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Abstract—An optimal videokeratoscopic image presents a
strong well-oriented pattern over the majority of the measured
corneal surface. In the presence of interference, arising from
reflections from eyelashes or tear film instability, the pattern’s
flow is disturbed and the local orientation of the area of
interference is no longer coherent with the global flow. De-
tecting and analysing videokeratoscopic pattern interference is
important when assessing tear film surface quality, break-up
time and location as well as designing tools that provide a
more accurate static measurement of corneal topography. In this
paper a set of algorithms for detecting interference patterns
in videokeratoscopic images is presented. First a frequency
approach is used to subtract the background information from
the oriented structure and then a gradient-based analysis is used
to obtain the pattern’s orientation and coherence. The proposed
techniques are compared to a previously reported method based
on statistical block normalisation and Gabor filtering. The results
indicate that the proposed technique leads, in most cases: to a
better videokeratoscopic interference detection system, that for
a given probability of the useful signal detection (99.7%) has a
significantly lower probability of false alarm, and at the same
time is computationally much more efficient than the previously
reported method.

I. INTRODUCTION

Videokeratoscopy (or videokeratography) based on a
Placido disk pattern is the current clinical standard to measure
corneal surface topography. The pattern, consisting of a set of
concentric rings, formed in a cone or bowl is projected on
the anterior surface of the cornea and its reflection is imaged
onto a CCD. Videokeratoscopy relies on a number of factors
in order to get an accurate measure of the corneal surface
topography. Minimal reflection from eyelashes, minimal eye
movements, and good tear film quality are required to obtain
an optimal reflected image [1], [2].

However, in practice, these optimal factors may not always
be fulfilled, especially in situations where the subject presents
poor tear film quality, nystagmus (uncontrolled eye-movement)
or narrow palpebral aperture (distance between the eyelids).
In such situations it is essential to detect the interference in
the acquired videokeratoscopic image and separate it from the
useful signal from which corneal topography can be estimated.
Recently we have shown that separating these two factors
improves the estimates of the corneal topography [3].

Dynamic videokeratoscopy techniques, which extend the
traditional static corneal surface measurements, have been
recently used to assess tear film surface quality [4], [5], [6],

[7]. The tear film is the outer thin layer of fluid that covers
the cornea and the conjunctiva. This layer acts like a mirror
and is responsible for reflecting the projected Placido disk ring
pattern. A regular tear film surface, which is one of the key
characteristics of a healthy tear film, produces an isotropic
reflected pattern, while an irregular tear film produces an
anisotropic reflected pattern. Hence an analysis of the pattern
coherence is required to assess tear film surface quality [8].

Thus, it is necessary to detect interference patterns in
videokeratoscopic images and separate the areas associated
with them from the remaining areas that constitute the useful
signal. The interference in an image can be seen as a disruption
of the pattern’s flow. An example of a videokeratoscopic image
with interference from eyelashes and tear film instability that
leads to ring fusion, indicated by the white arrow, is shown in
Figure 1 (left).

We propose to use a Gaussian gradient-based algorithm [9]
to detect interference patterns in videokeratoscopic images as a
low computational approach to analyse oriented patterns. This
approach will be compared to our previously reported tech-
nique based on a Gabor filter [3]. To evaluate the performance
of the interference detection algorithm, we fit the pattern
coherence data with a Gaussian mixture using an Expectation
Maximisation algorithm, and estimate the probability of false
alarm. In this paper we focus on detecting the useful signal
from the videokeratoscopic image while the application of the
interference separation and its location that could be used for
tear film quality assessment is not considered here.

II. METHOLODOGY

When there is no interference, a videokeratoscopic image
presents a relatively well-oriented pattern. In other words, all
areas of the image within the corneal coverage have dominant
local orientation. In order to evaluate this pattern and analyse
its orientation we use a Gaussian gradient-based algorithm [9]
that results in estimated local orientation angle and the degree
of anisotropy or coherence. The coherence is a measurement
of the consistency of the local orientation. If the Placido
disk pattern is free of interference, the pattern would be
perfectly isotropic whereas if there are disturbances in the
local orientation flow, the pattern would became anisotropic.
Therefore the coherence is an indicator of the interference in
the image.
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Fig. 1. An example of a videokeratoscopic image with reflections from upper and lower eyelashes and tear film instability (left) and its statistical block
(centre) and frequency based (right) normalisations.

A. Background extraction

A videokeratoscopic image is composed of the image of
the anterior eye masked by the reflected pattern of the Placido
disk rings. The anterior eye image forms the background and
does not provide any essential information for the analysis
of the pattern. For that reason it is essential to remove the
background in the videokeratoscopic image to avoid mislead-
ing information in further processing. This can be achieved
with statistical block normalisation as used in [3], where an
image was divided into small blocks in which the intensity
information was normalised to zero-mean and unit variance.

An alternative normalisation can be achieved by noticing
that the frequency content for the oriented pattern is located
in a known narrow band because in most videokeratoscopic
acquisitions the rings have semi-equidistant separation along
the image, unless there is interference. Hence a frequency-
based normalisation approach is proposed as a background
subtraction.

A bandpass filter is used to filter the frequency content
of the image that corresponds to Placido disk ring pattern.
The bandpass of the filter is located at the main frequency
of the pattern that could be estimated using image profile
samples as in [3]. The lower cut-off frequency (flow) has to be
chosen to reject the background information without impacting
on the orientation while the upper cut-off frequency (fup) to
determine the amount of noise (sudden changes) that are to
be cancelled. For our images the values of flow and fup have
been empirically set to 0.1 and 0.17 (in terms of normalised
frequency), respectively.

The filtered image contains the magnitude information for
two classes, the background and the foreground (oriented pat-
tern). In order to normalise the magnitude across the different
classes and to separate them, the Otsu’s algorithm [10] is
applied. This algorithm provides a threshold to separate the
information. By thresholding the image the corresponding
binary image can be obtained. In Figure 1, both results of
the statistical block normalisation (centre) and the frequency
based normalisation (right) are shown.

B. Gradient based method

Following Kass and Witkin [9] and their notation, the
first step is to calculate the image gradients in the x and
y directions, Cx(x, y) and Cy(x, y), respectively. Different
operators can be used to obtain the gradient information. Here,
a Gaussian function with standard deviation σ1 is used. These
gradients can be combined to form the vector field J(x, y) as

J(x, y) = Cx(x, y) + jCy(x, y).

One cannot smooth the gradient vectors because vectors
pointing in opposite directions would cancel each other. For
that reason, the arguments of the elements of J(x, y) are
first doubled by means of squaring J(x, y) and then three
parameters are extracted from the square of J(x, y): the
imaginary part J1, the real part J2 and the gradient magnitude
J3, calculated as

J1(x, y) = =[J(x, y)2] = 2Cx(x, y)Cy(x, y),

J2(x, y) = <[J(x, y)2] = C2
x(x, y)− C2

y(x, y),

J3(x, y) = |J(x, y)2| =
√
C2

x(x, y) + C2
y(x, y),

respectively. The next step is to smooth the three considered
parameters by convolving them with a smoothing function
W (x, y). In our case, a Gaussian function with standard
deviation σ2 is used. The use of this function is recommended
for computational efficiency. The three smoothed parameters
are then computed as follows

J∗i (x, y) = Ji(x, y) ∗W (x, y), i = 1, 2, 3.

The local orientation is then given by

Φ(x, y) =
π

2
+

1
2

tan−1

(
J∗1 (x, y)
J∗2 (x, y)

)
,

while the coherence is given by

χ(x, y) =

√
J∗1 (x, y)2 + J∗2 (x, y)2

J∗3 (x, y)
.
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Fig. 2. Examples of coherence matrices and their distributions (together with the Gaussian mixture fits) using previously reported Gabor filter (top) and the
proposed gradient based method (bottom).

Coherence, χ(x, y), has values between 0 for a weak co-
herence structure (anisotropic) and 1 for a strong coherence
structure (isotropic).

The parameters σ1 and σ2 have to be selected depending on
the image characteristics. The parameter σ1 is used to separate
the peak and the valleys in the original images, while σ2 is
responsible for smoothing the orientation results. Therefore, it
is recommended that σ2 > σ1 . For our application, the values
have been set to σ1=1 and σ2=3. Examples of mean coherence
matrices (see section C below) obtained with the previously
reported Gabor filter method and the proposed gradient based
method are shown in Figure 2 for the videokeratoscopic image
from Figure 1 that was normalised using the frequency based
technique.

C. Statistical analysis

For the sake of evaluation and comparison with a previously
reported method, a statistical analysis is performed on the
coherence matrix data in a similar way as in [3].

The coherence matrix is divided into non-overlapped blocks
of 10×10 pixels. For each block, we calculate its sample mean,
hence creating the mean-coherence matrix. By concatenating
all the columns of this matrix we form the mean coherence

vector on which further statistical analysis is performed. An
estimator of the probability density function of this vector,
such as the histogram, normally reveals a bimodal distribu-
tion in which the first mode represents the interference or
anisotropic blocks of the image while the second represents
the isotropic information in the image. In Figure 2, histograms
of the mean-coherence vector with the two modes are clearly
seen.

The probability density function of the mean coherence
vector can be modeled as a Gaussian mixture

φ(x[n]; ε) = (1− ε)φsignal(X) + εφnoise(X),

where ε is the mixture parameter, which satisfies 0 < ε < 1,
while φsignal and φnoise are the Gaussian probability density
functions of the oriented and non-oriented blocks, respectively.
An Expectation-Maximization algorithm is used to estimate
the parameters of the Gaussian mixture [11], µ̂signal, σ̂signal,
µ̂noise, and σ̂noise. Given these parameters, the estimates of
the probability density function of noise φ̂noise(X) and that of
the signal φ̂signal(X) can be evaluated as well as the detector
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Fig. 3. Examples of videokeratoscopic images with different interference patterns.

charactersitics [12] in terms of the probability of false alarm

PFA =
∫ 1

T

φ̂noise(X)dX,

and the probability of detection

PD =
∫ 1

T

φ̂signal(X)dX,

where T is the threshold point that distinguishes between the
signal and interference. It is desirable that the values of the
PD are high and for this reason the threshold was chosen to
be T = µ̂signal − 3σ̂signal. This ensures that the values of PD

are close to 99.7%. Ideally the values of PFA, which are used
to evaluate the performance of the algorithm, should be small.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed tech-
nique we tested the algorithm on a number of real images.
Here, a selection of representative cases is shown in Figure 3.
To compare the current technique with the previously reported
method each of the images was analysed with the different
algorithms. First the image was normalised with the statistical
block normalisation proposed in [3]. Then the normalised im-
age was analysed with the Gaussian gradient-based and Gabor
filter approaches. The same procedure was then repeated for
the frequency normalised image.

Figure 2 shows the estimated coherence matrices and their
distributions for the videokeratoscopic image from Figure 1.
We note that the proposed gradient based method results in
a more compact estimate of the probability density for the
signal, hence separating it more from the noise than in the
case of the Gabor filter based approach.

TABLE I
THE PROBABILITY OF FALSE ALARM (%) FOR THE EIGHT CONSIDERED

VIDEOKERATOSCOPIC IMAGES.

Normalisation Statistical Frequency
Case Gabor/Gradient PFA PFA

Gabor 6.95 3.89I
Gradient 4.41 2.85

Gabor 1.50 4.22II
Gradient 1.53 2.45

Gabor 6.46 4.81III
Gradient 6.33 3.48

Gabor 10.10 6.87IV
Gradient 7.22 4.62

Gabor 2.58 7.06V
Gradient 2.46 4.23

Gabor 29.39 9.44VI
Gradient 6.69 5.16

Gabor 4.77 7.85VII
Gradient 4.14 4.07

Gabor 6.49 3.49VIII
Gradient 13.25 2.40

A. Statistical Performance

Detailed results of statistical performance are given in
Table I. The eight pattern cases are a representative sam-
ple of images with interference that can be encountered in
videokeratoscopy. For each of the cases the probability of false
alarm PFA is provided for the four different conditions. Note
that the probability of detection is set to 99.7% in all cases.
The average improvement in PFA using frequency based
normalisation instead of statistical block normalisation was
found to be negative for the Gabor filter (−25.5%) and positive
for the gradient based method (11.4%). This suggests that
the chosen normalisation algorithms are optimal for each of
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TABLE II
THE AVERAGE CPU TIMES [SEC] FOR ALL PRESENTED CASES. TIMES

SHOWN INCLUDE BOTH THE NORMALISATION AND PATTERN ANALYSIS.

Normalisation Statistical Frequency
Case Gabor/Gradient Time Time

Gabor 23.38±0.93 19.12±0.89All cases
Gradient 0.76±0.01 0.92±0.00

their approaches. However, comparing the Gabor filter based
approach to that of the gradient based it is clear that the latter
results in a lower PFA. The average improvement is 6.9% for
images normalised with statistical block technique and 36.7%
for those normalised with frequency based technique.

B. Computational Efficiency

The average (± standard deviation) estimated CPU times
for all considered methods for processing a single videoker-
atoscopic image are given in Table II. The results indicate
that the gradient based approach is much more efficient in
terms of computational effort than that based on the Gabor
filter. While there is not much difference between the types
of normalisation, the statistical block approach appears to be
slightly faster. The algorithm was run on a Pentium IV(duo)
at 1.86GHz.

IV. SUMMARY

Detecting interference patterns in videokeratoscopic images
can be useful in corneal topography measurements in which
the stability of tear film is not guaranteed (e.g., subjects with
dry eyes) but not essential because an operator may ask the
subject to blink several times to refresh the tear film and
try to acquire a better image. However, in dynamic videok-
eratoscopy [7], pattern interference detection is a necessity.

We have proposed a novel method to detected and extract in-
terferences form videokeratoscopic images. In the method we
apply Gaussian gradient methods to a previously frequency-
based normalised image and calculate image pattern coher-
ence.

The results show significant improvement in terms of reduc-
tion of the probability of false alarm and low computational
load with respect to a previously reported method [3]. The
techniques proposed in this paper provide us with a com-
putationally efficient tool that can be used to extract useful
information from a videokeratoscopic image, assess its quality
and be used in the future to analyse tear film surface quality.
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