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Abstract

In this paper we present a theoretical basis for the Matrix Transfer
Technique for approximating solutions to fractional-in-space partial dif-
ferential equations. Furthermore, we extend the method to the solution
of equations involving complete Bernstein functions of infinitesimal gen-
erators of bounded C0 semigroups. We prove that, under appropriate
conditions on the right hand side function, the matrix transfer technique
converges with the same order as the underlying spatial discretisation.
When we extend the matrix transfer technique to finite volume and fi-
nite element methods, we find that the resulting discretisations are no
longer symmetric with respect to the standard Euclidean inner product,
but are instead self-adjoint with respect to a more general inner product
on Rn. We propose an M -Lanczos approximation to f(A)b based on the
standard Lanczos algorithm under a different inner product and derive
an error bound for this case. A number of case studies are presented to
illustrate the theory.

1 Introduction

Classical models of heat and fluid flow rely on strong assumptions regarding the
underlying particle-level diffusion process: namely that the underlying process is
a Brownian motion. In a number of practical situations, however, experimental
results have shown that this assumption is violated and it has been suggested
that it is more realistic to model particle diffusions using a distribution with
heavier tails. If the waiting time between jumps in the underlying stochastic
process is taken to be heavy-tailed, the resulting continuum model typically
involves a fractional time derivative. In the case of Lévy flights, where the jump-
length distribution is assumed to be heavy tailed, fractional spatial derivatives
arise in the continuum model [35,36].

The prototypical fractional–in–space partial differential equation is the Dirich-
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let problem for the fractional Poisson equation

(−∆)α/2φ(x) = w(x), x ∈ Ω ⊂ Rd, α > 1/2, (1a)
φ(x) = 0, x ∈ ∂Ω, (1b)

where ∆ =
∑d

i=1 ∂
2/∂x2

i is the Laplacian on Ω subject to Dirichlet boundary
conditions [29]. The restriction to α > 1/2 in (1) is required in order to en-
sure that we can unambiguously define Dirichlet boundary conditions [4,20,32].
Similar restrictions on α arise when considering other boundary conditions [32].

Numerically, the construction of an approximation to (1) poses an interesting
challenge: the fractional Laplacian (−∆)α/2 is a non-local operator and, hence,
standard discretisation techniques, such as the finite element method, require
the solution of a large dense linear system [40]. In this paper, we focus primarily
on the Matrix Transfer Technique (MTT) of Ilić et al. [27–29] for solving the
fractional Poisson equation. The key advantage of the MTT is that it solves the
necessarily dense linear systems using only sparse matrix operations.

The MTT for solving (1) proceeds by noting that numerical discretisations
of the standard Poisson equation lead to the discrete system

Anun = wn,

where An is the matrix representation of the Laplacian obtained via a chosen
discretisation method, such as the finite difference, finite element or finite vol-
ume method, and wn is the discretised right hand side. The idea of the MTT is
that, for large enough n the solution to (1) can be approximated by the solution
to the structurally dense linear system

Aα/2
n φn = wn.

We note that it is never necessary to form the dense matrix Aα/2
n and in Section

5 we will show that the MTT approximation to (1) can be computed using
only sparse matrix techniques [50]. We note that a similar idea was presented
independently in [19,21,22].

The allure of the MTT is in its simplicity however, to the best of our
knowledge, there has been no investigation of the convergence of this scheme.
There is, however, a great deal of numerical evidence that the approximation
φn = A

−α/2
n wn converges [27–29]. In fact, it is not even entirely obvious what is

meant by a ‘matrix representation of the Laplacian’. It was suggested in [27,28]
that the one should consider the convergence of the eigenvalues of An to the
eigenvalues of (−∆), however, it is well known that a linear operator is not fully
determined by its spectrum. Regardless, this type of reasoning suggests that
a näıve application of the MTT to the finite element and finite volume meth-
ods will not lead to a convergent discretisation. In this paper we consider the
MTT under the abstract framework of convergence of semigroups and we show
in Theorem 1 that, under certain conditions, the MTT converges and has the
same order as the underlying discretisation scheme. Furthermore, the precise
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conditions allow us to construct the correct MTT for finite element and finite
volume methods. While resulting matrix representations are non-symmetric,
they are self-adjoint with respect to a different inner product on Rn.

A simple extension of (1) to anisoptropic diffusion is given by the equation

Lα/2φ = w,

subject to appropriate boundary conditions, where L is a positive definite elliptic
operator. This approach has not been taken in the literature, which focuses
mainly on mixing fractional directional derivatives [34]. It can, however, be
motivated at the stochastic process level by considering the subordination in
the sense of Bochner [45] of an anisotropic diffusion process with infinitesimal
generator L. The MTT can be easily extended to this situation. It should be
noted that the HKT method presented in [21, 22] does not cover this general
case, applying only to separable L.

In this paper, we extend the MTT beyond fractional powers of elliptic op-
erators to cover the more general equation

g(A)u = w, w ∈ D(A),

where g is a complete Bernstein function and (A,D(A)) is the infinitesimal gen-
erator of a bounded C0 semigroup. In particular, we extend the methods in [22]
to cover elliptic PDEs with variable coefficients and non-self-adjoint differential
operators. This more abstract formulation suggests the use of a framework sim-
ilar to that of the Trotter-Kato Theorem [31, 37, 55] for analysing convergence.
Furthermore, by varying g, one can investigate related equations that arise in
the theory of fractional generalised random fields such as

(−∆)α/2(I −∆)β/2u(x) = w(x), α ∈ (0, 2), α+ β ∈ [0, 2], x ∈ Ω ⊆ Rd,

subject to the appropriate boundary conditions (see [41] for details). Another
advantage of this scheme is that A can be defined over a general Banach space,
which allows for the simultaneous study of finite difference schemes, which are
generally formulated in C2(Ω), and finite element/volume schemes, which are
usually formulated in L2(Ω).

Although this paper shares many similarities with previous work in the lit-
erature [19,21,22], we feel that the focus is different and our considerations are
more general. Firstly, Gavrilyuk et al. [19] focus on a class of operators who’s
spectra are contained within a given region of the complex plain, whereas our re-
sults only assume that the operator generates a bounded C0 semigroup and has
a bounded inverse. It should be noted that a strongly elliptic partial differential
operator with strictly positive spectrum is in both classes. Secondly, we do not
specify a method for approximating the underlying matrix function. As such,
our analysis covers both the HKT approximation of [21,22] and Krylov subspace
based approximations to matrix functions [17]. This is especially useful as the
HKT method requires that the elliptic operator is separable in order to achieve
O(d2n2 log(n)) complexity and even stronger assumptions on the underlying
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discretisation are required to achieve O(d2n log(n)) complexity. When these as-
sumptions are not met, a slew of efficient methods for approximating f(An)wn

for the analytic functions f = 1/g exist: the most popular of these being the
Lanczos or Arnoldi approximations [11, 12, 17, 18, 24, 25, 39, 42, 46, 47, 51, 54],
restarted and preconditioned Krylov subspace approximations [13,26,30,39] or
rational approximations [19, 23, 53]. In this paper, we propose a new variant of
the Lanczos approximation, which is built around the inner product in which
An is self-adjoint.

It should also be noted that, in this paper, we consider a different class of
functions to those considered in [19]. Our motivation for focusing on complete
Bernstein functions is twofold. Firstly, the class of Bernstein functions preserves
both Feller and sub-Markovian properties of semigroups, that is, if −A generates
a Feller or a sub-Markovian semigroup, then so too does −g(−A) if g is a
Bernstein function. This is important, in particular, as Feller semigroups are
positivity preserving, which is usually an important property in practical models
[6]. The second reason for the restriction to complete Bernstein functions is that
the multiplicative inverses of complete Bernstein function form a convex cone
and have a useful integral representation, whereas this is not the case for general
Bernstein functions [6].

The remainder of the paper is as follows. In Section 2, we will review the
necessary definitions from semigroup theory. These definitions will be used to
pose an abstract version of the generalised MTT in Section 3 and an error bound
relating the error to that of the underlying discretisation will be presented. In
Section 4, the convergence framework is used to construct the matrix repre-
sentations of the Laplacian corresponding to the finite difference, finite volume
and finite element methods that are required for the solution of the fractional
Poisson equation. When the MTT is applied to the finite volume and finite ele-
ment methods, it is necessary to compute functions of a non-symmetic matrix.
Hence, in Section 5, we investigate the M–Lanczos approximation, which is the
Lanczos approximation formulated in terms of the inner product under which
the matrix representation An is self-adjoint. Finally, in Section 6, we apply the
MTT to the finite difference and finite volume discretisations.

2 Functions of infinitesimal generators

Let {Tt}t≥0 be a bounded C0 semigroup of operators on a Banach Space (X, ‖·‖)
with infinitesimal generator (−A,D(A)) [55]. We will further require that∥∥(A+ λI)−1

∥∥ ≤ K

λ+ ω
, λ > −ω, (2)

for some ω > 0 and K > 0, i.e. A−1 is a bounded operator on D(A). For
0 < α < 2, the fractional powers Aα/2 that are defined by

Aα/2x =
sin(απ/2)

π

∫ ∞

0

λα/2−1(λI +A)−1Axdλ, x ∈ D(A) (3)
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also generate a bounded C0 semigroup [55]. When A is self-adjoint, this is equiv-
alent to the spectral representation of Aα/2 [55]. This idea can be generalised
to Bernstein functions of infinitesimal generators.

It is well known that there is a one-to-one correspondence between the class
of Bernstein functions, B and vaguely continuous convolution semigroups of sub-
probability measures supported on [0,∞), {µt}, namely that g ∈ B iff g is the
negative logarithm of the Laplace-Stieltjes transform of a vaguely continuous
convolution semigroup [6]. For a given Bernstein function f with corresponding
semigroup {µt} we define the subordinate semigroup by the Bochner integral

T g
t u =

∫ ∞

0

Tsu dµt.

It is possible to obtain expressions for the generator −Ag of T g
t using a Lévy-

Khinchin-type representation of g [45]. We are, however, not interested in g,
but rather in its multiplicative inverse f = 1

g . Such functions can be represented
as the Laplace transform of a potential kernel κ, however, the cone of potential
kernels, and hence the cone

{
1
g |g ∈ B

}
, is not convex and, therefore, it is useful

to consider sub-cones that do have this property [6]. One such sub-cone, which
has a particularly convenient structure, is the cone of Stieltjes transforms.

Definition 1. ( [7]) A function f is said to be a Stieltjes transform if it is of
the form

f(x) = a+
∫ ∞

0

dµ(t)
x+ t

, x ∈ C\(−∞, 0),

where limx→∞ f(x) = a ≥ 0 and µ is a non-negative measure on [0,∞) satisfy-
ing ∫ ∞

0

dµ(t)
1 + t

<∞.

The set of all Stieltjes transforms forms a convex cone, known as the Stieltjes
cone, and this set is denoted S.

We will denote byR the convex sub-cone of B generated by the multiplicative
inverses of Stieltjes transforms. The cone R is known in the literature as the
cone of complete Bernstein functions or operator monotone functions [5, 45].
Important functions in R include g(t) = tα, α ∈ [0, 1]; g(t) = log(1 + t);
g(t) = tα(1 + t)β , α ∈ (0, 1] and α + β ∈ [0, 1]. Further information about
Stieltjes functions and their relationship with complete Bernstein functions can
be found in [5, 6, 45]. Analogously to (3), we can define f(A) for a Stieltjes
function f as the closure of the operator

f(A)x =
∫ ∞

0

(tI +A)−1x dµ(t), x ∈ D(A).
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3 Convergence of the generalised MTT

Throughout this section, g−1 will denote the multiplicative inverse of the func-
tion g, i.e.

g−1(t) =
1
g(t)

.

In this section we will develop an abstract MTT to solve the equation

g(A)u = w, w ∈ D(A), (4)

for some g ∈ R. Assuming (2) holds, the solution to (4) is given by

u = g−1(A)w, (5)

where g−1 ∈ S.
Consider a sequence of approximating Banach spaces {Xn, ‖·‖(n)} and as-

sociate with each of these spaces a ‘projection’ operator Pn ∈ L(X,Xn) and
an ‘interpolation’ operator En ∈ L(Xn, X). Following [31, 37], we impose the
following conditions of Pn and En:

P1. ∃p ∈ [0,∞) such that ‖Pnx‖(n) ≤ p ‖x‖.

P2. ∃q ∈ [0,∞) such that ‖Enx‖ ≤ q ‖x‖(n).

P3. PnEnx = x for n ≥ 1, x ∈ Xn.

Let {An} be a sequence of bounded linear operators on Xn that, for some
t0 ≥ 0 and some sequence {εn}∞n=1 ↘ 0, satisfies

P4.
∥∥(A+ t0I)−1x− En(An + t0I)−1Pnx

∥∥ ≤ εn
∥∥(A+ t0I)−1x

∥∥ , ∀x ∈ Y ,

where I is the identity operator and Y is a subspace of D(A). This implies that
the solution of

(An + t0I)un = Pnw (6)

converges to u = (A+ t0I)−1w. Finally, we need the stability condition

P5.
∥∥(An + tI)−1

∥∥ ≤ Kn

t+ωn
, ∀t > −ωn,

for some Kn > 0 and ωn > 0.
The following theorem shows that the approximations u(n) = Eng

−1(An)Pnw
converge to u = g−1(A)w as n→∞ for w ∈ D(A). Furthermore, it shows that,
if a limt→∞ g−1(t) = 0, the MTT converges at the same rate as the underlying
discretisation.

Theorem 1. Let w ∈ D(A) and (A+ t0I)−1w ∈ Y . Then, under the conditions
P1–P5 on A, Pn, En and An listed above,∥∥u− Eng

−1(An)Pnw
∥∥ ≤ adist(X,Xn) + Cεn ‖w‖ ,
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where C = (g−1(ω)− a)K(1 +Knpq) max
{
1, t0

ω

}
, a = limt→∞ g−1(t), ω and K

are the same as in (2), and

dist(X,Xn) = sup
x∈X

inf
x(n)∈Xn

∥∥∥x− Enx
(n)

∥∥∥ .
Proof. As w ∈ D(A), it follows from the definition of a Stieltjes function that
there exists a Borel measure µ such that

u− u(n) = g−1(A)w − Eng
−1(An)Pnw

= a(w − EnPnw) +
∫ ∞

0

[
(A+ tI)−1w − En(An + tI)−1Pnw

]
dµ(t).

If we denote the resolvent of A by R(t) = (A + tI)−1 and the resolvent of An

by Rn(t) = (An + tI)−1, then

R(t)−EnRn(t)Pn = (I+(t0−t)EnRn(t)Pn)(R(t0)−EnRn(t0)Pn)(A+t0)R(t),
(7)

where t, t0 ∈ [0,∞) [37, p. 226]. Therefore, it follows from the estimate (2) and
the assumptions on w that

‖R(t)w − EnRn(t)Pnw‖ ≤ K

(
(1 +Knpq

∣∣∣∣ t− t0
t+ ωn

∣∣∣∣) ‖w‖
t+ ω

εn. (8)

The result follows by noting that
∣∣∣ t−t0
t+ωn

∣∣∣ ≤ max
{
1, t0

ω

}
.

Remark 1. The requirement that w ∈ D(A) is very important. In Case Study
5, we apply the MTT to the fractional Poisson equation when w does not satisfy
the Dirichlet boundary conditions and is, therefore, not in D(A). We find that
the convergence is much slower than the rate predicted in Theorem 1.

4 Matrix representations of the Laplacian

Having presented a general convergence framework for the MTT, the main pur-
pose of this section is to identify the projection and interpolation corresponding
to a discretisation and construct the matrix representation An for the numer-
ical solution of the fractional Poisson equation. In particular, we will consider
the finite difference method on a regular grid, which was the method consid-
ered in [29]. We will extend these considerations to the finite volume and finite
element methods on unstructured meshes.

4.1 The finite difference method on a regular grid

The finite difference method is usually posed on the Banach space X = C(Ω),
the space of continuous functions on the rectangular region Ω, endowed with the
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usual sup-norm. In this case, the Laplacian can be written as the infinitesimal
generator A, defined by

D(A) = {x ∈ C2(Ω)|x = 0 on ∂Ω}
Ax = −∆x, x ∈ D(A).

For simplicity, let us consider the one dimensional Laplacian on Ω = [0, 1].
The discrete operators An for the n point finite difference approximation at the
points xi = i−1

n−1 , i = 1, . . . , n correspond to the system of linear equations

−ui+1 − 2ui + ui−1

h2
= w(xi), 2 ≤ i ≤ n− 1,

where u1 = un = 0. In this case, the ‘projection’ operators Pn : D(A) → RN

are given by
(Pnw)i = w(xi) w ∈ D(A),

and the ‘interpolation’ operators En : RN → X are the usual linear interpolation
operators. Clearly, these operators satisfy conditions P1-P3 with p = q = 1.
Furthermore, It follows from the standard analysis of the finite difference method
that the matrix representations An satisfy condition P4 with εn = O(n−2) and
the stability condition P5 with Kn = 1 and ωn = λ

(n)
min, where λ

(n)
min is the

smallest eigenvalue of An [52].

4.2 The finite volume method

In this section, we consider the matrix representation of the Laplacian that
corresponds to the finite volume approximation to

−∆φ = w, x ∈ Ω ⊂ R2 (9)

subject to Dirichlet boundary conditions, where w ∈ L2 and Ω is a convex
polygonal domain. The finite volume method proceeds by constructing the tes-
sellation Tn of Ω and then forming the control volumes by connecting barycenter
of each triangle in Tn with the mid-points of each face. Four typical finite volume
meshes are shown in Figure 2.

The finite volume approximation to (9) is constructed by integrating the
equation over a single control volume Vi centred at node i and applying the
divergence theorem to obtain

−
∫

∂Vi

∇φ · n̂ ds =
∫

Vi

w dV, (10)

where ds is the surface measure the boundary of Vi, n̂ is the unit outward
pointing normal to the surface and dV is the volume measure on Vi. Applying
the midpoint quadrature rule to (10), we arrive at the control volume finite
element method (CV-FEM) discretisation of (9), namely∑

F
(i)
j ∈∂Vi

[∇φ(x) · n̂]
m

(i)
j
|F (i)

j | = |Vi|w(xi)
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for each control volume Vi, where F (i)
j is the jth face of the ith control volume,

m
(i)
j is the midpoint of F (i)

j and the flux through the face of the control volume is
approximated using piecewise linear shape functions [3,10,16]. Detailed analysis
of CV-FEM can be found in Ewing et al [15].

In order to assess the applicability of CV-FEM for approximating the solu-
tion to the fractional Poisson equation, we need to ensure that the projection
and interpolation operators are correctly defined. If, for each control volume Vi,
we define the indicator function

χi(x) =

{
1, x ∈ Vi

0, x 6∈ Vi

,

the global interpolation operator can be written as

(Enwn)(x) =
n∑

i=1

(wn)iχi(x),

where (wn)i is the ith component of wn ∈ Rn and n is the number of nodes [15].
Comparing equations (6) and (10), it is clear that the projection operator should
be of the form

(Pnw(x))i = C

∫
Vi

w(x) dV.

The constant C can be determined by the condition P3 (PnEnwn = wn) and it
can be clearly seen that C = |Vi|−1, where |Vi| is the Lebesgue measure of Vi.
Hence, the form of (10) that is suitable for the MTT is

− 1
|Vi|

∫
∂Vi

∇φ · n̂ ds =
1
|Vi|

∫
Vi

w dV. (11)

The resulting matrix representation of the Laplacian is of the form An =
C−1

n Hn, where Cn = diag{|Vi|} is the finite volume representation of the iden-
tity operator and Hn is the usual symmetric matrix obtained from the finite
volume approximation to the Poisson equation. When the mesh in not uniform,
the operators An corresponding to the numerical approximation of (11) will be
non-symmetric.

4.3 The finite element method

In the previous section, we observed that the matrix representation of the Lapla-
cian resulting from the finite volume method was of the form An = C−1

n Hn,
where Cn is the finite volume representation of the identity operator. In this
section, we will extend these arguments to the finite element approximation to
(9). The discussion of the finite element method presented in this section is
heavily influenced by Chapter 5 of [9].

The finite element method is constructed from a tessellation Tn of Ω by
defining the usual piecewise linear basis functions {ψi}n

i=1 [2, 9]. These basis
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functions span the finite element space Vn. Define the interpolation operator

Env =
n∑

i=1

viψi(x), v ∈ Rn,

and the restriction operator

(Rnv)i =
∫

Ω

ψi(x)f(x) dx.

The finite element approximation to the Poisson equation (9) is given by w ≈
Enwn, where φn is the solution to the linear system

RnAEnφn = Rnw. (12)

Fixing a basis for the finite element space Vn, the matrix representation of
RnAEn : Vn → Rn is given by [9]

(Hn)ij =
∫

Ω

∇ψi · ∇ψj dV.

The matrixHn is usually referred to as the stiffness matrix [2,9]. The discretised
system (12) is still not in the correct form, as Rn does not satisfy condition P3.
We note, however, that the operator Pn = C−1

n Rn does satisfy this condition,
where Cn = RnEn is the finite element representation of the identity [9]. Using
the same basis for Vn, it can easily be seen that

(Cn)ij =
∫

Ω

ψi(x)ψj(x) dx,

is the usual finite element mass matrix [2, 9]. Hence, the matrix representation
of the Laplacian corresponding the the finite element method is

An = C−1
n Hn.

Interestingly, not only is An non-symmetric, but it is also dense. Fortunately,
it is possible to form fast matrix-vector products with An, which facilitates the
use of Krylov subspace methods.

5 Krylov subspace approximations to functions
of self-adjoint matrices

In Section 4, we saw that the matrix representations of the Laplacian corre-
sponding to the finite element and finite volume methods were non-symmetric.
This is unfortunate as the computation of functions of non-symmetric matrices
is a far more delicate problem than the computation of functions of symmetric
matrices [24]. In this section, we investigate Krylov subspace approximations
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to the matrix-vector product f(An)wn, where f = g−1 is a Stieltjes function.
In particular, we focus on the finite element and finite volume representations
of the Laplacian.

The standard Krylov subspace method for approximating the product f(An)wn

for non-symmetric An is based on the Arnoldi method for computing the partial
reduction to upper Hessenberg form

AnVm = VmHm + βm+1vm+1e
T
m, (13)

where the columns of Vm form an orthonormal basis for the Krylov subspace
Km(An, wn) = span{wn, Anwn, . . . , A

m−1
n wn} and Hm = V T

mAnVm ∈ Rm×m

is an upper Hessenberg matrix [43]. Clearly, when An is symmetric, Hm is a
symmetric, tridiagonal matrix and the Arnoldi decomposition simplifies to the
Lanczos decomposition. The Arnoldi approximation [11,12,17,18,24,25,39,42,
46,47,51,54] constructs the approximate matrix vector product

f(An)wn ≈ Vmf(Hm)V T
mwn.

In Section 4, we saw that, when applying the MTT to the finite difference,
finite element or finite volume methods, the matrix representation of the Lapla-
cian is given by

An = C−1
n Hn,

where Hn is the symmetric finite difference/volume/element discretisation of
the Laplacian and Cn is the finite difference/volume/element discretisation of
the identity operator. When considering the finite difference method on a reg-
ular grid, Cn = h2I and An is symmetric positive definite. However, when
considering more general methods, An is non-symmetric. We will see in the
remainder of the section that we can still exploit the more general symmetries
present in An. This decomposition into the product of two symmetric positive
definite matrices is important as it shows that, while An is non-symmetric, it is
self-adjoint and positive definite with respect to the inner product

〈x, y〉Cn
= xTCny.

The Arnoldi decomposition (13) is derived by applying the Gram-Schmidt
process to the Krylov basis {wn, Anwn, A

2
nwn, . . . , A

m−1
n wn} to produce a ba-

sis that is orthonormal with respect to the standard Euclidean inner product.
However, the discussion in the previous paragraph suggests that a more natural
inner product for this problem is the Cn–inner product. Hence, we will consider
matrix function approximations based on the Arnoldi decomposition in the Cn-
inner product. The Cn–Arnoldi decomposition is well known in the context of
solving non-symmetric linear systems [48, Section 13]. Essai [14] showed that
the Cn–Arnoldi decomposition has the form

AnUm = UmH̃m + βmum+1e
T
m,

where the columns of Um form a basis for Km(An, wn), UT
mCnUm = I and

H̃m = UT
mCnAnUm is an m ×m upper Hessenberg matrix. The advantage of
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using the Cn inner product is that, as An is Cn–self-adjoint, H̃m is a symmetric
tridiagonal matrix and the Cn–Arnoldi decomposition can be replaced with the
Cn–Lanczos decomposition

AnUm = UmT̃m + βmum+1e
T
m.

With the Cn–Lanczos decomposition in place, we can define the Cn–Lanczos
approximation to f(An)wn as

f(An)wn ≈ ‖wn‖Cn
Umf(T̃m)e1,

where ‖wn‖Cn
=

√
〈wn, wn〉Cn .

In general, we will refer the the Lanczos approximation based on theM–inner
product 〈x, y〉M = xTMy as the M–Lanczos approximation. The algorithm for
the Cn-Lanczos approximation is given in Algorithm 1 for the case M = Cn,
which is identical to the standard Lanczos approximation with every norm and
inner product replaced with the Cn-norm and the Cn-inner product. We note
the amount of storage can be reduced in the M–Lanczos approximation by
adapting a two–pass strategy, in which f(T̃m)e1 is computed using only three
vectors of storage and the low-dimensional approximation is projected back to
Rn by recomputing the Lanczos vectors in a second pass of the algorithm [39].
We can also derive an a posteriori error bound that is similar in spirit to those
found in [30,54].

Theorem 2. Let AnUm = UmT̃m + βmum+1e
T
m be the M–Lanczos decomposi-

tion. Then, For any f ∈ S, the error in the M–Lanczos approximation to f(A)b
satisfies∥∥∥f(A)wn − ‖wn‖M Umf(T̃m)e1

∥∥∥
2
≤ Kn(f(ωn)−a) ‖b‖M β̃m ‖um+1‖2 |e

T
mT̃

−1
m e1|,
(14)

where Kn and ωn are the constants in condition P5.

Proof. For convenience, we will set em = f(An)wn−‖wn‖M Umf(T̃m)e1. Using
the integral representation of a Stieltjes function, it follows that

em =
∫ ∞

0

(An + tI)−1
(
wn − ‖wn‖M (An + tI)Um(T̃m + tI)−1e1

)
dµ(t)

=
∫ ∞

0

(An + tI)−1
(
wn − ‖wn‖M (Um(T̃m + tI) + β̃m+1um+1e

T
m)(T̃m + tI)−1e1

)
dµ(t)

= −
∫ ∞

0

(An + tI)−1
(
‖wn‖M β̃mum+1e

T
m(T̃m + tI)−1e1

)
dµ(t)

The result follows by bounding the quantities in the integral. Firstly, condition
P5 gives

∥∥(An + tI)−1
∥∥

2
≤ Kn(ωn+t)−1. Secondly, the crux of Lemma 5 in [54]

is that for any SPD tridiagonal matrix T and any t > 0, |eT
m(T + tI)−1e1| ≤

|eT
mT

−1e1|. With these bounds in place, it follows that

‖em‖2 ≤ Kn(f(ωn)− a) ‖b‖M β̃m ‖um+1‖2 |e
T
mT̃

−1
m e1|.
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In order to derive a practical stopping criterion from Theorem 2, we need
good estimates for Kn and ωn. When An is symmetric positive definite, and
therefore orthogonally diagonalisable, it is easily seen that Kn = 1 and ωn is
the smallest eigenvalue of A. As the matrix representations An corresponding
to the finite element and finite volume methods are M–self-adjoint, for some
matrix M , it can be shown that the eigenvectors of An form an M–orthogonal
basis for Rn and, therefore,

An = YnΛnY
−1
n ,

where Λn is a diagonal matrix with the eigenvalues of An on the diagonal and the
columns of Yn contain the eigenvectors of An normalised such that Y T

n MYn = I.
Furthermore, the eigenvalues of An are real and positive. It follows that, when
t ≥ 0, ∥∥(A+ tI)−1

∥∥
M
≤ ‖Yn‖M

∥∥Y −1
n

∥∥
M

∥∥(Λn + tI)−1
∥∥

M

= κM (Yn)
(
λ

(n)
min + t

)−1

,

where λ(n)
min is the smallest eigenvalue of An and κM (Yn) is the M–norm condi-

tion number of Yn. We can convert the above bound to the 2–norm by noting
that, if µmin and µmax are, respectively, the smallest and largest eigenvalues of
M , then √

µmin ‖x‖M ≤ ‖x‖2 ≤
√
µmax ‖x‖M , x ∈ Rn. (15)

Therefore, noting that An has no eigenvalues of the negative real axis,∥∥(An + tI)−1
∥∥

2
= sup

x6=0

∥∥(An + tI)−1x
∥∥

2

‖x‖2

≤
√
µmax√
µmin

sup
x6=0

∥∥(An + tI)−1x
∥∥

M

‖x‖M

=
√
κ2(M)

∥∥(An + tI)−1
∥∥

M
,

where κ2(M) is the 2–norm condition number of M . Hence, when An is M–
self-adjoint, ∥∥(An + tI)−1

∥∥
2
≤

√
κ2(M)κM (Yn)

(
λ

(n)
min + t

)−1

.

We can bound κM (Yn) by noting that ‖Ynx‖M = ‖x‖2 and, therefore, it
follows from (15)

‖Yn‖M = sup
x6=0

‖x‖2
‖x‖M

≤ √
µmax.

Similarly, ∥∥Y −1
n

∥∥
M

= sup
x6=0

∥∥Y −1x
∥∥

M

‖x‖M

= sup
z 6=0

‖z‖M

‖Y z‖M

≤ 1
√
µmin

.

Hence, the bound in Theorem 2 holds with Kn = κ2(M) and ωn = λ
(n)
min.

13



Remark 2. In practice, we can approximate λ(n)
min with the smallest eigenvalue

of T̃m, which proves to be a good estimator after the first few iterations. This
estimate is used in all of the numerical experiments in this section.

Remark 3. When considering the finite element MTT, An is self–adjoint with
respect to the Cn inner product, where Cn is the finite element mass matrix.
For a sufficiently regular family of triangularisations, κ2(Cn) is independent of
n [2, 9].

The convergence of the Cn–Lanczos approximation to A−1/2
n wn is shown in

Figure 1 for the finite volume method on the finest mesh in Figure 2. The
solid line shows the error in the Cn–Lanczos approximation and the dashed line
shows the bound from Theorem 2. The error bound appears to follow the con-
vergence of the Cn–Lanczos approximation quite well, although it is unable to
detect the stagnation that occurs for large m. Interestingly, if we replace the
bound from Theorem 2 with the equivalent quantity κ2(M)(f(ωn) − a) ‖rm‖2,
where rm = wn − ‖wn‖Cn

AnUmT̃
−1
m e1 is the residual after using m steps of

Cn–FOM (the dot-dashed line in Figure 1), then the stagnation is captured,
although the bound still predicts slightly better error than is actually achieved.
For comparison purposes, the black line in Figure 1 shows the convergence of
the Arnoldi approximation. These two approximations are very similar, al-
though not equivalent. In fact, Essai [14] showed that if Um = VmRm is the
QR decomposition of Um, where Vm is the Arnoldi basis for Km(An, wn), then
the relationship between the upper Hessenberg matrix Hm obtained from the
Arnoldi decomposition and the tridiagonal matrix T̃m is T̃m = R−1

m HmRm+Em,
where Em ∈ Rm×m is zero if and only if m is the degree of the minimal polyno-
mial or vm+1 and um+1 are linearly dependent. Hence, as T̃m is not, in general,
similar to Hm, the approximations are not equivalent. This type of behaviour
has been observed when using Krylov methods based on non-standard inner
products to solve linear systems [44].

6 Case studies

In this section, we present a number of case studies that demonstrate the theory
presented in the previous section. In the first two case studies, the underly-
ing discretisation is taken to be the finite difference method on a regular grid.
In this case, the matrix representation of the Laplacian is symmetric positive
definite and the corresponding matrix functions are computed using the stan-
dard Lanczos approximation [8, 24, 25, 42]. We note, however that the Lanczos
approximation can often converge very slowly and a number of other efficient
and reliable methods are available [23, 33, 38]. These methods have been com-
pared in the context of solving fractional–in–space partial differential equations
by the authors [50].

The third case study investigate the convergence of the FV-MTT for the
problems considered in the first two case studies. In the fourth case study, we
consider the behaviour of the MTT when the right hand side function does not

14



Input: The discretised Laplacian Hn, the discretised identity operator
Cn and R.H.S. wn, tolerance τ , α and m.

Output: An approximation to x = f(An)wn, where An = C−1
n Hn.

Set ρ =
√
wT

nCnwn;
Set u1 = wn/ρ;
for j = 1 : m do

Set q = Hnuj ;
Set q = C−1

n q;
if j 6= 1 then

q = q − βj−1uj−1;
end
αj = uT

j Cnq;
q = q − αjuj ;
βj =

√
qTCnq;

uj+1 = q/βj ;

Calculate ym =
(√

bTCnb
)
T−1

m e1 ;
If necessary, re-compute θmin—the smallest eigenvalue of Tm. ;
if κ2(M)ρf(θmin)βj ‖uj+1‖2 |e

T
mym| < τ then

Break;
end

end

Set x = ρVmT
−α/2
m e1;

Algorithm 1: The M -Lanczos approximation to f(C−1
n Hn)wn, where f is a

Stieljes transform and Cn and Hn are symmetric positive definite matrices.
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Figure 1: The convergence of the Cn–Lanczos approximation to A
−1/2
n wn for

the finest mesh.

satisfy the boundary conditions. In this case, the analytic solution is extremely
steep at the boundaries. The MTT does not achieve full accuracy in this case.
In both of these case studies, An is non-symmetric and we use Algorithm 1 to
compute A−α/2

n wn. As is the case when An is symmetric, there are a number
of alternatives to the M–Lanczos approximation [23, 33, 38]. A preliminary
comparison of these methods in the context of solving the fractional Poisson
equation is presented in the first author’s PhD thesis [49].

6.1 Case study 1: finite difference approximation to the
fractional Poisson equation on the unit square

For our first case study we will consider the MTT approximation to the fractional
Poisson equation

(−∆)α/2u(x, y) = xy(1− x)(1− y), x ∈ (0, 1)2, α > 0,

φ(x) = 0, x ∈ ∂[0, 1]2,

16



h2 α = 2 α = 1.5 α = 1
8.3e-03 2.8e-04 6.4e-04 1.5e-03
3.8e-04 3.7e-05 9.4e-05 2.4e-04
4.4e-05 1.1e-05 2.9e-05 7.6e-05

Table 1: This table shows the relative error in the finite difference approximation
to the solution of (−∆)α/2u = xy(1 − x)(1 − y) for various values of h. The
error appears to be O(h2), which is the rate predicted in Theorem 1.

h2 α = 2 α = 1.5 α = 1
8.3e-03 2.8e-04 2.7e-04 2.7e-04
3.8e-04 3.7e-05 3.7e-05 3.7e-05
4.4e-05 1.1e-05 1.1e-05 1.1e-05

Table 2: This table shows the relative error in the finite difference approximation
to the solution of (−∆)α/2(1−∆)1−α/2φ = xy(1− x)(1− y) for various values
of h. The error appears to be O(h2), which is the rate predicted in Theorem 1.

where the underlying discretisation is a standard finite difference scheme. The
exact solution to this equation is

u(x, y) =
∞∑

n=1

∞∑
m=1

16(1 + (−1)n+1 + (−1)n+m + (−1)m+1)
n3m3π8(n2 +m2)(π2(n2 +m2))α/2

sin(nπx) sin(mπy).

Table 1 shows the sup–norm errors
∥∥∥Pnu−A

−α/2
n Pnw

∥∥∥
∞

/
‖Pnw‖∞ for different

values of α and different mesh sizes h. As was predicted in Theorem 1, the error
in the MTT approximation appears to be O(h2). It is also worth noting that,
while it remains of the correct order, the error appears to increase as α decreases.

6.2 Case study 2: The Riesz-Bessel equation on the unit
square

In this section, we will consider the solution to the Riesz-Bessel fractional dif-
ferential equation on the unit square,

(−∆)α/2(I −∆)β/2u(x) = h(x), α ∈ (0, 2), α+ β ∈ [0, 2]x ∈ (0, 1)2, α > 0,

φ(x) = 0, x ∈ ∂[0, 1]2.

We will again employ a finite difference approximation to the Laplacian as the
basis of the MTT. One again, we expect the errors to be O(h2). This prediction
is confirmed in Table 2.
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Figure 2: The hierarchy of meshes used to test the FV-MTT. The meshes have
28, 126, 472 and 1863 nodes respectively.

6.3 Case study 3: revisiting the FPE and the Riesz-Bessel
equation

In this case study, we applied the finite volume MTT (FV-MTT) to the problems
considered in the previous two case studies. The results of this for a sequence
of meshes, shown in Figure 2, are given in Table 3. The FV-MTT appears to
converge at the same rate as the standard finite volume method in all of these
cases. It is interesting to note, however, that as α decreases in the FV-MTT
approximation to the fractional Poisson equation, the quality of the solution
degrades when compared to larger values of α. The error in the FV-MTT
approximation is shown in Figure 3. The error is clearly the largest near the
boundaries. This phenomenon will be discussed more thoroughly in the next
section.

6.4 Case Study 5: The effect of boundary behaviour

We conclude this section with an example in which the FV-MTT does not
behave as expected. We will focus on a variant of Case Study 1

(−∆)α/2u(x, y) = 10, x ∈ (0, 1)2, α > 0,

φ(x) = 0, x ∈ ∂[0, 1]2

The function w(x) = 10 is not in D(A) = H2
0 ((0, 1)2) as it does not satisfy

the Dirichlet boundary conditions. Therefore, we do not expect the bound in
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N Poisson Fractional Poisson Riesz-Bessel
α = 1.5 α = 1 α = 1.5 α = 1

28 4.18e-2 3.91e-2 4.69e-2 4.12e-2 4.05e-2
126 1.25e-2 1.30e-2 2.18e-2 1.24e-2 1.24e-2
472 2.16e-3 5.00e-3 1.18e-2 2.18e-3 2.19e-3
1863 8.43e-4 1.91e-3 6.71 e-3 8.48e-4 8.53e-4

Table 3: This table shows the relative error in the FV-MTT approximation to
the solution of (−∆)α/2(1−∆)1−α/2φ = xy(1− x)(1− y), for various values of
α and for various mesh sizes. The error appears in all cases appears to decay
at the same rate as the standard finite volume approximation to the Poisson
equation.
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Figure 3: The log scale error of the FV-MTT approximation to the fractional
Poisson equation with α = 1. It can be clearly seen that the error is worst near
the boundaries.
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Figure 4: The FV-MTT approximation to the fractional Poisson equation for
varying values of α. As α decreases, the solution becomes very steep at the
boundaries.

Theorem 1 to hold.
The exact solution to this equation is

u(x, y) =
16
π2

∞∑
n=1

∞∑
m=1

sin((2n+ 1)πx) sin((2m+ 1)πy)
(2n+ 1)(2m+ 1)(π2((2n+ 1)2 + (2m+ 1)2))α/2

.

We note that the exact solution is not differentiable at the boundaries of the unit
square. Hence, we expect there to be regions of rapid change on the boundaries.
The computed solution on the finest mesh is plotted in Figure 4 for varying
values of α. It can be seen that, as α decreases, the solution becomes very
steep at the boundaries. The corresponding relative error is shown in Figure 5.
The errors, which are reported in Table 4 appear to be of similar order in the
interior, however the steep boundary behaviour is not adequately captured for
small α.
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Figure 5: The log scale error of the FV-MTT approximation to the fractional
Poisson equation for various values of α. The error is clearly largest near the
boundaries and decreasing α appears to exacerbate this effect.

N α = 2 α = 1.5 α = 1 α = 1/2
28 4.18e-2 3.91e-2 4.69e-2 5.02 e-2
126 1.25e-2 1.3e-2 2.18e-2 2.82e-2
472 2.16e-3 5e-3 1.18e-2 2.27e-2
1863 8.43e-4 1.91e-3 6.71e-3 2.19e-2

Table 4: This table shows the relative error in the FV-MTT approximation to
the solution of (−∆)α/2φ = 10 for various values mesh sizes. The quality of the
computed solution clearly deteriorates as α decreases.
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7 Conclusion

In this paper, we have considered the matrix transfer technique (MTT) for
solving fractional–in–space partial differential equations. We were able to prove,
under quite general conditions, that the asymptotic rate of convergence of the
MTT is, in theory, the same as the convergence of the underlying discretisation.
When considering the finite volume matrix transfer technique (FV-MTT), it
was found that the behaviour of the solution at the boundary of the domain
may impede the convergence of the method. This suggests that a posteriori
analysis of the FV-MTT is required in order to build adaptive methods.
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[29] M. Ilić, I.W. Turner, and V. Anh, Numerical solution of the fractional
poisson equation using an adaptively preconditioned lanczos method, Jour-
nal of Applied Mathematics and Stochastic Analysis, Submitted (2008).
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