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Abstract A new method of simultaneous biometric
verification and generation of a random number for
use in authenticated encrypted communication is
described. A non-linear transform isapplied to a vector
derived from a biometric. The output of the same
dimension is fed back and the processiterated. At each
iteration, the magnitude and phase of a scalar complex-
valued inner product of the vector and its displacement
from the previousiteration isextracted. It is shown that
this product tends towards a certain limit along a
trajectory in the complex plane. Both the limit and the
trajectory depend on the initial condition which is the
biometric vector. For close initial conditions the
trajectories will initially remain close but separate
exponentially. Magnitude and phase on the trajectory
are converted into binary matrices. Entropy criteria
are used to weight bits and verify identity. High
entropy bits are sdected for random number
generation. The method was tested using 3D facial
images from 61 personsin the Face Recognition Grand
Challenge (FRGC) database. An Equal Error Rate of
15.5% was achieved and random numbers of length
512 bits could be generated that satisfied standard tests
for randomness. The method can be further developed
to generate private keys from low intra-class entropy
bits and session keys from the unconditionally random
bits on presentation of a biometric without the need to
storethem.

[. INTRODUCTION

A number of biometric based encryption methods3[[1-
and references therein) and chaos-based randomemumb
generation methods ([4,5] and references thereayeh
been proposed in the recent past. In this paperethod
for simultaneous biometric feature extraction aaddom
number generation that combines these concepts
presented. The method is validated through vetitica
tests and randomness tests.

For cryptographic applications the output of random
number generators and pseudo-random number gerserato
(PRNG) are considered to be strings of zeroes awed.o

is

Each bit produced should ideally appear as theooutcof
an independent random event with probability 0.5.

A biometric (for example, face image) acquired gsm
sensor (CCD camera) usually contains several random
noise-like contributions from environmental conaolits
and presentation (illumination, pose, facial expi@s).
Therefore, it is capable of generating a random bam
provided the entropy present is distilled apprapha[12].

This may be used directly or as the seed for a PRING
generate a longer pseudo-random sequence.

Essentially the difference between a random bit and
discriminating bit is that the former has high eptr both
within the class and outside it, while the latteusinhave
low entropy within the class. A method is therefore
developed that reduces the biometric input intcamd
matrix of bits in a manner such that discriminating
information is retained and entropies can be coeghand
used. To distil the entropy, a nonlinear systenmselto
chaos and exponentially sensitive to initial coiodis is
devised.

IIl. APPROACH

The approach makes use of the following facts:

a) A nonlinear system in chaos exhibits an evolving
output that is exponentially sensitive to the daliti
condition.

A discrete-time nonlinear system can be designed to
take a vector (derived from the raw or processed
biometric) as its initial condition. If the systeimm
iterative (output fed back), it will evolve in time

The output of such a system at any iteration will
depend only on the transformatiom Y and the initial
condition (xy(n), the biometric vector). A

guantization loss may be incorporated into the
procedure to improve randomness and irreversibility
A complex-valued scalar quantity can be extracted
from the output at any iteration and tracked. The
magnitude and phase of this quantity, represemted i
binary form, will yield a matrix of bitf?x R, where

P is the precision to which each quantity is
represented an® is the number of iterations.

b)

c)

d)



By virtue of c, it should be possible to extracfeature
vector of bits containing information abou,(n) from

Frequencies are normalized by the Nyquist frequéong
half of the sampling frequency). The zero frequency

the above matrix. If the system is close to chaotic COmponent (or average signal) is eliminated frome th

(sensitive to initial conditions), then it shoulds@ be

above computation ana@ is the slope of the line in

possible to generate a random number from the abovdifrequency (k;,k;)space along which the integral is

matrix by appropriately choosing bits.

lll. ITERATED INTEGRATED BISPECTRUM

The biometric must first be converted into one arren
vectors of real or complex-valued numbers. It isf@rable
to incorporate desired intra-class invariance pribge in

computed. The bispectrum is bilinearly interpolatied
compute the integral in equation 2 as a summafidis
procedure has been used for feature extraction and
described in reference 6. It has not been itergtiapplied

in the manner described below previously.

The integrated bispectrum is fed back to the sysasna

this procedure. Facial images, for example, can pecomplex-valued vector of length N for the nextatesn,

normalized, aligned and then expanded into a one-

dimensional vector in a row major or column major
fashion. Alternately, feature vectors can be extand
used or Radon projection vectors [7] at differamylas can
be used.

Letxy(n),n=012,...,N -1, where the subscript O refers

to it being the initial input to an iterative systebe such a
vector.

The input vector is normalized by the maximum oé th
magnitudes of the elements of the vector and thanme
value is removed. Lek; (n) denote the input to the system

at the i-th iteration. LetX;(k)be the N -point DFT
of x;(n). The magnitude spectrunixi(k]is computed

and only the positive frequency half is retaingds|zero
padded to lengtiN. Discarding the Fourier phase makes
the process irreversible for mixed phase signaid,rasults

in a controlled information loss improving unprdédiaility
and randomness. The resulting sequence

|X;(n),n=12,.,N/2-1
-(n) =
i (") { 0, n=N/2.N-1
imaginary part is set to zero. It is again Fourier

transformed and the deterministic bispectrum ([GnAH
references therein)

is real-valued and the

B, (K3, ko) = Y(K)Y(K)Y ™ (Ky +Kj) (1)
is computed. The bispectrum retains phase infoonati
from the signal unlike the power spectrum and it is
sensitive to asymmetry (or irreversibility with pest to
the time axis) of the signa; (k;,k,) is complex-valued in
general with non-zero imaginary components [6, e T

Xi41(N) =V, [%j

Let the entire transformation be represented.bijhen

®3)

Xiaa () = T[x; (m)] 4)
and the output after R iterations is related to ithigal
input, the biometric data, as

Xz (N) =T R[x, (M)] 5)

When the system described above is subject to many
iterations, x;(n)as i — cowill tend towards a complex

sequence which is the integrated bispectrum optsitive
frequency portion of its own magnitude spectrume Th
normalization step guarantees that this limit isthe zero
sequence and forces the system to be BIBO stable.

After each iteration, a measure of the change iseted

as follows. The complex valued inner product of the
difference between the previous and present outpiits
the previous output is taken.

D (M = 344 (M) = (M2 () = M, exifjp)
©)

Since the input vector is normalized by the maximofm
the magnitudes of its elements on each iteratibwe, t
difference is prevented from tending to zero. bliserved
experimentally that the measure increases forithetfvo
iterations as the input moves from zero imaginaast po
non-zero imaginary part, and then the magnitdgiéends

bispectrum is integrated along radial slices in the towards a finite limit. The phase can exhibit limiting

bifrequency plane,

/
Vi (@) = [, Lo B (ky, aky)dky )

A

1 2
wherea=—,—,..
N N

behaviour or fluctuate depending on the input veetw
its length. The limit of the magnitude is dependentthe
initial biometric vector.



The trajectory ofD, (n) with iterationsi can be plotted in a

polar coordinate system and as expected, it isrobdeo
be sensitive to the input biometric vector. Tosthate the
principle, 1024 sample sequences from the file tpoav”
in Matlab are used. Trajectories are shown forfReint
sequences in figure 1. Sequences that are jusmples
(starting at sample 13022 and 13024, respectiveghgrt
show close (green) trajectories, while the thirdussce
which is 10,000 samples away (starting at samp(2283
exhibits a significant deviation. The logarithm tie
magnitude is plotted in the figures below in order
visualize them better and therefore the maximunuevaif
unity actually maps to the origin. Each traject@tarts
there and then branches out to a limit as showa.liffits,
although globally “close” are in fact distinct.

270

Figure 1. Log-magnitude vs angle trajectories d'.f)i (n) for three

different 1024 sample vectors from the Matlab sofifed “gong.wav”.
The close trajectories are for windows 2 sampleartapwhile the
significantly different trajectory is from a windo,000 samples away.

For these inputs, the phase angles tend towawmlsery
rapidly. If the window length is reduced to 768 gdes,

exponentially when the vector dimension is 768.sTikia
characteristic of chaotic systems [4,5,8].
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Figure 2. The logarithm of the absolute value of the phasép (N) vs

iterations for N=1024 (upper) and N=768 (lower) domectors from
“gong.wav”.
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Figure 3. Log-magnitude ofD; (N) vs iteration for N=1024 and N=768
sample vectors from “gong.wav” . The limit is inmlependent.

however, the phase angle does not tend to a limit a The sensitivity of trajectory can be exploited t®ngrate

instead decreases exponentially. The transition
behaviour was observed at greater than 842 saraplés
surprisingly this seemed to be independent ofripat!

Log-Magnitude and phase plots are compared in dig@r

and 3. If figure 1 be considered a “phase” plot in such as biometrics acquired from the same persan bu

dynamical system terminology, it can be observexnfr
figures 2 and 3 that one state variable is bourftedLog-
magnitude) while the other (angle) is

inrandom numbers by expanding the magnitude and phase

into a binary representation at each iteration sihett a
matrix of bits is produced and then selecting based on
entropy. Similarities between the trajectories wallso
result in some bits exhibiting low entropy withinctass

under different acquisition conditions. These k&g be
used for verification of identity or generation afprivate

changing cryptographic key which need not be stored on tesys



IV. BIT MATRICES

Magnitude and phase oD;(n) can be expanded into

binary representations at each iteration generaginigjt

matrix in a number of ways. The magnitude is baahd

and finite because of the normalization of eacliini has

a maximum value of unity because of the normalirati

after a trajectory is extracted. The phase is bedrxy 7
when not unwrapped.

The logarithm to base 2 of the magnitude and avaliees
are stored as signed numbers to sixteen signifidacitmal
digits from a 64 bit floating point representatiohhe
exponent is normalized and the mantissa is adjuSted
decimal point is removed from the significand ahd 1.6
digit integer is converted into a 60 bit binary w&lwith
zero padding in front of the MSB if it is of insidient
length. These binary sequences are stored in twoces
one each for the angle and the magnitude. Diftdria in
the matrices have different probability distribuisoover
any class of inputs.

V. TESTS WITH FACE IMAGES

Data collected for the Face Recognition Grand @hgk

(FRGC) [9,10] conducted by the National Instituté o
Standards and Technology and the University of é&otr

Figure 4. 3D face (range) images before circular masking.

A. VERIFICATION

Entropies of the bits are then calculated to welgts for
verification and select bits for random number gatien.
To train the system both the intra-class entropy tre
extra-class entropy (outside of that class) of datimust
be calculated for each person. The expected valtidse

bits for each class must also be determined. These

entropies are used to rank the usefulness of each b

TABLE 1. BIT PROPERTIES AND ENTROPY.

Dame, USA, was used to test the performance of the

method. The face images in this database are mfypes
— intensity and range. Only the range (from the BiEgges
were used in these tests. All 61 persons in thaebdae for

whom more than 20 images were available were chose

The images were acquired in weekly sessions operiad
of one and half years in 2002-4. The images agneti
and normalized using eye to eye distance and esitiqre
and represented in 150x130 pixel frames (figure 4).

The Radon transform is used to reduce the initigui
length of 19,500 (vector form of a 150x130 image)pi6
separate 203 length vectors at angles in multipfe30
degrees between 0 and 180. A circular mask of sa@il
was applied to each image prior to performing tlaed
transform.

Each of the separate 203 length vectors is passedgh
the iterated transform over 25 iterations produding sets
of 6 separate output matrices (one for angle andire
magnitude).

Desirable Property Entropic Representation

1. The bit is constant fo
this user and also consta
over all other users BUT
is of the opposite value.

n

r Low entropy intra-class
ntow entropy outside-class
I but opposite expected value
(very useful for verification)

2. The bit is constant fo

this user and is randomHigh entropy outside-clas

over all other users.

r Low entropy intra-class

(useful for verification)

Undesirable Property

3. The bit is random fo
this user and is constal
over all the other users

r High entropy intra-class
ntLow entropy outside-class
(highly unlikely in practice)

4. The bit is random fo
all users

r High entropy intra-class

High entropy outside-class
(not useful for verification
but useful for RNG)

5. The bit is constant fo
all users

r Low entropy intra-class
Low entropy outside-class

(not useful)

These are then appended together to form two dveralEach bit is given a weight between 0 and 1, caledla
matrices for the image. These two matrices are thenusing functions based on extra- and intra- clagsopies

converted into binary form with 9000 bits in each.

for that bit. The weight is

a representation of healuable

the bit is in identifying this specific user.



The weight for each bit can be broken up into tadg

1. Intra-class weight of the bit — From table &&dh be seen
that ideally the bit should be constant within ttlass
(Low entropyy ).

(7)

Wy =11 vithin-clasg

2. Inter-Class weight of the bit — There are twsesa If the
intra- and outside-class expected values of the &it

different then low outside-class entropy is desired
(Property 1).
Wo different} = (05) outside-clasy 8)

In the ideal situation where outside-class entnisp®, the
weight would be 1 above. If the expected intrashaslue
of the bit is the same as the expected outsids-clakie
then high outside-class entropy is desirable (Rtg[2.

9)

W2{ same} =05* ”{outside—clas}

Since the outside-class entropy will only serveréduce

false acceptances by 50% at best, the weight isechto

be a maximum of 0.5 above. Note that ‘expectedueal
here is either 1 or 0 and not the statistical mesam@ real

number.

The overall weight for that bit is chosen as thedpict of
the intra-class weight and appropriate inter-clasight.

Given an image of a user in the system he or shebea
verified using that given image and the storedrimfation
on the verifying system, namely the inter and huliess
weights of each bit as well as the expected vabiate
bits that this user should produce. The same psotes
used on the supplied image to produce a pair cériin

matrices one from the angle and another from theRadon

magnitude information.

The binary values in the matrix are compared with t
stored expected values using a form of weighted riHisug
distance as given in equation 7. A mismatch wiltrdase

Weights are calculated only from the training seages.
The system was trained using 15 images from ead1 of
subjects and the performance of the system wasttester
the remaining images. Only the angle informationissed
here. Three permutations of train/test splits wesed —
with the first 15, middle 15 and last 15 imageseised
for training in each case. Performance of the nubtiso
shown in figure 5.

40
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Figure 5. Detection Error Trade-off plot for the method. Téwual error
rate point is marked with a circle.

The equal error rate is seen above to be 15.5%0Adth
this is rather high and the best results that hiagen
reported on the FRGC data [10,14] are around 2% &ER
the 3D data, it serves to illustrate the usefulnefsshe
method. We are using down-sampled data and only 6
projections with  considerable room for
improvement. Improvements that are incorporateadtirer
biometric feature extraction techniques such asaetibn

of features separately from parts of the face [@dnd
particular frequency bands can also be applied itk
method. False rejections at a given false acceptaao

the score by the same amount that a match woulé havalso be lowered with multimodal or pseudo-multimioda

increased it. A total score is produced by multigythis
value with the overall weight of that bit and summbver
all the bits in the matrix.

s= > W signum{(b; (source) 8] B (destination) ) ~ 0.9]

iC{all bits}

(10)

where w; represents the total weight of the i its value

at the source and the destination, respectively, @nthe
exclusive NOR operation.

systems [13]. They will be considered in future kvor

B. RANDOM NUMBER GENERATION

For random number generation, bits that show high
entropy over all inputs were selected. The wordaexed
from each input was varied in size from 32 to 5. lAll

the words were appended to form a large streantlasd
stream was passed through six tests for statistical
randomness (frequency test, serial test, poker (&bit
test), runs test, autocorrelation test, and DFTctspke



analysis). These tests were implemented
according to the algorithms supplied in the Handbob
Applied Cryptography [11] and the NIST paper onyase
random number generators [12]. All tests excepttlie
DFT spectral analysis and autocorrelation shoulidoa
Chi-squared distribution with significance level 0f05.
Autocorrelation and spectral analysis tests follaw
standard normal distribution. Acceptable threshédtghe
tests are presented in table 2 and the test refuits
different random word sizes are shown in table 3.

TABLE 2. ACCEPTABLE THRESHOLDS FOR THE RANDOMNESS

TESTS.
Test Degrees Acceptable
of Freedom | Threshold
Frequency test 1 3.8415 max
Serial test 2 5.9915 max
Poker test (m = 4) 7 24,9958 max
Runs test (runs of 30 43.7730 max
greater than 16 equals
16) (k = 16)
Autocorrelation  tes 1.96 max
(shift = 4)
DFT Spectral Analysis 0.01 min

Descriptions of the tests can be found in referedde 12.

TABLE 3. RANDOMNESS TEST RESULTS.

Word | One | Serial | Poker | Runs | Auto | DFT
size | Bit (2 bit) | (4 bit) Corr.
32 PASS| PASS | FAIL | PASS| PASS| PASS
0.27 |1.27 |411 |17 -1.3 0.869
64 PASS| PASS | FAIL | PASS| PASS| PASS
0.461 | 0.664 | 25.7 | 15.5 | -0.17 | 0.466
128 PASS| PASS | PASS | PASS| PASS| PASS
0.46 |[0.95 |146 |31 0.082 | 0.6
256 PASS| PASS | PASS | PASS| PASS| PASS
095 (012 | 7.6 24.7 | 0.589]| 0.74
512 PASS| PASS | PASS | PASS| PASS| PASS
0.28 |1.34 | 7.07 |17.9 | 0.672| 0.254

VI. CONCLUSION

A method of simultaneously generating a reliablatfes
vector for biometric verification and a random nunlis
proposed. The method can be further developedrtergee
keys for cryptography. The core concept is of eting bit
matrices through an iterated chaotic
transformation while preserving feature invarianoe
robustness and using entropy criteria to seled. Aihe
method can be applied to any biometric in raw fiatan.
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