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Abstract 

Experiments were conducted to see the effects of a set of factors on the Resilient 

backpropagation (Rprop) artificial neural network classification of an Indian urban 

environment using IRS-1C satellite data. Factors investigated were sample size, number of 

neurons in hidden layers and number of epochs. The effect of including texture information in 

the form of neighbourhood information and grey level co-occurance matrix (GLCM) features 

in the classification process has been explored. Statistically similar overall classification 

accuracy is achieved for Rprop and Gaussian maximum likelihood classification (GMLC). 

Investigations have revealed that a large sample size gave higher test accuracy; variation in 

number of neurons in hidden layer did not affect the overall classification accuracy 

significantly; lesser number of epochs resulted in higher overall test accuracy. Incorporation 

of texture information by both approaches improved classification accuracy in a statistically 

significant manner. 
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1. INTRODUCTION 

 

Attempts have been made in the recent past to use Artificial Neural Networks (ANNs) 

for alleviating some of the problems with conventional parametric pattern recognition 

techniques (Benediktsson et al. 1990; Bischof et al. 1992; Paola and Schowengerdt 1995a; 

Kanellopoulos and Wilkinson 1997). A few advantages of ANNs over conventional statistical 

techniques for pattern recognition are as follows. ANNs have an intrinsic ability to generalize; 

no assumption is made about the statistical distribution of the input data; these are capable of 

forming highly non-linear decision boundaries in the feature space; ANNs offer a more robust 

approach to land cover discrimination than that currently obtained using conventional 

supervised image classification techniques; ANNs have potential to provide higher 

classification accuracy with small training data compared to Gaussian maximum likelihood 

classification (GMLC) (Atkinson and Tatnall 1997). The accuracy of the classification using 

ANNs  is a function of a wide range of factors. Paola and Schowengerdt (1995b) have 

presented a detailed review on backpropagation neural net 

works and discussed various factors affecting classification accuracy. Investigations 

into these factors have focused especially on issues like type of network, its size and 

complexity, training set size, the learning algorithm, number of training iterations etc. (Foody 

et al. 1995a, 1995b, Foody and Arora 1997).   

 

Most methods of classification use the grey scale values of a set of corresponding 

pixels taken from different spectral bands of the same scene to determine land use. However, a 

single ground cover usually occupies a region of neighbouring pixels and improved 



  

  

identification may be obtained by considering an entire region rather than a single pixel. The 

variability of grey values within the region can be taken into account together with the actual 

grey values. This variability constitutes the texture of the ground cover. Texture is a 

fundamental characteristic of image data and is often crucial to target discrimination 

(Woodcock and Strahler 1987). For spatially complex and spectrally mixed classes, the 

classification accuracy could improve if the spatial properties of classes were incorporated 

into the classification criterion (Lee and Philpot 1991). Texture methods are most appropriate 

under condition of high local variance like urban environments.  

 

Most of the studies reported for land use classification have used standard back 

propagation methods, which are based on gradient descent algorithms with inherent 

limitations (Kanellopoulos et al. 1992; Paola and Schowengerdt 1995a; Shaban 1999). A 

better algorithm Rprop (Riedmiller and Braun, 1993) that overcomes the disadvantages of 

gradient descent has not attracted much attention of the remote sensing community despite its 

attractive feature. This paper, therefore, presents investigations of using Rpop artificial neural 

network along with textural information in image classification of an urban environment with 

IRS-1C satellite data. 

 

2. OBJECTIVES, STUDY SITE AND DATA RESOURCE 

 

The objective of this study was to evaluate the results of Rprop classification in 

comparison to GML classification (GMLC). Another objective was to investigate effects of a 

set of factors on the accuracy of Rprop classification. The factors investigated were sample 



  

  

size, number of neurons in hidden layers and number of epochs. Further, the effects of 

including texture properties in the form of neighbourhood information and grey level co-

occurrence matrix (GLCM) based  features on classification accuracy have also been 

investigated. The study area is a typical urban Indian city Lucknow, the state capital of the 

northern Indian state Uttar Pradesh. The geographical extent of Lucknow ranges between 

North latitudes 26o 45’ and 27o and the East longitudes 80o 50’ and 81o 5’. A central extract 

(512x512 pixels) from the area is chosen for this study. Figure 1 shows false colour composite 

(FCC) of the study area. Twelve classes covered the majority of urban land use features (Table 

1). The satellite data for the study area included four multispectral bands of IRS-1C, LISS-III 

sensor with 23.5 m pixel size.  

The following sections present the literature survey, theoretical background of Rprop 

and various factors considered for the study. The experimental design, results and conclusions 

for various investigations follow these. 

 

3. LITERATURE SURVEY 

 

The potential and capability of the neural network approaches over GMLC to deal with 

complex remotely sensed data has been demonstrated by many researches. Hepner et al. 

(1990) compared between BP ANN and GMLC in a land cover classification. They observed 

that the ANN could classify imagery better than GMLC using identical training sites although 

it was computationally very intensive. However, these conclusions were based on purely 

visual interpretation and without any mathematical comparison between the accuracy obtained 

in the ANN and GMLC techniques.  



  

  

Similar observations were made by Foody et al. (1995a, 1995b) about the ability of 

ANN to have higher classification accuracy compared to the discriminant analysis (DA), 

especially when smaller training sets were available. The differences were only significant if 

the data were non-normally distributed. However, if the remotely sensed data satisfied the 

assumptions of conventional statistical classifiers (say normality in case of GMLC), no 

significant difference in classification accuracy was usually observed between conventional 

and neural networks classifications. When a priori information was available to the DA, the 

difference in accuracy between neural network and DA was found to be insignificant. It was 

also observed that the non-representative training data would lead, as expected, to significant 

difference between training data and testing classification accuracies and the effect was fairly 

similar for both the ANN and DA classifications.  

 

Paola and Schowengerdt (1995a) compared a BP neural network with GMLC for 

classifying 12 urban land use classes using TM imagery for two cities. The neural network 

approach achieved higher test site accuracy than the GMLC, but required considerably higher 

computing time. The closer test and training site accuracies indicated that the neural network 

generalised better than the GMLC method. The classification time with ANN was about 15 

times higher than with GMLC to produce the same overall test site accuracy. For the second 

city, the two maps were visually and numerically similar, although the neural network was 

superior in suppression of mixed pixel classification errors. These results indicated that the BP 

approach to neural network training was computationally intensive, taking at least an order of 

magnitude more time than the total classification time for GMLC. However, the classification 

time, once training was complete, was less for the neural network.  



  

  

The accuracy of the classification using ANNs  is a function of a wide range of factors. 

Paola and Schowengerdt (1995b) also presented a detailed review on backpropagation neural 

networks and discussed various factors affecting classification accuracy. Investigations into 

these factors have focused especially on issues such as type of network, its size and 

complexity, training set size, the learning algorithm, number of training iterations etc. (Foody 

et al. 1995a, 1995b, Foody and Arora 1997).  

 

A large number of measures have been proposed to extract texture information from an 

image. For a comprehensive review of texture algorithms, one can refer to Haralick (1973), 

Gool et al. (1985), and Dikshit (1992). Conners et al. (1984) obtained higher classification 

accuracies by segmenting a high-resolution black and white image of urban area using 

GLCM-derived texture operators. Hlavka (1987) used edge-density texture measure with 

Thematic Mapper simulator (TMS) data and observed that urban and rural areas could be 

distinguished with texture alone. Use of two features of GLCM such as entropy and inverse 

difference moment derived from directional spatial co-occurrence matrices along with the 

spectral features improved the overall classification accuracy with SPOT data (Franklin and 

Peddle 1989). For an urban area, Lee and Philpot (1991) described a pattern-matching 

algorithm for classification which performed either as good as or superior to GLCM. Shaban 

(1999) obtained significant improvement in classification accuracy of Indian urban 

environment by a combination of texture and spectral features compared with pure spectral 

feature using SPOT images. 

 

 



  

  

4. THEORATICAL BACKGROUND 

 

The investigations in this paper have used Rprop artificial neural network and 

Gaussian maximum likelihood classification (GMLC) algorithms.  The GMLC is a parametric 

classifier that relies on the second order statistics of a Gaussian probability density function 

(pdf) model for each class. It is often used as a reference for classifier comparison because, if 

the class pdf’s are indeed Gaussian, it is the optimal classifier (Paola and Schowengerdt 

1995a).  Further details about GMLC are available with any of the standard text on remote 

sensing (Mather 1987, Richards 1993). 

 

Many variants of neural network algorithms derive from the multilayer 

backpropagation neural network. For multispectral image classification, the most widely used 

input/output configuration is one input node for each input channel (typically each band of a 

multispectral image) and one output node for each desired class label. The number and size of 

the hidden layer is not determinate, though a few guidelines exist to help the user (Paola and 

Schowengerdt 1995a, Kanellopoulos and Wilkinson 1997). Every input and output node is 

connected to all of the hidden layers nodes. Each interconnection has an associated weight and 

as a whole contain (after training) the distributed, learned information about the classes. For 

complete details about ANNs one can refer to Zurada (1997), Rumelhart et. al (1986) and 

Dayhoff (1990).  

 

A multilayer network typically uses sigmoid transfer functions in the hidden layers. 

These functions, are often called squashing functions since they compress an infinite input 



  

  

range into a finite output range. Sigmoid functions are characterized by the fact that their slope 

must approach zero, as the input gets large. This causes a problem when using steepest 

descent to train a multi layer network with sigmoid functions, since the gradient can have a 

very small magnitude, and therefore cause small changes in the weights, even though the 

weights are far from their optimal values. 

 

The purpose of Rprop training algorithm is to eliminate these harmful effects of the 

magnitudes of the partial derivatives. Only the sign of the derivative is used to determine the 

direction of the weight update, the magnitude of the derivative has no effect on the weight 

update. The size of the weight change is determined by a separate update value. The update 

value for each weight is increased by a suitable factor, whenever the derivative of the 

performance function with respect to that weight has the same sign for two successive 

iteration. The update value is decreased by another factor whenever the derivative with respect 

to that weight change sign from the previous iteration. If the derivative is zero, then the update 

value remains the same. Whenever the weights are oscillating the weight changes sign from 

the previous iteration. If the weights continue to change in the same direction for several 

iterations, then the magnitude of the weight change will be increased. Rprop generally 

converges much faster than the other algorithms (Riedmiller and Braun, 1993). 

 

Following paragraphs presents the theoretical background about factors such as sample 

size, number of neurons in the hidden layers, number of epochs and texture considered for the 

study.  

 



  

  

The training data must be representative of the class with which it is associated. In 

addition, these classes must have some seperability in the feature space for the classifier to be 

able to discriminate them. According to a general guideline given by Mather (1987), in the 

case of a single variable and the estimation of a single property (such as mean or the variance) 

a sample size of 30 is usually held to be sufficient. For the multivariate case the size should be 

at least 30p pixels per class, where p is the number of features (spectral bands), and preferably 

more.  Researchers have used different training sets where size of the data varied 

considerably. Civco used one training sample, the mean vector, per class in one of the study 

(1991) and 10 samples per class in another (1993).  Hepner et.al. (1990) used what they 

termed ‘the minimal training set’ consisting of a 10 by 10 training site for each class. A few 

others used similar training set sizes (Xiao and Liu 1991, Benediktsson et al. 1990). The 

largest training set used consisted of 22000 Patterns. (Heermann and Khazenie 1992). Foody 

et al. (1995a) reported that classification accuracy was significantly increased as a result of 

increasing the number of training cases for abundant classes in the image. 

 

Toratora (1978) suggested that for the multinomial distribution, the sample size is 

given by the following equation 

 

2(1 ) /i i in BP P b= −  

 

Where B is the upper ( / )kα  x 100th percentile of the 2χ distribution with 1 degree of 

freedom.  Pi, i = 1,…..k, is the proportion of the population in the ith category and ib  is the 

absolute precision desired. In the majority of the cases, an absolute precision is set for the 



  

  

entire classification and not for the each category. Therefore, ib b= and the only sample size 

calculation is required for the iP  close to 1/2. In the worst-case scenario, the sample size can 

be obtained from the simple equation  

 

2/ 4n B b=  

 

B can be determined from the 2χ  table with 1 degree of freedom and 1 / kα− , where 

1 Rα = − , R  is the desired reliability (confidence level). 

 

Generally, for classification of multispectral imagery, a three layer (single hidden 

layer) fully interconnected network is sufficient and is most commonly used strategy 

(Benediktsson et al. 1990; Civco 1991; Paola and Schowengerdt 1995a). The number of nodes 

in a hidden layer required for a particular classification problem is not easy to deduce. The 

neural network architecture, which gives the best results for particular problem, can only be 

determined experimentally. This can be a lengthy process especially for large classification 

task. To define a network size which is appropriate for a given classification problem, it is 

necessary to examine the total number of input features and the number of output classes. For 

a three layer network, a general guideline on this issue has been given by Paola and 

Schowengerdt (1995a).  Kanellopoulos and Wilkinson (1997) stated that ideally the first 

hidden layer of a network with two hidden layers should contain two to three times the 

number of inputs such that a sufficient number of hyper-planes can be formed to define hyper-

regions. The second hidden layer effectively combines the hyper-planes or hyper-regions from 

the previous layer to form sub-regions defining each class. To allow two or three regions per 



  

  

class, as often employed in statistical classification of remotely sensed data, they found it 

useful to make the number of nodes in second hidden layer roughly equal to two to three times 

the total number of classes. However they caution that it is not possible to rely on such 

heuristics and each classification problem needs to be carefully examined in its own right. 

 

Bischof et al. (1992) minimized the ‘sum squared error’ in 50 training cycles, Civco 

(1991) obtained a root mean square error of 0.18 after 250000 iterations of the class mean 

vectors. Kanellopoulos et al. (1992) found that it required 900 training cycles to achieve 81 

percent classification accuracy on test data. Paola and Schowengerdt (1995a) achieved 93.4 

percent test site accuracy after 50000 iterations.  

 

Texture can be defined as a repeated variation in tone (spectral response) over 

relatively small areas. Texture features provide information about the spatial distribution of 

spectral variations, Haralick et al. (1973) suggested that textural and spectral properties are 

present in an image simultaneously but under a given condition, one property can dominate 

the other. They presented one of the most widely used approaches to texture analysis, the grey 

level co-occurrence matrix (GLCM) approach. The intermediate result of the approach is in 

the form of so-called co-occurrence matrices. From these matrices, a large number of texture 

features can be computed and used for classification. For details about GLCM texture features, 

the reader can refer Haralick et al. (1973). 

 

 

 



  

  

5. EXPERIMENTAL METHODOLOGY 

Samples (S1 to S5) were determined at five different reliability values with desired 

precision of 5% (Toratora 1978) (Table 2). Test samples sets of the similar size as of training 

samples were used to test accuracy of classifications. A three layer (single hidden layer) fully 

interconnected network was used for Rprop classification. The experiments were carried out 

in three stages. In the first stage, classification was done with spectral features using Rprop 

and then with GMLC. For Rprop classification of first stage a network with 4-12-12 

configuration was used (four input bands, twelve hidden nodes and twelve output classes). 

Training of network was carried out for 1000 epochs. 

 

In the second stage, a study was conducted to evaluate factors affecting classification 

accuracy using Rprop. The factors studied were sample size, number of neurons in hidden 

layer and number of epochs.  For studying effect of sample size, classifications with different 

sample set (S1 to S5) and varying number of neurons in hidden layer were carried out for 1000 

epochs. To understand effects of variation in number of nodes in hidden layer and number of 

epochs, classifications were carried out with sample size S5 while varying number of nodes in 

hidden layer (8 to 20) at different number of epochs ranging from 1000 to 50000 (1k to 50k).     

 

In the third stage, effect of adding texture information in the form neighbourhood 

information and GLCM texture feature was studied. In the first approach, texture information 

from band 1 was included by capturing information from 3x3 window and taking central pixel 

from rest of the bands making a total of 12 input nodes (Bischof et al. 1992). In the second 

approach, texture information from all bands were used from 3x3 window making a total of 36 



  

  

input nodes for a four band data (Hepner et al. 1990).  

 

To study the effect of adding texture features derived from GLCM method, mean 

(mean), variance (var), homogeneity (hom), contrast (con) and dissimilarity (dis) were taken 

for the study.  Shaban and Dikshit (1998) reported that window sizes 7 and 9 give best result 

for texture extraction from Indian urban areas. Based on the results of their study, GLCM 

texture features at window size 7 and 9 were considered. For experimentation using GLCM 

texture feature in conjunction with spectral features, first GML classification was carried out 

and then Rprop classification was done using information derived from second stage of 

experimentation for number of neurons in hidden layers and number of epochs. Training was 

carried out till 1000 epochs or MSE became less than a threshold value of 0.001. The input 

value of every pixel feature vector was normalised between 0-1. The number of neurons in 

hidden layer was kept equal to three times number of input bands for all experimentations 

related with GLCM texture and number of neurones in output layer was equal to the number 

of classes.  

 

The overall classification accuracy and the accuracy of the individual classes were 

assessed by computing kappa coefficients (κ) and associated asymptotic variances (Bishop et 

al. 1975). Pair-wise statistical tests were performed to assess the significance of any 

differences observed between two classifications using a Z statistic as given by the following 

equation (Congalton et al. 1983). In this equation Zab is the Z statistic for comparison of 

classification a and b; κa and κb are the kappa coefficient of classification a and b; and σa
2 and 

σb
2 are the asymptotic variances of κa and κb respectively. The difference between two 



  

  

classifications was considered to be statistically significant at the 95% confidence level if the 

absolute value of the Z statistic exceeded 1.96.  

 

Zab
a b

a b

=
−

+

κ κ
σ σ2 2

 

 

6. RESULTS 

 

(1) Comparison of classification results by Rprop and GMLC are presented in Table 3, from 

which the following observations can be made: 

 

(a) Classification using Rprop provides similar accuracy to that of GMLC. Though 

training accuracy appears to be higher in Rprop but that is statistically 

insignificantly different from GMLC.  

(b) Accuracies for most of the classes were similar with no significant difference. 

 

(2) Investigations using five different sample sets have shown  (Table 4) that with the 

increase in sample size, test accuracy increase for all networks having different number 

of neurons in hidden layer. Maximum overall accuracy was achieved for sample size S5, 

which has highest number of samples per class.  

 

(3) Table 5 presents results showing the effect of number of neurons in hidden layer on 

classification accuracy.  The following observations emerge from this table: 



  

  

(a) Variation of neurons in hidden layer did not have any significant effect on the 

classification accuracy for the test set.  

(b) With increase in number of neurons in hidden layer, it was observed that overall 

training accuracy increased with the increase in number of neurons at higher 

epochs. 

  

(4) Results of experiments with different number of epochs have been presented for sample 

set S5 (Table 5). The following points emerge from this table: 

 

(a) With an increase in number of epochs test accuracy decrease, higher test accuracy 

was achieved with fewer epochs. Maximum accuracy was achieved with 1000 

epochs, which was similar to accuracy achieved at 5000 epochs.  

(b) Increase in number of epochs increases training accuracy in a significant manner 

with highest at 50000 epochs. 

 

(5) Texture in the form of neighbourhood information was added using two approaches. 

Table 7 shows result of these investigations from which the following points emerge: 

 

(a) First approach of incorporating texture property using neighbourhood information 

improves test accuracy that is statistically insignificant.  

(b) Second approach using neighbourhood information from all the bands 

simultaneously improves test accuracy significantly. 

 



  

  

(6) Tables 6, 7 and 8 show results of adding GLCM texture features with spectral bands in 

GML and Rprop classification. The following point comes out from experiments: 

 

(a) Accuracy using window size 9 is slightly higher than 7 for both the classification 

methods. 

(b) Texture features except homogeneity, when used in conjunction with spectral 

features improve classification accuracy in a statistically significant manner with 

GML as well as Rprop classification. 

 

7. CONCLUSIONS 

 

From the results of experimentation following conclusions can be drawn: 

 

1. Use of ANN in the form of Rprop provides statistically similar accuracy as with 

GMLC for both, spectral and textural classification. 

2. With the increase in size of sample set, test accuracy increases in Rprop classification. 

3. Variation in number of neurons in hidden layer does not affect test accuracy in a 

significant manner. 

4. Increase in number of epochs increases training accuracy but decreases test accuracy. 

However, higher test accuracy is achieved with smaller number of epochs. This could 

be due to over-fitting of data at higher epochs.  

5. Inclusion of texture in the form of 3x3 window neighbourhood information 

simultaneously from all bands increases test accuracy in a significant manner.  



  

  

6. GLCM texture features except homogeneity, when used in conjunction with spectral 

features, increase accuracy in a significant manner for GML as well as Rprop 

classification. 
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Table 1 Classes in Lucknow study area and their brief description 
 

S. no. Name Description 
1 Agriculture-1 Agriculture area having crops at middle stage of growth  
2 Agriculture-2 Agriculture area having crops at early stage of growth 
3 Commercial Central business area of the city 
4 Educational institutes Various educational Institutions  
5 Government establishment Different Government establishments 
6 Grassy land Big patches of lands having grass only 
7 High residential  Residential areas with more than 600 persons/hectare 
8 Medium residential Residential areas with 400 persons/hectare 
9 Park Parks for recreational activities 

10 Reserve forest A big portion of land reserved for forest 
11 River River Gomti flowing from left to right 
12 Water body Various small water bodies in the study area 

 
 

Table 2 Sample size  
 

Samples (SS) S1 S2 S3 S4 S5 
Reliability in % 50 75 85 95 99 
Sample size/class 35 46 53 71 90 

 
 
 

Table 3 Comparison of classification accuracy (κ) between GMLC and Rprop 
 

Training Test 
Class No. a b Zba a b Zba 

1 0.75 0.82 1.11 0.78 0.79 0.19 
2 0.82 0.90 1.57 0.77 0.83 0.96 
3 0.57 0.53 -0.45 0.71 0.64 -0.97 
4 0.51 0.44 -0.88 0.53 0.45 -1.01 
5 0.19 0.32 1.99 0.11 0.22 1.75 
6 0.92 0.90 -0.27 0.89 0.90 0.25 
7 0.85 0.80 -0.84 0.81 0.83 0.36 
8 0.91 0.91 0.00 0.85 0.83 -0.41 
9 0.68 0.78 1.42 0.73 0.74 0.20 

10 0.93 0.92 -0.25 0.90 0.87 -0.70 
11 0.95 0.95 0.01 0.92 0.90 -0.27 
12 0.87 0.96 2.27 0.93 0.98 1.46 

Overall 0.74 0.77 1.35 0.74 0.75 0.26 
  a Using GMLC 

b Using Rprop Classification 
Zba Z-statistic  

 
 



  

  

Table 4 Accuracy (κ) with different test sets (S1 to S5)  
 

 
 
 
 
 
 

 
 

Table 5 Accuracy (κ) for different number of epochs 
 

Epochs 
1k 5k 10k 25k 50k Neuron

s 
a b a b a b a b a b 

8 0.77 0.74 0.79 0.74 0.79 0.74 0.79 0.73 0.79 0.73 
12 0.77 0.75 0.79 0.75 0.80 0.74 0.80 0.75 0.80 0.74 
16 0.78 0.76 0.81 0.75 0.81 0.74 0.82 0.74 0.83 0.73 
20 0.78 0.75 0.81 0.75 0.82 0.74 0.83 0.75 0.83 0.73 

a Training accuracy 
b Test accuracy 

 
 

 
Table 6 Accuracy (κ) after adding GLCM texture features using GMLC and Rprop 

 
Training Testing  

Features GMLC Rprop GMLC Rprop 
Mean7* 0.84 0.85 0.83 0.84 
Mean9 0.85 0.87 0.84 0.84 
Var7 0.79 0.83 0.78 0.81 
Var9 0.80 0.83 0.79 0.81 
Hom7 0.78 0.78 0.76 0.75 
Hom9 0.79 0.81 0.77 0.77 
Con7 0.79 0.82 0.78 0.80 
Con9 0.80 0.82 0.79 0.80 
Dis7 0.80 0.82 0.79 0.79 
Dis9 0.81 0.81 0.79 0.80 

  *xw where x is texture feature and number w is window size 

Sample sets  
Neurons S1 S2 S3 S4 S5 

8 0.72 0.73 0.72 0.73 0.74 
12 0.71 0.74 0.72 0.74 0.75 
16 0.72 0.75 0.72 0.73 0.76 
20 0.72 0.73 0.73 0.74 0.75 



  

  

Table 7 Accuracy (κ) using spectral + textural features (widow size 9) for the test set using Rprop classification 
 

Features Z-Statistic  
Class  a b c d e f g H Z ba Z ca Z da Z ea Z fa Z ga Z ha 

1 0.79 0.83 0.90 0.94 0.93 0.98 0.99 0.96 0.60 1.98 2.82 2.51 3.83 4.22 3.45 
2 0.83 0.88 0.90 0.93 0.94 0.87 0.93 0.94 0.88 1.39 1.94 2.22 0.65 1.92 2.23 
3 0.64 0.49 0.69 0.76 0.79 0.69 0.78 0.74 -1.95 0.73 1.68 2.23 0.76 2.02 1.44 
4 0.45 0.50 0.66 0.53 0.54 0.43 0.46 0.42 0.63 2.69 0.99 1.10 -0.30 0.03 -0.42 
5 0.22 0.43 0.51 0.59 0.35 0.27 0.41 0.40 2.97 4.12 5.36 2.02 0.76 2.81 2.68 
6 0.90 0.87 0.93 0.92 0.90 0.92 0.77 0.86 -0.74 0.56 0.27 0.01 0.29 -2.31 -0.93 
7 0.83 0.85 0.88 0.87 0.90 0.79 0.88 0.88 0.42 0.89 0.70 1.42 -0.58 0.92 0.93 
8 0.83 0.91 0.93 0.94 0.86 0.83 0.88 0.89 1.68 1.96 2.26 0.48 0.00 0.92 1.17 
9 0.74 0.76 0.82 0.79 0.77 0.84 0.76 0.74 0.19 1.15 0.76 0.38 1.56 0.20 0.03 

10 0.87 0.90 0.90 0.99 0.92 0.89 0.90 0.93 0.73 0.75 3.09 1.01 0.49 0.75 1.30 
11 0.90 0.92 0.92 0.88 0.90 0.88 0.93 0.87 0.27 0.27 -0.50 0.00 -0.50 0.55 -0.73 
12 0.98 0.96 0.88 0.95 0.98 0.94 0.95 0.94 -0.45 -2.44 -0.84 0.00 -1.17 -0.83 -1.17 

Overall 0.75 0.77 0.83 0.84 0.81 0.77 0.80 0.80 1.41 4.25 5.09 3.56 1.46 2.88 2.66 
 

a Spectral features only 
b Textural information from neighbourhood (Input nodes-12) 
c Textural information from neighbourhood (Input nodes-36)  
d Spectral + Mean9 
e Spectral + Var9 
f Spectral + Hom9 
g Spectral + Con9 
h Spectral + Dis9 
Zxa Z-statistic with respect to a (x varies from b to h) 

 



  

  

 
Table 8 Accuracy (κ) using spectral + textural features (widow size 9) for the test set 

using GML classification 
 

Features Z-Statistic  
Class a b c d e f Zba Zca Zda Zea Zfa 

1 0.78 0.92 0.81 0.93 0.81 0.88 2.44 0.38 2.69 0.38 1.67 
2 0.77 0.93 0.88 0.83 0.90 0.93 2.89 1.85 0.97 2.34 2.88 
3 0.71 0.83 0.76 0.78 0.76 0.76 1.87 0.72 1.06 0.70 0.70 
4 0.53 0.52 0.63 0.44 0.56 0.51 -0.14 1.22 -1.20 0.33 -0.34 
5 0.11 0.52 0.25 0.13 0.27 0.25 6.14 2.26 0.34 2.57 2.31 
6 0.89 0.90 0.87 0.89 0.88 0.88 0.25 -0.47 0.00 -0.24 -0.24 
7 0.81 0.89 0.89 0.84 0.84 0.83 1.55 1.54 0.62 0.63 0.42 
8 0.85 0.93 0.87 0.86 0.89 0.89 1.55 0.27 0.24 0.74 0.75 
9 0.73 0.83 0.79 0.80 0.79 0.79 1.51 0.90 1.12 0.89 0.91 

10 0.90 0.95 0.95 0.94 0.93 0.93 1.24 1.23 0.90 0.58 0.60 
11 0.92 0.90 0.90 0.93 0.92 0.92 -0.27 -0.27 0.29 0.00 0.00 
12 0.93 0.93 0.96 0.93 0.92 0.93 0.00 1.03 0.00 -0.29 0.00 

Overall 0.74 0.84 0.79 0.77 0.79 0.79 5.17 2.75 1.61 2.31 2.47 
 
a Spectral features only 
b Spectral + Mean9 
c Spectral + Var9 
d Spectral + Hom9 
e Spectral + Con9 
f Spectral + Dis9 
Zxa Z-statistic with respect to a (x varies from b to h) 



  

  

 

 

 

Figure 1.   FCC of study area  


