
Durham E-Theses

Real-time path planning for robot arms.

Balding, Nigel William

How to cite:

Balding, Nigel William (1987) Real-time path planning for robot arms., Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1681/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/1681/
 http://etheses.dur.ac.uk/1681/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Real-Time Path Planning for Robot Arms

Nigel William Balding

This thesis is submitted in fulfillment of the requirements

for the Degree of Doctor of Philosophy

University of Durham

Science Site

South Road

DURHAM

DH1 3LE Department of Engineering

May 1987

13,,MN.1988

ABSTRACT

This thesis presents two new methods for the automatic programming of

robots, which were developed at the University of Durham. A model of the robot

and its surroundings is held in the computer memory in a form which can be

accessed quickly by the path generation algorithm. Information is fed to the

computer which defines a task for the robot to perform. The path generation al-

gorithm then calculates the coordinates for the movement of the robot, avoiding

obstacles. Finally, the information is down-loaded into the robot control com-

puter in its own language. An important feature of the method is the high speed

of calculation and data transfer, which is designed for real-time operation.

The world model is represented as a collection of spheres, some overlapping,

and the robot is represented by connected cylinders. This simplified representa-

tion is the key to the speed of calculation of the path. Different criteria are used

for the optimal path selection, such as minimisation of the overall time taken,

the distance travelled and the joint rotation.

Two path planning methods have been developed. The first incorporates a

local method of trajectory calculation and the second uses a global method. Both

methods are suitable for real-time applications, but they have different properties

which can be exploited in different applications. The relative merits of the two

methods are discussed.

These methods provide an on-line, real-time capability for collision free path

calculation in a flexible manufacturing environment.

ii

Acknowledgements

I wish to express my gratitude to the following people :-

To Dr. Clive Preece, my supervisor, for his help and advice towards my

research and thesis.

To Delta Plc. for their financial assistance.

To my proof readers Sarah Balding, Winefred Horton and Anne Cowey.

LIST OF CONTENTS

1. Introduction	 1

1.1 Discussion of robot programming methods 	 2

1.2 The requirement for a real-time system	 6

1.3 Representation of the world model	 7

1.4 Path planning	 9

1.5 Description of work done 	 10

1.6 Achievements of the work	 13

2. Background	 15

2.1 Introduction	 15

2.2 The choice of robot model 	 16

2.3 Obstacle representation 	 19

2.4 Obstacle transformations 	 22

2.5 Path planning	 24

2.6 The contribution of this thesis 	 29

3. The development of a robot test rig 	 31

3.1 Description of the robot test rig	 31

3.2 Form of robot data 	 32

3.3 Transfer of data	 33

3.4 Modification of robot software 	 34

3.5 Investigation of robot properties 	 35

3.6 Discussion	 38

4. Representation of the robot's surroundings - the world model 40

4.1 Introduction	 40

4.2 The surroundings	 40

4.3 The robot	 43

4.4 The gripper and the workpiece	 44

iv

4.5 The lateral property 	 46

4.6 Efficiency of sphere models	 48

4.7 Conclusions	 50

5. Planning preliminaries 	 53

5.1 Planning in a flexible manufacturing environment 	 53

5.2 Introduction to planning	 54

5.3 Path feasibility	 55

5.4 Approach path planning	 56

5.5 Interpolation between configurations 	 56

5.6 Efficient paths	 59

6. Mid-phase planning	 66

6.1 Introduction	 66

6.2 Mid-phase planning for the upper arm 	 67

6.3 Heuristic approach	 70

6.4 Application to spherical obstacles	 70

6.5 Forearm path planning 	 73

6.6 Planning of the gripper and workpiece	 76

6.7 Avoiding obstacles of the forearm, gripper and workpiece	 76

7. Implementation	 77

7.1 Introduction	 77

7.2 Storedta	 79

7.3 Task description 	 80

7.4 Upper arm path planning 	 80

7.5 Forearm path planning	 83

7.6 Data transfer to the robot control computer 	 89

7.7 System performance	 91

7.8 Discussion	 92

v

8. Transformation of obstacles into joint space	 96

8.1 Introduction	 96

8.2 Definition of terms	 97

8.3 Space transformation 	 98

8.4 Theory	 99

8.5 Program description	 102

8.6 Results of obstacle transformation	 106

8.7 Discussion and conclusions 	 111

9. Graph Searching	 115

9.1 Introduction	 115

9.2 Theory	 116

9.3 Program description	 118

9.4 Results for two dimensional graphs	 121

9.5 Results for three dimensional graphs	 125

9.6 Discussion and conclusions 	 130

9.7 Further work	 132

10. Conclusions	 134

10.1 The world model 	 134

10.2 Local pathfinding methods	 S	 136

10.3 Global pathfinding methods 	 137

10.4 The first method	 137

10.5 The second method	 139

10.6 Comparison of methods	 141

10.7 Trajectories to suit calculations 	 143

10.8 Design of robot 	 143

10.9 Further work	 144

10.10 A look into the furure 	 146

vi

11. References	 149

12. Appendices	 158

A. Calculating the volumes of spheres modelling a unit cube	 156

B. To find robot paths between spheres	 161

C. Mainrpf program listing 	 166

D. Storedata program listing 	 194

E. Espace program listing	 197

F. Graphsch program listing	 213

vii

LIST OF FIGURES

Figure 1.1 The test robot and its workspace. 	 8

Figure 1.2 Control software. 	 11

Figure 2.1 A generalised robot kinematic chain. 	 17

Figure 2.2 The Kth joint of a robot.	 17

Figure 2.3 GRASP model. 	 20

Figure 2.4 The evolution of path planning. 	 25

Figure 2.5 Free-space for upper arm planning. 	 28

Figure 2.6 Free-space for payload. 	 29

Figure 3.1 Schematic diagram of system hardware. 	 31

Figure 3.2 A block of robot data. 	 32

Figure 3.3 Repeatability experiment. 	 36

Figure 3.4 Measurement of robot accuracy. 	 37

Figure 4.1 An example of a robot workspace.	 41

Figure 4.2 Diagram of a CSG tree. 	 43

Figure 4.3 The robot gripper. 	 45

Figure 4.4 Kinematic robot models. 	 47

(a) Right hand configuration.

(b) Left hand configuration.

(c) Model kinematic chain.

Figure 4.5 Flowchart of Expobs. 	 48

Figure 4.6 Volume of spheres vs number of spheres. 	 50

Figure 4.7 Model of robot and obstacles. 	 51

Figure 5.1 Idealised robot upper arm. 	 57

Figure 5.2 Different types of interpolation. 	 58

viii

Figure 5.3 Optimum paths. 	 63

(a) Minimum energy path.

(b) Minimum distance path.

Figure 5.4 Robot paths cut corners.	 64

Figure 6.1 Path through circles. 	 68

Figure 6.2 Path finding strategies. 	 72

(a) First search strategy.

(b) Second search strategy.

Figure 6.3 Paths which can be neglected.	 74

Figure 6.4 Obstacle representation in transformed reference frame 	 75

for forearm path planning.

Figure 7.1 Flowchart of Mainrpf. 	 78

Figure 7.2 Flowchart of Storedta. 	 79

Figure 7.3 Data structure for upper arm graph. 	 81

Figure 7.4 Flowchart of RouteP. 	 82

Figure 7.5 Flowchart of Expand. 	 84

Figure 7.6 Flowchart of Fapath.	 85

Figure 7.7 Flowchart of Testfa. 	 87

Figure 7.8 Flowchart of Testfa2. 	 88

Figure 7.9 Closest point on robot forearm. 	 89

Figure 7.10 Flowchart of Avoidobs.	 90

Figure 7.11 Paths between spheres. 	 94

Figure 8.1 Model robot. 	 100

Figure 8.2 Flowchart of Espace. 	 103

Figure 8.3 Flowchart of ObstGraphCalc : Obstacle Graph Calculation.	 104

Figure 8.4 Flowchart of Fill. 	 106

Figure 8.5 Flowchart of Test Position.	 107

Figure 8.6 Flowchart of Expand Position. 	 107

ix

Figure 8.7 Flowchart of Put on List.	 108

Figure 8.8 Flowchart of Pull off List.	 108

Figure 8.9 Sphere radius vs calculation time.	 109

Figure 8.10 Transformed obstacle point. 	 110

Figure 8.11 Calculation time vs workspace volume. 	 111

Figure 8.12 Calculation time vs number of spheres 	 112

Figure 8.13 Example of variable unit size.	 114

Figure 9.1 Graph of alternative paths with the same cost. 	 117

Figure 9.2 Flowchart of the graph search program.	 118

Figure 9.3 Flowchart of Search Graph. 	 119

Figure 9.4 Flowchart of Expand. 	 120

Figure 9.5 Flowchart of Put on List.	 121

Figure 9.6 Flowchart of Pull off List.	 120

Figure 9.7 Examples paths through two dimensional space. 	 122

Figure 9.8 A comparison of different cost functions. 	 124

Figure 9.9 Path around an obstacle. 	 126

Figure 10.1 Comparison of the model shortest path with the real
	

135

shortest path.

x

LIST OF SYMBOLS

	AGV	 Automatically G u idea Vehicle

	

CSC.	Constructive Solid Geometry

	

FMS	 Flexible Manufacturing System

	

G	 Goal position of a robot path

	

Gm	 A position close to G and clear of obstacles

	

MAP	 Manufacturing Automation Protocol

	

NC	 Numerically Controlled

	

S	 Start position of a robot path

	

Sm	 A position close to S and clear of obstacles

	

T1-T5	 Axes one to five on the test robot

DECLARATION

The work presented in this thesis is the authois own work and has not been

previously submitted for any other degree.

The copyright of this thesis rests with the author. No quotation from it

should be published without his prior written consent and information derived

from it should be acknowledged.

Nzsi Qa11--,

xii

CHAPTER 1

INTRODUCTION

Robots are now being used for many differing tasks in industry world-wide.

The robot's principle advantage over dedicated handling machinery is that it may

be reprogrammed to carry out different tasks. This property has enabled new

types of production methods to be developed, an example of which is the Flexible

Manufacturing System, where small batches of parts are produced.

To change a robot's task requires the reprogramming of the robot path.

Currently robot paths may be programmed in one of three ways:

(a) On-line or explicit programming. The user 'teaches' the motions required.

Usually this is done by 'lead by the nose' or by using a teach pendont. The

required path is tracked manually for the 'lead by the nose' method and

the robot controller records the coordinates. When using a teach pendcknt,

the robot is moved over the required path under manual control. Again

coordinates are recorded at discrete intervals.

(b) Off-line programming. The robot and its surroundings are simulated on a

computer. The user defines and modifies the robot program using a graphical

display of the computer model. The computer stores the simulated robot

program and downloads it to the robot controller, if required.

(c) Automatic programming. An automatic programming system also has a

computer model of the robot and its surroundings. The user specifies a

task such as 'load part B into machine X', and the computer automatically

calculates a robot trajectory to carry out the task efficiently and safely.

Automatic programming systems may be used off-line, for simulation and

trajectory development purposes, or on- line, to adapt to changing processes

or varying tasks.

Chapter 1 : Introduction

Developing robot programs can be an expensive and tedious task. However

this cost can be justified if the robot is used for a 'repetitive job when the cost of

programming is spread over many operations.

It has been suggested that 'the future of robotics lies in truly flexible systems

which can be reprogrammed at will and, crucially, without taking the robot away

from production tasks'. (Irvine 1986) . This capability can only be provided by

, off-line programming or automatic programming.

Automatic programming has the advantage that the programming cost for

new paths is eliminated. Thus, the robot may be used in situations where the

task is changing, with paths automatically reprogrammed between tasks.

1.1 Discussion of robot programming methods

Robot programming may be divided into four hierarchical levels of control:

(a) Joint level. Most robots have 4 to 6 movable joints so that they may change

their position. The robot's joints are often concentrated in three positions,

these are frequently called the shoulder, elbow and wrist after the joints of

the human arm. When a robot is programmed at joint level, the displacement

of each joint is specified by the program. (The joint positions are defined by

joint coordinates).

(b) Manipulator level. Robots have grippers or end effectors at the ends of their

arms for gripping objects or for holding tools. The positions and orientations

of the gripper are recorded in coordinates relative to the robot base. (These

are called world coordinates).

(c) Object level. The task is specified in terms of the positions and movements

of objects within the robot installation eg. lift part C 10 mm upwards. At

this level of control the computer holds a model of the shapes of objects

2

Chapter 1 : Introduction

within the robot's reach, so that the necessary manipulator actions can be

determined.

(d) Objective level. The task is specified in a general form such as 'spray car

door' or 'weld part A to part B'. Objective level control implies a knowledge

of the robot's surroundings and of the process. Thus the command 'spray

car door' requires a knowledge of the robot, the car door and the process of

spraying.

1.1.1 On-line programming

On-line programming uses either the joint or manipulator levels of control.

Most robots are taught their sequence of operations on-line. In the past the

only way of seeing what a robot would do, given a certain set of commands, was

to make it obey them. This is the reason why virtually all of today's industrial

robots have a teach mode type of programming. But this may not be convenient

because :-

(a) It may be dangerous - mistakes can be made which can damage the machine,

its surroundings, or the programmer.

(b) It may be expensive if the robot is already in full-time use, and it has to be

withdrawn from service while it is being taught.

(c) It may be impossible because the robot, or the machinery to which it will

be linked, may not exist yet.

1.1.2 Off-line programming

In current implementations of off-line programming systems, either the ob-

ject or manipulator levels of control are used. There is at present a fair amount

of research effort being put into off-line programming and some working systems

are evolving, such as the GRASP package at the Universities of Nottingham and

3

Chapter 1 : Introduction

Loughborough. This system is now marketed by BYG systems and is described

by Bonney et al. (1985). Other systems are available from McDonnell Douglas

Information systems, Computervision and Rob°cad.h

Programs such as GRASP may be used by a prograMmer off-line to create a

path for the robot. The programmer tells the robot the directions and distances

in which the robot must move. The robot and its workplace are displayed graphi-

cally so that reasonably efficient movements may be programmed. Collisions may

be checked for by the programmer at any point on the roboes path.

It is worth noting that the development of off-line robot programming meth-

ods today is analagous to the early development of off-line programming for

numerically controlled machine tools. The utilisation of expensive machine tools

was greatly increased by off-line programming. Production engineers were able

to write control programs well away from the machine tool, while the latter was

doing productive work, and then transfer them to the machine, using punched

paper tape. The sponsoring company of this research, Delta Computer Aided

Engineering Ltd., provides off-line programming of NC machines as a service for

a large number of engineering firms.

Off-line programming offers the possibility of reducing 'down time' for pro-

duction lines, or robotic cells where the robots are used. When programming

changes have to be made because of product changes, then the robot programs

can be prepared in advance for a fast change over. This is also an advantage in

that the programmer is removed from the robot's often hazardous environment

and from the occasionally bad-tempered robot itself. The programmer no longer

need remember how to program each different type of robot (robots have many

different languages). The programmer may also be able to spread the workload

of a major change in production over a long period, rather than working while

the production line is stopped when the robots are free.

4

Chapter 1 : Introduction

The off-line approach has advantages which are side effects of the new pro-

gramming method. The computer simulation of a robot and its surroundings re-

quired for off-line programming is a useful tool for planning a robot's workspace

or testing different robots for a particular application, before their purchase.

These advantages of off-line programming may be summarised as follows :

(a) Reduction of down time.

(b) Improved safety.

(c) The ability to simulate a variety of approaches to work cell design and choose

the best.

(d) Spreading the operational load on the programmer. (consider the need to

change a complete production line when introducing a new model).

(e) The ability to link with a computer integrated manufacturing (CIM) ap-

proach.

(f) Programmers do not need to be familiar with many different robot controller

languages.

(g) Longer and more complicated robot programs may be developed.

1.1.3 Automatic programming

Automatic programming is done at the object or objective level. Given

the world model and the movements of objects that are required, the system

automatically programs the robot. This is the main subject of this thesis. Two

different methods of automatically planning the major movements of robot arms

are described.

Automatic programming of robots was first developed in the United States

for use with mobile robots involved in planetary exploration. Since then academic

interest has continued and the problems of path finding and collision avoidance

have been classified in the area of Artificial Intelligence.

5

Chapter 1 : Introduction

Automatic programming may be used either on-line, where the paths gen-

erated are implemented immediately, or off-line, where the paths may be stored

for use when required. There are two practical differences between off-line and

on-line systems. Firstly on-line systems have to calculate robot paths quickly, in

order to keep up with the demand for instructions from the robot. Secondly the

programming system has to be robust and inexpensive so that it may be used in

a factory.

Automatic programming systems have all the advantages of off-line program-

ming listed above. Indeed one may envisage that packages such as GRASP may

be enhanced by adding automatic programming algorithms.

The extra advantages of automatic programming systems may be listed as

follows.

(a) A reduction in costs, as a programmer is not required to work out the robot

path either at the manipulator level or the joint level.

(b) A reduction in errors (less chance of human error).

(c) More efficient robot movements may be calculated. This is because a cost

function (see section 2.6.2) may be used to determine the best robot paths.

(d) By connecting the automatic programming system to sensory feedback from

the robot installation, the system may be used on- line to re-program the

robot, to take account of a changing environment or a changing task.

1.2 The requirement for a real-time system

This research was initiated from the requirement for a more intelligent robot

in the flexible manufacturing environment.

6

Chapter 1 : Introduction

In a flexible manufacturing system a wide range of products are produced

using the same machine tools and handling facilities. These systems require an

ability to cope with changes in the production tasks. In a highly flexible system

such changes require dynamic re-scheduling, which involves fast re-calculation

of robot paths. The extent to which this can be achieved will determine the

re-scheduling capabilities of the flexible manufacturing system.

A real-time automatic programming system may be used in conjunction with

sensors such as vision systems. Such systems will be able to cope with a new range

of applications for robots, such as planetary and sea bed exploration, picking

components presented at random and fruit picking.

1.3 Representation of the world model

An example of the test robot and its workspace is shown in figure 1.1. The

robot used was a Smart Arms robot. This was an inexpensive robot designed

for teaching and research purposes. Although it was the only robot available

for this research and not necessarily an ideal design, it satisfied its requirements

adequately.

The world model of a path planning computer contains a geometric represen-

tation of the robot's workspace and the robot itself. It also contains a kinematic

model of the robot so that it knows how the robot can move and its joint limits.

The robot's workspace is the total volume which the robot sweeps as it passes

through all its possible configurations. The workspace of a robot may be gener-

ated by several methods :- (Lee and Yang 1983), (Yang and Lee 1983), (Cwiakeja

and Lee 1983), or (Hansen et al 1983). In practice obstacles which are likely to be

in the workspace are modelled and the workspace itself does not need calculation.

The problem of finding paths for robots has, up until now, been tackled with

large computers which have modelled the robot and its surroundings by using

7

,
Chapter 1 : Introduction

Figure 1.1 The test robot and its workspace

polyhedral representations. Examples of this approach may be found in Udupa

(1977), Lozano-Perez and Wesley (1979), Lozano-Perez (1981, 1983), Brooks

(1983a, 1983b), Luh and Cambell (1984) and Cameron (1982).

In order to ease the computation involved in the pathfind problem, a simple

method of representing obstacles and the robot was chosen. The obstacles were

modelled as sets of spheres and the robot arm was modelled by a set of cylinders

and spheres.

The robot arm had three main revolute joints : two at the base which al-

lowed the upper arm to rotate and elevate and the other, called the 'elbow joint',

between the forearm and the upper arm, which allowed the angle between the

forearm and the upper arm to change.

8

Chapter 1 : Introduction

One advantage of the sphere representation was that the spheres could be

enlarged to account for the thickness of the robot links. This simplified the

problem further to that of finding paths for lines through sets of spheres.

1.4 Path planning

Finding a collision-free path for a manipulator through an obstacle-cluttered

space is not a trivial problem. Brooks (1983a) reported that algorithms exist for

solving the problem with any manipulator although their computation time makes

them impractical. He described their implementation complexity as 'staggering

and untried'.

Finding a path, regardless of how efficient the path is, will not be of much use

as it lowers greatly the productivity of any existing robot application. Therefore a

cost function for a robot path must be defined and some attempt made to reduce

this to a minimum. In most of the research done so far the cost function has been

defined as the distance moved by a point at the tip of the end effector. Other

factors may be taken into consideration, although they may be more complicated

to calculate. Some interesting work has been carried out by Gilbert and Johnson

(1985), where the energy used by a two degree of freedom robot was minimised.

It is important that in an on-line application the time of calculation for a

robot path should not contribute appreciably to the time of manufacture. Where

possible, calculation should proceed concurrently with manufacture and programs

should be ready for implementation before they are required by the robot control

computer.

In order to achieve real-time operation a compromise must be made between

the efficiency of the calculated path and the calculation time. For any path

planning problem there is an optimum solution based on a chosen cost function.

I . gLEASDALE So86 Nick) cotiPoTeR

9

Chapter 1 : Introduction

Operational constraints may make a faster sub-optimal solution more acceptable

in a particular application.

The method adopted here produces sub-optimal paths using a simplified

world model. Any sub-optimal solution must ensure that the calculated path is a

safe one, that it satisfies the 'collision free' criteria and that any divergence from

the optimal path tends to produce greater, rather than smaller, clearances.

1.5 Description of work done

The computer programs developed for this research were written in Pascal

and run on an Intel 8086 based micro computer'. This was connected to the robot

control computer by a serial link. The test robot was a Smart Arms 6R 750

robot.

In order to provide a real-time solution using a small micro-computer, it was

necessary to represent the problem as simply as possible. A simple representation

provided a saving in the computer memory (required to store the representation)

and an increase in the speed of path planning.

The robot is represented by two connected cylinders and spheres, which

contain the gripper and workpiece. The obstacles in the robot's workspace are

all modelled as spheres.

Figure 1.2 shows the control software for the automatic programming system.

Three separate programs are run. These are :-

(a) The world model program. This stores data about the obstacles on disk for

the path planning program.

(b) The path planning program. This calculates the path trajectory for the robot

control computer and down-loads the information.

10

Chapter 1 : Introduction

(c) The robot program. The robot control computer receives the trajectory data

and moves the robot.

(Store Data)
• Y

	 (Data file)

f-
(Read data)

•
(Read -task description)	

•
(Test goal feasibility)

•
(Approach path planning)

•
(hid path planning)	 a

•

(a)

(b)

(Convert data to robot coordinates
•

	(Update data file)
•

(Output data 	

(c)	 Read data and store in robot
control compu-ter memory locations

1 i
Calve robot to coordinate positions

Figure 1.2 Control Software

The world model is calculated from measurements of the real robot envi-

ronment. This information is then stored in a data file for the path planning

program. The path planning program calculates the robot trajectory and con-

verts it into coordinates which are acceptable for the robot control computer.

When the robot is not moving, it indicates to the path planning computer that

the next trajectory data is required.

The goal feasibility phase is checked to ensure that the final desired position

of the robot is possible without it intersecting obstacles.

11

Chapter 1: Introduction

Approach paths are paths which take a robot small distances from positions

clear of obstacles to positions where the robot can grip or release its payload.

Because of the special nature of approach paths, which require fine movements,

good local information of the part and the obstacles is necessary before they can

be planned. Hence the robot approach paths used in this work were generated

separately from the main robot movements.

The mid-phase planning is done automatically by the path planning com-

puter. The mid-phase planning creates trajectories which are as efficient as pos-

sible, efficiency being defined in terms of distance moved by the robot.

The robot trajectories are converted into coordinates which can be used by

the robot control computer. The information is then passed on via a serial link

when the robot has finished any existing task.

1.5.1 Method 1

The first path planning method which was developed is described in chapters

6 and 7. The trajectory of the upper arm of the robot is planned first using a

graph searching method. Having fixed the upper arm trajectory, the forearm

motion is planned using a heuristic method. The algorithm tests for potential

collisions and then avoids them by using heuristic rules which raise or lower the

forearm.

1.5.2 Method 2

The second method investigated was based on a method of graph searching.

The set of configurations for which the robot did not intersect obstacles is calcu-

lated. This set of configurations is structured into a graph of nodes and branches.

The problem of moving from one configuration to another is transformed into

that of finding a set of branches which connectsthe nodes representing the two

configurations S and G.

12

Chapter 1 : Introduction

It was found that the second method performs better generally, although

a large amount of computer time is required initially to set up the graph for

searching.

The path planning for both methods is divided into three parts :- goal fea-

sibility, approach paths and mid-phase planning.

1.6 Achievements of work done

This thesis has discussed the practicalities of automatically programming

robots for the first time. The need for an automatic programming system has

been examined and the information and equipment required for the system itself

has been described. Two methods of automatically calculating robot paths have

been described and compared with other work in this field.

Automatic path planning has been achieved before for certain robots and

workspaces. However, these solutions have been essentially off-line and the speeds

of solutions were not matched to the speeds of robot execution. This thesis shows

that the possibility of automatic programming for industrial robots outside of

the research laboratory, is not far off. The system developed and operated at the

University of Durham had a very low hardware cost. Hence it has been shown

that the costs for future commercial automatic programming systems need not

be prohibitive.

This thesis has also addressed the problem of path efficiency. The cost of a

particular path may be assessed by many factors, such as time, distance travelled,

energy used etc. It has been concluded that, from a path planning point of view,

the distance travelled in the path planning space is the easiest cost to evaluate

and that, in general, the shortest path is a good solution when the other factors,

such as time and energy used, are considered. The two methods discussed in

the thesis use cost functions to evaluate their solutions. They minimise their

13

Chapter 1 : Introduction

cost functions within the limitations of their path searching methods. These cost

functions could be redefined to take into account any weighting of the different

types of cost which the user might desire.

The two methods of path planning described are both original. However,

they may be classed with other off-line methods which have been described else-

where.

n

14

CHAPTER 2

BACKGROUND

Automatic path planning for robot arms is an important research problem

and has been tackled in various ways. These different approaches are discussed

in this chapter.

2.1 Introduction

Automatic programming for robots was first investigated in the United States

by Pieper (1968) and later Udupa (1977). This research was to design a robot

for use in planetary exploration. Since then several other authors have added to

this field of research.

The main parts of the computer programs have been the world model and

the path planning algorithms. These require the following information in order

to specify and solve their tasks :-

(a) A geometric and kinematic description of a robot. This is required either as

an input or as an inbuilt part of the system.

(b) A geometric description of the robot's environment. This provides the infor-

mation needed to produce collision free paths.

(c) The task description. This provides the objectives of the path planning

problem.

The desired output is a trajectory for the robot. This is the movement of

the robot which efficiently achieves the task without colliding with obstacles.

The type of world model chosen has a considerable effect on the path planning

algorithms. The most popular models chosen for path planning systems have been

15

Chapter 2: Background

polyhedral models. The different types of models are discussed in sections 2.2.

(The robot) and 2.3. (The obstacles).

This research requires a good understanding of path planning problems at

both an abstract (mathematical) level and at a computer level. At an abstract

level a good understanding is required for obtaining proofs and developing plan-

ning methods. At a computer level a good understanding is required for obtaining

efficient and practical programs.

A prerequisite to many path planning methods has been to have one or more

transformations of the real problem space to abstract spaces. These transforma-

tions facilitate more efficient path searching methods. Such transformations are

examined in section 2.4.

Many different path planning methods have been proposed in the past. Al-

though they are all different in certain respects but they may be grouped into

broad categories. These are discussed in section 2.5.

2.2 The choice of robot model

Any robot consisting of a series of links and revolute joints may be repre-

sented by the general schematic model shown in figure 2.1. In this case there are

n coordinate frames which specify the robot's configuration. Figure 2.2 shows

the variables which define one joint's position in relation to the next. The line

ak specifies a vector which is perpendicular to both the Zk and Zk-I-1 axes, lk

specifies the angle between the axes and bk specifies the distance along the Zk+1

axis of the joint k+1. The values ak, bk and lk are fixed for a particular link.

The variable mk specifies the joint angle relative to some origin fixed at the joint.

This theoretical model may be called the kinematic chain of the robot. This

model has been widely used as the basis for modelling revolute robots (Lee and

16

Zk+1

Chapter 2: Background

Figure 2.1 A generalised robot kinematic chain

Yang (1983), Cwiakala and Lee (1985), Hansen et al (1983)). It defines the

geometric relationship between joints, onto which may be placed the flesh of the

robot.

Zk

Figure 2.2 The kth joint of a robot

An interesting robot model of connected spheres was proposed by de Pen-

nington (1983). In this work de Pennington was interested in collision avoidance

17

Chapter 2: Background

rather than in path planning. The method used a solid model of the surroundings.

The robot's path was simulated and the swept volume of the robot-sphere model

calculated. The robot swept volume and the obstacle volumes were compared and

where intersections between volumes occurred, collisions were indicated. The rea-

son that spheres were used was that they produced swept volumes of regularized

cylinders or tori under the restricted robot trajectories considered. Thus the

calculation of the swept volume became tractable.

This method was unsuitable for automatic path planning as the sweeping of

spheres was restricted to translational or rotational sweeping only. This precluded

the use of more than one robot motion at once and restricted the paths available

for planning.

Collision detection and avoidance is simplified by using spheres, as they

are the most simple three dimensional shapes. Hoperoft (1983) describes how

to calculate intersections among spheres efficiently. The method of modelling

awkward shapes, such as a gripper, on robot arms by spheres has been used in

this research.

Udupa (1977(a)) simplified the model of the robot to two connected lines,

then one line and then a point, by using obstacle transformations. Before any

obstacle transformations were carried out the basic robot model was defined as

two connected cylinders. The robot being simulated was the Stanford Arm.

The advantages of this representation were that path planning for a line or

cylinder was much easier than the more complicated shape of the real robot.

Many robots have long slender links so the workspace lost through conser-

vatively approximating the links by cylinders is not great. This representation

allows obstacle transformations which account for the thickness of the cylinders

and reduces the problem to finding a path for a line through the transformed

obstacles. This is probably the most widely used representation of the robot.

18

Chapter 2: Background

Other methods used polyhedral representations of the robot eg. Brooks

(1983(a)). This is a very accurate method of representing the robot although the

extra computational effort for calculating collisions and planning paths is very

large. Hence it is not possible to use this representation for real-time calculations

at present.

2.3 Obstacle representation

Many computer representations are possible for physical objects. In the

field of modelling robots and their surroundings the most popular method of

representing objects is by using polyhedra.

A polyhedron is a three dimensional solid figure with many faces. The faces

are planar and the edges where faces meet are linear. Many common objects have

polyhedral shapes or may be closely approximated by polyhedra. An example of

a program which models robots and their environments by polyhedra is GRASP

(Bonney 1985). An example of a GRASP model is shown in figure 2.3.

A polyhedron may be represented by a tree structure of edges, faces and

vertices. A face may be defined by specifying its edges and an edge is defined by

its end points. Clearly the more complex the polyhedron the more faces, edges

and vertices it has and hence the more data which am required to define it.

A prerequisite for the robot path planning problem is the interference detec-

tion problem. Interference detection among polyhedral solids was addressed by

Boyse (1979). To determine whether a polyhedron A intersected a polyhedron

B, all the edges of A were tested to see if they intersected any of the sides of B.

For example, consider the intersection check between Cl and C2 which are two

cubic obstacles. Each of the twelve edges of Cl has to be tested with each of the

six faces of C2. This gives a total of seventy two edge face tests. Also a test has

to be done to see if Cl is enclosed by C2 or vice versa.

19

Chapter 2: Background

Figure 2.3 GRASP model (taken from Bonney (1985))

Solid modelling has been tried for representing the robot workspace (de Pen-

nington 1983). Pe Pennington used Constructive Solid Geometry (CSG) provided

by the the computer program NONAME. CSG models use simple shapes, called

primitives, to produce complex and accurate representations of the robot envi-

ronment. The primitives satisfy certain mathematical properties (Requicha 1980)

so that operations such as volume calculations and intersection checking can be

carried out easily.

Spatial occupancy enumeration is a subset of solid modelling. Space is di-

vided into a matrix of spatial cells. Each cell is defined either as containing an

obstacle or free space. Ahuja (1980) has shown that this method can be used

to represent the path planning problem. A tree structure was used to represent

three dimensional space. Space was represented as a solid cubic block. This was

subdivided into eight blocks. Each block was tested and given a 'colour flag'. A

block was designated black if it was completely within an object, white if it was

free space and grey if it contained object and space. Each grey block was then

20

Chapter 2: Background

subdivided into another eight blocks. Recursive subdivision continued until a

minimum sized block was reached. At this point any minimum sized grey blocks

were designated as black.

To solve the collision detection problem using spatial occupancy enumeration

the obstacle sets are calculated for the moving object or robot and its surround-

ings. To detect collisions the obstacle sets are compared and where two or more

equivalent cells in the models are black then collisions are indicated.

The representation by a matrix of spatial cells has the advantage that it

is convenient for computer storage. However the computing time required to

generate the representations of the moving robot may be large.

For one of the earliest attempts at robot path planning Pieper (1968) used

a world model consisting of two simple solid primitives, cylinders and spheres.

He also represented surfaces such as table tops and the floor as planes. Cylin-

ders could be joined to form composite obstacles. Spheres were assumed to be

supported by planes. This simplified the intersection calculations as compared

to the polyhedral and CSG representations.

Katib (1986) produced a unique method of representing obstacles by math-

ematical functions. For a point on the robot, such as the centre of the end

effector, the obstacle function (FIRAS) was evaluated to provide a value related

to the distance away from the obstacle. The function tended to infinity as the

point approached the surface and was zero beyond a certain distance from the

obstacle.

This representation had the advantage that the task of calculating the dis-

tance between the robot and the obstacle was replaced by the task of evaluating

the FIRAS functions which, compared to solid geometry or polyhedral methods,

was relatively fast.

21

Chapter 2: Background

The main disadvantage was that only a limited number of obstacle shapes

were available. As Katib (1986) stated 'this potential is difficult to use for asym-

metric obstacles where the separation between an obstacle's surface and equipo-

tential surfaces can vary widely'.

2.4 Obstacle transformations

Several authors have made a once only transformation of the manipulator

and its surroundings into an abstract space. The purpose of creating an abstract

space is so that the problem may be reduced to finding a path for a single point

through a set of obstacles.

Udupa (1977(a)) enlarged obstacles by the width of the manipulator links

to produce a 'primary map'. A transformation called Survey was applied which

permitted the upper arm to be viewed as a point. The transformed space was

called a primary chart. The primary chart was a map of all the positions of the

end of the upper arm for which the upper arm was collision free.

A secondary map was produced by enlarging the obstacles by the radius of

the forearm. The transformation Survey was applied to produce the secondary

chart. The entire manipulator was now represented as a point on this secondary

chart.

The advantages of these transformations were that the path planning of a

point or single line segment was much easier in these transformed spaces.

Lozano-Perez (1983) developed a method for the calculation of paths for rigid

polyhedral objects moving through space littered with other polyhedral objects.

The method involved transforming obstacles into Cspace.

An example of how this method is used may be found in Red (1985). The

configuration space for a PUMA robot with two degrees of freedom is calculated

22

Chapter 2: Background

by a VAX mini computer. The configuration space is displayed graphically and

the operator can plan a path for a point through this space. The path is then

converted back into robot coordinates for execution of the task.

The configuration of a three-dimensional object may be specified by a six

dimensional vector. The six dimensional space of configurations for an object A

is denoted by Cspace A. This contains all the information necessary to solve the

findpath problem for A.

Lozano-Perez reported that when A was a three dimensional solid which was

allowed to rotate, then a simple object B in real space became a complicated

curved object in six dimensional Cspace A. So he did not calculate such objects,

instead he approximated objects by a series of two dimensional slices containing

polyhedral shapes.

Brooks (1983(b)) transformed the space between obstacles into freeways for

the upper arm and payload of the robot. The two freeway spaces were searched

concurrently with the constraint that the upper arm and payload were a fixed

distance apart, due to the forearm.

Brooks reduced the degree of freedom of the payload in order to simplify

the problem. He justified this by saying that for many operations the only reori-

entation of the part required is a rotation about the vertical axis. This may be

achieved by wrist motions alone.

The algorithm generated prisms of freespace between obstacles. The ob-

stacles were effectively only two and a half dimensional in that they had a two

dimensional shape and a height. Thus a cube could be represented accurately

but a tetrahedron could not.

Certain designs of robots cause difficulties when it comes to planning their

trajectories. An example of this is the Stanford Arm whose boom is likely to

23

Chapter 2: Background

collide with obstacles both behind and in front of the robot. Luh and Campbell

(1984) transformed their polyhedral obstacles in such a way that if any part of

the arm would cause a collision in real space then the tip of the arm would also

have a collision in the transformed space.

2.5 Path planning

The primary aim of a path planning method is to find a series of trajectories

for a robot which will take it safely from one specified configuration to the next.

Further than this, the path planning method should produce as efficient a path

as possible, so that the robot does not waste time and energy in its movement

and the computer calculation time should be as short as possible.

Several different methods of path planning have been tried in order to solve

the problem. The approachs taken in each case have been governed by the ob-

stacle and robot representations. Each path planning method may only be used

with its own particular world model.

Gouzanes (1984) divided path planning methods into two categories, local

methods and global methods. Although not all methods fit strictly into these

categories it is useful to discuss them separately.

Figure 2.4 shows some examples of the work done in the field of path plan-

ning for robots. The polyhedral method of representing obstacles has been most

popular. The path planning methods have been evenly spread between the local

and global methods.

2.5.1 Local methods

Local methods proceed by proposing new configurations in the direction of

certain strategies starting from an initial safe configuration S. The algorithm finds

a path by repetitively moving the roboes configuration small distances towards

24

Chapter 2: Background

Author Bate Path pkuming
method

Obstacle represerrtation

PiePer 1968 Local cylinders. spheres

Ups 1977 Local Polyhedral

AhuJo. 1980 Local Polyhedral

LOZOXIO-Per02 198/ Global Polyhedral
Brookes 1983 Gtobal Polyhedral

Ba 1984 Local CSG

Gouzanes 1984 Global

Kai* 1986 Local Mathenaitcat functions

Figure 2.4 The evolution of path planning

the soal. When obstacles are encountered alternative strategies are tried, such

as 'move above' or 'move below' the obstacle.

For local methods the problem is treated as that of finding a series of closely

spaced intermediate positions connecting the initial and final states.

Often if more than one obstacle is present, a move that appears good to avoid

one obstacle will cause a collision with another. This may lead the manipulator

to oscillate between objects. It is also possible for some joints to be at their

physical limits so that the avoidance routine does not find an acceptable move.

Finally, the avoidance routine itself may come up with a non-productive move.

It is therefore necessary to ascertain continually whether or not progress is being

made towards the goal. If no progress is being made it is then necessary to decide

whether a slight change in strategy is in order.

Udupa (1977(a)) also used a local method for path finding. Udupa planned

trajectories for the upper arm and forearm of the Scheinman Arm separately.

Firstly a trajectory was proposed for the upper arm directly between S and G

configurations. Where collisions were detected, sub- goals were introduced which

were intended to direct the path around the obstacles. For example, if a path

25

Chapter 2: Background

between A and B was tested and a collision occurred then a subgoal C between

A and B was proposed. The paths between A and C and between C and B were

then tested and so on, until either a clear path was found, or a time limit on the

calculation was reached.

Having found the upper arm path, the forearm path was planned for positions

where the forearm could collide with obstacles. Udupa described the method as

'juggling the forearm back and forth so that it avoids any collisions, as one end

of it travels along the boom tip locus'.

Khatib (1986) used a very simple local path planning method. The manip-

ulator moved in a field of forces. The obstacles were represented as repulsive

surfaces and the goal as an attractive pole. The path planning method was to

allow the summing of forces at each configuration to guide the robot to the goal.

This simple but effective method has allowed obstacle avoidance to be carried

out in real-time. For this implementation two PDP 11 computers were used.

However the method could become trapped, failing to find the goal if a local

point of minimum force was reached. This occurred if the robot was drawn

between two obstacles where either no possible path existed or the robot had to

pass close to the obstacles.

2.5.2 Global methods

Global methods may be applied only after the path find problem has been

reduced to that of finding a path for a point through space. Lozano-Perez (1979)

called this space, configuration space. Gouzanes (1984) reported that the actual

path planning takes place in the subset of configuration space through which the

point may pass. He called this 'empty space' (it has also been termed 'free space'

by Brooks (1983)).

There are two approaches for finding empty space.

26

Chapter 2: Background

(a) Calculate the space occupied by obstacles and subtract this from the configu-

ration space; examples of this are Lozano-Perez (1981) and Udupa (1977(a)).

(b) Calculate the empty space directly; examples of this are Brooks (1983),

Gouzanes (1984), Chien (1984).

The choice of which approach to take depends upon the type of represen-

tation used, and whether space is expected to be cluttered or uncluttered with

obstacles. It may be seen that the fewer the obstacles, the more efficient is method

(a) and the smaller the empty space, the more efficient is method (b).

Lozano-Perez (1981) calculated the space occupied by obstacles by using a

slice projection technique. Projections of the obstacles onto horizontal planes

were calculated for a range of Z values. These obstacles were then transformed

into configuration space by taking into account the size and range of orientations

of the moving object. Cells of empty space in the projections were defined and

a graph containing these cells was defined by considering the connectivity of

the cells. Finally the path planning problem was solved by the graph searching

method of Hart (1968).

The algorithm worked for cartesian manipulators only. Obstacles were poly-

hedral prisms whose axes were perpendicular to the horizontal.

Brooks (1983) modelled empty space as 'freeways' along which the manip-

ulator could move. He separated the planning of the upper arm, forearm and

workpiece. The upper arm planning was done in joint space. Figure 2.5 shows

how joint space was divided into freeways along which the upper arm moved.

Similar freeways were defined for the workpiece in real space. Figure 2.6 shows

how a three dimensional freeway was defined between the prismatic obstacles.

A path was then found by firstly considering the path for the upper arm,

secondly seeing which workpiece freeways could be used with the upper arm path

27

N\
N

th

•

Chapter 2: Background

Rotation
Key

Robot path
Freeways

0
	

Posrtions along the robot path

N \I Obstacle

Figure 2.5 Free-space for upper arm planning (taken from Brooks (1983(13)))

and thirdly rejecting those paths which would cause a collision for the forearm.

This type of path planning produces paths which generally have good clear-

ances from obstacles. This is advantageous from a safety point of view but disad-

vantageous for producing short paths, as the shortest paths generally pass close

to obstacles. The method also greatly restricts the possible solutions because of

the constraints which have to be applied to the movements whilst concurrently

planning the upper arm and the workpiece in different representational spaces.

E.E cul
Chien (1984) used the concept of a rotation mapping graph (RMG) to plan

A

paths for a rod, and then they extended the idea to cover the Stanford Arm.

28

Chapter 2: Background

Figure 2.6 Free-space for payload (taken from Brooks (1983(b)))

They modelled empty space as regions of collision free motion for the forearm

of the Stanford manipulator. These regions were limited to those which implied

collision free motion for the upper arm. These regions were then converted into

a graph for searching by using a connectivity algorithm. However, Chien did not

comment on the implementation of the algorithm.

Luh (1984) calculated the configuration space for the boom (upper arm) of

the Stanford Arm. The path planning for the boom consisted of planning a path

for a point among a polyhedral representation of the configuration space. The

shortest path for a point through this space is in straight lines between the edges

of these obstacles. Luh presented an algorithm which, given an ordered set of

edges, produced the minimum distance path. However, how to find which set of

edges to use for the best path was not discussed.

2.6 The contribution of this thesis

With the exception of Khatib (1986) all of the robot path planning work

29

Chapter 2: Background

done so far has required greater computation time than the robot takes to carry

out the trajectories. The importance of producing real time solutions can be

classified into two main reasons.

(a) By attempting real-time solutions, the researcher is forced to develop efficient

algorithms to solve the 'find path' problem. Efficient algorithms are vital for

computing more complex problems which may be tackled 'off-line'.

(b) With the increasing sophistication of sensors, such as vision systems, it will

soon be possible for robots to carry out more general tasks such as picking

parts from bins, or fruit picking, for example. These tasks will require the

automatic recalculation of paths in real- time.

The two methods discussed in this thesis provide a useful comparison of

the two main classes of path finding algorithm, the local method and the global

method.

The local path planning method produces real-time solutions for a wide range

of problems. It requires no time to preprocess data before searching for a path

and thus it can be used in situations where the environment changes frequently.

The global path planning method is based on a more rigorous mathematical

treatment of the path finding problem. The method produces optimum solutions

within the restrictions of its world model. It requires a small amount of time to

preprocess the world model but then it produces real-time solutions to a wide

range of path planning problems, where solutions are possible.

30

/	
Path . planning

computer

Robot

con-trot

electronics

CHAPTER 3

THE DEVELOPMENT OF A ROBOT TEST RIG

3.1 Description of the robot test rig

The essential components of any automatic planning system are the robot,

the robot control computer (RCC) and the path planning computer (PPC). A

schematic diagram of the test rig is shown in figure 3.1.

VDU

Robot

control 	
computer

Figure 3.1 Schematic Diagram of System Hardware

The rig evolved out of equipment which was available for this research and

hence the equipment used was not necessarily ideal for the purpose. The robot

in particular had many disadvantages. However, it did have one great advantage

which was that a copy of the robot software source code was available and the

RCC facilitated the alteration of the software.

31

Chapter 3: The development of a robot test rig

The robot was placed on a wooden base. A datum position of the robot base

was recorded to enable accurate repositioning of the robot in case it was moved.

The robot was not bolted down so that when programming mistakes occurred

and the robot hit obstacles, the robot moved across the base without damage

to itself or the obstacles. For early development work the gripper was removed

when it was not required for tests, as this was the most delicate part of the robot.

Test obstacles were constructed out of thick cardboard. Although this was

viewed as a 'sealing-wax and string' approach it was very successful, as different

models could be constructed quickly and at no cost. A grid of lines was marked

on the wooden base so that obstacles could be accurately positioned on the grid.

This also aided the measurement of robot configurations.

3.2 Form of robot data

The robot software was designed such that the robot path data consisted of

a number of blocks of data. Figure 3.2 shows a block of robot data as it was

displayed on the RCC.

STEP 1)

Rate Mode Input Output Wait Jump

5 2 -	 0 0 0 0
500 250 50 500 500 0

rotate shoulder arri wrist hand gripper

Figure 3.2 A block of robot data

32

Chapter 5: The development of a robot test rig

The block of data contained twelve pieces of information.

(1) Rate :- The rate at which the RCC indexed the position of the robot joints

when moving.

(2) Mode :- Different modes were available for special activities such as 'search

for a part'.

(3) Input :- The robot had several electrical inputs and it could be programmed

to wait for an input to be activated.

(4) Output :- The robot could activate its own outputs.

(5) Wait :- Wait for a number of seconds.

(6) Jump :- Continue executing the path at a specified line number.

(7-12) Coordinates of robot axes.

The operator taught the robot trajectory programs by moving the robot

physically through different positions using keypad control. Each position was

recorded as coordinates in joint space in a block of data. Other information such

as the rate of movement, jump statements etc. was recorded in each block as

well.

3.3 Transfer of data

The transfer of data was achieved by using a serial link. This was chosen

because it was robust and easily produced. A procedure in the PPC converted

the path from a series of positions in joint space to a series of equally spaced

robot coordinates. These numbers were sent in ASCII characters to the RCC. A

procedure in the RCC decoded the ASCII characters and stored the numbers in

memory.

Although both the calculated path and the robot coordinates in the RCC

were joint space coordinates they used different scales and origins for their co-

33

Chapter 3: The development of a robot test rig

ordinates. Thus a coordinate transformation in the form of equation 3.1 was

used.

Bi=1.Ai+k	 (3.1)

where

	

Bi	 is the RCC coordinate for joint i.

	

Ai	 is the PPC coordinate for joint i.

	

1 and k	 are constants.

3.4 Modification of robot software

The robot control program was the result of at least two man years of devel-

opment work by the robot manufacturers and it involved many different features.

The program was so long that when it was loaded it occupied all free memory on

the computer. The organisation of the program routines was closely tied to the

method of programming the robot which was done using a teach pendant.

To enable the PPC to program the RCC, the software in the RCC was

considerably altered. The program was changed so that data could be loaded

from the serial link and the robot path executed without the need for operator

intervention. The program was first modified by erasing several procedures such

as 'Tutor text' in order to make greater space for the program code.

The manufacturer's program required the robot software to go through an

initialisation process which included driving the robot to a park position. The

program then went into an edit mode which allowed the programmer to teach

the robot a new path.

The initialisation procedure was retained but the park position software was

deleted. After initialisation of variables the program read in the trajectory data

34

Chapter 5: The development of a robot test rig

from the PPC via the serial link. This procedure was implemented in assembl

language so that data transfer was as fast as possible. Having read in the tra-

jectory data, the program mode was set to run and the step counter was set to

the start of the trajectory data. When the trajectory was completed the program

returned to the 'input data' procedure.

3.5 Investigation of robot properties

The properties of the test robot were investigated for two reasons, these

were:

(a) In order to assess the usefulness of automatic programming.
tr

(b) To give a guide as to what minimum clearance the robot should give to an

obstacle when manoeuvring around it.

Three robot properties were investigated.

(i) The ability to repeat a previous position when approaching from the same

direction and with the same speed.

(ii) The ability to repeat a previous position when approaching on a new path.

(iii) The ability to move to a specified coordinate position.

The first two are generally called the repeatability of the robot and the third

is called the accuracy of the robot.

For automatic or off-line programming it is the accuracy of the robot which

is important, whereas for normal teach-pendant type programming it is only the

repeatability (first type) which is important. Hence if the robot's accuracy is

not as good as its repeatability then there will be tasks which an operator can

program the robot to carry out but which the automatic programming system

cannot.

35

Chapter $: The development of a robot test rig

For the first experiment a light source was attached to the end of the robot

forearm. This produced a beam of light which was focussed on a piece of graph

paper a small distance away from the robot (see figure 3.3). The robot was

programmed to move to another position and then return again. Having returned,

the position of the light beam was recorded. This procedure was repeated ten

times.

tight source/

Figure 3.3 Repeatability experiment

The second experiment was similar to the first experiment, except that the

robot moved to a different position away from the test position for each test.

For the third experiment the tip of the robot was moved to ten different

coordinate positions. The position was measured by suspending a pendulum

from the tip of the robot. The x and y coordinates were measured at the end of

36

•

1

Chapter 8: The development of a robot test rig

Figure 3.4 Measurement of robot accuracy

the pendulum and the z coordinate was given by the length of the pendulum (see

figure 3.4).

The first two experiments were carried out several times for different test

configurations. It was found that the repeatability of the first experiment was

+1- 1.5 mm. However for the second experiment it was +/- 10mm. The difference

in these figures was probably due to the back-lash in the robot joints. This would

always be in the same position for the first experiment but not in the second.

For the third experiment the accuracy was also found to be +/- 10mm.

37

Chapter 3: The development of a robot test rig

3.6 Discussion

Many practical problems occurred with the equipment. These may be ex-

pected to recur when other off-line programming systems are developed. In par-

ticular, the robot software and the robot mechanical design created problems

which were overcome.

The robot mechanical design was difficult to model for the path finding prob-

lem as it had overslung links. This produced the possibilities of left handed and

right handed configurations and also provided more difficult coordinate trans-

forms. These are described in section 4.5.

The robot software had no facility for off-line programming. This meant

that separate routines had to be written for data transfer and entry into the

RCC program and the automatic operation of the robot as soon as data had

been received. This proved to be a time consuming task as the robot control

program was necessarily complex.

For this development work no standard data protocol was available which

could have been used to transfer data. However with the increase in popularity

of Manufacturing Automation Protocol (MAP), (European MAP users group

secretariat (1986)) it should be possible to obtain robots which use this protocol

and link into them much more easily.

It was found that the robot properties had to be closely investigated before

automatic programming could be implemented. This was done in order to set

safety margins on the minimum distance allowable from the robot to obstacles

and to assess the feasibility of some operations.

The types of operation which may be programmed off-line or automatically

for a particular robot are affected by the accuracy of the robot. For example the

test robot accuracy of +1- lOmm would be unacceptable for many operations such

38

Chapter 3 : The development of a robot test rig

as loading a part into a vice. However the repeatability of +/- 1 5mm enables a

human operator to program this task.

Other inaccuracies also affect automatic and off-line programming. These

are the positional accuracy of the robot and the objects in the robot's workspace,

relative to the computer world model. For example, consider the task of putting

a part into a fixture. The possible errors come from the positioning of the robot

on the workcell base, the positioning of the part in the robot gripper and the

positioning of the fixture in the robot workspace. These errors have to be added

together in order to assess whether the robot can achieve the task. For instance

if an operation requires an accuracy of -I-1- 0.5ram, the positioning accuracy of

the robot on the base is +/- 0.1mm, the positioning accuracy of the fixture is -1-1-

0.1mm and the accuracy of the position of the part in the gripper is +/- 0.2mm,

then the accuracy of the robot must be 0.1mm or less.

39

CHAPTER 4

REPRESENTATION OF THE ROBOT AND ITS SURROUNDINGS

- THE WORLD MODEL

4.1 Introduction

The following list gives the requirements which are important in methods

used to represent the world model of a robot and its surroundings.

(a) Fast intersection calculations.

(b) Easy to use with path planning algorithms.

(c) Easy to generate a model.

(d) Low memory storage requirements.

(f) Efficiency in terms of the workspace volume occupied at critical points.

The world model may be divided into two parts, the robot which incorpo-

rates all moving objects and the surroundings which incorporate all stationary

obstacles. Moving parts have different modelling requirements from stationary

objects so the two parts of the world model are dealt with separately in this

chapter.

4.2 The surroundings

Several different methods of modelling surroundings were considered. These

were polyhedral models, constructive solid geometry models, surface models and

models consisting of spheres. For each representation the five requirements listed

above were assessed.

Most published computer models of robot surroundings are in the form of

polyhedral obstacles. This geometry is chosen because most obstacles tend to

40

Chapter : The world model

have flat surfaces and straight edges. However these model forms can be difficult

to deal with in path finding calculations. Figure 4.1 shows a situation, where a

robot has to find paths avoiding two box shaped obstacles. In this case the robot

and the obstacles are all polyhedral objects and so a polyhedral model would

imply a high degree of accuracy.

Figure 4.1 An example of a robot workspace

Constructive Solid Geometry (CSG) representations are (ordered) binary

trees. Figure 4.2 shows an example of a CSG tree which represents a "U" shape.

Non-terminal nodes represent operators, which may be rigid motions, regularised

union, intersection, or difference. In the example nonterminal nodes are a union

(U*) and a rigid motion (translate). Terminal nodes are either primitive leaves

which represent solid primitive shapes, or transformation leaves which contain

the defining arguments of rigid motions. In the example, P1 and P2 are solid

primitive shapes and there is a translation WX of P2. More information about

this may be found in ,'paper by Requicha (1977), Braid (1973) and Braid (1975).

41

1
uw

1•01•n•

/\
LA	 Translate

dX)1
P1	 P2

I

Chapter 4 : The world model

Figure 4.2 Diagram of a CSG tree

Surface modelling methods may be used to model environments in which

robots operate. These programs may be used to model complex surfaces in great

detail, and are widely used in the design of complex shapes such as telephone

hand sets and plastic bottles.

An introduction to surface modelling is given by Ball (1983). Surface mod-

ellers use complex parametric functions such as Bezier equations to represent the

42

Chapter 4 : The world model

detail of surfaces. These representations are difficult to use for intersection check-

ing. As surfaces only are represented and not the volume beneath the surface, it

is difficult to determine whether a particular point in space is inside an obstacle

or not. Deciding whether two surfaces intersect is also difficult because of the

representation by parametric functions.

The method chosen in. this work was to model the surroundings as collections

of spheres. This method fulfilled requirements 1 to 4 above better than the other

methods and it was felt that requirement 5 would be adequately met.

4.3 The robot

The requirements for the robot model are similar to those for the surround-

ings. The most important factors are efficiency in terms of workspace used, ease

of use for intersection calculations and low memory storage requirements.

Shapes of robot vary a great deal; some robots are bulky and capable of

limited motion, others are slender and capable of moving through a wide range

of configurations. The robot model chosen must be conservative in that the whole

volume of the robot must be contained by the model, but the model may be larger

than the real robot.

The robot arm was modelled as two connected cylinders with hemi spherical

ends. The advantages of this representation were that the cylinders modelled the

robot links efficiently and the intersection calculations between the robot arm

and obstacle spheres were very fast. The calculations consisted of finding the

distance between the centre of the sphere and the closest point on the arm centre

line. From this distance was subtracted the radius of the arm, to give the distance

between the arm surface and the sphere surface.

43

Chapter 4 : The world model

A large number of robots have a similar design to that of the test robot.

These robots have two major links, the upper arm and the forearm, which have

slim profiles so that they can operate in restricted environments. Thus the model

chosen for the test robot may be applied to a large number of different robots.

An accurate model of the robot was obtained by measuring it. This would

be necessary for each individual robot as even robots of the same design vary

slightly from each other. The dimensions were then incorporated into the model.

The physical limits of the robot's different axes of motion were also incorporated

into the model to prevent the path planning algorithm from producing impossible

paths.

The robot contained some features which were difficult to model. In par-

ticular the lateral property of the robot made path planning more complex and

the protruding cables were very difficult to model. It would have been possible

to redesign and rebuild the robot to remove these features, however in the case

of the lateral property it was decided that the problem should be tackled, as

it applied to many robots. The fact that the robot had protruding cables was

ignored as most commercial robots did not have protruding cables and those on

the test robot could have been eliminated by minor design alterations.

4.4 The gripper and the workpiece

The gripper and the gripper motors were modelled as a sphere. From figure

4.3 it may be seen that the sphere centre was displaced from the axis of the upper

arm. The sphere radius was just sufficient to enclose the main part of the gripper,

the gripper motors and the attached cables.

The gripper fingers, if empty, were modelled by a smaller sphere. The work-

piece was modelled as a series of spheres, depending its size. It was found that
A

44

Chapter 4: The world model

Scale
0 40 80 120 160 (MM)
i	 11111111

Figure 4.3 The robot gripper

many small workpieces could be modelled as a single sphere and that this also

enclosed the gripper fingers.

45

Chapter 4 : The world model

As the path planning algorithm was not designed to take account of reorien-

tation of the gripper to avoid obstacles, the position of the gripper was fixed for

the mid-phase planning. The gripper position relative to the forearm was defined

such that the gripper axis and the forearm axis were parallel.

4.5 The lateral property

The links of the test robot did not lie in the same plane. This is illustrated

by the kinematic model in figure 4.4. This property is called the lateral property

and robots may be defined as left handed or right hand dedending on their cur-

rent configuration. Figures 4.4(a) and (b) show the kinematic chain for the test

robot. However, (a) is the right handed configuration and (b) is the left handed

configuration.

Figure 4.4(c) shows the model kinematic chain used to represent the test

robot for path planning purposes. In order to use this model the obstacles were

transformed such that a collision in the real space also caused a collision in the

transformed space.

In order to take account of the elbow of the robot, extra spheres were pro-

posed in the upper arm model. These extra spheres ensured that the path planned

for the upper arm was also free for the whole of the elbow joint.

Figure 4.5. shows a flow chart of the program for creating these 'new spheres',

called Expobs. Each of the existing spheres in the model was considered in turn.

The distance to the centre of the sphere was calculated. This was compared

with the maximum and minimum distances to the elbow and the radius of the

sphere, to determine whether a collision was physically possible. If a collision

was possible a new sphere was proposed, such that the upper arm intersected the

new sphere for all configurations where the elbow intersected the previous sphere.

46

P.

/

Chapter 4 : The world model

(a) Right hand configuration

(b) Left hand configuration

(c) Model kinematic chain

Figure 4.4 Kinematic robot models

The new sphere was then put into the list of obstacle spheres and the next one

tested.

In order to take account of the lateral property of the manipulator the obsta-

cle spheres were transformed onto new spaces. Firstly the configuration at which

the axis of the robot arm passed through the centre of the sphere was found. The

47

Cnt=Cnt+11

H calculate the distance to thel
centre of sphereCnt)

is it possible -that the elbow
Joint could intersect the sphere

ro ose a new where

N=N +1

	rove all spheres after Cnt up
one position in -the list

1

 store new sphere at position	,
Cnt-1-1 In -the list

'-----1Cnt=Cnt+1

Chapter 4: The world model

--4Cnt=0

Cnt<N d

Figure 4.5 Flowchart of Expobs

sphere was then translated by the vector equivalent to the offset of robot link

from the origin. The sphere was then enlarged slightly to take account of the

reduced distance from the origin.

Although the transformation is a mathematical approximation of the real

situation it was found to be satisfactory for practical path planning.

4.6 Efficiency of sphere models

In order to quantify the difference between the model of spheres and the real

objects, the volumes of the spheres and real objects were compared.

48

Chapter 4: The world model

The volume of the real objects must be completely contained by the spheres

for safety reasons. Therefore the model will always have a larger volume than

real objects.

Any shape may be modelled by spheres and to any accuracy, however, the

greater the accuracy required, the larger the number of spheres needed and the

larger the number of spheres, the longer the computation time. Thus the accuracy

of a model is limited by the computer memory available and the computation time

permitted for the path finding algorithm.

As the real environment for a robot becomes more complex so more spheres

are needed for the model. It is important to know how increasing the number of

spheres might increase the accuracy of the model.

In order to find out how increasing the number of spheres affects the accuracy

of the model, the case of modelling a unit cube was investigated. A cube was

represented by a cubic number of spheres ie. 1, 8, 27, 64 etc. The spheres

formed a regular pattern and were equal in size. The volumes were deduced from

calculations which have been given in appendix A.

Figure 4.6 shows a graph of the volume of the sphere model vs the number of

spheres used. From the graph it may be seen that an infinite number of spheres

is required to model the cube completely.

Modelling objects using the same sized spheres is inefficient. For instance

in modelling a cube by 64 spheres of the same size 8 of the spheres are totally

enclosed within the cube and might easily be replaced by a single larger sphere

with no increase in model volume.

In general, deciding on the best sizes and positions of spheres to model real

obstacles is difficult and no rules have been developed to do this automatically

(to the author's knowledge).

49

Chapter 4 : The world model

1.0 	

0.2	 8
	

27

Number of spheres

Figure 4.6 Volume of spheres vs number of spheres

In practice typical numbers of spheres used to model an obstacle were be-

tween 1 and 8. This made the model simple and speeded up path calculation. It

also required little computer storage space and produced efficient robot paths.

4.7 Conclusions

Polyhedral, CSG or surface modelling methods may be used to represent the

world model accurately. However they are complex models requiring complex

intersection calculations to determine whether the robot can move to any partic-

ular position. The models also provide difficult problems for heuristic algorithms

and the generation of these models is time consuming.

The sphere model on the other hand ensured the fastest possible intersection

calculations. The calculation was reduced to finding the distance from the robot

50

Chapter .4: The world model

to a point and subtracting the radius of the sphere to give the distance to the

surface of the sphere.

Heuristic algorithms were made simpler by the use of spheres, as the distance

and direction of the robot to the nearest obstacle was easily calculated. Thus

directions could be modified heuristically to avoid collisions.

It was found that the sphere model used was more difficult to visualise than

the other types of model, however models could be quickly built up and entered

into the computer. Figure 4.7 shows one possible model of the real environment

of figure 4.1. The storage requirements for complex models were low as each

sphere required only four items of data, the three cartesian coordinates and the

radius.

Figure 4.7 Model of robot and obstacles

51

Chapter 4 : The world model

The detail of the modelling of an obstacle can be tailored to its importance,

for instance a cubic obstacle which is away from likely paths can be modelled as a

single sphere. Items which are more critical can be modelled as greater numbers

of spheres. Thus although the workspace volume is reduced, by this method, the

critical workspace for pathfinding is not significantly affected.

52

CHAP TER 5

PLANNING PRELIMINARIES

5.1 Planning in a flexible manufacturing environment

In flexible manufacturing systems the control of a robot may be divided into

hierarchical levels. This is important in order to integrate a robot into a system of

machines. Further information about integrating robots into automated systems

may be found in the following references, Albus (1982 and 1983), Arai (1982),

Smith (1983), Gaspart (1982), Fussell (1983) and Cassinis (1983).

For this research the control of the robot was divided into four levels. These

were :-

(i) Task description,

(ii) Trajectory description,

(iii) Robot coordinates,

(iv) Power to robot.

A task description contains general information about what the robot must

do. An example would be 'pick up part X from position W, put the part into

machine Y. Wait until the machine has finished. Remove the part and place it

at Z'.

A trajectory description is a mathematical representation of the robot's path

which will fulfill the requirements of task description. The robot coordinates are

generated from the trajectory description; these coordinates generally refer to the

robot joint angles. These coordinates may be transferred directly to the robot

controller. The robot controller then converts the robot coordinates into the

motive force (electrical, hydraulic, etc) which carries out the required movement.

53

Chapter 5: Planning Preliminaries

For this work the task description was provided by a human operator who

typed the required start and finish coordinates of a part into the path planning

computer. This first level of control was then converted into the second level, the

trajectory description, by the path planning algorithms. The trajectory descrip-

tion was then converted into the robot coordinates which were the third level

of control. These in turn were converted into robot movements by the robot

controller.

5.2 Introduction to planning

The planning problem was divided into three stages following the method of

Udupa (1977(a)). These were path feasibility, approach path planning and mid-

phase planning. The most difficult of these was the mid-phase planning, which

is addressed in chapter 6.

The configurations of the robot at goal positions along the path were checked

for feasibility. Positions which were out of the robot's workspace, or which would

cause collisions with obstacles, were clearly unacceptable.

• Approach paths are paths which move from positions with good clearance

from local obstacles to end positions such as the start position (S) and the goal

position (G). A path which moves to S, from a position clear of obstacles Sm,

may also be followed in reverse when moving from S, to Sm. The positions which

are clear of obstacles are generally close to the end positions so that the approach

paths are short.

When a trajectory was planned, a series of intermediate configurations were

produced between goal configurations in order to take the robot around obstacles.

The way in which the robot moved between these configurations was called the

path definition. The path definition was critical to the trajectory locus and the

path efficiency. It had to be defined before any path planning was done as it

54

Chapter 5: Planning Preliminaries

affected whether the direct path between two configurations hit an obstacle or

not.

The path planning algorithm attempted to minimise the cost of the robot

path. There were many different criteria which may be considered when estimat-

ing the cost of a path for a robot. Five of the most important criteria which may

be considered are listed below.

(1) The distance travelled by the robot.

(ii) The time taken by the robot.

(iii) The energy used by the robot.

(iv) The wear on the robot.

(v) The safety of the path ie. how close does the robot come to obstacles.

The weighting given to each criterion in assessing the cost of a path must

be decided before the planning can take place, so that where choices of different

paths exist the most efficient path can be chosen.

5.3 Path Feasibility

The task description was divided into a series of configurations through which

the robot moved in order to carry out the task. When moving from one config-

uration to the next, only the latest configuration was checked for feasibility, as

the robot had already reached the previous configuration.

If this check had not been made in the planning program then valuable

calculation time would have been wasted in attempting to plan impossible tasks.

It was found that the small amount of extra calculation time and the few lines of

program code, which were required to carry out the feasibility check, were worth

while as a programmer may easily make the mistake of asking the robot to move

to an impossible position.

55

Chapter 5: Planning Preliminaries

5.4 Approach path planning

Approach path planning requires special knowledge of the environment and

details of the chucks and grippers of the machines. As an example, consider the

manipulation of a component into a lathe. The part must be lined up with the

central axis of the chuck and must move along this axis until it is at the required

position in the lathe chuck jaws.

Approach paths may be considered to be related to machine geometry, and

calculated for the specific machine configuration. This part of the path planning

was therefore separated from the mid-phase path planning and is treated differ-

ently. The user defines an approach path by giving the following information:

(a) The orientation of the part for the approach path.

(b) A vector defining the direction, length and position of the approach path.

This information is machine and part specific. Special programs were written

to calculate the approach paths from the above information.

5.5 Interpolation between configurations

A path was defined as a series of robot configurations. The robot trajectory

was derived by interpolating the robot coordinates between these configurations.

The way in which the interpolation was carried out affected the way that the

robot moved, whether it hit obstacles or not, and factors such as the speed of

movement.

The section below shows an example of two types of interpolation used for

the test robot which had different properties.

5.5.1 An example of two types of interpolation

56

Chapter 5: Planning Preliminaries

For this example the robot upper arm is considered. It may be idealised for

simplicity as a line segment attached at one end to the origin. Figure 5.1 shows

how the robot has two degrees of freedom, Ti and T2.

Figure 5.1 Idealised robot upper arm

Figure 5.2 shows how two different types of interpolation produce two differ-

ent paths between configurations A and B. The figure represents a sphere with

lines of longitude and latitude marked on it. A line from the centre of the sphere

to its surface defines the configuration of the idealised robot upper arm. Configu-

rations A and B have the same latitude. For a path where longitude and latitude

are interpolated path 1 is followed. If the path is defined so that a line from the

surface to the centre of the sphere moves in a plane then path 2 is followed.

57

Chapter 5: Planning Preliminaries

Path 1
Path 2

Figure 5.2 Different types of interpolation

Both methods of interpolation have advantages. Path 1 has the advantage

that it is easy to calculate the interpolated position at any time between when

the robot leaves A and when it arrives at B. Path 2 is the shortest path for any

given point on the robot. It would also be the most energy efficient path, and it

simplifies the calculation of intersections between the path and obstacles.

It was found that the robot control software was designed to use the first kind

of interpolation which was used in the above example, ie the linear interpolation

58

Chapter 5: Planning Preliminaries

of the joint axes with time.

For the path finding method described in the following chapter it was decided

that the first method would be used for axes T3, T4 and T5 on the robot and

the second method was used for axes Ti and T2.

The reasons for adopting method 2 for the upper arm axes were that it

simplified the intersection calculations and provided more efficient paths. For the

forearm and the end effector axes no simplification of trajectory was found by

different interpolation methods so the interpolation method of the robot control

computer was used.

5.6 Efficient paths

The efficiency of a path may be determined using many different criteria.

Different applications require different emphases to be placed on the different

criteria. Five of the most important criteria are listed in section 5.1. For instance,

in order to optimise a process, which has a cycle time dependent upon the robot

cycle time, a high emphasis must be placed upon a fast robot path. If a process

does not depend on the speed of the robot, then a higher emphasis may be placed

on minimising the energy consumed.

Some criteria may oppose each other, for instance, as the time taken for a

robot path decreases so the energy consumed increases. The optimum path is

the compromise between these criteria that produces the best possible path.

The following sections discuss the factors affecting the five criteria of section

5.1 above, and their effect on each other.

5.6.1 The distance travelled by the robot

59

Chapter 5 : Planning Preliminaries

The distance travelled by a robot may be defined, either as the distance

travelled by a point defined somewhere on the robot (usually the hand), or by

the total amount of movement which the robot has made.

The total amount of movement which a robot has made is the sum of the

movements of each robot axis. If there is a mixture of linear and rotary move-

ments then the rotary movements may be converted to linear ones by defining

their linear distances as,

Ld = T.L

where

= the rotary movement,

= the length of the link,

Ld	 = the linear distance.

Lozano-Perez (1981) and Udupa (1977(a)) used the total distance moved by

a robot criterion, to calculate minimum distance paths.

When a robot is programmed to move between two positions there are many

different ways it may move. Most robots may move in one or more of three

different ways.

(a) Point to point linear interpolation.

A point is defined on the robot, and the robot moves such that the point

travels in a straight line from the startpoint to the goalpoint.

Some robots, such as the PUMA may be programmed in so called 'tool

space'. In this case a point at the end of the robot forearm moves linearly from

one position to another and the hand moves such that its orientation to the xyz

coordinates stays the same.

60

Chapter 5: Planning Preliminaries

(b) Interpolation of robot axes.

The robot's axes are interpolated such that they all have the same function

of time. For instance, if one of the robot's axes has initial value Al and final

value A2 then,

A(t) = Al + f (t) (A2 — Al)

and f(t) is the same for all other axes.

For this type of interpolation all points on the robot arm describe complex

curves in three dimensional space.

(c) Independent movement of axes.

The robot's axes move independently from their starting positions to their

finishing positions. This type of movement requires the minimum of computer

control and so in some cases it is the fastest movement possible. However, it is

very difficult to model because the different axes reach their final positions at

different times.

5.6.2 The time taken by the robot

The time for a robot to move from one position to another depends on the

following.

(a) The distance of the path. The greater the distance of a path the longer will

be the minimum time taken for that path. The minimum possible time for a

path is the time taken at top robot speed. However the speed of the robot's

path is in turn affected by the complexity of the path.

61

Chapter 5: Planning Preliminaries

(b) The complexity of the path. For a complex path a larger amount of time is

spent in accelerating and decelerating the robot arm so the average velocity

is reduced.

(c) The type of path. Paths which require large amounts of computing time to

calculate, such as point to point linear interpolation, take a longer time to

execute than paths calculated by, for instance, the interpolation of axes.

A general method for the planning of minimum time trajectories for robot

arms has recently been described by Sahar (1986). Sahar reports that 'optimal

paths tend to be nearly straight lines in joint space'

5.6.3 The energy used by the robot
-'

Luh (1985) and Vukobratovic (1982) used the criterion of energy used by the

robot motors to optimise the robot path. They found that the factors affecting

the energy used were the following.

(a) The time taken by the path. As the robot's path time decreases so the

accelerations and decelerations for the robot increase. This then increases

the energy used.

(b) The shape of the path. Smooth paths require least energy because the ac-

celerations and decelerations involved are less. Figure 5.3a shows a path of

minimum energy consumed for a point moving around a rectangular obstacle.

Figure 5.3b shows the minimum distance path.

(c) The distance travelled by a robot. Energy is also dissipated in friction when

the robot moves, so the further the robot moves the greater the energy

required.

5.6.4 The wear on the robot

62

Chapter 5: Planning Preliminaries

Figure 5.3 Optimum paths - a) minimum energy path

/'N
Figure 5.3 Optimum paths - b) minimum distance path

The wear on a robot may be an important factor in determining the cost of

a particular path. As wear affects the mean time between failures and the time

between services for a robot, then reducing wear will reduce costs of operation

and increase productivity.

Wear on robots is affected by the same things that affect the energy used by

a path.

5.6.5 The safety of the path

Bonney (1984) described how the safety of a path may be viewed from three

different standpoints.

(a) The robot.

63

Chapter 5: Planning Preliminaries

A robot may collide with obstacles if it is programmed to move too close

to them. It has been found from experience that the path along which a robot

is programmed to move may be significantly different to that which it actually

takes. One particular problem is the rounding off of corners.

Figure 5.4 shows a programmed robot path consisting of two straight lines

meeting at a corner. Most robots will follow a path similar to the dotted line in

figure 5.4 which cuts the corner, unless they are programmed to wait for a certain

length of time at the corner.

Figure 5.4 Robot paths cut corners

To reduce the danger of a robot hitting obstacles, the nominal size of the

obstacles may be increased by some safety margin. This ensures that if a robot

does cut corners it will still miss obstacles. However any safety margin may have

to be reduced to zero at the startpoints and goalpoints of a path.

(b) The workpiece.

If the robot is moving quickly the forces on the workpiece will increase. This

may cause the workpiece to move in the gripper or be dislodged from it.

(c) Humans.

64

Chapter 5: Planning Preliminaries

As the speed of the robot increases so the danger to human operators is

increased. This means that additional safety precautions may have to be made.

65

CHAPTER 6

MID-PHASE PLANNING

6.1 Introduction

Mid-phase planning calculates a collision free path between the robot config-

urations Sm and Gm, where Sm and Gm are configurations with good clearance

from obstacles and close to S and G respectively.

The idea of mid-phase planning was first introduced by Udupa (1977). Since

then many different methods have been investigated. Mid-phase planning is in-

herently difficult and all methods tend to require large amounts of computer

calculation time in order to produce efficient paths. Schwartz and Sharir (1983)

developed an algorithm to solve the find path problem for any particular manip-

ulator. However the algorithms require considerable amounts of computation for

simple problems and thus are of no practical use.

Methods may be divided into two categories, local methods and global meth-

ods. Local methods start by proposing a path and then going through a process

of testing and modifing paths until a collision free path is found to the goal

point. Global methods use mathematical graph searching techniques which test

large numbers of small movements between many different configurations in an

attempt to find a series of movements which will take the robot to its goal.

The method described in this chapter uses a combination of Local and Global

planning. It was found that a Global method of planning was suited to the

planning of the upper arm movements and that this could be supplemented by a

local method to plan the forearm movements.

66

Chapter 6: Mid-phase planning

6.1.1 Local methods

Pieper (1968) was the first to tackle the find path problem of robots and he

used a local method. Local methods proceed by moving from one safe configura-

tion to another close by configuration, in a certain direction. Various heuristics

are applied to avoid obstacles as they are met. Alternative stratagies may be

used if the first strategy is not successful.

6.1.2 Global methods

Global methods solve the pathfind problem in two steps.

(a) The set of configurations where the robot is free from collisions is determined.

This is composed of subsets (Si, S2, 	 Sr) of configurations. A graph is

built from these subsets using an adjacency relation.

(b) Find a path through the graph.

Global methods have the advantage that they do not have to use strategies

which may or may not be successful. Thus they are more reliable. But the

construction of a graph is a time consuming process.

This method is dealt with more fully in chapters 8 and 9.

8.2 Mid-phase planning for the upper arm

The upper arm was modelled as a line segment fixed at one end to the

origin. The obstacles were represented as collections of spheres. The aim of the

calculation was to produce the shortest path between configurations Sm and Gm

whilst avoiding the obstacles.

The upper arm has only two degrees of freedom, elevation and rotation. This

means that the problem is equivalent to a two dimensional one even though the

67

Chapter 6: Mid-phase planning

arm is moving in three dimensions. A projection of the upper arm from the origin

gives a point on a background of circles. The problem is transformed into that

shown in figure 6.1.

•

Figure 8.1 Path through circles

The aim of the mid-phase path planning is to produce the shortest collision

free path between end points. The term 'shortest path' is defined as the distance

a point on the end of the upper arm travels in space. If the path of the point is

represented by a vector function r(t) such that

r(t) = x(t)i + y(t)j + z(t)k	 (a <= t <= b)	 (6.1)

then it can be shown that the path length is given by equation 6.2 (Krerzig

1980).

68

Chapter 6: Mid-phase planning

1 = i
to , dr
ri .ri dt where r = —

	

a	 dt

Factors such as the energy consumed by the robot, the wear, and the time

of movement may modify the optimal cost. These may be calculated for specific

robots and incorporated in the algorithm if required. It is contended that by

calculating the shortest path the other factors are close to their minimum values

and so a very good approximation to the optimum path, for any chosen set of

criteria, is obtained.

With the cost function equivalent to equation 6.2 it may be seen that the

required path between S and G consisted of straight lines between obstacles and

circular arcs when traversing the circumferences of obstacles.

One method of finding the shortest path is to calculate all the possible paths

of this type. If there are n circles and the path passes around all of them once,

then the maximum number of paths is given by equation 6.3.

rn!	 (6.3)

Thus the maximum possible number of paths m is

i=n .
in = 1 + E ri!(1)1

i=I

where	 (n 1
l i 1	 is the binomial coefficient i of n.

This grows large very quickly, for n=3, m=79; for n=4, m=633; and for

n=5, m=6451. In practice the number of possible paths is generally less than

this, because some paths between obstacles will be blocked by other obstacles,

but even so an unacceptable number of options may remain.

(6.2)

(6.4)

69

Chapter 6: Mid-phase planning

6.3 A heuristic approach

To determine the shortest distance path length a heuristic method of graph

searching was found to be quicker than the method of calculating all possible

paths. The following method was based on that of Hart (1968).

A graph is defined which consists of a set of elements, called nodes, and a

set of paths between nodes called branches. Each branch between nodes has a

cost associated with it.

The sub-graph Gn is the set of nodes accessible from a particular node n.

The sub-graph is calculated by a successor operator T.

A path from a start node to a goal node is an ordered set of nodes (n1, n2, ...

, nk) with each ni-I-1 a successor of iii. Every path has a cost which is obtained

by adding the individual costs of each branch, Ci, i+1, in the path. The optimum

path from ni to nj is a path having the smallest cost over the set of all paths from

ni to nj.

Starting with the start node S, the subgraph Gs is generated by the successor

operator T. During the course of the algorithm, if the subgraph Gn of a node is

generated, then the node is said to be expanded. The minimum cost of each node

encountered is calculated, and a pointer to the predecessor of each node along

that path is stored. The unexpanded node with the minimum cost is always

expanded next in the algorithm. Finally, the algorithm is terminated when the

goal node G is reached,

8.4 Application to spherical obstacles

A path around a sphere, as seen by an observer, may be in either a clockwise

or an anticlockwise direction. Thus for every sphere there are two nodes in the

graph.

70

Chapter 6: Mid-phase planning

In the two dimensional case the shortest path consists of straight lines be-

tween circles and arcs around the circles. In the real situation this corresponds

to the movement of the robot arm in planes between spheres. The robot moves

in planes, only changing direction when traversing around spheres. Planes which

pass close to spheres are tangential to their surfaces. The robot arm strictly fol-

lows the planes without departing to follow the sphere surfaces, direction changes

occur at the intersections of consecutive planes.

In order to calculate paths between one sphere and another the generalised

procedure Findplan was developed. Each sphere has two nodes associated with it,

one for each possible direction of path, clockwise or anticlockwise. When the sub-

graph of a node is calculated two paths are generated to each sphere. However

because of the symmetry of the problem it was decided that both nodes of a

sphere could be expanded at the same time without a large increase in calculation

time. Thus the procedure Findplan calculates the four possible paths between two

spheres.

The mathematics for finding paths between spheres are given in appendix B.

The procedure Findplan may be found in the program listing of Mainrpf which is

given in appendix C.

Two cost functions were considered. Firstly the cost of a branch was defined

as the value of its length. The lowest cost from S to G became the path of the

shortest length.

The second cost function was defined as follows. The cost of a branch between

node 1 and node 2 is the extra distance the robot has to travel along that branch

and from there directly to the goalpoint, compared with a branch which goes

directly from node 1 to the goal point. To calculate this cost the following equation

was used:

Cf = distance along branch from node 1 to node 2

+ direct distance from node 2 to the goal point

- direct distance from node 1 to the goal point. 	 (6.5)

71

G
83

Chapter 6 : Mid-phase planning

A comparison of the two methods is shown in figure 6.2. For ease of rep-

resentation figures 6.2(a) and 6.2(b) show graphs of independent nodes. The

double nodes of circles are not considered. Figure 6.2(a) shows a graph of the

first cost function. In this case all the branches were searched. In this example

the method took ten steps. Figure 6.2(b) shows that the second cost function cal-

culation caused the search to be completed after only five steps. The second cost

function was preferred, as the time saved by computing fewer steps was greater

than the extra time taken to calculate the more complicated cost function.

3.0

5.5

Figure 6.2(a) First search strategy

The successor operator T generates subgraphs of a node n as follows. Paths

to all the other nodes are proposed. The node which represents the same circle as

n but the opposite direction is rejected. Of the candidate paths those which leave

the circle with angles A of less than 180 degrees are rejected because the optimum

path must be tangential (see figure 6.3). The remaining paths are then checked

for intersections with other circles, those that are clear, form the subgraph Gn.

72

Chapter 6 : Mid-phase planning

6.5 Forearm path planning

2.8

Figure 6.2(b) Second search strategy

Having fixed the trajectory of the upper arm the locus of the elbow was

established, and thus the problem of finding a path for the forearm became a 2D

problem instead of a 3D problem.

The forearm path is constrained by the locus of the elbow. A graph of

distance along the locus of the elbow can be plotted against the elbow angle.

Viewed from the locus of the elbow, a graph of the two dimensional working

space of the forearm can be calculated showing the positions of obstacles. The

pathfuiding task is now to search this graph. However the shapes of the obstacles

are not circles as they were in the case of the upper arm, but complex shapes due

to the transformation into the new two dimensional space. These shapes have to

be calculated for each upper arm path. An example of these shapes is shown in

figure 6.4.

While the transformation gave the true location of the obstacles in the two

dimensional space, for the purposes of this investigation a further simplification

was adopted to define the forearm path.

73

Chapter 6: Mid-phase planning

Figure 6.3 Paths which can be neglected

To adapt the method used for upper arm planning to the forearm problem, an

equivalent to the 'straight branch' path had to be defined. In the two dimensional

74

Chapter 6: Mid-phase planning

Distance along elbow locus

Figure 6.4 Obstacle representation in transformed reference

frame for forearm path planning

transformed space of the forearm a 'straight' line was defined as:

e.k.d-Fc	 (6.6)

where

	

e	 = elbow angle.

	

d	 = position on the elbow locus.

	

k , c	 = constants.

75

Chapter 6: Mid-phase planning

This defined a path that would be represented by a straight line in figure

6.4.

The planning strategy chosen was as follows. Test a straight forearm path

between Sm and Gm for collisions and keep a note of the first collision which

would occur. Propose a path which avoids the first collision, test this path and

repeat until the first stage of the path is clear. Try again to reach the goal and

repeat as before until Gm is reached.

8.6 Planning of the gripper and workpiece

The gripper was modelled as a series of spheres. While moving in mid-phase

motion the gripper was aligned with the forearm. If the gripper is small compared

with the forearm, this avoids the need to calculate the extra degrees of freedom

for the gripper itself. The position, and representation of the workpiece in the

gripper is known from the approach path planning.

6.7 Avoiding obstacles of the forearm, gripper and workpiece

The path planning for the forearm, the gripper and the workpiece is done

together. The paths of the forearm and the spheres representing the gripper and

the workpiece are calculated, and the closest point of the forearm, gripper or

workpiece to the first obstacle is calculated. A path which avoids the obstacle

is proposed as follows. The vector between the closest point on the robot and

the centre of first obstacle is calculated. This vector is then extended so that the

robot and the obstacle are a set distance apart.

76

CHAPTER 7

IMPLEMENTATION

7.1 Introduction

The computer programs developed to implement the path planning method

described in chapters 4 to 6 were written in Pascal and run on an Intel 8086 based

micro computer. Sections 7.2 to 7.5 of this chapter describe the algorithms in

general terms and the important mathematical techniques behind certain proce-

dures are described in detail in the appendices. Full listings of the programs may

also be found in the appendices.

Figure 7.1 is a flowchart of the main program called Mainrpf (Appendix C). 	 .

The main parts of the path planning program were :

(a) To define the problem in terms of a world model and a task description.

(b) To solve the problem which results in a robot trajectory.

(c) To output the data to the robot.

Data defining the world model is stored on disk and is read by Mainrpf

when required. The world models are developed and stored on disk by a separate

program called Storedta (Appendix D). This ensures that the data for a particular

model only has to be entered once. Storedta is also used to edit the data so that

minor changes in a world model can be made easily.

The world model data is transformed into two different spaces, one for the

upper arm search and one for the forearm search. This is necessary in order to deal

with the lateral property of the robots. (See 4.5 for details of the transformation).

Having retrieved the data for the world model, the program then commits

itself to reading in successive task descriptions, solving the find path problems

77

Chapter 7: Implementation

bepin)

-{ input data for the world model

-itransform data for upper arm searc

	'transform data for forearm search

while a new path is required!

Input -task description

--I calculate approach paths I

---4 find a path for the upper arm

----1find a path for the forearm

---4 output data I

end

Figure 7.1 Flowchart of Mainrpf

and outputting instructions to the robot. Hence the loop on the flowchart in

figure 7.1. The program is only stopped if either the world model has changed,

or because it is necessary to switch the computer off.

The task description is input by the operator, this consists of the initial and

final coordinates of the centre of a past. From the task description and the world

model data, the program is able to define the approach paths and specify the

path planning problem in terms of start and goal configurations.

The path trajectory is calculated in two parts, the upper arm path (section

7.4) and the forearm path (section 7.5). The trajectory is converted into the

robot coordinates suitable for the robot control computer and is down loaded to

the robot control computer (section 7.6).

1/4.1

78

—Enter sphere coordMates

HN = N 1

HInput coordinates N

HInput radius N

-11

Chapter 7: Implementation

T.2 Storedta

An important part of the path planning system is the program Storedta.

This program enables the operator to build up a model of the robot surroundings

by specifying the positions and sizes of spheres. Appendix D gives the program

listing of Storedta, and figure 7.2 shows a flowchart of the program.

fr:(2L9112)

—IN = 0

—3 Repeat while command number 0 10

Display a menu of commands

—I Input command number

—3 Case command number of

— List spheres entered'

-1	

—Edit a sphere

Enter sphere number!

Input new coordinates and radiu

— Store data on disk'

—Read In data from disk

10 — Stop'

Figure 7.2 Flowchart of Storedta

Storedta is a very simple menu driven program which enables the operator to

create and edit different sphere models. The commands available to the operator

79

Chapter 7: Implementation

are, Enter sphere coordinates, List sphere coordinates, Edit sphere coordinates,

Store model on disk, Load model and Stop.

7.3 Task Description

Very simple task descriptions only are permitted by the software developed

here. The program allows the operator to input the initial and final coordinate

positions for the centre of a part.

The approach path to pick a part up is defined as follows.

(a) Move the robot to a position 100mm above the part.

(b) Move down slowly and in a straight line until the robot is in a position to

grip the part.

(c) Grip the part.

(d) Raise the part slowly by 100mm.

The approach path to put a part down is the same as above but in reverse

order.

The approach paths used are defined by only a few lines of program code.

If any new approach path is required it is easy to provide this by adding to the

program code. Similarly different task descriptions can be accommodated easily

by small changes in the software.

7.4 Upper arm path planning

Figure 7.3 shows the data structure for the graph used for the upper arm

path planning. The start node is designated as sphere 0, nodes 1 to N represent

the spheres 1 to N in the world model and sphere N+1 represents the goal node.

80

record

0 to N+1
Node

Clockwise, Anticlockwise

Dist

—ro:79

.---F7Dreco

--3Precid 1

—F07

Centre

Radius

Chapter 7: Implementation

Figure 7.3 Data structure for the upper arm graph

Before the path planning is started some of the variables in the data structure

are given initial values. The start node status is set to 'open', all other node

statuses are set to 'closed'. The start node is initially counted as the opennode.

The start node has a radius of 0 and coordinates equal to the coordinates of the

end of the upper arm in the starting configuration. The path cost function is set

to 0 for the start node and a very high number (9999) for all other nodes.

Each sphere is represented by two nodes, one for a clockwise path direction

and one an anticlockwise path direction. Thus between any two spheres there

are four possible paths. The paths between any two spheres are calculated in one

pass of the appropriate routines. The reasons for this are that:

81

Chapter 7: Implementation

(a) The extra calculations required to find and test all the paths between any

two spheres are not great in comparison to the calculations required to find

and test one particular path.

(b) If a node is being expanded because of its low cost then it is likely that the

next node to be expanded is its opposite node on the sphere.

Figure 7.4 shows a flowchart of Routep which is the procedure used to plan

a collision free path for the upper arm.

begin

IC
alculate the position of the tip
of the upper arm at S and G

	 set up graph for path searching!

ket opennode to S I

	 does a direct path from S to G exist I

464!_
i_aset o ennode to G

does opennode

0 	
14 ---jexpand opennodel

--I close the opennode I
0

--ichose the next opennodel

end

Figure 7.4 Flowchart of RouteP

After the graph has been set up for searching, the first test is to find out

whether a clear path exists directly from S to G. This test is incorporated in

order to save computer time for simple solutions.

	I

82

Chapter 7: Implementation

The algorithm continues by expanding nodes and choosing new opennodes

until either the goal point is reached, or all nodes have been expanded. The

theory behind this method is described in sections 6.3 and 6.4. If all nodes are

expanded and no path to the goalnode is found then it is assumed that no path

is possible and the program is stopped.

Once a node has been expanded its status is set to 'closed' so that it is not

chosen as an opennode again. To choose the next opennode the node which has

'open' status and has the lowest cost path from S is chosen.

Figure 7.5 shows a flowchart of expand. The first node to be expanded is the

start point node. From this node paths are proposed to all other nodes. Each

path is tested for collisions with obstacles. Provided the path is clear, the cost

of the path to this new node is determined. If the cost of this new path to the

new node is less than any previous path then the following information is stored

for the new node.

(a) The new cost to the node, which is equal to the cost to the opennode plus

the cost from the opennode to the new node.

(b) The successor of the new node, which is the opennode.

(c) The status of the new node is set to 'open'.

7.5 Forearm path planning

7.5.1 Data Input

From the upper arm path planning a series of configurations of the upper

arm are produced. Between these configurations the upper arm moves in planes.

The forearm path planning algorithm (Fapath) has to adjust the position of the

forearm, by varying the elbow angle to avoid obstacles. An initial configuration

S and a final configuration G are known. In between these configurations there

83

Y

Chapter 7: Implementation

For C=1 to N

generate a path from the opennode t

--f.......La:—(th

--Ifs the path clear
Is the cost of the path from the

opennode less than any previous path
set the node status to 'open'

1
set the successor poMter
to the current opennode

Figure 7.5 Flowchart of Expand

are certain intermediate configurations where the position of the upper arm is

known but that of the forearm is undefined.

7.5.2 Data output

The data required at the end of the forearm path planning routine is a series

of robot configurations. The path is then defined by the movement of the robot

directly between these configurations.

7.5.3 Fapath

Figure 7.6 shows a flowchart of the forearm path planning procedure, called

Fapath. As the path is calculated the successive configurations found are stored

in an array called Robcoor[CountRCI where CountRC denotes the position in the

list.

From the input data a series of configurations are defined for the upper arm.

The planning of the forearm is carried out in stages between these configurations.

For instance, if four configurations of the upper arm are defined, including the

start and goal configurations, then the path planning for the forearm takes place

84

Chapter 7: Implementation

11(77—)4in

,---4CountRC = 0

--4RobcoordtCourrtRC) Si

—1Poscurrent Si

1----IFor each step

--irepeat until Obst false

	 ICountRc CountRc + 1

calculate 13 for the end of the step

Testfa(Obst)

"—"----lif Obst true

re eat until Elbst2 = false

Testfa(Obst2)

.....Hset Poscurrent to position found
which was clear of obstacles

e-----1RobcoorECountRO Poscurrent

Figure 7.6 Flowchart of Fapath

in three stages, between 1 and 2, between 2 and 3, and between 3 and 4. The

stage number is held by the variable Stepnum in the flowchart.

The elbow angle T3 is known at the start of the first stage. The procedure

Stepgoal is used to propose a value for the elbow angle for the end of the stage.

Stepgoal calculates the proportion of the path, P1, for the upper arm between

Poscurrent and the Goal configuration. It calculates the total elbow angle differ-

ence between Poscurrent and the Goal configuration. The proposed elbow angle

for the end of the stage is equal to the elbow angle at the start of the stage plus

the proportion of the difference in elbow angle between Poscurrent and the goal

configuration.

T3prop = T3Poscurrent +P1(T3goa/ — T3Poscurrent)
	

(7.1)

Y

85

Chapter 7: Implementation

The path between the current configuration and that at the end of the stage

is tested by the procedure Testfa. If the path is blocked then an alternative

configuration is proposed such that the path between Poscurrent and this position

should be collision free.

If no collision is detected then T3goal becomes Poscurrent and Poscurrent

is recorded on the list of configurations Robcoor. That stage of the path is then

complete and so the next stage of the path is investigated.

If a collision is detected then the path from Poscurrent to the alternative

configuration is tested. If the path is collision free then Poscurrent becomes the

alternative position and is recorded on the list Robcoor, and the path to the

end of the stage is investigated. If the path is not collision free then the next

alternative position is investigated.

7.5.4. Procedure Testfa

Figure 7.7 shows a flowchart of Testfa. Firstly the flags Obst and Obst2

are set to false. Each sphere is considered in turn for possible collisions. The

position and size of each sphere is compared with the range of configurations

for the robot arm. If a collision is possible then the path is tested by procedure

Testfa2 (figure 7.8). If a collision occurs then the flag Obst2 is set to true. If more

than one collision is detected then the collision closest the starting configuration,

Poscurrent, is recorded.

If the proposed path is obstructed then procedure Avoidobs is used to pro-

pose a new path.

7.5.5. Procedure Testfa2

For the range of configurations through which the robot moves the sub-range

in which the robot can hit the obstacle sphere is determined. The configurations

at either end of this sub-range are calculated. The closest point on the robot,

86

Is this the collision
found nearest the
startpoint so far/

<>I.

Chapter 7: Implementation

e9in

---jobst = false

--1For each sphere

1% H
is the sphere in
range of the path?

Obst2 = false

Testfa2(Obst2))

does Obst2 = truell

4(6__
Iy record details
of collision

---)Obst = -true'?

Avoidobs

end)

Figure 7.7 Flowchart of Testfa

to the obstacle, is found for each configuration. The closest point on the line

between these points is then found.

This is the closest point on the robot's forearm to the centre of the obstacle

sphere. This point is shown in figure 7.9.

This method is then repeated for parts on the robot forearm such as the

gripper and the part the robot has gripped. The closest point on either the

011-77-jt = true

87

Chapter 7: Implementation

e in

find configuration A

find configuration B

find the closest pohts on the
forearm M configurations
A and B (Pa and Pb)

find the closest point on the
line PaPb and deduce this
intermediate configuration

does the forearm Intersect
the sphere at this
intermediate configuration

Obst = true

record the distance to the
centre of the sphere

for each part of
the robot forearm

____and -the initial
and final positions
of the part

---i fhd the closest
point on the part

---I record the closest
intersection so far

I..,

end

Figure 7.8 Flowchart of Testfa2

forearm or the parts of the forearm is found.

88

CLosest point

Obstacle sphere

Chapter 7: Implementation

Figure 7.9 The closest point on the robot forearm

7.5.6 Procedure Avoidobs

Figure 7.10 shows a flowchart of the procedure which calculates a new path

for the robot which avoids colliding with an obstacle.

The closest point on the robot arm to the obstacle is known from procedure

Testfa2. The vector between the centre point of the sphere and the closest point

is enlarged until the robot is a safe distance away from the obstacle.

7.8 Data transfer to the robot control computer

After the path planning program has finished, the robot trajectory data is

in the form of a series of robot configurations, defined by the values of the robot

joint angles. This is called the configuration in 'joint space'.

The robot control computer also operates in joint space. However the coor-

dinate systems of the robot control computer and the path planning computer

89

Chapter 7: Implementation

(besin

find -the new position for
the part of the robot which
came closest to the sphere

was the closest part of
the robot the gripper
motor or the workpiece'?

4(Ø.dY find the new position
of -the -tip of -the forearm

'
find the configuration
of the upper arm

find -the elbow angle

Figure 7.10 Flowchart of Avoidobs

are different. For the robot control computer the total range of each axis of the

robot is divided into 1000 positions (0-999). The path planning computer simply

uses the values of the joint angles in radians. Thus a coordinate transforma-

tion was carried out to determine the robot control computer coordinates. The

transformation for each axis is of the form of equation 7.2.

Rc = Cl.T + C2	 (7.2)

where

	

Rc	 = robot control computer coordinate (rounded to the nearest

integer).

	

T	 = path planning computer coordinate.

	

C1, C2	 = constants.

90

Chapter 7: Implementation

The constants Cl and C2 were found by measuring the joint angles at the

robot control computer coordinates of 0 and 999 and substituting these values

into equation 7.2.

It was found that the robot control computer does not always interpolate

between coordinate positions in a predictable manner. Also the interpolation re-

quired for the upper arm is interpolation in planes and this is different from the

joint angle interpolation of the robot control computer. To solve these problems

many intermediate configurations are generated by the path planning computer

and these are translated into RCC coordinates. This means that the robot moves

only small distances between defined configurations and hence the difference be-

tween the two types of interpolation is negligible.

7.7 System performance

The phrase 'Real-time' has several interpretations, in this thesis it is used

in the context of collision avoidance. Real-time collision avoidance means that

the solution of the path planning problem takes no longer than the robot takes

to execute the path. When this is the case the path planning computer may be

provided with a sequence of problems, and it will down load the solutions to the

robot computer in time to ensure that the robot is kept busy all the time.

Unfortunately the time of execution of a robot trajectory is not necessarily

proportional to the time the trajectory takes to plan. The calculation time is

dependent upon the following.

(a) The number of obstacles in the model.

(b) The number of obstacles in the space between the start and goal configura-

tions.

(c) The arrangement of the obstacles.

(d) The size of the obstacles.

91

Chapter 7: Implementation

In certain circumstances the calculation time required to solve the path plan-

ning problem can not be predicted. However upper limits can be placed on the

calculation time to ensure that the program does not go into an infinite loop, but

if the upper limit of the calculation time is reached then no path is found.

In practice it was found that many environments can be used such that

solutions are always found to the path planning problem and that the calculation

time is within the limits of the robot execution time.

An example of an environment for which the system has performed satisfac-

torally is shown in figure 4.7. In this example the robot moved 5 parts at random

to different places such as areas on the base and to the tops of the boxes. For a

typical task in this environment, such as pick up a part and move it to a different

position the robot trajectory took 30 seconds and the calculation time was 25

seconds.

The path planning method performs differently for different hardware. For

testing the algorithms the robot used was particularly slow in movement as it

was necessary to ensure that the robot followed the planned trajectory precisely.

However the computer used was also slow in comparison with the latest micro

computers.

7.8 Discussion

The calculation time for the example task of the previous section was 25

seconds, this compared with a programming time of 12 minutes for an experienced

programmer to get the robot to do the same task using a teach pendant. Although

the world model took some time to develop (dependant upon complexity), this

only had to be entered once. So automatic programming may be used to save

programming time in the future.

92

Chapter 7: Implementation

The task descriptions available to the operator are limited to specifying the

centre coordinates of parts in their starting and goal positions. An example of

a task description at a higher level might be 'carry out operation X on part C'.

Here no coordinates need specifying, this is a higher level of control and this may

be implemented in the future.

The approach paths available to the operator are also limited, although any

particular approach path can be quickly implemented by adding to the software.

Again this is a higher level of control which may be implemented in the future

and is a topic for further work.

In certain environments the path planning computer always produces sat-

isfactory paths in 'real time'. However there are certain situations where this

method becomes 'trapped' and no path is found where a path exists or that paths

are found after calculation times greater than robot execution times. Given the

unlimited complexity of paths there will always be these problems no matter

what path planning algorithms are used. However improvements were and still

can be made to the basic path planning method.

One problem that occurred early on in the testing was that when objects

were represented by more than one sphere the path planning algorithm tried to

find paths for the forearm between spheres of the same object. This is shown in

figure 7.11.

This problem was overcome by adding extra heuristics into the trajectory

planning algorithm. When avoiding a sphere the algorithm checked for this situ-

ation and if it occurred the algorithm planned a path above the highest sphere.

The performance of the automatic programming system can be improved by

the following.

(a) A different design of robot. This would simplify the algorithms and thus

improve performance.

93

Chapter 7: Implementation

Direction of desired movement

Figure 7.11 Paths between spheres

(b) A more modern computer. This would increase the speed of running of the

path planning program.

(c) Improvements in the software. It may be noted that relatively simple changes

in software made improvements of 10 or 20 percent in the performance of

the algorithm.

The advantage of this method is that it uses simple rules to solve a problem

which is difficult to analyse. The method used for the upper arm is efficient

in terms of time and paths produced. The method for the forearm uses simple

heuristic rules to avoid obstacles.

The disadvantages of the method are that it does not always find a path

where one exists. The fact that the forearm and upper arm are planned separately

means that many possible paths are not considered and hence the paths produced

are not necessarily the shortest paths. Also the program is closely tied to one

type of robot. Some of the program code would need changing to accommodate

the kinematic chain of a different robot.

The performance of the system is encouraging in that robots can now re-

calculate their trajectories with minimal delay. The performance is difficult to

94

Chapter 7: Implementation

quantify. Computer programs are often compared by carrying out Bench Mark

tests. However there is no other automatic programming system or data available

for this comparison to be made.

95

Chapter 8: The transformation of obstacles into joint space

E2x = Elx — 54.sinT1

E2y = Ely + 54.cosT1

E2z Elz	 (8.4)

P = T1 +T2 — Pi	 (8.5)

T1x = E2x +376.cosT2.cosP

Tly E2y + 376.sinT2.cosP

Tlz = E2z + 376.sinP
	

(8.6)

T2x = Tlx — 22.sinT1

T2y = Tly + 22.cosT1

T2z = T1z
	

(8.7)

More general details of robot coordinate transforms may be found in Paul

(1981)

8.4.2 To transform obstacles one at a time

The most straight forward method for transforming obstacles into joint space

is to check each unit of the joint space graph for intersections with each obstacle.

However, this method uses large amounts of computing time. The actual amount

of time is proportional to the number of obstacles and the number of units.

A faster method is to consider each obstacle at a time and test all the units

which could possibly contain the transformed obstacle. The following is the basic

method by which this can be achieved.

be9in

Calculate the range of
values of Ti, T2, T3 which
the new obstacle occuple

Chapter 8: The transformation of obstacles into joint space

____Put all the new blocked'
points onto a list

---1For each point on the list

____For each point adjacent
to the list point

Is the point between
this point and the
List point blocked'?

46, Set the point next -to
the list point to 'new'
and 'blocked' status

H

Etiminate from the list all
points which are surround-
ed by blocked points

---iSet expansion type flag to second'

Iset test type to 'upper arm -test'

-J Calculate obstacle graph

--1Set test -type to 'forearm test'

--iCalculate obstacle graph

____Set the new obstacle blocked positions
to old obstacle blocked positions

____Set test flags (upper arm and forearm)
to 'tested'

Figure 8.4 Flowchart of Fill

8.6 Results of obstacle transformation

The obstacle transformation program was tested for sizes and types of ob-

stacles. The most important consideration for the program was that it should be

106

Chapter 8 : The transformation of obstacles into joint space

The configuration of a robot expressed as a function of time specifies the

robot trajectory. A trajectory locus is the curve the robot configuration traces

in joint variable space. The trajectory planning problem is to find a trajectory

locus that will take the robot from the start to the goal configuration subject to

any given constraints.

Trajectory calculation deals with computing a trajectory from a trajectory

locus. The executive system responsible for powering the movement of the phys-

ical robot is called the robot control computer. This uses the trajectory locus to

calculate and perform the robot trajectory.

8.3 Space Transformation

Obstacles are conveniently described in cartesian space, and robot trajecto-

ries are best represented in joint-variable space. The complexity of the collision

detection and avoidance problem is partly due to having these two diverse repre-

sentations. If obstacles and trajectories could both be represented in one space,

the overhead of conversion between the two spaces would be eliminated.

The conversion of obstacles into robot joint space is not a simple problem.

For example a point obstacle in cartesian space is not transformed into a point in

joint space. If the point is outside the robot workspace then it is not represented

at all in joint space. If it is inside the robot workspace it is transformed into one

or more complex three dimensional shapes.

Representing complex shapes on computers may be done by approximating

the shapes by mathematical curves, geometric shapes or units of space. The

method adopted here was to represent the obstacles as regions of space consisting

of small units. Each unit represented a range of configurations for the robot, in

terms of a central configuration, (Tla, T2a, T3a) for example, plus a degree of

98

Chapter 8: The transformation of obstacles into joint space

movement away from these values (±dT1, ±dT2, ±dT3). Thus all units together

represented the whole robot workspace.

The number of units in the graph, Ng, was given by :-

Tlu — T11 T2u — T21 T3u — T31
Ng =

2.dT1
X

2.dT2 X2.dT3

where

Tin, Ti!	 = the upper and lower limits of Ti.

T2u, T21	 = the upper and lower limits of T2.

T3u, T31	 = the upper and lower limits of T3.

If at any configuration in a unit, the robot intersected an obstacle, then the

unit was said to be blocked. If at all configurations in a unit the robot did not

intersect an obstacle then the unit was said to be clear. Before a unit could be

declared blocked or clear two things were done. Firstly the position problem was

solved for the configuration at the centre of the unit. Secondly the maximum

distance that the robot could move away from this position, within the limits of

a unit, was calculated. A blocked unit was defined as a unit where the minimum

distance from the robot in the configuration at the centre of the unit, to the

nearest obstacle, was less than the maximum distance that the robot could move

within the unit.

The pathfind problem was now to find a series of neighbouring units which

were clear between the start configuration and the goal configurations.

8.4 Theory

8.4.1 Solution to the position problem

Figure 8.1 shows a diagram of the robot model, giving dimensions of the

distances between links (105, 54, 22mm), and link lengths (385, 376mm). The

(8.1)

99

Oft.

I
I

B2

.41111b 0-54

Chapter 8 : The transformation of obstacles into joint space

origin of cartesian coordinates was set at Bl. The positions of the other 5 points

were calculated as follows:

I

1

I

I

%

B1
T

.19- 45
." 1„....;11,

E	 (.-E-1,"%)

..- 22

AD— 105 —10,

Figure 8.1 Model Robot

B2x = 105.sinT1

B2y = 105.cosT1

B2z = 0

Elx = B2x + 385.cosT1.cosT2

Ely = B2y +385.cosTl.sinT2

Elz = 385.sinT2

(8.2)

(8.3)

100

(8,0

Chapter 8: The traneformatiort of ada gio§ into joint Qom

E2x = Elx —154.einT1

E2y = Ely + 54.coeT1

E2z = Elz

P=T1+T2 —Pi

T1x = E2x + 376.coeT2.eoeP

Tly = E2y + 376.sinT2.eosP

Tlz = E2z + 376,einP

T2x = Tlx — 22.sinT1

T2y = Tly +22.easT1

T2z = Tlz

More general details of robot coordinate transforms may be found in Paul

(1981)

8.4.2 To transform obstacles one at a time

The most straight forward method for transforming obstacles into joint space

is to check each unit of the joint space graph for intersections with each obstacle,

However, this method uses large amounts of computing time. The actual amount

of time is proportional to the number of obstacles and the number of ants.

A faster method is to consider each obstacle at a time and test all the wilts

which could possibly contain the transformed obstacle- The folowlag is the basic

method by which this can be achieved,

Chapter 8: The transformation of obstacles into joint space

Find a unit on the joint space graph where the robot intersects the obstacle.

Then test all the neighbouring units to see if they are blocked as well. With each

blocked unit found, test all its neighbours.

Providing that the transformation produces a single obstacle shape, the

method will always calculate the complete transformation.

8.5 Program description

The basic method described above was developed further in order to further

reduce computation time. However, the principles have remained the same.

The program described in this section was relatively short (700 lines of pas-

cal). The important procedures were called Espace, ObstGraphCak, Fill, Test

position, Expand position, Put on list and Pull off list. The flowcharts are shown

in figures 8.2 to 8.9 respectively. The procedure descriptions are given below.

8.5.1 Procedure 'Espace'

The obstacle data was entered by a separate program and stored on disc.

Thus the first task was to read the obstacle data.

Firstly the data structure was initialised. The limits of the graph corre-

sponded to the angular limits on the robot's joints. Limits were also set for the

robot's workspace so that obstacles outside this workspace could be ignored.

As the graph used a limited number of positions at which intersection checks

were carried out, only a limited number of trigonometric values needed to be

used. To save computer time all the trigonometric values which were needed

were calculated at the start, so that time was not wasted in repetitively evaluating

trigonometric functions.

102

Chapter 8: The transformation of obstacles into joint space

1077)1
---IRead sphere data
____Calculate the trigonometric values

which will be used in the program
--IFor' all obstacles

H
Set all the nodes on the
graph to 'clear' and 'untested'
For each obstacle sphere

HS t expansion type to 'first'

HSet test type to 'forearm test'
--(Calculate obstacle graph)

—4 Set -test type to 'upper arm test
—(Calculate obstacle graph

_.< Calculate the detailed)
obstacle surface (Fill)

%..1

__AStore graph data on disk
for the Graph Search program

Figure 8.2 Flowchart of Espace

Before the obstacles were calculated all the units in the graph were set to

'clear' status. Four other flags were used with each unit, these were, 'new obsta-

cle', 'forearm tested', 'upper arm tested', and 'on list'. Each unit was stored as

one byte of computer memory, and the flags used one bit each of the byte.

Initially, each obstacle was transformed into a sparse graph. This task was

split into two, calculating the upper arm graph, and calculating the forearm

graph. A sparse graph, of a transformed obstacle, was one in which only one in

eight units of the graph were tested. Clear units in the centre of a sparse graph

103

Expand the position

_C
ull the next
osition off the list

1/4s

Chapter 8: The transformation of obstacles into joint space

were set to blocked and then the outside blocked units were expanded so that the

surface of the transformed obstacle was defined.

8.5.2 Obstacle graph calculation (Procedure : ObstGraphCalc)

A configuration was calculated at which the part of the arm under consid-

eration was closest to the obstacle centre. If the forearm was being considered,

then the configuration where the gripper was at the centre of the sphere was

calculated. For the upper arm, the configuration was calculated for which the

centre line of the upper arm pointed directly at the sphere centre. If the obstacle

was within the workspace of the link being tested, then the configuration found

above was then the first unit of the transformed obstacle.

1077))

Calculate a point on the graph where the
part of the arm being considered,
Is closest the centre of the sphere

---(Test position

--Hoes the position cause a collision'?

OLlrege t until the list is empty

Figure 8.3 Flowchart of ObstGraphCak

The first configuration was tested, and if it was blocked then its neighbouring

units were also tested. If they were blocked then their neighbours were checked,

and so on until the whole obstacle transformation was found.

104

Chapter 8: The transformation of obstacles into joint space

8.5.3 Procedure 'Fill'

The first obstacle graph was a sparse graph. The units which were tested

were spaced two units apart. For example if unit (4,4,4) was blocked then the

units (6,4,4), (4,6,4), (4,4,6) were tested. Thus on average one eighth of the

obstacle transformation was calculated.

All units were set to blocked, which had any two opposite neighbouring

units which were also blocked. Any units which were on the edge of the now solid

obstacle were recorded on a list. Then all the neighbours of the units on the list

were tested, and the process repeated until the edges were completely defined.

8.5.4 Procedure 'Test position'

'Test position' solved the position problem and calculated the minimum dis-

tance between the obstacle and the robot arm, provided that it had not done the

calculation before. If the test was carried out and the position was blocked then

this position was put onto the list.

8.5.5 Procedure 'Expand position'

'Expand position' extended an obstacle's transformation by testing neigh-

bouring units to those which were blocked. If a sparse graph was being generated

then 'next but one' units were tested. For the detailed graph the 'next door'

units were tested.

8.5.6 Procedures 'Put on list' and 'Pull off list'

Nodes which were found to be blocked were stored on a list of units which

were to be expanded later. When a unit had been expanded it was pulled off the

list. When all the units on the list had been exhausted the obstacle transformation

was complete.

105

Chapter 8 : The transformation of obstacles into joint space

(beDin

—o	 Calculate the range of
values of Ti,, 12, T3 which
the new obstacle occupies

__rut all the new blocked
points onto a list

For each point on the list

---.1
For each point adjacent
to the list point

Is the point between
this point and the
List point blocked'?

Set the point next to
the list point to 'new'
and 'blocked' status

H

Eliminate from the list all
points which are surround-
ed by blocked points

6,

---)Set expansion type flag to 'second'

--4Set test type to 'upper arm test'

----iCalculate obstacle graph I

----het test type to 'forearm test'

---1Calculate obstacle graph

____Set the new obstacle blocked positions
to old obstacle blocked positions

_ISet test flags (upper arm and forearm)
to 'tested'

Figure 8.4 Flowchart of Fill

8.6 Results of obstacle transformation

The obstacle transformation program was tested for sizes and types of ob-

stacles. The most important consideration for the program was that it should be

106

Chapter 8: The transformation of obstacles into joint space

be in

Is this a forearm test and the forearm
position Is untested or -this Is an upper arm
test and the upperarm position Is untested?

Is the expansion type 'first'
or is -the position unblocked/

Calculate -the position of -the upper at-
Is this a forearm test/

<>17_1Catculate the positions of
-the forearm and -the gripper

d

Check the forearm and gripper
positions for intersections
with the obstacle

d
Set node status
to 'forearm tested'

d
Check upper arm posrtIon f or
Intersection with the obstacle

d
set node status 1
to forearm tested

_T
as an Intersection'

been detected/

Figure 8.5 Flowchart of Test position

(bepfn)

-the expansion type 'second"?

Find the neighbouring positions
within -the limits of -the graph

I

Find the nex-t but one positions
within -the limits of -the graph

--(Test each position found)

Figure 8.6 Flowchart of Expand position

fast, and so the times for calculating obstacles were recorded.

107

/1•n•

<53-1
Set node status(
to 'blocked'

Chapter 8: The transformation of obstacles into joint space

Incremen-t number on list

H
Store node at -the last
position on the list

Figure 8.7 Flowchart of Put on list

(beDin)
____New node = -the last

node on the list

Decrement number on listLi

Figure 8.8 Flowchart of Pull off list

Figure 8.9 shows a graph of varying sphere radius against time of computa-

tion. The first point on the graph represents the time of calculation for a sphere

with a radius of 1mm, the transformed obstacle for this example is shown in figure

8.10. However, even though this was almost a point object the transformation

still took 26 seconds. This was because there was a wide range of configurations

where the robot intersected the sphere. The sphere's centre s was at coordinates

(50,650,50) which is a position outside the joint space of the upper arm but in-

side the joint space of the forearm. However once the obstacle radius increased

above 200 mm part of the sphere intersected the upper arm joint space. Thus

the workspace occupied by the sphere suddenly increased and so the calculation

time increased also.

Figure 8.11 shows a graph of calculation time vs. workspace volume. This

is approximately linear, which means that the calculation time for one sphere is

108

300

Chapter 8 • The transformation of obstacles into joint space

100	 200	 300
	

400
Calculation Time (seconds)

Figure 8.9 Sphere radius vs calculation time

approximately proportional to the number of wilts tested, the total number of

units being the workspace volume.

Figure 8.12 shows a graph of the calculation time for modelling a cube using

different complexities of model. A cube was modelled first as a single sphere of

the smallest radius which would enclose the cube (point a). It was then modelled

by two smaller spheres (point b), four (point c) and then eight spheres (point d).

It may be seen that the calculation time increased linearly with the number of

spheres. The reason for this was probably that the overhead of calculation for

each sphere was much greater than the saving in time which was achieved as the

spheres became smaller.

109

T2 T1=17
o

5

10

5

10

Chapter 8: The transformation of obstacles into joint space

15

18 	

	

5	 10	 15	 20 25 30 T3

	

T2	 T1=18
o

5

10

15

18 	

	

5	 10	 15	 20 25 30 T3

	

T2	 T1=19
o

2?

15

18 	
5	 10	 15	 20 25 30 T3

Figure 8.10 Transformed obstacle point

110

Chapter 8 : The transformation of obstacles into joint space

1000	 2000	 3000	 4000	 5000	 6000	 7000
Workspace Volume (Joint Space)

Figure 8.11 Calculation time vs workspace volume

8.7 Discussion and conclusions

It may be noted from the results that the computer time required for ob-

stacle transformations was very high. To have computer times of some minutes

for single obstacles seems impractical at first especially when computers solve

many problems in milliseconds. However if the workspace has to be transformed

only once, for many path planning operations then the overhead of conversion is

acceptable.

It has been seen that the calculation time is approximately proportional to

the workspace of an obstacle and the complexity of the obstacle representation

(number of spheres). These results are only relevant to the particular program

used. Judging from past experience the shape of graphs will change significantly

as different techniques are used to improve the program.

111

8
	

+ ct

0

1
1

Chapter 8: The transformation of obstacles into joint space

0 20 40 60 80 100 120 140 160 180 200

Calculation Time (seconds)

Figure 8.12 Calculation time vs number of spheres

The program used was relatively short (700 lines of pascal), and much im-

provement may still be made. Having discovered the shapes of transformed ob-

stacles from this technique it may be possible to define a set of formulae which

give the shapes of transformed obstacles directly.

Currently the transformation algorithm can only transform spherical obsta-

cles. Spherical obstacles were chosen because they require much less computa-

tional effort for intersection calculations than other types of obstacle. However

most real objects would be more accurately represented by polyhedral obstacles.

Therefore there must be a point at which increasing the number of spheres, in

order to increase the accuracy of the model becomes impractical. In this solu-

tion it would increase the calculation time beyond the time required to do the

112

Chapter 8 : The transformation of obstacles into joint space

transformation for a polyhedral obstacle. This trade off point still has to be

investigated.

For many circumstances the obstacle transformation may only be performed

once. For example in a situation where a robot services several machines it may

be required to service the machines in an unpredictable order. This problem

requires automatic path planning but the workspace remains constant. Another

example is where a robot is required to pick components in random order from

a conveyor. The path may need to change substantially, but the basic obstacles

such as the conveyor, machines and fixtures do not vary.

Another factor which affects the transformation time and model accuracy is

the range of robot configurations in each unit of the graph. The range of values

for each degree of freedom for the robot in this example was five degrees. The

total workspace contained 21,312 units. If the range of values were extended to

ten degrees for each degree of freedom then this would reduce the number of

units by a factor of eight and the calculation time would be reduced by a similar

amount.

The range of values for each degree of freedom was set to the same value

for simplicity. However certain degrees of freedom may be more important than

others. If this is the case then smaller ranges of values should be used for the

more important robot axes.

For manoeuvring the workpiece close to obstacles, such as putting a part into

a vice, it is possible to take into account the degrees of freedom of the gripper.

This would create a graph of more than three dimensions, which would have to

be searched. The drawback is the size of graph, and so it could only be used for

small areas of the total workspace.

In order to save memory a dynamic size of graph could be used. In large

areas of clear or blocked space the unit ranges would be large, but in the areas

113

•

nII• ...

••

.	 .n

Chapter 8: The transformation of obstacles into joint space

around the surfaces of obstacles the graph would be more refined, using smaller

units. An example of such a graph is shown in figure 8.6. The larger grid was

defined first, then units which contained both space and defined obstacles were

refined into smaller units.

Figure 8.13 Example of variable unit size

114

CHAPTER 9

GRAPH SEARCHING

9.1 Introduction

Having transformed the findpath problem from real space into the joint space

of the robot, the findpath problem is reduced to that of finding a path for a point,

from position S to position G between various obstructed volumes of space. The

transformed space may be regarded as a graph. The centre of each unit in joint

space becomes a node on the graph and the branches between nodes form a grid

structure, so that there is a branch between each node and its closest neighbours.

The graph searching problem is a familiar one in many research fields. An

example of this is the travelling salesman problem which is to find the shortest

route by car from town A to town B, or to find the shortest route which takes

the salesman between a number of destinations.

For the robot findpath problem the nodes form a grid of points in joint space.

The coordinates of any particular node can be represented by coordinates (ii, i2,

i3, ... in), where il to in are integers. Branches exist between all adjacent 'clear'

nodes. Adjacent nodes are defined as nodes which had a vector between them

with an absolute value of 1. Thus the path between S and G is a connected set of

nodes on the transformed graph containing nodes S and G. The cost of the path

is defined as the total number of units that the path passes through.

As the directions that the path could take are restricted, the path found

can not be regarded as an optimum path. However, an optimum path is often

impossible to find as many factors have to be taken into consideration including

execution time, energy used, wear on the robot, safety from hitting obstacles, etc.

115

Chapter 9: Graph searching

However the path found can be regarded as a good estimate. The method also

ensures that paths are always found if they exist.

It was found that the basic method of path finding could be changed, or

'tuned', to produce different characteristics of calculation time, path length, etc.,

depending on the obstacles present. For simple environments, a strategy which

aimed more directly at the goal produced a solution most quickly, where as a

more conservative strategy was required for complex environments.

9.2 Theory

In chapter 8 it was shown that as the detail of the transformed obstacles

was increased so the calculation time increased. In order to find a satisfactory

solution to the findpath problem the transformed obstacles had to be as detailed

as possible. This ensured that a path was found if one existed and that the most

efficient solution possible was produced.

The required detail of obstacles meant that the number of branches between

nodes had to be restricted. The graphs developed previously have considered all

possible branches. In this case such a method was impractical because the graph

contained thousands of nodes and millions of possible branches.

The method used instead was to consider only the adjacent nodes of the node

being expanded. Thus for a two dimensional graph, only 4 nodes were considered.

Of these, one of the nodes was the predecessor of the current node, which left

three possible new directions for the path. In general for a n dimensional graph

there are 2n-1 possible paths from each node except for S and G where there are

2n possible paths.

The cost of a path, Cg, was defined as the length of the path in joint space.

This was equivalent to the number of branches in the path. This cost function

116

*

cri

Cu

fort S
J

ON

CO

Chapter 9 : Graph searching

meant that many different paths had the same cost value. For example figure 9.1

shows three paths which are quite different but have the same value of Cg.

	 16
. ,
. 1
.•
	 1

1

‘0 •

r--1
1
1
1

IA

•
1

r— _...1

1 2 3 4 5 6 7 8 9 10

Figure 9.1 A graph of alternative paths with the same cost

When a path was being planned, two cost functions were used; Cg was the

cost of a path from S to a particular node n and Ch was the estimated cost to

n from G. It was found that by changing Ch different paths were found for the

same problem. However the optimum path length was only found when Ch was

equal to the minimum possible path length from the opennode to G.

117

Chapter 9 : Graph searching

9.3 Program Description

9.3.1 Main program (figure 9.2)

Firstly, the data required for the algorithm was read from the disk. This

included S, G and the obstacle in joint space. A check was made to ensure that

the S and G were not obstructed before the rest of the program was executed.

(bepin)

---iRepeat until required to stop

mput graph data

____Input start and goal
positions CS and G)

.......theck that S and G
are not obstructed

---(search graph

---iextract path found

---1
Post—process data Mto a
form which may be executed by
The robot control computer

!----1Elutput datal

Figure 9.2 Flowchart of the graph search program

The graph was searched by the procedure 'Search graph', which was an

algorithm which searched through the graph starting at S and continuing until

G was reached. Then the path was traced back from G to S and this information

was post-processed into a form which the robot control computer could accept.

The trajectory locus was then down loaded to the robot control computer via a

serial link.

118

Chapter 9: Graph searching

9.3.2 Procedure 'Search graph' (figure 9.3)

This procedure was similar to that described in chapter 6. The opennode

was set to S initially, then it was 'expanded' and the next opennode chosen. This

process was repeated until G was reached.

epin)

-1Elpennode = S

Put opennode on the list)

--{Set costq for S to 0

-11Rneat until the opennode =

(Putt. Dem-Me off -the list

-J Set opennode to offlist status'

--(Expand opennode

____Set opennode to the node
on the top of the list

n..,

Figure 9.3 Flowchart of Search Graph

9.3.3 Procedure `Expand' (figure 9.4)

Each adjacent node of the opennode was checked to see if it was a candidate

for the next position on the path. The node was not a candidate if either the

position was blocked or if it was the predecessor of the opennode. If the node

passed these tests then Ch was calculated and it was put onto a list of nodes to

be expanded in the future.

119

Chapter 9: Graph searching

1(77-FrD

---,For each neighboring node n

is n the predecessor of opennode7

Has n been reached before'?

s n obstructed"?'

costg of n =
costg of opennode +

calculate costh of

—lis n on the list?

Pull n off -7-7570

(Put n on the list)

—Iset status to 'on Usti{

Figure 9.4 Flowchart of Expand

9.3.4 Procedures Putonlist' and Pulloffiist' (figure 9.5-6)

A list of the nodes which had yet to be expanded was kept. The nodes were

kept in order of cost (Cg Ch) so that the next node to be expanded was always

at the top of the list.

(begin)
Search -through -the list until node n is found(

--I move all nodes below n up one position 1

--I decrement -the 'number on list' counterl

Figure 9.8 Flowchart of Pull off List

120

Chapter 9: Graph searching

--frost = costg + costh 1
	

'

H

search down list until position I
is found such that
Kcost) > cost

d

move all the nodes from I to
the bottom of the list
down one position

	
	,

_A
Place the node on -the

Lust at position I

Incremen-t the 'number
on list' counter.

1.

Figure 9.5 Flowchart of Put on List

9.4 Results for two dimensional graphs

It is simplest to look at the shapes of paths which were found by searching

two dimensional graphs, because of the ease of representation. Figures 9.7(a) to

(c) each show a very small size of graph (100 nodes) with increasing complexities

of paths.

The cost function Ch in these examples was defined as the minimum distance

of the path from the node to G. It may be seen that by increasing the size of

obstacles, the calculation time actually decreased from 2.5 seconds to 1.5 seconds.

Increasing the complexity of the graph had no effect on the calculation time.

The graphs given in figures 9.8(a) to (c) represent larger graphs (2500 nodes).

Two different cost functions were investigated, Chi and Ch2, the paths that these

produced are shown on the figures. Chl was the same as Ch defined above and

Ch2 was defined as the square of the value of Chi. It may be seen that Chi took

longer for simple environments such as 9.8(a) compared with the more complex

121

S—E

G

Calcuto.tion
tine

(a)
	 S	

2.5 seconds
1 2 3 4 5 6 7 8 9 10

00 1.5 seconds
1 2 3 4 5 6 7 8 9 10

111n11,

/n,.

	A

S-1

10•111011•11MIMI

.11n..

AIMMINAINImA

12 34 5:6 7 8 9 10

G

1.5 seconds

co
.-4

01

CO

N

113

V7

*

CO

Cu

(c)

Chapter 9 : Graph searching

Figure 9.7 Examples of paths through two dimensional space

122

Chapter 9 : Graph searching

environments of 9.8(3) and (c). However, it had the advantage that it always

produced the minimum cost path.

note :- The terms minimum cost path and optimum path, used above and

for the rest of the chapter refer to paths which have the shortest lengths possible,

in joint space, and which are also sets of branches of the graph.

Figure 9.8(b) shows how Ch2 tended to pull the path towards G. This caused

the path to be bent away from the optimum path in the direction of G. Because

of this property Ch2 produced small calculation times in most environments.

However figure 9.8(c) shows an example where this property was a disadvantage,

and consequently Ch2 produced a large calculation time.

The advantages and disadvantages may be summarised as follows.

Chi advantages

(a) It always found the optimum solution.

(b) The solution time was relatively predictable.

(c) The solution time reduced as the obstacle volumes increased.

Disadvantages

(a) The solution time was relatively long.

Ch2 advantages

(a) The solution time was very short for most environments.

Disadvantages

(a) In certain circumstances an optimum solution was not achieved.

(b) In certain extreme circumstances the calculation time was very long.

Both Chi and Ch2 provided solutions if they existed.

123

• • 13 seconds
117 seconds

(a)

(b)

•••• • 500 seconds
78 seconds

;e•

• ••• el
.* •

0	 10 20 30 40 50

0	 10 20 30 40 50
(c)

••• • 34 seconds

— 87 seconds

Chapter 9: Graph searching

ci

10 20 30 40 50

Figure 9.8 A comparison of different cost functions

124

Chapter 9 : Graph searching

9.5 Results for three dimensional graphs

With an extra degree of freedom it was found that it was more difficult to

propose obstacles which obstructed the path. Tests on real problems, although

these were not exhaustive, showed that traps such as that in figure 9.3(c) were

very unlikely to occur.

The calculation time for Chi was increased by increasing the distance be-

tween S and G and also it was increased greatly by changing from two dimensions

to three dimensions. The calculation time for Ch2 was not affected by the num-

ber of dimensions of the graph but it did increase with increasing the distance

between S and G.

An example of a path is given in this section which illustrates the difficulty

of representing paths and shapes in three dimensions. Figure 9.9 shows different

layers through an obstacle which corresponded, in real space, to a sphere with

radius of 300mm, positioned at coordinates (50,650,50) relative to the base of the

robot.

125

T2 Ti-i1

15

s	 10 Is as as 30 33 40 r3
18

T10 1212

0

3

10

Chapter 9 : Graph searching

13

T3

Figure 9.0(0 Path around an obstacle

T2 T1u 16

12
	

11-15
	 Chapter 9: Graph searching

10

is

5	 10 15 20 25 30 35 40 13
18

13

Ta	 TD• 17

13

Figure 0.9(b) Path around an obstacle

127

T2 T11322

12
	

T1m, 19	 Chapter 9: Graph searching
0

10

15

18 	
5	 10	 15 20 25 30 35 40 13

12	 T1g, 20

T3
12	 T1.3 21

13

13

Figure 9.9(c) Path around an obstacle

128

12
	

Ti- 25

13

T2	 11-23

(7
13

Chapter 9 : Graph searching

Figure 9.9(d) Path around an obstacle

129

Chapter 9: Graph searching

A problem was proposed which was to move the robot from one side of the

obstacle to the other. The path is denoted by arrows on the various layers of

figure 9.9. It took approximately 20 seconds to calculate. The path moved close

to the obstacle surface because by doing so the shortest path length between S

and G was obtained.

Two separate obstacles are shown on the final layer (T1=25). The obstacle

at the top was an obstacle due to the upper arm of the robot. The position of

the upper arm depended only on Ti and T2, hence the obstacle existed for all

T3 values and was rectangular in shape. The smaller obstacle was due to the

gripper of the robot. The reason that there was no obstacle for the forearm was

that the joints of the robot were overslung (see figure 8.1) and hence it was out

of range.

The limiting factor on the resolution of the graph was the memory required

to store the nodes. The maximum size of graph used was 19x35x19 = 12,635

nodes. Each node on the graph required two bytes of memory storage space.

9.6 Discussion and Conclusions

The graph searching method defined in this chapter provides good solutions

to the difficult findpath problem. Moreover, the short computer calculation times

required will enable real-time operation of the algorithm for industrial purposes.

The important factors which provide this solution are :

(a) A graph containing large numbers of nodes, representing the collision free

positions of the robot, each node havivg a few branches to its adjacent nodes.

(b) Cost functions for calculating the suitability of paths and for guiding the

path searching algorithms.

130

Chapter 9: Graph searching

9.6.1 The graph

The large numbers of nodes which can be used means that the accuracy of

world model is high. This enables the solution to be 'good' in terms of short path

lengths and finding solutions if they exist. However the number of nodes which

can be used is restricted by

(a) The time available to calculate the nodes.

(b) The computer memory available to store the data, even though each node

requires only two bytes of memory.

By restricting the number of branches between nodes the problem became

solvable. However, the limiting of branches limited the directions in which the

path could move. On the micro scale of figures 9.7(a) to (c) it may be seen that

the path zigzaged in the correct direction but it was constrained by the directions

of the branches from moving in the correct direction.

If the zigzags are small the macro movement of the robot will not be effected

by the micro zigzag movements, in fact this is the way robots are programmed

to move anyway. However if the zigzags are larger, then either a smoothing

algorithm could be applied to the final path or the number of branches in the

graph could be increased to offer more directions for the solution path.

9.6.2 The cost functions

Two different cost functions were used in the planning algorithm. The cost

of a path at a particular node was defined as the cost of the path already found

to that node, Cg, plus a cost, Ch, which was the hypothesised cost of the path

from the node to the Goal.

Two functions of Ch were considered. For Chi the value of Ch was defined

as the minimum possibly path length from the node to the Goal. For Ch=Chl

the shortest path possible was always produced. However, in order to calculate

131

Chapter 9: Graph searching

the shortest distance path every possible path which could provide the shortest

path had to be considered. Consequently the algorithm took a long time for large

graphs.

Ch2 was defined as the square of the minimum distance to the goal. This

function ensured that nodes which were further from the goal had disproportion-

ately large proposed costs and hence the algorithm favoured nodes which were

closest to the Goal. The result was that the path finding effort was pulled to the

goal at the expense of alternative paths further away.

From the results of calculation times for the different functions of Ch it

was concluded that different environments and different requirements for path

efficiency would require different functions of Ch. Where the path cost is of prime

importance Chi should be used, otherwise Ch2 will be better as the calculation

time is generally much shorter.

9.6.3 Application to the real problem

The algorithm has been successfully used to control a Smart Arms robot

at the University of Durham to plan the mid phase motion of the robot. The

robot was modelled with a three dimensional graph, the gripper and part being

accounted for as spheres which enclosed all possible positions of the gripper and

part.

In order to carry out approach path planning automatically it is possible to

use a graph with the same number of dimensions as there are degrees of freedom

for the robot. However, these graphs should be restricted to the small areas of

workspace where they are needed, as they require large numbers of nodes.

9.7 Further Work

The amount of memory required by the graph may be reduced by using a

132

Chapter 9 : Graph searching

variable size of unit in the space transformation algorithm of chapter 8. This

graph would also speed up the pathfinding algorithm as the same length path

would generally require fewer nodes.

The effect of different functions of Cg and Ch on the path produced could

be investigated further. Particularly, if for the sake of safety the path should not

move to close to obstacles unless necessary. A cost function could be used which

produces high costs for paths which go too close to obstacles.

133

CHAPTER 10

CONCLUSIONS

10.1 The world model

The use of spheres to model real obstacles makes it possible to calculate

collision free paths in real-time using a small micro-computer. All the other

world models considered require greater computational effort to solve the pathfind

problem for a robot. Hence solutions to practical problems in real-time would be

more difficult or impossible to achieve without using the sphere model.

The use of this modelling technique implied a compromise in the accuracy

of representation of the work space model. Except in very tightly constrained

operating environments this compromise was shown to be acceptable, indeed the

sub-optimal paths calculated tended to move further away from obstacles, and

to increase safety margins.

The robot arm was modelled as two connected cylinders with hemi-spherical

ends. The advantages of this representation were that the cylinders modelled the

robot arm efficiently, and the intersection calculations between the robot arm

and the obstacle spheres were very fast. The workspace which was 'lost' by this

representation was around the centres of the faces of the robot links. The corners

of the links were at the limits of the cylinder model.

Figure 10.1 shows how the inaccuracies of the world model can affect shortest

distance paths. (a) and (b) are the start and goal positions of a cross section of

the robot arm, (c) is an obstacle. The rectangular shapes represent the real

world sizes of the obstacle and the robot arm. These shapes are enclosed by

circles which represent the surfaces of the arm cylinder of the sphere. It may be

134

Chapter 10: Conclusions

Key	 ImMO OEMS IMn• ..•n•• ammo
	 real shortest path

model shortest path

Figure 10.1 A comparison of the model shortest path

with the real shortest path

seen that the minimum distance path for the model is approximately 7 percent

greater than that for the real world. However the path is much smoother.

It could be argued that the minimum distance path produced using the model

is better than that for the real objects when considering factors such as energy

used, time of execution and robot wear, because the accelerations required to

produce the path are lower as there are no 'corners' in the path.

135

Chapter 10: Conclusions

As the sphere model is such a simple model it would be possible to convert

data from other models such as solid models. This would provide automatic

planning facilities for systems such as GRASP which rely upon the programming

skills of the GRASP operator.

Automatic methods for world model measurement such as vision or ultra-

sonic techniques could be used to provide data for sphere model generation. In

some cases sphere models would provide a more realistic interpretation of vision

or ultrasonic data, as the general size, the distance and the direction of obstacles

are easily determined from vision or ultrasonic sensors where as the edges, faces

and corners required for polyhedral models are more difficult to determine.

One disadvantage of the sphere model was that most of the objects which

were modelled were not made up of spherical shapes. Thus when diagrams of

the spherical model approximations were produced it was found that the dia-

grams were difficult to interpret. For instance when the spherical model in figure

4.7 was drawn it was thought helpful to superimpose the real obstacles to help

visualisation.

10.2 Local pathfinding methods

The local pathfinding method used to calculate trajectories for the robot

forearm in section 6.5 is based on a few simple rules. This method works ad-

equately with a limited set of path finding problems. Solutions are achieved

quickly and reliably for many robot environments. More complex problems re-

quire more heuristic methods to solve situations which can not be solved by the

current algorithms.

An extension of this method could be based on a different programming lan-

guage such as LISP. This language is designed for artificial intelligence problems

and can deal with finding solutions given a set of data and a series of rules. This

136

the last recorded holder, Joseph Naylor. It remained in Basire's possession

until his death in 1676, when it passed to his successor in the Seventh

Stall, John Morton. He died in 1722, and at his request, the volume was

given to the Dean and Chapter . Library where it now remains. While he had

possession of the book, Basire studied it carefully, and certain marginal

notes, as well as some of the memoranda, are in his handwriting. Hutchinson,

in his History of Durham, mentions an attempt made by Basire in 1665 to pro-

cure an 'exemplification' of the statutes for the Dean and Chapter. There

had been some dispute between them and the Bishop about his rights of visita-

tion in the Cathedral, and Basire had been commissioned to try and clarify

the position:

1665. Sept. 12. At a meeting between Bishop Cosin and the
Dean and Chapter, it was agreed amongst other things -
'That an exemplification of the Statutes of the Church
should be procured from the Rolls on [sic] the Tower, or
any of the King's Courts, within a twelve month after it
hath pleased God to cease the prevalent pestilence.'

The following is Dr Basire's answer to the Chapter, and literally transcribed

from the original:

I took the pains to cause a search to be made in the rolls,
but found nothing. The like I did with Mr Dugdale, when he
was searching the records of the dioceses, and the records
of St. Paul's Church, and to encourage him, gave him a
gratuity from the Dean and Chapter, but sped [sic] no better.
What may be found in the Tower I know not, having had neither
the use nor opportunity to search there; Mr William Prynn
(no great friend to cathedrals) being keeper of these
records. (1)

The 1554 statutes set out in detail how the Cathedral was to be organised,

what endowments were to be provided for its upkeep and the maintenance of the

Dean and Chapter, and what were to be the responsibilities of them and their

(1) W.Hutchinson, The History of Durham, vol.ii, p.181. cf. Cosin's - Corres-
pondence, ii, p.139. After the Restoration, Charles II rewarded Prynne's
staunch royalism, with the appointment as Keeper of the Records of the
Tower. (W.M. Lamont, Marginal Prynne (London, 1963), p.206.)

Chapter 10: Conclusions

In certain circumstances the calculation time required to solve the path plan-

ning problem could not be predicted. However upper limits could be placed on

the calculation time to ensure that the program did not go into an infinite loop,

but if the upper limit of the calculation time was reached then no path was found.

In practice it was found that many environments could be used such that

solutions were always found to the path planning problem and that the calculation

time was within the limits of the robot execution time.

An example of an environment for which the system performed satisfactorally

is shown in figure 4.7. In this example the robot moved 5 parts at random to

different places such as areas on the base and to the tops of the boxes.

For a typical task in the above environment, such as to pick up a part and

move it to a different position the robot trajectory took 30 seconds and the

calculation time was 25 seconds.

In certain environments the path planning computer always produced sat-

isfactory paths in 'real time'. However there were certain situations where this

method became 'trapped' and no path was found where a path existed or that

paths were found after calculation times greater than robot execution times.

Given the unlimited complexity of paths there will always be these problems no

matter what path planning algoritluns are used.

The advantage of this method is that the method uses simple rules to solve

a problem which is difficult to analyse. The method for planning the upper arm

path is efficient in terms of time and paths produced. The method for planning

the forearm path uses simple heuristic rules to avoid obstacles.

The disadvantages of the method are that it does not always find a path

where one exists. The fact that the forearm and upper arm are planned separately

means that many possible paths are not considered and hence the paths produced

138

Chapter 10: Conclusions

are not necessarily the shortest paths. Also the program is closely tied to one

type of robot. Some of the program code would need changing to accommodate

the kinematic chain of a different robot.

10.5 The second method

10.5.1 Obstacle transformations

A high cost in computer time was incurred to transform the real obstacles

into joint space. For the current application this is acceptable if the environment

is static for several pathfinding operations.

The factors which were found to affect the computer time for the obstacle

transformations were :-

(a) The total workspace of the obstacles.

(b) The number of obstacle spheres.

(c) The size of the robot workspace.

(d) The resolution of the graph for searching.

There are two ways of transforming the workspace: transform the obstacles

or transform the empty space. The first method was adopted as it was felt that

the volume of obstacles would generally be much less than the volume of empty

space. As a result of this approach the total workspace of the obstacles and the

number of obstacle spheres present both affected the transformation time.

The calculation time was also affected by the size of the units which made

up the transformed graph. The smaller the unit size the greater the resolution of

the graph. For the results of chapter 8 a graph of 21,312 units was used. The size

of this graph was limited by the computer memory available and the calculation

time which was practical.

139

Chapter 10: Conclusions

10.5.2 Graph searching

The graph searching method used in method 2 provides good solutions to the

difficult pathfind problem. The important factors which provided this solution

were

(a) A graph containing a large number of nodes.

(b) The adaption of cost functions in the graph searching algorithm.

The large numbers of nodes which can be used means that the accuracy of

world models is high. This provides a `good' solution in terms of short path

length and finding solutions if they exist.

The nodes form a grid of points in joint space so that the coordinates of any

particular node can be represented by coordinates (i1, 12, i3, ... in), where il to

in are integers. Branches exist between all adjacent 'clear' nodes. Thus the path

between S and G is a connected set of nodes on the transformed graph beginning

with S and ending with G. The cost of the path is defined as the total number of

branches in the path.

The restriction of the number of branches in the graph reduces the graph

complexity and enables large numbers of nodes to be used. However this limits

the directions in which the path can move. On the micro scale it was seen that

the path zigzagged in the correct direction. For the test robot it was found that

the zigzags were small and the macro movement of the robot was not affected by

the micro zigzag movements, in fact this was how the robot's movements were

programmed by its own controller. However if the branch length of the graph

is too long for the smooth movement of robots in the future the path may be

straightened by post processing.

Two different cost functions were investigated for the planning algorithm.

The cost of a path at a particular node was defined as the cost of the path

140

Chapter 10: Conclusions

already found to that node, Cg, plus a cost, Ch, which was the hypothesised cost

of the path from the node to the Goal. By changing Ch the properties of the

algorithm changed. This is very useful as it means that Ch can be set to provide

either fast solutions or optimal solutions.

In order to carry out approach path planning automatically it is possible to

use a graph with the same number of dimensions as there are degrees of freedom

for the robot. However, these graphs should be restricted to the small areas of

workspace where they are required as they require large numbers of nodes.

10.6 Comparison of methods

It can be said that the performances of the methods were affected by different

factors. Providing no 'traps' were encountered then the speed of the first method

was affected by the number of potential collisions avoided. The second method's

speed was dependent upon the time taken to calculate the graph for searching

(dependent upon number and size of obstacles) and the time taken to search the

graph depended on how far apart the start and goal configurations were and how

complex the solutions found were.

For certain problems the first method became irrevocably stuck and the

second method took extra time to find the solution. Although this is an unsat-

isfactory conclusion, it is impossible to develop a pathfinding method which will

solve every problem in a limited time. However in favour of the second method

was the fact that if a solution existed it found it eventually.

The quality of solution produced depended firstly on the quality of the rep-

resentation of the real problem in the problem solving domain. This is true of all

path finding methods.

141

Chapter 10: Conclusions

The set of solutions of method 1 was limited because planning for the forearm

and upper arm was carried out separately. Having fixed the trajectory of the

upper arm the obstacles could only be avoided by altering the forearm trajectory.

This meant that sub-optimal solutions were produced.

The quality of solution for the second method was affected by the size of the

units in the graph of possible configurations. Each node in the graph represented

a set of configurations for which the robot was free of collisions. For the tests

carried out, one node on the graph represented one configuration +/- 2.5 degrees

of movement in each of the three degrees of freedom of the robot.

Several different cost functions were investigated for the second method.

The cost function chosen had a great effect on the performance of the graph

searching algorithm. One cost function investigated produced minimum cost

paths. Another cost function calculated its paths more quickly (in general) but

the solutions were not necessarily the minimum cost solutions.

The second method can be adapted to a wide range of problems. The graph

searching method may be applied to systems with any number of degrees of

freedom. The cost functions may be changed to suit the need either for a fast or

an optimum solution. The cost function can also be changed in order to optimise

different variables such as distance travelled for the payload or the safety of the

path.

The graph calculation method (Espace) may also be adapted for different

types of robot or even for different types of model, ie to a polyhedral model.

Although other types of world model require greater computational effort, for

off-line programming this would not be a problem.

142

Chapter 10 : Conclusions

10.7 Trajectories to suit calculations

In section 5.4 it was found that the 'natural' trajectory for the robot between

two configurations did not produce the shortest distance path for a point on the

upper arm. It is the author's opinion that the interpolation of joint angles is

the method of movement used for most revolute robots, and that savings in the

time and energy required for robot movements could be made if the interpolation

method were changed.

10.8 Design of robot

There were certain cables on the test robot which were not included in the

robot model. This was justified by the following :-

(a) Many robots do not have this protruding cabling.

(b) The test robot could have been redesigned such that the cables were inside

the robot links.

(c) The time required to model the cables would have made the completion of

this research very difficult.

Another difficulty was created by the particular design of the test robot. This

was that the robot's links were overslung. This problem was overcome (section

4.4). However the final solution was more complex and slower because of this

difficulty.

The idea of an 'ideal robot design' was discussed in section 4.8. In practice

a compromise will have to be made between other robot design requirements and

those of automatic programming systems.

143

Chapter 10: Conclusions

10.9 Further work

A real-time path planning system may only be used when information on the

required task is available in real-time. This information is most readily acquired

from sensory devices such as vision systems. A vision system can recognise a

part and hence infer the appropriate operation required and it can determine the

location and orientation of the part. By adding a vision system to the automatic

planning system at the University of Durham, some real applications for this

research may be investigated.

While this work has been carried out technology has become more and more

sophisticated. Understandably after three years the equipment is now out of

date. A new implementation of any of the techniques described in this thesis

on more modern technology, an IBM PC for example, would provide benefits in

performance.

The very exciting developments in multi-processor computers could be ap-

plied to path planning. Particularly for the transformations of obstacles, where

the task of splitting the work load into bits for different processors would not be

difficult. This would provide great reductions in calculation time.

This section would not be complete without stressing that software develop-

ment is never finished. There are always things which can be done to improve the

programs The software development work has concentrated mainly on getting

the software to operate and a proportionately small amount of time has been

devoted to optimising the code.

10.9.1 The first method

The first method would be improved by providing extra heuristic rules which

would unstick the algorithm in certain situations. In particular if the forearm

144

Chapter 10: Conclusions

becomes stuck a facility for replanning the upper arm trajectory would be very

useful.

10.9.2 The second method

The amount of memory required by the graph may be reduced by using a

variable size of unit in the space transformation algorithm of chapter 8. This

graph would also speed up the pathfinding algorithm as the same length path

would generally require fewer nodes.

The effect of using different functions for Cg and Ch on the path produced

could be investigated further. These cost functions may be adapted to suit many

different path requirements. For example it may be that paths which move close

to obstacles are undesirable from a safety point of view. If this is the case then

a cost function may be developed which produces high costs for paths which pass

close to obstacles. This would cause the path planning algorithm to favour safer

paths.

It may be possible to speed up the graph searching algorithm by planning

in a hierarchy of levels.

The approach paths required for paths used in this research were planned

by the human operator. This was justified by saying that the geometry of part

and fixture ensured that generally one approach path would be obvious to the

operator. An example given was that of putting a part into the chuck of a lathe.

In this case the approach path is clearly to orient the part along the lathe axis

and then move along that axis until the part is within the lathe jaws. However

there is a need for the automatic planning of approach paths. A flexible assembly

system for instance might be supplied with the details of parts and details of the

final assembly. In this situation a method of planning the approach path would

be required.

145

Chapter 10 : Conclusions

As approach path planning requires a detailed knowledge of the partb geom-

etry a solid modelling system would be an important requirement. In this case

the second path planning method could be adapted to deal with the fine motions

of approach path planning.

This research has relied upon the use of a robot to verify the computer

programs. There is however a simpler and more versatile method of doing this

and that is to use a graphics simulation of the world model and the robot's

movement.

The addition of such a facility is seen as vital to any future development of

this work. However the use of real robots in a real situations will still be the final

test of the success of a particular program.

As the second method is independent of the world model used it may be

a useful exercise to try using a polyhedral model for similar problems as those

described here. This would provide a useful comparison between sphere and poly-

hedral models. It might also pave the way towards integrating a path planning

system with an automatic programming system such as GRASP.

Some recent work of Kant (1986) has investigated the possibility of planning

paths in a time varying environment. Kant has decomposed this problem into

2 sub-problems, the path planning problem and the velocity planning problem.

Although this might be the simplest solution it is not necessarily the best and

the paths could turn out to be very inyfficient. An alternative solution following

on from this work might be to consider time as an extra dimension in the graph

searching method and solve the problem in the existing way.

10.10 A look into the future

At present, ninety percent of robot usage in industry is on what one might

146

Chapter 10 : Conclusions

call 'open loop'. This means that robot manipulator arms go about their pre-

programmed routines with virtually no feedback from the environment in which

they operate. Even those robots which do benefit from feedback have a very

limited range of responses to their changing environment. This way of thinking

has had an immense affect on the potentials and limitations of what can be

achieved in industries through the use of industrial robots.

In humans the most important sensory feedback which we possess is vision.

For robots too this is the most important form of feedback, although touch is

also vital for many applications. Already vision has been used to correct the pro-

grammed positions of robots in real-time applications (El Zorkany 1984). Future

generations of robots will make more and more use of vision data.

The primary objective of robot vision is to allow the robot program to branch

depending on what is seen by the robot eye. For example consider a situation

where a vision system surveys objects arriving at a pick up point. The vision

system would decode the shape of each object as it arrived and feed information

to the robot computer about the part's type, its orientation and its position. The

robot computer would then generate a path which would pick up the part and

carry out the appropriate operations. In this example it may be noted that for

each new part a different path may be required.

A system such as this allows much more flexibility in the production envi-

ronment. Parts do not have to be accurately positioned in the robot's workspace.

Parts may even be picked out of bins.

A whole new range of tasks can be achieved if both vision and automatic

path planning capabilities are incorporated into a new range of robots. Two

areas where these techniques can be useful are, the agricultural industry and

automatically guided vehicle (AGV) technology.

147

Chapter 10: Conclusions

In the agricultural industry robots could be used for applications such as

fruit and vegetable harvesting. Here the vision system would provide a world

model such as the positions of apples and branches in an apple tree. The robot

computer would then move the robot between the branches to pick the apples.

Avoiding collisions with the branches is clearly important to avoid damaging the

robot and the tree.

AGVs are beginning to be used in conjunction with robots. The robot sits on

top of the AGV and manipulates parts to be transported. This may be:difficult

operation as accurately positioning the AGVs is a difficult task and warehouse

environments are notoriously cluttered with obstacles. Here vision systems and

automatic path planning will provide great benefits in increasing the flexibility

of AGV/robot devices.

148

REFERENCES

AHUJA, N., CHIEN, R.T., YEN, R., BRID WELL, N. Interference detection

and collision avoidance amoung three dimensional objects. 1st Annual National

Conference on Artificial Intelligence, Stanford University, Stanford, C.A., August

1980. pages 44-48.

ALBUS J.S., BARBERA A.J., FITZGERALD M.L. Programming a hierar-

chical robot control system. Proceedings of the 12th International Symposium

on Industrial Robots, Paris, France. 9-11th June 1982.

ALBUS J.S., Mc LEAN C.R., BARBERA A.J., FITZGERALD M.L. Hierar-

chical control for robots in an automated factory. 13th International Symposium

on industrial robots and Robots 7. April 17-21 1983. Chicago Illinois. Pages

13.29-43.

ARAI Y., HATA S., IMAKUBO T., KIKUCHI K. Production control system

of microcomputers hierarchical structure for FMS. 1st International conference on

Flexible Manufacturing Systems, Brighton, 20-22 October 1982. IFS Publications

Ltd. ISBN 0-903608-30-8, pages 3259-68.

BALDING N.W., PREECE C. Real-time collision-free path calculation for

robots. Proceedings of the Institution of Mechanical Engineers. Conference on

UK research in advanced manufacture. London, 10-11th December 1986, pages

61-67.

BALL A. Designers guide to shapes. Cadcam International. March 1983,

pages 32-34 and October 1983, pages 42-44.

BONNEY M.C. Off-line programming and robot safety. Presented to the

4th SERC Vacation School in robotic technology. 9-14th December 1984. Lough-

borough University.

149

References

BONNEY M.C., MOSER J., YONG Y.F. Evaluation and use of a graphical

robot simulator - a case study from ITT/AMTC using GRASP. International con-

ference on simulation in manufacturing, Stratford Upon Avon, United Kingdom,

1985.

BOURNE, D.A., FUSSELL, P.S. Designing programming languages for man-

ufacturing cells. Proceedings of Electro 82 — 14, IEEE June 1982, pages 23/3 1-9.

BOYSE J.W. Interference detection amoung solids and surfaces. Communi-

cations of the ACM, January 1979, Volume 22, Number 1, pages 3-9.

BRAID I.C. Designing with volumes. PhD thesis, Cambridge University,

England, 1973.

BRAID I.C. The synthesis of solids bounded by many faces. Communications

of the ACM, volume 18, page 209-221, (1975).

BROOKS R.A. Planning collision free motions for pick-and-place operations.

The International Journal of Robotics Research, volume 2, number 4, Winter

1983(a), pages 19-44.

BROOKS R.A. Solving the find-path problem by good representation of free

space. IEEE Transactions on Systems, Man, and Cybernetics, Volume SMC-13,

number 3, March 1983(b), pages 190-197.

CAMERON S. The clash detection problem. Department of Artificial Intel-

ligence. University of Edinburgh. DAI working paper number 126. September

1982.

CASSINIS R. Hierarchical control of integrated manufacturing systems. 13th

International symposium on industrial robots and Robots 7. April 17-21, 1983.

Chicago, Illinois. Pages 12-9 to 12-20.

150

References

CHIEN R.T., ZHANG L., ZHANG B. Planning collision-free paths for robotic

arm among obstacles. IEEE Transactions on Pattern Analysis and Machine In-

telligence, volume 6, number 1, January 1984, pages 91-6.

CWIAKALA M., LEE T.W. Generation and evaluation of a maniputator

workspace based on optimum path search. Transactions of the ASME, Journal

of Mechanisms, Transmissions, and Automation in Design. June 1985, volume

107, pages 245-255.

DE PENNINGTON A., BLOOR S., BALILA M. Geometric modelling :

a contribution towards intelligent robots. Conference proceedings of the 13th

international symposium on industrial robots and robots 7. April 17-21st 1983.

Chicago. North Holland Publishing Company, pages 7.35-54.

DILLMANN R. A graphical emulation system for robot design and pro-

gram testing. Conference proceedings of the 13th International Symposium on

Industrial Robots and Robots 7. April 17-21st 1983, Chicago. North Holland

Publishing Company, pages 7.1 to 7.15.

EL-ZORKANY H.I. Automatic location correction in off-line programming

of industrial robots. Proceedings of the 14th International Symposium on Indus-

trial Robots. Gothenburg, Sweden (IFS) 1984, pages 335-346.

FIKES E., HART P.E., NILSSON N.J. Learning and executing generalised

robot plans. Artificial Intelligence 3 (1972) pages 251- 288.

FUSSELL P., WRIGHT P.K., BOURNE D. A design of a controller as a

component of a robotic manufacturing system. 13th International symposium on

industrial robots and robots 7, April 17th to 21st 1983, Chicago, Illinois, pages

16.48-62.

151

References

GASPART P., BAUDOT W., Flexible and decentralized control of a ma-

chining shop. 1st International conference on flexible manufacturing systems,

Brighton, 20-22nd October 1982, IFS (Publications) Ltd. ISBN 0-903608-30-8,

pages 379-388.

GILBERT E.G., JOHNSON D.W. Distance functions and their application

to robot path planning in the presence of obstacles. IEEE Journal of Robotics

and Automation, volume RA-1, number 1, March 1985, pages 21-30.

GOUZENES L. Strategies for solving collision-free trajectories problems for

mobile manipulator robots. International Journal of Robotics Research, volume

3, number 4, pages 51-65.

:.
HANSEN J.A., GUPTA K.C., KAZEROUNIAN S.M. Generation and eval-

uation of the workspace of a manipulator. International Journal of Robotics

Research. Volume 2, number 3, Fall 1983, pages 22-31.

HART P.E., NILSSON N.J., RAPHAEL B. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions of Systems Science

and Cybernetics, Volume SSC-4, number 2, July 1968, pages 100-107.

HART P.E., NILSSON N.J., FIKES R.E. Learning and executing generalised

robot plans. Artificial Intelligence 3, 1972, pages 251-288.

HOPCROFT J.E., SCHWARTZ J.T., SHARER M. Efficient detection of in-

tersections amoung spheres. International Journal of Robotics Research. Volume

2, number 4, winter 1983, pages 77-80.

IRVINE J. CAD puts robots in reach. CAD CAM International. December

1986, pages 26-29. EMAP Buisness and Computer Publications Ltd. London.

152

References

KANT K., ZUCKER S.W. Toward efficient trajectory planning : the path-

velocity decomposition. The International Journal of Robotics Research, volume

5, number 3, Fall 1986, pages 72-89.

KHATIB 0. Real-time obstacle avoidance for manipulators and mobile robots..

The International Journal of Robotics Research. Volume 5, number 1, spring

1986, pages 90-98.

KIRSCHBROWN R.H., DORF R.C. 'KARMA' - A Knowledge-based robot

manipulation system. The International Journal of Robotics Research. Volume

1, March 1985, pages 3-12.

-X-

LEE T.W., YANG D.C.H. On the evaluation of a maniputator workspace.

Transactions of the ASME, Journal of Mechanisms, Transmissions, and Automa-

tion in Design. March 1983, volume 105, pages 70-76. •

LOZANO-PEREZ T. Automatic planning of manipulator transfer move-

ments. IEEE Transactions on Systems, Man and Cybernetics, Volume SMC-11,

number 10, October 1981, pages 681-698.

LOZANO-PEREZ T. Spatial planning : a configuration space approach.

IEEE Transactions on Computers. Volume 32, number 2, Feburary 1983, pages

108-130.

LOZANO-PEREZ T., WESLEY M.A. An algorithm for planning collision-

free paths amoung polyhedral obstacles. Communications of the ACM. Volume

22, October 1979, number 10, pages 560-570.

LOZANO-PEREZ T., MASON M.T., TAYLOR R.H. Automatic synthesis

of fine-motion strategies for robots. International Journal of Robotics Research.

Volume 3, number 1, pages 3-24. Sritt 1184:

* IciZeYsztQ E. Ratianceek. Enc&Aeet-LA	 tio_akcincLECcs Fouttk Ecii.hoA

3-ok A tn.) i	 Cul	 oft& ,

153

References

LUH J.Y.S., CAMPBELL C.E. Minimum distance collision-free path plan-

ning for industrial robots with a prismatic joint. IEEE Transactions on Automatic

Control, volume AC-29, Number 8, August 1984, pages 675-680.

PAUL R.P. Robot manipulators : mathematics, programming and control.

Cambridge, MA : Mass. Inst. Tech., 1981.

PEEPER D.L. The kinematics of manipulators under computer control. PhD

Thesis, Stanford University, October 1968.

RED W.E., HUNG-VIET TRUONG-CAO. Configuration maps f or robot

path planning in two dimensions. Transactions of the ASME, volume 107, De-

cember 1985, pages 292-298.

REQUICHA A.A.G. Representations for Rigid Solids : Theory, Methods

and Systems. Computing Surveys. Volume 12, number 4, December 1980, pages

437-463.

REQUICHA A.A.G. Constructive solid geometry. Rochester University,

N.Y. Production Automation Project, November 1977. NSF/RA-770476.

SACERDOTI E.D. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5 (1974), pages 115-135.

SAHAR G., HOLLERBACH J.M. Planning of minimum time trajectories for

robot arms. The International Journal of Robotics Research, volume 5, number

3, Fall 1986, pages 90-100.

SCHWARTZ J.T., SHARIR M. On the 'piano movers' problem II. General

Techniques for computing topological properties of real algebraic manifolds. Ad-

vances in Applied Mathematics. Volume 4, number 3, September 1983, pages

298-351.

154

References

SMITH R.C., NITZAN D. A modular programmable assembly station. Con-

ference proceedings of the 13th International Symposium on Industrial Robots

and Robots 7. April 17-21 1983, Chicago. North Holland Publishing Company

pages 5.53-75.

UDUPA S. Collision detection and avoidance in computer controlled manip-

ulators. PhD Thesis, California Institute of Technology, 1977(a).

UDUPA S. Collision detection and avoidance in computer controlled ma-

nipulators. Proceedings of the 5th International Joint Conference on Artificial

Intelligence 5. 1977(b), pages 737-748.

VUKOBRATOVIC M., KIRKCANSKI M. A method for optimal synthesis of

manipulation robot trajectories. Transactions of the ASME, Journal of Dynamic

Systems, Measurement, and Control. Volume 104, June 1982, pages 188-193.

YANG D.C.H., LEE T.W. On the workspace of mechanical manipulators.

Transactions of the ASME, Journal of Mechanisms, Transmissions and Automa-

tion in Design. Volume 105, March 1983, pages 62-69.

155

APPENDIX A

CALCULATING THE VOLUMES OF SPHERE MODELS

WHICH APPROXIMATE A UNIT CUBE

In order to quantify the difference between the model of spheres and the real

objects the volumes of the spheres and real objects may be compared.

It should be noted that the volume of the real objects must be completely

contained by the spheres for safety reasons. Therefore the model will always have

a larger volume than the real objects.

To make the comparison a unit cube was modelled by increasing numbers of

similar spheres. This appendix shows how the volumes of these models of spheres

were calculated.

(i) The volume of one sphere surrounding a unit cube.

The radius of the sphere = distance from the cube centre to one corner of

the cube.
1. 2 	 1212

R1 = Ili 4- i ± i

Therefore	 RI = 4
The volume of a sphere is given by 	 V = 1111-3

Therefore	 14 = 0(4)3
This gives	 V1 = 2.72070

(ii) The volume of 2 spheres modelling a unit cube.

The cube may be defined such that one corner of the cube is at the origin

and the opposite corner is at (1,1,1). The edges of the cube are parallel to the x,

156

12	 1 2 12
R2 =

9	 3

16

":" ,•"	 it400„..

-

')\
•

Appendix A

y, or z axes.

The centres of spheres are at coordinates (1,1,1) and (I,

However the spheres intersect. But the volume of part of a sphere may be

found as follows :-

The volume of the shaded region of this hemisphere is given by :

Vh = IIr31 cos3ede

but cos2 e = 1 — sin20

VA = Hr3 11 cosOde — coses2n2ed0.1

1
vh . lIr3 sine

In this example the volume of model V2 is the sum of one sphere plus two

times the above integration, where

I 1
sine = 4 =

3
4

157

,_------------„,i,

1 -

1
V3-

Appendix A

(iii) The volume of 8 spheres modelling a unit cube

If a sphere is cut into segments such that each cut passes along the face of a

cube which is just contained by the sphere then two types of segments are formed,

a and b.

The sphere is made up of a cube (c) at the centre + 6a + 12b.

The volume Vt of a hemisphere - (a+4b) for a sphere containing the unit

cube may be found as follows:

Vt = IIr3 [sine

Where r = 4 and

1
sine = 	 2

1/
12	 1 2	 12
2 + i + I

Therefore
TT (0-) 3 I 1	 1 (1)31

Vt = --k 2 j Lvg- ivigi j

This simplifies to

Volume of hemisphere = IIIr3

=

158

Appendix A

substituting in the value of r gives :

= 1-01-43

The difference between these two volumes is the volume of a -I- 4b

=-- 0.31315

Total sphere is made up of c 6a + 12b.

\fin =-- 2.72070
- 2

but	 c = 1

therefore	 6a + 12b = 1.72070

aimpli fieing	 a + 2b = 0.28678

but	 a + 4h = 0.31315

therefore
	 2h = 0.026370

so a = 0.26041 and b ---= 0.013185

For 8 spheres modelling the unit cube the radius of each is :

1 2 12 1
R8 = V4 +	 -

Model contains 8c8 24a8 24b8

1
a8 = - x 0.26041 = 0.032551

8
1

b8 = - x 0.013185 = 0.0016481
8

Volume of model = 1 + 0.78122 -I- 0.039555

Vg = 1.82078

159

Appendix A

(iv) The volume of 27 spheres modelling a unit cube.

Total volume is made up of 27c + 54a + 36b

Radius of each sphere is

1
a27 = — X 0.26041 = 0.00964487

27

1
b27 = Fi X 0.013185 = 0.000488318

V27 = 1.5384

(v) The volume of 84 spheres modelling a unit cube

Total volume is made up of 64c + 96a + 48b

Using the previous method.

V64 = 1.4005

160

APPENDIX B

TO FIND ROBOT PATHS BETWEEN SPHERES

B.1 Mathematics for procedure FindP3

This procedure calculates the two possible points P3a and P3b which are in

a plane containing the line 0P2 and on the surface of a sphere of centre Cl and

radius R, such that the plane is tangent to the surface of the sphere (see figure

B.1).

0

Figure B.1

Firstly a point I on the line 0P2 is calculated such that 61 is perpenpicular

to .rei (see figure B.2).

By using dot products we get -

15"2.d1= IP2I1Clico8a

but

	

III = IClIcosa

161

•

Therefore

Appendix B

P2

0

Figure B.2

I. . 15.2 III
IP21

.i. = 17213.2.d1
IP212

Figure B.3 shows a Plane perpendicular to 0P2

P3b	 .

Figure B.3

I/P3a1 = N/11C112 + R2

162

Appendix B

IJ = I15.'3acosb

IIP3al
cosb =

11

IIP3a1 2 —
1

Au =	
IC

 IIC112

The vector JI73a is perpendicular to 152 and IÔ1. Thus it may be found using

vector cross products.
F72 x

JP3a

IJP3al = Rcosb= RIIP31
"Cl'

j15.3a RIIP31 —
P2 x /C1

IP21.I/C112

Jf'3b = — J153a

B.2 Mathematics to define planes between spheres

This method finds the four possible planes which pass through the origin

and are tangential to the surface of two spheres. The two spheres have centres

Cl and C2 and radii R1 and R2.

a) planes which pass between the spheres.

Providing that a) the two spheres do not intersect, b) both have radii greater

than zero and c) no line from the origin passes through both spheres then there

exists two planes which pass between the spheres and are tangential to both their

surfaces.

Figure B.4 shows how these planes touch the sphere surfaces at points P2a,

P2b, P3a and P3b.

163

Appendix B

0

Figure B.4

Figure 8.5

If we consider the plane containing points Cl, P2a and P3a we get figure

B.5. As the vectors C1P2a and C2P3a are both normal to the plane of figure

B4 they are parallel vectors and hence C2 lies in the plane of figure B.5 as well.

The point K lies on the line C1C2 and on the line P2aP3a.

R1 + R2 R1
1C1C2I — IC1KI

CCK — IC1K1 CfC2
1C1C2I

it = di + C IK

it = ci + R1 Cl-C2
R1 + R2

It may be seen that the same point K is on the plane through points 0, P2b

and P3b. Hence the two planes may be found using the method of procedure

findP3.

164

Appendix B

Figure B.6

b) Planes which do not pass between the spheres

(i) spheres of the same radius

For the special case of spheres of the same radius the vector C1C2 is a vector

parallel to the planes tangential to the sphere's surfaces and contains the origin.

This is shown in figure B.6.

0
Figure B.

Hence the point 0+ C1C2 is in the plane and FindP3 may be used to define

the plane.

(ii) Spheres with unequal radius

Figure B.7 shows the plane containing Cl, C2, P2a and P3a. If the lines

P2aP3a and C1C2 are extended then they cross at a point

i.di+ R2 — R1 -•
C1C2

R1

Thus with two points the two planes may be found using FindP3.

165

APPENDIX C

Mainrpf program listing

Program Mainrpf;

const L1 : real = 386;

12 : real = 376;

SqL2 = 141376.0;

Pix3o2 : real = 4.71238898;

Pio2 : real = 1.570796326;

Pix2 : real = 6.283185307;

Safety : integer = 5;

Zeroi : integer = 0;

type Range = 0..10;

Dir = (CI.An);

Coords = (x,y,z);

Coord = array[Coords] of real;

Rangesph = array[Range] of Coord;

Rangerod = arroy[Rangei of real;

RangeSp = array[1..8] of Coord;

RangeNh = orray[1..4] of Coord;

Degree = array[1..3] of real;

Elb = array[1..2] of real;

Rangerob = array[Range] of Degree;

Rongeelb = array[Ronge] of Elb;

RangeSL = orray[Range,1..2] of real;

RangeR = array[1..5] of real;

RangeT = orray[1..8] of Degree;

RangeWkP = arroy[1..5] of Coord;

Nodes = record

Dist, Cost : real;

Predi : integer;

Predd : dir;

Stat : (Open,Closed);

Nh, P1, P2 : Coord;

end;

Rangenod = orray[Range,Dir] of Nodes;

SMd = record

Grip : boolean;

R : RangeR;

end;

RangeApp = array[1..10] of SMd;

RongeInt = orray[1..50] of SMd;

var Sph1, Sph2, Sphere, Goal : Rangesph;

Elbdoto : Rangeelb;

Rad1, Rad2, Radius : Rangerad;

tempC, TipS, TipG. Startpoint, Goolpoint : Coord;

Area, Time. loop1, N, G. Ni, N2, E, Ans, Rev,

WkpieceN, Countmvp, Countinit, Countfin, Countint : integer;

Sr. Gr. Offset : real;

SLvalT1 : RangeSL;

166

Initialp, Finalp : RangeApp;

Mvp, Interp : RangeInt;

WkpConv, WorkPiece : RangeWkP;

1 The order of procedures is as follows :—

Invsin, Invcos, Invtan, Keypressed. Modulus, Convert1, Convert2, Convert3,

Convert4, Convtobs, Xproduct, Length_adjust.

FindP3, Findplan, FindA, Forbidden, Testp, Listnode, Calcdist, Costp,

Pathfind, Error, OutPdata, Routep2, Routep1.

FindT2, Find_Point, Outputd, SMdata, Avoidobs, Rangefind,

Findpos, Testfa2, Testfa, Stepgool, Fopoth2, Fapath.

Readdato. Expobs, Rangecalc, Main program

function Invsin(Sina : real) : real;

begin

if Sina < le-4 then

Invsin := Sina

else

Invsin := arctan(sqrt(1/(1/sqr(Sina)-1)));

end;

function Invcos(Cosa : real) : real;

begin

if Cosa < le-4 then

Invcos := Pi/2—Cosa

else

Invcos := arcton(sqrt(1/sqr(Cosa)-1));

end;

procedure Invton(var x. y. ans : real);

begin

if abs(x)<2e-5 then	 1 This calculates the angle of rotation I

begin	 of a line from 0,0 to x,y. If x<2e-6

if abs(y)<2e —6 then 	 1 and y<2e-6 then angle = 0.

ans := 0	 1 X is assumed = 0 if x<2e-6.

else if y>0 then

ans := Pi/2

else ans := 1.5*pi;

end

else if x>0 then

begin

if y>=0 then

ans := arctan(y/x)

else ons := 2*Pi+arcton(y/x)

end

else ans := Pi+arcton(y/x);

end;

1 	 ?
procedure Keypressed;

var B:Byte:

begin

B := Port[$ODA];

B:=B and 02;

if B=2 then read

end;

procedure Modulus(vor A,B,AB : Coord; var Sqmod, Modul : real);

begin

AB[X] := B[X]—AfX];

167

AB (Y]

AB[Z]

Sqmod

Modul

end;

:= B[Y]—A[Y];

:= B[Z]—A[Z];

:= sqr(AB[X])+sqr(AB[Y])+sqr(AB[Z]);

:= sqrt(Sqmod);

procedure Convert(var P : Coord; var Ext : integer; var T : Degree);

vor L3, ModXY, SqmodXY, D, SqL3, CosT3, SinB, B : real 	 _

begin
	

1 This procedure calculates the robot

Invton(P[x],P[y],7[1]);
	

1 coordinates for when the tip of the 	 f
SqmodXY := sqr(P[x])+sqr(P[y]);
	

robot arm is at P

ModXY := sqrt(SqmodXY);
	

1 13 is always less than Pi.
Invtan(ModXY,P[z],D);

SqL3 := SqmodXY+sqr(P[z]);

L3 := sqrt(SqL3);

if L3 > L1+L2+Ext then begin

writeln('ERROR Goolpoint out of range');

end;

CosT3 := (sqr(L1)+sqr(L2+Ext)—SqL3)/(201.1,0(L2+Ext));

T[3] := Invcos(CosT3);

SinB := (1_2+Ext)*sin(7[3])/sqrt(Sq13);

B := Invsin(SinB);

T[2] := B+D;

if 1[1] > Pi then begin

if (TN > Pix2-0.01) and (7[1] < Pix2+0.01) then
T[1] := 0

else if 1[1] < Pi+0.01 then

111] := Pi

else writeln('ERROR');

end;

if 7[2] > Pix3o2 then T[2] := 1[2]—Pix2;

if T[2] > Pio2 then begin

if 1[2] < Pio2+0.01 then

T[2] := Pio2

else writeln('ERROR');

end;

writeln('Converted'.1(1)=',1[1],' T[2]=',7[2],' 113]=,113]);

keypressed;

end;

procedure Convert2(var Th : Degree; vor E : Coord);

var temp : real;

begin

temp := L1*cos(Th[2]);

E[X] := temp*cos(Th[1]);
	

Calculate the coordinates of the robot

E[Y] := temp*sin(Th[1]);
	

elbow from the robot coordinates

E[Z] := L1,osin(Th[2]);

end;

procedure Convert3(vor Th : Degree; Vor

vor tempi, temp2 : real;

begin

write('CONVER73');

tempi := Th[2]+Th[3] —Pi;

temp2 := L24,cos(temp1);

T[X] := temp2.cos(Th[1])+E[X];

T[Y] := temp2ssin(Th[1])+E[Y];

T[Z] := 1.2ssin(temp1)+E[Z];

1writeln(T[X],T[Y].7[Z]):1
end;

E. I : Coord);

I Convert Angular coordinates of 	 1
1 the robot and the cortesion
coordinates of the elbow, to

1 cortesion coordinates of the tip
of the forearm.

168

	 1
procedure Convert4(vor Ec : Coord; var Ea : Elb);

var Xyplone : real;

begin

Invtan(Ec[X],Ec[Y],Ea[1]);	 I Convert the cartesian coordinates!
Xyplane := sqrt(sqr(Ec[X])+sqr(Ec[Y])); f of the elbow to angular	 1
Invtan(Xyplone,Ec[Z].Ea[2]); 	 f coordinates.	 1

end;

1 	 1
procedure Convtobs(vor C : Coord; vor Offset : real; var Rev : integer);

this converts the real coordinates of obstacles to the coordinates as 1
the robot sees them 1

var SqmodOE, ModOE, temp, Beta, A, L1xy : real;

begin

SqmodOE := sqr(C[X])+sqr(C[Y]);

ModOE := sqrt(SqModOE):

L1xy := sqrt(Sqmod0E—sqr(Offset));

Invtan(C[X] .C[Y],Beta);

if Rev = —1 then

A := Pi/2+Beta

else begin

Invtan(Offset,L1xy,temp);

A := Beta—temp; end;

C[X] := C[X]—Offsetscos(A);

C[Y] := C[Y]-0ffsetssin(A);

end;

	 1
procedure Xproduct(vor A,B,C : Coord):

begin

C[X] := A[Y]*B[Z]—A[Z]*B[Y];

C[Y] := A[Z]*13[X] —A[Xl*B[Z];

C[Z] := A[X]*13[Y] —A[Y]*B[X];

end;

	 1
procedure Length_adjust(var P : Coord; vor ModP : real);

vor temp : real;

begin

temp := L1/ModP;

P[X] := P[X]*temp;

P[Y] := P[Y]stemp;

P[Z] := P[Zistemp;

end;

1 	 1
procedure FindP3(vor P2, Cl. Nhu, Nhl, P3u. P3I : Coord; vor R : real;

var Opdir : booleon);

var Temp, SqmodP2, ModP2, P2dotC1, ModIC1, SqmodIC1, SqmodIP3, ModIP3 : real;

I, IJ. IC1, TempC : Coord;

begin

writeln(T2=',P2[X1,P2[Y],P2[Z]);

SqmodP2 := sqr(P2[X])+sqr(P2[Y])+sqr(P2[Z]):

ModP2 := sqrt(SqmodP2);

P2dotC1 := P2[X]*C1[X]+P2[Y]*C1[Y]+P2[Z]*C1[Z];

Temp := P2dotC1/SqmodP2;

I[X] := temp*P2[X];

I[Y] := temp*P2[Y];

I[Z] := temp*P2[Z];

Modulus(I,C1,IC1,SqmodIC1,ModIC1):

SqmodIP3 := SqmodIC1—sqr(R);

if SqmodIP3 <=0 then

begin

169

Opdir := false;

writeln(**** These two spheres intersect each other ****');

end

else

begin

ModIP3 := sqrt(SqmodIP3);

Temp := SqmodIP3/SqmodIC1;

IJ[X] := Temp*IC1[X];

Ij[y] := Temp*IC1[Y];

IJ[Z] := Temp*IC1[Z];

Temp := ModIP3*R/(SqmodIC1*ModP2);

Xproduct(IC1,P2,TempC);

P3u[X] := I[X]+IJ[X]+temp*TempC[X];

P3u[Y] := I[Y]+IJ[Y]+temp*TempC[Y];

P3u[Z] := I[Z]+IJ[Z]+temp*TempC[Z];

P31 [X] := I[X]+IJ[X]—temp*TempC[X];

P31 [v] := I[Y]+IJ[Y]—temp*TempC[Y];
P31 [Z] := I[Z]+IJ[Z]—temp*TempC[Z];

writeln(P3u=',P3u[X],P3u[Y],P3u[Z]);

writeln(T31=',P31[X],P31[Y],P31[2]);

I Find the unit vectors normal to the planes
Xproduct(P2,P3u,TempC);

temp := sqrt(sqr(TempC[X])+sqr(TempC[Y])+sqr(TempC[Z]));

Nhu[X] := TempC[X]/Temp;

Nhu[Y] := TempC[Y]/Tcmo:

Nhu[Z] := TempC[Z]/Temp;

Xproduct(P2,P31,TempC);

temp := sqrt(sqr(TempC[X])+sqr(TempC[Y])+sqr(TempC[Z]));

Nhl[X] := TempC[X]/Temp;

Nhl[Y] := TempC[Y]/Temp;

Nhl[Z] := TempC[Z]/Temp;

end;

Key pressed;

end;

procedure Findplan(vor C1,C2 : Coord; var R1,R2 : real; Var P : RangeSp;

var Nh : RangeNh; var Opdir : boolean);

var Temp, ModC1C2, ModC1, CosA : real;

P2, C1C2 : Coord;

loop1, Konst : integer;

begin

writeln('FINDPLAN');

writeln(T1=',C1[X],C1[Y],C1[Z]);

writeln(T2=',C2[X],C2[Y],C2[Z]);

Modulus(C1,C2,C1C2,ModC1C2,Temp);

if Opdir then

begin	 / Find ClAn and AnCI planes

writeln('Opdir');

Temp := R1/(R1+R2);

P2[X] := C1[X]+temp*C1C2[X]:

P2[Y] := C1[Y]+temp*C1C2[Y];

P2[Z] := C1[Z] +temP*C1C2[Z]-;	 -
FindP3(P2,C1,Nh[2].Nh[1],P[3],P[1],R1,0pdir);

Temp := (R1+R2)/R1;

P[2,X] := P[1,X]+Temp*(P2[X]—P[1,X]);

P[2,Y] := P[1,Y]+Temp*(P2[Y]-1311,Y1);
p[2 . 2] := p[1,2]+Temp*(P2[1]—P[1,Z1);
P[4,X] := P[3,X]+Temp*(102[X]—P[3,X]);

P[4,Y] := P[3,Y]+Temp*(P2[Y]—P[3,Y]);

P[4,Z] := P[3,Z]+Temp*(P2[2]—P[3,Z]);

170

end:

Find CICI and AnAn Planes 1
if Opdir = false then

begin

if R1=0 then

begin

FindP3(C1,C2,Nh[4],Nh[3],P[8],P[6],R2,0pdir);

P[5] := Cl;

P[7] := Cl;

end

else

begin

FindP3(C2,C1,Nh[3],Nh[4],P[5],P[7],R1,0pdir);

P[6] := C2;

P[8] := C2;

end;

end

else if R1 = R2 then

begin

P2 := C1C2;

FindP3(P2,C1,Nh[4],Nh[3],P[7],P[5],R1,0pdir):

P[6,X] := C2[X]+P[5,X]-C1[X];

P[6,Y] := C2[Y]+P[5,Y]-C1[Y]:

P[6,2] := C2[Z]+P[5,Z]-C1[Z]:

P[8,X] := C2[X]+P[7,X]-C1[X]:

P[8,Y] := C2[Y]+P[7,Y]-C1[Y]:

P[8,2] := C2[Z]+P[7,Z]-C1[Z];

end

else

begin

Temp := R1/(R1 -R2);

P2[X] := C1[X]+Temp*C1C2[X];

P2[Y] := C1[Y]+Temp*C1C2[Y]:

P2[Z] := C1[Z]+Temp*C1C2[Z]:

if R2>R1 then

begin

FindP3(P2,C1,Nh[3],Nh[4],P[7],P[5],R1,0pdir);

Temp .= (R2-R1)/R2;

end

else

begin

FindP3(P2,C1,Nh[4],Nh[3],P[7],P[5],R1,0pdir);

Temp := (R1 -R2)/R1;

end;

P[6,X] := P[5,X]+Temp*(P2[X]-P[5,X]);

P[6,Y] := P[5,Y]+Temp*(P2[Y]-P[5,Y]);

P[6,Z] := P[5,Z]+Temp*(P2[Z]-P[5,2]):

P[8,X] := P[7,X]+Temp*(P2[X]-P[7,X]);

P[8,Y] := P[7,1]+Temp*(P2[Y]-P[7,Y]);

P[8,Z] := P[7,Z]+Temp*(P2[Z]-P[7,Z]);

end;

Konst := 2;

1 if Opdir then Konst := 0;
for loop1 := Konst+1 to 4 do

writeln('Nh[',Ioop1,']=',Nh[loop1,X],Nh[loop1,Y],Nh[loop1,Z]);f

for loop1 := 2*Konst+1 to 8 do _

writeln('Pr,loop1,1=',P[loop1,X],P[loop1,Y],P[loop1,Z]);

keypTessed; -	 • •	 - •

end;

171

procedure Outputd3(vor dto1 : Rangeint; vor dta2 : RangeApp;

var Cnt1, Cnt2 : integer);

var loop1, loop2, Onei : integer;

begin

Onei := 1;

for loop1 := 1 to Cnt1 do begin

write('X');

if Dta1[Ioop1].Grip = true then

write(Onei)

else write(Zeroi);

for loop2 := 1 to 5 do

write(Dtaqloopl.R[loop2]);

writeln; keypressed; end;

for loop1 := 1 to Cnt2 do begin

write('%');

if Dta2[Ioop1].Grip = true then

write(Onei)

else write(Zeroi);

for loop2 := 1 to 5 do

write(Dta2[1oop1].R[loop2]);

writeln; keypressed; end;

end;

procedure Outputd2(var Step : SMd; vor T : RangeR; var Gp : boolean;

var Rangetest : boolean);

/ Converts angles to robot coordinates

vor loop1 : integer;

begin

write('OUTPUTD2 ');

Step.R[1] := ing(T[1]-3.195)4 , -283.3);

if Step.R[1] < 0 then Rangetest := true;
Step.R[2] := int((T[2] -2.72)4-299.2);

if Step.R[2] < 0 then Rangetest := true;
Step.R[3] := ing(T[3]-0.4046)4,316.4);

if Step.R[3] < 0 then Rangetest := true;

Step.R[5] := int(44+(T[4]/(Pi/2) -1)+667);

if Step.R[5] < 0 then Rongetest := true;

if Step.R[5] > 999 then Step.R[5] := 999;

Step.R[4] := int(500+400*T[5]);

if Step.R[4] < 0 then Rongetest := true;

if Step.R[4] > 999 then Step.R[4] := 999;

Step.Grip := Gp;

for loop1 := 1 to 5 do

write(Step.R[loopl]);

writeln(Gp);1

end;

procedure Outputd(vor Initp, Finalp : RangeApp; var Mvp, Interp : Rangeint;

var Countinit, Countfin, Countmvp. Countint : integer);

var 100p1. loop2 : integer;

begin

writeln('OUTPUTD');

Outputd3(Mvp,Initp,Countmvp,Countinit);

Outputd3(Interp,Finalp,Countint,Countfin);

writeln('&);

end;	 - * -

procedure SMdato2(var T : Degree; var Interp : Rangeint; var Countint : integer);

j Converts angles to robot coordinates and outputs them

vor temp, R1, R2, R3, R4, R5 : real;

172

G, loop1 : integer;

begin

write('SMDATA2 ');

Countint := Countint+1;

if 1[1] > Pi then begin

if T[1] > Pix2-0.01 then

T[1] := 0

else if 7[1] < Pi+0.01 then

7[1] := Pi

else

writeln('ERROR — Rotation coordinate out of range*);

end;

Interp[Countint].R[1] := int((T[1] —3.195)s-283.3);

if T[2] > Pi/2 then begin

if 7[2] > Pix3o2 then

7[2] := T[2]—Pix2

else if T[2] < Pio2+0.01 then

T[2] := Pio2

else

writeln('ERROR — Elevation coordinate out of range');

end;

Interp[Countint].R[2] := intUT[2]-2.72)*-299.2);

Interp[Countint].R[3] := intUT[3]-0.4046)*316.4);

Interp[Countint].R[4] := 500;

Interp[Countint].R[5] := 736;

Interp[Countint].Grip := true;

Keypressed;

end;

procedure SMdato(var Robcoor : Rongerob; var CountRc, Countint : integer;

vor Interp : Rangeint);

I convert the step coordinates to a list of robot coordinates which will guide
the robot in the correct path 1
var oop1. loop2, OPnum : integer;

Spoceing1, Spaceing2, Spaceing3, Dif1, Dif2, Dif3,

temp4, Varience : real;

Angles', Angles2, tempD : Degree;

Gp : booleon;

begin

write(SMDATA ');

Countint := 0;

write the coordinates of the stortpoint 1
SMdata2(Robcoor[0],interp,Countint);

for loop1 := 0 to CountRc-1 do begin

I set angles1 and Angles2 to the begining and end of the step 1
Angled1 := Robcoor[loop1]; Angles2 := Robcoor[loop1+1];

I	 writeln('Angles1=',Angles1[1],Angles1[2],Angles1[3]);

writelnCAngles2=',Angles2[1],Angles2[2],Angles2[3]);1

if Angles1[2] > 3*Pi/2 then	 1 get around problem of
Angles1[2] := Angles1[2]-2*Pi; 	 3 interpolation around 0

if Angles2[2] > 3*Pi/2 then

Angles2[2] := Angles2[2]-2*Pi;

Dif1	 Angles2[1]—Angles1[1];

Dif2 := Angles2[2]—Angles1[2];

Dif3 := Angles2[3]—Angles1[3];

I find the largest range of angle for the three degrees of freedom 1
if obs(Dif2)>abs(Dif1) then begin

if abs(Dif3)>abs(D1f2) then

Varience := obs(Dif3)

else Varience := abs(Dif2); end

173

else if abs(D1f3)>obs(Dif1) then

Varience := abs(Dif3)

else Variance := obs(Dif1);

temp4 := int(Varience/0.05);

if temp4>0 then begin

1 calculate the intermediate coordinates
Spaceing1 := Dif1/(temp4+1);

Spaceing2 := Dif2/(temp4+1):

Spaceing3 := Dif3/(temp4+1);

tempD[1] := Angles1[1];

tempD[2] := Angles1[2];

tempD[3] := Angles1[3];

while temp4 >0 do begin

temp4 := temp4-1;

tempD[1] := tempD[1]+Spaceing1;

tempD[2] := tempD[2]+Spaceing2;

tempD[3] := tempD[3]+Spaceing3;

SMdata2(tempD,Interp,Countint); end:

end;	 / if temp4

SMdata2(Angles2,Interp,Countint);

end;	 1 for loop1
Keypressed;

end;

Procedure FindA(vor V. U : Coord; var A : real);

var ModV, VdotU, CosA : real;

begin

1 write1n('FindA');1
ModV := sqrt(sqr(V[X])+sqr(V[Y])+sqr(V[Z]));

VdotU := V[X]*U[X]+V[Z]*U[Z];

CosA := VdotU/ModV;

1 writeln('CosA=',CosA);/
A := invcos(CosA);

writeln('A=',A),

1 if (CosA > —le-5) and (CosA < le-5) then

begin

if V[Y] > 0 then

A := P1/2

else

A := 3*Pi/2;

end

else

begin

A := arcton(sort(1/sqr(CosA)-1));

if V[X] < 0 then

A := A+Pi

else if V[Y]<0 then

A := A+2*Pi;

end;1

end;

procedure Forbidden(var P1,P2 : Coord; vor Obst : boolean);

begin

. if (P1[Z] < —300) or (P212] < —300) then

writeln(' 	 Error Forbidden Coordinate 	 .).

end;

procedure Testp(var N : integer; var Sph Rangesph; var Rod : Rongerad;

"VOT	 : integer; var Nh, P1, P2 : Coord; var Obst : boolean):

174

vor U. OB, tempC : Coord;
D, Al, A2, A3, Clear, Mod0B. temp, ModOBC : real;
loopl : integer;
Inrange : booleon;

begin
WRITELN('TESTING THE PATH BETWEEN sphere ',S1,' AND sphere ',S2);
writeln('Nh=%Nh[X].Nh[Y].Nh[Z]);
Obst := false; loopl := 0: Inronge := true:
Forbidden(P1,P2,0bst);
if Obst = true then

loopl := 100;
f U is a vector in the plane which is given by (0,1,0) x Nh
U[X] := Nh[Z];
U[Z] := Nh[X];
repeat

loopl := loop1+1;
if loopl = Si then 	 f make sure loopl <> Si or S2

loopl := loop1+1;
if loopl = S2 then

loopl := loop1+1:
if loopl = Si then

loopl := loop1+1;
if loopl<=N then
begin
writelneSpherer.LOOP1.1=%Sph[LOOP1,X] .Sph[LOOPLY]Sph[LOOP1.2]);

I find Distance from sphere centre to plane
D := Sph[loopl,X]*Nh[X]+Sph[loopl,Y]oNh[Y]+Sph[loopl,Z]*Nh[Z];
D := obs(D);
writeln("the distance from the sphere center to the plane is',D);
if D <= Rod[loopl] then
begin
0B[X]	 Sph[loopl.X]-DOlh[X];
OB[Y] := Sph[loopl,Y]-D*Nh[Y]:
CB[Z] := Sph[loopl,Z]-10*Nh[Z];
ModOB := stirt(sqr(OB[X])+sqr(OB[Y])+sqr(OB[Z]));
if ModOB > Li then
begin
temp := Ll/Mod0B;
0B[X] := temp*A0B[X];
OB E Y] := temp+OB[Y];
OB[Z]	 tempeOB[Z]:
Modulus(OB,Sph[loopl],tempC,ModOBC,temp);
if ModOBC > Rod[loopl] then

	

Inronge	 false;
end;

if Inrange then
begin
FindA(Pl.U.A1);
FindA(P2,U,A2);
FindA(OB.U,A3);
writeln('Al=',A1,' A2.A2,' A3=',A3);
if ((A3>=A1) and (A30.A2)) or ((A3<=A1) and (A3>=A2)) then

Obst := true
else if ((A3(A1) and (A1<A2)) or ((A3>A1) and (A1>A2)) then

begin
if obs(A3-A1)<P1/2 then
begin

	

Clear	 scirt(sqr(D)+scir(ModOBssin(obs(A3-A1))));
if Cleor<=Rod[loopl] then

175

Obst := True;

end;

end

else

begin

if obs(A3—A2)<Pi/2 then

begin

Clear := sort(sqr(D)+sqr(ModOB*sin(abs(A3—A1))));

if Clear<=Rad[loop1] then

Obst := True;

end;

end;

end;

end;

end;

until (loop1>=N) or (Obst=True);

if Obst = true then

writeln('Obst = true')

else

writeln('Obst = false*);

end;

procedure Listnode(var Sph : RangeSph; var Rad : RangeRad; var Node : Rangenod;

var S : integer; vor Sdir : dir);

var Nh, P1, P2 : coord;

Offset : real;

Rev : integer;

begin

if Node[S,Sdir].Cost <> 999 then

begin

writeln('SphereP,S,1 ',Sph[S,X],Sph[S,Y],Sph[S,Z],Rad[S]);

P1 := Node[S,Sdir].P1;

P2 := Node[S,Sdir].P2;

Nh := Node[S,Sdir].Nh;

write('node',S);

if Sdir = cl then

write(' clockwise')

else write(' anticlockwise');

if Node[S,Sdir].stat = Open then

writeln(' stat= open')

else writeln(' stat = closed');

write('Dist=',Node[S,Sdir].Dist,' Cost=',Node[S,Sdir].Cost);

write(' Pred=',Node[S,Sdir].Predi);

if Node[S,Sdir].Predd = cl then

writeln(' Clockwise')

else

writeln(' Anticlockwise');

writeln('Nh=',Nh[X],Nh[Y],Nh[Z]);

writeln(T1=',P1[X],P1[Y],P1[Z]);

writelnCP2=',P2[X],P2[Y],P2[Z]);

end;

end;

1 	 1
procedure Calcdist(var P1, P2 : Coord; var Dist : real);

var ModP1, ModP2, temp, P1dotP2 : real;

I Calculate the angular distance between points P1 and P2 i

begin

P1dotP2 := P1[X]sP2[X]+P1[Y]*P2[Y]+P1[Z].1.P2[Z];

ModP1 := sort(sqr(P1[X])+sqr(P1[Y])+sqr(P1[Z]));

ModP2 := sqrtlsqr(P2[X])+sqr(P2[Y])+sqr(P2[Z]));

176

if P1dotP2 = 0 then

Dist := Pi/2

else

begin

temp := P1dotP2/(ModP10ModP2);

if temp 7= 1 then

Dist := 0

else

Dist := abs(arcton(sort(1/sqr(temp)-1)));

end;

end;

procedure Costp(vor Node : Rangenod; var Si, S2 : integer; var P1, P2, G, N2h

Coord; var R1 : real; vor S1dir, S2dir : Dir);

find the best route to Node 52

vor Temp, Nbcost, Dangle, ModP1, ModP2, ModG, Cosa, Costsp,

P1dotP2, P2dotG, Dist : real;

N1h : Coord;

begin

writeln('COSTP');

ModG := scirt(sqr(G[X])+sqr(G[Y])+sqr(G[Z]));

if S1dir=C1 then

writeln('S1dir=Clock')

else

writeln('S1dir=Anti');

N1h := Node[S1,S1dir].Nh;

writeln('N1h=',N1h[X],N1h[Y],N1h[Z]);

writeln('N2h=',N2h[X],N2h[Y],N2h[Z]);

find the angle traveled through when going around Si

Cosa := N1h[X]*N2h[X]+N1h[Y]sN2h[Y]+N1h[Z].*N2h[Z];

if (Cosa<1e-5) and (Coss:17—le-5) then

Dangle := P1/2

else

Dangle := arctan(sqrt(1/sqr(Cosa)-1));

ModP1 := sort(sqr(P1[X])+sqr(Pl[Y])+sqr(P1[Z]));

Dangle := Dangle.0121/ModP1;

writeln('ModP1=',ModP1,' Dongle=',Dangle);

find the distance from P2 to G

Calcdist(P2,G,Dist);

I find the cost of the path in a plane
Colcdist(P1,P2,Costsp);

Writeln('Dist=',Dist,' Costsp=',Costsp);

I find the cost of this path
Nbcost := Costsp+Dangle+Dist—Node[S1,S1dir].Dist+Node[S1,S1dir].cost:

writeln('Costsp=',Costsp,' Dangle=',Dangle,' S1.Dist=',Node[SI,S1dir].Dist);

writeln('Node[S1,S1dirLcost=',Node[S1,S1dir].cost);

if Nbcost<=Node[S2,S2dir].cost then

begin

Node[S2,S2dir] cost := Nbcost;

Node[S2,S2dir].Predi := Si;

Node[S2,S2dir].Predd := S1dir;

Node[S2,S2dir].stat := Open;

Node[S2,S2dir].dist := Dist;

Node[S2,S2dir].Nh := N2h;

Node[S2,S2dir].P1 := P1;

Node[S2,S2dir].P2	 P2;
end;

Listnode(Sphere,Rodius,Node,S2,S2dir);

writeln('the 'end of costp.);

177

end;

procedure Pathfind(var N : integer; var Sph	 Rongesph; var Rod : Rangerod;

var Node : Rangenod; var Si. 52 : integer);

/ This procedure generates paths between two spheres

var R1 : real;

Obst, Opdir, Clockpos, AnClpos : boolean; 	 f Opposite direction j

G : Coord;

Clock, Anti	 Dir;

Goalnode : integer;

Nh : RangeNh;

Sp : RongeSp;

begin

writeln('pathfind between 'Si,, 	 and ',S2);

Opdir := true;

Clock := Cl; Anti := An;

Goainode := N+1;

G := Sph[Goolnodel;

RI := Rod[S1];

if not((S1=0) and (S2=Goolnode)) then

begin

if (Rod[S1]=0) or (Rod[S2]=0) then

Opdir := false;

Findplan(SphiS1],Sph[S21.Rad[S11,Rod[S2],SP,Nh,Opdir);

Clockpos := false; AnClpos := false;

if Node[S1,Clockl.Cost < 999 then Clockpos := true;

if NodefS1,Anti].Cost < 999 then AnClpos := true;

if Clockpos then

begin

Testp(N,Sph,Rod,Si,S2,Nh[3],Sp[5],Sp[6],Obst);

if Obst = false then

Costp(Node,S1,S2,SP[5],SP[6],G,Nh[3],R1,Clock,Clock);

end;

if AnClpos then

begin

Testp(N,Sph,Rod,S1,S2,Nh[4],Sp[7],Sp[8],Obst);

if Obst = false then

Costp(Node,SI,S2,SP[71,SP[8],G,Nh[43,RI,Anti,Anti);

end;

if Opdir then

begin

if Clockpos then

begin

Testp(N,Sph,Rod,S1,S2,Nh[1],Sp[f],S42],Obst);

if Obst = false then

Costp(Node,S1,S2,SP[1],SP[2],G,Nh[1],R1,Clock,Anti);

end;

if AnClpos then

begin

Testp(N,Sph,Rad,S1,S2,Nh[2],Sp[3],Sp[4],Obst);

if Obst = false then

Costp(Node,S1,S2,SP[3],SP[4],G,Nh[2],R1,Anti,Clock);

end;

end;

writeln(' This is the end of findpath

end;

end;

procedure OutPdato(vor Node : Rangenod; var Goolnode, Elbcnt : integer;

178

var Elbdata : Rangeelb; var ElbowS, ElbowG : Coord);

I write out data for the path which ropaf must follow 1
var loop1, Sph1, Sph2, tempi, Rev : integer;

tempi, temp2, Offset, ModP1oP1b, ModP2oP2b, D1, 02 : real;

' P1o, P1b, P2a, P2b, P1oP1b, P2aP2b, tempC : Coord;

Elbdata1 : Rangeelb;

Din, Dir2 : Dir;

Dontdoit : boolean;

Filename : String[12];

Dotafile : File of real;

begin

writeln('OUTPDATA');

Dontdoit := false;

Sph1 := Goalnode; Elbcnt := 0;

tempi	 Node[Sph1,CI].Cost;

temp2 := Node[Sph1,An].Cost;

Din 1 :Cl;=

if temp2 < tempi then

Din 1 := An;

P10 := Node[Sphi,Dirl.P1;

P1b := Node[Sph1,Dir1].P2;

if Node[Sph1,Dirl.Predi>0 then

begin

repeat

writeln('Sph1=',Sph1);

P2a := P1o;

P2b := P1b;

Sph2 := Sph1;

Dir2 := Din;
Sph1 := Node[Sph2,Dir2].Predi;

Dirt := Node[Sph2,Dir2].Predd;

P1a := Node[Sph1,Dir1].P1;

P1b := Node[Sph1,Dir1].P2;

writelnCP1o=',P1a[X],P1o[Y],P1o[Z]):

writelnCP1b=',P1b[X],P1b[Y],P1b[Z]);

writelnCP2o=',P2a[X],P2a[Y],P2a[Z]);

writeln(T2b=',P2b[X],P2b[Y],P2b[Z]);

Modulus(P1o,P1b,P1e1b,temp1,ModPloP1b);

Modulus(P2o,P2b,P2oP2b,temp1,ModP2e2b);

D1 := scirt(sqr(P2o[X]—P1b[X])+sqr(P2o[Y]—P1b[Y])+sqr(P2o[Z]—P1b[Zi));

D2 := sqrt(sqq(P1b[X]—P1oP1b[X]/ModP1aP1b)—(P2o[X]+P2oP2b[X]/ModP2oP2b))

+sqq(P1b[Y]—P1oP1b[Y]/ModP1oP1b)—(P2a[Y]+P2oP2b[Y]/ModP2aP2b))

+sqr((P1b[Z]—P1oP1b[Z]/ModP1oP1b)—(P2a[Z]+P2oP2b[Z]/ModP2oP2b)));

tempC[X] := P1b[X]+(D1/(D2—D1))*P1oP1b[X]/ModP1oP1b;

tempC[Y] := P1b[Y]+(D1/(D2—D1))*P1oP1b[Y]/ModP1oP1b;

tempC[Z] := P1b[Z]+(D1/(D2—D1))*P1aP1b[Z]/ModP1oP1b;

tempi := sqrt(sqr(tempC[X])+sqr(tempC[Y])+sqr(tempC[Z]));

writeln('D1=',D1,' D2=',D2,' ModP1oP1b=',ModP1oP1b);

writeln('ModP2aP2b=',ModP2oP2b,' temp1=',temp1);

writelnCtempC=',tempC[X],tempC[Y],tempC[Z]);

Length_odjust(tempC,temp1);

Elbent := Elbcnt+1;

Convert4(tempC,Elbdata1[Elbcat]); ---

until Node[Sph1,Dir1].Predi = 0;

end;

for loop1 := 1 to Elbcnt do

Elbdato[loop1] := Elbdotal[Elbcnt+1—loop1];

Elbcnt := Elbcnt+1;

Convert4(ElbowS,Elbdato[0]);

Convert4(ElbowG,Elbdato[Elbent]);

179

Keypressed;

end;

procedure Routep2(var Sph : Rangesph ; vor Rod : Rangerad; var N.

Goalnode : integer; vat' Sp : RangeSp; vor Node : Rangenod);

j FIND A PATH TO THE GOALPOINT

vor Loop1. Opennode : integer;

Obst. Opdir : booleon;

Noncost : real;

Nh : RongeNh;

°pandit-. Nopendir, Loopvor : Dir;

ClAn. AnCI, CICI, AnAn

begin

I check whether o clear path exists 1
Opdir := false; Opennode := 0;

Findplan(Sph[0],Sph[Goalnode].Rod[0],Rod[Goalnode].Sp.Nh,Opdir);

Testp(N,Sph,Rod,Opennode,Goolnode,Nh[3],Sp[5].Sp[6].0bst);

if Obst = false then begin

Opennode := Goalnode;

Node[Goolnode,CI].Predi := 0;

Node[Goolnode,C1].Cost := 0; end;

I find a path around obstacles 1
while Opennode < Goalnode do

begin

loop1 := 0;

repeat I EXPAND OPENNODE
Loop1 := Loop1+1;

IF Loopl = Opennode

then Loop1 := Loop1+1;

IF Loop1 <= Goalnode then

begin

Pothfind(N,Sph,Rod.Node,Opennode,Loop1);

writeln('this is routep again');

end;

until Loop1 >=Goolnode;

writeln('choose the next opennode');

Node[Opennode.C1].Stat := Closed:	 f FIRST CLOSE THE OPENNODE

Node[Opennode,An].Stat := Closed;

Noncost := 999;	 NEW OPENNODE COST

for loop1 := 1 TO N+1 DO

begin

for Loopvar := Cl to An do

begin

if (Node[loop1.loopvar].Stat = Open)

and (Node[loop1,Loopvor].cost<=Noncost) then

begin

Noncost := Node[loop1.Loopvor].cost;

Opennode := loopl;

Opendir := loopvar;

end:

end;.

end;

write('The new opennode is ',Opennode,° the direction is '):

if Opendir = Cl

then writeln('Clockwise');

if opendir = An

then writeln('Anticolckwise');

.end:	 -	 j while I

180

Keypressed;

end;

4 	
procedure Routepl(vor Sphere : Rangesph; vor Elbdata : Rongeelb;

var Radius	 Rangerad; var Ni, Elbcnt : integer;

var Startpoint, Goalpoint : Coord);

var Loopl, Goalnode, N, Rev : integer;

Zero, ElbowS, ElbowG : Coord:

Loopvar, Clock, Anti : Dir;

Node : Rangenod;

Sp : RangeSp;

tempi, temp2, Offset : real;

tempD : Degree;

Sph : Rangesph:

Rod : Rangerad;

begin

writeln('THIS IS ROUTEPATH');

Clock := Cl; Anti := An;

N := Ni;

Zero[X] := 0; Zero[Y] := 0; Zero[Z] := 0;

Convert Obstacles

Sph := Sphere; Rad := Radius;

Goalnode := N+1;

Calculate the elbow (end of the upper arm) startpoint and goalpoint

Rev := 1; Offset := 51;

ElbowS := Startpoint; ElbowG := Goalpoint;

Convtobs(ElbowS,Offset,Rev); Convert(ElbowS,Zeroi,tempD); Convert2(tempD,ElbowS);

Convtobs(ElbowG,Offset,Rev); Convert(ElbowG,Zeroi,tempD); Convert2(tempD,ElbowG);

Sph[0] := Elbows; Sph[Goolnode] := ElbowO:

writeln('ElbowS=',ElbowS[X],ElbowS[Y],ElbowS[Z]);

writeln('ElbowG=',ElbowG[X],ElbowG[Y],ElbowG[Z]);

Rad[0] := 0; Rod[Goolnode] := 0:

Node[0,Clock].P2 := Sph[0]; Node[0,Anti].P2 := Sph[0];

Node[Goolnode,Clock].P1 ;= Sph[Goolnode];

Node[Goalnode,Anti].P1 := Sph[Goalnode];

INITIALISE TOTALC VALUES

for Loopl := 1 to Goolnode do

begin

for Loopvar := Cl to An do

begin

Node[Loopl,Loopvar].Cost := 999;

Node[Loopl,Loopvar].Stat := Open;

end;

end;

Node[O,Clock].stat := Closed; Node[O,Anti].stat := Closed;

Node[O,Clock].cost .= 0; Node[0,Anti].cost := 0;

Node[O,Clock].Nh := Zero; Node[0,Anti].Nh := Zero;

Colcdist(ElbowS,ElbowG,Node[O,Clock] dist);

Node[O,Anti].dist := Node[O,Clock].dist;

Routep2(Sph,Rod,N,Goolnode,Sp,Node);

OutPdata(Node,Goalnode,Elbcnt,Elbdato,ElbowS,ElbowG):

Keypressed;

end;

procedure F1nd12(var Ti, T2 : real; var El,E2,En : Coord);

/ Find 12 which is between El and E2, and find the new elbow coords En

181

var ModEn, temp, Dy, Dx, Adj, Px, Py, Pz, Lambda, TanT1 : real;

begin

- write('FindT2 ');

Dy := E2[Y]—E1[Y];

Dx := E2[X]—E1[X];

-Dy='.Dy,'

temp := cos(T1);	 find Ti I
if (temp < 1e-4) and (temp > —1e-4) then

TanT1 := 1e10

else

TonT1 := sin(T1)/temp;

if (Dx=0) and (Dy=0) then Lambda := 0

else Lambda := (TanT1*E1[X]—E1[Y])/(Dy—TonT1*Dx);

lwriteln('TonT1=',TanT1,' Lambda=',Lombdo);}

En[X] := E1[X]+Lambdo*Dx;

En[Y] := E1[YD-Lambda*Dy;

En[Z] := El[Z]+Lambdo*(E2[Z]—El[Z]);

temp := sqr(En[X])+sqr(En[Y]);

Adj := sqrt(temp);

Invtan(Adj,En[Z],12);

ModEn := sqrt(temp+sqr(En[Z]));

Length_adjust(En,ModEn);

lwriteln('En=',En[X],En[Y],En[Z]); I
Keypressed;

end;

procedure Find_Point(vor S, G. C. Pj : Coord);

This finds the point Pj on the line SG closest to CI
var Sc_Sg, ModSg, temp, r : real;

Sc, Sg : Coord;

begin

write('FIND_POINT ');	 find the point P on Sq such f

Sc[X] := C[X]—S[X]; 	 1 that Cp and Sp meet at a right ongelsf
Sc[Y] := C[Y]—S[Y];

Sc[Z] := C[Z]—S[Z];

Modulus(S,G,Sg,Temp,ModSg);

Sc_Sg := Sc[X]*Sg[X]+Sc[Y]*Sg[Y]+Sc[Z]*Sg[Z];

r := Sc_Sg/ModSg;

if r >= ModSg then	 1 is the point at the tip of the forearm? I
Pj := G

else if r <= 0 then	 1 is the point at the elbow I
Pj := S

else begin	 1 the point is in between
temp := r/ModSg;

Pj[X] := S[X]+temp*Sg[X];

Pj[Y] := S[Y]+temp*Sg[Y];

Pj[Z] := S[2]+temp*Sg[Z]; end; 	 1 hello says Sarah I
jwriteln('Pj[X]=',Pj[X],' Pj[Y]=',Pj[Y],' Pj[Z]=',PAZMI

keypressed.

end;

	 1
procedure Avoidobs(vor C, Pjf, CPjf, Se, Ge : coord; var Sf : real;

var S. G : Degree; var Closestport : integer);

find new 72 and 13 values which avoid the obstacle I
var N : Degree;

Pn, En, PnEn, E, T : Coord;

XYdist, temp, EndotPnEn, ModPnEn, Mod0Pnxy, a : real;

Box : integer; .

begin

182

writeln('AVOIDOBS');

Box := 0;

Pn[X] C[X]+Sf*CPjf[X];

Pn[Y] := C[Y]+Sf*CPjf[Y];

Pn[Z] := C[Z]+Sf*CPjf[Z];

1 customise to application
writeln('Pjf=',Pjf[X],Pjf[Y],Pjf[Z]);

if ((Pjf[X]>200)and(Pjf[X]<600)) then begin

if Pjf[Y] > 400 then

begin

writeln('avoiding box1');

Box	 1; end;

end

else if ((Pjf[X]>-350)and(Pjf[X]<-50)) then begin

writeln('2');

if Pjf[Y] > 450 then

begin

writeln('Avoiding box2');

Box := 2; end;

end;

Invtan(Pn[X],Pn[Y],N[1]);

case Closestpart of

1: writeln('avoiding a collision with the forearm*);

2: begin

writeln('Avoiding a collision with the gripper motor');

Mod0Pnxy := sqrt(sqr(Pn[X])+sqr(Pn[Y]));

N[1] := N[1] —invsin(22/Mod0Pnxy);

Pn[X] := Pn[X]+22*sin(N[1]);

Pn[Y] := Pn[Y]-22*cos(N[1]);

end;

3: begin

writeln('Avoiding a collision with the part*);

Mod0Pnxy := sqrt(sqr(Pn[X])+sqr(Pn[Y]));

N[1] := N[1] —invsin(44/Mod0Pnxy);

a := Pio2—N[1];

Pn[X] := Pn[X]+44*cos(a);

Pn[Y] := Pn[Y]-44*sin(o);

end;

end; 1 case

case Box of

1: begin

XYdist := sqrt(sqr(Pn[X])+sqr(Pn[Y]));

if XYdist > 720 then begin

Pn[X] := 300; Pn[Z] := 500; end;

end;

2: begin

XYdist := sqrt(sqr(Pn[X])+sqr(Pn[Y]));

if XYdist > 630 then begin

Pn[X] := —100; Pn[Z] := 500; end;

end;

end; 1 case
FindT2(N[1],N[2],Se,Ge,En);

Modulus(Pn,En,PnEn,temp,ModPnEn);

EndotPnEn := En[X]*PnEn[X]+En[Y]*PnEn[Y]+En[Z]*PnEn[Z];

N[3] := Invcos(EndotPnEn/(ModPnEn*L1));

Convert2(N,E);

Convert3(N,E,T);

183

G := N; Ge := E;

writeln('SF=',SF);

writeln('Cpjf=',Opjf[X],Cpjf[Y],Cpjf[Z]);

writeln('Pn =',Pa[X],Pn[Y],Pn[Z]);

writeln('N=',N[1],N[2].N[3]);
writeln('The cartesion coordinates of the robot are');

writeln('Elbow:',E[X],E[Y],E[Z]);

writeln('Tip	 :',T[X],T[Y],T[Z]);

procedure Rangefind(vor To,Tb,Ts,TI : real; var Outofrange : boolean):

/Find the smallest and largest values of Ti for which a collision is possible!

var Temp : real;

begin

wrile('RANGEFIND ');

lwriteln('To=',To,' T6=',Tb.' Ts=',Ts,' T1=',71);!

Outofronge := false;

if Tb < Ta then begin

temp := Ta;

To := Tb;

Tb := temp; end;

If (To > Ts) and (Ta < T1) then Ts := Ta;

If (Tb < TI) and (Tb > Ts) then T1 := Tb;

If (Tb < Ts) then Outofrange := true;

If (To > TI) then Outof range := true;

keypressed;

writeln('Ts=',Ts,' TI=',T1);

end;

	 1
procedure Findpos(vor T : Degree; var Tip, Pos : Coord; var Numpart : integer);

vor a, Sina. Cosa, SinT1, CosT1 : real;

begin

write('FINDPOS ');

case Numpart of

2: begin

Pos[X] := Tip[X]-22*sin(T[1]);

Pos[Y] := Tip[Y]+22*cos(T[1]);

Pos[Z] := Tip[Z];

end;

3: begin

a := (T[2]+T[3]) —Pi;

Cosa := cos(o); Sine := sin(a);

CosT1 := cos(T[1]); SinT1 := sin(T[1]);

Pos[X] := Tip[X]+120*Cosa*CosT1-13*Sino*CosT1-44*SinT1;

Po4Y] := Tip[Y]+120*Coso*SinT1-134,Sina*SinT1+44*cosT1;

Pos[Z] := TipM+120*Sina+13*Cosa;

end;

end;

lwriteln('Pos=',Pos[X],Pos[Y],Pos[Z]);!

end;

	 1
procedure Testfa2(var C, Pjf, CPjf, Se, Ge : Coord; var Rod, Sf, Tie, T1I : real;

var S, G : Degree; vor Obst : boolean;

var Closestport : integer);

/ Finds the closest point (Pjf), on the surface swept by the robot forearm, to

the obstacle sphere

type RangeProd	 arT ay[1....3] _of real;

vor Psf, Plf, CPjftemp, Pjftemp, TsEc, TlEc, TsTc, TITc,

--tempc, Sn, Poss, Posl : Coord;

— Tin, T2n, T3n, Tic, 13c, Range,

184

• V3, temp, Intmax, Int, R1, R2, ModCPjf : real;

Ts, T1 : Degree;

Partnum, Numpart : integer;

Partrad : RangePrad;

begin

Partrad[1] := 45; Partrad[2] := 89; Partrad[3] := 40;

Numpart := 3;

write('TESTFA2 ');	 1 TsEc = smallest Ti elbow coordinates

Obst := false;	 1 TlEc = largest
1 TsTc = smallest	 tip	 1

Ts[1] 1= T1s;	 1 T1Tc = largest

TI[1] := T11;

if S[1]=G[1] then

begin

Ts[2] := S[2]; TI[2] := G[2];

R1 := 0; R2 := 1;

end

else

begin

R1 := (Ts[1]—S[1])/(G[1]—S[1]); 	 1 assume angular interpolation of 13
R2 := (TI[1]—S[1])/(G[1]—S[1]);

end;

FindT2(Ts[1],Ts[2],Se,GejsEc);

FindT2(11[1],T1[2],Se,Ge,T1Ec);

V3 := G[3] —S[3];

Ts[3] := S[3]+R1*V3;

TI[3] := S[3)+R2*V3;

Convert3(Ts,TsEc,TsTc);

Find_Point(TsEc,TsTc,C,Psf); 1 find the closest points to the object on the robot
Convert3(TI,T1Ec,TITc);

Find_Point(TIEc,TITc,C,P1f); 1 arms at the positions either side of the obstacle
Find_Point(Psf,Plf,C,Pjf);

Modulus(C,Pjf,CPjf,temp,ModCPjf);

Intmox := ModePjf—(Rod+Sofety+Partrod[1]);

writeln('The forearm has an interference of ',Intmax);

if Intmax <= 0 then begin

SF := (5*safety+Rad+Partrad[1])/ModCPjf;

G := TI;

Closestpart := 1;

1	 writeln('Ts=',Ts[1],Ts[2],Ts[3]);

writelnCT1=',71[1],71[2],T1[3]);

writeln('the closest point on the forearm initially is');

writeln('Psf=',Psf[X],Psf[Y],Psf[Z]);

writeln(*the closest point on the forearm finally is');

writeln('Plf=',Plf[X],Plf[Y],Plf[Z]);

writeln('The closest point on the forearm to the obstacle is');f
writeln('Pjf=',Pjf[X],Pjf[Y],Pjf[Z]);

end;

1 set the goal coords to those at the end of an intersecting sphere
for Partnum := 2 to Numpart do

begin

FindPos(Ts,TsTc,Poss,Partnum);

FindPos(T1-,TITc,Posi,Partnum); •

Find_point(Poss,Pos1,C,Pjftemp);

Modulus(C,Pjftemp,CPjftemp,temp,ModCPjf);

Int := ModCPjf—(Partrad[Partnum]+Rod+Safety);

-writein-('Part -',Parinum,'- has- -an interference of ',Int);

if (Int < 0) and (Int < Intmax) then begin

Intmax-:= Int;

Pjf := Pjftemp;

185

CPjf := CPjftemp;

Closestport := Partnum;

SF := (5*sofety+Partrad[Partnum]+Rad)/ModCPjf;

writeln('The closest point on the gripper is');

writeln(Pjftemp[X],Pjftemp[Y],Pjftemp[Z]);

end; .

end;

if Intmax <= 0 then begin

Obst := true; end;

writeln('Obst2=',Obst);

keypressed;

end;

/ 	

procedure Testfo(vor Sph : Rongesph; vor Rad : Rangerad; var N : integer;

var S, G : Degree; vor Se, Ge : Coord;

var Obst : booleon; var SLvalT1 : RangeSL);

f Testpoth tests to see if there ore any obstacles in the robots path between

the set of coordinates given to it by S and G. It returns the point Pc which

is avoiding the closest obstacle i

var loop1, Sphnum, Closestport, Part : integer;

C, CPjf, Pjf, ClosestPjf, ClosestCPjf, Tempc : Coord;

us, T11, Ta, Tb, SF, ModSpjf, Temp, ClosestT1, DelT1 : real;

Obst2, Outofrange : booleon;

begin

writeln('TESTFA testing a path between ');

writeln(",S[1],S[2],S[3]);

writelnCand ',G[1],G[2],G[3]);

Obst := false; ClosestT1 := 999;

loop1 := 1;

C := Sph[loop1];

while loop1 <= N do begin

writeln('testing for a collision with sphere',C[x],C[y],C[z]);

Obst2 := false;

Tie := SLvolTqloop1,1]:

T11 := SLvalTgloop1,2]:

Ta := S[1]; Tb := G[1];

Rangefind(To,Tb,T1s,T11,0utofrange);

if not Outof range then

Testfa2(C,Pjf,CPjf,Se,Ge,Rod[loop1],SF,T1s,T11,S,G,Obst2,Part);

if Obst2 then

begin

invtan(Pjf[X],Pjf[Y],temp);

DelT1 := abs(temp—S[1]);

if DelT1<ClosestT1 then

begin

Obst := true;

ClosestTI := DeITI;

ClosestCPjf := CPjf;

ClosestPort := Part;

ClosestPjf := Pjf:

Sphnum := loop1:

end;

end;

loop1 := loop1+1;

C := Sph[loop1];

end; f while i

if Obst then

186

begin

Avoidobs(Sph[Sphnum],ClosestPjf,ClosestCPjf,Se,Ge,SF,S,G,Closestpart);

end; —	 --

keypressed;

end;

procedure Stepgool(var Elbdata : Rangeelb; var Stepnum, G : integer;

var Pcurrent, Go : Degree; var T3sg : real);

Calculate T3sg (step goal)

var loop1 : integer;

temp, Totalr, StepPcent : real;

begin

write('STEPGOAL ');

f calculate the total rotation of Ti and 12

Totalr := abs(Elbdato[Stepnum+1,1]—Pcurrent[1])+

obs(Elbdata[Stepnum+1,2]—Pcurrent[2]);

temp := Totolr;

for loop1 := Stepnum+2 to G do

Totalr := Totalr+obs(Elbdato[loop1,1]—Elbdata[loop1-1,1])

+abs(Elbdota[loop1,2]—Elbdoto[loop1-1,2]);

I calculate the X of the total path in this step

if temp = 0 then StepPcent := 0

else StepPcent := temp/Totalr;

T3sg := (Go[3]—Pcurrent[3])+StepPcent+Pcurrent[3];

Stepnum=',Stepnum);

writeln('the total rotation involved is ',Totalr);

writeln('StepPcent=',StepPcent,' temp=',temp);

writeln('T3 goal for the end of the step is ',T3sg);1

keypressed;

end;

procedure Fapath2(var Sph : Rongesph; var Elbdato : Rangeelb; var Rod : Rongerod;

vor N, E, CountRc : integer; var Robcoor : Rangerob;

var SLvalT1 : RangeSL; vor St, Go : Degree);

var Pcurrent, Pg : Degree;

PcurrEC, PgEC : Coord;	 3 elbow coordinates

Obst, Obst2 : boolean;

T3sg : real;

loop1, loop2, Stepnum : integer;

begin

write('FAPATH2');

RobCoor[0] := St;

CountRC := 0;

f 13 at the begining of a step is T3begin

Pcurrent := St;

Convert2(St,PcurrEC);

writeln('PcurrEC=',PcurrEC[X],PcurrEC[Y],PcurrEC[Z]);

for Stepnum := 0 to E-1 do

begin

writeln('Stepnum=',Stepnum);

repeat

CountRc := CountRc+1;

Stepgoal(Elbdata,Stepnum,E,Pcurrent,Go,T3sg);

Pg[1] := Elbdata[Stepnum+1,1]; Pg[2] := Elbdata[Stepnum+1,2];

Pg[3] := T3sg;

• Convert2(Pg,PgEC);

•writeln('PgEC=',PgEC[X],PgEC[Y],P9EC[2]);

Testfa(Sph, Rad. N, Pcurrent, Pg, PcurrEC, PgEC, Obst, SLvalT1);

187

if Obst = true then

repeat

Testfo(Sph, Rod, N, Pcurrent, Pg, PcurrEC, PgEC, Obst2, SLvalT1);

writeln(T=',Pg[1],Pg[2],Pg[3]);

writeln('Obst2=',Obst2);

until Obst2 = false;

Pcurrent := Pg;

PcurrEC := PgEC;

Robcoor[CountRC] := Pg;

until Obst = false;

end;

Keypressed;

end;

1
procedure Fapoth(vor Sph : Rangesph; var Elbdto : Rongeelb; vor Rod : Rangerad;

- - vor-N, E-: integer; vor Startpoint, Goalpoint : Coord;

vor SLvalT1 : RongeSL; vor Interp : RangeInt; var Countint : integer);

1 Calculates the path for the forearm given the path of the upper arm 1
vor loop1, CountRobc, Rev : integer;

tempC : Coord;

St, Go : Degree;

Offset : real;

Robcoor : Rongerob;

begin

writeln(' 	 FAPATH 	

writeln;

writeln('Startpoint=',Startpoint[X],Startpoint[Y],Startpoint[Z]);

writeln('Goalpoint= ',Goolpoint[X],Goolpoint[Y],Goalpoint[Z]);

for loop1 := 0 to E do

writeln('Elbdta[',Ioop1,']= ',Elbdta[loop1,1],Elbdta[loopl,2]);

Calculate St and Go 1
Rev := 1; Offset := 51;

tempC := Startpoint; Convtobs(tempC,Offset,Rev); Convert(tempC,Zeroi,St);

tempC := Goalpoint; Convtobs(tempC,Offset,Rev); Convert(tempC,Zeroi,Go);

Fapath2(Sph,Elbdata,Rad,N,E,CountRobc,Robcoor,avalT1,St,Go);

for loop1 := 0 to CountRobc do

writeln('Robcoor[',Ioop1,']= ',Robcoor[loop1,1],

Robcoor[loop1,2],Robcoor[loop1,3]);

Countint := 0;

SMdato(Robcoor„CountRobc,Countint,Interp);

keypressed;

end;

procedure Readdato(var Sphere : Rangesph; var Radius : Rangerad;

vor N : integer);

1 This reads obstacle data from disk 1

vor FILENAME : string[12];

DATA	 : file of real;

Offset : real;

loop1, Rev, G : integer;

begin

Filename := °Sphere.dta';

writeln('This is the sphere data');

assign(DATA,FILENAME); reset(DATA):

N := 0;

while not EOF(DATA) do

begin	 • -

188

N := N+1;

read(DATA,Sphere[N,x],Sphere[N,y],Sphere[Na],Rodius[N]);

writeln(Sphere[N,x],Sphere[N,y],Sphere[N,4,Rodius[N]);

end;	 (* while *)

close(DATA);

keypressed;

end;

procedure Expobs(var Sph : RangeSph; var Rod : Rangerad;

vor N : integer);

Expand obstacle set in order to take account of the elbow thickness

var SinA, CosA, A, E, Mod0C, SqMod0C, tempi, temp2 : real;

loop1, loop2 : integer;

tempC1, tempC2 : Coord;

begin

E := 58;

writeln('EXPOBS the expanded obstacles are

calculate whether the sphere obstructs the range of the elbow 1
for loop1 := 1 to N do begin

SqmodOC := sqr(Sph[loop1,X])+sqr(Sph[loop1,Y])+sqr(Sph[loop1,Z]);

ModOC := sqrt(sqmod0C);

temp2 := sqrt(sqr(L1)+sqr(E));

1 if the sphere is out of range then move all spheres down one 1
if (Mod0C—Rod[loop1])>temp2 then begin

writeln('This Sphere is out of range so ignore');

for loop2 := loop1 to N-1 do begin

Sph[loop2] := Sph[loop2+1];

Rod[loop2] := Rod[loop2+1]; end;

N := N-1; loop1 := loop1-1; end

else begin

tempi := sqrt(sqr(Rod[loop1])+Sqmod0C);

writeln('ModOC=',Mod0C,' temp1=',temp1,' L1=',L1);

if (abs(Mod0C—L1)<Rod[loop1]) or (abs(L1—temp1)<Rad[loop1]) then begin

writeln('expanding this obstacle');

move all the spheres up one 1
tempC2 := Sph[loop1+1]; temp2 := Rod[loop1+1];

for loop2 := loop1+1 to N do begin

tempCi := tempC2; tempi := temp2;

tempC2 := Sph[loop2+1]; temp2 := Rad[loop2+1];

Sph[loop2+1] := tempC1; Rad[loop2+1] := tempi; end;

N := N+1;

calculate new Obstacle 1
Invtan(L1,E,A);

SinA := sin(A); CosA := cos(A);

Sph[loop1+1,X] := Sph[loop1,X]*cosA+Sph[loop1,Y]ssinA;

Sph[loop1+1,Y] := —Sph[loop1,X]*sinA+Sph[loop1,Y]*cosA;

Sph[loop1+1,Z] := Sph[loop1,2];

loop1 := loop1+1; end;

end;	 else 1
-end;	 for, loop1 1

for- loop1 := 1 to N do

writeln('Sphr,loop1,1=',Sph[loop1,X],Sph[loop1,Y],Sph[loop1,2]);

Keypressed;

end;

procedure RangeCalc(var Sph	 Rangesph; var Rod : Rangerad;

var N : integer; var SLvalT1 	 RangeSL);

I Calculate the range of Ti in which the robot con collide with the obstacle
vor loopl : integer;

Rot, D, Dist1, Dist2, DelTheta1, DeiTheta2 : real;

189

C : Coord;

begin

writeln('RANGECALC');

for loop1 := 1 to N do

begin

C := Sph[loop1];

Invtan(Sph[Loop1,X],Sph[Loop1,1],Rot);

if Rot > Pix3o2 then Rot := Pix2—Rot;

D := sqrt(sqr(C[x])+sqr(C[y]));

Dist1 := Rad[loop1]+88;

Dist2 := Rad[loop1]+38;

DeiTheto1 := Invsin(Dist1/D);

DelTheta2 := Invsin(Dist2/D);

SLvalT1[loop1,1] := rot —DelTheta1;

SLvalT1[loop1,2] := rot+DelTheta2;

writeln('SLvolT1P,loop1,1',SLvalTqloop1,1],SLvalTgloop1,2]);

end;

keypressed;

end;

1•	

procedure Deloy1(vor A : integer);

var loop1, loop2 : integer;

R1 : real;

begin

for loop2 := 1 to A do

begin

for loop1 := 1 to 66 do

R1 := sin(pi/2);

end;

keypressed;

end;

procedure Randcoord(vor Workpiece : RangeWkP; vor WkPieceN, Area : integer);

var Clr : boolean;

P : Coord;

begin

write(RANDCOORD ');

WkpieceN := WkpieceN+1;

if WkpieceN=6 then WkpieceN := 1;

Area := Area+1; if Area = 4 then Area := 1;

repeat

case Area of

1: begin
P[X] := 250+Random(200);

P[Y] := 250+Random(200);

P[Z] := —530; end;

2: begin

P[X] := —250—Random(200);

P[Y] := 250+Random(200);

P[Z] := —530; end;

3: begin
P[X] := —100+Random(200);

P[Y] := 550+Random(100);

P[Z] := —60; end;

end; 1 case I
Clr := true;

for loop1 := 1 to 5-do begin-- 	 - -

if (abs(P[X]—Workpiece[loop1,X]) < 45) and

(obs(P[Y]—Workpiece[l oop1 , Y]) < 115) then

Clr := false;

190

writeln(Workpiece[loop1,X],Workpiece[loop1,Y],Workpiece[loop1,Z]);

end;

until Clr;

I fix values for a test 1

if Area = 3 then Area := 1;

if Area = 1 then begin

P[X] := 350; P[Y] := 350; P[Z] := —530; end

else begin P[X] := —250; P[Y] := 250; P[Z] := —530; end;

WkpieceN := 1;	 • - -

I end of test code 1

Workpiece[WkpieceN] := P;

writeln('Area=',Area, WkpieceN=',WkpieceN);

writeln('P=',P[X],P[Y],P[Z]);

end;

procedure Pick(var St, Go : Coord; var Sr, Gr : real;

var Initialp, Finalp : RangeApp; var Countinit, Countfin : integer);

var loop1, loop2, Rev : integer;

Offset : real;

S. G, tempC : Coord;

Rangetest, Gp : boolean;

T : RangeT;

R : array[1..8] of RangeR;

begin

write('PICK ');

writeln('St=',S[X],S[Y],S[Z]);

writeln('Go=',G[X],G[Y],G[Z]):

Offset := 51; Rev := 1;

S := St; Convtobs(S,Offset,Rev);

G := Go; Convtobs(G,Offset,Rev);

Convert(S,Zeroi,T[4]);

S[Z] := S[Z]+10;

Convert(S,Zeroi,T[3]);

S[Z] := S[Z]+40;

Convert(S,Zeroi,T[2]);

S[Z] := S[Z]+50;

Convert(S,Zeroi,T[1]);

Convert(G,Zeroi,T[8]);

G[Z] := G[Z]+10;

Convert(G,Zeroi,T[7]);

G[Z] := G[Z]+40;

Convert(G,Zeroi,T[6]);

G[Z] := G[Z]+50;

Convert(G,Zeroi,T[5]);

for loop1 := 1 to 8 do

begin

for loop2 := 1 to 3 do begin

1Writeln(*1r,loop1,',',Ioop2,1 ',T[loop1,loop2]);1

R[loop1,loop2] := T[loop1,loop2]; end;

R[loop1,4] := (Pix3o2—T[loop1,2]) —T[loop1,3];

end;

for loop1 := 1 to 4 do

R[loop1,5] := (Pio2—T[loop1,1])+Sr;

for Aoop1 := 5 to 8 do

R[loop1,5] := (Pio2—T[loop1,1])+Gr;

Gp := false;

outputd2(Initialp[1],R[1],Gp,Rangetest);

outputd2(Initialp[2],R[2],Gp,Rangetest);

outputd2(Initialp[3],R[3],Gp,Rangetest):

191

Mainrpf

outputd2(Initialp[4],R[4],Gp,Rangetest);

Gp := true;

outputd2(Initialp[5],R[4],Gp,Rangetest);

outputd2(Initialp[6],R[3],Gp,Rangetest);

outputd2(Initialp[7],R[2],Gp,Rangetest);

outputd2(Initialp[8],R[1],Gp,Rangetest);

outputd2(Finalp[1],R[5],Gp,Rangetest);

outputd2(Finalp[2],R[6],Gp,Rangetest);

-outputd2(Finalp[3],R[7],Gp,Rangetest);

outputd2(Finalp[4],R[8],Gp,Rangetest);

Gp := false;

outputd2(Finalp[5],R[8],Gp,Rangetest);

outputd2(Finalp[6],R[7],Gp,Rangetest);

outputd2(Finalp[7],R[6],Gp,Rangetest);

outputd2(Finalp[8],R[5],Gp,Rangetest);

Countinit := 8; Countfin := 8;

keypressed;

end;

procedure Calctip(var Cc : Coord; var Tc : Coord);

var A. Ti, Tg, ModGcxy : real;

begin

write('CALCTIP ');

ModGcxy := sqrt(sqr(Gc[X])+sqr(Gc[Y]));

invtan(Gc[X],Gc[Y],Tg);

A := invsin(7/ModGcxy);

Ti := Tg+A;

Tc[X] := Gc[X]+44*sin(T1)-13*cos(T1);

Tc[Y] := Gc[Y]-13*sin(T1)-44*cos(T1);

Tc[Z] := Gc[Z]+120;

writeln('Tc=',Tc[X],Tc[Y],Tc[Z]);

end;

begin

clrscr;

writeln('

Readdata(Sphere,Radius,N);

Goal[0] := Goal[1];

Sph1 := Sphere; Sph2 := Sphere;

Rad1 := Radius;

Ni := N; N2 := N;

Expobs(Sph1,Rad1,N1);

Transform Sphere data to obstacles as seen for the upper arm 1
writeln(' The Converted Obstacles for the upper arm are');

Rev := 1; Offset := 105;

for loop1 := 1 to Ni do begin

Convtobs(Sphqloop1],Offset,Rev);

Radqloop1] := Rad1[Ioop1]+58;

writeln('Sph1P,loop1,1=',Sph1[1oop1,XLSph1[1oop1,Y],Sphgloop1,Z],

' Rad1=',Radgloop1]); end;

Transform Sphere data to obstacles as seen for the forearm 1
Offsel	 .

writeln(' The Converted Obstacles for the forearm are');

for loop1 := 1 to N2 do begin

Rad2[Ioop1] := Radius[loop1];

Convtobs(Sph2Doopl,Offset,Rev);

.wTiteIrt('Sph2P,loop1,1=',Sph2[1oop1,X],Sph2[1oopl,Y],Sph2[1oop1,Z],
_	 .	 Rod2=',RadZ[loop1]); end;

192

Rongecalt{4112.Rod2,N2,SLvalT1);

tempC[X] := 300; -

tempC[Y] := 200;

tempC[Z] := —530;

for loop1 := 1 to 5 do begin

tempC[X] := tempC[X]+50;

Workplece[loop1] := tempC;

tempC[Z] := —430;

Calciip(tempC,WkpConv[loopl]): end;

TipS[X] := 400; TipS[Y] := 200; TipS[Z] := —100;

Sr := 0; Gr := 0;

loopl := 20;

WkpieceN := 1; Area :=

repeat

...Randcoord(Workpiece,WkpieceN,Areo):

Calctip(Workpiece[WkpieceN],TipG):

Routepl(Sphl,Elbdata,Rodl,N1,E,TipS,WkpConv[WkpieceND;

Fapotb(S02,Elbdata,Rod2,N2,E,TipS,WkpConv[WkpieceN],SLvalT1,MVP,Coontmvp);

tempC := WkpConv[WkpieceN]; tempC[Z] := WkpConv[WkpieceN,Z] —100;

Pick(tempC,TipG,Sr.Gr,Initialp,Finalp,Countinit,Countfin);

TipG[Z] := TipG[Z]+100;

Routep1(Sphl,Elbdata.Rad1,N1,E,WkpConv[WkpieceN] .TipG);

Fapatb(S02,Elbdata,Rad2,N2,E,WkpConv[WkpieceN],TipG,SLvalTLInterp,Countint);

WkpConv[WkpieceN] := TipG;

TipS := TipG;

read In;

Outputd(Initialp,Finalp,Mvp,Interp,Countinit,Countfin,Countmvp,Countint);

Welay(loop1);1

keypressed:

until false;

end.

193

APPENDIX D

Storedata program listing

PROGRAM STOREDTA;

Const L1 = 386;

L2 = 376;

	

TYPE RANGE	 = 0..21;

	

COORDs	 = (X,Y,Z);

	

Coord	 = array[Coords] of real;

RANGESPH = ARRAY[RANGE,COORDs] OF REAL;

RANGERad = ARRAY[RANGE] OF REAL;

Degree = orray[1..3] of real;

Elb = array[1..2] of real;

VAR N. G : INTEGER;

RUNNING,Ok: BOOLEAN;

Sph, Goal : RANGESPH;

	

Rod	 : RANGERad;

loop1, Ans, Num, Rev : integer;

Offset : real;

tempC : Coord;

tempD : Degree;

1
procedure Keypressed;

var B:Byte;

begin

B := Port[MA];

B:=8 and 02;

if 8=2 then read

end;

1
procedure Reoddato(vor Sph, G : Rangesph; var Ra 4 	 Rarigerad:

vor N, G : integer);

1 This reads obstacle data, and Goalpoint data from aisl.

vat FILENAME : string[12];

DATA	 : file of real;

Offset : real;

Rev : integer;

begin

writeln('reading data from file Sphere.dta');

Filename := 'Sphere.dto';

assign(DATA,FILENAME); reset(DATA);

N := —1; G

while not EOF(DATA) do

begin

N := N+1;

read(DATA.Sph[N,x),Sph[N,y],Sph[N,z],Rad[N]);

194

writeln(Sph[N,x],Sph[N,y],Sph[N,z],Rad[N]);

end;	 (s while *)
Close (DATA)

writeln('reading data from file Gool.dta');

Filename := 'Gool.dta';

assign(DATA,FILENAME); reset(DATA);

while not EOF(DATA) do

begin

G := G+1;

read(DATA,Gool[G,x],Goal[G,y],Goal[G,z]);

writeln(Goal[G,x],Goal[G,y],Goal[G,z));

end;	 (* while *)

close(DATA);

end;

(*
procedure WRITEGOAL(vor GOAL : RANGESPH; var G : integer);

var FILENAME : string[12];

: integer;

DATAFILE : file of real;

begin

Filename := 'Goal.Dta';

assign(DATAFILE,FILENAME);

rewrite(DATAFILE);

for I := 0 to G do

begin

write(DATAFILE,GOAL[I,X],GOAL[I,Y],GOAL[I,Z]);

end;

close(DATAFILE);

end;

procedure WRITEDATA(vor SPHERE : RANGESPH; var RADIUS : RANGERocl;

var N : integer);

write data in sphere and Radius to a file called ' Sphere.Dto

var FILENAME : string[12];

: integer;

DATAFILE : file of real;

begin

Filename := 'Sphere.Dto';

assign(DATAFILE,FILENAME);

rewrite(DATAFILE);

for I := 0 to N do

write(DATAFILE,SPHERE[I,X],SPHERE[1,1],SPHERE[I.Z],RADIUSDP:

close(DATAFILE);

end;

begin

Clrscr; writeln(' 	 STORE DATA 	

N := —1; G := —1;

RUNNING := TRUE;

WHILE RUNNING DO

begin

Clrscr; writeln(' 	 STORE DATA 	 .).

writeln('Choose one of the following options');

writeln('1. Enter the coordinates of an obstacle sphere (in mm)');

writeln('2. List the sphere coordinates');

writeln('3. Edit a sphere');

195

writeln('4. Write sphere data to a file');

writeln('5. Enter a goolpoint');

writeln('6. List goalpoints');

writeln('7. Edit a goalpoint.);

writeln('8. Write goalpoint data to a file');

writeln('9. Readdato');

writeln('10. Stop');

READLN(ANS);

CASE ANS OF

1:8EGIN

N:=N+1;

writeln('Enter the coordinates of the sphere center (',N,')');

readin(Sph[N,x],Sph[N,y],Sph[N,z]);

writeln('Enter the radius');

readin(Rod[N]);

end;

2:begin

for loop1 := 0 to N do

writeln(Sph[loop1,x],Sph[loop1,y],

Sph[loop1,z],Rad[loop1]);

readln;

end;

3:begin

writeln('What number of sphere');

readln(Num);

writeln('Enter the coordinates of the sphere center (',Num,')');

readin(Sph[Num,x],Sph[Num,y],Sph[Num,z]);

writeln('Enter the radius');

readin(Rad[Num]);

end;

4:Writedato(Sph, Rod, N);

5:begin

G := G+1;

writeln('Enter the coordinates of goolpoint(',G,')');

readln(GOAL[G,X],GOAL[G,Y],GOAL[G,Z1);

end;

6:begin

for LOOP1 := 0 to G do

writeln(GOAL[LOOP1,X],GOAL[LOOP1,Y],GOAL[LOOP1,2]);

read In;

END;

7:begin

writeln('What number of goolpoint');

readin(Num);

writeln(Gool[Num,x],Goal[Num.A.Goal[Num,z])

reodin(Gool[Num,x],Goal[Num,y],G0al[Num,z]);

end;

8:WRITEGOAL(GOAL,G);

9:begin Readdata(Sph,Goal,Rad, N ,G); read; end;

10:Running:=false;

END;	 (*WHILE.)

end;	 (*cases)

END.

0

position clear

position clear

untested

untested

off list

1

obstacle

new obstacle

forearm tested

upper arm tested

onlist

APPENDIX E

Espace program listing

program Espace;

const L1 : integer = 385;

L2 : integer = 376;

Off1 : integer = 105;

Of f2 : integer = 54;

Off3 : integer = 22;

Upprad : integer = 56;

Forrad : integer = 45;

Griprad : integer = 89;

Pix3o2 : real = 4.71238898;

P1o2 : real = 1.570796326;

Pix2 : real = 6.283185307;

forearmtest : boolean = true;

upperormtest : boolean = false;

first : booleon = true;

second : boolean = false;

type Range = 1..10;

Coords = (x,y,z);

Coord = array[Coords] of real;

Rangesph = array[Range] of Coord;

Rongerod = array[Range] of real;

Degree = cirri:1)[1..3] of real;

rongelim = array[1..3] of integer;

rongetrig = array[0..38] of real;

info1 = record

code : byte;

end;

1
	

code
	

bit

1

2

4

8

16

32

64

128

info2 = record

tcost : real;

x, y, z : byte;

end;

Rangenode = array[0..36.0..18,5..36] of info1;

Rangelist = array[1..1000] of info2;

rangelist2 = array [1..1000] of info2;

vor Node : Rangenode;

List : Rangelist;

197

sinval, cosvol : rangetrig;

tempD, T : Degree;

lowlim, highlim : rangelim:

Ti, 72, 13 : integer:

Bl, El, E2, Tipl, Tip2, P. tempC : Coord;

Tls, Ill, Dtltemp, Tltemp, temp, A. B, ModB1C,

Dt, OCxy, OC, ModP, sinT1, cosTi, Phy, countvol : real;

Numonlist, TlGvs, TlGvl,

loopl, loop2, loop3, loopsph, N : integer;

Sphere : Rangesph;

Radius : Rongerad;

testtype, expansiontype : booleon;

procedure Keypressed;

var B:Byte;

begin

B := Port[WA];

B:=B and 02;

if B=2 then read

end;

procedure Modulus(var A,B,AB : Coord; vor Sqmod, Modul : real);

begin

AB[X] := B[X]—A[X];

AB[Y] := B[Y]—A[Y];

AB[Z] := B[Z]—A[Z];

Sqmod := sqr(AB[X])+sqr(AB[Y])+sqr(AB[Z]);

Modul := sqrt(Sqmod);

end;

function Invsin(Sina : real) : real;

var temp : real;

begin

if ((Sina < le-4) and (Sino > —le-4)) then

temp := Sino

else begin

temp := arctan(sqrt(1/(1/sqr(Sino)-1)));

if Sina<0 then temp := —temp; end;

Invsin := temp;

end;

function Invcos(var Cosa : real) : real;

vor temp : real; .

begin

if ((Cosa < le-4) and (Cosa > —le-4)) then

temp := Pi/2—Cosa

else

temp := arcton(sqrt(1/sqr(Cosa)-1));

if coso < 0 then temp := Pi—temp;

Invcos := temp;

end;

procedure Invtan(var x, y, ans : real);

begin

if obs(x)<2e-6 then	 1 This calculates the angle of rotation I
begin	 1 of a line from 0,0 to x,y. If x<2e-6
if abs(y)<2e-6 then	 1 and y<2e-6 then angle = 0.
ans :=0	 X is assumed = 0 if x<2e-6.

else if y>0 then

198

one := P1/2

else one := 1.5*pi;

end

else if x>0 then

begin

if y>=0 then

one := arctan(y/x)

else one := 2*Pi+arcton(y/x)

end

else one := Pi+orcton(y/x);

end;

procedure Convert(vor P : Coord; var I : Degree);

vat- L3, ModXY, SqmodXY, temp, ModEP, D, SqL3, CosT3, SinB, B : real;

TempC, E : Coord;

begin	 1 This procedure calculates the robot
Invton(P[x],P[y],T[1]);	 1 coordinates for when the tip of the
SqmodXY := sqr(P[x])+sqr(P[y]); 	 1 robot arm is at P
ModXY := sqrt(SqmodXY);	 1 13 is always less than Pi.
Invtan(ModXY,P[z],D);

SqL3 := SqmodXY+sqr(P[z]);

L3 := sqrt(SqL3);

if 13 > L1+L2 then begin

writeln('ERROR Goalpoint out of range');

if ((D < pio2) and (D > 0)) then begin

T[2] := D;

1[3] := Pi; end

else begin

T[2] := 0;

E[x] := L1*cos(T[1]);

E[y] := L1*sin(T[1]);

E[z] := 0;

modulus(E,P,tempC,temp,ModEP);

1[3] := Pi+invsin(P[z]/ModEP);

end;

end

else begin

CosT3 := (11*1.0*L1+L2*1.0*L2—SqL3)/(2.0*L1*L2);

1[3] := Invcos(CosT3);

SinB := (L2)*sin(T[3])/sqrt(SqL3);

B := Invsin(SinB);

1[2] := B+D;

if ((1[2] < 0) or (1[2] > P1x3o2)) then begin

1[2] := 0;

E[x] := L1*cos(T[1]);

E[y] := L1*sin(T[1]);

E[z] := 0;

modulus(E,P,tempC,temp,ModEP);

1[3] v= Pi+invsin(P[z]/ModEP);

end

else begin

if 1[1] > Pi then begin

if (1[1] > Pix2-0.01) and (T[1] < P1x2+0.01) then

T[1] := 0

else if 1[1] < P1+0.01 then

T[1]	 Pi
else writeln(' 	 ERROR Ti out of range 	

end:

if T[2] > Pio2 then begin

if T[2] < Pio2+0.01 then

199 ,

T[2] := Pio2

else writeln('ERROR5');

end;

end;

end;

writeln('Converted','T[1]=',7[1],' T[2]=',T[2],' T[3]=',T[3]);

Ikeypressed;I

end;

procedure Convtobs(var C : Coord; var T : Degree);

t , this converts the real coordinates of obstacles to the coordinates as
f the robot sees them

var SqmodOE, ModOE, temp, Beta, A, L1xy, Offset : real;

begin

Offset := 29;

SqmodOE := sqr(C[X])+sqr(C[Y]);

ModOE := sqrt(SqModOE);

L1xy := sqrt(Sqmod0E—sqr(Offset));

Invtan(C[X],C[Y],Beta);

Invtan(Offset,L1xy,temp);

A := Beta—temp;

C[X] := C[X]—Offsetacos(A);

C[Y] := C[Y]-0ffsetssin(A);

Convert(C,T);

end;

procedure Readdata(var Sphere : Rangesph; var Radius : Rangerad;

var N : integer);

This reads obstacle data from disk

var FILENAME : string[12];

DATA	 : file of real;

Offset : real;

loop1, Rev, G : integer;

begin

Filename := 'Sphere.dta';

writeln('This is the sphere data');

assign(DATA,FILENAME); reset(DATA);

N := 0;

while not EOF(DATA) do

begin

N := N+1;

read(DATA,Sphere[N,x],Sphere[N,y],Sphere[N,z],Rodius[N]);

writeln(Sphere[N,x],Sphere[N,y].Sphere[N,2],Radius[N]);

end;	 while I

close (DATA)

Ikeypressed;I

end;

procedure Find_Point(vor S, G, C, Pj : Coord);

iThis finds the point Pj on the line SG closest to CI
var Sc_Sg. ModSg, temp, r : real;

Sc, Sg : Coord;

begin

lwrite('FIND_POINT ');

Sc[X] := C[X]—S[X];

Sc[Y] := C[Y]—S[Y]:

Sc[Z] := C[2]—S[2];

Modulus(S,G,Sg,Temp,ModSg);

I find the point P on Sq such
that Cp and Sp meet at a right angels/

200

Sc_Sg := Sc[X]*Sg[X]+Sc[Y]sSg[Y]+Sc[2]*Sg[Z];

r := Sc_Sg/ModSg;

if r >= ModSg then	 f is the point at the tip of the forearm?

Pj := G

else if r <= 0 then 	 f is the point at the elbow

Pj := S

else begin	 / the point is in between

temp := r/ModSg;

Pj[X] := S[X]+temp*Sg[X];

PAY] := S[Y]+temp*Sg[Y];

Pj[Z] := S[2]+temp*Sg[Z]; end; f hello says Sarah I

fwriteln('PAX]=',PAX],' PAY]=',PAY],' PAZ]=',PAZ]);1
fkeypressed;/

end;

procedure Pullofflist(var lx, ly, lz : integer; vor List : rangelist;

vor Numonlist : integer);

begin

if numonlist<1 then writeln('

Ix := list[numonlist].x;

ly := list[numonlist].y;

lz := list[numonlist].z;

numonlist := numonlist —1;

end;

ERROR IN pullofflist 	

procedure putonlist2(var List : rangelist; var Numonlist : integer;

vor lx, ly, lz : integer);

begin

write(numonlist,");

numonlist := numonlist+1;

List[numonlist].x := lx;

List[numonlist].y := ly;

List[numonlist].z := lz;

if numonlist > 999 then writeln(' 	 list size to big

end;

procedure testpos(var C : Coord; var rad : real; vor lx, ly, lz : integer;

var Node : rangenode; var List : rangelist;

vor Numonlist, Ioopsph : integer;

var testtype, expansiontype : boolean;

vor lowlim, highlim : rangelim; vor sinval, cosvol : rangetrig);

var forearmuntested, upperarmuntested, postest : boolean;

81, El, E2, Tipl, Tip2, P. tempC : Coord;

Tls, Ill, Dtltemp, Tltemp, temp, cosphy, sinphy, OCxy, OC, ModP : real;

TlGvs. TlGvl, loopl, phy : integer;

begin

forearmuntested := true; upperormuntested := true;

if (Node[lx,ly,lz].code and 4) = 4 then forearmuntested := false;

if (Node[lx,ly,lz].code and 8) = 8 then upperormuntested := false;

if (forearmuntested and (testtype = forearmtest)) or

(upperormuntested and (testtype = upperarmtest)) then

begin

if (expansiontype=first) or ((node[lx,ly,12].code and 1)=0) then

begin

postest := false;

I find important points on the real robot
sinT1 := sinval[lx]; cosT1 := cosvol[lx];

B1[x] := Offl*sinval[lx]; 	 f B1 = base of the upper arm

201

Bl[y] := —Offl*cosval[lx];

Bl[z] := 0;

El[x] := Bl[x]+Ll*cosvol[lx]*cosval[ly];

El[y] := Bl[Y]+Ll*sinvol[lx]*cosvol[ly];

El[z] := Bl[z]+Ll*sinvol[ly];

f El = top of the upper arm i

if testtype = forearmtest then begin

I set to forearm tested 1

Node[lx,ly,12].code := Node[lx,ly,lz].code or 4;

E2[x] := El[x]—off2ssinvol[lx]; 	 1 E2 = base of the forearm 1
E2[y] := El[y]+off2*cosval[lx]:

E2[z] := El[z];

phy := ly+lz —36;

if phy<0 then begin

phy := —phy;

sinphy := —sinvol[phy];

cosphy := cosval[phy];

end

else begin

sinphy := sinvol[phy]:

cosphy := cosval[phy]; end;

Tipl[x] := E2[x]+L2*cosvol[lx]*cosphy;	 1 Tipl = top of the forearm 1
Tipl[y] := E2[y]+L2*sinvol[lx]*cosphy;

Tipl[z] := E2N+L2*sinphy;

Tip2[x] := Tipl[x] —off3*sinvol[lx];	 f Tip2 = centre of the gripper 1
Tip2[y] := Tipl[y]+off3*cosvol[lx];	 i	 motor sphere	 i
Tip2[2] := Tipl[z];

lwritelnCB1=',Ell[x],',',81[y],',',Ell[z]);

writelnCE1=',El[x],',',E1[Y],',',Eqz]);

writelnCE2=',E2[x],'.',E2[y],',',E2[z]);

writelnrrip1=',Tipl[x],',',Iipl[y],',',Tipl[z]):

writelnCTip2=',Tip2[x],',',Tip2[y],',',Tip2[z]):1

1 decide whether the robot intersects the sphere 1

find_point(E2,Tipl,C,P):

modulus(P,C,tempC,temp,ModP);

if (ModP < (rod+Forrod)) then postest := true;

Modulus(Tip2,C,tempC,temp,ModP);

if (ModP < (rod+Griprod)) then postest := true;

end

i Upper arm test
else begin

1 set to upper arm tested 1
Node[lx,ly,lz].code := Node[lx,ly,lz] code or 6:

find_point(B1,E1,C,P);

modulus(P,C,tempC,temp,ModP);

if (ModP < (rod+Upprod)) then postest := true;

if postest = true then

for loopl := lowlim[3] to highlim[3] do

Node[lx,ly,loopl].code := Node[lx,ly,loopl].code or 2;

end;

if postest = true then begin

writeln(lx,',',Iy,',Iz);

putonlist2(list,numonlist,lx,ly,lz);

Node[lx,ly,lz].code := node[lx,ly,lz].code or 2; end;

end;

end;

ficeypressedA

202

end;

procedure expand(var C : Coord; var rod : real; vor 11, 12, 13 : integer;

var list : rangelist; var numonlist, loopsph : integer;

var node : rongenode; vor lowlim, highlim : rangelim;

var testtype, expansiontype : boolean;

var sinval, cosvol : rangetrig);

vor el, e2, e3 : integer;

exptype : integer;

begin

exptype := 1;

if exponsiontype = first then

exptype := 2;
el := 11 —exptype;

e2 := 12;

e3 := 13;

if el>=lowlim[1] then

testpos(C,rod,e1,e2,e3,node,list,numonlist,loopsph,testtype,exponsiontype,

lowlim,highlim,sinvol,cosval);

el := el+2*exptype;

if el<=highlim[1] then

testpos(C,rod,e1,e2,e3,node,list,numonlist,loopsph,testtype.expansiontype,

lowlim,highlim,sinvol,cosvol);

el := el —exptype;

e2 := e2—exptype;

if e2>=lowlim[2] then

testpos(C,rod,e1,e2,e3,node,list,numonlist,loopsph,testtype,exponsiontype,

lowlim,highlim,sinval,cosvol);

e2 := e2+24.exptype;

if e2<=highlim[2] then

testpos(C,rod,e1,e2,e3,node,list,numonlist,loopsph,testtype,expansiontype,

lowlim,highlim,sinvol,cosvol);

e2 := e2—exptype;

if testtype = forearmtest then begin

e3 := e3—exptype;

if e3>=lowlim[3] then

testpos(C,rod,e1,e2,e3,node,list,numonlist,loopsph,testtype,

expansiontype,lowlim,highlim,sinvol,cosval);

e3 := e3+2+exptype;

if e3<=highlim[3] then

testpos(C,rod,e1,e2,e3,node,list,numonlist,loopsph,testtype,

expansiontype,lowlim,highlim,sinval,cosval);

end;

Ikeypressed;1

end;

procedure WRITEDATA(var node : rongenode; vor lowlim, highlim : rangel'm);

I write data in sphere and Radius to a file called ' Sphere.Dta 	 1
var FILENAME : string[12];

loopl, 100p2, loop3 : integer;

bl, b2 : byte;

DATAFILE : file of byte;

begin

bl := 0;

b2 := 64;

Filename := 'Node.Dta';

assign(DATAFILE,FILENAME);

rewrite(DATAFILE);

for loopl := lowlim[1] to highlim[1] do begin

for loop2 := lowlim[2] to highlim[2] do begin

203

for loop3 := lowlim[3] to highlim[3] do begin

if node[loop1,loop2,loop3].code and 1 = 1 then

write(DATAFILE,b1)

else write(DATAFILE,b2);

end;

end;

end;

close(DATAFILE);

end;

I
procedure fill(vor C : Coord; vor rod : real;

vor list : rangelist; vor numonlist, loopsph : integer;

vor node : rangenode; var lowlim, highlim : rangelim;

var testtype : boolean; var sinval, cosval : rongetrig);

var loop1, loop2, loop3, Ti. T2, 73, numonlist2 : integer;

tempi, zlow1, zlow2, zlow3, zhigh1, zhigh2, zhigh3 : integer;

i1, i2, i3, 11, 12, 13 : integer;

list2 : rangelist2;

bottomronge, exponsiontype, edge : booleon;

begin

zlow1 := 255; zlow2 := 255; zlow3 := 255;

zhigh1 := 0; zhigh2 := 0; zhigh3 := 0;

writeln('find bottom range');

bottomrange := false;

i1 := lowlim[1] —1;

repeat

12 := lowlim[2] —1;

i1 := i1+1;

repeat

13 := lowlim[3] —1;

i2 := i2+1;

repeat

i3 := 13+1;

if node[i1,i2.i3].code and 2 = 2 then

bottomronge := true;

until (bottomrange or (13 = highlim[3]));

until (bottomronge or (i2 = highlim[21));

until (bottomrange or (i1 = highlim[1]));

writeIn('the first point is ',11.',',12,',',i3);

writeln('develope list');

numonlist2 := 0;

zlow1 := i1;

repeat

repeat

repeat

if node[i1.i2,i3].code and 2 = 2 then begin

if (12 < zlow2) then

zlow2 := 12;

if (i3 < zlow3) then

zlow3 := 13;

if (i1 > zhigh1) then

zhigh1 := i1;

if (12 > zhigh2) then

zhigh2 := 12:

if (i3 > zhigh3) then

zhigh3 := 13;

if numonlist2 > 995 then

writeln(' 	 list length is to small 	 .)1

204

1
i 14 = tested and blocked

1

1

1
14;

}
14;

1
14;

i
14;

1
14;

I

out of list 1

numonlist2 do begin

numonlist2 := numonlist2+1;

list2[numonlist2].x
	

11;

list2[numonlist2].y
	

i2;

list2[numonlist2].z
	

i3;

end;

13 := 13+1;

until i3>=highlim[3]+1;

i2 := 12+1;

13 := lowlim[3];

until 12>=highlim[2]+1;

i1 := 11+2;

12 :=	 lowlim[2];

until i1>=highlim[1]+1;

writeln('fill');

writeln('numonlist2=',numonlist2);

for loop1 := 1 to numonlist2 do begin

11 := list2[1oop1].xl

12 := list2[1oop1].y;

13 := list2[Ioop1].z;

if node[I1+2,12,13].code and 2 = 2 then 	 1 +x

node[I1+1,12,13].code := node[11+1,12,13].code or 14;

if node[I1,12+2,13].code and 2 = 2 then 	 1 +y

node[11,12+1,13].code := node[11,12+1,13].code or 14;

if node[11,12,13+2].code and 2 = 2 then	 1 +z

node[11,12,13+1].code := node[11,12,13+1].code or 14;

if node[11+2,12+2,13].code and 2 = 2 then 1 +x +y

node[11+1,12+1,13].code := node[I1+1,12+1,13].code or

if node[I1+2,12-2,13].code and 2 = 2 then 1 +x —y

node[11+1,12-1,13].code := node[I1+1,12-1,13].code or

if node[I1+2,12,13+2].code and 2 = 2 then 1 +x +z

node[11+1,12,13+1].code := node[11+1,12,13+1].code or

if node[11+2,12,13-2].code and 2 = 2 then 1 +x —z

node[I1+1,12,13-1].code := node[11+1,12,13-1].code or

if node[11,12+2,13+2].code and 2 = 2 then 1 +y +z

node[11,12+1,13+1].code := node[11,12+1,13+1].code or

if node[11,12+2,13-2].code and 2 = 2 then 1 +y —z

node[I1,12+1,13-1].code := node[I1,12+1,13-11].code or 14;

if node[11+2,12+2,13+2].code and 2 = 2 then 1 +x +y +z 1

node[11+1,12+1,13+1].code := node[11+1,12+1,13+1].code or 14;

if node[11+2,12+2,13-2].code and 2 = 2 then 1 +x +y —z 1

node[11+1,12+1,13-11code := node[I1+1,12+1,13-1].code or 14;

if node[I1+2,12-2,13+2].code and 2 = 2 then 1 +x —y +z 1

node[I1+1,12-1,13+1].code := node[11+1,12-1,13+11.code or 14;

if node[I1+2,12-2,13-2].code and 2 = 2 then 1 +x —y —z 1

node[I1+1,12-1,13-1].code := node[11+1,12-1,13-1].code or 14;

end;

1 get centre points
numonlist := 0;

for loop1 := 1 to

edge := false;

11 := list2[1oop11.x; 12

if node[11+2,12,13].code

if node[11-2,12,13].code

if node[I1,12+2,13].code

if node[I1,12-2,13].code

if node[11,12,13+2].code

if node[11,12,13-2].code

if edge then begin

:= list2[I

and 3 = 0

and 3 = 0

and 3 = 0

and 3 = 0

and 3 = 0

and 3 = 0

oop1].y; 13 := list2[1oop11.z;

then edge := true;

then edge := true;

then edge := true;

then edge := true;

then edge := true;

then edge := true;

205

numonlist := numonlist+1;

list[numonlist] := list2[loop1]; end;

end;

for loop1 := 1 to numonlist do

list2[1oop1] := list[loop1];

numonlist2 := numonlist;

writeln('find edge values');

writeln('upperarm.);

exponsiontype := second;

testtype := upperarmtest;

repeat
pullofflist(T1,12,T3,1ist,numonlist);

expand(Sphere[loopsph],Radius[loopsph],T1,T2,73,1ist,numonlist,loopsph,

node,lowlim,highlim,testtype,expansiontype,sinval,cosval);

until numonli st = 0;

writeln('forearm');

testtype := forearmtest;

for loop1 := 1 to numonlist2 do

list[loop1] := list2[Ioop1];

numonlist := numonlist2;

tempi := 0;

repeat

tempi := tempi+1;

pullofflist(T1,T2,73,list,numonlist);

expand(Sphere[loopsph],Radius[loopsph],T1,72,T3,1ist,numonlist,loopsph,

node,lowlim,highlim,testtype,exponsiontype.sinval,cosval);

until numonlist = 0;

tempi := tempi —numonlist2;

writeln('number of edge points found =',tempi);

writeln('setting clear and untested status for next obstacle');

zlow1 := zlow1 —2;

if zlow1 < lowlim[1] then zlow1 := lowlim[1];

zlow2 := zlow2-2;

if zlow2 < lowlim[2] then zlow2 := lowlim[2];

zlow3 := zlow3-2;

if zlow3 < lowlim[3] then zlow3 := lowlim[3];

zhigh1 := zhigh1+2;

if zhigh1 > highlim[1] then zhigh1 := highlim[1];

zhigh2 := zhigh2+2;

if zhigh2 > highlim[2] then zhigh2 := highlim[2];

zhigh3 := zhigh3+2;

if zhigh3 > highlim[3] then zhigh3 := highlim[3];

I set new obstacles to clear untested 1

for loop1 := zlow1 to zhigh1 do begin

for loop2 := zlow2 to zhigh2 do begin

for loop3 := zlow3 to zhigh3 do begin

if Nodelloop1,loop2,loop3].code and 2 = 2 then

Node[loop1,loop2,loop3].code := 1

else Node[loop1,loop2,loop3].code := Node[loop1,loop2,loop3].code and 1;

end; end; end;

writeln('end of fill');

end;

1 	 i
begin

DT := Pi/36;

I set up cos and sin values i

206

for loop1 := 0 to 36 do begin

temp := loop1*DT;

sinval[loop1] := sin(temp);

cosval[loop1] := cos(temp);

end;

lowlim[1] := 0; lowlim[2] := 0; lowlim[3] := 5;

highlim[1] := 36; highlim[2] := 18; highlim[3] := 36;

Readdata(Sphere,Radius,N);

for loop1 := lowlim[1] to highlim[1] do begin

for loop2 := lowlim[2] to highlim[2] do begin

for loop3 := lowlim[3] to highlim[3] do begin

Node[loop1,loop2,loop3].code := 0;

end; end; end;

I set the limits of Ti, 72, 73 and the increment DT 1

1 Ti : 0 to 180, increment of 5 degrees 1

1 12 : 0 to 90, increment of 5 degrees i

f 73 : 25 to 180, increment of 5 degrees 1

1	 Nodes of the graph come every 5 degrees ie 5, 15, 25 etc.

The size of the graph is 37x19x32 = 22496 	 I

writeln('start algorithm');

readln;

for loopsph := 1 to N do

begin

writeln('Graphing sphere number ',Ioopsph);

writeln(sphere[loopsph,xisphere[loopsph,Y],ephere[loopsph,z],

radius[loopsph]);

tempC := sphere[loopsph];

expansiontype := first;

/ find the forearm positions which hit the obstacle 1

testtype := forearmtest;

writeln('Finding blocked forearm positions');

I find the robot position when the center of the gripper is at the center of

the sphere 1

convtobs(tempC,T);

I convert I to nearest coordinates 1

Ti := trunc(0.5+T[1]/DT);

T2 := trunc(0.5+T[2]/DT);

T3 := trunc(0.5+T[3]/DT);

f write out value in degrees 1

tempD[1] := 11*5; tempD[2] := 72*5; tempD[3] := 13*5;

writeln('The first point is ',tempD[1],*,',tempD[2],',',tempD[3]);

numonlist := 0;

testpos(Sphere[loopsph],Radius[loopsph]J1,T2,T3,node,list,

numonlist,loopsph,testtype,exponsiontype,lowlim,highlim,sinval,cosval);

if numonlist = 1 then begin

repeat

pullofflist(T1,72,73,Iist,numonlist);

expond(Sphere[loopsph],Radius[loopsph],11,72,73,1ist,numonlist,loopsph,

node,lowlim,highlim,testtype,expansiontype.sinvol,cosval);

until numonlist = 0; end

else

writeln('this obstacle is out of range');

I find the upper arm positions which hit the obstacle 1
testtype := upperarmtest;

writeln('Finding blocked upper arm positions*);

1 is the sphere in range? I

207

temp := sqr(sphere[loopsph,x])+sqr(sphere[loopsph•YD:

OC := sqrt(temp+sqr(sphere[loopsph,z]));

if (OC —Radius[loopsph]) < 451 then begin

OCxy := sqrt(temp);

invtan(sphere[loopsph,x],sphere[loopsph,y],B):

temp := Off1;

invtan(temp,OCxy,A);

Ti := trunc(0.5+(pio2+B—A)/DT);

sinT1 := sin(T1); cosT1 := cos(T1);

B1[x] := Offl*sinT1; 	 1 81 = base of the upper arm 1
B1[y] := —Off1*cosT1;

B1[z] := 0;

modulus(B1,sphere[loopsph],tempC,temp,M0dB1C);

temp := invsin(sphere[loopsph,z]/M0dB1C);

72 := trunc(0.5+temp/DT);

73 := 10;

writeln('T1=',71,' T2=',72):

numonlist := 0;

testpos(Sphere[loopsph],Radius[loopsph],71,72,73,node,list,

numonlist,loopsph,testtype,expansiontype,lowlim,highlim,sinval,cosval);

if numonlist = 1 then begin

repeat

pullofflist(T1,T2,73,1ist,numonlist);

expand(Sphere[loopsph],Rodius[loopsph],71,72,73,1ist,numonlist,loopsph.

node,lowlim,highlim,testtype,expansiontype,sinval,cosval);

until numonlist = 0; end

else

writeln('this obstacle is out of range');

end

else writeln('sphere out of range of upper arm');

fill(Sphere[loopsph],Rodius[loopsph],list,numonlist,loopsph,

node,lowlim,highlim,testtype,sinval,cosval);

I find the position of the upper arm I

end;	 1 loopsph 1

writeln('STOP THE TIME'):

reodln;

countvol := 0;

for loop1 := lowlim[1] to highlim[1] do begin

for loop2 := lowlim[2] to highlim[2] do begin

for loop3 := lowlim[3] to highlim[3] do begin

if (Node[loop1,loop2,loop3].code and 1) = 1 then

countvol := countvol+1;

end; end; end;

writeln('number of points is ',countvol);,

readln;

writeln(' 	 	 writeing data 	

Writedoto(Node,lowlim,highlim);

end.

208

APPENDIX F

Graphsch program listing

program Graphsch;

type	 infol = record

code	 :	 byte;

costg	 :	 byte;

end;

1	 code	 : bit

1

2

4

0 1

x predecessor

y predecessor

z predecessor

8 —ve predessor +ve predecessor

16

• 32

64

128

obstacle

offlist

position clear

onlist

costg : set to 1000 at start 1

info2 = record

tcost : real;

x, y, z : byte;

end;

Degree = array[1..3] of integer;

Rangenode = arroy[0..36,0-18,5..36] of infol;

Rangelist = array[1..300] of info2;

var sl, 52, s3, g1, 92, g3, loop1 : integer;

node : rongenode;

list : rangelist;

imp, ok : boolean;

lowlim, highlim : Degree;

1 	 i
procedure Keypressed;

vor B:Byte;

begin

B := Port[SODA];

B:=B and 02;

if B=2 then read

end;

procedure Pullofflist(vor x, y, z, numonlist : integer; var List : Rangelist);

var loopl : integer;

temp : real;

begin

if numonlist = 0 then begin

writeln(' 	 ERROR numonlist	 0 	

temp := 1/0; end;

1	 writeln(PPullofflist.,x,',',y,',',z);!

loopl := 0;

repeat

209

loop1 := loop1+1;

until ((x=List[loop1].x)and(y=List[loop1].y)and(z=List[loop1].z));

while loop1 < numonlist do begin

List[loop1] := List[loop1+1];

loop1 := loop1+1; end;

numonlist := numonlist —1;

keypressed;

end;

1 	 1
procedure Putonlist(var x, y, z, numonlist, costg : integer; var costh : real;

var list : Rangelist);

var loop1, loop2 : integer;

cost : real;

begin

Iwriteln('Putonlist',x,',',y,',',z);1

loop1 := 0;

cost := costg+costh;

I find the position on list for the new node I
repeat

loop1 := loop1+1;

until ((list[loop1].tcost>cost)or(loop1>numonlist));

I move all the others down then insert new node
numonlist := numonlist+1;

loop2 := numonlist;

while loop2 > loop1 do begin

list[loop2] := list[loop2 —1];

loop2 := loop2 —1;

keypressed;

end;	 f while f
list[loopl].x

list[loop1].y := y;

list[loop1].z := z;

list[loop1].tcost := cost;

if numonlist>295 then writeln(' 	 LIST LENGTH INSUFFICIENT 	 .), (* *)
keypressed;

end;

	 1
procedure Expand2(var copen, cnext, x, y, z, gx, gy, gz, ncostg, numonlist

integer; vor list : Rongelist; var node : Rangenode);

var ncosth • real;

begin

if (copen xor cnext) <> 8 then begin

if node[x,y,z].code and 64 = 64 then begin

if ncostg<node[x,y,z].costg then begin

ncosth := sqr(gx—x)+sqr(gy—y)+sqr(gz—z);	 (* *)

node[x,y,z].costg := ncostg;

if node[x,y,z].code and 128 = 128 then	 f if on list
pullofflist(x,y,z,numonlist,list);

putonlist(x,y,z,numonlist,ncostg,ncosth,list);

node[x,y,z].code := cnext+64+128;

end; end; end;

keypressed;

end;

	 1
procedure Expand(var opennodex, opennodey, opennodez, gx, gy, gz, numonlist : integer;

var list : Rangelist; var lowlim, highlim : degree;

var node : Rangenode);

var copen, cnext, x, y, z, ncostg : integer;

begin

copen := node[opennodex,opennodey,opennodez].code and 15;

210

x := opennodex —1;

y := opennodey;

z := opennodez;

ncostg := node[opennodex,opennodey,opennodez].costg+1;

cnext := 1;

if x>= Iowlim[1] then Expand2(copen,cnext,x,Y,z,gx,gy,gz,ncostg,numonlist,list,node);

x := x+2;

cnext := 9;

if x<=highlim[1] then Expand2(copen,cnext,x,y,z,gx,gy,gz,ncostg,numonlist,list,node);

x := x-1; y := y-1;

cnext := 2;

if y>=lowlim[2] then Expand2(copen,cnext,x,y,z,gx,gy,gz,ncostg,numonlist,list,node);

y := y+2;

cnext := 10;

if y<=highlim[2] then Expand2(copen,cnext,x,y,z,gx,gy,gz,ncostg,numonlist,list,node);

y := y-1; z

cnext := 4;

if z>=lowlim[3] then Expand2(copen,cnext,x,y,z,gx,gy,gz,ncostg,numonlist,list,node);

z := z+2;

cnext := 12;

if z<=highlim[3] then Expand2(copen,cnext,x,y,z,gx,gy,gz,ncostg,numonlist,list,node);

keypressed;	 (4. *)

end;

procedure listpath(var sx, sy, sz, gx, gy, gz :integer;

var node : Rangenode; var list : rangelist);

	

var tcode, dir, loop1, loop2, listbot	 : integer;

R : array[1..5] of real;

Dt : real;

begin

writeln(gx,',',gy,',',gz);

read In;

listbot := 300;

list[300].x .= gx; list[300].y := gy; list[300].z := gz;

Dt := P1/36;

repeat

listbot := listbot —1;

tcode := Node[gx,gy,gz].code and 15;

if tcode > 8 then dir := —1

else dir := 1;

tcode := tcode and 7;

if tcode = 1 then

gx := gx+dir

else if tcode = 2 then

gy := gy+dir

else gz := gz+dir;

writeln(gx,',',gY.',',gz);

list[listbot].x := gx; list[listbot].y := gy; list[listbot].z := gz;

keypressed;

until ((gx=sx)and(gY=sy)and(gz=sz));

for loop1 := listb ot to 300 do begin

for loop2 := 1 to 10000 do;

R[1] := (list[looP1].x)*Dt;

R[2] := (list[looP1].y)*Dt;

R[3] := (list[lo0P1].z)*Dt;

R[1] := int((R[1] —3.195)* —283.3): 	 _

R[2] := intUR[2] —2.72)* —299.2);
R[3] := int((R[3]-0.4046)*316.4);

R[4] := 500;

R[5] := 736;

211

write('7o1');

for loop2 := 1 to 4 do begin

write(R[loop2]); end;

writeln(R[5]);

Keypressed;

end;

writeln('&');

end;

procedure Readdata(vor Node : Rangenode; var lowlim, highlim : Degree);

f This reads Node data from disk 1

var FILENAME : string[12];

DATA	 : file of byte;

loop1, loop2, loop3 : integer;

begin

Filename := 'Node.dta';

writeln('This is the sphere data');

ossign(DATA,FILENAME); reset(DATA);

for loop1 := lowlim[1] to highlim[1] do begin

for loop2 := lowlim[2] to highlim[2] do begin

for loop3 := lowlim[3] to highlim[3] do begin

read(DATA,Node[loop1,loop2,loop3].code);

lwriteln('node,',Ioop1,',',Ioop2,',',Ioop3,'=',Node[loop1,1oop2,1oop3].code);1

Node[loop1,loop2,loop3].costg := 1000;

keypressed;

end;

end;

end;

close(DATA);

keypressed;

end;

procedure Gsearch(vor sx, sy, sz, gx, gy, gz : integer;

var lowlim, highlim : degree;

vor node : rangenode; var list : rangelist);

var loop1, loop2, loop3, opnx, opny, opnz, numonlist : integer;

begin

opnx := sx; opny := sy; opnz := sz;

Node[opnx,opny,opnz].costg := 0;

node[opnx,opny,opnz].code := 192;

numonlist := 1;

list[1].x := sx; list[1].y := sy; list[1].z := sz; list[1].tcost := 15;

1 main program 1

clrscr;

writeln('Graph Search');

repeat

Pullofflist(opnx,opny,opnz,numonlist,list);

1 set node to offlist
node[opnx,opny,opnz].code := node[opnx,opny,opnz] code and 127;

expand(opnx,opny,opnz,gx,gy,gz,numonlist,list,lowlim,highlim,node);

if Numonlist < 1 then writeln('** ***** ERROR no new opennode ********');

opnx := list[1].x;

opny := list[1].y;

opnz := list[1].z;

writeln('	 opennode ',opnx,',',opny,',',opnz);

until ((opnx=gx)and(opny=gy)and(opnz=gz)); 	 (* *)

Listpath(sx,sy,sz,gx,gy,gz,node,list);

writeln('finished');

end;

212

I 	 i
begin

1 initialise variables 1

highlim[1] := 36; highlim[2] := 18 ; highlim[3] := 36;

lowlim[1] := 0; lowlim[2] := 0; lowlim[3] := 5;

repeat

Readdata(Node,lowlim,highlim);

for loop1 := 1 to 300 do

list[loop1].tcost := 10000;

writeln('Coord limits are C,lowlim[1],',',Iowlim[2],',',Iowlim[3],') to C,
highlim[1],',',highlim[2],',',highlim[3],T);

repeat

repeat

ok := true;

writeln('enter cartesian coordinates of the start position');

readln(s1,s2,s3);

if (s1<lowlim[1])or(s1>highlim[1])or(s2<lowlim[2])or(s2>highlim[2])or

(s3<lowlim[3])or(s3>highlim[3]) then ok := false;

until ok;

repeat

ok := true;

writeln('enter the cartesian coordinates of the goal position');

readln(g1,92,g3);

if (g1<lowlim[1])or(g1>highlim[1])or(g2<lowlim[2])or(g2>highlim[2])or

(g3<lowlim[3])or(g3>highlim[3]) then ok := false;

until ok;

imp := false;

if node[s1,s2,s3].code = 0 then imp := true;

if node[g1,92,g3].code = 0 then imp := true;

if imp then

writeln('this path is impossible')

until not imp;

node[s1,s2,s3].costg := 0;

gsearch(s1,s2,s3,g1,g2,g3,lowlim,highlim,node,list);

until false;

end.

213

