the reuser wishes, say, to
employ an existing parser, it would be possible to determine the nature of the

interface required to make this substitution within the recorded compiler design.

95



4.5 Conclusions

This chapter has presented a simple application of the CDF in order to illustrate
its usage to structure descriptions of software concepts. It has related the usage of
the CDF to the process of domain analysis and shown how it can be used to record
relations amongst domain concepts which can be then be described in more detail
as the domain analysis progresses. In this way, the CDF provides a link between
the analysing of the domain and the development of reusable work products as the

CDF can be used for recording the results in both steps.

The domain studied, that of compilers, is one which is already well understood and
documented; thus the description of concepts was able to progress from the general to
the specific with the more general concept descriptions providing the framework for
those of the more specific concepts. In the large scale example described in Chapter
5, specific concept descriptions were developed before any general descriptions, but
as more general descriptions came to be known, these provided the basis for a more

systematic approach to applying the CDF.

The main lessons learnt from this simple application are that sets of CDI's can be
used to record the results of domain analysis in a well understood and documented
domain. Concepts realised in both general models of compilers and in specific com-
pilers have been described and related through the CDF. More work would be re-
quired to fill in the additional details and to record further software concepts from
this domain, but the general software concepts already described provide the start-
ing point for further design for reuse in this domain. The concepts described here
could provide the basis of an initial introduction to compiler design and assist the

novice designer in designing with reuse.

96



Chapter 5

A Large-scale Application to
Support Reuse of Software

Concepts in the Domain of Steel

Production

5.1 Introduction

This chapter describes a large-scale application of the CDF in order to support
software concept reuse in an industrial setting. The industrial setting chosen is that
of software development in the domain of Steel Production. The opportunity to
study software concepts in the steel domain came initially from the close link that
this research has with the Practitioner project. The author has chosen to continue
working within this domain because it is typical of many application domains where
the benefits of software reuse are recognised, but software engineers working within

the domain find themselves (to quote Jones [86)):

97



constantly faced with reinventing concepts which should be available from

standard references.

This domain is also of particular relevance to the work on supporting concept reuse
at a level of abstraction higher than code because it is a domain in which it has been
recognised that design concepts rather than code have the most reuse potential. The
studies of the Association of Iron and Steel Engineers support this emphasis. The
third reason for developing the research within the steel domain arose when the
author was able to extend the earlier domain analysis on control systems used in
steel production with field studies of existing software actually in use at a steel mill.
This allowed the author to confirm that concepts abstracted from existing software
could be related to those from earlier domain studies and also gave the author
valuable insights in the way in which software is typically developed in the steel
domain. Finally designers of systems in the steel domain employ general concepts

from control systems, so there were good sources of background concepts on which

to draw in the domain studies.

There are three main aims of this application study using the CDF in the steel

domain:

1. to apply the CDF recording the results of studies of both generic and specific

software concepts in the steel domain (see the first study reported below),

2. to apply the CDF recording the results of studying specific software concepts

abstracted from an operational system (the second study),

3. to apply the CDF to record the results of studying the more general concepts

which are relevant to control systems in general (the final study below).

The main part of the work has been a domain analysis of software concepts used in
the design of hierarchical control system software found in steel mills. A further part
of the work has consisted of applying the domain analysis approach outlined in earlier

chapters in a field study of process control software made at the Peine-Salzgitter

98



Steel Works. This work was undertaken to determine the utility of having a very
general understanding of the domain to guide the identification and description of
the concepts used in the construction of a particular system. The particular system
studied was the system for calculating draft rolling schedules for controlling a tandem
mill in cold working. In the final domain study, further work on the development of

a design framework for underpining design reuse in this domain is undertaken.

The chapter first gives some general background to the domain, and describes the
requirements for designing for software reuse and the ground work undertaken in its
development using the CDF, presents the domain analysis results and the results
of the work undertaken to further populate the Practitioner Reuse Support System
(PRESS) with sets of CDF's from the domain of steel production control systems in-
cluding those from software concept field studies carried out at the Peine-Salzgitter
Steel Works. Finally, the chapter discusses the potential reuse of the software con-
cepts described by presenting a demonstration based on consultations with domain

experts and studies of how systems in this domain are typically designed.

5.2 Background and Overview of Domain Anal-

ysis Studies

5.2.1 Introduction to the Domain and Scope of Studies

The primary source for gaining an understanding of the domain of steel production
used in these studies has been the report, Tasks and Functional Specifications of the
Steel Plant Hierarchical Control System [169] (hereafter referred to as the Williams
report). This report documents the results of over ten years research in this domain
by the Purdue Laboratory for Applied Industrial Control (PLAIC). Their model
of hierarchical control (derived from the work of Mesarovic, see [100]) has been
acknowledged as a concept endorsed (in some form) by most practitioners in the

domain and recognised as a concept that has brought a measure of order to the

99



steel industry’s complex systems [46]. The overall model of control developed in the
Williams report is based on a four level model. This model and its role in domain

analysis will be discussed in more detail in this chapter.

An earlier work on the automation of control systems in metallurgy [49] provides
an historical perspective on the development of control systems in steel production
albeit mainly at the lower levels of control. However, even at this time, the potential
for employing computer systems in the overall process of production control was
recognised in theory; and the text contains a dataflow diagram illustrating flow of
information in an order processing system in a rolling mill based on work carried out
by the British Iron and Steel Association on computerising planning and accounting
of a rolling mill. This diagram is very similar to that developed in the Practitioner
project study of order processing in a strip processing line [89, 88]. And already in
1964, schemes of multilevel automation for the steel production process as a whole

can be found to have been introduced (see for example, that by H.-J. Marx, cited
in [74]).

Here in this introduction, only a brief overview of the steel production process and
its associated areas of control is given, drawing on the Williams report. This report
places its emphasis on process control in Steel Production; for a more comprehensive
account covering all aspects of steel production, the reader is referred to the so-called
bible of the steel industry - The Making, Shaping and Treating of Steel, 10th Edition
[160] - (this edition was written by the United States Steel Corporation personnel

with assistance from the Association of Iron and Steel Engineers).

Steel Production is basically a three part process; first the steel is produced in a
molten state either from iron ore or scrap steel, or a combination of these, and cast
or formed into ingots, then it is hot rolled, and finally it may undergo cold working.
The output of hot rolling, hot band steel or hot rolled sheet, is typically used for
heavy metal applications such as the framework of an automobile, in steel framed
buildings, in bed frames, etc; whereas the output of cold rolling, cold band steel,
is found in car exteriors, computer frames, and casing for other consumer products

such as washing machines, video recorders, microwaves, i.e. the so-called "white

100



goods” of manufacturing. A modern steel mill will have areas associated with each
of the three basic processes; these are the Melt Shop or Melting Area, the Hot Roll
Mill or Hot Rolling Area, and the Cold Roll Mill or Cold Working Area.

The Williams report describes a basic steel product mill producing hot and cold
rolled sheet. In the introductory chapter, the basic mill is shown diagrammatically
divided into areas based on processes (see Figure 1-2, page 1-11 of the Williams
report), and an argument is made for maintaining the distinct areas in the control
system design models (see Figures 1-5 and 1-6 on pages 1-14 and 1-15 of the Williams
report). These figures are reproduced here in a simplified form (modified slightly to
show the alternative architectures) as Figure 5.1 - Areas of a Basic Steel Mill - and

Figure 5.2 - Structure of Control System Design Reflecting Areas.

- furnace
Raw material Blast -
preparation furnace 5o Ingot casting ‘LShbbing l_—l Conditionin
furnace - -
Process Area 1: Melting
Reheat Hot strip mill
furnace

[ Picklin Cold reduction Heat ‘ — Product inventory
- g ol 1 reating __l Tempermﬂ]J__l Finishing l_ and warehouse

Process Area 3: Cold Working

Figure 5.1: Areas of a Basic Steel Mill

Overall Control Sys\
/ Area 2 Area 3

Areal (Hot Rolling)

(Cold Worki
elting) ’ /
/ \\ Hot Bands Cold Bands Finishing
Sinter Plant | Steel Making Slabbing

Coke Ovens Iron Making  Continuous Casting

Figure 5.2: Structure of Control System Design Reflecting Areas

Although the Williams report describes the control systems typical of a "basic”
steel mill, the same overall system structure can be found in Preston’s popular

articles on the Nucor Crawfordsville Project, a steel mill utilizing an experimental
101

<



casting machine developed by SMS Schloemann-Siemag AG [120, 121]. Here the
main processes and plant areas are described in Figure 5.3 - Nucor Crawfordsville
Project Main Processes and Plant Areas. This plant may be seen as a specialisation
of the generic model given in Williams in that it employs the electric furnace option
simply for melting scrap (such mills are known in the USA as minimills), and,
because of its unique casting capability, only requires a "mini” hot rolling mill (in
this case consisting of 4 roll stands instead of 6 or 7 found in 2 more conventional
steel mill). It is clear from the accounts given that here as well the control systems

are structured at the lower levels using the mill areas.

({for imput 6o EppeEr
(for melting steel) (for refining steel) pornas of the CSFP)
Twin Metallurgy Casimgg
Electric Station Tower
Fumaces
Meltshop
Compact Strp Mim Hott
Production CSP) Roflmg, Ml
Hot Rolling
f
Seom-fmshad
Cold Rolling Mill Hot-rolled sheet steel
Cold Rolling Coiling for transport
y (Hot Band Steel for
Cold-rolled steel car frames etc)

(for car exteriors, etc)

Figure 5.3: Nucor Crawfordsville Project Main Processes and Plant Areas

The steel mill whose software formed the subject of the supplementary field study,
the steel mill at Salzgitter, falls somewhere in between the basic PLAIC example
steel mill and the Nucor Crawfordsville Project (NCP). It produces a wider range of

102



products than the PLAIC basic steel mill, and unlike the NCP mill, it produces steel
primarily from iron' ore rather than scrap which means that control of its melting
area and associated processes is considerably more complex. In the period from
1974 to 1985, the number of steel producers in Germany accounting for over 80%
of crude steel fell from 20 independent companies to 7 groups of companies. The
Salzgitter steel mill is owned by one of these groups, the Peine-Salzgitter group;
its capitalisation in 1985 was just under half that of the Thyssen Steel, Germany’s
largest steel producer [102]. The study of software at Salzgitter was restricted to
that used to control the tandem mill in the Cold Working area, and here the models
given in the Williams report were supplemented by those found in a study specifically

addressing tandem mill automation carried out by Bryant et al [40].

Before the research reported in this thesis was undertaken, published accounts of
software concept reuse in the domain of steel production were not available although
the need for these was recognised as discussed here in Section 5.2.2. There are no
standard textbooks detailing the software concepts used in applications software sup-
porting Steel Production in the way that these exist, say, on compiler construction
principles as described in Chapter 4. The steel production domain is not unusual in
this respect; as quoted in Chapter 2, Jones found that the reinvention of concepts
which should be available from standard references was common in most major

application software subfields [86].

Discussions with domain experts at ABB and Salzgitter highlighted one of the prob-
lems as being lack of a means of recording and preserving experience and knowledge
gained in one project for use in another. As the development of software appli-
cations in steel production takes place often in the context of a larger engineering
project which can take place over a number of years, the individuals on a partic-
ular project development are unlikely to remain constant. Therefore standardising
software concepts employed over a number of projects has been difficult. Hence the
need to carry out domain studies such as this to lay the ground for more systematic

software concept reuse.

Also the system developments are likely to be piecemeal. For example, at Salzgitter,

103



software developments are usﬁally related to a larger project of modernization of
equipment in a specific area of the mill. The material made available for study from
Salzgitter was concerned with improvements in the Cold Working area and involved
development of new control software for the tandem mill. It is relevant to note that
at the Salzgitter mill, the system documentation is not held centrally at the mill;
it was found that all the tandem mill control system software documentation was
actually kept in the central computer room of the Cold Working area. Nor was the
documentation of a uniform standard as various contractors as well as employees of

Salzgitter have been involved in its development.

From ABB, various sources of specific descriptions of software developments by the
Metallurgy division were made available for study. The material was not in a stan-
dardised form; it was drawn primarily from projects concerned with the development
of lower level control systems for steel mills. As the domain analysis progressed, it
was possible to relate the ABB system models to the those given in the Williams
report through a related model developed by Hoogovens as will be illustrated in
the more detailed discussion on the results of the domain analysis and the role that

these models played.

In summary, the scope of the domain studies developed during the course of the work.
Orginally, it was based on concepts in ABB’s existing software, then extended to
the more generic concepts in the Williams report when this came to be known and
could be related to the ABB material. In the field studies, further specific software
concepts in existing software were studied as well as generalised versions of these

concepts relating to tandem mill automation described by Bryant.

5.2.2 Requirements for Software Reuse in this Domain

Initially the requirements for carrying out a more detailed domain analysis to de-
termine software concepts in steel production arose from the link that this research
has had with the Practitioner project and its internal customer, ABB, specifically,

the Metallurgy business division who develop control systems for the steel industry

104



throughout the world. ABB’s requirements are related to those generally recognised
within the international community of iron and steel engineering. Below the results
of work by the Association of Iron and Steel Engineers (AISE) to improve software
development in the industry are summarised. From these, the requirements for soft-
ware reuse for steel production are derived. Finally the specific requirements for
concept reuse that derive from the control system users in a steel mill are discussed;

these were identified during the field studies.

With the increasing introduction of real-time information and control systems, the
iron and steel industry through the AISE has recognised the problems of software
development that are frequently recounted in more general accounts of the software
crisis: high cost of software and the need to reduce this cost whilst preserving and
improving quality and utility of software in the industry. To this end, the AISE
software portability (later portability and productivity) project was established.
This project consisted of three steps reported on in three separate reports. The
account given here is based on reviews of these reports. Early on in their work,
the project adopted a more general view of portable software as reusable software
because in process control applications, their primary area of interest, transporting
software without change was neither easily achievable nor always desirable, Thus the
concept of reusability interpreted as transferring the underlying process technology
and software design was deemed as a more realistic goal for the steel industry. (This

conclusion can be found in the Review of Step 2 report [46]).

The AISE project also identified early on the developing practices of Software Engi-
neering as having a crucial role to play in addressing the five most significant issues

limiting portability (i.e. reusability) of process control software:

e lack of long-term planning for automation (resulting in islands of automation),

e benefits of reusable software need recognition to justify higher development

costs,
o lack of standard plant operating practices,

o lack of standards for real-time data management,

105



e poor designs and subsequent need for system modification ( also lack of stan-

dard specifications or guidelines for each major process unit).

Interestingly enough, this last issue was identified at a time (1984) when the PLAIC
study was already well advanced with specifications of major process units’ control

and supervisory software systems in steel plant control systems.

Two aspects of Software Engineering were seen to be relevant to the Iron and Steel

Industry’s software development problems by the AISE:

e application of structuring principles to process control systems,

e application of software development methods appropriate to each phase of the

lifecycle.

A layered model of process control software presented in the Review of Step 1 re-
port [45] is directly relevant to the work populating and using the PRESS in the
steel production domain. It is reproduced here in a simplified form in Figure 5.4 -
Layered Model of Process Control Software System. This model incorporates the

three essential elements found in systems studied during the domain analysis work:

1. automation of control (process technology software),

2. data acquisition (database software), and

3. communications (communications software, man/machine software and pro-

cess I/O software).

The software solution to the communications requirements in the steel domain is
fairly well standardised. In this area, the application standard software is partly
based on international standards such as IEEE 802, standard products such as DEC-
net and industry standards such as HDN, the Hoogovens Data Network. Dialog with
the operator may also be based on standard product such as DEC Forms Manage-

ment System (FMS). However, this layered model is simply a starting point; it does

106



Other Computer Systems

Communications

Software

Data
Base

Process
1/0
Software

Process

Storage
Technology

Devices Software

Software

Figure 5.4: Layered Model of Process Control System

107



not address the levels of concepts within automation of control or communications;

nor does it distinguish the classes of data objects acquired.

In the Review of Step 2 report (1985), it was recognised that there was a common
ground provided by the parallel interests of the AISE and PLAIC investigations of
control systems in the steel industry - work resulting in the Williams report from
which the research reported in this thesis heavily draws. It is interesting to note
that survey work in Step 2 confirmed the original analysis of obstacles to software

reuse, and brought out two more:

e lack of a common language for process control applications, and

e lack of metrics for determining the benefits of reuse.

In their conclusions, the emphasis is on the need for standards, and with respect
to standard software components, it is noted that the interconnection mechanisms

receive little attention but are paramount to the success of this technique.

In the final Step 3 report reviewed in 1987 [47], European and Japanese practice
was studied. Of the European companies studied, Hoogovens in the Netherlands
is singled out as a notable success with a well organised approach to automation
and long-term planning. The Japanese companies while well advanced in their
application and use of automation had no common approach; all were addressing

quality and reusability using different techniques and methods.

In their concluding remarks on the Step 3 report, software reusability research issues

are noted as follows:

e no single methodology to support reusability among disparate application ar-

eas,

o lack of techniques to provide reliable means of storing and retrieving reusable

software,

108



o lack of adequate documentation for reusable software, and of means to identify

its function,

e lack of structuring principles applied in the design of software holding back

reuse of functional designs;

and with respect to the steel industry:

e lack of management commitment for financial and technical support required

to develop reusable software,
e the need for software library development and management,

o the need for educating software engineers in the steel industry about reuse

methods and benefits;

and finally of paramount importance:

e need to impose and enforce reusability guidelines on outside software devel-
opers that supply the steel industry (i.e. software engineering requires engi-
neering specifications in its contracts to ensure adherence to internal industry

standards).

That these issues still hold for software systems in process control in the steel in-

dustry today is highlighted by Heidepreim'’s recent remarks:

One of the actual problems in automation of rolling mills today is the
replacement of hardware and software of the process control computers
that were installed in the 60s and 70s. It is impossible to save old soft-
ware: control functions that are realised in software have to be rewritten.
The reasons for this are the following: in many cases nobody (neither at
the deliverer nor at the user) knows the old programs. Moreover the user

wants to have new conirol functions to be implemented which could not

109



have been foreseen 20 years ago, and it is difficult to combine these with
the old program system. Finally Man-Machine-Communication (MMC)
today ts much better organised than in the past, and nobody wants to re-
linquish these modern facilities. - So, though software costs range about

80% of the total costs of renewal, it is indispensable to pay them.

[74).

Here a more optimistic view is taken with respect to at least saving old software
concepts for reuse in design in this domain. That modernisation is inevitable cannot
be denied, but the necessity of re-designing old systems from scratch need not exist
if their conceptual basis is well understood. A design framework such as the one
developed here is an attempt to provide such understanding, and to address the

wider ranging requirements from the steel industry identified below.

The explicit requirements derived from the AISE project’s reports that will be ad-

dressed by the domain studies to be related here are as follows:

e need for standards - particularly standard specifications or guidelines for each

major process unit;

e need for application of structuring principles to process control systems, espe-
cially the application of structuring in designs to support reuse of functional

designs;

e need for more attention to be given to interconnection of standard software

components.

Additional more specific requirements for domain analysis to support concept reuse
in this domain became apparent during the field studies at the Salzgitter Mill. These
arise from the continuous need to improve models that underlie the control systems

during their usage as part of evolutionary system development.

110



During the course of this study of the Salzgitter software, the Draft Schedule Cal-
culation (SPB) system controlling the tandem mill was still subject to further de-
velopment. A new model of rolling forces was being developed and tested within
the SPB system. As with much industrial practice, where system documentation
18 manually maintained, new annotations were written on the existing documenta-
tion. One of the difficulties of keeping such system documentation up-to-date is
lack of computer-supported version control and updating facilities. This is espe-
cially difficult if the definitive system documentation is a listing of the program in
the supplier’s assembly language as is the case for some of the SPB system. It was
found also that the original documentation had sometimes been annotated by hand
by readers, but there was no indication of the author, date or status of these remarks

in the original documentation.

These problems apart, the adaption of the software by a new model is of interest
because it makes clear that in complex process control, the development of software is
in part experimental (see below under section 5.4.2, for a more developed discussion
of the use of models in design in this domain). It goes without saying that software
should implement the intended functions (and this must be tested, too), but the
overall experiments are concerned with validating the models of control. In this
context, poorly implemented software, or simply inadequately documented software,
adds unnecessarily to the cognitive burdens placed on the system developers. Where
users of a software system are likely to continue that system’s evolution beyond
its initial delivery, it is important for the provision of support for the conceptual
understanding of the software to be made, hence the usefulness of an exercise such
as the one described here. This point has also been made in the broader context of

the AISE findings summarised above.

5.3 Specific Domain Analyses

The domain analysis carried out in the steel domain did not proceed in the same way

as that recounted in Chapter 4. Here the distinction between the steps was not so

111



clear. Early studies using the original questionnaire carried out by ABB staff were
based on specific domain concepts in existing software at ABB. These studies have
all been made using the CDF to record both generic and specific software concepts.

The studies divide into three as follows:

e first initial studies were made using the CDF to describe a variety of concepts

without any established conceptual ordering;

e second having recognised the role of the more general system concepts, a field
study of specific concepts was made to confirm the utility of the general system

models which resulted from the first studies, and

o third a more detailed study of the foundations of these system concepts was

made in order to consolidate the two earlier studies.

This final study sought to develop a design framework for software concepts used in

the domain of steel production.

5.3.1 Initial Studies - First Applications of the CDF in

Describing Software Concepts

In this section, experience using the CDF to describe software concepts is discussed.
In the previous chapters, the concern was with addressing what aspects of software
concepts should be described to best facilitate their reuse and illustrating how this
could be achieved with the CDF. Now the concern to be addressed is how best
to achieve such descriptions in actual practice. These earlier concerns were funda-
mental to supporting the design-with-reuse process. Before the PRESS could be
effectively populated with software concepts, some consideration of the design-with-
reuse process was necessary. The focus of this research has been to consider how
best to make use of existing software descriptions, ranging from offers to build the
software to academic reports on software, to derive software concept descriptions
using the CDF.

112



A number of case studies of filling in CDFs are analysed. The process of filling
in CDF's remains founded entirely on individual intellectual effort; it has not been
possible to develop an automatic basis for transforming existing software documen-
tation into concept descriptions realised using the CDF nor has any method of filling
in CDF's amenable to computer assistance emerged other than the use of a standard
text editor. Nevertheless it will be shown that a more systematic way of approach-
ing the task of domain analysis using the CDF has emerged as a result of these
studies, and that this constitutes some progress towards a better understanding of

design-for-reuse. This case will be made in Chapter 6.

A study is made into how use of the CDF is supported by an appropriate system
model; this study is based on experience gained from using the model of the steel
plant hierarchical control system developed at Purdue University as a framework for
relating the various designs studied. This model is described in the Williams report.
The experience gained in filling in CDFs and using the model was distilled into the
form of guidelines for future users of the CDF whether they be describing existing

software concepts or designers of new software concepts for incorporation into the

PRESS [31].

To gain a better understanding of the problems encountered in attempting to de-
scribe existing software concepts, a concerted effort was made to populate the
PRESS with more concepts from the Steel Production domain. In total, fourteen
CDFs were produced in the course of these initial studies. In addition, a large num-
ber of plain text documents from the Steel Production domain were installed in the

PRESS for analysis.

Early on in the Practitioner project, software concepts from the domain of Steel
Production were described using the original questionnaire. These consisted of fif-
teen questionnaires describing Order Processing in a Strip Processing Line. These
provided initial test data for the project together with the partial thesaurus (of less
than 1000 terms) covering the Steel Production domain developed at ABB [90]. In
the work reported here, further concepts from the Steel Production were studied in

order to augment the initial test data and to enable continued usage of the exist-

113



ing thesaurus in searching through the new concept descriptions. The primary goal
though has been to gain experience in applying the the CDF in this domain. The

case studies described here draw on material from three main sources:

1. Purdue Laboratory for Applied Industrial Control (PLAIC) steel plant control
system description, the Williams report [169];

2. a complete set of project documentation for an annealing line plant control

system, developed by ABB;

3. completed offers prepared by engineers in ABB’s metallurgy division.

The Williams report is freely available as a published report; access to the other
two sources has been freely granted by ABB with the proviso that the commercial
confidentiality of the material is respected. (For this reason, the original material as
recorded here has been edited. This has not restricted the research reported here in
any way.) These sources were chosen for the case studies reported here for a variety
of reasons. The Williams report has provided an opportunity to use the CDF in
the description of generic software concepts. This report describes the tasks and
functional specifications to be found in the general case of any steel plant control
system. The more specific material from ABB was studied because of the project’s
goal of demonstrating the use of the PRESS to support offer preparation in the
domain of Steel Production, and in addition, it provided descriptions of specific
software concepts which could be related to the more general concepts found in the

Williams report.

The Williamms Report

The CDF was used to describe the software concepts in a Steel Plant Control System
[169]. The system description developed at Purdue consists of several chapters; these
are listed below and where the corresponding software concept has been described
by the author using the CDF, this is denoted by the suffix of (C):

114



Chapter 1 - Some General Comsiderations Regarding Hierarchical Control

Chapter 2 - Summary and Statement of Purpose of this Report

Chapter 3 =~ Overall Management Information and Production Scheduling (C)

Chapter 4 - Area Comtrzol (C)

Chapter 5 - General Topics - Lower Level Members (C)

Chapter 6 - Coke Oven Unit Control and Supervision (C)

Chapter 7 - Sinter Plant Unit Control and Supervision (C)

Chapter 8 - Blast Furnace Unit Control and Supervisiom (C)

Chapter 9 =~ Steel Making Unit Control and Supervision (C)

Chapter 10 - Continuous Casting Control and Supervision (C)

Chapter 11 - Slabbing Unit Control and Supervision (C)

Chapter 12 - Hot Mill Unit Control and Supervision (C)

Chapter 13 ~ Pickling and Cold Mill Control and Supervision (C)

Chapter 14 - Finishing and Warehousing Control and Supervision (C)

Chapter 15 - Gaseous and Liquid Fuel Collection and Distributiom Unit Comtrol
and Supervision

Chapter 16 - Steam and Electric Plant and Steam Distribution Control and
Supervision

Chapter 17 - Electric Power Distribution Control and Supervision

Chapter 18 - 4 Description of the Computer System Contemplated for a Steel Mill
Hierarchical Control System

Chapter 19 - Homeywell Plant Information Network as Prepared for the PLAIC Steel
Complex Control Project

Chapter 20 - A Proposed Hardware and Software Description of the Steel Industry
Hierarchical System Developed by The International Business Machines
Corporation

Chapter 21 - Description of Example Steel Mill

Note that Chapters 15 to 17 address energy considerations that were not of imme-
diate interest to the project’s internal customer, ABB; so these were not converted
to the form required by the CDF. The final chapters 18 through 21 are examples
of typical systems including proprietary systems from Honeywell and IBM. They
were not converted into CDF's owing to lack of time and effort and because of their

specific nature.

The descriptions found in the Williams report are already in a structured form.
Each subsystem is decomposed into its modular tasks at the supervisory level and
its modular tasks at the control level, sometimes a further decomposition into direct
control tasks is given. Where the subsystem consists of more than one supervisory
or control unit, then the decomposition is given for each. Below are examples of

decomposition found in the report. Mapping these onto the component concepts

115



of the CDF has not been problematic although it was possible when in doubt to
consult experts in the domain for confirmation of the approach taken. For the overall
acceptance of such work, the involvement of domain experts is important to ensure

that obvious points are not overlooked.

The Williams report also describes the inputs, outputs and other data such as on-
line variables used at both the supervisory level and control level for each subsystem.
When treating each subsystem as a software concept, these various types of data
can be mapped to the two categories of interfaces relatively straightforwardly as
explained in the worked example below; however, the chapters give very little insight
into whether or not the interfaces are external or internal in the context of the

modular task decomposition. The assumption has been that they are all external.

A Worked Example of Conversion into the CDF

Here one chapter from the Williams report is considered in detail; its component
parts are identified, and a rationale is given for mapping these into the CDF. The
chapter to be converted here as an example describes Hot Mill Unit Control and Su-
pervision (Chapter 12, Williams). The following extract taken from text of Chapter

12 describes the various tables included in the chapter:

Table organization is exactly as with previously considered mill produc-
tion units. Tables 12-I and 12-II treat the supervisory level work. Ta-
bles 12-III to 12-VII handle the slab inventory functions; Tables 12-VIII
to 12-XII are for the Reheat Furnaces; 12-XIII to 12-XVII for Rough-
ing Stands; 12-XVIII to 12-XXII for Finishing Stands; 12-XXIII to 12-
XXVII for Runout Table and Down Coilers and 12-XXVIII to 12-XXXII
for the Coil Inventory Input.

This description forms the basis for the top-level decomposition of the concept and

the various tables were used to obtain a more detailed decomposition of the concept.

116



The list below gives the exact table headings as found in the text:

TABLE 12-I MODULAR TASKS OF THE SUPERVISORY LEVEL COMPUTER - HOT BANDS

TABLE 12-IT DATA TRANSFERRED FROM OTHER AREAS - HOT BANDS

TABLE 12-IIT MODULAR TASXS OF THE CONTROL LEVEL COMPUTER SLAB INVENTORY

TABLE 12-IV ON-LINE VARIABLES TO BE CONSIDERED - SLAB INVENTORY CONTROL LEVEL COMPUTER
TABLE 12-VI INPUT DATA FROM OTHER SQURCES SLAB INVENTORY CONTROL LEVEL COMPUTER

TABLE 12-VII CONTROL QUTPUTS - SLAB INVENTORY CONTROL LEVEL COMPUTER

TABLE 12-VIII MODULAR TASKS OF THE CONTROL LEVEL COMPUTER REHEAT FURNACES

TABLE 12-IX DIRECT CONTROL TASKS -~ REEEAT FURNACE CONTROL LEVEL COMPUTER

TABLE 12-X ON-LINE VARIABLES TO BE CONSIDERED - REHEAT FURNACE CONTROL LEVEL COMPUTER
TABLE 12-XI INPUT DATA ~ OTEER SOURCES REHEAT FURNACE CONTROL LEVEL COMPUTER

TABLE 12-XII CONTROL CUTPUTS - REHEAT FURNACE CONTROL LEVEL COMPUTER

TABLE 12-XIII MODULAR TASKS OF THE CONTROL LEVEL COMPUTER ROUGHING STANDS

TABLE 12-XIV DIRECT CONTROL TASKS - HOT ROLLING MILL ROUGHING STANDS CONTROL LEVEL COMPUTER

TABLE 12-XV ON-LINE VARIABLES TO BE CONSIDERED BEOT ROLLING MILL ROUGHING STANDS CONTROL

LEVEL COMPUTER

TABLE 12-XVI INPUT DATA - OTHER SOURCES HOT MILL ROUGHING STANDS CONTROL LEVEL COMPUTER
TABLE 12-XVII CONTROL GUTPUTS - HOT MILL ROUGHING STAXDS CONTROL LEVEL COMPUTER

TABLE 12-XVIII MODULAR TASKS OF THE CO¥TROL LEVEL COMPUTER FINISHING STANDS

TABLE 12-XIX DIRECT CONTROL TASKS - HOT ROLLING MILL FINISHING STANDS CONTROL LEVEL COMPUTER
TABLE 12-XX ON-LINE VARIABLES TO BE CONSIDERED HOT ROLLING MILL FINISHING STANDS CONTROL
LEVEL COMPUTER

TABLE 12-XXI INPUT DATA - OTHER SOURCES HOT MILL FINISHING STAND CONTROL LEVEL COMPUTER
TABLE 12-XXII CONTROL OUTPUT - HOT MILL FINISHING STANDS CONTROL LEVEL COMPUTER

TABLE 12-XXIII MODULAR TASKS OF THE CONTROL LEVEL COMPUTER RUE-QUT TABLE AND DOWN COILER
TABLE 12-XXIV DIRECT CONTROL TASKS - HOT ROLLING MILL RUN-OUT TABLE AND DOWN COILER CONTROL
LEVEL COMPUTER

TABLE 12~XXV ON~LINE VARIABLES TO BE CONSIDERED HOT ROLLING MILL RUN OUT TABLE AND DOWN
COILER CONTROL LEVEL COMPUTER

TABLE 12-XXVI INPUT DATA - OTHER SOURCES HOT MILL RUN-OUT TABLE AND DOWN COILER CONTROL

LEVEL COMPUTER

117



TABLE 12- XXVII CONTROL OUTPUTS - BOT MILL RUN-OUT TABLE AND DOWN COILER CONTROL LEVEL COMPUTER
TABLE 12-XXVIII MODULAR TASKS OF TEE CONTROL LEVEL COMPUTER HOT BAND INVENTORY INPUT

TABLE 12-XXIX DIRECT CONTROL TASKS - HOT BAND INVENTORY CONTROL LEVEL COMPUTER

TABLE 12-XXX ON-LINE VARIABLES TQ BE CONSIDERED HOT BAND INVENTORY CONTROL LEVEL COMPUTER
TABLE 12-XXXI INPUT DATA - OTHER SOURCES HOT BAXD INVEXTORY CONTROL LEVEL

TABLE 12-XXXII CONTROL OUTPUTS - HOT BAXD INVENTORY CONTROL LEVEL COMPUTER

In the disposition of these tables, several conventions were employed. All tables
describing data, such as "input data”, ”control outputs”, "on-line variables” (Table
12-XXYV), were taken as interfaces. The CDF requires that interfaces are identified
as either provided or required; the convention employed was to treat all outputs as
"provided” and all inputs as "required”, other data such as on-line variables and
data transferred from other areas were also treated as "required”. As the various
data tables distinguish the area of the application to which they are relevant, e.g.
in the above list, Table 12-XXXII (reproduced below) describes control outputs for

Hot Band Inventory Control, this was carried over into the interface name.

TABLE 12-XXXII

CONTROL OUTPUTS ~ HOT BAND INVENTORY
CONTROL LEVEL COMPUTER

1. Crane Movement

2. Conveyor Movement

So in the case of Chapter 12, Table 12-XXXII reproduced above gives rise to the
following interface names:
1. Crane Movement (Hot Band Inventory Control),

2. Conveyor Movement (Hot Band Inventory Control).

In some cases, the Williams data tables have been quantified or parameterised. For

example, in Chapter 12, Table 12-IV gives numbers following each of the items to

indicate the typical number, as the excerpt below illustrates:

118



. 8lab Quality Input - Manual (1)
. Slab Weight (1)

., 81lab Dimensions (1)

. Crane Position (1/crane)

. Crane Condition (1/crane)

® N O e W

. Crane Speed (1/crane)

In other chapters, the parameterisation is used; for example, in Chapter 8 (Blast

Furnace Unit Control and Supervision), Table 8-IX contains entries for:

33. Temperature of Furnace Coolant Exit of Each Section (m)
40, Identification of Torpedo and Ladle Cars (a x (1))
43, Tuyere Coolant Outlet Temperature (p x (2))

These are numbers required for each furnace.

Total will be double the given number.

m is the number of coolant sections per individual furnace
n is the number of ladle and torpedo cars
P is the number of tuyeres

In converting the Williams text into CDFs, no use was made of these finer details
although obviously such finer detail could form the basis of a more detailed descrip-

tion.

In order to distinguish the component parts of the concepts, the various tables
describing supervisory and control tasks were used. Like the data tables, these
tables include the area of application; so the convention employed was to take each
table entry and append to it the area of application retaining the distinction between
control and supervisory tasks and use this as a component descriptor. An example
of such a table is reproduced here to illustrate the typical control tasks. This tasks
come under the concept of Coil Inventory Input Control and can be found in its

decomposition.

TABLE 12-IXVIII

119



MODULAR TASKS OF THE CONTROL LEVEL COMPUTER
HOT BAND INVENTORY INPUT

+ -+
+ +

|Tracking and Identification of Hot |
|Band Coils |

+ +
+ +

|Operation of Hot Band Storage Input |
|and Output Cranes and/or Conveyors |

-+

|optimization of Hot Band Storage |
|Conveyors |

+ -
+ +

|Optimization of Hot Band Storage |
|Inventory to Minimize Crame and |
|Conveyor Movement |

+*
+

So in the case of Chapter 12, Table 12-XXVIII listed above gives rise to the following

component parts assigned to the concept of Coil Inventory Input Control:

1. Tracking and Identification of Hot Band Coils (Control Task - Hot Band In-

ventory)

2. Operation of Hot Band Storage Input and Output Cranes and/or Conveyors
(Control Task - Hot Band Inventory)

3. Optimization of Hot Band Storage Conveyors (Control Task - Hot Band In-

ventory)

4. Optimization of Hot Band Storage Inventory to Minimize Crane and Conveyor

Movement (Control Task - Hot Band Inventory).

The chapters in the Williams report include a further decomposition of the control
level tasks into direct control tasks. This could be used in CDFs describing the
control level tasks as the basis for the component concepts description. In the
work that was done with the Williams material, this depth of description was not

attempted.

120



Twelve CDFs were completed using the Williams report. Figure 5.5 gives an
overview of those resulting from Chapters 5 and 12. The CDF from Chapter 5
of Williams describes concepts found in any lower level control systems of which
Hot Mill Unit Control and Supervision, the topic of Chapter 12, is a special case.
Note that the decompositions are not exactly the same. In the CDF from Chapter
12, while there is one component concept concerned with lower level supervisory
tasks, there are six component concepts concerned with lower level control tasks,
one for each of the subareas of control of the hot mill unit. In the more general model
recorded in the CDF from Chapter 5, there are only two component concepts: lower
level supervisory tasks and lower level control tasks. The CDFs resulting from Chap-
ter 5 were key to this study as they provide a general system model for the concepts
covered in chapters 6 to 14 of the report, all of which are concerned with the control

and supervision of various processing units of the steel mill.

The Continuous Annealing Plant Line - PODAS

In this case study, it has been possible to work from the complete set of docu-
mentation for one application from ABB; this documentation includes the original
customer requirements (not in machine readable form) as well as all the ABB pro-
duced material. This material describes an annealing line control system, that ABB
developed and includes the requirements specification, design and code documents
(all available in machine readable form). The full title of the application is: Contin-
uous Annealing Line Plant (ALP) - Process Operating and Data Acquisition System
(PODAS). Annealing is form of Finishing carried out during Cold Working. From
the standpoint of applying the CDF, the ALP material is ideally structured. It has
two main subsystems, ALP_1 and ALP_3 (the latter being highly confidential is not
available; the former is a merge of two earlier systems, ALP_1 and ALP_2). Within
ALP_1, subsubsystems are denoted as ALP_1A, ALP_.1B, etc and subsubsubsystems
are denoted as ALP_1AA, ALP_1AB and so on. The Interfaces are distinguished as
either Imported (which maps to Required) or Exported (which maps to Provided).

An outline of the main parts of the ALP_1 subsystem can be found in Figure 5.6 -

121



[onuo)) AI0WdAU] [10D

uoneIuaWndo(] uonuya(] B

Surppuegj dnuowg

UOARIBWNIOA  yonuiac] BIRC

SWIYILOS[Y [011U0)) 102J1CL ofeyoed
$9 S[DPOIA 2P0D
[0JIU0D) SIAN0D) UMOCT BAOEJ 1S9L 3[NPOA AP0 SoRRAD 1591, PO
PU® 91qe. Jnoud suonearunwwo)) AYyosesary T
Furgsiut Sl WaISAS Aqpuels Jo a1epdf) ;
spue)s Sut .
[0Nu0)) Spuel§ sulystuL] Cuﬁ:». T
}OaUD ANIQRIA [eUISIXH
[onuo) spuel§ Suigdnoy cow__%m“w $ONSOUBEI(] PUE JAUDJIES SYSEL, [0NU0D)
o QA9 JOMO
NuQ A 19 suonEduNwwWo)) JoigradQ 1PA9T 1
[01)U0D) $3JBUIN,T 1B3YDY fendiq - uypuey ndinQ
3oeuy - suljpuel] mdinQ
3 € gULIOIIUOIN [
0J110)) K101UdAU] QB[S BUTWIE[Y pUE sul
! 2 ! m:::m\ﬁm :::%U SUTPUCTTTauT TeWsT
.nms.b il o:m_unwm_ﬂ%sm\m_ Sunpueyj nduj sojeuy [
- syse ], A1os1atadng
TONTSOdMWoIa(] UOTRALI uotnsodwoda(| UONRALID(]
U JONT0) T T [IATT0IT 1430 SYSE] [0NU07) [9ART Jom0 T 1dIoU0D)
1 UOISIOA _ UOISAIadNS put | O T[] TTUALIOT [ UOISIOA ﬁ SB[ DI
RS UOHBIUAUINIO(
uyIos Vv 10110 [RISUID) uoneaWnNI0(J wo Ny BleCl uonIuIa(] BIeCl
Suipueyy [dnuduy O3B 0Ed 1SAL AINPOIA 9PO7) ageyoed 1891, AINPOA 9POD)
washs Agpurig jo aepd) — Syury
CuE_»‘ SocI YIP M) e _ow_%%w_u.
SYIYD ANPIEA [EUIIXH oA9T 19O
SUISAS 19MO SHAT ——
o wonesadQ Jo sansouserq _ w»wmmﬁ wmum sk omm_ioa:w
Lonsougei pue A3UD-JIvS i 19A9] JOMOT
SUPUTI] J1%] S
(p1emumo(]) , g
suonedrunuIIo)) AYdIeIdly _%wwﬁﬁ %
(premdpy)
SUONBIUAUIWIO)) AYIIBIDIH
SOOTTE3TITIO Y JOSTATSANG )
: UOTIBALID
uonsodwodag UOHBALIX(] uonsodwodaq NBALD(T

[ UOISIDA _

SySe ], kiostaiadng [2A37] Jomo] 1daouo)

| UOISIOA _

SWolSAS 101100y Pue £J0SIAIDUNS [9A7] JOMO7| 1daouo)

CDF's Resulting from Williams Report

Figure 5.5

122



Decomposition of ALP_1 - Continuous Annealing Line Plant PODAS. This decom-
position follows from the overall hierarchical model described below although it is

only concerned with control at the lower levels.

PODAS
ALP_1A Input Coil Handling ALP_1D Process Data Acquisition
ALP_1B Set Point Processing ALP_1E Event Acquisition
ALP_1C Production Data Handling
ALP_1F Standstill Handling Parts corresponding to Main Processes
ALP_1G General Functions Other Parts

ALP_1H Dialogue Handling

ALP_1L Data Management

ALP_1I Communication with Level 3
ALP_1J Communication with Gateway
ALP_1K Communication with Process

Figure 5.6: Decomposition of ALP_1 - Continuous Annealing Line Plant PODAS
A Worked Example of Conversion into the CDF

The text describing the overall PODAS system design specification was chosen for
conversion into the CDF. As this text contains references to the major subsystems,
it allows a link between between the overall concept description held in a CDF and
subsystem descriptions held as files in the plain text document store with file names
corresponding to subsubsystem identifiers. Each subsubsystem of ALP.1, that is

ALP_1A through to ALP_1L, was taken as a component concept of the concept.

Although this text contained a straightforward decomposition of the concept into
parts, it did not contain sufficient information about the interfaces for these to
be described. Further information was obtained by examining the texts describing
PODAS requirements in conjunction with the data flow diagram given for ALP_1.
Each subsubsystem contains a description of its own interfaces distinguished as
either imported or exported; however, from these descriptions, it was not always
clear whether or not the interfaces of the subsubsystems were internal or external to

the PODAS subsystem. Here greater domain expertise is required to identify these

123



PODAS interface bindings.

Four major interfaces identified were as follows:

LASSO (Logging System for Investigation and Analysis) Interface

Production Control System (Level 3) Interface

Operator Interface

e Direct Control Level Interface

On reflection having filled in the CDF, these interfaces appear to correspond to the

following other parts in the decomposition given above:

e ALP_1H Dialogue Handling,

ALP_11 Communication with Level 3,

ALP_1J Communication with Gateway, and

ALP_1K Communication with Process.

More analysis is required to establish the corréspondence between the interface con-
cepts and component concepts which appear to provide these interfaces. This would
have required CDF's for the component concepts to be developed so that their in-
terfaces were identified and could then be linked to the main concept’s interfaces.

Analysis at this depth was not possible due to time constraints.

Offer Texts from ABB’s Metallurgy Division

The source material which formed the basis of this case study has been various offer
material in English and German prepared by engineers in the metallurgy division of

ABB. Those offers studied in connection with CDF filling were as follows:

124



1. Annealing and Pickling Line Offer,
2. Electrolytic Tinning Line Offer, and

3. Hot Dip Galvanizing Line Offer.

A Worked Example of Conversion into CDF

The offer text for a Hot Dip Galvanizing Line Control System was chosen for con-
version to CDF. This text is interesting in itself as it shows that reuse is already
practised in the preparation of offers by ABB as the passage from this offer quoted

below indicates:

The application software functions have been adopted from the functions

realized within the Customer X project Project Y.

Note that Customer X and Project Y have been substituted in this quote to protect
ABB’s customer’s identity. The decomposition of the concept as recorded in the
CDFT is given by Figure 5.7 - Decomposition of Hot Dip Galvanizing Line Process
Control. Although the offer text includes further decompositions of the concept’s

component concepts, these were not recorded in additional CDF's.

Immediate'P'ans t Dip Galvanizing Line Process Contr,
Decomposition / T
# Data Collection and Data Exchange with
Tracking Allocation Foreign Equipment
Production Order R
Management SetpointProcessing 7 e
Set Point Table Set Point Set Point Further
Administration Calculation Setup Decomposition

Figure 5.7: Decomposition of Hot Dip Galvanizing Line Process Control

As with the Continuous Annealing Line Plant, there was some difficulty identifying
the concept interfaces, and here unlike in the case of PODAS, the difficulty was lack

of detail (as one would expect in an offer to supply a system). The system proposed

125



in the offer text is restricted to Level 4 (i.e. Process Control); and in this case, Level
4a is intended as described below in the Hierarchical Model given in the Table 5.1.
Here the level numbering is that used internally by ABB engineers; it is a reverse
ordering to that found in the Williams report as the table shows. It is derived from

a framework of levels developed by the steel producer, Hoogovens.

Experience Gained Using Known System Models to Assist in CDF Filling

As a result of this work, common system structures are a recognised starting point

in the development of design frameworks of related software concepts; to quote

Wirfs-Brock and Johnson:

Most people realize they need a framework when they notice similarities

in existing applications.

It is interesting to compare the decomposition given in the earlier questionnaire set
filled out at ABB describing Order Processing in a Strip Processing Line [89] with
those obtained in the later work described here. The earlier questionnaire set is lim-
ited to describing a strip processing line control system. Figure 5.8 - Decomposition
of a steel mill control system - illustrates the decomposition graphically. The figure
is a simplified version of the Uppermost Level of General System Structure taken

from an earlier report [88].

The overall system decomposition can be compared to those given in the previous
Figures 5.6 and 5.7 (PODAS and Hot Dip Galvanizing); there is a high degree of

commonality in the essential elements:

1. automation of control;
2. data acquisition;

3. communication.

126



—_ =~ Order .
Management
/ Maintenance
Data Table Models and Support
Management Optimisation \ Long-term
/ Archiving

Material Data \
M t .
Set Point anagemen Acquisition
Processing \ ] \
General

) Reporting
Functions and Logging
Data e——————>>

ol jcatiol

Figure 5.8: Decomposition of a steel mill control system

Notice all these figures have elements which are concerned with Set Point Processing
l.e. with automation of control at the process level. All have elements concerned
with data acquisition although it is variously termed as data collection, process data
acquisition, etc. All have elements concerned with communication; these are most

clearly identifiable in the PODAS figure.

The overall system decomposition is what one would expect given that the overall
hierarchical model of control systems used are more or less equivalent as illustrated
in Table 5.1. (Here Figure 1-14 from the Willlams report has been adapted to
include the levels used by ABB originally discussed in C2.1 [88]. These levels are
also described in the text of the Hot Dip Galvanizing Line Offer prepared by ABB.)
This model was taken as an initial design framework to guide the design-for-reuse

work of identifying software concepts for reuse in this study of applying the CDF.

The availability of such models relieves the concept describer of much work. If
the description of a new concept can be fitted to existing system design framework
such as the above model of hierarchical control systems, then the task of describing
the new concept can take place within established conventions such as recognised
levels, known functions at each level, etc. Moreover, in order to understand the

relationships between the parts of a concept, it is necessary to refer to the level of

127



Table 5.1: Models of Hierarchical Control Systems with Levels

Level Focus of Control | Function Applications
ABB Hoogovens PLAIC
1 1 4 Corporation Central Planning | Long and Medium Term
and Control Production Planning
Order Entry and Sales
Order Dressing
Weekly Loading
Shipping Planning
Invoicing
2 2 3 Product Scheduling {Re)assignment of Material
and Control to Orders
Mill Scheduling
Quality Control
3 3 2 Production Mill Control Data Distribution in the Mill
(Flow of material | Material Tracking
through the mill) | Data Collection
4a 4 1 Plant Process Control Process Control (Grouped
Setpoints)
Data Logging
4b 4 1 Setpoints Group | Group Control Setpomt Processing

control for which they are intended. Thus, design frameworks are useful to guide

those designing for reuse as well as those designing with reuse.

However, there is no easy solution to the difficult problem of populating a Reuse
Support System with reusable concepts in such a way that the concept descriptions
facilitate reuse. The approach taken here has been to employ a canonical form
for all descriptions of concepts - the CDF. Whilst this approach allows various
descriptive methods and notations to be accommodated including natural language
descriptions, it still imposes a constraint on the form of descriptions and this means
that the existing software concept descriptions may require recasting into the CDF.
Experience in the Steel Production domain has been that where systems have been
designed in the framework of a common system model, the model itself provides
insight into understanding the software concepts and their interfaces that are likely
to found on examination of the existing software. This model constitutes a design
framework and provides an important source of guidance for those attempting to
develop software concept descriptions. It is especially helpful when attempting to
identify the concept’s interfaces; particularly where the description of the concept

is restricted to a particular level or levels of the model.

One of the source concepts for design frameworks as used here has been the use of

reference models in the development of communications standards. In Figure 5.9 -

128



OSI Layers Used as Framework for Relating Existing Network Designs (taken from
[151]), the layers of the Open System Interconnection (OSI) model developed by
the International Standards Organisation (ISQO) are taken as a basis for comparing
various network architectures. One view of this figure is that it constitutes a one-
dimensional design framework for relating the concepts of ARPANET, SNA and
DECNET. '

Layer ISO ARPANET SNA DECNET
1 Application User End user
Application
2 Presentation Telnet, FTP NAU services
. Data flow control
3 Session (None) (None)
Transmission control
4 Transport Host-host Network services
Source to destination
IMP Path control
S Network Transport
IMP-IMP
6 Data link Data link control Data link control
7 Physical Physical Physical Physical

Figure 5.9: OSI Layers Used as Framework for Relating Existing Network Design

In the Steel Production domain, the levels of control provide the keystones of the
framework relating various steel mill control systems. Unless a system is very simple,
its description is bound to have levels of abstraction employed in describing it and the
possibility of being characterised from more than one viewpoint. Domain analysis
must focus on identifying relevant levels and/or viewpoints in a particular domain.
Literature from the domain is probably the best starting point; and with the research
described here, the work on exploration of terminology used in domain literature has
been found to be a useful preliminary to such more focused study. The importance

of consulting with domain experts cannot be overemphasized in this context.

Some considerations have been outlined here derived from specific case studied.
The above discussion has been limited to brief experience of design-for-reuse in
the domain of Steel Production where the interest has been to support the reuse

of software concepts in the design of process control systems. Here the CDF fits

129



reasonably well with existing concept descriptions, but some problems noted above
were encountered. The existence of an established model of Hierarchical Control
Systems in the Steel Production domain went some way towards helping to solve

these problems by providing the basis for a framework for conceptual understanding.

These initial studies have been based on an existing design framework. In the next
sections, the results of further domain analysis in the domain of Steel Production are
presented enabling further development of a design framework for software concepts

in the Steel Production domain.

5.3.2 Domain Analysis Study Two - the Salzgitter Soft-

ware Field Studies

This second study provided an opportunity to investigate software concepts as re-
alised in the systems controlling an actual steel mill of a medium sized German steel
producing company. One objective of this work was to study a system developed by
a variety of suppliers and to determine whether or not the software concepts found
would be recognisable within the design framework used in the initial studies. The
part of the system studied was primarily developed by a major supplier of control

systems in Germany which competes against ABB for business in this area.

Study Background - A Tandem Mill and its Associated Computer System

The cold rolling area at the Salzgitter steel mill is housed in a large hall. Much of
the space is taken up with storage area for the input coils. The cold rolling line
consists of five roll stands in tandem, i.e. in a line so that as the coil is unrolled and
processed, it passes through the stands in serial order. In common parlance, such
a cold rolling mill is described as a "tandem mill”. The input coils are brought to
the line by overhead lifting devices, and placed in the input area where each new

input coil is joined to the previous by welding before being processed in the pickling

130



line; coils output from the pickling line form the input to the tandem mill. When
each input coil is placed in the uncoiler before processing in the tandem mill, there
is an opportunity for changing the set-up of the line if necessary. At each stand,
there is a small display panel showing the current control values. The actual rolling
line is concealed behind shutters, although it is possible for the operators to lift the

shutters so that the strip being processed can be viewed.

The main control room for the line is located overhead above the processing line.
Here the control operators have a number of video monitors recording what is ac-
tually happening on the processing line as well as a number of monitors displaying
various screens of information about the state of the processing line. For example,
data about each roll stand’s current control values can be displayed. It is possible
for the operator to select a particular screen display on an individual monitor. The
displays are both analogue and digital in form with textual annotations; and good

use of colour has been made in presenting the information.

The computer system controlling the line and supporting the control room displays
is located in a more remote area. It contains the main system computers and system
consoles as well as banks of microcomputer boards used in direct control. In this

system, all the computer power is centrally located.

The area of cold working being controlled by the system consists of a pickling line
with a tandem mill for cold rolling. This rolling line was first operational in 1963
and has always been computer controlled. The first enhancement to the computer
control of the mill was in 1975; and the second and most recent improvements to
the computer control were in 1985. These coincided with the installation of a fifth
stand; the original line had four stands. With the installation of the fifth stand

came the opportunity for new control systems at the lower levels to be installed.

The first step in the Salzgitter modernisation was the preparation of a call for
tenders describing their requirements by the Salzgitter staff; in response, offers were
received from three major vendors. The order for the new system went to the vendor

who had provided the previous system because of their established experience and

131



knowledge of the existing system. However, the Salzgitter plant contains equipment
and systems from all of these suppliers; and the management aims to maintain a
balance amongst the major suppliers. Another major vendor has supplied systems
in the roughing area, and a third has supplied furnaces as well as equipping the
largest cold rolling mill and two smaller ones. Smaller companies have also supplied
the plant; they tend to supply customised subsystems. The larger, more critical
control systems must be reliably supported as the cost of the line breaking down
and remaining idle is considerable. So for these more critical systems, the larger
established vendors are preferred. For example, systems from major international

suppliers are widely used by the plant for the higher levels of control.

The key elements of the control system taken from the call for tenders are as follows:

Data Logger,

¢ Man-Machine Communication System,

o Optimisation Functions (controlling speed, size of slot, force, tension and thick-

ness),
e Band Evenness Measurement and Control,

Diagnostic System and Fault Reporting System,

e Microcomputer Level 2 Control System (covering Group Level Setpoint Con-

trol and Individual Level Setpoint Control).

The additional rolls added with the fifth stand in the 1980s have provided finer
control. This stand has 6 rolls (i.e. is a 6-high stand) in contrast to the other stands
which consist of 4 rolls each; in the stand, rolls are placed vertically one on top of
another and depending on the number of rolls are termed "N-high”. As explained
in (74], tandem mill modernisation usually consists of replacement of the last stand
by a 6-high stand; this enables operators to achieve a better set-up of the tandem
mill by bending and/or shifting of the intermediate roll; this achieves improved

flatness control. In addition with the new system, the thickness of the strips can

132



be monitored over time and when a break occurs, samples of the thickness are
available for the past ten seconds either side of the break. This data can then be
analysed to determine the cause of the break. Presently, in the rolling line, little
information about the input coil is available other than its DIN (Deutsche Industrie-
Normi.e. German Industrial Norm) standard rating and perhaps a handwritten note
to indicate if there might be problems. In future, a better integration of the hot
rolling area and cold working is planned so that data about the coil from one area
will be available during later processing. It should be noted that throughout the
processing, coil data is collected for archiving for purposes of guaranteeing warranty

and that such data must be kept for a seven year period.

The current computer system as installed consists of 50 Intel 286 based microcom-
puters for level 2 control and two mini computers for the associated modelling of
the rolling process required for automation. As it stands, the rolling line cannot
be operated in a manual mode; the microcomputers must be operational. When
working, these process around 250 values per second. On the rolling line, the sys-
tem uses sample data values to adjust its model of the process and then suggests
new values for the control of each stand. The stand operator then has the option
of accepting these or making adjustments to the values based on expert experience.
These value changes, i.e. changes in the set-up, are possible with each new coil; and
the average time between processing a coil on the line is between 3 to 7 minutes.
Any adjustments made after the set-up are automatic and not subject to operator

control.

In a more general discussion concerning the software, the system engineers pointed
out shelves full of the system documentation as supplied by the vendor. This covers
details of the Assembler, Fortran compiler, Linkers, etc. The application specific
documentation consists of three binders; and this was of a high standard although
the text and graphics were poor being based on "old line-printer standards”. In com-
parison, the documentation of a subsystem supplied by a smaller firm was displayed,
and it simply consisted of a listing with comments. Thus the planned development
of CDF sets which would describe the main software concepts of the application

and provide a high level conceptual view of the control system was regarded by the

133



Salzgitter staff as a potentially useful addition to the existing documentation. From

a first inspection of this documentation, an overall system structure diagram was

recorded. It is given in Figure 5.10 - System Structure Diagram for Tandem Mill

Control System - with English annotations.

ART
Materialart
Datei
(Material
stock file)

MMC
Bunddaten
(Coil data)

Standardwalz
vorschrift
{(Standard rolling
prescription)

DAD
Walzdurchmesser
(Roll diameter)

MMC

(Roiling

WSTR

Walzsirategie
(Roll Strategy)

Walzvarschrift

Prescription)

)

T |

-
I
[
|
|
(P rozeRdatei |
(Process data) i
SBDU, NSDA
Umiaufpuffer |

{circular buffer) [

MEDA

L — —

Sollwertberechnung
(Setpoint calculation)

e

A

STER |

P. IP ( Pool)

1

(Buffer of

i

actual values)

SOVE
Sollwertvorgabe
(Setpoint satup)

Modeilvererbung
(Model Inheritance)

LR

STMA
-Modelladaptation
(Modei adaptation) ||

—_— —— — —

MeBweite
(Measurement
Range)

MMC
Datenschiene
(Data Track)

| S

Y
| ™ESI

MeBwerterfassung

4— - (Measured value

acquisition)

|| MeBwertsicherung !

| (Measured value |
! safeguards) |

Modelifaktor
Model factor)

MDAD
(Inherited material
data)

every 3 seconds
data from
measured value
preparation
(MeB-
wertbearbeitung)

— 1

Figure 5.10: System Structure Diagram for Tandem Mill Control System

Details of the Software Concepts Studied

This study of software concepts in the area of Cold Working is complimentary to the
one undertaken at ABB [89, 88]. The materials available from Salzgitter have been

used to complete a set of CDF's describing a control system for a Tandem Mill, This

hag formed a basis for comparison with that already studied and described using the

CDF, i.e. the concept of Pickling and Cold Mill Unit Control and Supervision based

134



on Chapter 13 of the Williams report. In the study, only a partial examination of
the software system controlling the tandem mill in the area of Pickling and Cold
Rolling (collectively part of Cold Working) has been made. More specifically, the
focus has been on the software for determining the calculation of the draft rolling

schedule (die Stichplanberechnung - abbreviated as SPB).

The study of the SPB has been made from three primary sources: the Peine-
Salzgitter requirements document, the supplier’s system specification and the sup-

plier’s documentation of the delivered system. In total, this study resulted in the
filling in of 8 CDF's.

The Salzgitter concept set describes the following concepts:

C0 - SPB Draft Schedule Calculation, Version 1

Cl - WSTR Rolling Strategy, Version 1

C2 - SOBE Setpoint Calculation

C3 - SOVE Setpoint Setup

C4 - MESI Measured Value Safeguards

C5 - STMA Model Adaption

C6 - STER Model Inheritance

C7 - MMC Multi-Microcomputer Control, Version 1
C8 - MEWE Measured Value Acquisition, Version 1
C9 - SPB draft Schedule Calculation, Version 2

C10 - WSTR Rolling Strategy, Version 2

C11 - MMC Multi-Microcomputer Control, Version 2
C12 - PROST Process Control (Open Loop), Version 1

Note that those with version numbers have been installed as CDF's in the PRESS. In
addition, a generic architecture for cold rolling mill control systems, more specifically

tandem mill automation, given in [40] has been used to form the basis of following

further concept descriptions:

CO0 - Tandem Mill Automation Scheme, Version 1

135



C1 - Tandem Mill Schedule Adaption

The CDF recorded for the concept, Tandem Mill Automation Scheme, is given here
in Appendix D.

The CDFs deriving from the Williams report are of a very general nature. In
filling out the CDF's for the software concepts studied at Salzgitter, there was no
straightforward link between the concepts other than the broadly similar structure
of process control systems. The Bryant book which specially addresses tandem mill
automation provides the intermediate level concepts to bridge this gap. This book
had the express aim of developing concepts applicable to any system for control of
a tandem mill, in particular, control via the on-line adaption of the rolling schedule.
Based on an understanding built up over the course of these studies, Figure 5.11 -
Conceptual Derivations for Concepts in Cold Working Control Systems - shows the
links between these concepts in terms of their conceptual derivation (bear in mind

that this does not of course represent the order of actually filling-in the corresponding

CDFs).

Concept 0

General Model of Cold Rolling
Supervision and Control Functions

\

is derived from
Concept 1

l Tandem Mill Automation Scheme ]

is derived from

Concept 2
&PB - Draft Schedule Calculation J

Figure 5.11: Conceptual Derivations for Concepts in Cold Working Control Systems
Also initially, the role of the Draft Schedule Calculation (SPB) software in the over-

136



all system was not so clear from the documents studied. In the supplier’s system

proposal, the SPB appears to communicate directly with the Multi-Microcomputer

Control system (MMC); and the initial versions of the concepts reflect this. How-

ever, in the delivered system documentation, the SPB communicates with a system
Process Control (Open Loop) (PROST). At first, it was thought that the name of
the MMC had been changed to PROST, but further study showed that PROST was,
in fact, an additional concept. An illustration of the connections between the SPB,
Measured Value Acquisition (MEWE), the MMC and PROST is given in Figure
5.12 - SPB Located in the Automation System. Subsequently, new versions of SPB,
Rolling Strategy (WSTR) and MMC have been made, and a description of PROST

has been added.

PLT Operator
- Roll Prescription
(Walzvorschrift)

- Start SPB signal

Material Tracking controlled by the Process

(Materialverfolgung durch den Prozess gesteuret)

\

-

Measured value acquisition (Messwertfassung)

Setpoint setup
(Sollwertvorgabe)

Computer Coupling (MMC Data Track)

PROST

MEWE

WSTR

MESI

SOVE

SPB - Draft Schedule Calculation

Figure 5.12: SPB Located in the Automation System

In the course of the study, a further report on control of rolling mills suggested that

a different rolling system control concept derivation might also be relevant [117]. In

this paper, a generalised system for automatic control of rolling mills is given. It

137



is based on a model which provided an abstraction across the areas of Hot Rolling
and Cold Working, as well as different types of rolling process: reverse rolling and
continuous rolling. This would result in the conceptual derivation found in Figure

5. 13 - Alternative Derivation for Rolling System Control Concepts.
Concept 0

General Model for Control of
Rolling Process -
Draft Schedule Calculation

is derived from
is derived from

Concept 1 Concept 2
Specialisation Specialisation
of Model for of Mode! for
Hot Rolling Cold Rolling

is derived from is derived from

Concept 3
Model for

Reversing Mill Model for

Tandem Mill

0O
(=]
=]
o)
¢
kel
=
S

Figure 5.13: Alternative Derivation for Rolling System Control Concepts

This alternative model follows from a specialisation of the general case based on a

substitution of the following concepts:

roll force and roll torque calculation,
temperature calculation, and

forward slip calculation.

Forward slip calculation for both hot and cold flat rolling process is based on Fink’s
formula. Rolling force and roll torque calculation for the hot-rolling process is based
on experimental methods following Cook and McCrum’s work. According to the
paper cited, the improved Bland and Ford methods for rolling force and roll torque
can be successfully used in the simulation of reverse cold rolling. The improved
Bland and Ford method is the usual basis for simulating the roll force in continuous
cold rolling; these equations of classical cold rolling theory were established in the

1940s with the work of Orowan.

138



This accords with the Bryant general model for cold-rolling-mill systems, and the
suggested substitutions are based on common references, viz Bland and Ford et al.
The main point here is not the details of theory, but to get across that a designer
working in this area has established theory and concepts on which to draw provided

the conceptual framework relating these is in place.

In the study of the Salzgitter SPB software, it was not possible to make a detailed
determination of the algorithms employed for these concepts; however, study of the
overall structure was found to correspond to that given in the Bryant concepts, and
more generally to those given in the Williams report. From these considerations
confirming the earlier domain analysis, it was concluded that the system concepts
given in the Williams report would provide a reasonable base for further development

of a design framework for this domain.

5.3.3 Final Study - Consolidation and Development of an

Improved Framework

In this subsection, the relationships found amongst the concepts studied above and
their CDF sets during their development and subsequent analysis are discussed, and
a more detailed design framework for these concepts is developed. The aim of this
study is to refine the conceptual foundation for process control applications in the
domain of steel production discussed in the above studies. The remaining section
will discuss how this framework might be used in the preparation of offers for new

systems.

The most general architecture for control systems in Steel Production can be found in
the Williams’ report in Figures 5-1 through 5-5. These structure diagrams illustrate
the typical modules found in any process control program in this domain and give
data and control flows. These structures are described at Levels 1, 2, 3 and 4A as
well as overall. The diagrams provide the basis for a very general system concept

set comprising the following concepts:

139



CO - Overall Process Control Programming System

C1 - Process Control Programming System, Level 1

C2 - Optimising Control Programming System, Level 2

C3 - Detailed Scheduling Programming System, Level 3
C4 - Overall Scheduling Programming System, Level 4A

This set forms the framework for the general concepts described in the CDF sets
developed from the remainder of the Williams report and for the more specific con-
cepts obtained from the domain studies of the ABB project documentation including

offers and from the Salzgitter material supplemented by the Bryant material.

The framework presented here is based on synthesis of the PLAIC model of hi-
erarchical control in a steel mill with refinements and elaborations deriving from

theoretical considerations as well as the field studies of software used in practice.

The framework builds on the classic model of hierarchical control described in [100].
Mesarovic identified three essential characteristics of multilevel, hierarchical control
structures:

e vertical decomposition;

e priority of action with higher levels controlling lower levels;

e performance interdependence (success depends on performance of the whole).

With respect to the application of hierarchies in process control, he distinguished

three important types of hierarchies:

e levels of description or abstraction (strata),

o levels of decision complexity (layers),

e organisational levels (echelons).

140



An example of a type 1 hierarchical description is an industrial system modelled
economically at one level, in terms of information processing and control at an
intermediate level and in terms of physical processes at the lowest level. A self or-
ganising system can be described using levels of decision complexity; at the top level,
the system is self-organising, but at the next layer, its elements may exhibit learning
and adaption strategies which in turn are decomposed into selection strategies for
control possibly based on some form of optimisation or regulation via direct control.
The third type, organisational levels, is found in models consisting of a central ele-
ment of control at the top with strictly defined chains of commands between the top
and subsequent levels where elements at one level directly control those on the next
level and reporting back from a lower level element to its immediate superior follows
the same path. As Mesarovic points out, these three notions of hierarchy can be
superimposed or combined in the same system description; and there are features
common to all three types of hierarchies. Three features which he singles out are as

follows:

e as one goes up higher in the hierarchy, the elements modelled become larger

and the periods of time under consideration greater;

¢ in addition, at the higher levels, the pace of decision making is slower as the
dynamics of change are slower and the exchange with the environment is less

frequent;

e however, decision making at the higher levels is more complex as the descrip-
tions are less well-structured and difficult to formalise due in part to uncer-

tainties.

These features of hierarchical models make them especially suitable for application
in the modelling of control systems in manufacturing. A four level model has been
used extensively to provide standard terminology for describing the implementation
of information and control systems in manufacturing [67]. Typically the four levels

are distinguished as follows:

141



level A Regulatory and Sequential Process Control (i.e. control of field instruments

and actuators in direct contact with the process)

level B Supervisory Control of level A (i.e. control of production through coordi-

nation of level A activities)

level C Plant-wide Information Systems (e.g. Product scheduling, Operations man-

agement, and Monitoring of Production)

level D Corporate Information Systems (e.g. Management Information Systems).

The specialisation of the hierarchical control model for the domain of steel produc-
tion consists of four main levels: corporation, product, production and plant, with
some separation of concerns within particular levels as suggested by the PLAIC
model and the Hoogovens/ABB models already discussed in section 5.3.1. This di-
mension, levels of control, is considered together with a further dimension, areas of
control, which provides a means of relating the system design to the physical areas
of the steel mill as these map directly to areas of control for the software. These
two dimensions present as separate aspects in the PLAIC model provide the basis
of the design framework illustrated in Figure 5. 14 - Levels of Control and Areas of

Control.

Each process area of the mill may be further decomposed into subprocess areas;
for example, in the case of the Cold Working Area, the subprocess areas are as
follows: Pickling line, Cold reduction mill, heat treating, Temper mill, Finishing,
Product inventory and warehousing. Design in this dimension may be further sup-
ported by the existence of a relevant reference-plant concept. As explained in
[91], a reference-plant concept provides a systematic approach to plant engineering
consisting of a combination of recommended, pre-engineered plant arrangements (in
building-block segments) to define the plant layout. It includes system descrip-
tions to define all aspects of every plant subsystem in a standardised format, and
standardised equipment specifications that are continually updated to reflect the
latest industry standards and feedback from operational experience. Ideally an ap-

proved quality assurance program is also included. Although such models have been

142



Level 1
Management
Information

“Production
Scheduling and
Operational
Management

Level 2

Intra-Area
Coordination

Level 3

Supervisory
Control

Level 4
Direct Digital
Control

Specialised
Digital Control

Levels

Areas

Melting Area

Hot Rolling Area

Cold Working Area

Coke
Ove
Unit

Sinter

Unit

Blast

Plant | Fumace| cagiing

Unit

Continuous

Hot Mill Unit

Slabbin
Unit

Reheat

Furnace Mill

Hot Rolling

Pickling and Cold
Miil Unit

Finishing and
Warehousing Uni

Pickling Cold

Finishing

Mill

Figure 5.14: Levels of Control and Areas of Control

143

types of |
finishing




developed for power plants, it has not been possible to identify any published plant-
reference models with the details outlined above for steel plants and none explicitly
addressing the software requirements of a plant have been found. To better sup-
port reuse of designs, further domain analysis to fill in the framework along this

dimension would be of value; however, such work is beyond the scope of this thesis.

In addition, three main flows may be considered for any system in the context of

this framework:

¢ flow of information,
e flow of energy, and

¢ flow of materials.

These flows are identical with those found in von Bertalanffy’s characterisation of
systems given in his exposition of General System Theory [162] cited in [48], also see
(163]. The identification of these flows is also recommended practice in engineering
design as advocated by Pahl and Beitz [110]. Note that here this framework differs
from the PLAIC model where energy is taken as a fourth area of control. However,
conceptually PLAIC approach is unsatisfactory; as energy considerations are needed
throughout the system. It is perhaps of note that this part of the PLAIC model
was developed as an addition and that perhaps explains in part why energy consid-
erations were not directly integrated into the main model. The approach taken here
with three main flows characterising the system is confirmed by Heidepriem’s view
of a steel mill (shown here in Figure 5.15 - Steel Mill System’s Characteristic Flows
- based on a translation and simplification of one taken from his lecture notes by

the author).

The basis of control is the flow of information in the system; and the objects of
control, the processes, require energy and materials and may themselves produce
energy for subsequent processes and result in outputs, e.g. productsi.e. transformed
materials, Given a particular system, identification of its flows of information, energy

and materials, in the context of the two dimensional framework already presented

144



Information

@ Area|3

Energy Areal

Materials

Figure 5.15: Steel Mill System’s Characteristic Flows

145



enables a determination to be made of the degrees of integration amongst its parts
in terms of these three flows. For example, in a system for controlling a cold rolling
mill, information about orders may come from the top level, or it could be passed
laterally from the hot rolling area control system. If a failure occurs in processing,
the request for more materials could be handled locally or it may require passing
a message to a higher level to initiate rescheduling of the order. If a system only
addresses the lower levels of control, it may not be concerned with orders per se at
all. For example, the determination of a draft rolling schedule is concerned simply
with the calculation of control values to drive the actuators of a rolling line to meet
specified requirements given in terms of physical characteristics of the rolled steel to
be achieved; it is only if such a lower level system is seen in the context of a larger
system description that the higher level concept of order can be understood as a

determinant of the rolling process.

The hierarchical dimension, levels of control, coupled with the vertical dimension,
areas of control, should not be seen as imposing a ”straight jacket” of strictly hi-
erarchical communication between levels and/or areas. The role of coordination
within horizontal decompositions of the control hierarchy was already recognised by
Mesarovic, and that this is now common practice is supported by evidence from
Heidepreim’s survey paper {74]. The framework presented here aims through the
provision of a mechanism for describing the integrative flows of information, energy
and materials to address this aspect of design. These flows are captured in the con-
text of Practitioner concept descriptions through the specification of provided and

required interfaces and associated interface bindings given in the CDFs.

A benefit of this framework is that it provides a basis for establishing the coverage
of the software studies undertaken within the project. In Figure 5.16 - Populated
Design Framework Relating Steel Domain Design Concepts, the framework is used
for this purpose to relate the different CDF sets and earlier questionnaire sets de-
veloped. It should be noted that these studies have primarily addressed the heart
of the AISE layered model of Process Control Software, i.e. the process technology
software. However, within the framework given, hierarchies of domain data objects

within the corresponding control levels and areas can be identified; similarly, levels

146



of Man-Machine Interaction concepts and Communications concepts could also be

identified.

Level 1
Management
Information

st -—
roduction

Scheduling and
Operational
Management

[l
-7

il [

Overall Management Information and Production Scheduling

Level 2

Intra-Area
Coordination

Area Control
(based on Chapter 4 of Williams)

(based on Chapter 3 of Williams)

PAAIA n‘&n@:ﬁzéqa’née’sﬁy(ﬁ)/////’/// /|

Level 3 ABB Studles (C2 & E4)
Salzgitter Studies (F4)
Supervisory
Contol General Topics - Lower Level Members
{based on Chapter 5 of Williams)
Concepts'.&é's“t:::lﬁgd in ¢ / Conr:égfs;.é'escrib'é& in Concepts described in
Level 4 Chapters 6-11 ot Wllllams \\ Chapter 12 of Wllllams Chapters 13-14 of Williams
Direct Digital R P P e
Contral C i
—_—— - o (“Tandem Mill Automation
Specialised : : (based on Bryant)
Digital Control % o R
Levels Meiting Area , ' Hot Rolling Area T'Olfi vvorking Ar ea__
Coke | Sinter | Blast Continuous | Slabbing Hot Mill Unit Pickling and Cold| Finishing and
Areas ngn Plant Furnaca Casting Unit - Reheat Hot Rolling Mill Unit Warehousing Uni
Unit | Unit Unit AIBICTDY Furnace Mill
Pickling | Cold | Finishing [WH
Mill | types of
finishing

Figure 5.16: Populated Design Framework Relating Steel Domain Design Concepts

The chief benefits though come from the use of the framework as a record of con-

ceptual understanding of designs found in the domain. As a result of the initial

studies, it was argued that the existence of such models greatly assists in domain

analysis; and in Chapter 8, the utility of such frameworks as carrier of high level

design concepts providing the necessary levels of abstraction to support reuse of

design concepts will be outlined.

A more general account of the benefits of hierarchical structures (of which the frame-

work presented here is an example) in design is given in Mesarovic. He notes the

role of such models in providing frameworks for system integration as well as other

benefits such as stratification of control, limitations on building modules, better

147



utilization of resources and overall increased system flexibility and reliability.

Relation of framework to other developments

The specific framework developed here for the Steel Production domain can be
related to more general research addressing architectures for Computer Aided Man-
ufacturing in Europe and the USA [11, 44]. The ESPRIT Project AMICE is a
collaboration amongst European industrial and academic partners; and this work
on Open System Architecture for CIM has been fed into various national and in-
ternational standardisation efforts. The AT&T research by Campbell et al. whilst
the effort of an engineering research centre of a large multi-national company, nev-
ertheless also explicitly addresses the need for and benefits of standardisation in
this area. Of these two architectural frameworks, the AT&T architecture is closer
to the framework developed here. The four levels of the PLAIC/Hoogovens model
used in the framework can be seen as a specialisation of the more general seven level
AT&T model. The AMICE OSA for CIM takes a more generative approach to the
specification of system architecture; and its modelling of open systems starts with
the enterprise and is at a much higher level of abstract than the process control

systems considered here.

5.4 Consideration of Design-with-Reuse Using Steel

Production Concepts

Throughout the domain studies described above, the CDFs developed were being
installed in the PRESS and additional terminology was being added to the asso-
ciated PRESS thesaurus. Although not made explicit in Chapter 3, the PRESS,
the reuse support system developed as part of the Practitioner project, was devel-
oped to support the CDF rather than the original questionnaire. As a result of the

PRESS development by other members of the Practitioner project, it was possible

148



to process the CDF in the same way as described in Appendix A with respect to the
questionnaire when installing CDF's in the PRESS concept database. All the discus-
sion in Appendix A with respect to the questionnaire applies equally to the CDF. In
particular, the links between indexing terms in the thesaurus and the questionnaire
were established between the thesaurus and the CDF so that CDF's installed in the
PRESS could be retrieved using the thesaurus as explained in Appendix A.

The population of the PRESS formed the basis for various demonstrations. Demon-
strating the payback on reuse in the application domain of process control in Steel
Production was rather difficult as realistic software developments are likely to take
place over a number of years and demonstrating design-with-reuse would have re-
quired a timescale greater than the remaining lifetime of the project. However,
within ABB, the process of offer preparation was identified as one where reuse of
software concepts could have an immediate impact. Responding to calls for ten-
der, by preparing offers, i.e. proposals to build the required software, is an area
where reuse typically has not been considered; and yet it provides a short enough
illustration of reuse without being too simplistic for demonstration purposes while
at the same time bearing enough resemblance to the design process as a whole to
make realistic use of the CDF's resulting from the author’s work. It was also possi-
ble to build on informal reuse of material in offer preparation already practiced by

experienced engineers in the metallurgy division of ABB.

Below one of these demonstrations developed by the author in collaboration with
a domain expert from ABB is described in more detail as it illustrates how design-
with-reuse could be supported as a result of the author’s work using the CDF to

capture software concept descriptions from the domain of Steel Production.

More generally the use of models in control system design is also considered with
reference to use of models in cold rolling mill control; and a role for the CDFs and

associated framework is identified.

149



Table 5.2: Terms of Interest in Customer’s Text

galvanized galvanealed coating

models coils strip

setpoint calculation setpoint generation data acquisition

time related strip related HDN (Hoogovens Data Network)
communications link coil related data order related data

5.4.1 Offer Preparation Using the CDFs

At the Sixth Practitioner Project Review, a demonstration was made by the au-
thor to show how the PRESS could be used to support the work process of Offer
Preparation [29] using the CDFs from the first domain study reported here. The
population of the PRESS with materials from the relevant area of Steel Production
control systems, that of Cold Working, was first explored; and then an offer was
partially prepared on the basis of a customer’s requirements for a galvanisation con-
trol system (included here in Appendix E). This requirements text may be taken a

typical example of a customer’s requirements in this domain.

Informal Exploration of Concepts

The informal exploration of the concept base was made using terms of interest in
the requirements that were highlighted by the project’s domain expert, Johannes
Keilmann of ABB’s Metallurgy division. These terms are given in Table 5.2 and

italicised in the text as it appears in the appendix.

By inspecting the thesaurus, concept base and text document store, it was possible
to demonstrate that the PRESS contained potentially relevant material for this case.
Figure 5.17 gives an overview of relevant control system concepts from the Williams
report and illustrates the thesaurus relations that link galvanizing and annealing.
They are both forms of Fintshing; the relevant CDF is derived from Chapter 14 of
the Williams report. One of the terms of interest in the text, galvanealed, although
not present in the thesaurus could form a starting point for exploring the relevant

thesaurus relations.

150



Related CDFs bused on the Williams report

Overall Management Intormation
and Produchon Scheduling

Area Control

N T

Pickling and Cold Mill Finishusg amd Warehouswg
Controfand Supervision Control and Supenvision

Related Tenns m Thesaurus

Fimsh Line

K .
'. ‘\
. .
B .
Coat Line Heat Treattuent
H Line .
H 1
H '
H H
H .
H :
H .
H :
:
Galvamzing Annealing
gelvaneal

(ferm trom text)

Figure 5.17: Related CDFs and Related Thesaurus Entries

151




Table 5.3;: PRESS Contents Retrieved

CDF Plain Text Document

ALP.1 Process Operating and Data Acquisition System (PODAS) | design text - alpl.dok

Hot Dip Galvanizing Line offer text - a46.txt

Pickling and Cold Mill Unit Control and Supervision Williams report - Chapter 13
Finishing and Warehousing Unit Control and Supervision Williamns report - Chapter 14

The PRESS contents retrievable using the terms "galvanizing” and "annealing”

include several CDFs and plain text documents are listed in Table 5.3.

Inspecting the last two concepts in the context of the related CDF's from the Williams
report allows the reuser to see where the proposed system is located. This system
is concerned with control at the lower levels as can be seen from the fact that
both concepts are derived from the concept, Lower Level Supervisory and Control

Systems. This relationship is shown in Figure 5.17.

Offer Preparation Process Outlined

The work process of offer preparation as carried out at ABB’s Metallurgy division

is described in Figure 5.18 below.

There are two major activities within this process where the thesaurus and CDF's are
used, first, during understanding and analyzing the customer’s requirements, and
second, during the initial formulation of the design of the proposed system. Here
the demonstration was concerned with the use of the thesaurus and concept base
to support the initial formulation of the design by showing how material describing
concepts relevant to the proposed system could be found. Of course, the process of
offer preparation is very dependent on the quality of the customer’s expression of
requirements found in the call for tenders. The expression of requirements can vary

from one or two pages, as in this case, to one or more substantial documents.

In this demonstration of offer preparation, an analysis of the customer requirements
was made using the clustering technique of Alexander described in [9]. This enabled

three main requirements to be identified:

152



- - Consult Thesaurus
Read call for tenders /

Try to understand
customer’s
requirements
f - ~.  Search for relevant
: software concepts/
documents
Make design sketch

\ \

Identify Find texts
countable objects \

Modify texts

v

Prepare
offer text Extract relevant
and texts

calculate price

Figure 5.18: The Work Process of Offer Preparation

153



e Automation (Set Point Processing) (Requirement 2.1 in the text)
o Data Acquisition (Requirement 2.4)

o Communications (Requirements 2.2, 2.3, 2.5 and 2.6)

For example, in the text, there are several requirements which can be clustered to-
gether under the concept of communications: Man Machine Communication, Alarm
System (selective presentation of alarms and messages), Interface with Production
Control System and Input/Output System (including remote I/O). These three main
requirements identified correspond closely to the three search phrases suggested by

the domain expert from ABB which were as follows:

e set point calculation
e data acquisition

e communications link.

In the search for CDFs, the phrases of the domain expert were used. All of the
search phrases were demonstrated to be adequate for identifying relevant material
to be used in the preparation of an offer, i.e. they resulted in the retrieval of some
of the same CDF's that were retrieved earlier in the exploration phase. The results

of using these search phrases are discussed below in greater detail with respect to

the first and last requirements.

Results of Set Point Calculation Search

The concept of setpoint or setup (both terms are used interchangely) is as follows:

Input to the strip processing line takes the form of coils. These vary
considerably (see Section 1. Basic Data and Requirements for DVL2 in

Appendix E). For each new coil input, a different setup may be required

154



depending on the properties of the new coil. This setup may be gen-
erated using models and/or tables. (Tables were more common when
computing power was limited; now more sophisticated setpoint calcu-
lation is possible using models.) For each input coil, the setup of the
line can be changed with respect to various variables such as tension,
furnace control, etc depending on the variation of the input coil’s width,

thickness, temperature, etc and the output coil required.

Setup data is required for the lower level control of the strip processing
of each input coil to produce the output coil required. Here is it relevant
to refer to Table 5.1 which shows the Purdue levels of hierarchical control

and the corresponding Hoogovens levels.

It should be noted that setup and setpoint are used interchangely in the above

description. The texts to be searched contains various forms of both terms, such as:

set up
set-up
setup

set point
set-point

setpoint.

From the entry in the PRESS Thesaurus of "set point”, using the PRESS The-
saurusTool, it can be seen that there is link with the UF (i.e. use for) term "set up

data”.

Using the PRESS SearchTool, if one executes the following CCL:
find set#up or set#point or set point+UF

this will ensure that both cases are covered and a number of CDFs will be found;
these will be from both the ABB material and the Williams report. The five CDF's

retrieved were as follows:

155



o Coke Oven Unit Control and Supervision
e TAUFT

e SWDAT

o ALP_1 Process Operating and Data Acquisition System (PODAS)

Hot Dip Galvanizing Line Process Control

The first three are not relevant as they relate to control of units in different areas
which also happen to involve set-point calculations. For example, Coke Oven Unit
Control and Supervision comes under the area of Melting, not Cold Working where
Galvanizing occurs. The offer preparer was able to determine this by brief inspection
of the contents. The earlier exploration leads the preparer to examine the CDF based
on the offer for a Hot Dip Galvanizing Line, from which an outline of the set point

processing can be extracted for incorporation into the offer.

Using the PRESS TextRetrieval tool on documents, the preparer was able to retrieve
further material from the original ABB offer texts and chapters from the Williams
report. This was done during the demonstration in order to show how links to other

documents in the CDF can be followed up.

Results of Communications Link Search

This is probably the most standard part of the offer. Note that the offer is for a
system that only operates at Level 3 (ABB/Hoogovens), i.e. Level 2 of the Williams
model, and below. Effectively these are the levels where real-time considerations
apply. The communication link is to the higher levels. Here the ALP PODAS
concept was found in the concept base using the search term: communication. On
inspection, CDF links to the relevant plaintext documents were noted and the Tex-
tRetrieval tool’s file selection feature was used to select the relevant ALP project

documents for reuse.

156



Building up an Offer from the Retrieved Material

As a result of the searches described above, relevant material was extracted and
pasted into a window running an editor with a skeleton offer. The system require-
ments make no mention of any need for material tracking in the system to be de-
veloped, but inspection of the CDF's retrieved shows that a system component to
handle material tracking is needed. This is an example of the sort of requirement
often omitted by the customer which the system designer must supply. The author
although not an expert in the design of steel control systems was able to reason
that a material tracking subsystem was required by inspection of the decomposed
concepts of similar CDFs and then confirm this by consulting a domain expert. As
the expert remarked, an experienced engineer would realise this. In this demonstra-
tion, the author had no such experience, but was able to recognise the omission by
referring to existing concepts descriptions of related systems. Further preparation
of the offer text as outlined in the figure above was then able to take place, details
of this are not relevant to the discussion here. The offer that was prepared in this
demonstration would require very little editing to be itself be converted into an
additional CDF.

5.4.2 Use of Models in Control System Design

Although the CDFs described here have not been employed in any realistic design,
the use of models such as those described here has been a recognised design practice
in this domain for some years. In the early seventies, the Industrial Automation
Group at Imperial College working with GEC (then GEC-Elliot) and British Steel
gave consideration to the use of models in the design of cold rolling mills control
systems [57]. The design process as described by Edwards et al. consists of first
establishing complex system models based on the plant design, design data and
plant data. These are subsequently refined into simplified models whilst retaining
the basic essentials but imposing "reasonable” limits. The simplified models are

then subjected to detailed analysis, both static and dynamic checking, and finally

157



pilot trials. A key point from this description is to take note of the experimental
nature of system design in this domain within the context of established system

models. Such established models could be obtained from consulting a populated

design framework such as the one developed here.

Figure 5.19 - Modelling in Control System Design - adapted from Bryant gives an

overview of this approach to design and indicates where the CDF's describing typica%

systems models could be used.

Design Framework for Steel Production

Control System
i e Design Theory
Modelling Process Simplified
Plant Design —2 Build Model
u
Design Data —s Complex Model Simplify Con.trol System
Plant Data —>7 podel Model Design and
Analysis
Pilot Trial
Feedback
Checked Tested
Design Steady-State Design Dynamic Testing Design Carry out
Analysis and and Evaluation “| Pilot Trials
Checking on Plant

Design

Validated L

through Specification of (5. Specified Design of Control System
Trials Final System

Figure 5.19: Modelling in Control System Design

This use of models was also seen in the Salzgitter study where the system being
studied was subject to development by introducing a new rolling model into the

software using this same approach of experimental trials.

158



5.5 Results of CDF Application in the Steel Do-

main

The author in the course of these studies consulted several volumes of domain lit-
erature and software documentation from the steel domain. While the number of
software concepts identified has been quite large, CDF's have only been recorded for
a small number (less than fifty). However, a design framework relating the results of
these studies has been established and this work could be developed now by working
from the established system models recorded with the CDF. Here only a small part
of the work has been developed in field studies on tandem mill automation concepts

as realised in a specific system.

In practice, there were problems found with the existing system documentation, but
enough information was available to allow the concepts to be described using CDF's

and related to more general concepts from the earlier domain study.

Many CDFs were only partially completed by the author in the course of this work.
The effort to complete these CDFs would be considerable, and such work is con-
sidered beyond the scope of this thesis. Nevertheless, sufficient concepts have been
described to characterise this domain and provide the basis for a demonstration of
design with reuse, albeit the limited case of reusing concepts in offer preparation,

described above.

The CDF remains a very minimal form and while this means that it is relatively easy
to employ in structuring concepts descriptions, it also means that it results in no
added formalisation of the concept descriptions which could support a more formal
analysis of the underlying domain concepts realised in its software. This discussion

will be continued in the following chapter.

The most difficult part of applying the CDF consists of establishing relations amongst
various domain concepts, and here the maturity of the domain being studied is the

key factor. Although standard textbooks were not available for the steel domain, its

159



design traditions have been given order by the availability of common models based

on the principles of hierarchical control as reported in the final study.

It has been difficult to assess the success with which the CDF's resulting from this
work can be used to support design with reuse in practice owing to the timescale of
software projects in the steel domain. However, the author’s work on concepts in
tandem mill automation did result in bringing to light more general concepts which
were useful to the software engineers at Salzgitter engaged in the process of updating
the rolling models in their tandem mill control system. The acknowledged reference
work for tandem mill automation is the book by Bryant et al (this was confirmed
by the author consulting Professor Heidepriem, an expert in steel mill automation);
but, prior to the author’s work to establish the linking concepts between the PLAIC
model of cold rolling control found in the Williams’ report and that found in the
existing system at Salzgitter, this book which describes the relevant concepts was
not known to the Salzgitter staff. Without this work, it would not have been brought
to the attention of the Salzgitter staff, and so subsequent benefits deriving from the

design with reuse of these concepts would have gone unrealised.

Many application domains like steel employ software systems that are developed
throughout their lifetime and are subject to development by their users. Explicitly
recording the software concepts in these systems and relating them to more general
concepts through the CDF has provided the conceptual basis for such evolutionary
development based on concept reuse as the experience at Salzgitter shows in the

specific case of tandem mill automation software.

5.6 Conclusions

In this chapter, the CDF has been applied in a series of domain studies and its usage
to describe software concepts at various levels of abstraction has been investigated.
The studies in the domain of Steel Production reported here have enabled the soft-

ware concept database of the PRESS to be consolidated and expanded. This work

160



was undertaken with the goal of developing a better understanding of how to use the
CDF in domain analysis of the software concepts as realised in existing software. It
has been shown that the CDF can be used to describe generic system models prior
to carrying out more detailed software concept description. The iterative nature of
domain analysis has been recognised as a result of this work; and in practice the
domain studied was found to be much more complex than that of compilers. How-
ever, it was possible to use the CDF's resulting from these studies as the basis for
abstracting a design framework for relating typical system concepts found in designs
from this domain. Further studies have analysed concepts found in a working steel
mill and it was possible to relate these to the more general concepts studied earlier.
A final study developed the foundations of the design framework. The resultant
framework partially populated with CDFs is a major result of this research. This
formed the basis for a demonstration where the work process of offer preparation
was supported by the possibility of reusing material from CDF's resulting from this
work. A more detailed evaluation of the work reported here will be made in the

following chapter.

161



Chapter 6

An Evaluation of the Concept
Description Form and its

Application to Support Reuse

This chapter is concerned with evaluation of the work described in the last three
chapters. These describe the development of the CDF and its application in a series
of domain studies. The results of the domain studies in steel were employed in
various demonstrations. One of these has been described in some detail in Chapter
5. Here a critical examination of the CDF development and associated application
studies is made in order to determine the longer-term prospects for the CDF and

wider application.

Experience in applying the CDF is discussed and related to general difficulties in
domain analysis. The scope for replicating the application of the CDF to support
domain studies in other application areas is given consideration. In addition, the
problems of developing and maintaining a set of CDF's over time is briefly considered,
as this was a primary concern of the industrial partner, ABB, with respect to the
practicality of implementing reuse using a standard form. The minimal nature of

the CDF is recognised and its potential development towards a more formal form

162



is given consideration. The advantages and disadvantages of moving towards more

standardised forms of software descriptions are discussed.

The support that the CFD gives for recording designs structures is discussed given
that the role of known structures has been recognised as important in design.
Both Randell and Shaw have recognised this; and this insight can be found by
re-examining the works of Alexander and Jones to which Randell refers. In using
the CDF to record the results of domain analysis, a systematic approach to design-
for-reuse has emerged based on the use of general system models. Through studying
sets of CDF's, in the industrial domain studied, it was possible to develop an asso-
ciated design framework to relate the design concepts of that particular domain. In
Chapter 5, the role of such a framework in more detailed analysis of the domain was
discussed and a demonstration was made using sets of CDF's to support reuse in
offer preparation. Here a more general discussion of the utility of design frameworks
based on sets of CDFs to support concept reuse can be found in conclusion of this

chapter.

6.1 CDEF Development

The development of the CDF arose out of the research with the Practitioner project
on how best to describe software concepts as realised in existing software in order
to support their reuse. Originally, a questionnaire was developed by the project
to use in obtaining an abstracted form of the software documentation describing a
particular software concept. The development of the CDF described here was as a
result of problems encountered with the questionnaire. Based on an examination
of interconnection languages and other developments to support reuse at a high
level of abstraction, the author identified six major requirements that supporting
conceptual reuse imposes on any language. The CDF was then developed from the

earlier questionnaire to meet these requirements.

In Chapter 3, the various parts of the CDF were linked with the six requirements

163



identified; and the structure imposed on software concept descriptions using the
CDF in a small scale application was illustrated in Chapter 4. The various rela-
tions amongst a set of software concepts that can be described using the CDF were
outlined. In following section, experience gained in actually applying the CDF to
record the descriptions of existing software concepts and relations amongst them

will be addressed.

In the remainder of this section, the CDF development is considered independently
of its application. Clearly one view of the CDF is that discussed in Chapter 3
and depicted in Figure 3.5 i.e. a means of recording abstracts of software life cycle
documents. This enables the CDF to be used as a means of linking the concept
description with the software life cycle documentation (Requirement R6). However,
the other requirements which focussed the CDF development give other views of the
CDF. In particular, these other views arise because references to other CDFs can
be made in the description of a particular concept. The relations between CDF's

describable using the CDF are as follows:

e version,

derivation,

e decomposition, and

interfacing.

Versioning supports several alternative descriptions to be given for the same con-
cept. This gives a view of the CDF a form for describing design alternatives for a
common software concept. Derivation relates a specific concept to its source con-
cepts (Requirements R1 and R2). This relation can be used to record the design
histories of software concepts. Thus a set of CDFs can be viewed as recording a
design history as in Figures 5.11 and 5.13. Non-atomic concepts are related to their
component concepts using the decomposition relation (Requirement R3). Thus a
set of CDFs can be used to impose a hierarchical structure on a complex design

description, see, for example, Figure 5.5. The description of interfaces within a set

164



of CDFs allows more detail to be added to the decomposition (Requirement R4).
The means of connecting one concept to another or its environment is given through
identification of interfaces, both internal and external; and these are related through

the bindings listed in the CDF for each component concept, for example, see the
CDF listed in Appendix D.

In order to record the above relations between software concepts, it may well be
necessary for the domain analyst to do more than abstract existing software doc-
umentation. To some extent, this will depend on the level of detailed description
attempted. Because the CDF was developed to support reuse of software concepts
at various levels of abstraction, it may be used to record descriptions of concepts at
various levels of abstraction and such descriptions may be found in the domain lit-
erature covering application software in general (Requirement R5). Through use of
the CDF to describe both general application concepts and specific concepts via the
above relations, a set of related CDF's can be developed which potentially support

the reuser more effectively than isolated concept descriptions.

The effectiveness of the CDF in practice during the application studies when de-
scribing these relations considered above will be considered below. As explained in
Chapter 5, the CDF development was used to populate the concept database of the
PRESS through a series of domain studies. It is primarily this experience gained in
application of the CDF that provides the basis for the subsequent discussion in this
chapter.

6.2 Using the CDF in Practice

The application of the CDF in domain analysis remains a difficult task. Many major
application software subfields lack standard references as noted in Chapter 2. This

problem is compounded by the varying standard and level of existing documenta-
tion available in some domains, and by the diversity of languages used in software

description.

165



Even though the software documentation studied in the steel domain was usually of
a high standard, it was often not detailed enough. This was the case with respect
to timing information. One aspect of software not explicitly covered by the CDF is
timing. This was discussed with domain experts in steel as it is an important element
in designing control systems. In the CDF, timing constraints could be recorded in
Part 1 as part of the requirements under the Description of Purpose. Timing could
also be addressed in Part 2 in the concept definition either formally or informally.
However, in the steel domain studies, such timing information was rarely given in
the documentation studied, and the case for developing a more detailed description

of timing generally was considered beyond the scope of this research.

The diversity of languages used in the description of software presents a challenge
to the domain analyst particularly in established application areas such as these
studied here. The goal has been to record software concepts realised in existing
software working from existing documentation and other available references, Al-
though using the CDF did impose a uniform structure on the concept descriptions,
no attempt was made to solve the problem of diverse languages at the lowest level.
The CDF is a compromise between a common language, which would bring the
overhead of translation, and simply recording existing descriptions without any re-
structuring. The advantage of imposing a uniform structure over the descriptions is
that the reuser has only to become familiar with this new form when consulting the
concept database to identify the parts and level of the CDF details that are of po-
tential interest. While a common formal language could bring even greater benefits
relieving the reusers from having to familiarize themselves with specific notations,
the approach of translating existing software concept descriptions into a common
language was ruled out because in the main domain studied (i.e. that of control
systems in steel), there was no common formal language in use and to employ such
a solution would not have been acceptable to the potential reusers participating in

the project.

Application of the CDF does entail more than restructuring of existing documenta-
tion because the CDF also records the derivation relation if known and the decom-

position relation if the concept is non-atomic. In addition, the domain analyst must

166



identify and classify the various interfacing concepts associated with a particular

software concept.

It is the support that the CDF gives for recording these relations and interfaces that
underlies the claim that the CDF may be viewed as an interconnection language,
and in the applications of the CDF made here, these relations have been illustrated
using sets of CDFs from both domains studied and reported on in Section 4.3 in
Chapter 4 (see Figures 4.2, 4.3 and 4.4) and more extensively in Section 5.3 in
Chapter 5 (see Figure 5.5).

These relations and interfaces may not be obvious from study of the existing docu-
mentation, and it may be necessary to consult other background documents describ-
ing software concepts of the particular domain. At this stage in the domain analysis,
the identification of general system models is an important step as Chapters 4 and
5 demonstrate. Below in turn, the role of general systems models in supporting the
description of concept derivations, concept decompositions and concept interfaces is

discussed in more detail.

6.2.1 Recording Concept Derivations

The approach to domain analysis employed in software concept description has been
to use a common form to structure all the descriptions of concepts - the CDF -
irrespective of the domain studied and irrespective of the general or specific nature
of the software concept. In applying the CDF, an attempt was made to record the
most general concepts first although in the steel domain this proved more difficult
than in the compiler domain. In both cases, the utility of having such general
concepts to guide the studies was apparent. In both domains, general literature
rather than existing software documentation was found to the best source of these
general software concepts. This shows that here at least as used to record concept
derivations, the CDF is more than a structured form recording abstracts of existing

software documentation.

167



Experience in applying the CDF in the compiler domain has shown that where com-
pilers in general have been described in the framework of common system models,
CDF's recording these models provide insight to understanding the specific software
concepts that are likely to found on examination of existing compilers. Determining
the concept derivation of specific concepts was easier where CDF's for the more gen-
eral concepts had already been filled in. In fact, the reference source used for this
simple illustrative study presented the general concepts first and only later discussed
actual compiler implementations. In studying the compiler domain, it was possible
to draw on a large body of established literature on compiler construction distilled

in a single reference source.

Likewise in the steel domain, there existed a large body of material which was
relevant to understanding the software concepts employed in the design of control
systems in steel production, although as pointed out in Chapter 5, in this case, the
material was not available in standard textbooks. Only through study was it possible
to determine the common themes and models underlying systems design in the steel

domain. Again, the starting point was not existing software documentation.

In Chapter 5, particularly in the field studies of a specific system controlling a
tandem mill, the work although based on existing documentation was greatly helped
by the availability of a general reference source on tandem mill automation and
other reference works, such as the so-called bible of steel - The Making, Shaping
and Treating of Steel and the Williams report from the steel domain which
enabled the author to deduce that a tandem mill was a form of cold rolling mill
and obtain a general account of the control system associated with a cold rolling
mill. This enabled a derivation to be traced from the general model of cold mill
control through to tandem mill automation in general through finally to the specific
concepts employed in the software for controlling the schedule of the tandem mill at
the Peine-Salzgitter steel works as described in Figure 5.11 - Conceptual Derivations

for Concepts in Cold Working Control Systems.

Given the utility of such general models, it is worthwhile investing effort in searching

for these when initiating work in a new domain. If the domain is not mature enough

168



to have already given rise to the development of established models, it may not be
particularly suitable for supporting concept reuse. However, the domain analysis
required to develop system models may provide the necessary impetus to codify
existing design expertise as a first step towards establishing concept reuse. Literature
from the domain including software life cycle documents is the starting point for this

work.

6.2.2 Recording Concept Decompositions

In all of the studies, the concept decompositions were readily available from the
existing documentation or reference source. For example, in the ALP study, the
system designers had employed a hierarchical decomposition which was reflected in
the component naming found in the documentation. Some of the ABB offers studied
included decomposition diagrams relating the main system components such as that

given in Figure 5.7 - Decomposition of Hot Dip Galvanizing Line Process Control.

The general system models discussed above were also found to be a valuable guide to
determining standard system decompositions to guide the identification of concept
decompositions recorded in CDFs. All the CDFs developed from the Williams report
were produced by systematically w‘orking through the report and the fact that CDF's
for the more general concepts were produced first guided the subsequent work. As
noted as Section 5.3.1, the CDFs developed from Chapter 5 of the Williams report
provide a model for the CDF developed from Chapter 12 even though the control

tasks are described for each of the subareas of control of the hot mill unit.

In the domains studied, although standard decompositions were available, it was
still difficult to establish the specific concept decomposition from existing software
documentation in some cases due to inconsistencies. For example, during the field
studies at Salzgitter, the existing software documentation was found to be incon-
sistent. Further study of the code in consultation with a local control engineer was

necessary.

169



More generally, where models of standard design decompositions are not available, in
analysing the domain software, the domain analyst must attempt to abstract these
from studying a number of specific systems. It may be difficult to recover the original
designer’s intentions. One approach assuming well-engineered software is available
for study is to attempt to apply in retrospect a variety of software decomposition

guidelines such as those applied in software development.

The classic paper on the principles of software decomposition is Parnas’ On the
Criteria To Be Used in decomposing Systems into Modules [111]. In this paper,
Parnas had the remarkable insight that

a careful job of decomposition can result in considerable carryover of work

from one project to another

long before the concept of software reuse was fashionable. The historical design
records will necessarily reflect specific system designs and also the historical de-
velopment of the design. Such raw data is simply the starting point. A particular
problem is that retrospectively working from the software realised as code may result

in software concept decompositions that are too specific.

Even in the case where a standard <‘iesign decomposition is available, a mismatch may
arise between the decomposition found in the code and the decomposition expected
in terms of application concepts anticipated from the standard design decomposition.
To resolve this problem and establish the relations between the concept descriptions
at various levels, it may be necessary to rationalise the original design by examining

the designs of several related systems.

Parnas has also given good pointers on how to start with the task of rationalising
design documentation [112]. The possibility of abstracting out the architecture of
a system from its existing realisation has also been described by [75] although this
thesis is advocating that the architecture is abstracted from several related systems
to obtain general system models. An example of a general model described as a

framework can be found in Basili [16]; here the basic design concepts of systems to

170



support component reuse have been abstracted out although the realisation that such
a framework itself gives a basis for higher level reuse of designs goes unremarked.
In the CAMP work, reuse of an architecture for a common Ada missile control
gystem was supported but the work did not attempt to go beyond this towards a
notion of generalised architectural concepts [12]. All of the work cited proved useful

background for the guiding the analysis prior to recording a decomposition using

the CDF.,

In using the CDF where the focus is the description of potentially reusable software
concepts abstracted from descriptions of existing software, the above work cited has
been a useful source of software decomposition guidelines relevant when attempting
to reverse engineer the system'’s component parts, but these need to be augmented
by more basic conceptual analysis to determine the derivation relations between
concepts. The guidelines of Maibaum and Turski outlined in Chapter 2 are relevant.
These guidelines are of assistance in determining which concepts are fundamental
to the system design or to use Maibaum and Turski’s expression descriptive-theory
building process; the results of which are expressed here with an incomplete set of
CDF's at the end of Step Two of the domain analysis following the broad steps
proposed by Prieto-Diaz of:

1. preparing the domain information,
2. analyzing the domain, and

3. producing the reusable workproducts.

In this context, it is helpful to distinguish between program understanding and
application understanding within the process of domain analysis. In examining
existing software for its reuse potential, reverse engineering of design components
may be facilitated by applying software decomposition guidelines to the existing
software to gain a higher level description of the software’s components. It is also
relevant to work from the domain concepts used to describe application systems

in order to determine the underlying system models from which specific system

171



models have been derived. Ideally, the domain analyst carries out the application

understanding first and then starts on the program understanding.

In the simple application of the CDF in the compiler domain analysis, this was
possible, i.e. in the domain analysis, Step Two was performed before Step Three. In
practice though this may not be possible. These two steps may need to be performed
out of sequence or together. It may be that studies of specific software to support
its reuse take place before any system models have been formulated, or the system
models found may need to be developed and studies of specific software systems
are undertaken to provide the foundation for the development of the general system
models. In the large application of the CDF described in the previous chapter,
the domain analysis progressed as an iteration of repeating steps two and three,
sometimes working from specific software documentation including source code and

sometimes from more general system models found in the domain literature.

In the approach developed here, the CDF was used to record the results of both
Steps Two and Three of domain analysis. In this approach, general system models
recorded during Step Two have provided the basis for the recording of more specific
concepts in step three. The CDF can be used to describe sets of related concepts and
together these may be consolidated into design frameworks in particular domains.
By forming the sets of general CDF's into design frameworks, the work here suggests
that such frameworks have a role in both guiding further domain analysis as well as
supporting the potential reuser in understanding the context of individual CDFs in

relation to each other.

6.2.3 Recording Concept Interfacing

The general system models were also found to relevant to the working of identifying
concept interfaces. This was especially found to be the case in the studies of software
concepts in steel mill control systems where the four level model employed to describe
such systems overall was used to locate specific software concepts and their external

interfaces which typically exist at the boundaries between these levels.

172



The arbitrary interfacing of software concepts from a variety of domains has not
been addressed by this thesis, and even within the limited domains studied, the
arbitrary interfacing of software concepts at the lower levels of description, such
as code level, is problematic. In the Steel Production domain, reuse at the code
level is not a primary concern, and this thesis has not presented any significant
solutions to this problem. It is acknowledged that the CDF is weak with respect to
addressing one requirement highlighted in the AISE study - that of need for standard
interconnection mechanisms. This could be addressed by giving more consideration
to the description of interfacing concepts. In the steel industry, a partial solution has
come from the adoption of industrial networking standards such as the Hoogovens
Data Network mentioned in Chapter 5 and employed in the demonstration system

offer.

In the more general case, the author’s view is that further work on improved descrip-
tion of interfaces will only make the problems of interfacing more clear and not lead
to significant advances unless the emphasis is focussed on improving the interface
descriptions at the conceptual level using higher level design descriptions than code.
Here Weber has pointed the way with his proposals discussed in Chapter 3. The
CDF is only a small step in this direction, and in applying the CDF to describe
concepts realised in existing software based on existing software documentation, it
was found that such higher level descriptions when available were not given for-
mally. As the software industry moves towards a greater use of formal methods in
the early stages of design, this situation can be expected to improve. This discussion

is developed in more detail in the following section.

6.3 The Need for a More Standardised and For-

malised Description of Software

The CDF falls open to the observation that it is unlikely to succeed in widespread
usage unless it is adopted by the software industry. Although the practicality of

173



using the CDF to describe software concepts in an industrial application has been
demonstrated, it is not claimed that the CDF as it stands presents the solution to the
industry’s need for a more standardised and formalised form for describing software.
Here there is a conflict within the industry which works against the adoption of
any one form even given that the advantages of doing so are great as envisaged by

Weber’s proposals discussed in Chapter 3.

For example, within the company ABB, the various business divisions introduced
to the CDF were conscious of the effort required to develop a database of CDFE's
based on their existing software documentation and to maintain it for a long enough
period to obtain the benefits of reuse and were resistant to commiting their divisions
to the use of any particular form; they felt that each business division should have
the flexibility to define an overall form relevant for their own software applications
(1]. Given that the CDF is a quite minimal form for structuring software documen-
tation, it goes some way towards meeting this requirement for flexibility and as such
accommodates various levels of software descriptions, but it is still recognised that
considerable effort is required to develop and maintain sets of CDFs for any par-
ticular domain. It is the author’s belief that the move to a more standardised and
formalised description of software within the industry can only be achieved grad-
ually and must rely on a better formal understanding of software design concepts

than is present in many domains.

The form developed - the CDF - merely imposes a structure on software concept
descriptions rather like Z schemas. The developers of the specification language
Z built on the notation of set theory and logic introducing the schema form as a
means of structuring specifications. The CDF allows any existing software docu-
mentation to be structured. It provides a filtering mechanism through which the

leveled description of the software’s concepts can be achieved.

A very deep question concerning this work is: can design be completely formalised?
The author’s view is that this is an anti-progressive goal. In reuse research, the goal
should be to describe and where possible formalise existing concepts so that these can

be employed in the development of new concepts. It is the author’s belief that while

174



it is best to formalise, where possible, existing concepts for reuse, it is unproductive
to exclude informal accounts of existing concepts from the reuse process. Both formal
and informal accounts have a role; and developing new concepts or simply better
versions of old concepts is an ever present challenge to the designers of software

systems.

In proposing the CDF, a structure enabling both derivations of concepts and de-
compositions of concepts to be described at various levels of abstraction has been
established. A major deficiency of this work is that a CDF calculus is missing to
aid reusers. Here there is potential for developing this work along the lines of the

research of Henderson and Warboys discussed in Chapter 3.

The history of the development of schema calculus briefly outlined by Woodcock
in [173] gives some insight into how formalisation can be added to a structuring
notation. According to his account, originally the séhema notation was simply
a convenient shorthand with macro-like expansion of names and the calculus was

developed later.

In this work, the author has concentrated on ensuring that the structure of designs
is recorded and made available for reuse as well as recording details of reusable
components. The importance of structure in design is the final justification given
for this work on the CDF; in what follows, the case of reusing design structures is

made and the support that the CDF provides for structuring concepts is evaluated.

6.4 The CDF’s Support for Reuse of Known De-

sign Structures

Building on McDermid’s insight that most improvements in our technology for large
scale software system development have depended upon the finding of improved
abstractions or structuring techniques for describing software [99], an examination

of the role that structuring plays in the design process is relevant in evaluating the

175



CDF with respect to its support for reuse of known design structures.

The CDF as proposed specifically aims to support software designers in reusing
known levels of abstraction and structures if these already exist in a relevant appli-

cation domain.

The three essential stages of design have been identified by Jones [85] as:

o breaking the problem into pieces (Analysis)
e putting the pieces together in a new way (Synthesis)

o testing to discover the consequences of putting the new arrangement into prac-

tice (Evaluation).

In the context of system design, Jones refers to these stages as: divergence, transfor-
mation and convergence. The successful understanding achieved here is very much
dependent on having sufficient information and experience on which to draw. For ex-
ample, in the studies reported here, through a process of domain analysis, resources
have been built up for the designer to use as the requirements texts are broken
down into terms and understanding is assisted by mapping these terms onto known
concepts using the thesaurus and concept database. Since the mapping achieved is
rarely one-to-one, Jones’ term, divérgence, is particularly appropriate for describing
this element of the design process. The next stage builds on the results of the un-
derstanding gained, bringing order to the divergent interpretations; so that finally
the designer is able to converge on a single design to be developed in detail. Jones
points out that with increasing automation of design, detailed development is likely
to become the bit that people do not do. Certainly this is a part of the promise of
reuse: to free the designer from unnecessary re-development of established concepts,
and the work here specifically seeks to address reuse of established structures in

design.

Early on in current system design practice, informal architectural sketches are em-

ployed to describe the over-all structure of the proposed system; and then once the

176



main component concepts have been identified within this context, detailed design or
reuse of existing software components may proceed; for example, Sommerville char-
acterises development with reuse as shown as Figure 6.1 - Models of Component

Reuse - reproduced from [147].

Outline system

requirements

Scarch for
reusable

components

Design system Outline system
architecture architecture
Specity
Madify requircments
components 4 o
according to discovered
uump(mculs
Search for
reusable Search for
reusabl
components ©
components
Incorporate Specify system
discovered components based on
reusable components
COMPOUNCINS

Development with reuse contrasted with Reuse-driven development
(taken from (Sommerville 1992)).

Figure 6.1: Models of Component Reuse

In both of these approaches, the designer works from a library of reusable compo-
nents, but the overall system architecture is not considered as an aspect of design
where reuse is possible. More than the component approach to design illustrated
above is needed to support the designer at the early stage of overall system design
if reuse is to take place at this point. This is where the engineer could benefit from

a library of design decompositions made for existing systems.

In addition, if these design decompositions can be related within a framework which

clarifies their conceptual basis at the appropriate level and gives the designer insight

177



into why these decompositions were made, their reuse value is enhanced. At the most
abstract, such insight will take the form of design principles; at a less abstract level,

perhaps only guidelines will be available.

To support design reuse at this level, software engineers might do well to learn
from the example of civil engineers. The Architecture and Engineering Performance
Information Center was established at the University of Maryland to maintain a
database of structural design experience and material usage experience (these are
the analogues of architectural design concepts and component concepts for civil
engineering) [115]. The proposed design frameworks built out of CFDs of this thesis
are a meta-structure over architectural design concepts and component concepts
formed. They make clear the relations amongst generic and specific forms of both
these types of concepts. The framework for software concepts in steel given in Figure

5.15 provides an overview of concepts studied and their relations.

This does not mean that libraries of reusable components are unimportant. They
have a role, but much later on in the design process. If the engineer sketches the
architecture of the design and then looks for components, by this time through
poor initial decomposition, it may be too late to help. Randell has argued that
poor design structuring, i.e. decomposition, can doom a system [131]. If good
structuring by expert designers is not made explicit and recorded, then the reuse of

design structures is held back.

Another way of justifying this approach is to consider that in order to stock the
library with reusable components, existing systems were analysed and decomposed
in order to identify suitable reusable components. Rather than throw away the
results of such analysis, the structures found in decomposition should be abstracted
out and made available for reuse. This is possible using the CDF. And if a designer
chooses to reuse a known decomposition, through the other entries provided by the
CDF, details concerning its component parts can be followed up and also considered

for reuse.

Inspection of known decompositions at this point may also lead to the identification

178



of unstated or assumed requirements. In the demonstration described in Chapter
5, the decompositions found in the retrieved CDF's suggested that a component for
material tracking was required even though this was not mentioned in the customer

requirements.

In the software design process, it is important to distinguish between architectural
concepts which are relevant to the system structure and component concepts which
reflect the constituent parts of the systems [28]. This distinction is made by Shaw in
terms of higher-level abstractions (i.e. architecture level) and lower-level abstractions
(e.g. algorithms and data structures) [140]. The CDF provides the possibility of

recording both sorts of abstractions for subsequent design-with-reuse.

Moreover, the use of layers in system design is a well understood approach to system
organisation; a classic example of this can be found in the ISO Reference Model
of Open Systems Interconnection (OSI) [176]. Here Zimmermann gives a more
thorough articulation of the principles underlying the use of layering. Three main

principles, taken from the account given in [151], are as follows:

1. Create layers where a different level of abstraction is required;
2. Choose layer boundaries to minimise information flow across the interfaces;

3. Use a large enough number of layers to ensure that distinct functions are not
thrown together in the same layer out of necessity, and a small enough number

to ensure that the architecture of the design does not become unwieldy.

In Chapter 5, it was shown how the ISO 7 Layer Model could be interpreted as

framework relating existing network architectures.

These principles give the designer insight into how to make use of layering during the
conceptualisation of the design structure. They are relevant to the designer when

conceptualising the architecture of the system. This layering of the system design

is a fundamental step in conceptualisation; there is more to conceptual design than

179



simply dividing the system into component parts. To support the designer at this

stage, more is required than simply libraries of software components descriptions.

Above various approaches to design and the role that structuring plays in these have
been examined. These form a rationale for to the development of CDF sets providing
design frameworks to support reuse of known design structures. In order for reuse to
take place during conceptual design, a need for supporting the designer at this stage
with known conceptual structures and structuring principles has been established.
In Chapter 5, through the domain studies carried out in steel, it was shown how a
framework for relating known design structures was identified and how this assisted

both the design-for-reuse and also has a role in supporting design-with-reuse.

6.4.1 Further Considerations Regarding the Use of Frame-

works in Design

In characterising the design process, Guindon remarks as follows:

... because design problems are ill-structured, the design process cannot
Just be the retrieval of known solutions, even in experts. The novelty
in design and the incompletely specified requirements force even expert
designers to punctuate retrieval of known solutions with the inference of
new requirements, the recognition of partial solutions at various levels of

abstraction, and the creation of new solutions. [71].

Following Newell and Nii, Guindon characterises design as a problem solvable from
the application of knowledge in the form of empirical associations or rules derived
from past experience. Here from this point of view, it can be seen that reuse is
already assumed to be part of the repertoire of the expert designer albeit reuse of the
individual’s own experience. A clear role for design frameworks to record past design
expertise can be made in the light of Guindon’s study. Guindon argues that retrieval

of potential solutions is not sufficient as the designer is actively engaged throughout

180



the process revising and adding to requirements if necessary, and attempting to
identify partial solutions. His study is limited to designers attempting to understand
and elaborate requirements, i.e. Phase 1 (Clarification of the Task) in Pahl and
Beitz characterisation of the design process [110]. An important point made by
Guindon is that this phase in software design cannot easily be separated out as
problem understanding and structuring were found to be interleaved with solving

the problem throughout the design sessions studied.

It is clear from the account of the lift controller design histories given in Guindon
that in the case of the second designer studied the ability to recall and use a high
level design schema that relates what in the terminology of Pahl and Beitz are the
classifying criteria to the solution characteristics was decisive in guiding his approach
to the design task. In this case, the criteria were those generally found in a resource
allocation system: multiple clients, multiple servers, limited resources, asynchronous
service requests and routing/scheduling optimisation. In the schema used, these
mapped onto a design decomposition involving three main characteristics: control,
commuunications and scheduling. In considering this case, once the designer had
recalled the schema, it is clear that it was the primary determinant that led to his

effective solution of the task. As Guindon remarks:

Design schemas are one source of knowledge that powerfully constrain

the search for a solution.

Further, he concludes that top down processing induced by the design schema con-
tributed to a systematic design process. The way in which the second designer
was able to employ a high level design schema supports the envisaged use of the
design framework for steel production. Guindon cites examples of design schemas
described by Lubars in [96]; here the schemas given involve very high level abstract-
ing out of design solutions common to several application domains. Lubars identifies
the encoding of reusable design information into design schemas as one of the key
aspects of automated design systems. In this work on a design framework for steel

production, there has not been any aspiration to achieve automation of the design

181



process. Nevertheless, abstraction within the domain has proven a useful means of

developing a framework supporting reuse of designs on a smaller scale.

From these discussions, it can concluded that it is helpful to advocate that the initial
search of the designer is guided by an understanding based on giving structure, pos-
sibly via abstraction levels, to the design requirements. This is where the capability
of drawing on existing design frameworks identified through similar requirements
comes into the design process. Compare here the steps found in Pahl and Beitz
characterisation of conceptual design where the designer is advised to abstract away
the details given in the requirements in order to identify the essential problem and
then to establish the functional structure of the solution in abstract terms initially
using these as the basis for identification of known functions to apply in the de-
sign. With the development of design frameworks, the designer is offered a basis for
identifying known structures, and thus, reuse is promoted earlier on in the design
process. The answer to the question: what is the role of these frameworks relating
system models in design?, is as follows: they are the carriers of very high level design
concepts. Inspection of known decompositions at this point may also lead to the

identification of unstated or assumed requirements.

Ths role identified for design frameworks has not yet been investigated extensively
with the framework for steel production presented here; in the context of the Prac-
titioner project, it formed a contribution to the development of demonstrations of
the PRESS in the preparation of offers which utilized the framework. One of these
has been described in Section 5.4 of Chapter 5. In the demonstration described
here, it was possible to locate the CDF's retrieved within the steel design framework
at the appropriate level of control and area of control as required by the customer.
By inspecting the decompositions found in these CDF's, it was found that a compo-
nent for material tracking was required even though this was not mentioned in the

customer requirements.

Empirical studies of designers are problematic and were not possible within the
timescale of this research; however, presentation of this work to practitioners in

the domain has been favourably received and this has strengthened the view that

182



the framework developed has a real role to play in actual design. In addition, the
practice of using models in control system design has been noted and the CDF sets
developed clearly have a role relating system modelling concepts in the steel domain

as described in Chapter 5.

With the work reported in Chapter 5, the key factor in the success of reusability
cited in [88] and reiterated here has been further established:

Reusability can be achieved more successfully within a narrow and well
analysed domain. This enhances the possibilities of tdentifying functional
commonalities in the application software and will make the development

and cataloguing of components easier.

The final study reported within the Steel Production domain has enabled the ear-
lier domain studies using the CDF to be built upon and a framework for guiding
further analysis and also for relating the design concepts available for reuse in the

development of future steel plant control systems to be refined.

A speculative conclusion of this work turns on the utility of abstraction in design.
In the discussions of design models in software reuse, the importance of abstraction
has been identified as the keystone to successful software reuse [93, 64, 168, 150] and

others.

More generally, in their account of a systematic approach to engineering design, Pahl
and Beitz advocate that initially the designer abstract from the specifics given in the
requirements to the general case in order to achieve a less constrained viewpoint from
which to attack the design problem conceptually {110]. In the context of software
engineering, Shaw’s remarks on the need for higher levels of abstraction are perhaps
the real inspiration behind this work [141, 142]; she brings out quite clearly how
intellectual progress is purchased through the difficult process of abstraction citing

examples from other engineering areas.

183



In contrast, it has long been known that the strategy of divide-and-conquer is a
successful approach to attacking intellectual problems such as design. This has
led many to argue that hierarchical decomposition of design from the standpoint
of design tasks attacking sub-problems using known plans is the way to bring past
experience to bear. For example, in a general study of design taken from an Artificial
Intelligence standpoint, a classification of design is given in terms of known problem

decompositions [39].

Through a vertical decomposition based on levels of abstraction coupled with a
horizontal decomposition into a whole-part hierarchy, a design framework such as
the one presented here based on domain analysis using the CDF allows these two
approaches to be combined and offers the designer a more powerful, conceptual basis

for reusing designs.

Sets of CDF's are required to express and support abstraction within the design’s
architecture. This is where the CDF as a structuring form to sets of related concepts
can be applied. The level of abstraction used to describe design frameworks must
allow the generic framework of classes of common applications to be expressed; it
must also be possible to express possible interconnections and dependencies among
the various parts of the application. The description of interconnections and de-
pendencies is covered by existing interconnection language developments and as has
been shown is supported by the CDF. Within a framework, it must be possible to
record various derivations of architectural concepts. For this reason, the abstraction
process has been extended over sets of related CDF's describing application concepts

in a particular domain.

The development of a design framework may require that field work is undertaken
to record design sketches and decisions which once captured are the raw material
out of which the design frameworks will be abstracted. The CDF already described
has been used to study applications in the domain of Steel Production. As a result
of this work, it was possible to formulate general models of an industrial control
system that were useful to production engineers responding to calls for tender on

new developments as was shown in the demonstration discussed in Chapter 5.

184



The novelty of this approach lies in the abstraction of designs in the large and the
proposal that the design framework be seen as a means of relating such architectural
designs, both specific and generic, and as the vehicle for employing them in future
system developments. Design with reusable components presents new challenges to
those attempting to support the design process. Large scale reuse requires a larger
view of design than that supporting component reuse; it is necessary to incorporate
reuse of architectural designs of systems giving a context for component reuse. Here
an outline of how the reuse of CDF's recording known design structures within design

frameworks addresses this aspect of system design has been made.

Frameworks proposed in this thesis are very abstract and unlike those that have
been proposed in Object-Oriented reuse research, such as that discussed in (3, 171].
These frameworks are very much less abstract and are intended to be realised within
some object-oriented programming support system. ‘The concept of framework in
this thesis is more abstract as it is aiming to provided a means within which various
generic application concepts can be related for a specific domain. The framework
concept here is in some senses narrower than that of Object Oriented researcher as
there has been no attempt to abstract out a generic framework to be used as the

basis of applications across a number of domains.

One of the source concepts for design frameworks has been the use of reference

models in the development of communications standards as discussed in Chapter 5.

6.5 Concluding Remarks

By placing emphasis on determining how software concepts have been derived and
how they can be decomposed, this work has brought out the need to better under-
stand and describe these relations amongst concepts in existing software. Although
the CDF provides a structure for describing sets of concepts and these relationships
amongst them, it offers no specific semantics for these relationships. In its present

form, any semantics of the concepts is provided by the underlying semantics of the

185



existing software documentation and in the industrial domain studies, a high de-
gree of formalisation was not found. Nevertheless, the structuring of descriptions

contained in Chapter 5 was found to be useful to domain experts consulted at both
ABB and Peine-Salzgitter.

It is the author’s view that this lack of formalisation does not preclude informal
descriptions of the structure of system concepts for the purposes of reuse. The
work reported here constitutes a valuable first step towards a better foundation
of design based on improved understanding of the software concepts found in the
existing software of the domains studied even though the concept description was

not formal.

Getting the structure in place, albeit informally, sets the context for describing the
component concepts in more detail. These need to be described in detail before more
formal description of the structural concepts can be tackled. So the steps two and
three of domain analysis may need to repeated until the convergence of descriptions

at an appropriate level of formalization is achieved.

In the more detailed application of the CDF in the Steel Production domain, this
process was illustrated by the successive studies made culminating in the final study
which consolidated the architectural concepts through the development a design
framework. The framework developed allowed the component concepts already stud-
ied to be located within the levels of control and areas of control identified and also
allows areas where further work in domain analysis at the step three level is lacking

to be identified.

186



Chapter 7

Appraisal of Research

7.1 Contribution of this work to Software Engi-

neering

The major contribution of this thesis is a systematic development of the Concept
Description Form (CDF) and its application to support both design-for-reuse and
design-with-reuse. The goal of this development has been to improve the reuse of
design level concepts in the engiﬁeering of new software systems. The CDF has been
applied in a number of studies of software designs in the domain of Steel Production.
Existing domain models were unified using concept descriptions obtained with the
CDF into a single framework, and this framework was further developed during the
course of the research. The role of such frameworks in the reuse activity of domain
analysis has been demonstrated. The usage of sets of CDF's to record design histories
has been explored. A demonstration of how the CDF's from the steel domain could
be reused during offer preparation has been made, and a favourable assessment
of the CDFs and associated framework developed has been made in conjunction
with domain experts. The application of design frameworks in the design process,

particularly during the phases of Cognition and Conceptualisation. has been given

187



consideration although not demonstrated.

The area addressed by this work is the engineering of software systems supported by
the reuse of software concepts. The primary interest is in supporting the software
engineer early on in the development process with the provision of architectural
concepts which provide a context for component reuse. The CDF has been pro-
posed as means of recording and reusing existing system designs. The rationale
for this approach has been developed by studying its application in the domain of
Steel Production with the overall goal of improving software system engineering and

contributing to a better understanding of Design Theory in a modest way.

This research has contributed to the development of a more systematic approach
to domain analysis based on the CDF to support the reuse of software concepts.
Largely, the research has been concerned with representational issues and under-
standing the role of reuse in the process of design.' There have been two main

results of this work as practically realised within the Practitioner project:

1. Population of the Practitioner REuse Support System (PRESS) with software

concepts from the Steel Production domain; and

o

Demonstration of the PRESS with this material in the process of offer prepa-

ration.

This work has been supported by research into the theory of design with the goal of
formulating a better understanding of design-for-reuse and design-with-reuse in the

context of software system engineering.

Preliminary studies using literature from the Steel Production domain and material
from Asea Brown Boveri’s metallurgy business division were extended by field studies
of software systems at the Peine-Salzgitter Stahlwerke. Work on design theory was
further developed by studies of work developed by Pahl and Beitz in Germany
under the heading of Construction Theory. Bringing these two threads together,
a generic application architecture for the Steel Production domain was developed,

thus codifying existing designs within a design framework of CDF's for steel software

188



concepts which became the basis for case studies in offer preparation within ABB.
As a result of this work, the further consideration was given to the role of design

frameworks in general.

These studies of the designs in the Steel Production domain have been both historical
and intellectual; these studies have underpinned the classification of designs in the
domain and also the development of a better understanding of how design-with-
reuse could work in this domain. In the latter case, it was found useful to draw on

more general studies classifying approaches to design.

7.2 Implications of this Work for Design Theory

In this section, consideration will be given to the more general applicability of the
CDF and associated design frameworks. Here consideration will given to the im-
plications of this research for design theory and methodology in general. Many of
the problems addressed by the development and application of the CDF and design
frameworks are not limited to systems development by software engineers; they are
manifest in design in general. Here a brief account of relevant work in design theory

is given, and parallels are drawn between this work and that supporting this thesis.

Design Theory brings together re.sults from the engineering sciences and the practice
of engineering, from systems thcory, computer science and cognitive science. It
examines the role that knowledge representation, mathematics, and computation
play in design from both a practical and theoretical standpoint. The National
Science Foundation study on Design Theory and Methodology defined design theory

as:

systematic statements of principles and experimentally verified relation-
ships that explain the design process and provide the fundamental under-

standing necessary to create a useful methodology for design.

189



Where design methodology is

the collection of procedures, tools and techniques that the designer can

use 1n applying design theory to design.

(See [130]).

A distinction can be made between observational studies of complex phenomena
yielding descriptions forming the basis of descriptive theories of design, and theo-
retical studies to develop formal models of the design process which can be used to
structure and control the complexity of the design process, more prescriptive theo-
ries of design. Each approach has the potential to usefully inform the other and to
contribute to the improvement of design practice. If the human activity of design
is itself amenable to be being designed, then the possibility exists to develop new

theories of design and radically change the nature of existing design practice.

The fact that an approach is prescriptive does not rule out its having empirical
grounds for its theoretical basis. Both approaches look for empirical grounds to
support their theory either directly or indirectly. The prescriptive approaches seek
to give a theory to the process of design by giving reasons why design should proceed
in a certain way and not others; and they propose that experimental evidence be
provided to support each case. With respect to descriptive approaches, these look
for confirmation from practical studies and cite experimental evidence to support the
predictive power of their explanations. Both approaches may draw on experimental
results from other disciplines such as cognitive science to indirectly support their

case.

In an interesting study by Newsome and Spillers, results from psychological studies
of problem solvers are presented [104]. From these, requirements for tools support-
ing conceptual design are derived. This approach illustrates how practical results
from cognitive science studying current design practice can be brought to bear in
consideration of how design ought to be supported. This study also identified three

characteristics of the way that experts approach problem solving as follows:

190



o breadth-first approach,
e use of abstraction representation, and

e expanded memory of problem-related information.

It appears that experts in computer programming tend to take a breadth first ap-
proach in contrast to novices who use a depth first approach.- These differences were
found to be most marked as the complexity of the problem increased. These results

were reported in [13].

Experts tend to use abstract representations or patterns in problem solving - results
from computer programming, chess, Go and electronics support this. Novices in

these areas concentrate on smaller, more concrete features of the problem.

Experts have a quicker grasp of problems; this is illustrated by their capacity to
remember more of the problem related information. For example, experts in chess
are able to reconstruct board layouts to a much greater extent than novices; the
results quoted are greater than twenty pieces for experts compared to four or five
for novices. Similar results were obtained for computer programmers recalling pro-
grams. One might hypothesise that this expanded memory is due to high level

encodings of the problem related information.

As Newsome and Spiller point out, these three characteristics are not independent,
and it is the second, the ability to utilize abstract representations, that underlies
the both the first and third. The conclusions drawn from these characteristics with

respect to CAD tools for expert designers are as follows:

From the first characteristic, it is concluded that immediate closure of
design subtasks is not necessary nor should it be forced on the designer.
The CAD system should allow the designer to formulate rough global

sketches of solutions prior to fixing any details in depth.

From the second, it is concluded that only support for the most basic,

or prototypical, representations are needed initially. This allows the de-

191



signer to use abstract patterns to shape the solution until greater speci-
ficity is desirable. In addition, any prompting queries from the CAD
system should be of an abstract nature, e.g. clarifying relations among

parts rather than prompting for specific details of parts.

From the third, it is concluded that the system should present the de-
signer with global representations of information omitting details (the

expert designer can fill these in when required).

The studies reported above are from domains where there already exist quite well-
known and developed representations, i.e. chess and computer programming. In
computer programming, there are a number of languages at varying degrees of ab-
straction that the designer may employ. This raises the question: What role do
these abstract representations play in communication of designs? In particular, one
may wish to determine whether or not certain levels of abstraction are more useful

than others.

The engineer, Bucciarelli, has studied engineering design as a participant observer.
In considering designing as a fundamentally social process, the work by Bucciarelli
consists of exploring the nature of design discourse through which designers com-
municate under conditions of sustained uncertainty and ambiguity [41, 138]. He
has identified the importance of‘multiple representations of objects-in-the-making,
and has shown how multiple representations across the design discourse can both

facilitate and inhibit convergence of the description of an artifact.

These findings argue for investigations into the appropriate levels of abstraction in
any particular field of design discourse, to ensure that multiple representations are
an aid rather than an obstacle to the design process. The work in support of this
thesis on the CDF and design frameworks is a first step towards a means whereby

the results of such investigations can be expressed.

The representations used by designers and supported by methods and tools must
provide a sufficient and consistent vocabulary and grammar to enable effective com-

munication at the requisite levels without placing unnecessary restrictions on the de-

192



signer’s expression of ideas. A restrictive or biased design language limits the design
possibilities. The designer should employ the most appropriate means of expression
within any particular design exercise context - where one means is not self-evidently
the most appropriate, a variety may be required to cover different aspects of the
design. These points seem obvious. and yet there are always new prophets arriving
on the scene advocating new design languages and new approaches to design with-
out any supporting evidence. It is possible critically to evaluate a language; and
to determine its properties, especially the scope of its application. Simon called for
such efforts as a part of his programme of topics for instruction in the science of
design over twenty years ago [144]. It is recognised that current software engineering
practice necessitates that a variety of design notations be employed depending on
the level and nature of the design concepts being described [98]. In this thesis, it has

been shown how these may be related by employing a standard form for descriptions.

Of course, in reality, where a variety of professionals participate in the development
of a design, consideration must be given to their varied interests, strategies of repre-
sentation and different languages. In reality, such "layering” of meanings is central
to design discourse. And part of the research in design theory must address the pro-
vision of conceptual structures in which these experts’ structures can be structured.
It is here that the work on design frameworks based on the application of the CDF

in this thesis makes a modest contribution to design theory.

These considerations have given rise to several topics for future research discussed

in the following section.

7.3 Directions for Future Research

There are two main directions in which the research described here will be carried

forward:

193



1. further research in software engineering investigating how the CDF and design

frameworks could be employed in software maintenance as well as reuse, and

2. further research in general engineering design investigating the general appli-

cability of the design frameworks and the CDF.

A broader perspective of software engineering research now views the whole of the
software life cycle as inherently encompassing both software reuse and maintenance,
see, for example, the research agenda proposed by the Computer Science and Tech-
nology Board reported in the March 1990 issue of the CACM [51]. A long-term
action identified as part of this agenda is the building of a unifying model for soft-
ware system development. This research action is motivated by a fear that many
of the large computer-based systems on which our society depends are becoming
unmaintainable, and by a pressing need to improve our understanding of how to
create and maintain large and complex software systems. Through the reuse of soft-
ware concepts, the designer is able to build new systems on established conceptual
foundations while still taking advantage of improved technology and techniques in
the implementation of the new system. In addition, an understanding of the soft-
ware concepts employed in the construction of a system also provides a firm basis
for its maintenance, particularly where, in the form of perfective maintenance, an

evolutionary approach is taken.

Futhermore, large software systems have evolved to the point where many organisa-
tions both in industry and commerce could not operate effectively without them. It
is important to ensure that the knowledge and experience of those commissioning,
developing and maintaining such systems takes a recorded form open to scrutiny
for managerial as well as technical evaluation and appraisal during their operational
lifetime. Such understanding of software must be recorded at appropriate levels to
ensure its accessibility to all those within an organisation who need to rely on it
throughout its lifetime. The use of the CDF to build design frameworks will be
investigated for this purpose. Although the initial focus in development has been
primarily on describing software concepts at the higher levels of abstraction required

to facilitate their reuse during the conceptual phase of design, this further research

194



will consider its potential for recording levels of understanding more appropriate for

maintenance of existing software,

The other main direction in which this research will be carried forward is to inves-
tigate the general applicability of the CDF and design frameworks in the context of
general engineering design. Here the above considerations relating this research to

design theory are relevant. Two main research actions have been identified:

e to investigate the application of the CDF and design frameworks support-
ing design-for-reuse and design-with-reuse in other fields of engineering giving
consideration to implementation as well as conceptual design with an aim to

refining and generalising the concept of design frameworks;

¢ to employ design frameworks to support the multilevel communication amongst
a team of designers working on a large developmént project (concurrently and

over time) as the design is evolved.

In the first action, the future development can build on established design hand-
books in other areas of engineering. As many engineering design teams are inter-
disciplinary, combining concepts in a multilevel framework will form the basis of
the second research action. In the latter case, development of design frameworks
to support Computer Supported Cooperative Working in the area of engineering
design will be undertaken building on the experience gained here applying the CDF

in software engineering.

Two much wider issues related to this research are:

e therole of formality in design (c.f. Alexander’s recantation found in the Preface

to the Paperback Edition of [9]. and

o the wider implications of design such as determining whether or not a design

is in harmony with the rest of the world (considered in [9, 63, 170, 110]).

195



The role of formality in design is a vexed question. The crux of the issue would seem
to be that if the process of design can be formalised and carried out automatically
then it would cease to be intellectually challenging. Alexander’s view is that blindly
following any design method is futile. This thesis has not directly challenged the
concept of automating the process of design, but a further development of this work

would be to confront this concept and establish its futility.

The latter issue is a problem for all professional designers. In the design of software,
the usual focus is on getting the specification to meet the requirements and the
system to meet the specification (i.e. validation and verification), but little attention
has been given to the broader context and implications of design, for example, see
Winograd and Flores, and Floyd for a discussion of this with respect to software.
These authors’ work argues that designers have a responsibility to consider the

ramifications of their work on society at large.

While this thesis does not expressly take up either of these issues, the approach
of design frameworks with its emphasis on understanding the broader context of a
design could provide a practical means of beginning to put consideration of such

issues on the design agenda of practising software engineers.

7.4 Summary of Thesis

Chapter 1 set the context for this research within the field of Computer Science
known as Software Engineering and, in particular, within the area of Software Reuse.
In Chapter 2, research directions and outstanding issues in software reuse were
summarized. The need for work on improved methods of software description to
support reuse was discussed; and the specific concerns to be addressed by this thesis
were outlined. Chapter 2 reviewed specific reuse research and gave an account of the

Practitioner Project setting the context within which this research was undertaken.

The heart of the thesis can be found in Chapters 3, 4 and 5. The thesis has sought

196



¢

here to fulfill four main aims; they are as follows:

e to develop further a generic form for describing software concepts;

e to establish the adequacy of the representational form for describing reusable

software concepts;

e to employ the form in small and large scale applications and evaluate the form
as a means of supporting software concept reuse through populating a design

concept database;

e to gain an understanding of the inherent role that concept reuse plays in design
and to make this more explicit through providing a means of recording design

frameworks.

Chapter 3 of this thesis discussed in greater detail the form of software concept
descriptions developed to support software concept reuse. The requirements for a
language to support software concept reuse were elaborated and the form of software
concept descriptions, the CDF, developed as part of this research was discussed in
the light of these requirements in order to establish its adequacy as a means of
supporting software concept reuse. It is acknowledged that the form developed is a

minimal form.

Fulfillment of the third aim is based on the studies made in Chapter 4 of this thesis
supported by a more thorough going application of the CDF in the development
of a design framework and analysis of its usage in practice found in Chapter 5. In
Chapter 5, various studies in the domain of Steel Production were reported. This
work resulted a better understanding of the domain’s software concepts found in
the designs studied and recorded in sets of CDFs. The work also resulted in a
realisation of the potential for design reuse in this domain; CDFs describing general
concepts were used to guide the development of CDFs describing concepts from
specific systems, and a demonstration of concept reuse based on a set of CDFs
during offer preparation was made. Work in the steel domain provided further

opportunities to apply the CDF in populating the PRESS; a major result of this

197



work has been the development of a more comprehensive design framework for the
domain based on sets of CDF's. The role of this framework in design within the steel

domain has been investigated.

Chapter 6 evaluated the CDF and its application to support reuse and to establish
the longer-term prospects for the CDF and design frameworks. Consideration of the

role of such frameworks in design formed the final part of this chapter.

Fulfillment of the final aim is dependent on the comprehensibility of this thesis
taken as a whole. Throughout, the role that concept reuse plays in design has been
considered; and with the development of the CDF, a means of recording descriptions
of concepts used in design has been provided. By establishing relations between
concepts and explicitly recording these in sets of CDF's, it is possible to develop a

framework of design concepts to support their reuse.

7.5 Conclusions

The most general goal of this work has been to understand and improve the processes
as well as the products of Software Engineering; in particular, to understand the
process of reusing existing software concepts in the development of new systems.
A useful direction to this research has resulted from applying general engineering
design principles from Construction Theory to the engineering of software. Two

aspects of design have been examined:

1. Design-for-Reuse (Population of the PRESS) and

2. Design-with-Reuse (Exploitation or usage of the PRESS).

With respect to the products of software engineering, it has been found useful to
distinguish between specific and generic software concepts and between structural

concepts such as the ISO 7 Layer Model of OS] and component concepts such as a

198



parser in a compiler. This work has concentrated on the refinement of a canonical

form for the description of software concepts, the CDF.

The research to support this thesis carried out within the Practitioner project has
had a two fold aim; developing a systematic understanding of the procedures neces-
sary for populating the PRESS, and developing a systematic understanding of the
process of using the PRESS in the creation of new designs. This is the context within

which the approach of design frameworks based on the CDF has been developed.

An examination of the role that system structure descriptions play in high level
design reuse has been carried out through the development of the concept of design
frameworks. Design frameworks can be seen as an attempt to induce a history on a
set of designs, to establish a design tradition, and to erode the possibility of change

for its own sake, i.e. the needless adaptation which destabilises a design tradition.

It has been shown how design can be supported from known concepts using multi-
level frameworks populated with sets of CDF's. Frameworks allow designers to relate
CDFS which describe common application structures or functional structures, that
is forms of system architecture. A software concept may be decomposed into its
component parts, i.e. using whole-part relationships, or it may be decomposed
into levels of abstraction giving descriptions of the whole system from various view-
points. These decompositions allow designers to construct two dimensional frame-

works within which various design concepts can be related.

Although throughout the research reported here, the focus has been on the repre-
sentation of software concepts, the scope for wider application of these results is
recognised. This work has implications for research in the general theory of engi-

neering design.

Prior to this research, the theory of design in software engineering appropriate to
support the reuse of software concepts had not been developed. This research rep-
resents a small step towards such a theory. Moreover, there was little reported work

on the practical application of domain analysis to support reuse of software concepts

199



nor were there reports into the reuse of design structures. Through the development
of the CDI® and its application in the construction of design frameworks, this re-
search has been able to demonstrate a more systematic approach to domain analysis
and obtain results which were demonstrated to be potentially reusable. The work
proceeded by studying related designs in specific domains using the CDF, and es-
tablished its potential as a means of supporting the reuse of structural level design
concepts. The large scale application of the CDF and demonstration of its support
for reuse was carried out in collaboration with domain experts who were invalu-
able for validating the results of this work. The problem considered has been how
to describe abstraction over structure in design. The research here addressed this
problem from a very specific viewpoint of the architecture of process control sys-
tems. However, this thesis has shown that design frameworks are generally necessary
to support the effective reuse of software concepts in an appropriate context dur-
ing conceptual design. Through developing design frameworks based on the CDF,
it has been shown how software concepts can be explicitly recorded within such
frameworks and how these provide the basis for the reuse of software concepts in

design.

200



References

[1]

[2]

[3]

[7]

[8]

ABB. Deliverable F'2.1: Reports on experiences with prototype, 12 April 1991.
Practitioner Report P1094-ABB-0050.

ACM. Software Reusability, Volumes I and II. ACM Press and Addison-
Wesley, 1989.

Martin Ader, Stephen McMahan, Gerhard Mueller, and Anna-Kristin Proe-
frock. The ITHACA technology a landscape for object-oriented application
development. In ESPRIT ’90 Proceedings of the Annual ESPRIT Conference,
pages 31-51. Kluwer Academic Publishers, 1990.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, 1986.

Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-
Wesley, 1977.

Hanne Albrechtsen. Software concepts: Knowledge organisation and the hu-
man interface. In Proceedings of the ISKO Conference. Darmstadt, January
1990.

Hanne Albrechtsen and Cornelia Boldyreff. Software classification, 15 Feb
1990. Practitioner Project Working Paper P1094-BrU-071.

Hanne Albrechtsen and Lene Olsen. Methodology in programming linguistics

within a real-time culture, 1 October 1990. Practitioner Project Report P1094-
CRI-110/00.

201



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Christopher Alexander. Notes on the Synthesis of Form. Harvard University
Press, 1964.

Alvey. Report on Software Engineering and Communications. Department of

Industry, U. K., June 1982. The report produced by the Alvey Committee.

AMICE. Open System Architecture for CIM. Research Reports ESPRIT.
Springer-Verlag, 1989. Written by the AMICE Consortium.

Chris Anderson. Software reuse: A CAMP project update, 1988. Technical
report from US Air Force Armament Laboratory, Elgin AFB, Florida 32542-
5434, USA.

J. R. Anderson. Cognitive Psychology and Its Implications. W. H. Freeman
and Co., New York, 1985.

Anon. Some research directions for large-scale software development. In AT&T

Technical Journal, July/August 1988.

H. Jack Barnard, Robert F. Mctz, and Arthur L. Price. A recommended
practice for describing software designs: IEEE standards project 1016. IEEE
Transactions on Software Engineering, SE-12(2), February 1986.

Victor R. Basili, Gianluigi Caldiera, and Giovanni Cantone. A reference archi-
tecture for the component factory. ACM Transactions on Software Engineering

and Methodolody, 1(1):53-80, January 1992.

LA Belady and MM Lehman. The characteristics of large systems. In
MM Lehman and LA Belady, editors, Program Evolution Processes of Software
Change. Academic Press, 1985.

T. J. Biggerstaff and A. J. Perlis. Foreword on reusability. IEEE Transactions
on Software Engineering, SE-10(5):474-476, September 1984.

Ted J. Biggerstaff. Design recovery for maintenance and reuse. IEEE Com-

puter, 22(7):36-49, July 1989,

202



[20]

[23]

[24]

[25]

[26]

[27 ]

[28]

Ted J. Biggerstaff and Charles Richter. Reusability framework, assessment,
and directions. In Ted J. Biggerstaff and Alan J. Perlis, editors, Software
Reusability, volume I. ACM Press and Addison-Wesley, 1989.

C. Boldyrefl. Design methods for integrating system components. In P. A. V.
Hall, editor, Software Reuse and Reverse Engineering in Practice, pages 81-97.

Chapman & Hall, 1992.

C. Boldyreff, P. Elzer, P. Hall, U. Kaaber, J. Keilmann, and J. Witt. PRAC-
TITIONER: Pragmatic support for the reuse of concepts in existing software.
In Proceedings of Software Engineering 1990, Brighton, UK. Cambridge Uni-
versity Press, 1990.

C. Boldyreff and J. Zhang. From recursion extraction to automated com-
menting. In P. A. V. Hall, editor, Software Reuse and Reverse Engineering in

Practice, pages 253-270. Chapman & Hall, 1992.

Cornelia Boldyreff. Descriptive methods survey and guidelines for usage and
recommendations on form and contents of external descriptions, 2 September
1988. Practitioner Working Paper P1094-BrU-Report-0009. A revised version
of deliverable Al.1 combined with deliverable B1.1.

Cornelia Boldyreff. Investigations concerning the representation of software
concepts, February 1989. Practitioner Project Working Paper P1094-BU-CB-
WPB2-WORKING PAPER-0022.

Cornelia Boldyreff. The questionnaire: a generic form for the description of

software concepts, 16 June 1989. Practitioner Working Paper P1094-BrU-0056.

Cornelia Boldyreff. The questionnaire: a generic form for the description of

software concepts, 16 June 1989. Practitioner Working Paper P1094-BrU-0056.

Cornelia Boldyreff. Reuse, software concepts, descriptive methods and the
practitioner project. ACM SIGSOFT Software Engineering Notes, 14(2), April
1989.

203



[29]

[30]

[33]

[34]

[35]

[36]

Cornelia Boldyreff. Demonstration of the PRESS, 18 October 1990. Practi-
tioner Working Paper P1094-BrU-104.

Cornelia Boldyreff. Supporting system design from reusable design frame-
works. In Proceedings of the Second International Conference on INFORMA-
TION SYSTEM DEVELOPERS WORKBENCH Methodologies, Techniques,
Tools and Procedures, Gdansk, 25-28 September 1990. University of Gdansk,
1990.

Cornelia Boldyreff. Deliverable E{.2: Handbook for design of concept and
module surfaces, 18 January 1991. Practitioner Report P1094-BrU-0109/01.

Cornelia Boldyreff. A design framework for software concepts in the domain
of steel production. In Proceedings of the Third International Conference on
INFORMATION SYSTEM DEVELOPERS WORKBENCH Methodologies,
Techniques, Tools and Procedures, Gdansk, 22-24 September 1992. University
of Gdansk, 1992.

Cornelia Boldyreff, Patrick Hall, and Jian Zhang. Reusability: The
practitioner approach. In Proceedings Workshop ”Reuse” RESEARCH IN
PROGRESS, pages 1-7. Delft University of Technology, November 1989. Po-

sition paper presented at workshop.

Cornelia Boldyreff and Uwe Krohn. The practitioner reuse support system
(PRESS): A consideration {rom the standpoint of tool in terconnection. In An-

nual Review of Automatic Programming, volume 16, Part 2. Pergamon Press,
1992. Proceedings of the Fourth IFAC/IFIP Workshop on Experience with
the Management of Software Projects, Austria, May 18-19, 1992.

Richard Bornat. Programming from First Principles. Prentice-Hall Interna-

tional Series in Computer Science. Prentice-Hall, 1987.

Frank Bott, Bob Gautier, and Mark Ratcliffe. CDL and its tools. In Frank
Bott, editor, ECLIPSE An integrated project support environment, pages 181-
188. Peter Pergrinus, Ltd., London, 1989.

204



11l R. J. Brachman. A Structural Paradigm for Representing Knowledge. Bolt,
Beranek & Newman, 1978. Technical Report 3605.

®] J. M. Brady. The Theory of Computer Science A Programming Approach.
Chapman and Hall, London, 1977.

39] David C Brown and B Chandrasekaran. Design Problem Solving, Knowledge

Structures and Control Strategies. Research Notes in Artificial Intelligence.
Pitman Publishing, London, 1989.

40) G F Bryant, W J Edwards, and C H McClure. Cold-rolling-mill control-system
design, part 1; System description and control objectives. In G F Bryant,

E.

editor, Automation of tandem mills. The Iron and Steel Institute, London,
1973.

1] Louis L. Bucciarelli. An ethnographic perspective on engineering design. De-
sign Studies, 9(3), July 1988.

2] R. M. Burstall and J. A. Goguen. Putting theories together to make specifi-
cations. In Proceedings of Fifth International Joint Conference on Artificial

Intelligence, pages 1045-1058. Carnegie-Mellon University, Pittsburgh, 1977.

'3] R. M. Burstall and J. A. Goguen. An informal introduction to specifications
using CLEAR. In RS Boyer and JS Moore, editors, The correctness problem

in computer science. Academic Press, 1981.

4] Richard L Campbell. An architecture for factory control automation. AT&T
Technical Journal, 66(5):77-85, September/October 1987.

5] Lionel Cartwright et al. AISE software portability project — review of step
1. In AISE Year Book, 1984.

6] Lionel Cartwright et al. AISE software portability project — review of step
2. In AISE Year Book, pages 94-97, 1985.

7) Lionel Cartwright et al. AISE software portability project — review of step
3. In AISE Year Book, 1987.



[43]

[49]

[50]

[51]

[53]

[54]

55

[56]

Peter Checkland. Systems Thinking, Systems Practice. Wiley, 1981.

A. B. Chelyustkin. The Application of Computing technique to Automatic
Control Systems in Metallurgical Plant. Metallurgizdat, Moscow, English edi-
tion, 1960. Translated by D. P. Barrett and published by Pergamon Press,
1964.

B Cohen and M Jackson. A critical appraisal of formal software development
theories, methods and tools, 1983. Technical Report, Standard Telecommuni-

cations Laboratories, Harlow, England, (ESPRIT Preparatory Study).

CSTB. Scaling up: A research agenda for software engineering. Communica-
tions of the ACM, 33(3):281-293, March 1990. Excerpts from the report by
the Computer Science and Technology Board.

Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design
process for large systems. Communications of the ACM, 31(11):1268-1287,
November 1988.

Tim Denvir. Introduction to Discrete Mathematics for Software Engineering.

Macmillan Computer Science Series. Macmillan, 1986.

F DeRemer and H Kron. Programming-in-the-large versus programming-in-

the-small. In IEEE Transactions on Software Engineering, June 1976.

E. W. Dijkstra. Introduction: Why correctness must be a mathematical con-
cern. In RS Boyer and JS Moore, editors, The Correctness Problem in Com-

puter Science. Academic Press, 1981.

Liesbeth Dusink and Patrick Hall (Editors). Software Re-use, Utrecht 1989.
Workshops in Computing. Springer-Verlag, 1991. Proceedings of the Software
Re-use Workshop, 23-24 November 1989, Utrecht, The Netherlands.

W J Edwards, J D Higham, C H McClure, and B J Mercer. Chapter 18
modelling programs for the design of cold-rolling-mill control systems. In G F
Bryant, editor, Automation of tandem mulls. The Iron and Steel Institute,
London, 1973.

206



(58]

[59]

60]

(61]

[63]

[64]

[65]

[66]

(67]

J. Eekels and N. F. M. Roozenburg. A methodological comparison of the
structures of scientific research and engineering design: their similarities and

differences. DESIGN STUDIES, 12(4):197-203, October 1991.

P. Elzer, Bent S. Jensen, Ulla Kaaber, Johannes Keilmann, Soren P. Nortoft,

and J. Witt. Recommendations on the use of descriptive methods, 30 April
1987. Practitioner Working Deliverable A1.2.

Peter Elzer, Rachel Jones, and Jan Witt. Practitioner — realistic reuse of
software. In Proceedings of GI Conference, pages 507-515. Munich, October
1989.

J Estublier, S Ghoul, and S Krakowiak. Preliminary experience with a con-

figuration control system for modular programs. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments. April 1984.

S. I. Feldman. Make — a program for maintaining computer programs. Soft-

ware — Practice and Ezpericnce, 9(4), April 1979.

Christiane Floyd. Outline of a paradigm change in software engineering. ACM
SIGSOFT Software Engineering Notes, 13(2), April 1988.

Peter Freeman. Reusable software engineering: Concepts and research direc-
tions. In Proceedings of the ITT Workshop on Reusability in Programming,
Stratford, Connecticut. ITT, Newport, RI, September 7-9, 1983.

Peter Freecman. A conceptual analysis of the draco approach to construct-
ing software systems. In P. Freeman, editor, Tutorial: Software Reusability.

Institute of Electrical and Electronic Engineers, Washington. DC, 1987.

G. Frege. Die grundlagen der arithmetik, 1884. Translated into English by JL
Austin as The Foundations of Arithmetic, Revised , Basil Blackwell, Oxford
(1968).

John C. Funk and Larry McAllister. Controlling processes with DCS. In
Chemical Engineering, pages 90-96, May 1989.

207



[68] Gandalf. The gandalf project. Journal of Systems and Software, 5(2), May
1985.

[69] J. A. Goguen. Reusing and interconnecting software components. JEEE Com-

puter, 19(2):16-28, February 1986.

[70] Siegfried Greif. The role of German work psychology in the design of artifacts.
In John M. Carroll, editor, Designing Interaction: Psychology of the Human-
Computer Interface, Cambridge Series on Human-Computer Interaction, pages

203-226. Cambridge University Press, 1991.

[71] Raymonde Guindon. Knowledge exploited by experts during software system

design. International Journal of Man-Machine Studies, 33:279-304, 1990.

[72] Patrick Hall and Cornelia Boldyreff. Software reuse. In John A. McDermid,
editor, Software Engineer’s Reference Book. Butterworths, June 1990.

[73] Patrick A.V. Hall. A METAMODEL for software components and reuse, 1989.
P1094-BrU-PH-Working Paper 0052.

[74] J. Heidepriem. Trends in process control of metal rolling. In Proceedings of
the 11th IFAC World Congress, volume 11, pages 138-147. Tallinn/Estland,
January 1990.

[75] P. Henderson and B. Warbéys. An architectural framework for systems. In

ICL Journal, May 1989.

[76] Peter Henderson and Brian Warboys. Configuration description for compo-
nent reuse. In Proceedings of the First International Workshop on Software
Reusability, Dortmund, Germany, July 3-5, 1991, pages 142-147. University
of Dortmund, June 1991.

[77] CAR Hoare. An overview of some formal methods for program design. In
COMPUTER, volume 20, pages 85-91. IEEE Computer Society, September
1987.

[78] Susan Hockey and Jeremy Martin. Ozford Concordance Package Users’ Man-
ual. Oxford University Computing Service, Oxford, U.K., 1988.

208



[79]

[80]

[81]

[82]

[83]

[34]

[85]

[86]

[87]

[89]

[90]

J. W. Hopper and R. O. Chester. Software Reuse Guidelines and Methods.
Plenum Press, New York, 1991.

IEEE. IEEE Recommended Practice for Software Design Descriptions. The

Institute of Electrical and Electronic Engineers, Inc., 1987.

IEEE. IEEE Tutorial: Software Reusability. Institute of Electrical and Elec-
tronic Engineers, Washington, DC, 1987.

IEEE. IEEE Tutorial: Software Reuse: Emerging Technology. IEEE Computer
Society Press, Washington, DC, 1988.

ISO. Documentation — guidelines for establishment and development of

monolingual thesauri, 1986.
ISO. Documentation — commands {or interactive text searching (CCL), 1989.

J. Christopher Jones. DESIGN METHODS seeds of human futures. John

Wiley & Sons, this edition, 1980. contains a review of new topics.

T. C. Jones. Reusability in programming: A survey of the state of the art.
IEEE Transactions on Software Engineering, SE-10(5), September 1984.

K. Kandt. Pegasus: A tool for the acquisition and reuse of software designs. In
Proceedings of COMPSAC 84, pages 288-293. IEEE Computer Society Press,
Silver Spring, MD, USA, November 1984.

J. Keilmann and P. Elzer. Experience with the manual identification and
selection of program concepts and modules, 10 February 1989. Practitioner

Working Paper P1094-ABB-KE-WPC2.1-Report-0019.

Johannes Keilmann. Order processing in a strip processing line, (a set of
questionnaires completed at ABB’ s industrial plants process control division),

1988.

Johannes Keilmann. Faceted thesaurus, 20 February 1990. Practitioner Work-
ing Paper P1094-ABB-0032.

209



[91]

[92]

[93]

[94]

(9]

[96]

[97]

[100]

[101)

R. J. Kermitz, F. J. Bold, and H. Bydalek. Reference-plant design adapts to
restrictive site requirements. In Power, pages S—-47 — S-52, April 1989.

DE Knuth. Literate programming. The Computer Journal, 27(2), May 1984.

Charles W. Krueger. Models of Reuse in Software Engineering. Carnegie
Mellon University, 14 December 1989.

Lancaster. The dragon reuse toolset. In Proceedings Workshop ”"Reuse” RE-
SEARCH IN PROGRESS, pages 1-5. Delft University of Technology, Novem-
ber 1989. Position paper presented at workshop by N. Hadley from the Dragon

Project at Lancaster.

M. M. Lehman, V. Stenning, and W. Turski. Another look at software design
methodology. ACM SIGSOFT Software Engineering Notes, 9(2), April 1984.

M. D. Lubars and M. T. Harandi. Knowledge-based software design using
design schemas. In Proceedings of the 9th International Conference on Software

Engineering, pages 253-262. 30th March — 2nd April 1987.

Mitchell D. Lubars. AFFORDING HIGHER RELIABILITY THROUGH
SOFTWARE REUSABILITY. ACM SIGSOFT Software Engineering Notes,
11(5):39-42, October 1986.

Allen Macro and John Buxton. The Craft of Software Engineering. Interna-
tional Computer Science Series. Addison-Wesley Publishing Company, 1987.

John A. McDermid. Introduction and overview to Part II, Methods, Tech-
niques and Technology. In John A. McDermid, editor, Software Engineer’s
Reference Book. Butterworths, June 1990.

Mihajlo D Mesarovic. Multilevel systems and concepts in process control.

Proceedings of the IEEE, 58(1):111-125, January 1970.

MIT-JSME. Computer-aided cooperative product development, 1991. Pro-
ceedings of the MIT-JSME Workshop, MIT, Cambridge, USA, November
1989.



[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111)

MWG. Handbook of the European Iron and Steel Works. Montan- und
Wirtschaftsverlag GmbH, Frankfurt am Main, 1985. 8. Auflage, printed in
German, English and French.

J. Neighbors. The draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, SE-10(5):564-573,
September 1984.

Sandra L. Newsome and William R. Spillers. Tools for expert designers: Sup-

porting conceptual design. In Design Theory ’88, pages 49-55. Springer-Verlag,
1989.

Christopher Norris. DERRIDA. Fontana Modern Masters. Fontana Press,
London, 1987.

NSF. Design Theory '88. Springer-Verlag, 1989. Proceedings of the 1938 NSF
Grantee Workshop on Design Theory and Methodology. )

Anthony A. Oettinger. Letter to the ACM membership. Communications of
the ACM, 9(8), January 1966.

Lene Olsen and Kim Bisgaard. PRESS design description, 18 December 1989.
Practitioner Project Report P1094-CRI-LO+KIB-WPE2.2-Report-0086/01.

Lene Olsen et al. First studies on programming linguistics within a real time
culture, January 1989. Practitioner Project Report P1094-CRI-HAL-WPC4.3-
0068.

Gerhard Pahl and Wolfgang Beitz. Engineering Design a systematic approach.
Springer-Verlag, English edition, 1988. This published 1988 in the United
Kingdom by The Design Council has been translated by Arnold Pomerans
and Ken Wallace. The title of the original in German is Konstruktionslehre:

Handbuch fuer Studium und Praxis, and it was first published in 1977.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 5(12):1053-1058, December 1972.

211



[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

David Lorge Parnas and Paul C. Clements. A rational design process: How

and why to fake it. IEEE Transactions on Software Engineering, SE-12(2),
February 1986.

D E Perry and W M Evangelist. An empirical study of software interface faults
— an update. In Proceedings of the Twentieth Annual Hawati International

Conference on Systems Sciences, volume 11, pages 113-126. January 1987.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of soft-

ware architecture. In ACM SIGSOFT Software Engineering Notes, volume 17,
pages 40-52. ACM, 1992.

Henry Petroski. To Engineer Is Human The Role of Failure in Successful
Design. Macmillian, London, 1985. (First published in the U. S. A. in 1982.).

Henry Petroski. The Pencil A History of Design and Circumstance. Faber
and Faber, 1989.

Maciej Pietrzyk, Jan Kusiak, and Miroslaw Glowacki. Some aspects of de-
velopment of models for automatic control of rolling mills. steel research,
61(8):359-364, 1990.

George Polya. How to Solve It. Princeton University Press, second edition,

1957.

Practitioner. ESPRIT project P1094 — PRACTITIONER: A support system
for pragmatic reuse of software concepts, technical annex, version 3, 25 May

1987. Written by members of the Practitioner Consortium.

Richard Preston. Annuals of enterprise, Hot Metals-I. In New Yorker, pages
43-71, 25 February 1991.

Richard Preston. Annuals of enterprise, Hot Metals-II. In New Yorker, pages
41-79, 4 March 1991.

R. Prieto-Diaz. Domain analysis for reusability. In COMPSAC87 Conference,
Tokyo, Japan, October 7-9. 1987.

o
—
o



[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[139]

R. Prieto-Diaz and P. Freeman. Classifying software for reusability. IEEE
Software, 4(1):6-16, January 1987.

R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Jour-

nal of Systems and Software, 6(4):307-334, November 1986.

Ruben Prieto-Diaz. Classification of reusable modules. In Ted J. Biggerstaff
and Alan J. Perlis, editors, Software Reusability, volume I. ACM Press and
Addison-Wesley, 1989.

Ruben Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Soft-
ware Engineering Notes, 15(2):47-54, April 1990.

Ruben Prieto-Diaz. Implementing faceted classification for software reuse.
In Proceedings of the 12th International Conference on Software Engineering,

pages 300-304. IEEE Computer Society Press, 1990.

Ruben Prieto-Diaz and Guillermo Arango. Domain Analysis and Software
System Modelling. IEEE Computer Society Press Tutorial. IEEE Computer
Society Press, 1991.

Ruben Prieto-Diaz and Guillermo Arango. Domain Analysis and Software
System Modelling. IEEE Computer Society Press Tutorial. IEEE Computer
Society Press, 1991.

Michael Rabins, David Ardayfio, Steven Fenves, Ali Seireg, Herbert Richard-
son, and Howard Clark. DESIGN THEORY AND METHODOLOGY — a
NEW DISCIPLINE. In MECHANICAL ENGINEERING, pages 23-27, Jan-
uary 1986.

Brian Randell. System design and structuring. The Computer Journal, 29(4),
1986.

M. Ratcliffe. Report on a workshop on software reuse held at hereford, UK
on 1,2 may 1986. Software Engineering Notes, 12(1):42-47, January 1987.

213



[133]

[134]

[135]

[136)

[137]

[138]

[139]

[140]

[141]

[142]

Howard B Reubenstein and Richard C Waters. The requirements apprentice:
Automated assistance for requirements acquisition. IEEE Transactions on

Software Engineering, 17(3):226-240, March 1991.

C Rich. A formal representation for plans in the programmer’s apprentice. In
Proceedings of the Tth International Joint Conference on Artificial Intelligence.

Vancouver, January 1981.

C Rich and H Shrobe. [Initial report on a LISP programmer’s apprentice.
Massachusetts Institute of Technology, December 1976.

C Rich, HE Shrobe, and RC Waters. An overview of the programmer’s ap-
prentice. In Proceedings of the 6th International Joint Conference on Artificial

Intelligence. Tokyo, January 1979.

Charles Rich and Richard C. Waters. The programmer’s apprentice. In COM-
PUTER, volume 21. IEEE Computer Society, November 1988.

Donald A. Schon and Louis L. Bucciarelli. Design theory and methods - an
interdisciplinary approach. In Sandra L. Newsome, W. R. Spillers, and Susan

Finger, editors, Design Theory ’88, pages 29-35. Springer-Verlag, 1989.

Ian Sedwell, Ulla Kaaber, and Hanne Albrechtsen. The linguistic analysis of
the unix on-line documentation, November 1988. Practitioner Project Deliv-
erable P1094-BU-IS-WPC4.1-REPORT-0021.

Mary Shaw. Larger scale systems require higher-level abstractions. In Pro-
ceedings of the Fifth International Workshop on Software Specification and
Design. IEEE Computer Society, 1989.

Mary Shaw. Elements of a design language for software architecture, January

1990. Position Paper for IEEE Design Automation Workshop.

Mary Shaw. Informatics for a New Century: Computing Education for the
1990s and Beyond. Carnegie-Mellon University. Software Engineering Insti-

tute, Pittsburgh, July 1990. Technical Report, CMU/SEI-90-TR-15, ESD-90-
TR-216.



[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

E. H. Sibley. A layered approach to very large system specification. In Bruce D
Shriver, editor, Proceedings of the Twenty-Second Annual Hawati Interna-

tional Conference on System Sciences, volume 11, Software Track, pages 988~
995. IEEE Computer Society Press, 1989.

Herbert A. Simon. The Sciences of the Artificial. The MIT Press, second
edition, 1981.

Harry M. Sneed and Gabor Jandrasics. Inverse transformation from code to

specification. In Proceedings Software Tools ’89. Blenheim Online, London,

1989.

I Sommerville and R Thomson. The ECLIPSE system structure language. In
Proceedings of the 19th Annual Hawaii International Conference on System

Sciences. 1986.
lan Sommerville. Software Engineering. Addison-Wesley, fourth edition, 1992.

Tan Sommerville, John Mariani, Neil Hadley, and Ronnie Thomson. Unpub-

lished paper, Software Design with Reuse, obtained from Neil Hadley, 1989.

Ian Sommerville and Murray Wood. A software components catalogue. In
R. Davies, editor, Intelligent Information Systems: Progress and Prospects,
pages 13-32. Wiley, 1987.

T. A. Standish. An essay on software reuse. IEEE Transactions on Software
Engineering, SE-10(5):494-497, September 1984.

Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

Andrew S. Tanenbaum. Structured Computer Organisation. Prentice/Hall

International, Inc., second edition, 1984.
Harold Thimbleby. Delaying commitment. In IEEE Software, May 1988.

WF Tichy. Software Development Control Based on Systems Structure De-
scription. Carnegie-Mellon University, Computer Science Department, Jan-
uary 1980. PhD Thesis.

215



[155]

[156]

[157)

[158]

[159]

[160]

[161]

[162]

[163]

[164]

W. J. Tracz. Formal specification of Parameterized Programs in LILEANNA.
Stanford University, 1990. PhD Dissertation Draft.

Will Tracz. Ada reusability efforts: A survey of the state of practice. In
Proceedings of the Fifth Annual Joint Conference on Ada Technology and Ada
Washington Symposi um, pages 35-44. 1987. Reprinted in Tracz’s IEEE Tu-

torial on Software Reuse.

Will Tracz. The three cons of software reuse. In Proceedings of Third Annual
Workshop: Methods and Tools for Reuse. CASE Centre, Syracuse University,
NY, USA, June 13-15, 1890.

Wladyslaw M. Turski and Thomas S.E. Maibaum. The Specification of Com-
puter Programs. Addison-Wesley Publishing Company, 1987.

UNICOM. Software Reuse and Reverse Engineering in Practice. Chapman
& Hall, 1992. Collection of papers presented at two Unicom seminars held in
London in 1989 and 1990, edited by P. A. V. Hall.

USS/AISE. The Making, Shaping and Treating of Steel. Association of Iron
and Steel Engineers (USA), tenth edition, 1985.

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoff,
C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker (Editors). Revised Report
on the Algorithmic Language Algol 68. Springer-Verlag, 1976.

L. von Bertalanffy. The organism considered as a physical system, 1940.
Reprinted in Bertalanffy, L. von, General Systems Theory, Braziller, New
York, 1960.

L. von Bertalanfly. General systems theory — a critical review. General

Systems, VIII:1-20, 1962.

Lev S Vygotsky. Thought and Language. Soc.-econom. izd., Moscow-
Leningrad, 1934. Translated and Edited by E Hanfmann and G Vakar, pub-
lished by MIT Press, 1962.

216



[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Martin Ward. Transforming a program into a specification, January 1988.
Computer Science Technical Report 88/1, School of Engineering and Applied

Science, University of Durham.

Richard C. Waters and Yang Meng Tan. Towards a design apprentice: Sup-
porting reuse and evolution in software design. ACM SIGSOFT Software
Engineering Notes, 16(2):33-44, April 1991.

Herbert Weber. The integration of reusable software components. In Journal

of System Integration, pages 55-79. Kluwer Academic Publishers, 1991.

Peter Wegner. Varieties of reusability. In Proceedings of the ITT Workshop
on Reusability in Programming, 7-9 September 1983, Stratford, Connecticut,
pages 30-44. ITT, Newport, RI, 1983.

Theodore J. Williams. Tasks and Functional Spt;zciﬁcations of the Steel Plant
Hierarchical Control System. Purdue Laboratory for Applied Industrial Con-
trol, School of Engineering, Purdue University, West Layfayette, Indiana
47907, USA, 1984. Volume 1, Chapters 1-15, Volume 2, Chapters 16-21, Re-
port No. 98, Originally prepared Sept. 1977, Expanded June 1982, Revised
and Further Expanded June 1984.

Terry Winograd and Fernando Flores. Understanding Computers and Cog-
nition: A New Foundation for Design. Ablex Publishing Corporation, New
Jersey, 1986.

Rebecca J. Wirfs-Brock and Ralph E. Johnson. Surveying current research in
object-oriented design. Communications of the ACM, 33(9):104-124, Septem-
ber 1990.

F. Wolff. Long-term controlling of software reuse. Information and Software

Technology, 34(3):178-184, March 1992.

J. C. P. Woodcock. Structuring specifications in Z. Software Engineering
Journal, 4(1):55-66, January 1989.

217



[174]

[175]

[176]

H. Zemanek. Formalization: Past, present and future. In B. Shaw, editor, For-
mal Aspects of Computing Science. Newcastle University, 1974. Reprinted in
Lecture Notes on Computer Science 23: Programming Methodology, Springer
(1975).

Jian Zhang and Cornelia Boldyreff. Towards knowledge-based reverse engi-
neering. In Proceedings of the Fifth Annual Knowledge-Based Software Assis-
tant Conference, 24-28 September 1990. Syracuse, NY, 1990.

H. Zimmermann. OSI reference model — the OSI model of architecture for

open systems interconnection. [EEE Transactions on Communications, COM-

28, April 1980.

213



Appendix A

An Overview of the Practitioner

Project

The aim of this appendix is to give an account of the Practitioner Project setting
the context within which this research was undertaken. It consists of a brief intro-
duction to the project and an overview of the project’s approach to modelling reuse.

Modelling is covered by discussing three aspects of the project’s work:

1. the questionnaire, a form developed to be used in obtaining descriptions of

reusable software concepts,

[S)

. the thesaurus to be used to record terminology of the application domain

relevant to indexing the software concept descriptions, and

3. a metamodel of the reuse process.

The relationship established by the project between the questionnaire and thesaurus
is clarified. The project developed a faceted thesaurus, i.e. a thesaurus in which
the terms are listed under distinct classes known as facets. The role of facets in

supporting domain views is discussed, and it is shown how facets within a view can

219



be used to systematically classify software concept descriptions. Refinement of the
metamodel resulted in the formulation of methods to support both design-for-reuse
and design-with-reuse. A short account of these is given and the role of design
frameworks is discussed. This appendix concludes by identifying the main areas
of research within the project to which the author contributed and by listing the

author’s publications resulting from work on the Practitioner project.

A.1 An Introduction to the Practitioner Project

The Practitioner Project was a collaboration between Asea Brown Boveri AG and
PCS Computer Systeme GmbH in Germany, Computer Resources International
in Denmark, and three universities: Brunel University, the Technical University
Clausthal and the University of Liverpool. The project completed its work in
November 1991. The ultimate goal of this five year project was the development of
a support system for the pragmatic reuse of software concepts; and a major result
of the project was the development and demonstration of the Practitioner REuse
Support System (PRESS). The project was concerned with the reuse of software
concepts from designs through to code, focusing on concepts realised in existing
software rather than the formulgtion of practices to be applied in the development
of new reusable software [60]. The motivation for investigating reuse of existing
software was to allow the exploitation of the investments already made in its devel-
opment and maintenance. The concentration on the reuse of designs at a conceptual
level was in part because the main domain in which reuse was considered during
the project was process control in Steel Production. In the field of process control
software where use of assembly language is commonplace and code reuse is often
not feasible, there is a high degree of commonality in design concepts employed, and
hence the focus was on reuse at this level. Practitioner also aimed to support the
designer early on in the design process, and hence its concentration was on software

concept reuse in general.

Initially there were three major areas of concern within Practitioner:

220



o description of software concepts, selection of appropriate forms of description
to support reuse, and assistance with description by analysis of existing soft-

ware documentation and source code;

e classification, storage and retrieval of software concept descriptions to enable
a software engineer to select the software design or code appropriate to meet

specific requirements;

o development of methods and tools to support the software engineer in the

construction of software systems from reusable software concepts.

The research supporting this thesis has contributed primarily to the first and third
of these concerns. The notion of a software concept as a potentially reusable object
comes from accounts of software engineers’ design experience; often, an engineer is
able to formulate a solution to a new system requirement by following up informal
ideas based on an understanding of existing software. These reusable ideas are the
software concepts of the individual practitioner, i.e. software engineer; they may be
fundamental ideas from Computer Science such as queue or a stack, or operational
ideas such as order processing, or very specific application ideas such as material

tracking in a strip processing line.

Terminology analysis was the method used to establish the terms used in a par-
ticular domain to describe its software concepts. In Practitioner, the domain of
Steel Production was studied in depth [22, 32]. A thesaurus was developed working
from terminology sources in standardised form, e.g. existing thesauri, standards,
dictionaries and glossaries, and sources in non-standardised form such as technical

publications and project documentation [90].

In parallel with the terminology analysis, existing domain software was described
using a questionnaire developed by the project [26] and described in more detail
in Section 2.2.3. Although software concept descriptions are given a standardised
structure via the questionnaire, use of a particular language or descriptive method
to describe the concept is not dictated. It is assumed that the application oriented

descriptions of concepts in the questionnaires will be in the domain language, typ-

221



ically a natural language. The form of the questionnaire allows complex software
concepts to be described by a process of recursive decomposition into atomic soft-
ware concepts. A large application concept is described by a set of questionnaires;
for example, over thirty questionnaires were required to describe Order processing

in a Strip Processing Line [88].

This work laid the ground for the project’s approach to supporting software concept
reuse; and it provided the initial population of the Practitioner REuse Support

System described below.

Over the first two years of the project during Phase I of the research, the emphasis
was on collection of software concepts in specific application domains and investiga-
tion into appropriate descriptive methods to support reuse. Various approaches to

reuse support were investigated, and two pre-prototype reuse support systems were

developed using UNIX and the PCTE.

Phase II was concerned with the development of a prototype Practitioner REuse
Support System (PRESS). In developing a reuse support system, the project was
determined to reuse existing software concepts. A standard language for interactive
text searching, CCL [84], has been used in the PRESS to support the searching for
software concepts. The ISO Guidelines for thesaurus construction [83] formed the

starting point for the PRESS on-line thesaurus.

The links between the thesaurus and the database of software concepts are both
static and dynamic. Terminology used in the questionnaires to describe concepts is
up-lifted to the preferred terminology by making use of the thesaurus when concept
descriptions are installed in the PRESS. During a search to find relevant reusable
concepts, the PRESS makes active use of the thesaurus through an extension to
CCL that was defined by the project: the thesaurus operator. The thesaurus oper-
ator enables search terms to be augmented by additional terms based on standard

thesaurus relations, such as broader terms, narrower terms, etc.

The PRESS has been implemented using an existing database management system



for the software concept store and thesaurus. The user views these through browsers
built from a standard windowing system. Figure A.l - Data Flow Diagram of the

PRESS - shows the main components of the PRESS and the dataflows between

them.

User and

Existing Material application Requirements

for new software

/

Retrieval and

describing software interface

Acquisition and

Maintenance Browsing

Software

Concepts Terminology

Questionnaire Database Thesaurus

Document Store N Term lists

Figure A.1: Data Flow Diagram of the PRESS

The PRESS as developed has a low cost, easily installed form, PRESSTO, and a
more sophisticated form, PRESSTIGE. The latter has been interfaced with other
tools such as Cadre’s Teamwork CASE tool and an experimental multi-user hy-
pertext system, MUCH (Many Users Creating Hypertext), from the University of

Liverpool.

This prototype was experimentally evaluated during Phase III. Demonstrating the
payback on reuse in the application domain studied, process control systems in Steel

Production, was rather difficult as software developments in steel mills are likely to

223



take place over a number of years. Demonstrating reuse in a realistic development
would have required a timescale greater than the remaining lifetime of the project.
However, within ABB, the process of offer preparation was identified as one where
reuse of software concepts could have an immediate impact. Responding to calls for
tender, by preparing o/fers, i.e. proposals to build the required software, is an area
where reuse typically has not been considered; and yet it provides a short enough
illustration of reuse without being too simplistic for demonstration purposes while at
the same time bearing enough resemblance to the design process as a whole to make
realistic use of the Practitioner methods and tools. It was also possible to build
on informal reuse of material in offer preparation already practiced by experienced
engineers in the metallurgy division of ABB. In conjunction with experimental use
of the PRESS to support preparation of offers, aspects of modelling the economics of
reuse were studied [172]. In the final Phase IV of the project, the prototype PRESS

was refined in light of the experience gained and in light of various research studies.

The academic organisations in the consortium were not directly involved in the
prototype development or evaluation; their contribution to the project throughout
was directed towards the more fundamental research areas of the project described
below in greater detail. Addressing the methodological aspects of populating the
PRESS and employing it in the design of new systems - design-for-reuse and design-
with-reuse - were their main concerns. Before discussing these in detail, an overview
of the project’s modelling of reuse will be given together with an introduction to the
canonical form developed by the project for the description of software concepts -

the questionnaire.

A.2 Overview of Practitioner Project’s Modelling

of Reuse

In modelling reuse within the Practitioner Project. two primary aspects of reuse

were considered:



o the objects of reuse i.e. What is reusable from one software project to the
next? and

How can such reusable elements be best described to facilitate their reuse?

o the process of reuse i.e. What constitutes reuse in Software Engineering? and

How is reuse best practised and supported?

Within Practitioner the focus was on supporting the reuse of software concepts
for the reasons already discussed above. The project used the following working

definition of a software concept:

an abstract task, described by its purpose (and/or goal), the related ob-
jects and/or functional principles of the underlying mechanism (which

will be typically, but not necessarily, of an algorithmic nature).

[119]

At the highest level of description, a task is equated with an application. A software
concept may be much less complex than an application; for example, the software
concept, calculation of rolling forces, is an abstract task realised in software in the

Steel Production domain.

The reuse process on which the Practitioner Project focussed encompasses the iden-
tification of reusable software concepts as embodied in existing software systems.
A distinction is made between software concepts which are identifiable as parts of
a whole system, that is software components; and common application frameworks
or functional structures, that is system architectures [28]. Both are characterised
as software concepts. In both cases, a further distinction is made between specific

instances and generic forms of both component concepts and architectural concepts.

The questionnaire, i.e. a descriptive form for software concepts, was developed to
give a uniform structure to all software concept descriptions. The development of

this form and its adequacy is considered in depth in Chapter 3. Understanding the

225



role of the questionnaire is critical to an understanding of the work done within
the project, as it provided the basis for both the identification of reusable objects
and their classification. Not only did the questionnaire give an external form to
all descriptions; a development of this form was reflected by a common internal
representation of all reusable software concepts held in the PRESS, and this common

representation provided a basis for software composition and tool integration within

the PRESS.

A programme of research on program linguistics was developed which applied the
techniques and tools of computational linguistics to application oriented descriptions
obtained via the questionnaire and from existing software documentation in order to
assist with terminology analysis and thesaurus construction [139]. Furthermore, to
automate the building up of the software concept database, the reverse engineering

of designs from source code was investigated [23].

A model of the reuse process was developed which encompassed population of the
software concept database by a process of abstracting concepts from studies of exist-
ing software systems, their generic description and classification. Software concepts
may be retrieved from the PRESS database by a process of guided selection using
the thesaurus. To reuse fully a retrieved software concept, the designer may need
to specialise or modify and a,da,p‘t it in some way and finally compose it with other
concepts to form a new application. For this reason, in the research, a need to

consider provision of assistance with design with reusable concepts was identified.

A.2.1 The Questionnaire - Software Concept Descriptive

Form

The original questionnaire was devised early on in the first year of the project
with the idea that a common framework was required for concept descriptions [59].
Concepts were described from three viewpoints: the microworld of the concept’s

application domain; the functional and structural composition of the concept; and

226



the macroworld of the concept’s historical development. The original questionnaire

consisted of three main parts corresponding to these viewpoints:

Part A - Application Oriented Description
Part B - Implementation Oriented Description

Part C - Historical Development

Software concepts are described with the questionnaire via a process of recursive
decomposition. At the top level, a concept’s immediate parts are identified. If these
are atomic concepts, they are described directly; otherwise a new questionnaire is

required for each non-atomic subconcept [33].

Although the questionnaire was developed to reflect good practice, it was gratifying
to note that it followed the IEEE Recommended Practice for Describing Software
Designs [15, 80]; an analysis of the similarities can be found in [24]. The suitability
of this form for representing both horizontal and vertical composition and the pos-
sibility of transforming questionnaire descriptions into other representational forms
is discussed in [25]. From its inception the questionnaire was practically employed
within the project and in the light of this experience and studies of other represen-
tations to support reuse, the original questionnaire form was developed to reflect
a better understanding of the essential features of concept description [27]. These

developments will form the main topic of the following chapter.

The problem of providing guidance on how to decompose a concept into its con-
stituent parts did not go away with the new form of the questionnaire. It was
concluded that decomposition must be recognised as requiring expert knowledge
about the concept and expert judgement. It was found to be equally difficult to
choose the appropriate levels of abstraction needed to describe software concepts
needed to cover the concept derivation. The approach of recording software con-
cepts working from general system models described in chapters 4 and 5 has been
developed in part to address these problems. This has led onto the development of

design frameworks described in chapters 5 and 6.

227



Within the project, experience with the questionnaire was varied. It was found that
where a department employed a high standard of software documentation during its
development, it was possible partially to automate extraction of relevant information
required to fill in the questionnaire. In other cases where the software was not so
well documented, filling in the questionnaire has proved difficult as well as tedious,
and a clear need for tools to support such reverse engineering was recognised. Efforts

to address this need are described in the following section.

Although the questionnaire was developed as a tool for gathering information about
software concepts for populating the PRESS, it was recognised to have other uses
within the Practitioner project. The questionnaire also provided a standard format
for describing new software constructed from reusable concepts allowing new appli-
cations developed with the PRESS to be recycled through the support system and

made available themselves for reuse.
Reverse Engineering of Software Descriptions

The Practitioner project sought to apply the methods of Reverse Engineering to
software in order to gain a better understanding of its underlying concepts and
subsequently to support their reuse [23]. Searching for a satisfactory solution, some-
times without any reassurance that a solution is possible, presents a challenge in
engineering a new system especially at the start of development where lacking a
conceptual unity to the form and content of the new system, the designer may take
various wrong turnings. Throughout the development process, the designer contin-
ues to prune away various possible solutions until the end-point of the development
is reached. This can be contrasted with the process of examining an existing soft-
ware system and recasting what has been developed into a more understandable
form. This process is called reverse engineering. When reverse engineering a soft-
ware system, an attempt is made, not to recreate the history of its development, but
rather, through examining existing software, to establish its underlying theory and
concepts. The principal artifact that is usually available is the source code of the
system; thus, a major task of reverse engineering is to develop or extract a higher

level description of the software from its lower level code description {137, 145]. Typ-

228



ical tasks of reverse engineering include design recovery [19] and code transformation

to obtain a specification [165].

Reverse engineering was relevant to the following goals of the Practitioner project:

e identify reusable components from existing code;

e recover application oriented descriptions of reusable components if they do not

previously exist;
e abstract specifications of reusable components;
e classify or generalize identified reusable components as software concepts;

e support automated filling in of questionnaires for software concepts;

As a case study towards reverse engineering of software concept descriptions in
the Practitioner project, a code transformation system was developed to transform
program constructs into higher level recursive forms, for details, see [23]. The system
is aimed at producing automated semi-natural language documentation of software
with user intervention. As a result of this work, the need for a more expansive view

of reverse engineering was recognised [175].

A.2.2 The Thesaurus

In order to reuse software within the PRESS, not only must the software be ade-
quately described, it must also be possible for the collection of software concepts
itself to be comprehensible and its contents made accessible to its potential users.
Indexing of concepts based on development of a faceted thesaurus described below
provided a solution to the accessibility problem. For dealing with overall comprehen-
sibility of the collection, i.e. of describing concept classes of the concept database,
within Practitioner, the method of faceted classification was chosen. Faceted classifi-

cation is a flexible method of classification suitable for describing dynamic collections

229



of concepts; its application to software has been demonstrated by Prieto-Diaz and
Freeman [123]. For a review of approaches to software classification undertaken
within the frame of the project, see [7]. Below the way in which a faceted thesaurus
can be used to derive a systematic classification of software concepts is described;
such a classification is known as a faceted classification because the classification

headings have been synthesized from terms under each facet of the thesaurus.

For the purpose of indexing and classification, the natural language text of the ques-
tionnaire and associated documentation from the application domain were analysed
using conventional text analysis techniques and tools, such as the Oxford Con-
cordance Package (OCP) [78]. Irom the concordances and collocations obtained,
terminology for classification was obtained in a semi-automated process although
in the final instance it was necessary to consult with a domain expert. The indi-
vidual terms may be related by means of a thesaurus. In the case of Practitioner
where both English and German versions of questionnaires were analysed, the initial
emphasis was on the development of a mono-lingual thesaurus where German trans-
lations were simply added to each term entry. English was the primary technical
language on the project. In the work on thesaurus construction, the project elected
to follow the ISO standard for this purpose [83] although it was necessary to extend

this standard to cover the construction of an on-line thesauri.

Thesaurus entries consist of an individual term with all its known relations as defined
in the ISO standard and some additions described below. The relations described

in the standard are as follows:

top terms,

broader terms,
narrower terms,
used for terms, and

related terms

All of these relations are given for a preferred term. In the case of non-preferred

230



terms, only the used for terms are given. Relations for listing new terms and old
terms for each entry were added to enable a record of the history of changes in
terminology to be made. The attributes to a preferred term described in the standard

are:

scope note including definition,

date indexed.

There are no attributes described for a non-preferred term. A separate definition
and a translation (usually in German) have been added to the standard entry. The
definition was used by the project to record the term’s facet and its associated view.
To assist with thesaurus maintenance and general exploration of terminology, the
PRESS development included a thesaurus browser. This allows the user to view a
thesaurus entry through a set of windows as shown in Figure A.2 - Typical Thesaurus

Entry as Viewed Using the PRESS Browser. This figure is reproduced from [29].

In Figure A.2, in the top line of the main window, a request for the thesaurus entry
for the term, finish line, has been made. As this is a preferred term, it has a full
set of relations recorded in the thesaurus which are displayed below in the smaller
windows. Reading these from the centre, it can be seen that this term, finish line,
was entered on the Tth June 1990 and its translation in German is Adjustagelinien.
Moving now 1n clockwise order starting with the window immediately above the
centre, the broader term (BT) is process line; the definition indicates that finish line
falls under the facet, Equipment (by processes); there is no scope note; two related
terms are: cold roll mill (plants) and hot roll mill (plants); there is no known old
term; a long list narrower terms (NT) terms is given (these are kinds of finishing
lines); there is no known new term; the term finish plant is used for (UTF) finish line
i.e. finish plant is the non-preferred term; and finally the top term (TT) for finish

line is process line.

As a result of work organising the PRESS contents, the importance of domain
analysis to support indexing and classification of software was recognised as well as

the need for guidance from a domain expert to ensure usability of the PRESS within

231



o

Term: -finish ling

PRESS: Thesaurus Browser

Gove) @pdatej (Ter’m Collection V) {( Help )

Type: Preferred

i,

T BT: TEF THITION: =
process line process line A1 Equipnent{by processes) -~
> * 9
v v
SCOPEMOTE g
e
* -
v
=
UF: = TERH: 2| cold roll mill (plants) *
finish plant finish line E hot roll mill (plants) 1
. L]
DATE: . v
=1 07-JUN-90 hd e
TRANSLATION:
Adjustagelinien
L SN
n H
MEW: = NT; = OLD: -
° A1 coat line el 3
cool line
grind line
Y1 heat treatment line hd
inspection line
levelling line
pack line
pickling line
recoiling line
shear line
stretch line —r

Figure A.2: Typical Thesaurus Entry as Viewed Using the PRESS Browser



a particular domain. Here the project’s conclusions were very similar to those of the

Draco Project [103, 65].

The Relationship between the Questionnaire and the Thesaurus

It was important within the Practitioner project to clarify the relationship between
the terminology used in the domain, which in Practitioner, was recorded in the form
of a thesaurus, and the software concepts identified and recorded on questionnaires
(and later using the Concept Desrciption Form developed from the questionnaire).
The latter were largely obtained as a result of field studies of existing software from
a particular domain. Since the sources proposed for thesaurus construction could
also form material for questionnaire input, the work on thesaurus construction and
maintenance proceeded in parallel with software concept capture, i.e. questionnaire
filling. In so far as terms used in the domain correspond to to domain concepts,
there is some overlap between the thesaurus terms and the terms used to identify
and describe the software concepts of that domain. One could also reasonably
expect that there will be similar relationships between terms in the thesaurus and
concepts described by questionnaires; this depends on a common granularity of
terms and concept names resulting from the domain analysis. More important is the
coverage of the thesaurus for the terminology used in the questionnaire descriptions
of concepts; this can be gauged by comparing the actual terms used in the searchable
fields of the concrete questionnaires and those recorded in the thesaurus. Such
determination of coverage could perhaps provide some basis for maintaining the
thesaurus as the questionnaire base is expanded, so that the thesaurus effectively

supports the designer searching through the questionnaire base.

In what follows, the relation between the thesaurus and the questionnaire is exam-
ined only in so far as it relates to the use of the PRESS in design. The designer
using the PRESS requires guidance to formulate successful searches for reusable
concepts. In particular, guidance is needed to determine how domain terminology
used to express the initial requirements and design issues is related to descriptions

of existing software concepts in the domain. The thesaurus provides the required

233



link.

The links currently implemented between the thesaurus and the database of soft-
ware concepts can be static or dynamic. Terminology used in the questionnaire to
describe concepts is up-lifted to the preferred terminology by making use of the the-
saurus when concept descriptions are installed in the PRESS and indexed for future
retrieval; these static links are made when the questionnaire is processed and entered
into the database through the indexing process. This accommodates the question-
naire filler who uses non-preferred terminology in describing a software concept; the
questionnaire’s original content is left unaltered, but the preferred terminology of
the domain is used to index the software concept. Thus a reuser may retrieve the
concept knowing either the preferred or the non-preferred terminology. In a mature
domain, there is little variation in terminology; but in less mature domains, it is

important to accommodate such variation.

A more detailed description of the process of indexing questionnaires developed by
the project and its implementation can be found elsewhere [109, 108, 6, 8]. The

indexing process is semi-automated; a human index is still considered essential.

Dynamic links are made during a search; the PRESS makes active use of the the-
saurus through an extension to CCL described above: the thesaurus operator. The
thesaurus operator enables search terms to be augmented by additional terms based
on standard thesaurus relations, such as broader terms, narrower terms, etc. This
extension allowed experimentation with a form of automated search where augmen-
tation is a function of success or failure in searching. For example, if too many
concepts are retrieved using a particular term, then the PRESS could automatically
"narrow” the search term, or if too few concepts are retrieved, the term could be

automatically "broadened”.

234



~

The Role of Facets Supporting Domain Views

Within a particular domain, the terminology may be quite diverse; and here more is
at work than simply variation in terms. The diversity may reflect several viewpoints
within the domain; three that were identified in the domain of Steel Production
are the data processing view, the organisational view, and the application view.
This resulted in three sets of terms reflecting these viewpoints. Within a particular
viewpoint, it may be helpful to divide the terms used further inta sets of terms
describing facets of the viewpoint. The nature of these viewpoints and associated
facets of terms will depend on the domain. In Figure A.3, the application viewpoint
and its facets found as a result of the project studies in the darain af Steel Praduc-
tion are illustrated. In the Steel Production domain, the application view has the

following facets: processes, end-products (materials), and equipment.

Application
Viewpoint

Application Terms

Process Facet

Terms End-Products Equipment Facet
(Materials) Facet Terms
Terms

Figure A.3: Faceted Classification

Software concepts described from the application viewpoint will use terms from
these facets. If every term in the thesaurus has an associated view and facet, then

for any chosen view, all its terms can be systematically displayed grouped together

235



by facet. Using a given order of [acets, say processes, end-product, equipment,
all possible combinations of terms under these facets can be listed. For any given
software concept, there will be a combination of terms best reflecting its description.
Thus, a systematic display of the domain can be made using the relations amongst
1ts terms and associated software concepts. This procedure is described below in

greater detail.

Systematic Classification of Concepts Based on a Facetted Thesaurus

The domain of interest is considered from various viewpoints. In the case of Steel

Production, three viewpoints were identified:

e Application
e Operational

e Data Processing.

Terms used within each viewpoint were grouped under facets. In the this case,
the facets of the Application viewpoint are as follows: Processes, End-Products
(Materials), and Equipment. In addition, these facets must be given a citation
order, for example, Process followed by End-Product followed by Equipment. In

this case, the citation order is the order of listing in the PRESS thesaurus.

For example, where the thesaurus contains the following entries;

Processes
Forming
Cutting
Coating

End-Products (Materials)

Semi-finished products

236



Finished products

Equipment
Hot rolling mills
Cold rolling mills

Pickling lines

by systematically listing every combination of these terms in citation order, the

following classification headings can be obtained:

Forming/Semi-finished products/Hot rolling mills
Forming/Semi-finished products/Cold rolling mills
Forming/Semi-finished products/Pickling lines
Cutting/Semi-finished products/Hot rolling mills
Cutting/Semi-finished products/Cold rolling mills
Cutting/Semi-finished products/Pickling lines
Coating/Semi-finished products/Hot rolling mills
Coating/Semi-finished products/Cold rolling mills
Coating/Semi-finished products/Pickling lines
Forming/Finished products/Hot rolling mills
Forming/Finished products/Cold rolling mills
Forming/Finished products/Pickling lines
Cutting/Finished products/Hot rolling mills
Cutting/Finished products/Cold rolling mills
Cutting/Finished products/Pickling lines
Coating/Finished products/Hot rolling mills
Coating/Finished products/Cold rolling mills
Coating/Finished products/Pickling lines

Now we consider a particular software concept and its associated indexing terms;

where the terms used to index a concept match against a particular combination of

237



terms under a set of facet terms, we slot in the concept name. For example, Cold
rolling is a narrower term for Forming, Cold strip is a narrower term for Finished
products, so the concept Control system for cold strip rolling line would be slotted

in under the heading:

Forming/Finished products/Cold rolling mills.

If each concept in turn is categorised in this way a systematic display of the pos-
sible categories with actual concept occurrences is obtained; in effect, this gives a

catalogue of concepts.

The process described enables a static display to be made reflecting the state of the
concept base and categories based on the facets and terms recorded in the thesaurus

at a particular time.

A.2.3 Practitioner METAMODEL of Reuse

The need to formulate a full metamodel for the reuse of software concepts arose out
of work on a simple model of the reuse process. Work on the metamodel sought to
model the common elements found in various existing approaches to reuse through
the development of a higher level generalised model of reuse to be supported by
the PRESS. This metamodel guided the project’s work and was a principal source
of reference in the development of the prototype PRESS [73]. The metamodel was
defined using a conventional broad spectrum analysis and design technique, SSADMI.

The context of the PRESS consists of three distinct groups:

e operational organisations - sources of old software and users of software.

e sales and marketing departments/development departments - producers of re-

quirements of new software, and
e domain experts - sources of expertise in application domains.

238



Although these groups may coincide in a particular organisation using the the
PRESS, recognising the different contributions and requirements of each group has
been one of the most important outcomes of this work. Figure A.4 reproduced from
Hall’s paper is the Level 0 Data Flow Diagram of the metamodel giving the top-level
view. The additional levels of the metamodel give details the roles of each group
in populating the PRESS with concepts, building the library at the heart of the

PRESS, and ultimately using the PRESS in earnest to construct new software.

DFDO0 - PRACTITIONER system development using reusable concepts

Coperational organisations ) ( sales and marketing )
old new
system systemn requirements
------------------------------------- F-__-_--—-—|
T ] 3 ]
selection of reusable new system design and
concepts implementatjon
L concept generic
existing )
. concepts requirements concept
generic
reusable concept 2 ]

2|

classification and

search for and
selection of concepts

[}
[}
|
1
|
1
|
|
|
|
|
t
I
1
|
|
(
l
| -
t
|
storage of concepts
: g P search
: catalogue criteria generic concepts
| . indexes
| classified
|
|
|
|
|
|
[}
|
|
|
[}
|
|

generic concept | S1 Concept library and
catalogue

initial catalogues and indexes

5T

analysis of domain

corpus

- em e " = - . - > = o= - = = = = = = = e = am am = - . = = e - —

domain knowledge

C domain experts 3

Figure A.4: Data Flow Diagram of the Practitioner Metamodel

239



A Reuse Support System is a variety of an information system; the technology
required to support reuse is already available. The most interesting problems that
the project encountered were as a result of attempts to gain a better understanding
of software concept formation, the software construction process in general, and the
evolution of software concepts as they are reused. In addressing these problems, the
original metamodel was refined and the project formulated methods for design-for-

reuse and design-with-reuse [34]. These are discussed in the following sections.

A.3 Design-for-Reuse Methods

In populating the PRESS, the project drew on the established methods of domain
analysis [103, 122, 126, 129].

In the Practitioner project, particular emphasis was placed on investigating how
language is used in a particular domain. This work was based on the construction
of a thesaurus to record the domain terminology and studies concerning how best
to use domain terminology in the indexing of software concepts to support their re-
trieval. The project’s particular interest was the use of terms in describing software
concepts in the domain, and to this end, the techniques of text analysis were ap-
plied to software application documentation ranging from requirements statements,
specifications, designs to source code as well as analysing domain literature. This
not only supported the work on thesaurus construction, but also it was found that
such analysis provides a helpful preliminary overview of material prior to a more in

depth analysis of the existing domain software.

In the construction of the thesaurus and the domain modelling and subsequent filling
in of questionnaires, a large number of documents may be analysed. As many of
these documents are in machine readable form, a file indexing and retrieval system
to assist with the analysis process has been developed as part of the PRESS to
assist in the preliminary analysis of material. This system allows sets of files to be

indexed using their constituent terms or restricted subsets of these, or independently

240



obtained term lists such as the contents of an existing thesaurus. In the latter case,
this gives a rough guide as to whether or not the document employs terminology
common to the domain. This may be a useful step before using this document as
the basis for filling in a questionnaire. Using the file indexing and retrieval system,
sets of documents with various indices may be investigated. The user may either
gselect sets of indexing terms with the system determining which files contain any of
these terms with the possibility of viewing any selected term in context, or select a
subset of files and the system will determine what indexing terms these files have in
common. This system is useful in itself in organising large sets of files systematically
on the basis of their contents. Here of course the organisation of files is merely a

step in their more detailed analysis.

The analysis of software uses the same source of material as text analysis augmented
by expertise in software engineering to gain an understanding of the domain’s soft-
ware concepts. Here an intermediate step corresponding to thesaurus construction,
but less well understood is the modelling of the domain. The main tasks involved

in domain modelling are as follows:

e study existing systems and identify concepts, first study standard design de-

compositions, if any;

e identify concepts that embody the structuring principles, i.e. the common
levels of abstraction used, e.g. ISO 7 Layer Model for Open Systems Intercon-
nection, Purdue Laboratory for Applied Industrial Control (PLAIC) 4 Level

Model for hierarchical control systems in steel mills, etc;

e identify principal component concepts within design structures.

Output from domain analysis may take the form of modelling typical domain ap-
plications, developing a design framework for relating typical designs, or if possible
developing generic architectures for well understood application families in the do-
main. These outputs are used to guide the domain analyst working with domain
experts and software engineers in the systematic description of the domain’s software

concepts.



A data flow diagram of the domain analysis process used to populate the PRESS
can be found in Figure A.5. Following an analysis of the domain, two results are
available for populating the PRESS - a thesaurus relating domain terminology and a
collection of related domain concepts described in the form of sets of questionnaires.
The relation between these two results is that the terms in the thesaurus derive
from the same domain language as that used in describing the domain’s software
concepts. As new software concept descriptions are added, the thesaurus is employed
in their indexing to uplift any use of non-preferred vocabulary. At the same time, as
new software descriptions are obtained, their text is analysed for the possibility of
determining new candidate terms for entry into the thesaurus. So the development

of the thesaurus is related symbiotically to that of the software concept database.

File Indexing
Process
1

Term lists and key files

Text Analysis Vocabulary and word
lists
2
Existing Material Thesaurus . Thesaurus for the
Construction
3
Doma.in Domain Models Questionnaire
Modelling Indexing with
4 PRESS
6
Questionnaires Indexed Questionnaires
_forthe PRESS

Figure A.5: Data Flow Diagram of the Domain Analysis Process Used to Populate
the PRESS

(™)
=
o



A.4 Design-with-Reuse Methods

The individual designer using the PRESS whatever specific design approach is em-
ployed is faced with three primary tasks, summarised as cognition, conceptualisation
and construction. The cognition task involves understanding and clarification of the
requirements. Where these take the form of a text, the designer may draw on the
deconstructionalist approach to logical understanding of a text (described in [105],
breaking the text down into its constituent terms and mapping these onto known
terms in the PRESS thesaurus. It has been suggested that the development of a
problem taxonomy (or taxonomies), i.e. a rudimentary data dictionary, is a useful
exercise for the designer at this stage, and here the PRESS, if populated with suit-
able terminology and concepts, is a valuable aid. In the PRESS, the terminology
recorded in the thesaurus plays an important role in supporting the designer dur-
ing the initial task of conceptualisation in searching for relevant solution concepts
to satisfy the requirements. The terms held in the thesaurus are used in indexing
the concept descriptions, i.e. questionnaires; and the designer is able to explicitly
make use of thesaurus rclations in searching the questionnaire database for design
concepts. For example, the designer may elect to extend the search for concepts by

including "broader terms” of a given search term.

Having retrieved a set of potentially relevant design concepts using selected terms
from the requirements statement and related terms from the thesaurus, the designer
will need guidance on how to make use of the retrieved material to compose a new
design to meet the gi\'en requirements. Three main steps are appropriate to assist

the designer; they are as follows:

1. identify the key concepts in context by viewing their relations to other domain

concepts held in the PRESS,

2. determine the design structure either through identification of a relevant ar-

chitectural concept or by identifying appropriate layers based on requirements,

3. identify the relevant component concepts that satisfy the functional and non-

243



functional requirements.

Clustering the requirements using Alexander’s method may be helpful during the
second step [9]. More generally, the guidelines of Zimmerman are relevant in order

to determine the appropriate levels of conceptual abstraction to be employed in the
design [176].

The degree of reuse possible in the context of the PRESS will of course depend on
the success with which the designer is able to make the above identifications within
the confines of a particular population of the PRESS. Here it cannot be denied that
creativity is needed to make such identifications, but through the provision of the

PRESS, the designer is given assistance with the important task of conceptualisation.

Through the informal semantics of the interfaces given in the concept descriptions,
the designer is able to carry out informal interface checking at the conceptual stage.
The PRESS also is able to give the designer some assistance with the task of con-
struction although this is limited to the optional links to more detailed design and
implementation descriptions that may be found in a particular questionnaire. Fi-
nally, once the new design has been composed, the PRESS can be used to check
whether or not its overall usage of terminology is consistent. This step has the direct
benefit of improving the expression of the design and the added benefit of being the
first stage of analysing the new ;:lesign description for incorporation into the PRESS
for reuse in future. These steps are summarised in Figure A.6 - Data Flow Diagram

of Design Process with the PRESS.

Figure A.7 - PRESS Users - which provided the leitmotiv, i.e. controlling theme, of
the project review in May 1991 brings together the PRESS with its intended users.

A.4.1 The Role of Design Frameworks

The approach of using design frameworks was proposed based on initial experience

of analysing software concepts in the Steel Production and on insights gained from

244



Clarification

1

Requirements for
anew system

Conceptualisation
2

Clarify terms in the

requirements using

J Key terms and
main requirements

the thesaurus; 11
Understand and Identify
main requirements
rlnspect domain documents,
both files and questionnaires,
1.2

viewing terms in context;
\_ Refine search terms

ﬂ$§_/
—\

J Search terms

r Retrieve all relevant
material using search terms 1.3
assisted by the thesaurus

Potentially reusable

. f Analysis requirements

into functional/nonfunctional
(helpful to use checklist)
(Alexander’s method applicable)

2.1

-

J/ﬂ‘

Structured

(" View concepts in context;
Determine the design structure
(c.f. Pahl&Beitz function structure)
Identify relevant architectural
\___concepts if any

~ requirements

7

22 J/\v

Design structure

Identify relevant component parts

. (c.f. Pahl&Beitz subfunctions) 2.3
.| following selection criteria from P&B

Design structure and

component parts

Figure A.6: Data Flow Diagram of Design Process with the PRESS

245



D A. Theory

—

& Methods l_—_‘
5 Raw Material l
Q
3
7 .
< N
A . z
"Flal" Text Files, etc. 0“(\ P e “owze
L1 | e ¢
S v
Coﬁ.‘{\u\ ,
s L Domain
O
e Sy Analyst
Thesaurus Q."‘/‘Q,‘ .
~ Y& L source of
~ Design Theory new
~ ~al & Methods material
1Y,
o]
o
S | T
w
T S
e
~ B_ a— = a Ny
Set of Questionnaires— 2 .k
L D Design,
_ evelopment - | offer Text
" Engineer or o etc !
", otherUser .~ :
..................... store & index
................................................... PAS - TuC
CB/PEFIQ1:

new concept

Figure A.7: PRESS Users



considering how the concepts identified could be related to best support the design-
with-reuse process [30, 29]. The opportunity to refine it through application in the
course of the project was provided by further studies described in [32]. This research
benefited from applying the methods and principles of Konstruktionslehre, i.e. Con-
struction Theory, as developed in [110]. Through their application, it was possible
to develop a more systematic approach to domain analysis of existing software de-
signs; the approach of design frameworks supports systematic design-for-reuse in
the large. This will be demonstrated here in Chapter 5. The development and pop-
ulation of a design framework provides a mechanism for structuring the work of the
domain analyst, within which more detailed analysis of software concepts can take
place. The design understanding recorded in the framework is itself an important
reusable result. Design frameworks provide a conceptual frame within which the
reusable design concepts of a domain can be related. In attacking a design problem,
the development engineer can benefit directly by being able to reuse the design un-
derstanding and experience recorded in the framework and the concepts it relates.

These remarks anticipate the conclusions found in Chapter 6 of this thesis.

A.5 Author’s Contribution to the Practitioner

Project

This thesis draws on the author’s contribution to work within the Practitioner
project. In particular, it is based on the research carried out by the author in

the following areas:

e refinement of the questionnaire to describe software concepts,
e development of methods to support design-with-reuse and design-for-reuse,
e studies of designs in the domain of Steel Production and

development of PRESS demonstrations.

247



The following sections gives details of the author’s contributions to the project in
terms of work package deliverables, working papers and associated external publi-

cations.

A.6 Listings of Author’s Contributions to the

Practitioner Project

A.6.1 Internal Publications

The author’s main contributions to the project can be found in the following work
package deliverables: '

A1.1 Literature survey on descriptive methods

A1.2 Recommendations on the use of descriptive methods

B1.1 Rules and guidelines for the application of the descriptive method
C1.1 Specification of support system prototype

D2.1 Interim project report and evaluation

E2.4 Demonstration of the PRESS

E4.1 Report on 'concept and module surfaces’

E4.2 Handbook for design of ’concept and module surfaces’

F4.1 Research report on concept isolation

F4.2 Handbook on application of principles
and in the following working papers written by the author:

BrU-0001 C4: Program Linguistics
BrU-0009 Descriptive Methods Survey and Recommendations

BrU-0011 Proposal for Investigations Concerning LIL

248



BrU-0012 C1.1 Section on User Interfaces
BrU-0022 Investigations Concerning Concept Representation
BrU-0033 CAMP Project Summary

BrU-0036 Reuse, Software Concepts, Descriptive Methods and the Practitioner
Project

BrU-0050 The Role of Text Analysis in Software Reuse

BrU-0056 The Questionnaire: A generic form for the description of software con-
cepts

BrU-0062 Revision of the Questionnaire: an Update on Progress
BrU-0071 Software Classification

BrU-0084 Relationship Between Questionnaire and Thesaurus
BrU-0102 Detailed Plan for the Demonstration of the PRESS
BrU-0112 Proposal For a Strategy To Support Questionnaire Browsing
PAS(BrU)-1 Proposal for Further Work on Design-with-Reuse
PAS(BrU)-2 The PRESS A Consideration From Tool Interconnection
PAS(BrU)-3 Outline of Pahl and Beitz’s Konstruktionlehre
PAS(ULIi)-7 Notes on Background Work on Design-with-Reuse
PAS(ULi)-9 Report Following First Visit to Salzgitter Steel Mill
PAS(ULIi)-11 A review of Design Problem Solving

PAS(ULi)-12 Displaying Concepts by Unfolding

PAS(ULi)-13 A Framework for Software Concepts in Steel Production.

A.6.2 External publications

In addition, there are a number of external publications which have resulted from
the author’s work on the project; a list of these is given below:

1. C Boldyreft, Reuse, Software Concepts, Descriptive Methods and the Practi-
tioner Project, pp 25-31, ACM SIGSOFT Software Engineering Notes, Vol 14,
No 2, April 1939.

249



[\

10.

C Boldyreff and P Hall, Reusablity: Evaluation of Practitioner Project Ezpe-
rience and Future Directions, CASE 89 Advance Working Papers, pp 470-471,
Imperial College, London, July 17-21, 1989.

C. Boldyreff, P. Elzer, P. Hall, U. Kaaber, J. Keilmann and J. Witt, PRACTI-
TIONER: Pragmatic Support for the Reuse of Concepts in Existing Software,
Proceedings of Software Engineering 1990, Brighton, UK, Cambridge Univer-
sity Press, 1990.

C Boldyreff, P Hall and J Zhang, Reusability: The Practitioner Approach,
Position paper printed in: Workshop "Reuse” RESEARCH IN PROGRESS,
Delft University of Technology, pp 1-9, November 1989.

P Hall and C Boldyreff, Software Reuse Overview, Technical Briefing, Paper
printed in the Proceedings of REUSE, MAINTENANCE AND REVERSE EN-
GINEERING OF SOFTWARE: Current Practice and New Directions, UNI-
COM Seminars Limited, London, 29 November-1 December 1989.

C Boldyreff and J Zhang, FROM RECURSION EXTRACTION TO AUTO-
MATED COMMENTING - A Transformationdl Approach towards Reverse
Engineering of Software to Support Reusability, Paper printed in the Pro-
ceedings of REUSE, MAINTENANCE AND REVERSE ENGINEERING OF
SOFTWARE: Current Practice and New Directions, UNICOM Seminars Lim-
ited, London, 29 November-1 December 1989.

(Reprinted as: C. Boldyreff and J. Zhang, From recursion extraction to au-
tomated commenting, in Software Reuse and Reverse Engineering in
Practice, Edited by P. A. V. Hall, pp 253-270, Chapman & Hall, 1992.)

. Patrick Hall and Cornelia Boldyreff, Software reuse, in Software Engineer-

ing Reference Book, John McDermid, Editor, Butterworths, June 1990.

. Kim Bisgaard, Cornelia Boldyrell, Peter Elzer, Pat Hall, Johannes Keilmann,

Horst Kern, Lene Olsen, Jan Witt and Jian Zhang, The Practitioner REuse
Support System (PRESS): A Tool Supporting Software Reuse, Proceedings of
the Third Annual Workshop: Methods and Tools for Reuse, CASE Center,
Syracuse University, 13-15 June 1990.

Jian Zhang and Cornelia Boldyreff, Towards Knowledge-Bused Reverse Engt-
neering, Proceedings of the Fifth Annual Knowledge-Based Software Assistant
Conference, Syracuse, NY, 24-28 September 1990.

Cornelia Boldyreff, Supporting System Design From Reusable Design Frame-
works, Proceedings of the Second International Conference on INFORMA-
TION SYSTEM DEVELOPERS WORKBENCH Methodologies, Techniques,
Tools and Procedures, Gdansk, 25-28 September 1990.

(Reprinted in an up-dated version as Cornelia Boldyreff, Design methods for
integrating system components, in Software Reuse and Reverse Engineer-

ing in Practice, Edited by P. A. V. Hall, pp 81-97, Chapman & Hall, 1992.)

250



11.

13.

14.

15.

16.

Cornelia Boldyreff, A CASE Tool Supporting Reuse: the PRESS, CASE ’90
Fourth International Workshop on CASE, Irvine, CA, USA, 5-8 December
1990.

. Pat Hall, Cornelia Boldyreff and Jian Zhang, PRACTITIONER: Pragmatic

Support for the Re-use of Concepts in Existing Software, in Software RE-
use, Utrecht 1989, Liesbceth Dusink and Patrick Hall (Eds.), Workshops in
Computing Series, Springer-Verlag, 1991.

Cornelia Boldyreff, What can Software Engineering learn from Design The-
ory?, Position paper produced for discussion panel on Design Activity and
Design Issues at the CSCW-SIG Workshop on Design Issues in CSCW, DTI,
London, 17 March 1992.

Cornelia Boldyreff and Uwe Krohn, The Practitioner Reuse Support System
(PRESS): A Consideration from the Standpoint of Tool Interconnection, Pro-
ceedings of the Fourth IFAC/IFIP Workshop on Experience with the Manage-
ment of Software Projects, Austria, May 18-19, 1992. The proceedings have
been published as a book by Pergamon Press.

Cornelia Boldyreff, A Design Framework for Software Concepts in the Domain
of Steel Production, Proceedings of the Third International Conference on
Information System Developers Workbench, Gdansk, 22-24 September 1992.

Cornelia Boldyreff, Design I'rameworks: A Basts for Recording Program Un-
derstanding, Position paper for IEEE Workshop on Program Comprehension.
Orlando, Florida, 9th November 1992.

251



Appendix B

Listings of Main Headings
Practitioner Project

Questionnaire

Name of Concept:
Name of File:
Reported by:
Institution:
Date:
Classification:
Keywords:
. Application Oriented Description
.1 Textual Description
.2 Graphical Description
Implementation Oriented Description
.1 Requirements Level
.1.1 Functional Description
.2 Reactions to Exceptiomns
Exception Condition Expected Reaction
.3 Data Input (Number, Type, Frequency, Range, etc.)
.4 Data Output (Number, Type, Frequency, Range, etc.)
3
$

WwW e e

-

Control Input (e.g. User commands, signals etc.)
.5 Control Output
Design Level
.1 Used Functions (e.g. software functions necessary)
.2 Immediate Parts (IPs)
.2.1 Active Immediate Parts
Name (Atomic (Y/¥))  Short Characteristics
References to Descriptions of Non-atomic Parts
B.2.2.2 Passive Immediate Parts
Name (Atomic (Y/N))  Short Characteristics
References to Descriptions of Non-atomic Parts
B.2.3 Relations between Immediate Parts

(OO~ - - -
NNNND -

252

of



o ww
Wwwnew

w -~ -] -~}
(3] W W w

Wowwww
Ll Y

nacaacaaocaacaaa
© NN B WN -

.3.1 Static Relations
3.2 Dynamic Relations (e.g. calling sequence of IPs or parallelism)
Implementation Level
.1 Immediate Parts
1.1 Active Immediate Parts
Name Implemented by
.1.1 Passive Immediate Parts
Name Implemented by
.2 Relations between Immediate Parts
.2.1 Data flow (e.g. global section, file, database, mailbox)

From To Mechanism Data flow (name)
2.2 Control flow (e.g. event, semaphore, mailbox)
From To Mechanism Control flow (name)

Source Code Level
.1 Programming Language
2 Size of source program
.3 Operating System
.4 Type of computer(s)
.5 Technical requirements of computer if available
(e.g. memory size, background storage, etc.)
Historical Development
From which project
When developed
Developer
Version Number
Origin of relevant concepts
Respective documentation (type and locatiomn)
Further documentation at same level (type and location)
Further documentation on related functions (type and locatiom)

233



Appendix C

Abstract Syntax of the CDF and

Informal Semantics of CDF

Entries

C.1 Abstract Syntax of the CDF

In BNF, the CDF has the following abstract syntax:

CDF ::= Concept_Version_and_Derivation
Concept_Specification
Concept_Decomposition OPTION
Concept_Links_OPTION

Concept_Version_and_Derivation ::=
Concept_Name
Version_Number
Derivation_OPTION

Concept_Specification ::=

Definition
Interfaces_Provided

254



Interfaces_Required

Concept_Decomposition ::=
Concept_Component LIST

Concept_Links ::
Code_Module_OPTION
Data_Definition_OPTION
Documentation_OPTION
Test_Package_OPTION

Concept_Name ::= <Unique Name>
Version_Number ::= <Unique Number>
Derivation ::=  Description_of_Purpose

Authorising_Person
Created_by_Person
Date_of_Creation_or_Entry
Source_Concept_Versions
Creation_Processes_Used

Description_of_Purpose ::=
<Text of Concept Version Requirements Statement>

Authorising_Person ::= <Name>

Created_by_Person ::= <Name>

Date_of_Creation ::= <Date>

Source_Concept_Versions ::= Source_Concept_Version_LIST

Source_Concept_Version ::=
Concept_Name
Version_Number

Creation_Processes_Used ::=
<Text describing creation processes>

Definition ::= Function_OPTION
Formalism_OPTION
Generic_Parameters_OPTION
Description

255



Interfaces_Provided ::=
Interface_LIST

Interfaces_Required ::=
Interface_LIST

Interface ::= Concept_Name
Version_Number

Concept _Component ::=
Concept_Being_Instantiated
Instantiation_Parameters_or_Specialisations_OPTION
Purpose_Served_or_Reason_for_Incorporation_OPTION
Interface_Bindings

Function ::= <Text of Concept Functional Specification>

Formalism ::= <Name>
Generic_Parameters ::=
<Text describing generic parameters>

Description ::= <Text of Informal Concept Specification>

Concept_Being _Instantiated ::=
Concept_Name
Version_Number

Instantiation_Parameters_or_Specialisations ::=
<Text describing parameters or specialisations>

Purpose_Served_or_Reason_for_Incorporatiomn::=
<Text de3scribing purpose or reason>

Interface_Bindings ::=
External_Concept_Interface_Binding LIST
Internal_Concept_Interface_Binding LIST

External_Concept_Interface_Binding ::=
Interface
->
Interface

Internal_Concept_Interface_Binding ::=
Interface

256



-2

Interface
Code_Module ::= <document reference or filename>
Data_Definition ::= <document reference or filename>
Documentation ::= Document_LIST
Document ::= <document reference or filename>
Test_Package ::= <document reference or filename>

Note that all productions ending with LIST and SEQUENCE are simply macro
expanded using the hyper-rules:

Notion_LIST ::= Notion | Notion_LIST Notion

Notion_SEQUENCE ::= EMPTY | Notion | Notion_SEQUENCE Notion

Rather than using the convention of indicating optional notions using square brack-
ets, the hyper-rule given below has been employed:

Notion_OPTION ::= Notion | EMPTY

The use of hyper-rules here follows that given in the Revised Report on Algol 68
[161].

C.2 Informal Semantics of CDF Entries

In what follows, one concrete form of the CDF is listed below with annotations
which informally specify what it expected under each heading. This was prepared
for the benefit of engineers concerned with filling in CDFs during the Practitioner
project. Some details about how the information about a concept is held in the

PRESS concept database are also included where these are considered relevant.

257



Concept Descriptors

<indexing terms for this CDF>

Date of Indexing

<date in form dd-mmm-yy, e.g. 20-SEP-90>

Note: This is information held regarding a particular CDF and is not
considered as part of the contents of a CDF. In any case, the indexing
of the CDF is unlikely to be done by the filler-in of its contents. In the
PRESS, this process is automated although allowance has been made for
an expert to override this.

Language Code
<code>

Keywords

<list of keywords>

Note: As with the above information, this is not part of the CDF con-
tents; it must be supplied by the CDF installer prior to parsing before a
particular CDF can be entered into the PRESS database.

1. Concept Version and Derivation
1.1 Concept Name
<name of concept>

Explanation: This is the unique name of the concept. For example, it could be Hot
Mill Unit Control and Supervision.

1.2 Concept Version
<version number: integer>

Explanation: This is number allows more than one version of a concept to be de-

scribed and held in the PRESS.

Note: Both the name of the concept and its version number are used to
identify a particular CDF within the PRESS. Whilst these may be given
by fillers-in of the CDF, the PRESS administrator needs to exercise con-
trol of this information to ensure the integrity of the PRESS name space.
The concept name and version number are not strictly part of the CDF

258



contents employing the distinction mentioned above between informa-
tion "regarding the CDF” and information constituting "the contents of
the CDF”. This distinction was proposed by Kim Bisgaard of CRI, one
of the principal developers of the PRESS.

1.3 Derivation
1.3.1 Description of Purpose
<requirements giving rise to this concept>

Explanation: This section records the requirements that gave rise to the concepts’
development.

1.3.2 Authorising Person
<name of person>

Explanation: If appropriate, for all new concepts and versions of existing concepts
that are installed in the PRESS, an authorising person is identified.

1.3.3 Created by Person
<name of person>

Explanation: Although of historical interest, if known, the creator of the concept
description should be recorded.

1.3.4 Date of Creation or Entry
<date in form dd-mmm-yy, e.g. 20-SEP-90>

Explanation: This date gives guidance on the currency of concept descriptions and
allows development of the PRESS over time to be monitored.

1.3.5 Source Concept Versions
<references to concepts from which this concept is derived>

Explanation: This entry allows the derived from relation to be established between
an new concept and existing concepts. This relation is important for understanding
the intellectual development of a concept. Typically these will be references to other
concept descriptions.

259



1.3.6 Creation Processes Used
<references to processes used in the creation of this concept>

Exaplanation: The intellectual processes leading to the development of a new con-
cept such as generalisation or specialisation should be noted here. Tools used such
a program generator or 4GL should be mentioned. These may well be references to
other concept descriptions.

2. Concept Specification
2.1 Definition

2.1.1 Function
<functional specification>

Explanation: This is the specification in the traditional Software Life Cycle sense.
It will usually be given using a particular specification method and associated for-
malism.

2.1.2 Formalism

<formalism used in above functional specification>

2.1.3 Generic Parameters

<description of any parameterised aspects of the concept>

Explanation: The parameters and other variables that need to be bound when a
generic concept is instantiated for a particular usage.

2.1.4 Description
<informal application oriented description of concept>

Explanation: This is the less formal description of the concept. It was previously
known as the Application Oriented Description. Typically it will use terminology
specific to the application domain. It gives an account of what role of the software
concept plays in the context of a particular software application.

2.2 Interfaces Provided
2.2.1 Interface Name
<interface name>

2.2.2 Interface Version
<version number>



Explanation: Here the concept’s points of connection or interaction that it provides
as services for other concepts are listed by name and version number pairs. These
interfaces may be functions, shared data, exceptions, etc; and may of course also
have their own associated CDF'.

Note: This whole set of headings is repeated for each interface provided.

2.3 Interfaces Required
2.3.1 Interface Name
<interface name>

2.3.2 Interface Version
<version number>

Explanation: A concept may require the services of other concepts. Here such
interfaces required by the concept are listed. As with interfaces provided, the entries
here may be references to other CDFs. Where it is unclear whether an interface is
provided or required, it should be recorded as required.

Note: This whole set of headings is repeated for each interface required.

3. Concept Decomposition

3.1 Component Concept

3.1.1 Concept Being Instantiated
3.1.1.1 Concept Name

<name of concept>

3.1.1.2 Concept Version

<version number>

Explanation: The concept name and concept version number of each component
concept together can be used to identify the concept being instantiated as one that
may already be described by an existing CDF.

3.1.1.3 Instantiation Parameters or Specialisation
<parameters/specialisation values used in this instance>

Explanation: If the particular subconcept being instantiated, already exists in the
concept database in a generic form, then the values used in the act of instantiation
need to be recorded here.



3.1.1.4 Purpose Served or Reason for Incorporation
<brief description above>

Explanation: A particular concept may have been selected to serve some particu-
lar purpose or for some explicit reason within the decomposition. This should be
recorded here. This may be used to give an explanation for why a particular concept
decomposition has been made.

3.2 Interface Bindings
3.2.1 External Concept Interface Bindings
<list of bindings>

Explanation: These interface bindings link actual subconcept interfaces with inter-
faces provided or required.

3.2.2 Internal Concept Interface Bindings
<list of bindings>

Explanation: These interface bindings establish internal links between the subcon-
cept interfaces.

Note: This whole set of headings is repeated for each immediate part of
the concept.

4. Links
4.1 Code Module
<document reference or filename>

Explanation: This is a reference to the source code that implements a concept,
typically a document reference or filename.

4.2 Data Definition
<document reference or filename>

Explanation: This is a reference to any relevant data definition document, e.g. data
dictionary.

4.3 Documentation
<document reference or filename>

262



Note: This heading is repeated for each reference. These could be doc-
ument references or names of files containing documentation.

4.4 Test Package
<document reference or filename>

Explanation: This is a reference to any test package to be used with the concept.

263



Appendix D

An Example CDF

Note that where a Concept Name and Version Number are given, this has been
abbreviated in most cases to simply the proper name followed by a hash symbol and
the version number. E.g.

Pickling and Cold Mill Control and Supervision#1

instead of

Concept Name:Pickling and Cold Mill Control and Supervision

Version Number: 1

D.1 CDF describing the software concept of a

Tandem Mill Automation Scheme

1. Concept Version and Derivation

1.1 Concept Name: TAMS Tandem Mill Automation Scheme
1.2 Version Number: 1

1.3 Derivation

1.3.1 Description of Purpose:



This tandem mill automation scheme attacks the problem of determining the correct
mill set-up for each new coil, so as to obtain smooth operation, high product quality,
and to minimize the need for operator intervention.

1.3.2 Authorising Person:

1.3.3 Created by Person:

Cornelia Boldyreff

1.3.4 Date of Creation or Entry:

30-June-91

1.3.5 Source Concept Versions:

Pickling and Cold Mill Control and Supervision#1

1.3.6 Creation Processes Used:

. Concept Specification

.1 Definition

.1.3 Description:

NN NN

A block diagram of the basic functional structure and components is given
in Reference 1: Bryant’s Automation of Tandem Mills, Figure 1, Chapter
8, page 142. '

Tandem Mill Automation is concerned with determining the correct mill
set-up for each coil. Mill set-up can be described in terms of three concep-
tually distinct phases: Nominal Schedule Calculation, Schedule Adaption
and Schedule-Dependent Gain Calculation.

In the first phase, a nominal schedule is calculated from the nominal
characteristics of the next coil to be rolled, and in the absence of any
disturbances, this schedule will be used. In practice, the mill is subject
to significant disturbances, and hence the need for phase two in which
on-line adaptation of the schedule takes place. The final phase is needed
to calculate the actuator references to achieve the specified schedule.

2.2 Interfaces Provided

TAMS.Mill Actuator References (motor speed, screw position, jack force)#1
2.3 Interfaces Required

TAMS.Coil Characteristics (strip width, mill entry gauge, exit gauge, strip grade)#1
TAMS.Plant Measurements#1

TAMS.Maximum Mill Speed (operator input)#1

TAMS.Load Adjustment (operator input)#1

TAMS.Shape Corrections (operator input)#1

TAMS.Tension Adjustments (operator input)#1

TAMS. Thickness-gauge Fault Factors (operator input)#1

TAMS.Actuator Adjustments (operator input)#1

3. Concept Decomposition

3.1 Concept Component

3.1.1 Concept Being Instantiated:

NSC Nominal Schedule Calculation#1

265



3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

NSC.Coil Characteristics (input)#1 — TAMS.Coil Characteristics (strip width, mill
entry gauge, exit gauge, strip grade)#1

3.2.1 Internal Concept Interface Bindings:

NSC.Nominal Schedule (output)#1 — SA.Nominal Schedule (input)#1

3.1 Concept Component

3.1.1 Concept Being Instantiated:

SA Schedule Adaption#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

SA.Maximum Mill Speed (input)#1 — TAMS.Maximum Mill Speed (operator in-
put)#1

SA.Load Adjustment (operator input)#1 — TAMS.Load Adjustment (operator in-
put)#1

SA.Shape Corrections (operator input)#1 — TAMS.Shape Corrections (operator
input)#1

SA.Tension Adjustments (operator input)#1 — TAMS.Tension Adjustments (oper-
ator input)#1 '

3.2.2 Internal Concept Interface Bindings:

SA.Nominal Schedule (input)#1 — NSC.Nominal Schedule (output)#1
SA.Estimates (input)#1 — PE.Estimates (yield stress, friction coefficient, thermal
camber, screw datum error) (output)#1

SA.Adapted Schedules (Rolling and Threading) (output)#1 — SDGC.Adapted Sched-
ules (input)

SA.Adapted Schedules (Rolling and Threading) (output)#1 — MSC.Adapted Sched-
ules (input)

SA.Adapted Threading Schedule (output)#1 — FFCS.Adapted Threading Sched-
ule (input) .

3.1 Concept Component

3.1.1 Concept Being Instantiated:

SDGC Schedule-Dependent Gain Calculation#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

3.2.2 Internal Concept Interface Bindings:

SDGC.Adapted Schedules (input)#1 — SA.Adapted Schedules (Rolling and Thread-

ing) (output)#1

SDGC.Controller Gains (output)#1 — FCS.Controller Gains (input)#1
SDGC.Controller Gains (output)#1 — FFCS.Controller Gains (input)#1
3.1 Concept Component

3.1.1 Concept Being Instantiated:

MSC Mill Set-up Calculation#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

3.2.2 Internal Concept Interface Bindings:

266



MSC.Adapted Schedules (input)#1 — SA.Adapted Schedules (Rolling and Thread-
ing) (output)#1

MSC.Estimates (input)#1 — PE.Estimates (yield stress, friction coefficient, ther-
mal camber, screw datum error) (output)#1

MSC .Controller References (mill entry gauge, exit gauge, exit tension stress, thread
roll force on the strip front end) (output)#1 — FCS.Controller References (input)#1
MSC.Mill Actuator References (motor speed, screw position, jack force) (output)#1
— MARA.Actuator References (input)#1

3.1 Concept Component

3.1.1 Concept Being Instantiated

FEFCS Feedforward Control System#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

FFCS.Thread Gauge Deviations (input)#1 — TAMS.Plant Measurements (input)#1
3.2.2 Internal Concept Interface Bindings:

FFCS.Adapted Threading Schedule (input)#1 — SA.Adapted Threading Schedule
(output)#1

FFCS.Controller Gains (input)#1 — SDGC.Controller Gains (output)#1
FFCS.Feedforward Control Data (output)#1 — FCS.Feedforward Control Data (in-
put)#1

3.1 Concept Component

3.1.1 Concept Being Instantiated:

FCS Feedback Control System#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

FCS.Thread Gauge Deviations (input)#1 — TAMS.Plant Measurements (input)#1
3.2.2 Internal Concept Interface Bindings:

FCS.Controller Gains (input)#1 — SDGC.Countroller Gains (output)#1
FCS.Controller References (input)#1 — MSC.Controller References (mill entry gauge,
exit gauge, exit tension stress, thread roll force on the strip front end) (output)#1
FCS.Feedforward Control Data (input)#1 — FFCS.Feedforward Control Data (out-
put)#1

FCS.Feedback Control Data (output)#1 — MARA.Feedback Control Data (in-
put)#1

3.1 Concept Component

3.1.1 Concept Being Instantiated:

MARA Mill Actuator References Adjustment#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

MARA.Actuator Adjustments (operator input)#1 — TAMS.Actuator Adjustments
(operator input)#1

MARA.Mill Actuator References (output)#1 — TAMS.Mill Actuator References
(motor speed, screw position, jack force) (output)#1

3.2.2 Internal Concept Interface Bindings:

MARA.Feedback Control Data (input)#1 — FCS.Feedback Control Data (out-

267



put)#1

MARA.Actuator References (input)#1 — MSC.Mill Actuator References (motor
speed, screw position, jack force) (output)#1

3.1 Concept Component

3.1.1 Concept Being Instantiated:

PE Parameter Estimation#1

3.2 Interface Bindings

3.2.1 External Concept Interface Bindings:

PE.Plant Measurements#1 — TAMS.Plant Measurements#1

PE.Strip Grade (input)#1 — TAMS.Coil Characteristics (strip grade only)#1
PE.Thickness-gauge Fault Factors (operator input)#1 — TAMS.Thickness-gauge
Fault Factors (operator input)#1

3.2.2 Internal Concept Interface Bindings:

PE.Estimates(yield stress, friction coefficient, thermal camber, screw datum error)
(output)#1 — SA.Estimates (input)#1!

PE.Estimates(yield stress, friction coefficient, thermal camber, screw datum error)
(output)#1 — MSC.Estimates (input)#1

4. Links

4.1 Code Module:

4.2 Data Definition:

4.3 Documentation:

Reference 1: Automation of tandem mills, G. F. Bryant (editor), The Iron and Steel
Institute, London, 1973.

4.4 Test Package:



Appendix E

Customer Requirements for

Galvanizing Line Control System

- DVL2

E.1 Basic Data and Requirements for DVL2

Incoming material:

Width : 700 - 1850 mm

Thickness : .4 - 1.6 mm

Material : Full hard cold rolled
Yield Strength : 650 - 850 N/mm2
Coil Weight : 10 - 48.00 kg

Coil Diameter : 610 - 2800 mm

Outgoing material:

o Two side coated galvanized (CI)
o Two side coated galvanealed (GA)

e Diflerential coating 1 : 3 maximum

269



o Coating weight per side: 30 - 100 gr/m2
Accuracy plus or minus 3.5 g/m2

e Roughness .87 - 1.87 micrometer Ra

e Mainly : automotive
Secondary : white goods and electrical appliances

Process equipment:

Entry/exit section with two un/recoilers
e Chemical cleaning section

Annealing furnace

Two zincpots (electrical heating)
Airknife

o Galvaneal furnace

Temper mill

e Tension leveller
o One or more chemical after treatment section(s)

o Waste water treatment plant

Line data:

Line speed : 150 m/min
o Max. entry speed : 225 m/min

Max. exit speed : 260 m/min

Accel. /Deceleration : 20 m/min

Fast/Emergency Stop : 50 m/min

E.2 Basic Requirements System Control

E.2.1 Automation

A large number of automatic sequences and models will be implemented in the
DVL2, e.g.

1. automatic handling of coils and strip in the Entry and Exit of the line

270



2. automatic setpoint calculation for tension and the furnace control loops
3. automatic setpoint calculation for the airknife

4. automatic slow down based on measured overthickness of the strip

We require that the different automatic sequences and models/tables for the setpoint
generation will be implemented in a uniform manner in the software. Please indicate
the way you implement these functions in your system.

E.2.2 Man Machine Communication

All information exchange between the operators and the control system will be
handled by this function. The following devices are to be considered:

1. color VDU'’s and keyboards

2. operator stations with pushbuttons and signallamps

Because of the complexity of the control system a large amount of the information
exchange between the operator and the system will take place through VDU and
keyboards. We require that similar functions on different locations will have the
same MMC principles. Please indicate the possibilities of your system.

E.2.3 Alarm System

Because of the level of automation and the size/complexity of the control system
and the processes, an extensive alarm and diagnosis system must be incorporated in
the control system. Since the high number of expected alarms and messages, great
emphasis must be put on the selective presentation of these alarms. Please present
the possibilities of your system.

E.2.4 Data Acquisition

This function must be able to handle two kinds of data acquisition, time related and
strip related . For the time related data acquisition we are thinking of constantly
storing a few hundred signals for the past X hours with a resolution of 1 second to a
couple of minutes. For the strip related acquisition we are thinking of storing about
50 signals every 25m of strip.

271



E.2.5 Interface with Production Control System

The control system for the DVL2 must be linked to the HO-Production control
system (to be built by HO), by means of our HDN (Hoogovens Data Network)
communications link , which is an upgrade of the Ethernet/DECnet communication
link. Coil and order related data will be interchanged by means of HDN between
the control system and the Production control system.

E.2.6 I/O System

We are considering the possibilities of the use of remote I/O. Please indicate what
the possibilities of your system are in this area.



