QUT Digital Repository: http://eprints.qut.edu.au/

Yang, Jing and Frost, Ray L. and Yuan, Yong (2008) *Synthesis and characterization of chromium doped boehmite nanofibres.* Thermochimica Acta, 483(1-2). pp. 29-35.

© Copyright 2009 Elsevier

1	Synthesis and characterization of chromium doped boehmite nanofibres
2	
3	Jing (Jeanne) Yang, ¹ Ray L. Frost ¹ and Yong Yuan ^{1,2}
4	
5	¹ Inorganic Materials Research Program, School of Physical and Chemical
6	Sciences, Queensland University of Technology, GPO Box 2434, Brisbane
7	Queensland 4001, Australia.
8	
9	² Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
10	
11	
12	
13	Abstract
14	
15	Thermogravimetric and differential thermogravimetric analysis has been used to study
16	synthesised chromium doped boehmite. The dehydroxylation temperature increases
17	significantly from 0% to 5% doping, after which the dehydroxylation temperature
18	shows a small steady increase up to the 20% doping level. The temperature of
19	dehydroxylation increases with time of hydrothermal treatment. Chromium doped
20	boehmite nanofibres were also characterised by X-ray diffraction and transmission
21	electron microscopy. Hydrothermal treatment of doped boehmite with chromium
22	resulted in the formation of nanofibres over a wide dopant range. Nanofibres up to
23	500 nm in length and between 4-6 nm wide were produced.
24	
25	Key words: boehmite, chromium doping, nanofibres, nanomaterial, transmission
26	electron microscopy, thermal analysis, thermogravimetry
27	

[•] Author to whom correspondence should be addressed (<u>r.frost@qut.edu.au</u>)

- 28 Introduction
- 29

30 Compared to their micro and macro counterparts, nanosized materials have been 31 received wider attention because of their intrinsic properties, which are determined by 32 their composition, size, shape, and structure. [1] Such as nanofibers, nanotubes, 33 nanoribbons and nanorods, one dimensional (1D) nanoscale inorganic materials have 34 attracted intensive interest due to their distinctive geometries, novel physical and 35 chemical properties, and the potential applications in many fields. [2] Boehmite (γ -36 AlOOH) and its oxide derivatives such as α -Al₂O₃ and γ -Al₂O₃ have been studied 37 extensively because they can be used as catalysts, adsorbents, flame retardants and 38 optical materials. [3-6]

39

40 Synthesis forms an essential component of nanoscience and nanotechnology. While 41 nanomaterials have been generated by physical methods such as laser ablation, arc-42 discharge and evaporation, chemical methods have proved to be more effective, as 43 they provide better control as well as enable different sizes, shapes and 44 functionalization. Among these methods, hydrolysis and precipitation are the most 45 common. John Bugosh first synthesized the boehmite nanofibers by a hydrothermal 46 method in 1961. [7] Since then, numerous studies on boehmite nanofibers have been 47 undertaken, for example, boehmite (AlOOH) nanofibers were reported to be assembled with the assistance of poly(ethylene oxide) (PEO) surfactant [8] and 48 49 tubular γ -Al₂O₃ was fabricated via soft solution route using N-cetyl-N,N,N-50 trimethylammonium bromide (CTAB) surfactant. [9] Shen et al. published a report 51 showing a steam-assisted solid-phase conversion of amorphous aluminium hydroxides 52 wet gel to well crystallized 1D nanostructure of boehmite AlOOH nanorods without 53 using surfactants and solvents. [10] The process is unique in the simplicity of 54 preparation and the high efficiency of crystal growth, which can be operated at a large 55 scale. 56

57 As for doping clays, the addition of other metal ions into boehmite, especially into

58 nanostructured boehmite would have great potential to contribute the further

59 application of these inorganic nanomaterials due to the enhancement of its properties,

60 and there have been reports on boehmite doped by Fe, Ga and Eu. [11-13] It is also

61 reported that materials doped with chromium could obtain special electric, magnetic

or optical properties and gain more application. [14-17] This paper reports our
research on Cr-doped boehmite. Such concepts have not been previously reported.
Thermal analysis has been proved as the most useful method for the analysis of

66 minerals and related materials. In this work, boehmite nanofibers based on Shen's 67 methodology [10] were synthesised by introducing chromium as dopant and a series 68 of chromium doped boehmite nanofibers with different chromium content percentage 69 and varying hydrothermal treatment time have been systematically studied with the 70 thermo gravimetric techniques.

71

72 Experimental

73

74 Synthesis of chromium doped boehmite nanofibers

75

76 A total amount of 0.02 moles of aluminium nitrate and chromium nitrate were mixed 77 before being dissolved in ultra-pure water. To make a comparison, mixtures with 78 chromium molar percentage of 0, 1, 3, 5, 10 and 20 % were prepared separately and 79 then dissolved in ultra-pure water to form solutions with a metal ion to H₂O molar 80 ratio of 1:35. At room temperature, 10% by weight ammonia solution was added 81 dropwise into the metal ions solution while stirring vigorously. The addition of the 82 ammonia solution was ceased when the pH value of the reaction mixture reached 5. 83 The mixture was then stirred at room temperature for 1 hour. The obtained gel was 84 filtrated to obtain the wet gel-cake, which was then transferred into a 25mL glass 85 beaker. Before putting the beaker with gel-cake into a Teflon vessel (125mL), 2ml 86 ultrapure water was poured to the bottom of each vessel separately. The Teflon 87 vessels were sealed and heated them at 170°C for 1, 3, 5 and 10 days. The resulting 88 materials were washed several times with ultrapure water, centrifuged, and dried in air 89 at 35°C for 2 days.

90

91 *X-ray diffraction*

92 XRD analyses were performed on a PANalytical X'Pert PRO X-ray diffractometer

93 (radius: 240.0mm). Incident X-ray radiation was produced from a line focused

94 PW3373/10 Cu X-ray tube, operating at 40kV and 40mA, wavelength of 1.54Å.

95

96	TEM analysis
97	A Philips CM 200 transmission electron microscopy (TEM) at 200 kV was used to
98	investigate the morphology of the boehmite nanofibers. All samples were dispersed in
99	absolute ethanol solution and then dropped on copper grids.
100	
101	Thermal analysis
102	Thermal decomposition of the Cr-doped boehmite was carried out in a $TA^{\ensuremath{\mathbb{R}}}$
103	Instrument incorporating a high-resolution thermo gravimetric analyser (series Q500)
104	in a flowing nitrogen atmosphere (60cm ³ min ⁻¹). Approximately 20mg of each sample
105	underwent thermal analysis, with a heating rate of 5°C/min, with resolution of 6 from
106	25 to 1000°C. With the isothermal, isobaric heating program of the instrument the
107	furnace temperature was regulated precisely to provide a uniform rate of
108	decomposition in the main decomposition stage.
109	
110	Results and discussion
111	
112	X-ray diffraction
113	
114	X-ray diffraction was normally used to determine the phase and purity of the
115	synthesized materials. Figure 1a and 1b display well-defined XRD patterns observed
116	and all diffraction peaks were perfectly indexed to the XRD pattern of undoped
117	boehmite (JCPDS card 01-083-2384). No XRD peaks representing other crystalline
118	phases were detected, indicating that the chromium doped nanofibers of the synthetic
119	boehmite exhibited excellent crystallinity and a high purity. Figure 1a shows that the
120	peaks are higher and narrower with the increase of the hydrothermal treatment time to
121	10 days, which means the crystals grew better as synthesis time getting longer.
122	
123	Transmission electron microscopy
124	
125	The transmission electron microscopy images of the synthesised undoped and
126	Cr-doped boehmite are shown in Figures 2. The figures show the TEM images of (a)
127	undoped boehmite, (b) 3% Cr-doped and (c) 5% Cr-doped. The figures clearly show
128	that the boehmite is fibrous with very long narrow fibres often exceeding 500nm in

129	length and with widths of between 2 and 6nm. Many of the fibres are curved or bent
130	as may be observed in Figure 2c for the 5% Cr-doped boehmite.
131	
132	
133	
134	Thermogravimetric analysis
135	
136	The thermogravimetric analysis and the differential thermal analysis of
137	nanostructured undoped boehmite and doped boehmite with varying amounts of
138	chromium dopant from 0 to 20% are shown. The thermal analysis pattern of undoped
139	boehmite is displayed in Figure 3a. Figures 3b to e report the effect of hydrothermal
140	treatment time on the formation of boehmite nanofibres. Figure 4 shows the effect of
141	the % of doping on the thermal analysis of Cr doped boehmite. The results of the
142	thermal analyses are summarised in Table 1.
143	
144	The TG of the undoped boehmite shows a strongly asymmetric curve with a
145	peak temperature of 406.5°C and a mass loss of 15.8%. The thermal decomposition
146	occurs as follows: $2AlO(OH) \rightarrow Al_2O_3 + H_2O$. This major decomposition step is
147	attributed to the dehydroxylation of the boehmite. Two low mass loss steps at 45 and
148	260°C with mass losses of 1.5 and 1.7% are also observed. The first mass loss step is
149	assigned to the dehydration of boehmite (Column 1 in Table 1)
150	
151	The thermal decomposition of 1% doped boehmite with 1 day hydrothermal
152	treatment shows three mass loss steps at 46, 311 and 403°C with mass losses of 1.7,
153	6.6 and 11.0% (Figure3b). The asymmetry observed in Figure 3a is no longer
154	observed but a second peak at 311°C is found. The thermal decomposition of 1%
155	doped boehmite with 3 day hydrothermal treatment shows three mass loss steps at 50,
156	321 and 419.5°C with mass losses of 1.0, 4.8 and 11.5% (Figure 3c). The thermal
157	decomposition of 1% doped boehmite with 5 day hydrothermal treatment shows three
158	mass loss steps at 51, 328 and 423°C with mass losses of 0.8, 3.9 and 12.1% (Figure
159	3d). The results of the 1% Cr doped boehmite hydrothermally treated for 10 days
160	(Figure 3e) shows a large mass loss step at 435°C with a mass loss of 12.2%. In
161	addition two smaller mass loss steps at 54 and 342°C with mass losses of 0.7 and 3.1%
162	are observed. It is apparent that thermal decomposition temperature of the Cr doped

boehmite varies with the hydrothermal treatment time. This variation is reported inFigure 5.

165

166 The variation in the % chromium doping on the thermal analysis patterns and 167 decomposition of boehmite is explored in Figures 4a to 4d. The thermal analysis 168 patterns of 3% Cr doped boehmite hydrothermally treatment for 3 days shows three 169 mass loss steps at 46, 315 and 427°C with mass losses of 1.1, 2.9, and 12.4%. The 170 dehydroxylation peak at 427°C is sharp indicating that the dehydroxylation occurs 171 over a very narrow temperature range. For the 5% Cr doped boehmite the 172 dehydroxylation step is observed at 430.5°C with a mass loss of 13.1%. For the 10% 173 Cr doped boehmite hydrothermally treated for 3 days results in a sharp mass loss peak 174 at 433°C with minor mass loss steps at 50 and 380°C. The temperature for the Cr 20% 175 doped boehmite is 436.5°C. The variation in the temperature of the decomposition of 176 boehmite as a function of % doping is reported in Figure 6. It is apparent that as the % 177 of Cr is increased in the boehmite the dehydroxylation temperature is increased and 178 shifts from 406.5°C to 436.5°C.

179

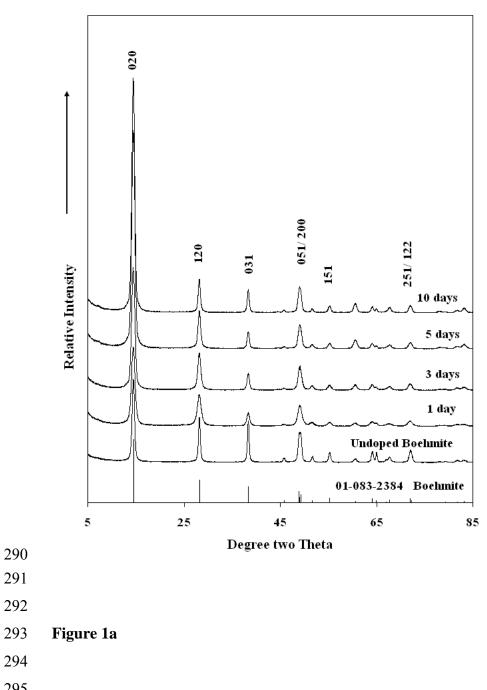
180 The variation of the dehydroxylation temperature and associated mass loss 181 with the % of Cr doping is shown in Figure 6. As the dehydroxylation temperature 182 increases the mass loss from the dehydroxylation step decreases. The dehydroxylation 183 temperature increases significantly from 0% to 5% doping, after which the 184 dehydroxylation temperature shows a small steady increase up to the 20% doping 185 level. The associated mass loss decreases and then shows a constant mass loss. The 186 variation of mass loss and dehydroxylation temperature with hydrothermal treatment 187 time is illustrated in Figure 7. The temperature of dehydroxylation increases with time 188 of hydrothermal treatment.

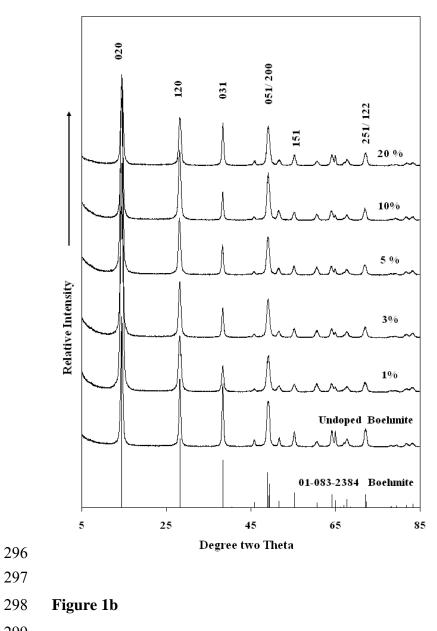
189	Conc	lusions
10)	Conci	usions

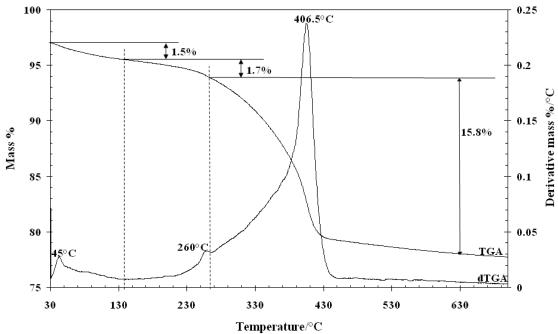
191 Boehmite and chromium doped boehmite were synthesized by low 192 temperature precipitation from aqueous solution and hydrothermally treated for 193 differing time intervals. Very long nanofibres were produced often exceeding 500nm 194 in length. Normally at above the 5% doping level a mixture of nanofibres are 195 produced. 196 197 Doping with chromium resulted in an increase in the dehydroxylation 198 temperature of boehmite from ~406.5°C to 436.5°C. The temperature of 199 dehydroxylation increases with time of hydrothermal treatment. The dehydroxylation 200 temperature increases significantly from 0% to 5% doping, after which the 201 dehydroxylation temperature shows a small steady increase up to the 20% doping 202 level. 203 204 Acknowledgements 205 206 The financial and infra-structure support of the Queensland University of 207 Technology Inorganic Materials Research Program of the School of Physical and 208 Chemical Sciences is gratefully acknowledged. The Australian Research Council 209 (ARC) is thanked for funding the instrumentation. 210 211

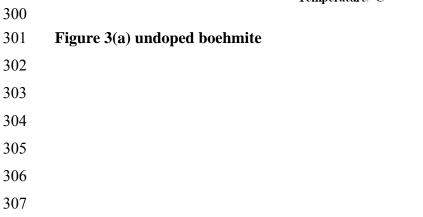
213 **References**

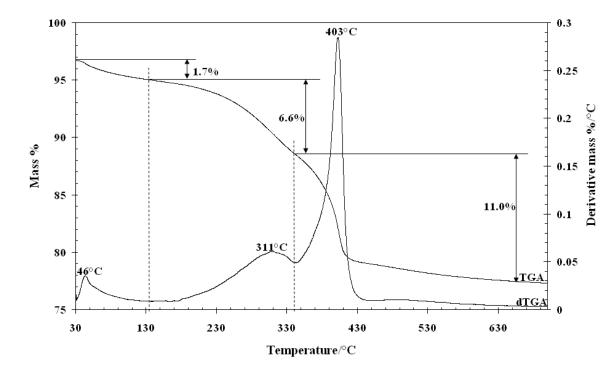
- 214
- 215 [1] Y.G. Sun, Y.N. Xia, Science 298 (2002) 2176-2179.
- [2] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415
 (2002) 617-620.
- 218 [3] D. Mishra, S. Anand, R.K. Panda, R.P. Das, Materials Letters 42 (2000) 38-45.
- [4] V.S. Burkat, V.S. Dudorova, V.S. Smola, T.S. Chagina, Light Metals
 (Warrendale, PA, United States) (1985) 1443-1448.
- [5] J.-L. Le Loarer, H. Nussbaum, D. Bortzmeyer, Alumina extrudates, methods
 for preparing and use as catalysts or catalyst supports. (Rhodia Chimie, Fr.).
 Application: WO, 1998, p. 44.
- [6] C. Nedez, J.-P. Boitiaux, C.J. Cameron, B. Didillon, Langmuir 12 (1996)
 3927-3931.
- 226 [7] J. Bugosh, Journal of Physical Chemistry 65 (1961) 1789-1792.
- [8] H.Y. Zhu, X. P.Gao, D. Y. Song, Y. Q. Bai, S. P. Ringer, Z. Gao, Y. X. Xi, W.
 Martens, J. D. Riches, R.L. Frost., J. Phys. Chem. B 108 (2004) 4245-4247.
- [9] D. Kuang, Y. Fang, H. Liu, C. Frommen, D. Fenske, Journal of Materials
 Chemistry 13 (2003) 660-662.
- [10] S.C. Shen, Q. Chen, P.S. Chow, G.H. Tan, X.T. Zeng, Z. Wang, R.B.H. Tan, J.
 Phys. Chem. C 111 (2007) 700-707.
- 233 [11] Y.Y. Zhao, W.N. Martens, T.E. Bostrom, H.Y. Zhu, R.L. Frost, Langmuir 23
 (2007) 2110-2116.
- 235 [12] Y.Y. Zhao, R.L. Frost, W.N. Martens, Journal of Physical Chemistry C 111
 236 (2007) 5313-5324.
- [13] J.M.A. Caiut, S.J.L. Ribeiro, Y. Messaddeq, J. Dexpert-Ghys, M. Verelst, H.
 Dexpert, Nanotechnology 18 (2007).
- [14] K. Fujita, Y. Tokudome, K. Nakanishi, K. Miura, K. Hirao, Journal of Non-Crystalline Solids 354 (2008) 659-664.
- [15] Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y. Huang, S.L. Huang, W.H.
 Cheng, Optics Express 15 (2007) 14382-14388.
- [16] C.G. Jin, X.M. Wu, L.J. Zhuge, Z.D. Sha, B. Hong, Journal of Physics DApplied Physics 41 (2008).
- 245 [17] S.M. Abo-Naf, M.S. El-Amiry, A.A. Abdel-Khalek, Optical Materials 30

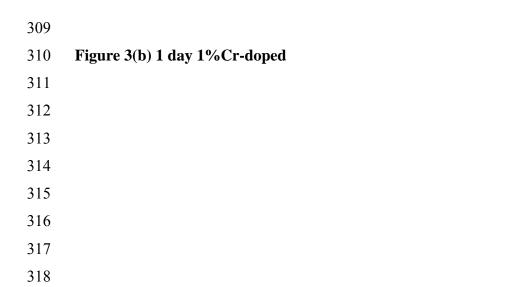

- 248
- 2.0
- 249
- 250

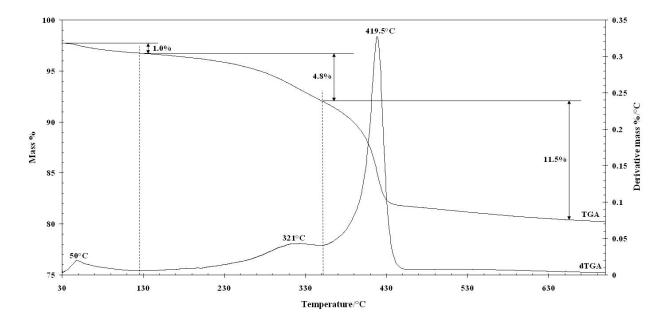

251	Table 1

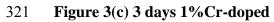

Comple	Dece	mposition steps Peak		Decomposition steps		Peaks		4-4-1
Sample -	Step 1	Step 2	Step 3	Peak 1	Peak 2	Peak 3	• total mass loss (%)	
boehmite	1.5%	1.7%	15.8%	45°C	260°C	406.5°C	19.0%	
1% - 1d	1.7%	6.6%	11.0%	46° C	311°C	403°C	19.3%	
1% - 3d	1.0%	4.8%	11.5%	50°C	321°C	419.5°C	17.3%	
1% - 5d	0.8%	3.9%	12.1%	51°C	328°C	423°C	16.8%	
1% - 10d	0.7%	3.1%	12.2%	54°C	342°C	435°C	16.0%	
3% - 3d	1.1%	2.9%	12.4%	46° C	315°C	427°C	16.4%	
5% - 3d	0.8%	2.1%	13.1%	48° C	325°C	430.5°C	16.0%	
10% - 3d	0.8%	-	15.1%	50°C	380°C	433°C	15.9%	
20% - 3d	1.0%	-	15.0%	50°C	330°C	436.5°C	16.0%	

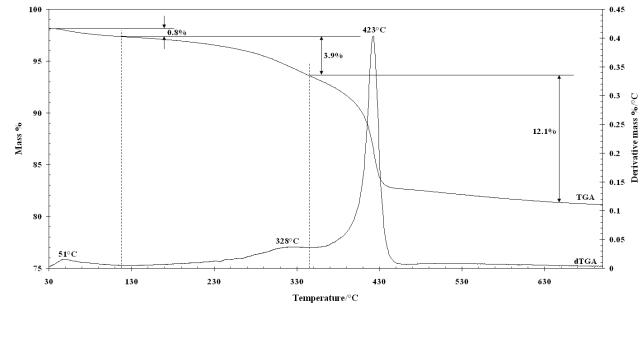

* "d" means "days of hydrothermal treatment"

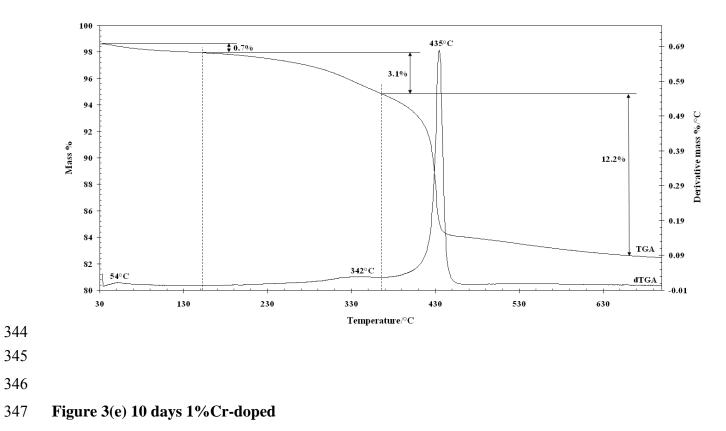

254	LIST OF FIGURES
255	
256	Figure 1a XRD patterns of undoped boehmite and 1% Cr-doped boehmite nanofibers
257	with different hydrothermal treatment time at 170 °C.
258	
259	Figure 1b XRD patterns of undoped boehmite and various Cr % doped boehmite
260	nanofibers, after hydrothermal treatment at 170 °C for 3 days.
261	
262	Figure 2 TEM images of the synthetic nanofibers with 3-day hydrothermal treatment:
263	(a) undoped boehmite, (b) 3% Cr-doped and (c) 5% Cr-doped.
264	
265	Figure 3 Thermal analysis patterns of (a) undoped boehmite nanofibres and 1% Cr
266	doped boehmite nanofibers with different hydrothermal treatment time: (b)
267	1 day, (c) 3 days, (d) 5 days, (e)10 days.
268	
269	Figure 4 Thermal analysis patterns of various % Cr-doped boehmite nanofibers with
270	3-day hydrothermal treatment: (a) 3%, (b) 5%, (c) 10%, (d) 20%.
271	
272	Figure 5 Dehydroxylation temperature of the DTG peak as a function of added Cr
273	content and with the hydrothermal treatment time.
274	
275	Figure 6 Temperature of the main dTGA peak and the total mass loss percentage as a
276	function of added Cr content.
277	
278	Figure 7 Temperature of the main dTGA peak and the total mass loss percentage as a
279	function of the hydrothermal treatment time.
280	
281	
282	List of Tables
283	
284	Table 1 Results of the thermal analysis of the undoped and various % Cr doped Image: State of the thermal analysis of the undoped and various % Cr doped
285	boehmite nanofibers
286	
287	

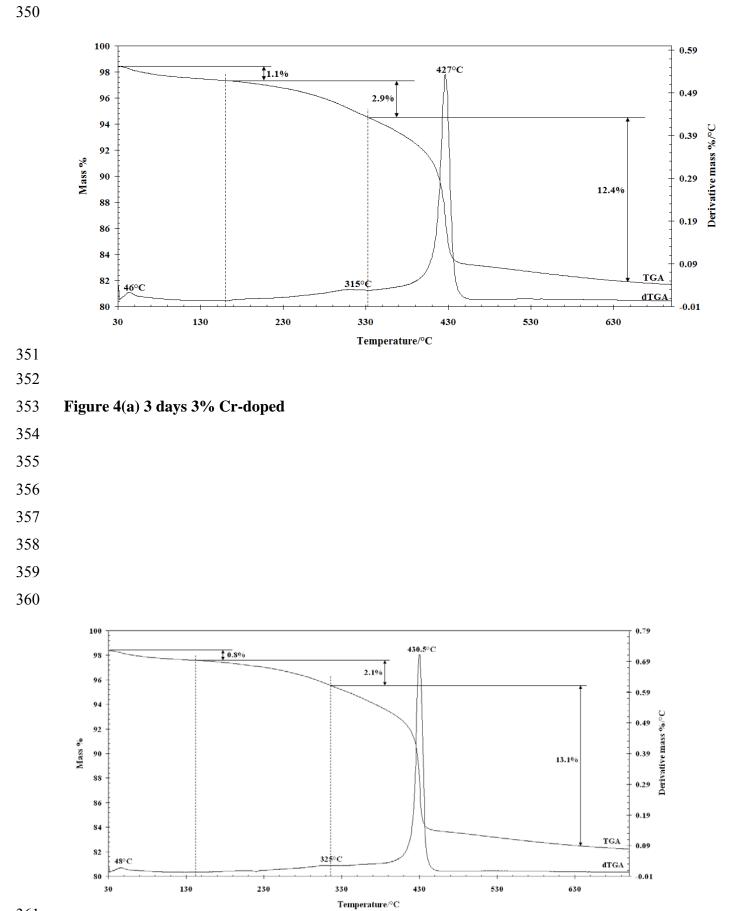


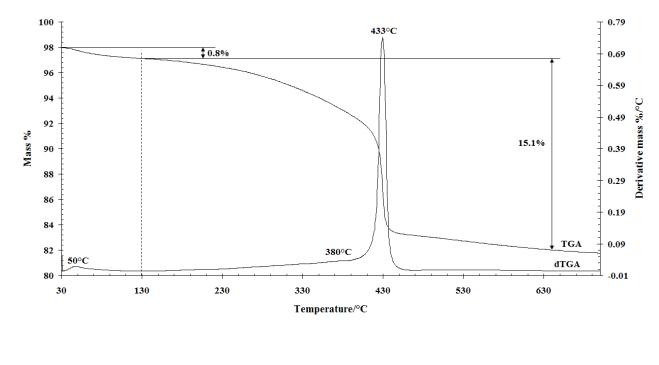


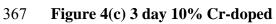


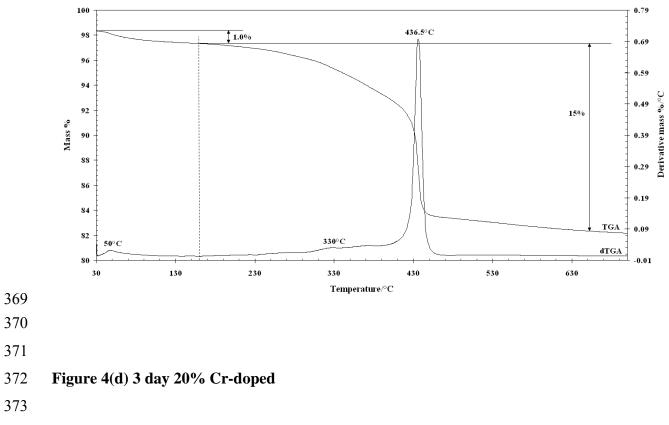




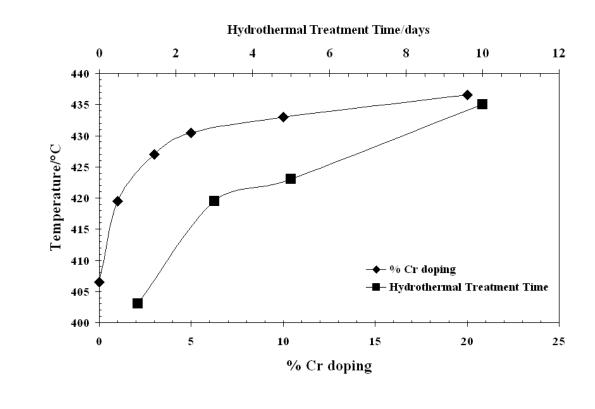
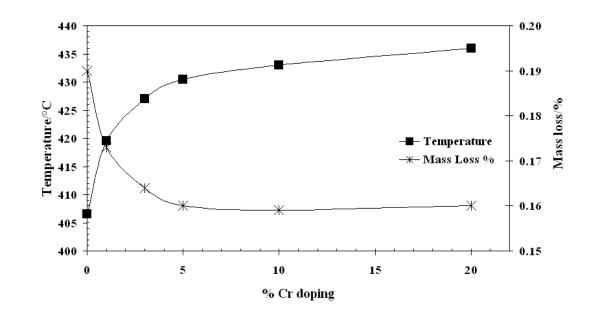
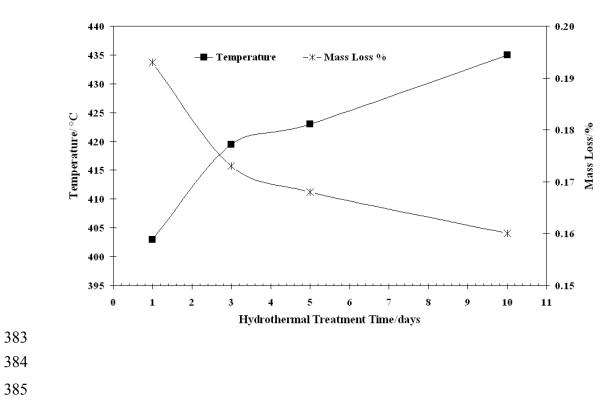





					75 +	
530	430	330	230	130	30	
	re/°C	Temperatur				331
						332
						333
			-doped	days 1%C	Figure 3(d) 5	334
						335
						336
						337
						338
						339
						340
						341
						342
						343



362	
363	Figure 4(b) 3 day 5% Cr-doped
364	

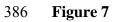

Figure 5

Figure 6

