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Abstract A new method of simultaneous biometric 
verification and generation of a random number for 
use in authenticated encrypted communication is 
described. A non-linear transform is applied to a vector 
derived from a biometric. The output of the same 
dimension is fed back and the process iterated. At each 
iteration, the magnitude and phase of a scalar complex-
valued inner product of the vector and its displacement 
from the previous iteration is extracted. It is shown that 
this product tends towards a certain limit along a 
trajectory in the complex plane. Both the limit and the 
trajectory depend on the initial condition which is the 
biometric vector. For close initial conditions the 
trajectories will initially remain close but separate 
exponentially. Magnitude and phase on the trajectory 
are converted into binary matrices. Entropy criteria 
are used to weight bits and verify identity. High 
entropy bits are selected for random number 
generation. The method was tested using 3D facial 
images from 61  persons in the Face Recognition Grand 
Challenge (FRGC) database. An Equal Error Rate of 
15.5% was achieved and random numbers of length 
512 bits could be generated that satisfied standard tests 
for randomness. The method can be further developed 
to generate private keys from low intra-class entropy 
bits and session keys from the unconditionally random 
bits on presentation of a biometric without the need to 
store them.  

I. INTRODUCTION 

 
A number of biometric based encryption methods ([1-3] 
and references therein) and chaos-based random number 
generation methods ([4,5] and references therein) have 
been proposed in the recent past.  In this paper, a method 
for simultaneous biometric feature extraction and random 
number generation that combines these concepts is 
presented. The method is validated through verification 
tests and randomness tests.  
 
For cryptographic applications the output of random 
number generators and pseudo-random number generators 
(PRNG) are considered to be strings of zeroes and ones. 

Each bit produced should ideally appear as the outcome of 
an independent random event with probability 0.5.  
  
A biometric (for example, face image) acquired using a 
sensor (CCD camera) usually contains several random 
noise-like contributions from environmental conditions 
and presentation (illumination, pose, facial expression).  
Therefore, it is capable of generating a random number 
provided the entropy present is distilled appropriately [12]. 
This may be used directly or as the seed for a PRNG to 
generate a longer pseudo-random sequence. 
  
Essentially the difference between a random bit and a 
discriminating bit is that the former has high entropy both 
within the class and outside it, while the latter must have 
low entropy within the class. A method is therefore 
developed that reduces the biometric input into a large 
matrix of bits in a manner such that discriminating 
information is retained and entropies can be computed and 
used. To distil the entropy, a nonlinear system close to 
chaos and exponentially sensitive to initial conditions is 
devised. 

II. APPROACH 

The approach makes use of the following facts: 
a) A nonlinear system in chaos exhibits an evolving 

output that is exponentially sensitive to the initial 
condition. 

b) A discrete-time nonlinear system can be designed to 
take a vector (derived from the raw or processed 
biometric) as its initial condition. If the system is 
iterative (output fed back), it will evolve in time. 

c) The output of such a system at any iteration will 
depend only on the transformation (T ) and the initial 
condition ( )(0 nx , the biometric vector). A 

quantization loss may be incorporated into the 
procedure to improve randomness and irreversibility. 

d) A complex-valued scalar quantity can be extracted 
from the output at any iteration and tracked. The 
magnitude and phase of this quantity, represented in 
binary form, will yield a matrix of bits, RP× , where 
P  is the precision to which each quantity is 
represented and R is the number of iterations.  



 

 

By virtue of c, it should be possible to extract a feature 
vector of bits containing information about )(0 nx  from 

the above matrix. If the system is close to chaotic 
(sensitive to initial conditions), then it should also be 
possible to generate a random number from the above 
matrix by appropriately choosing bits. 

III.  ITERATED INTEGRATED BISPECTRUM 

 
The biometric must first be converted into one or more 
vectors of real or complex-valued numbers. It is preferable 
to incorporate desired intra-class invariance properties in 
this procedure. Facial images, for example, can be 
normalized, aligned and then expanded into a one-
dimensional vector in a row major or column major 
fashion. Alternately, feature vectors can be extracted and 
used or Radon projection vectors [7] at different angles can 
be used.   
 
Let )(0 nx , 1,....,2,1,0 −= Nn , where the subscript 0 refers 

to it being the initial input to an iterative system, be such a 
vector. 
 
The input vector is normalized by the maximum of the 
magnitudes of the elements of the vector and the mean 
value is removed. Let )(nxi  denote the input to the system 

at the i-th iteration.  Let )(kX i be the N -point DFT 

of )(nxi . The magnitude spectrum, ( )kX i is computed 

and only the positive frequency half is retained. It is zero 
padded to length N. Discarding the Fourier phase makes 
the process irreversible for mixed phase signals, and results 
in a controlled information loss improving unpredictability 
and randomness.  The resulting sequence 
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i is real-valued and the 

imaginary part is set to zero. It is again Fourier 
transformed and the deterministic bispectrum ([6,7] and 
references therein) 
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is computed. The bispectrum retains phase information 
from the signal unlike the power spectrum and it is 
sensitive to asymmetry (or irreversibility with respect to 
the time axis) of the signal. ),( 21 kkBi is complex-valued in 

general with non-zero imaginary components [6,7]. The 
bispectrum is integrated along radial slices in the 
bifrequency plane, 
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Frequencies are normalized by the Nyquist frequency (one 
half of the sampling frequency). The zero frequency 
component (or average signal) is eliminated from the 
above computation and a is the slope of the line in 
bifrequency ),( 21 kk space along which the integral is 

computed. The bispectrum is bilinearly interpolated to 
compute the integral in equation 2 as a summation. This 
procedure has been used for feature extraction and 
described in reference 6. It has not been iteratively applied 
in the manner described below previously. 
 
The integrated bispectrum is fed back to the system as a 
complex-valued vector of length N for the next iteration, 

 







=+ N

n
Vnx ii )(1

  (3)                                           
Let the entire transformation be represented by T. Then 
 

 [ ])()(1 nxTnx ii =+       (4)                                                
 
and the output after R iterations is related to the initial 
input, the biometric data, as  
 

 [ ])()( 0 nxTnx R
R =   (5) 

 
When the system described above is subject to many 
iterations, )(nxi as ∞→i will tend towards a complex 

sequence which is the integrated bispectrum of the positive 
frequency portion of its own magnitude spectrum. The 
normalization step guarantees that this limit is not the zero 
sequence and forces the system to be BIBO stable. 
 
After each iteration, a measure of the change is extracted 
as follows. The complex valued inner product of the 
difference between the previous and present outputs with 
the previous output is taken. 
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Since the input vector is normalized by the maximum of 
the magnitudes of its elements on each iteration, the 
difference is prevented from tending to zero. It is observed 
experimentally that the measure increases for the first two 
iterations as the input moves from zero imaginary part to 
non-zero imaginary part, and then the magnitudeiM tends 

towards a finite limit. The phase iφ can exhibit limiting 

behaviour or fluctuate depending on the input vector and 
its length. The limit of the magnitude is dependent on the 
initial biometric vector. 
 



 

 

The trajectory of )(nDi with iterations i can be plotted in a 

polar coordinate system and as expected, it is observed to 
be sensitive to the input biometric vector. To illustrate the 
principle, 1024 sample sequences from the file “gong.wav” 
in Matlab are used. Trajectories are shown for 3 different 
sequences in figure 1. Sequences that are just 2 samples 
(starting at sample 13022 and 13024, respectively) apart 
show close (green) trajectories, while the third sequence 
which is 10,000 samples away (starting at sample 23024) 
exhibits a significant deviation. The logarithm of the 
magnitude is plotted in the figures below in order to 
visualize them better and therefore the maximum value of 
unity actually maps to the origin. Each trajectory starts 
there and then branches out to a limit as shown. The limits, 
although globally “close” are in fact distinct. 
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Figure 1. Log-magnitude vs angle trajectories of )(nDi for three 

different 1024 sample vectors from the Matlab sound file “gong.wav”. 
The close trajectories are for windows 2 samples apart, while the 
significantly different trajectory is from a window 10,000 samples away. 
 
For these inputs, the phase angles tend towards π± very 
rapidly. If the window length is reduced to 768 samples, 
however, the phase angle does not tend to a limit and 
instead decreases exponentially. The transition in 
behaviour was observed at greater than 842 samples and 
surprisingly this seemed to be independent of the input!  
 
Log-Magnitude and phase plots are compared in figures 2 
and 3. If figure 1 be considered a “phase” plot in 
dynamical system terminology, it can be observed from 
figures 2 and 3 that one state variable is bounded (the Log-
magnitude) while the other (angle) is changing 

exponentially when the vector dimension is 768. This is a 
characteristic of chaotic systems [4,5,8]. 
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Figure 2. The logarithm of the absolute value of the phase of )(nDi vs 

iterations for N=1024 (upper) and N=768 (lower) long vectors from 
“gong.wav”.  
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Figure 3. Log-magnitude of )(nDi vs iteration for N=1024 and N=768 

sample vectors from “gong.wav” . The limit is input dependent. 
 
The sensitivity of trajectory can be exploited to generate 
random numbers by expanding the magnitude and phase 
into a binary representation at each iteration such that a 
matrix of bits is produced and then selecting bits based on 
entropy. Similarities between the trajectories will also 
result in some bits exhibiting low entropy within a class 
such as biometrics acquired from the same person but 
under different acquisition conditions. These bits can be 
used for verification of identity or generation of a private 
cryptographic key which need not be stored on a system.  



 

 

IV.  BIT MATRICES 

Magnitude and phase of )(nDi can be expanded into 
binary representations at each iteration generating a bit 
matrix in a number of ways.  The magnitude is bounded 
and finite because of the normalization of each input. It has 
a maximum value of unity because of the normalization 
after a trajectory is extracted. The phase is bounded by π±  
when not unwrapped.  
 
The logarithm to base 2 of the magnitude and angle values 
are stored as signed numbers to sixteen significant decimal 
digits from a 64 bit floating point representation. The 
exponent is normalized and the mantissa is adjusted. The 
decimal point is removed from the significand and the 16 
digit integer is converted into a 60 bit binary value with 
zero padding in front of the MSB if it is of insufficient 
length. These binary sequences are stored in two matrices, 
one each for the angle and the magnitude.  Different bits in 
the matrices have different probability distributions over 
any class of inputs.   

V. TESTS WITH FACE IMAGES 

 
Data collected for the Face Recognition Grand Challenge 
(FRGC) [9,10] conducted by the National Institute of 
Standards and Technology and the University of Notre 
Dame, USA, was used to test the performance of the 
method.  The face images in this database are of two types 
– intensity and range. Only the range (from the 3D) images 
were used in these tests. All 61 persons in the database for 
whom more than 20 images were available were chosen. 
The images were acquired in weekly sessions over a period 
of one and half years in 2002-4. The images are aligned 
and normalized using eye to eye distance and eye positions 
and represented in 150x130 pixel frames (figure 4).  
 
The Radon transform is used to reduce the initial input 
length of 19,500 (vector form of a 150x130 image) into 6 
separate 203 length vectors  at angles in multiples of 30 
degrees between 0 and 180. A circular mask of radius 60 
was applied to each image prior to performing the Radon 
transform. 
 
Each of the separate 203 length vectors is passed through 
the iterated transform over 25 iterations producing two sets 
of 6 separate output matrices (one for angle another for 
magnitude). 
 
These are then appended together to form two overall 
matrices for the image. These two matrices are then 
converted into binary form with 9000 bits in each. 

 
Figure 4. 3D face (range)  images before circular masking. 

A. VERIFICATION  
Entropies of the bits are then calculated to weight bits for 
verification and select bits for random number generation. 
To train the system both the intra-class entropy and the 
extra-class entropy (outside of that class) of each bit must 
be calculated for each person. The expected values of the 
bits for each class must also be determined. These 
entropies are used to rank the usefulness of each bit. 

TABLE 1.  BIT PROPERTIES AND ENTROPY. 

 
Desirable Property Entropic Representation 
1. The bit is constant for 
this user and also constant 
over all other users BUT 
is of the opposite value. 

Low entropy intra-class  
Low entropy outside-class 
but opposite expected value  
(very useful for verification) 

2. The bit is constant for 
this user and is random 
over all other users. 

Low entropy intra-class  
High entropy outside-class 
(useful for verification) 

Undesirable Property  
3. The bit is random for 
this user and is constant 
over all the other users 

High entropy intra-class 
Low entropy outside-class 
(highly unlikely in practice) 

4. The bit is random for 
all users 

High entropy intra-class 
High entropy outside-class 
(not useful for verification 
but useful for RNG) 

5. The bit is constant for 
all users 

Low entropy intra-class 
Low entropy outside-class  
(not useful) 

 
Each bit is given a weight between 0 and 1, calculated 
using functions based on extra- and intra- class entropies 
for that bit. The weight is a representation of how valuable 
the bit is in identifying this specific user. 
 
 



 

 

The weight for each bit can be broken up into two parts: 
 
1. Intra-class weight of the bit – From table 1 it can be seen 
that ideally the bit should be constant within the class 
(Low entropyη ). 

 }{1 1 classwithinw −−= η  (7) 

 
2. Inter-Class weight of the bit – There are two cases. If the 
intra- and outside-class expected values of the bits are 
different then low outside-class entropy is desired 
(Property 1). 

 ( ) }{
}{2 5.0 classoutside

differentw −= η  (8) 

 
In the ideal situation where outside-class entropy is 0, the 
weight would be 1 above. If the expected intra-class value 
of the bit is the same as the expected outside-class value 
then high outside-class entropy is desirable (Property 2). 
 
 }{}{2 *5.0 classoutsidesamew −= η    (9)

  
Since the outside-class entropy will only serve to reduce 
false acceptances by 50% at best, the weight is chosen to 
be a maximum of 0.5 above. Note that ‘expected’ value 
here is either 1 or 0 and not the statistical mean as a real 
number. 
 
The overall weight for that bit is chosen as the product of 
the intra-class weight and appropriate inter-class weight. 
 
Given an image of a user in the system he or she can be 
verified using that given image and the stored information 
on the verifying system, namely the inter and intra-class 
weights of each bit as well as the expected values of the 
bits that this user should produce. The same process is 
used on the supplied image to produce a pair of binary 
matrices one from the angle and another from the 
magnitude information.  
 
The binary values in the matrix are compared with the 
stored expected values using a form of weighted Hamming 
distance as given in equation 7. A mismatch will decrease 
the score by the same amount that a match would have 
increased it. A total score is produced by multiplying this 
value with the overall weight of that bit and summing over 
all the bits in the matrix. 
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where iw represents the total weight of the bit, ib its value 

at the source and the destination, respectively, and ⊕  the 
exclusive NOR operation.  

Weights are calculated only from the training set images. 
The system was trained using 15 images from each of 61 
subjects and the performance of the system was tested over 
the remaining images. Only the angle information is used 
here. Three permutations of train/test splits were used – 
with the first 15, middle 15 and last 15 images being used 
for training in each case. Performance of the method is 
shown in figure 5.  
 

  1     2     5     10    20    40  
  1   

  2   

  5   

  10  

  20  

  40  

False Accept Probability (in %)

F
al

se
 R

ej
ec

t P
ro

ba
bi

lit
y 

(in
 %

)

 
 
Figure 5. Detection Error Trade-off plot for the method. The equal error 
rate point is marked with a circle. 
 
The equal error rate is seen above to be 15.5%. Although 
this is rather high and the best results that have been 
reported on the FRGC data [10,14] are around 2% EER on 
the 3D data, it serves to illustrate the usefulness of the 
method. We are using down-sampled data and only 6 
Radon projections with considerable room for 
improvement. Improvements that are incorporated in other 
biometric feature extraction techniques such as extraction 
of features separately from parts of the face [14-16] and 
particular frequency bands can also be applied with this 
method. False rejections at a given false acceptance can 
also be lowered with multimodal or pseudo-multimodal 
systems [13]. They will be considered in future work. 

B. RANDOM NUMBER GENERATION 

 
For random number generation, bits that show high 
entropy over all inputs were selected. The word extracted 
from each input was varied in size from 32 to 512 bits. All 
the words were appended to form a large stream and this 
stream was passed through six tests for statistical 
randomness (frequency test, serial test, poker test (4-bit 
test), runs test, autocorrelation test, and DFT spectral 



 

 

analysis). These tests were implemented in Matlab 
according to the algorithms supplied in the Handbook of 
Applied Cryptography [11] and the NIST paper on pseudo-
random number generators [12].  All tests except for the 
DFT spectral analysis and autocorrelation should follow a 
Chi-squared distribution with significance level of 0.05. 
Autocorrelation and spectral analysis tests follow a 
standard normal distribution. Acceptable thresholds for the 
tests are presented in table 2 and the test results for 
different random word sizes are shown in table 3.  
 
TABLE 2. ACCEPTABLE THRESHOLDS FOR THE RANDOMNESS 

TESTS. 
 

Test Degrees  
of  Freedom 

Acceptable 
Threshold 

Frequency test 1 3.8415 max 
Serial test 2 5.9915 max 
Poker test (m = 4) 7  24.9958 max 
Runs test (runs of 
greater than 16 equals 
16) (k = 16) 

30 43.7730 max 

Autocorrelation test 
(shift = 4) 

 1.96 max 

DFT Spectral Analysis  0.01 min 
Descriptions of the tests can be found in references 11, 12. 

 
TABLE 3.  RANDOMNESS TEST RESULTS. 

 
Word  
size 

One  
Bit 

Serial 
(2 bit)  

Poker  
(4 bit) 

Runs Auto 
Corr. 

DFT 

32 PASS 
0.27 

PASS 
1.27 

FAIL 
41.1 

PASS 
17 

PASS 
-1.3 

PASS 
0.869 

64 PASS 
0.461 

PASS 
0.664 

FAIL 
25.7 

PASS 
15.5 

PASS 
-0.17 

PASS 
0.466 

128 PASS 
0.46 

PASS 
0.95 

PASS 
14.6 

PASS 
31 

PASS 
0.082 

PASS 
0.6 

256 PASS 
0.95 

PASS 
0.12 

PASS  
7.6 

PASS 
24.7 

PASS 
0.589 

PASS 
0.74 

512 PASS 
0.28 

PASS 
1.34 

PASS 
7.07 

PASS 
17.9 

PASS 
0.672 

PASS 
0.254 

VI. CONCLUSION 

A method of simultaneously generating a reliable feature 
vector for biometric verification and a random number is 
proposed. The method can be further developed to generate 
keys for cryptography. The core concept is of extracting bit 
matrices through an iterated chaotic nonlinear 
transformation while preserving feature invariance or 
robustness and using entropy criteria to select bits. The 
method can be applied to any biometric in raw data form. 
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