

QUT Digital Repository:
http://eprints.qut.edu.au/

This is the pre-print, submitted version of this conference paper. Published as:

Stebila, Douglas and Ustaoglu, Berkant (2009) Towards denial-of-service-resilient
key agreement protocols. In: Information Security and Privacy, 1-3 July 2009,
Queensland University of Technology, Brisbane.

© Copyright 2009 Springer-Verlag Berlin Heidelberg

Conference proceedings published by Springer Verlag will be available via
SpringerLink. http://www.springerlink.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10887389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards Denial-of-Service-Resilient
Key Agreement Protocols∗

Douglas Stebila1 and Berkant Ustaoglu2

1 Information Security Institute, Queensland University of Technology, Brisbane, Australia

Email: douglas@stebila.ca
2 NTT Information Sharing Platform Laboratories, Tokyo, Japan

Email: bustaoglu@cryptolounge.net

April 20, 2009

Abstract

Denial of service resilience is an important practical consideration for key agreement
protocols in any hostile environment such as the Internet. There are well-known models
that consider the security of key agreement protocols, but denial of service resilience
is not considered as part of these models. Many protocols have been argued to be
denial-of-service-resilient, only to be subsequently broken or shown ineffective.

In this work we propose a formal definition of denial of service resilience, a model
for secure authenticated key agreement, and show how security and denial of service
resilience can be considered in a common framework, with a particular focus on client
puzzles. The model accommodates a variety of techniques for achieving denial of service
resilience, and we describe one such technique by exhibiting a denial-of-service-resilient
secure authenticated key agreement protocol. Our approach addresses the correct
integration of denial of service countermeasures with the key agreement protocol to
prevent hijacking attacks that would otherwise render the countermeasures irrelevant.

1 Motivation

Reliable, fast, and secure communication is essential for commercial success on today’s
Internet. Slow web pages could motivate clients to switch to an alternative business, leading
to a loss in customer base for the service provider. However, maintaining sufficiently powerful
servers can be an expensive venture. Servers have limited resources in terms of the amount

∗Douglas Stebila and Berkant Ustaoglu. Towards Denial-of-Service-Resilient Key Agreement Protocols.
In Colin Boyd and Juan Gonzalez-Nieto, editors, Proc. 14th Australasian Conf. on Information Security
and Privacy (ACISP) 2009, LNCS. Springer, 2009, To appear. eprint http://www.douglas.stebila.ca/
research/papers/SU09.

1

mailto:douglas@stebila.ca
mailto:bustaoglu@cryptolounge.net
http://www.douglas.stebila.ca/research/papers/SU09
http://www.douglas.stebila.ca/research/papers/SU09

of traffic that can be handled, the time required to establish a connection, and the number of
active concurrent connections. This effectively bounds the number of connections a company’s
server can honour in a given period in time.

Malicious parties have recognized that they can benefit by depleting the limited resources
of others’ servers. Denial of service attacks aim to disrupt, destroy, or render services
unavailable. A typical denial of service attack exhausts the target’s resources. The server is
rendered unavailable for honest clients, who then proceed to request similar services from
competitors. To prevent malicious requests, a server needs to filter out bogus connection
requests and honour those from legitimate clients. Recognizing legitimate clients is difficult.
We will view a client as having legitimate intentions if it is willing to perform an expensive
computation; it still could be malicious, but we may have no further way of distinguishing
legitimate from malicious connections with a priori authentication.

Security is an important aspect of online services. Many connections between a client and
a server need to be secured against third parties; financial transactions are the most common
case. Key agreement is used to produce a shared secret that can be used to encrypt subsequent
communication. Key exchange involves computationally expensive algorithms, and hence
may dominate server-side run time, limiting the number of clients serviced. This makes key
agreement an enticing target for denial of service attacks since a malicious party can easily
issue many key agreement requests. Hence, it is advantageous to try to reject as many bogus
connections as possible during key agreement. In this paper we are concerned with deterring
malicious parties from initiating denial of service attacks based on key agreement, without
compromising on security.

Practitioners and standardization bodies have recognized the importance of denial of
service resilience, but researchers have been slow to respond with a formal treatment of the
subject. In some sense, addressing denial of service resembles the initial approach to key
agreement: rather than constructing an overall model, a list of ad hoc goals is selected and
then it is shown that a protocol meets those goals. As a result, it is difficult to evaluate the
strength and usefulness of denial of service countermeasures when integrated into protocols.

Our Contributions. We give a formal definition of denial of service resilience for key
agreement protocols in the context of the extended Canetti-Krawczyk (eCK) model for secure
key agreement. Our definition for denial of service resilience is sufficiently strong that it
prevents known attacks that arose against protocols once thought to be denial of service
resilient. Puzzles have been previously used as a denial of service countermeasure, but in an
ad hoc manner. Compared to previous work, our contribution models the careful integration
of two orthogonal issues: key agreement security and denial of service resilience.

It is well established that improper use of cryptographic algorithms can render them
useless. For example, even the most secure password-based system is of no use if weak
passwords are used. Similar reasoning applies for DoS countermeasures: even good solutions
are useless if they are not used properly. For example, if a proof-of-work in the form of a
puzzle solution does not indicate who is the intended recipient, when the solution was created,
or who created the solution, then the door is open for misuse. Without careful integration
into the overall protocol, DoS countermeasures may not achieve their goal.

Additionally, we present the DoS-CMQV protocol which is a secure key agreement protocol

2

and uses client puzzles to offer denial of service resilience in our model, showing how to
achieve security and denial of service resilience together.

2 Previous Work

Key Agreement. Key agreement is an important cryptographic primitive used for building
confidential channels. Designing and analyzing key agreement protocols is a non-trivial
task. Formal models, which allow complexity-theoretic security arguments for authenticated
key agreement, were first proposed by Bellare and Rogaway [BR04] and Blake-Wilson,
Johnson, and Menezes [BWJM97]. The work of Canetti and Krawczyk [CK01a] is one of
the most influential extensions to the original models. Their work was later augmented by
Krawzcyk [Kra05a] and LaMacchia, Lauter and Mityagin [LLM07] to capture a wider range
of desirable security properties; we refer to this as the extended Canetti-Krawczyk (eCK)
model.

In all of the above models the adversary controls all communication links. It is not
immediately clear how denial of service can be considered alongside key establishment when
the adversary may not deliver messages to destinations. However, even in this setting there
are meaningful DoS-related goals that can be incorporated into the model; we discuss our
extension in Sect. 3.1.

Denial of Service. There are two main types of denial of service attacks (see [BM03,
§1.6.6], for example): resource depletion attacks and connection depletion attacks. In resource
depletion attacks a malicious party attempts to drain a server’s computational or memory
resources. By contrast, connection depletion attacks aim to exhaust the number of allowed
connections to the server. A DoS countermeasure can aim to defend against either or both of
these types of attacks.

Distributed denial of service (DDoS) attacks, in which many distributed client computers
attack a single server, are of significant concern on the Internet today. These types of attacks
are very difficult to defend against. One known technique, which we use in this paper, is to
allow a server to adjust its denial of service countermeasure based on the load it experiences.
Puzzle auctions [WR03] are one such implementation of tunable puzzles.

Aura and Nikander [AN97] introduced the notion of stateless connections, in which stateful
connections are transformed into stateless ones by attaching the state information to the
message and using a message authentication code for integrity. This gives some protection
against denial of service by saving the server from having to store session information until
later in the exchange when more assurance is possible.

Meadows [Mea99] offered the first formal framework for denial-of-service-resilient protocols,
based on the causal sequencing language of fail-stop protocols of Gong and Syverson [GS95].
To avoid connection depletion, Meadows suggests that each message be authenticated with
increasingly complex levels of authentication. Meadows then applies this framework to the
Station-to-Station protocol [DvOW92] to identify potential DoS attacks but does not provide
a denial-of-service-resilient protocol. An application of Meadow’s cost-based framework to the
JFK protocol revealed a potential DoS attack, and a solution to this problem was proposed

3

using client puzzles [SGNB06]. This underscores the ability of formal models to reveal flaws
and the need for the formalization of denial of service resilience.

Cookies. One of the first techniques used to defend protocols against denial of service
attacks was cookies. Introduced in the Photuris protocol (published in 1999 as [KS99] but
introduced earlier), cookies are small authentication tokens returned by a server upon initial
connection by the client. In order for the client to be allowed to continue with the connection,
the client must echo the cookie back to the server. The server does not store the cookie,
instead using the stateless connection technique to check the authenticity of the cookie which
the client includes in subsequent messages. Cookies can be applied in Meadows’ framework
as an early level of authentication.

Krawczyk’s SIGMA protocol [Kra03a] was proposed as a successor of the Internet Key
Exchange (IKE) protocol used in IPsec, and was adapted to have denial of service resilience
in the form of cookies in its implementation in IKEv2 [Kau05]. Cookies are also used in the
Just Fast Keying protocol (JFK) proposed by Aiello et al. [ABB+04]. JFK allows the server
to reuse its ephemeral private-public key pair across multiple sessions to reduce the server’s
computational load, at the expense of increasing the potential damage should an ephemeral
private key be leaked.

Cookies are a valuable first-order denial of service countermeasure and have been used
extensively as described above. However, they are a weak form of denial of service resilience
because they do not require an attacker to do anything other than faithfully relay a previously
received cookie.

Protocols using cookies can also be susceptible to other types of attacks. Mao and
Paterson [MP02, §2.2] described a denial of service attack against IKEv2. In their attack,
a malicious party who controls a popular server M̂ can redirect legitimate traffic from M̂
towards another target server M̂ ′, thereby effecting a denial of service attack against M̂ ′. The
attack only costs M̂ bandwidth, not computation or memory, and is resilient to cookie-based
DoS countermeasures. This attack is possible because there is no strong binding between
the DoS countermeasure and the identity of the server to which the client wishes to connect:
we codify this notion in our security criterion DoS-2 in Sect. 3. Despite key agreement and
denial of service being orthogonal issues, combining them is no trivial task, as demonstrated
by this attack.

Puzzles. Dwork and Naor [DN92] introduced the notion of client puzzles to defend against
denial of service attacks. A server under a denial of service attack can require clients to find
the solution to a puzzle before the server allocates resources: the puzzle should be hard to
solve but the solution should be easy to verify. Back [Bac97] and Juels and Brainard [JB99]
suggested using a hash function so that a client must perform a large number of operations
to find the solution; this is a computation-bound puzzle. We build on their approach by
specifying how puzzles should be integrated with key agreement. Puzzles where computing
the solution is more dependent on memory access time, called memory-bound puzzles, have
also been suggested for use [ABMW03]; these offer less varied running times across different
hardware platforms because memory access times vary less than processor speed. Waters et al.
[WJHF04] described how puzzles can be distributed across multiple servers for coordinated

4

access.
Aura, Nikander, and Leiwo [ANL00] gave a framework for using hash function preimages

as a denial of service in authentication protocols, and lay out the basic principle that “the
client should always commit its resources to the authentication protocol first and the server
should be able to verify the client commitment before allocating its own resources”. We use
this principle to develop a model for denial-of-service-resilient key agreement. The technique
of [ANL00] is not sufficient to defend against the attack of Mao and Paterson [MP02]; our
approach is.

This principle of clients committing resources before the server does applies well to
preemptive DoS countermeasures. The server obtains assurance that the client committed
resources, but this is no guarantee that the client will complete the request. If a client does
not finish a request then what should the actions of the server be? What should a server do if
a client takes too long to respond after presenting its proof-of-work? Even though such open
connections have important practical significance, preemptive measures do not completely
cover the problem of open connections, such as the half-open connections of TCP SYN flood
attacks [Edd07]; a common countermeasure is to discard old uncompleted open connections.

3 Modelling Denial of Service Resilience and Security

We begin with an informal description of the goals of a denial-of-service-resilient protocol
and then proceed to outline a formal model for integrating denial of service resilience and
secure key agreement protocols. While the goals of denial of service resilience and secure key
agreement are, as others such as Krawczyk [Kra03a, §2.3] have noted, orthogonal issues, it is
useful to be able to discuss them in a common framework. We must be careful to integrate
the two issues sufficiently well to avoid the types of attacks proposed by Mao and Paterson
[MP02].

Denial of Service Resilience Intuition. We are concerned about the situation in which
a malicious party on the network can cause a server to perform many expensive operations
(and key agreement is one such expensive operation) for no good reason, eventually consuming
all of the server’s available resources. But since the server is willing to place itself on the
network for the use of all users, how can the server know if it is doing work for a good reason
or not? Distinguishing legitimate requests from malicious requests is an essential element of
denial of service resilience.

While one can never be certain about the good intentions of another party on the network,
it is plausible to believe that a client is making a legitimate request if the client is willing to
commit some expensive resources – computation, memory, etc. – to the connection request.
However, if a client does do something expensive to prove its good faith, then a good protocol
should protect the client from being exploited by a malicious party aiming to steal the client’s
work. Last but not least, a server should be able to adapt its procedures to resist being
flooded by many “honest” requests that may be coordinated for maximum impact.

These ideas lead us to the following five informal criteria for a denial-of-service-resilient
protocol:

5

DoS-1. An uncompromised honest server B̂ does not perform any expensive operations with a
client unless it is convinced the client is trying to make a legitimate connection.

DoS-2. Moreover, a server B̂ does not perform any expensive operations unless it is convinced
that the client wants to talk to B̂ and not another server M̂ .

DoS-3. A client Â who commits significant resources to prove its legitimate intentions cannot
have her work stolen: the work that Â does to convince B̂ that it wants to communicate
legitimately with B̂ cannot convince anyone of anything else.

DoS-4. A malicious party1 must use a very large amount of resources if it wishes to prepare
sufficiently many connection requests and “flood” a server with many valid connection
requests.

DoS-5. A server can adjust the amount of work a client has to do in times of higher or lower
load.

In Sect. 3.1.2, we give a formal definition of denial of service resilience and describe in
Sect. 3.2 how it achieves each of the goals DoS-1 through DoS-4; goal DoS-5 is a property of
a particular countermeasure and not of the formal model.

The first two goals aim to protect the server from performing unnecessary expensive
operations. While what qualifies as an expensive operation can vary depending on the
setting, we identify three main classes of expensive operations for the purposes of denial
of service: memory denial of service attacks, in which the server is forced to perform slow,
expensive memory reads or writes or use large amounts of memory; computational denial
of service attacks, in which the server is forced to perform operations requiring significant
computational time (such as exponentiation, elliptic curve point multiplication, or many
simpler operations such as hash function or MAC evaluations); and transmission denial of
service attacks, in which the server is forced to expend resources available to send and receive
communications. In various situations, different notions of expensive can apply; for example,
in mobile environments, transmitting and receiving take a lot of time and power.

To achieve denial of service resilience, we require that a client answer a puzzle that takes
significant computational or memory resources to solve, but is easy for a server to prepare and
verify. The key idea is to tightly bind the puzzles with the identities of the parties involved
to prevent attacks in which work can be stolen or redirected. This allows a server to be more
convinced of a client’s legitimate intention to engage in a key agreement protocol.

Secure Key Agreement Intuition. As noted in Sect. 2, secure key agreement has been
extensively studied. The goal of an adversary in the eCK model is to learn any information
about the session key established by a pair of uncompromised participants. If an adversary
cannot distinguish such a session key from a randomly selected string with non-negligible
probability, then the session key is viewed as secure and suitable for use in bulk encryption.
The model is formally described in Sect. 3.1 and the definitions of security are given in
Sect. 3.1.1.

1A malicious party can be a single entity or a collection of entities working together.

6

3.1 Formal Model Description

Our model is based on the extended Canetti-Krawczyk (eCK) model proposed in [LLM07].
However, instead of all exchanged messages we use a fingerprint of exchanged messages to
identify session.

A protocol takes place among n parties Parties = {Â, B̂, . . .}, where a party is a proba-
bilistic polynomial-time Turing machine. In addition to the certified and validated static
key pair, each party also possesses static information that is not certified. If non-empty, the
non-certified information may be either private or public. Parties are activated via incoming
messages, which are then processed within the party. As a result a party either returns its
outgoing response or indicates if the processing resulted in failure or success.

Pre-session and Session Creation. An execution of the protocol is called a session.
A party may receive an incoming request to initiate a session via a message (i) (Â, B̂) or
(ii) (Â, B̂, “hello”). In the former case Â is called the client or initiator, and reacts by creating
a separate session request (B̂, Â, “hello”) designated for B̂. In the latter case, Â is called
the server or responder, and creates a separate session request (B̂, Â, “hello”) designated for
B̂. Server Â selects a fresh (unique within Â) challenge ch and sends (B̂, Â, “hello”, ch) to
B̂. Within a party the execution of the subroutines between the session request and either
accepting or rejecting the request to initiate a session is called a pre-session. The model does
not prevent a protocol from accepting multiple distinct responses to the same challenge.

The motivation for the pre-session is to include the denial of service countermeasure in
the pre-session and leave expensive operations and resources commitment by a server for the
session. A session can only be reached after a successful pre-session: in other words, expensive
resources will only be committed by the server once the denial of service countermeasure are
passed.

A party Â can be activated to create a session with a message of the form (i) (Â, B̂, “hello”, ch)
or (ii) (Â, B̂, ch, re). If the activation is of type (i) then Â, who is the initiator, prepares re
that passes all protocol conditions and creates an active session. The string re must be unique
within Â; the outgoing message is (B̂, Â, ch, re). If the activation is of type (ii) then Â, who
is the responder in this case, verifies that (Â, B̂, ch, re) satisfies the protocol requirements;
if so a new active session is created, otherwise the message is ignored. If a responder Â
creates a new session, then the outgoing message is (Ψ,mesg), where mesg is prepared by
Â in accordance with the protocol and Ψ is the session string identifier, a string used to
identify sessions within Â and B̂, which is derived from (ch, re) and possibly other publicly
known parameters. The conditions imposed on ch and re allow for the derivation of a string
unique within both Â and B̂.

Session State. Upon creating a session, Â also creates a separate session state that contains
both private and public session-specific information. The private information is needed to
derive a secret session key. The public information is (Â, B̂,Ψ, role, otherinfo), where B̂ is
the purported session peer ; role is either “initiator” or “responder” and otherinfo is any
other public information required by the protocol. Globally the session is identified via
sid = [Â, B̂,Ψ] and Ψ identifies the session within Â. For sid = [Â, B̂,Ψ] we call Â the owner

7

and together Â and B̂ are the communicating partners of sid. Sessions sid = [Â, B̂,Ψ] and
sid∗ = [Ĉ, D̂,Ψ′] are matching if Ψ = Ψ′, Â = D̂, and Ĉ = B̂.

As in the eCK model, Â can be activated to update a session via a message of the form
(Ψ,mesg). Upon receipt of such a message, Â performs validation procedures similar to the
eCK model and updates its state. At any stage a session is in exactly one of the following
states: active, completed or aborted.

Adversary. The adversary M is a probabilistic Turing machine that controls all commu-
nications and party activation via the query Send(·). Parties present M with their outgoing
messages. Leakage of private information to M is modelled via the following adversary
queries:

• StaticKeyReveal(Â): M obtains Â’s static private key.

• EphemeralKeyReveal(sid): M obtains the ephemeral private key of Â in session sid =
[Â, B̂,Ψ].

• SessionKeyReveal(sid): If sid has completed then M obtains the session key in sid.

• Establish(M̂,M): M registers an adversary-controlled party M̂ with static public key
M ∈ G. If a party is not adversary-controlled it is said to be honest.

• DoSExpose(Â): M obtains the non-certified private information belonging to an honest
Â, excluding the session-related ephemeral private keys. Parties against which this
query was issued are called DoS-exposed, otherwise they are called DoS-unexposed.

The role of the new DoSExpose query in our model is to allow us to identify the parties
which ought to still be resilient to denial of service attacks, namely those parties which
are DoS-unexposed. For example, adversary-controlled parties are not relevant to the DoS
portion of the protocol. Moreover, a separate DoSExpose query allows us to separate denial
of service resilience from key agreement security: compromise of key agreement secrets can
be an orthogonal issue to compromise of denial of service.

3.1.1 Key Agreement Security Definitions.

Security is defined via indistinguishability. At any time during the experiment M can make
one special query, Test(sid), to a session sid that must remain fresh throughout the experiment.
The goal of M is to guess whether the response to the query is sid’s key or a random key.

Definition 1 (Fresh session) Let sid be the identifier of a completed session, owned by an
honest party Â with peer B̂, who is also honest. Let sid∗ be the identifier of the matching
session of sid, if it exists. Then sid is fresh if none of the following conditions hold:

1. M issued SessionKeyReveal(sid) or SessionKeyReveal(sid∗) (if sid∗ exists).

2. sid∗ exists and M issued one of the following: either

(a) both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or

8

(b) both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and M issued one of the following: either

(a) both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or

(b) StaticKeyReveal(B̂).

Definition 2 (Secure key agreement protocol) A key agreement protocol is secure if
the following conditions hold: (i) two honest parties that complete matching sessions then,
except with negligible probability they compute the same session key; and (ii) no polynomially
bounded adversary M can distinguish the session key of a fresh session from a randomly
chosen session key with probability greater than 1

2
plus a negligible fraction (in the security

parameter).

3.1.2 Denial of Service Definitions.

In the protocol there is a test that the server performs on some of the messages received
to determine if the client has done sufficient work to merit the server performing expensive
operations. The client’s work, modelled by a puzzling relation, is used to define the protocol’s
denial of service resilience.

Definition 3 (Puzzling relation) Let Challenges and Responses be sets. A relation R ⊆
Parties× Parties× Challenges× Responses is a puzzling relation if

1. deciding if (Â, B̂, ch, re) ∈ R is “easy”, and

2. given Â, B̂, ch, and an oracle U that, on input (Â′, B̂′, ch′), returns re′ with (Â′, B̂′, ch′, re′) ∈
R, it is “hard” to produce re such that (Â, B̂, ch, re) ∈ R and re was not a response
generated by the oracle U upon input (Â, B̂, ch).

The notion of “expensive operation”, “easy”, and “hard” will depend on the application
context. Although we have left these notion vague, they can be formalized, for example as a
proof of work [JJ99]. We omit this formalization as the focus of our work is on the integration
of denial of service resilience techniques into key agreement protocols, not the construction of
suitable puzzles.

Definition 4 (Acceptable pre-session) A pre-session [Â, B̂, ch] is an acceptable pre-
session for B̂ if B̂ generated ch.

Definition 5 (Denial-of-service-resilient protocol) Let R be a puzzling relation. A
protocol Π is denial-of-service-resilient if the following hold for every DoS-unexposed server
B̂:

1. B̂ only performs expensive operations (a) in a session, or (b) for some (low frequency)
periodic update of its non-certified private information ρ, and

2. B̂ only establishes a session [B̂, Â, ch, re] if the pre-session [Â, B̂, ch] was an acceptable
pre-session for B̂ and (Â, B̂, ch, re) ∈ R.

9

Note that we have explicitly avoided merging Definitions 4 and 5 (as Definition 4 could
be part of Condition 2 of Definition 5) because we acknowledge that there may be situations
that require a different notion of acceptable pre-session, for example one-pass key agreement
protocols where both ch and re are generated by the initiator. In particular, it appears to
suffice that B̂ has an assurance that ch was generated independently at random before re.

3.2 Model Implications

In this section we explain how our formal model of denial of service resilience in Definition 5
satisfies the informal goals for denial of service resilience of Sect. 3.

DoS-1. An uncompromised honest server B̂ does not perform any expensive operations with
a client unless it is convinced the client is trying to make a legitimate connection.

By condition 1 of Definition 5, a server B̂ does not perform any expensive operation with
a client until it has established a session, and by condition 2 it will not establish a session
until it received a response to its challenge that satisfies the puzzling relation. In order to
satisfy the puzzling relation, the client must do a significant amount of work because of
condition 2 of Definition 3; by doing this work, the client convinces the server that it is trying
to make a legitimate connection. Moreover, since sessions are unique within a party, replay
attacks of legitimate connection requests are prevented.

DoS-2. Moreover, a server B̂ does not perform any expensive operations unless it is
convinced that the client wants to talk to B̂ and not another server M̂ .

Condition 2 of Definition 3 allows us to meet this criterion: even if an adversary obtains
any tuple (Â, M̂ , ch, re) ∈ R, the tuple (Â, B̂, ch, re) is unlikely to be in R and moreover it
remains hard to produce a response re′ such that (Â, B̂, ch, re′) ∈ R. Since it is hard to create
such a tuple given oracle access to R, then it is still hard to construct any tuple in R without
oracle access.

Our approach avoids the attack of Mao and Paterson [MP02] against IKEv2 in which
an attacker can redirect traffic from her server towards other servers and can cause the
receiving server to deplete its connection resources at low expense to the attacker. That
attack is possible because there is no cryptographic binding between the denial of service
countermeasure and the identities of the parties involved. By including the names of the
client and server in the puzzling relation, a server B̂ can be assured that whoever solved the
puzzle intended to communicate with B̂.

DoS-3. A client Â who commits significant resources to prove its legitimate intentions
cannot have her work stolen: the work that Â does to convince B̂ that it wants to communicate
legitimately with B̂ cannot convince anyone of anything else.

Suppose B̂ is a DoS-unexposed server and suppose an honest client Â starts a pre-session
[Â, B̂, ch], and then finds a value re such that (Â, B̂, ch, re) ∈ R. The client wishes that the
response value should not be useful to anyone else trying to establish a session; in other
words, no one should be able to steal Â’s work and use it in another pre-session.

10

Suppose [Â′, B̂′, ch′] is another pre-session. Given these values, it is hard to produce re′

such that (Â′, B̂′, ch′, re′) ∈ R, even with help from another pre-session such as [Â, B̂, ch],
because R is a puzzling relation. The help given by the other pre-session can be modelled as
one response of the oracle U in Definition 3 for another pre-session, and this is of no help in a
puzzling relation. Thus, an honest client’s work in solving a puzzle is of no use to anyone else
responding to a different challenge, or with a different server, or with a different user name.

If the adversary M simply relays Â’s entire response and then participates in Â’s place,
the server will proceed with key agreement but this session will ultimately fail, since it is
secure in the sense of Definition 2 key agreement protocols, and thus M cannot complete a
session masquerading as Â.

DoS-4. A malicious party must use a very significant amount of resources if it wishes to
prepare sufficiently many connection requests and “flood” a server with many valid connection
requests.

As noted in DoS-1, a server will only perform expensive operations if it has been convinced
that the client is trying to make a legitimate connection, meaning the client has solved
an instance of the puzzling relation, which is “hard” and requires a significant amount of
resources. Suppose that for an attacker to start a session requires t steps of computation
(e.g., t may be the number of cycles it takes to solve a computationally bound puzzling
relation), and a server has enough computational resources to support n connections per
second. Then, roughly speaking, an attacker’s computers must be able to perform tn steps
of computation per second to sustainably render the server unavailable through a denial
of service attack, which may require distributed resources. By registering many dishonest
parties the above attack can be incorporated in our model. While not completely defending
against such powerful distributed attacks, we can at least allow the amount of denial of
service resilience to be tuned in the event of heavy traffic. On the other hand what our model
assures is that the adversary cannot use honest parties to mount such distributed attacks.
For example, a DoS-resilient protocol guards against the attack where the adversary registers
a single malicious party M̂ , initiates pre-sessions between honest parties and M̂ , and then
forwards messages from the honest parties to create many sessions at an honest server. That
is, the model defends against Mao-Patterson type of attacks.

Consider also the case of replay attacks, in which an attacker resends the same message
many times to a server. Suppose in particular that an attacker replays a response value re
for a pre-session [Â, B̂, ch]. This set of values leads to the server session [B̂, Â, ch, re], which
already exists in the server. Since sessions identifiers are unique in the model, the server will
not start a new session and hence commit no new resources as a result of this replay. This
requires the server to store a table of session identifiers, but this does not result in a denial
of service attack in theory since the server commits memory resources for the entries in the
table only once the puzzling relation has been passed. To limit the size of the table, the
server could change the non-certified information ρ periodically. When receiving a previous
challenge and response, an entirely acceptable action would be for the server to respond to
the replay with the same response it gave previously; this prevents puzzle stealing attacks
where the adversary responds to a puzzle faster than a legitimate client. Now, if the attacker
were to compute a different response value re′ for the pre-session [Â, B̂, ch], then the server

11

would commit new resources to the new session, but this is acceptable since the attacker
solved the puzzling relation, just as a legitimate client must.

Since in the Canetti-Krawczyk model we allow the adversary to control the delivery of
messages, an adversary may choose not to deliver the final message from the client to the
server and leave the server with an incomplete session (similar to the half-open connections
of TCP SYN flood attacks [Edd07]). Our model does not view this as a denial of service
attack, because the server has been assured that the other party performed many expensive
computations to create the connection. This type of attack can be mitigated, without affecting
the security assurance nor preventive DoS countermeasures, by conventional server policies
to deal with open connections that are not completed for a predefined period of time. Such
countermeasures can be separately addressed once the server is assured about the correct
connection between the proof of work, the client’s identity and the client’s intended recipient
– exactly what our model provides.

4 A Secure DoS-Resilient Key Agreement Protocol

Our DoS-CMQV protocol, given in Fig. 1, is an adaptation of the CMQV [Ust08] secure
authenticated key agreement protocol. We use the problem of finding preimages for a random
hash function as the expensive puzzle at the heart of the puzzling relation that a client needs
to solve.

The notation L[i] refers to the ith component in the tuple L. H0 and H1 are random
hash functions [BR04] that return bit strings; all other hash functions return random integers
between 1 and q, the order of the group G generated by g. We use x[1...w] to denote
the first w bits of x. We note that in practice H1 should be chosen so as to be unique
to the protocol so that puzzles cannot be outsourced to another protocol; for example,
H1(. . .) = SHA-256(“DoS-CMQV”, 1, . . .).

4.1 Security Analysis

Theorem 1 If H0, H1, . . . , H5 are random oracles [BR04], and G is a group where the Gap
Diffie-Hellman (GDH) assumption [OP01] holds, then DoS-CMQV is a secure key agreement
protocol.

Argument. The DoS-CMQV security argument is similar to the argument presented for
CMQV in [Ust08]. We proceed to outline the argument. Verifying condition 1 of Definition 2
is straightforward. It remains to verify condition 2.

In the model here parties possess additional (non-certified) private information ρ, which
the adversary can obtain via DoSExpose query. For each of the events in the analysis of
CMQV, the solver establishes and simulates the parties similar to the CMQV analysis. The
main difference is that when parties are established the solver selects randomly the value
ρ for each party. The DoSExpose queries are answered faithfully and they do not affect the
freshness of the session. Since the new adversary query is not relevant to the security analysis
of the events, the solver can transform the DoS-CMQV adversary to a GDH solver with
similar success and running time as a CMQV adversary. Hence a polynomially bounded
DoS-CMQV adversary contradicts the assumptions in the theorem. �

12

DoS-CMQV with security parameter λ
Client Â Server B̂

0. g, a,A = ga, B g, b, B = gb, A, ρ ∈R {0, 1}λ

1. “hello”,Â,B̂−−−−−−→ i ∈R {0, 1}λ
2. j = H0(ρ, Â, B̂, i)
3. store x̃ ∈R {0, 1}λ ch←−−−−−− ch = (i, j)
4. x = H2(x̃, a), X = gx

5. find ` s.t.
H1(Â, B̂, ch, X, `)[1...20] = 0 . . . 0

6. re = (X, `),Ψ = (ch, re)

7. establish session [Â, B̂,Ψ] Â,ch,re−−−−−−→ verify ch[2] = H0(ρ, Â, B̂, ch[1])
8. verify H1(Â, B̂, ch, re)[1...20] = 0 . . . 0
9. establish unique session [B̂, Â, ch, re]
10. store Â,Ψ = (ch, re)
11. X = re[1]
12. verify X ∈ G
13. ỹ ∈R {0, 1}λ, y = H2(ỹ, b)
14. store Y = gy

15. d = H3(X, Â, B̂), e = H3(Y, Â, B̂)
16. σ = (XAd)y+eb

17. store M1 = H4(“server finished”,
Â, B̂, ch, re, Y, σ)

18. store M2 = H4(“client finished”,
Â, B̂, ch, re, Y, σ)

19. verify Y ∈ G Ψ,Y,M1←−−−−−− store K = H5(Â, B̂, ch, re, Y, σ)
20. d = H3(X, Â, B̂), e = H3(Y, Â, B̂)
21. σ = (Y Be)x+da

22. verify M1

23. M2 = H5(“client finished”,
Â, B̂, ch, re, Y, σ)

24. K = H5(Â, B̂, ch, re, Y, σ) Ψ,M2−−−−−−→ verify M2

Figure 1: DoS-CMQV: A denial-of-service-resilient adaptation of the CMQV protocol.

4.2 Denial of Service Resilience Analysis

In this section we show that the DoS-CMQV protocol given in Fig. 1 is denial-of-service-
resilient according to Definition 5. Since this definition (and the related definition of a
puzzling relation) includes the intentionally vague terms “expensive operation”, “easy”, and
“hard”, we need to define what these terms mean for a concrete instantiation of the definition.

For our purposes, an expensive operation is one of the following operations: storing a
per-connection or per-session value in memory (other than a long-term value), performing
a group exponentiation, or making a large number of calls (say, more than 210) to a hash
oracle.

We first establish, via the following lemma, that the relation used in the DoS-CMQV
protocol is a puzzling relation and then show that our protocol is resilient to denial of service
attacks

13

Lemma 1 LetR be the relation defined such that (Â, B̂, ch, re) ∈ R if and only if H1(Â, B̂, ch, re)[1...20] =
0 . . . 0, where H1 is a random hash function. Then R is a puzzling relation, where “hard”
means requiring approximately 220 hash function queries on average, and “easy” is something
that is not an “expensive operation” as defined above.

Argument. Deciding membership in R is easy for a particular tuple because it involves
only a single call to H1.

Moreover, given Â, B̂, and a random ch, producing a value re such thatH1(Â, B̂, ch, re)[1...20] =
0 . . . 0 is hard and requires approximately 220 hash oracle queries on average. To find such an
re requires finding a preimage for the random hash function. The oracle U helps us find other
preimages of H1. Our task, then is to find a preimage of the correct format involving Â, B̂,
ch. But since H1 is a random hash function, other outputs do not help in finding a preimage
for this input. Since H1 is a random hash function outputting 20 bits, this is a hard task
that requires approximately 220 queries on average. �

This hash puzzle is similar to the partial inversion proof of work (PIPOW) problem
of Jakobsson and Juels [JJ99, §3.1]. By their Claim 1, we know that any prover Â with
memory bounded by m who performs on average at most w steps of computation and is
given (Â, B̂, ch) can find a response re such that (Â, B̂, ch, re) ∈ R with probability at most
p+ o(m/220) where p = 1/(220 − w).

Theorem 2 The DoS-CMQV protocol is a denial-of-service-resilient protocol, where “easy”,
“hard”, and “expensive operation” are defined as above.

Argument. By the Lemma above, R is a puzzling relation.
Let [Â, B̂, ch] be a pre-session. According to the protocol, B̂ does not perform any

expensive operation until line 10, which is not reached unless the server’s checks on lines 7
and 8 are passed and a new session is established on line 9.

If the check on line 8 is passed, namely if H1(Â, B̂, ch, re[1], re[2])[1...20] = 0 . . . 0, then

(Â, B̂, ch, re) ∈ R. If the check on line 7 is passed, namely if ch[2] = H0(ρ, Â, B̂, ch[1]), then,
except with negligible probability, ch[2] was generated only be someone who knew both ρ and
ch[1]. Since B̂ is a DoS-unexposed party, no DoSExpose(B̂) query could have been issued and
since ρ is only ever used as an input to a random oracle, only B̂ knows ρ. Thus, [Â, B̂, ch] is
an acceptable pre-session.

Hence, B̂ establishes a session only if the corresponding pre-session is acceptable and the
tuple is in the puzzling relation. Note that since sessions must be unique within a party, the
server only performs these expensive operations once per session. Thus, DoS-CMQV is a
denial-of-service-resilient protocol. �

Tuning the Puzzling Relation. The puzzle used in DoS-CMQV can be tuned by the
server based on its load. The client must find a hash function preimage; for concreteness, we
have specified that the first 20 bits should be zeros, but the length could be a parameter w
set by the server depending on its current load. The server would need to include w in the
computation of j on line 2, return w as part of ch on line 3, and include w in the check on
line 7 to avoid spoofing.

14

In practice, H1 could be implemented by using a standard cryptographic hash function,
such as SHA-1, and truncating the output to the first w bits. In times of light load, the
server could require that clients truncate only to the first 5 or 10 bits of output, but in
heavier load could require that clients truncate to 20 or 25 bits of output to make the cost
of mounting a denial of service attack higher. It takes just under 3 seconds to perform 220

SHA-1 evaluations on one core of our 2 GHz Intel Core 2 Duo processor using OpenSSL
0.9.7`. This may be an acceptable computational burden for the client in many scenarios.

5 Other Denial of Service Constructions

Memory-Bound Puzzling Relations. While the protocol given in Sect. 4 uses a puzzling
relation based on finding preimages in a hash function, other types of puzzling relations can be
used, demonstrating the flexibility of our framework. Abadi et al. [ABMW03], for example,
described puzzles in which memory access time provides an expected lower bound on the time
it takes to solve the puzzle, removing disparities in processor speed between large computers
and small devices. However, care must be taken in choosing parameters for memory-bound
puzzles: the cost incurred by a server in setting up one of these memory-bound puzzles,
while much less expensive than the cost incurred by a client solving the puzzle, can still
be significant. For the memory-bound puzzles of [ABMW03], it took a 2.4 GHz Pentium 4
server approximately 2−7 seconds to create a puzzle that takes approximately 22 seconds to
solve. By comparison, the time to do one 1024-bit modular exponentiation on a computer of
similar speed is less: only 2−9 seconds.

JFKi. In the JFKi protocol of [ABB+04, §2.3], the denial of service resilience goal for the
server is to avoid expensive operations unless the client performs resource-heavy operations,
namely group exponentiations. There are two main ideas used: reuse of ephemeral public
keys and use of a keyed hash function. The purpose of reusing ephemeral public keys is to
distribute the cost of an expensive operation across multiple sessions. This allows the authors
to argue the client must perform her share of the work first, in terms of bearing the cost
of establishing a round communication trip. The keyed hash function is used by the server
to verify that the client indeed executed the round. Note that the server does not need to
dedicate any resources to verify the challenge was created by the server. This can be viewed
as the pre-session stage of the protocol since the goal of the first round trip is to filter out
bogus connections.

JFKi can be described in our model of denial of service resilience, but with weak definitions
of “hard” in the puzzling relation. In the implied puzzling relation in JFKi, the client must
echo back to the server all the received values and the preimage of the client’s nonce. If the
puzzling relation test passes, then the server establishes a new session and computes the
shared Diffie-Hellman key.

The problem with JFKi’s puzzling relation is that there is no binding between the client’s
ephemeral public key and the solution to the puzzling relation. A dishonest client can
use the same solution to the puzzling relation with different ephemeral public keys (and
it can generate these ephemeral public keys very cheaply, for example, by generating gi,
g · gi = gi+1, g · gi+1 = gi+2, . . .) to cause the server to perform many exponentiations with

15

little cost to the client. Thus, given the JFKi puzzling relation and a single solution to the
puzzling relation, generating more solutions is easy, contradicting Condition 2 of Definition 3.

Hence, JFKi does not satisfy informal goal DoS-4: the protocol is not resilient to flooding
attacks. DoS-CMQV avoids this problem: producing a solution to the puzzling relation
means finding a preimage in the hash function and the values cannot be repeated if the server
is to establish a new session.

One approach to fixing the denial of service resilience of JFKi was given by Smith et
al. [SGNB06]. They note that JFKi is not denial-of-service-resilient when analyzed under
Meadows’ framework [Mea99]. They use a hash function preimage puzzle as well to bind
the puzzle solution to the key exchange session at hand. There construction still preserves a
fundamental design characteristic of JFKi: the responder must reuse its ephemeral private key
in order to achieve denial of service resilience, preventing full freshness in the Canetti-Krawczyk
model.

Host Identity Protocol. The Host Identity Protocol (HIP) [MNJH04] was designed to
offer protection against denial of service attacks. HIP (in [MNJH04, §4.1.1]) uses a similar
puzzling relation to that of Sect. 4: the client must find a preimage in SHA-1 such that
the k lowest-order bits of the output are zero. HIP includes the identities of the initiator
and responder in the hash function computation as we have done. Our model provides a
theoretical interpretation of the security of HIP against denial of service attacks and the
value of including the client and server identities in the hash function computation.

6 Conclusion and Open Problems

We have given the first formal definition of denial of service resilience for secure key agreement
protocols. Our model uses puzzles solved by the client as an indication of interest in a
legitimate connection, and a variety of puzzles, both memory-bound and computation-bound,
can be used. We described a protocol, DoS-CMQV, that provides resilience to denial of
service attacks and offers secure key agreement. Additionally, we analyzed the existing JFKi
and HIP protocols to compare their notions of denial of service resilience.

Denial of service resistance countermeasures often depend on the freshness of challenges.
Our model could be extended to explicitly consider the update of puzzle freshness and how
past puzzles affect current denial of service resilience.

This new framework for analyzing denial of service resilience can be applied in conjunction
with other goals for key agreement protocols. For example, the JFK protocols [ABB+04]
aim to offer privacy features: JFKi protects the initiator’s identity and JFKr protects the
responder’s identity. Future work could involve designing denial-of-service-resilient protocols
with similar privacy measures.

This model can also be applied to give denial of service resilience to other types of key
agreement protocols, for example password-authenticated key agreement protocols. Adapting
this technique for use in IPsec or TLS would provide denial of service resilience in important
Internet protocols.

16

Acknowledgements.

This work was performed while the authors were at the University of Waterloo. D.S. was
supported by an NSERC Canada Graduate Scholarship. The authors are grateful for the
helpful advice of Alfred Menezes and Ian Goldberg.

References

[ABB+04] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis,
Angelos D. Keromytis, and Omer Reingold. Just Fast Keying: Key agreement
in a hostile Internet. ACM Transactions on Information and System Security,
7(2):1–30, May 2004. doi:10.1145/996943.996946.

[ABMW03] Mart́ın Abadi, Michael Burrows, Mark Manasse, and Ted Wobber. Moderately
hard, memory-bound functions. In Proc. Internet Society Network and Distributed
System Security Symposium (NDSS) 2003. Internet Society, 2003. url http:

//www.isoc.org/isoc/conferences/ndss/03/proceedings/.

[AN97] Tuomas Aura and Pekka Nikander. Stateless connections. In Yongei Han,
Tatsuaki Okamoto, and Sihan Qing, editors, Proc. 1st International Conference
on Information and Communications Security, LNCS, volume 1334, pp. 87–97.
Springer, November 1997. doi:10.1007/BFb0028465.

[ANL00] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant
authentication with client puzzles. In Bruce Christianson, Bruno
Crispo, James A. Malcolm, and Michael Roe, editors, SECPROT, LNCS,
volume 2133, pp. 170–177. Springer, 2000. doi:10.1007/3-540-44810-
1 22. url http://research.microsoft.com/en-us/um/people/tuomaura/

Publications/aura-nikander-leiwo-protocols00.pdf.

[Bac97] Adam Back. A partial hash collision based postage scheme, 1997. url http:

//www.hashcash.org/papers/announce.txt.

[BM03] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Estab-
lishment. Springer, 2003.

[BR04] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Pfitzmann and Liu [PL04], pp. 62–73.
doi:10.1145/168588.168596.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement proto-
cols and their security analysis. In Michael Darnell, editor, Cryptography and
Coding – 6th IMA International Conference, LNCS, volume 1355. Springer, 1997.
doi:10.1007/BFb0024447.

[CK01a] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Birgit Pfitzmann, editor, Advances

17

http://dx.doi.org/10.1145/996943.996946
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/
http://dx.doi.org/10.1007/BFb0028465
http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/3-540-44810-1_22
http://research.microsoft.com/en-us/um/people/tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf
http://research.microsoft.com/en-us/um/people/tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf
http://www.hashcash.org/papers/announce.txt
http://www.hashcash.org/papers/announce.txt
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/BFb0024447

in Cryptology – Proc. EUROCRYPT 2001, LNCS, volume 2045, pp. 453–474.
Springer, 2001. doi:10.1007/3-540-44987-6 28. Full version available as [CK01b].

[CK01b] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels, 2001. eprint http://eprint.iacr.org/2001/

040. Extended abstract published as [CK01a].

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, Advances in Cryptology – Proc. CRYPTO ’92,
LNCS, volume 740, pp. 139–147. Springer, 1992. doi:10.1007/3-540-48071-4 10.

[DvOW92] Whitfield Diffie, Paul van Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–125,
June 1992. doi:10.1007/BF00124891.

[Edd07] Wesley M. Eddy. TCP SYN flooding attacks and common mitigations, August
2007. url http://www.ietf.org/rfc/rfc4987.txt. RFC 4987.

[GS95] Li Gong and Paul Syverson. Fail-stop protocols: An approach to designing secure
protocols. In Proceedings of the 5th IFIP Working Conference on Dependable
Computing for Critical Applications (DCCA-5), pp. 44–55, September 1995. url
http://citeseer.ist.psu.edu/article/gong94failstop.html.

[JB99] Ari Juels and John Brainard. Client puzzles: A cryptographic countermea-
sure against connection depletion attacks. In Proc. Internet Society Network
and Distributed System Security Symposium (NDSS) 1999, pp. 151–165. Inter-
net Society, 1999. url http://www.isoc.org/isoc/conferences/ndss/99/

proceedings/.

[JJ99] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols.
In Bart Preneel, editor, Proceedings of the IFIP TC6/TC11 Joint Working
Conference on Secure Information Networks: Communications and Multimedia
Security, IFIP Conference Proceedings, volume 152, pp. 258–272. Kluwer, 1999.
url http://www.rsa.com/rsalabs/node.asp?id=2049.

[Kau05] Charlie Kaufman. Internet Key Exchange (IKEv2) protocol, December 2005.
url http://www.ietf.org/rfc/rfc4306.txt. RFC 4306.

[Kra03a] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In Dan Boneh, editor, Advances in
Cryptology – Proc. CRYPTO 2003, LNCS, volume 2729, pp. 400–425. Springer,
2003. doi:10.1007/b11817. Full version available as [Kra03b].

[Kra03b] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols, 2003. url http://www.ee.technion.

ac.il/~hugo/sigma.ps. Short version published as [Kra03a].

18

http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2001/040
http://eprint.iacr.org/2001/040
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/BF00124891
http://www.ietf.org/rfc/rfc4987.txt
http://citeseer.ist.psu.edu/article/gong94failstop.html
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
http://www.rsa.com/rsalabs/node.asp?id=2049
http://www.ietf.org/rfc/rfc4306.txt
http://dx.doi.org/10.1007/b11817
http://www.ee.technion.ac.il/~hugo/sigma.ps
http://www.ee.technion.ac.il/~hugo/sigma.ps

[Kra05a] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Victor Shoup, editor, Advances in Cryptology – Proc. CRYPTO 2005, LNCS,
volume 3621, pp. 546–566. Springer, 2005. doi:10.1007/11535218 33. Full version
available as [Kra05b].

[Kra05b] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol,
2005. eprint http://eprint.iacr.org/2005/176.pdf. Extended abstract
published as [Kra05a].

[KS99] Phil Karn and William Allen Simpson. Photuris: Session-key management
protocol, March 1999. url http://www.ietf.org/rfc/rfc2522.txt. RFC
2522.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
First International Conference on Provable Security (ProvSec) 2007, LNCS,
volume 4784, pp. 1–16. Springer, 2007. doi:10.1007/978-3-540-75670-5 1. eprint
http://eprint.iacr.org/2006/073.

[Mea99] Catherine Meadows. A formal framework and evaluation method for net-
work denial of service. In Proc. 1999 IEEE Computer Security Foun-
dations Workshop (CSFW), p. 4. IEEE Computer Society Press, 1999.
doi:10.1109/CSFW.1999.779758.

[MNJH04] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas R. Henderson.
Host identity protocol. Online, February 2004. url http://tools.ietf.org/

html/draft-moskowitz-hip-09. Internet-Draft.

[MP02] Wenbo Mao and Kenneth G. Paterson. On the plausible deniability feature of
Internet protocols. Manuscript, 2002. url http://citeseer.ist.psu.edu/

678290.html.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Kwangjo Kim, editor,
Public Key Cryptography (PKC) 2000, LNCS, volume 1992, pp. 104–118. Springer,
2001. doi:10.1007/3-540-44586-2 8.

[PL04] Birgit Pfitzmann and Peng Liu, editors. Proc. 11th ACM Conference on Computer
and Communications Security (CCS). ACM, 2004.

[SGNB06] Jason Smith, Juan Gonzalez-Nieto, and Colin Boyd. Modelling denial of ser-
vice attacks on JFK with Meadows’s cost-based framework. In Rajkumar
Buyya, Tianchi Ma, Reihaneh Safavi-Naini, Chris Steketee, and Willy Susilo, ed-
itors, Proc. 4th Australasian Information Security Workshop – Network Security
(AISW-NetSec) 2006, CRPIT, volume 54, pp. 125–134. Australian Computer
Society, 2006. url http://crpit.com/confpapers/CRPITV54Smith.pdf.

19

http://dx.doi.org/10.1007/11535218_33
http://eprint.iacr.org/2005/176.pdf
http://www.ietf.org/rfc/rfc2522.txt
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://eprint.iacr.org/2006/073
http://dx.doi.org/10.1109/CSFW.1999.779758
http://tools.ietf.org/html/draft-moskowitz-hip-09
http://tools.ietf.org/html/draft-moskowitz-hip-09
http://citeseer.ist.psu.edu/678290.html
http://citeseer.ist.psu.edu/678290.html
http://dx.doi.org/10.1007/3-540-44586-2_8
http://crpit.com/confpapers/CRPITV54Smith.pdf

[Ust08] Berkant Ustaoglu. Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Designs, Codes and Cryptography, 46(3):329–342, March
2008. doi:10.1007/s10623-007-9159-1. eprint http://eprint.iacr.org/2007/

123.pdf.

[WJHF04] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. New client
puzzle outsourcing techniques for dos resistance. In Pfitzmann and Liu [PL04],
pp. 246–256. doi:10.1145/1030083.1030117.

[WR03] Xiaofeng Wang and M.K. Reiter. Defending against denial-of-service attacks
with puzzle auctions. In Proc. 2003 IEEE Symposium on Security and Privacy
(SP’03), pp. 78–92. IEEE Press, 2003. url http://ieeexplore.ieee.org/

xpls/abs_all.jsp?isnumber=27002&arnumber=1199329.

20

http://dx.doi.org/10.1007/s10623-007-9159-1
http://eprint.iacr.org/2007/123.pdf
http://eprint.iacr.org/2007/123.pdf
http://dx.doi.org/10.1145/1030083.1030117
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329

	19702.pdf
	19702.pdf
	Motivation
	Previous Work
	Modelling Denial of Service Resilience and Security
	Formal Model Description
	Key Agreement Security Definitions.
	Denial of Service Definitions.

	Model Implications

	A Secure DoS-Resilient Key Agreement Protocol
	Security Analysis
	Denial of Service Resilience Analysis

	Other Denial of Service Constructions
	Conclusion and Open Problems

