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ABSTRACT 

 

In this thesis novel feedback attitude control algorithms and attitude estimation 

algorithms are developed for a three-axis stabilised spacecraft attitude control 

system. The spacecraft models considered include a rigid-body spacecraft 

equipped with (i) external control torque devices, and (ii) a redundant reaction 

wheel configuration. The attitude sensor suite comprises a three-axis 

magnetometer and three-axis rate gyroscope assembly. The quaternion 

parameters (also called Euler symmetric parameters), which globally avoid 

singularities but are subject to a unity-norm constraint, are selected as the 

primary attitude coordinates. There are four novel contributions presented in 

this thesis. 

 

The first novel contribution is the development of a robust control strategy for 

spacecraft attitude tracking maneuvers, in the presence of dynamic model 

uncertainty in the spacecraft inertia matrix, actuator magnitude constraints, 

bounded persistent external disturbances, and state estimation error. The novel 

component of this algorithm is the incorporation of state estimation error into 

the stability analysis. The proposed control law contains a parameter which is 

dynamically adjusted to ensure global asymptotic stability of the overall closed-

loop system, in the presence of these specific system non-idealities. A stability 

proof is presented which is based on Lyapunov’s direct method, in conjunction 

with Barbalat’s lemma. The control design approach also ensures minimum 

angular path maneuvers, since the attitude quaternion parameters are not unique. 

 

The second novel contribution is the development of a robust direct adaptive 

control strategy for spacecraft attitude tracking maneuvers, in the presence of 

dynamic model uncertainty in the spacecraft inertia matrix. The novel aspect of 

this algorithm is the incorporation of a composite parameter update strategy, 

which ensures global exponential convergence of the closed-loop system. A 

stability proof is presented which is based on Lyapunov’s direct method, in 

conjunction with Barbalat’s lemma. The exponential convergence results 

provided by this control strategy require persistently exciting reference 
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trajectory commands. The control design approach also ensures minimum 

angular path maneuvers. 

 

The third novel contribution is the development of an optimal control strategy 

for spacecraft attitude maneuvers, based on a rigid body spacecraft model 

including a redundant reaction wheel assembly. The novel component of this 

strategy is the proposal of a performance index which represents the total 

electrical energy consumed by the reaction wheel over the maneuver interval. 

Pontraygin’s minimum principle is applied to formulate the necessary 

conditions for optimality, in which the control torques are subject to time-

varying magnitude constraints. The presence of singular sub-arcs in the state-

space and their associated singular controls are investigated using Kelley’s 

necessary condition. The two-point boundary-value problem (TPBVP) is 

formulated using Pontrayagin’s minimum principle. 

 

The fourth novel contribution is an attitude estimation algorithm which 

estimates the spacecraft attitude parameters and sensor bias parameters from 

three-axis magnetometer and three-axis rate gyroscope measurement data. The 

novel aspect of this algorithm is the assumption that the state filtering 

probability density function (PDF) is Gaussian distributed. This Gaussian PDF 

assumption is also applied to the magnetometer measurement model. 

Propagation of the filtering PDF between sensor measurements is performed 

using the Fokker-Planck equation, and Bayes theorem incorporates 

measurement update information. The use of direction cosine matrix elements 

as the attitude coordinates avoids any singularity issues associated with the 

measurement update and estimation error covariance representation. 
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Chapter 1 Introduction 
 

This thesis considers the design of spacecraft attitude maneuvers and attitude 

estimation algorithms for general spacecraft mission applications. The specific 

dynamic model considered is a rigid-body spacecraft equipped with external 

control torque devices, and an attitude sensor suite. The latter consists of 

direction-type sensors (for example digital sun sensors, which provide a unit-

vector measurement in the direction of the sun, or a magnetometer, which 

measures the earth’s magnetic field) and a three-axis rate gyroscope assembly 

that measures the spacecraft angular rates. The main objective of this thesis is to 

investigate and propose novel robust adaptive control methods for rigid-body 

spacecraft attitude maneuvers. A secondary objective is to investigate and 

propose novel state estimation techniques for spacecraft attitude estimation. 

 

This research is motivated by the future class of scientific spacecraft missions 

such as the NASA Beyond Einstein mission proposals
1
 that will address specific 

questions regarding the structure and evolution of the universe. To meet 

stringent scientific objectives future spacecraft will require orders of magnitude 

improvements in guidance, navigation, and control (GNC) performance, which 

will in turn require radical advances in GNC spacecraft hardware and 

algorithms. The attitude control requirements will consist of high accuracy 

autonomous pointing and rapid slewing capabilities in the presence of 

environmental and systematic errors. The attitude estimation requirements will 

include the capability to provide high accuracy state estimates to the control 

algorithm so that rapid estimation filter convergence can occur even if there is 

poor filter initialisation. Additional attitude control system requirements may be 

introduced if there is a need to have coordinated control of multiple spacecraft 

in formation
2
, which may well be necessary to satisfy the science objectives of 

missions such as LISA and Constellation X
1
. The formation GNC objectives can 

only be achieved when each spacecraft is carefully controlled to respond to the 

formation coordination commands. The control requirements are further 

complicated by the fact that each spacecraft will generally have a unique 

disturbance environment and actuator/sensor configuration. 
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1.1 Spacecraft Attitude Maneuvers 

The general problem of large-angle three-axis spacecraft attitude maneuvers for 

rigid-body spacecraft has been the subject of considerable research
16,22,34,39

. The 

application of optimal control theory
8-12

 in the design of feedback and open-loop 

controls for attitude maneuvers is extensively addressed in the literature
13-16

. 

The optimality criterion is dependant on the specific actuator configuration and 

spacecraft mission requirements, but useful cost functions include maneuver 

time, fuel consumption for gas jet thruster actuators, energy consumption for 

reaction wheel actuators, and more general indices such as spacecraft angular 

rate parameters. The optimal control may be computed using either open-loop or 

state feedback (closed-loop) methodologies. The closed-loop approach
13,14

 

requires the solution of the Hamilton-Jacobi-Bellman partial differential 

equation which suffers from the curse of dimensionality but offers the advantage 

of a robust closed-loop control framework. The open-loop approach
15,16

 requires 

the solution of a nonlinear two-point boundary value (TPBV) problem
10
 using 

iterative numerical methods
11
. In practice however open-loop maneuvers are 

sensitive to spacecraft dynamic model uncertainty and external disturbance 

torques, and are not suited to on-board real-time implementation. The design of 

state-feedback controls for performing spacecraft attitude maneuvers based on 

Lyapunov stability theory
17-20

 has been extensively addressed in the literature
21-

28
. These methods result in suboptimal designs that are compatible with real-

time onboard implementation and ensure closed-loop stability of the overall 

system. More recently the interest has been in the application of robust adaptive 

control theory
35-38

 to rigid spacecraft attitude maneuvers. Robustness in this 

context refers to the fact that the system is designed to perform in essentially the 

same manner despite the presence of system perturbations. These perturbations 

are due to dynamic model uncertainty, external bounded disturbance torques, 

sensor measurement error (state estimation error), and actuator failures. The 

effect of control torque magnitude and rate constraints must also be accounted 

for in the control law design. It is possible to design attitude maneuvers by 

combining open-loop reference trajectories using optimal control principles with 

state-feedback control laws using Lyapunov stability theory using a dynamic 

model inversion approach
39
. 
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Parameterisation of the spacecraft attitude (orientation of the spacecraft body-

fixed coordinate frame with respect to a suitable inertial frame) is a fundamental 

issue in the design of feedback control laws for spacecraft attitude maneuvers
3-5
. 

Shuster
6
 presents a survey of various attitude parameterisations with their 

associated kinematic equations. The selection of a minimal attitude coordinate 

set such as the Euler angles leads to singularities in both the attitude parameters 

and kinematic equations at specific spacecraft orientations. This singular 

behaviour may be avoided by introducing an additional redundant parameter 

such as in the Euler symmetric parameters (also called the unit quaternion). 

Whilst several parameter options are available to the control engineer for 

designing attitude maneuvers the unit quaternion and the modified Rodrigues 

parameters (MRP) are the most commonly implemented attitude coordinates. 

Quaternions offer a globally non-singular description of spacecraft attitude 

which is free of geometric singularities; successive rotations are represented by 

a convenient quaternion multiplication rule, and they are well-suited to onboard 

real-time implementation since no trigonometric functions are present in the 

rotation matrix or kinematic equations. Since the MRP represent a minimal 

coordinate attitude description they exhibit singular behaviour as the spacecraft 

orientation approaches a complete rotation (±360 degrees). Both the quaternion 

and the MRP parameterizations are based on the Euler axis/angle parameter set 

which follows directly from Euler’s theorem on the rotational motion of rigid 

bodies
5
. As a result each coordinate set is non-unique which follows from the 

non-uniqueness property of the Euler axis/angle parameters. This limitation 

must be accounted for in the spacecraft attitude maneuver design to ensure that 

a minimum angular path maneuver is performed. This has been addressed in the 

literature for the MRP by switching between a standard parameter set and 

shadow set
7
. Maneuvers designed using sliding mode control

29-31
 account for 

this non-uniqueness by introducing an additional term in the definition of the 

switching surfaces
32,34

. In general, however, minimum angle maneuver design 

has not been addressed explicitly in the literature for standard Lyapunov based 

attitude maneuver design. Wie and Barba
22
 proposed an additional signum 

function term in the feedback control law design which results in a minimum 

angle maneuver but a suitable Lyapunov stability analysis was not performed. 
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An important practical design issue related to spacecraft control law design is 

control torque magnitude and rate saturation limits. Robinett et al.
24
 developed a 

saturated function which rigorously enforces torque magnitude limits and was 

shown to be effective in numerical simulations. Although the controller 

transitions continuously at a touch point on the saturation boundary the major 

limitation of this work is the absence of a Lyapunov stability analysis showing 

convergence of the trajectory tracking errors to zero. In a related work Wie and 

Lu
25
 considered the problem of attitude regulation maneuvers subject to rate-

gyroscope and actuator constraints. A cascade-saturation controller was 

proposed which preserves the direction of the commanded torque. Akella et al.
26
 

considered the design of an angular rate independent control law for attitude 

tracking maneuvers utilising a passivity-based filter which rigorously enforces 

actuator magnitude and rate-saturation constraints.  Implementation of the 

controller, however, requires knowledge of the spacecraft inertia parameters and 

the control gains are restricted by complex inequality constraints. References 27 

and 28 consider the problem of torque magnitude constraints by introducing a 

control law structure such that the commanded control torque cannot exceed the 

limits regardless of the state trajectory.  

 

Throughout the mission lifetime spacecraft operate in the presence of various 

disturbances including environmental torques (gravitational, aerodynamic, solar 

radiation, and magnetic) and non-environmental torques (for example mass 

expulsion torque). Cristi, et al.
40
 considered the problem of disturbance rejection 

in a adaptive control framework by introducing an additional term in the 

commanded control torque. This term however is discontinuous across the 

sliding manifold and may cause control torque chattering which in turn may 

excite un-modelled high frequency attitude dynamics. Crassidis, et al.
34
 

proposed a saturation function to replace the function in Reference 40 to reject 

disturbance torques and to compensate for spacecraft inertia parameter 

uncertainty. This control law results in bounded trajectory tracking errors lying 

in a saturation boundary layer surrounding the sliding manifold. A σ-

modification technique was applied to the model reference adaptive control 

(MRAC) of nonlinear systems by Akella and Junkins
41
 which resulted in 
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bounded attitude trajectory tracking and parameter estimate errors. Schaub et 

al.
42
 proposed a direct adaptive control framework for simultaneous disturbance 

estimation and rejection but the concept is limited to the case of constant 

magnitude disturbances. Boskovic et al.
43
 considered an observer-based strategy 

for asymptotic rejection of state-dependant disturbances and different types of 

actuator failures. The main limitation of the proposed approach is that the 

disturbance estimates contain a sign function which may result in control 

chattering. In Reference 44 asymptotic tracking of a reference trajectory in the 

presence of disturbances is demonstrated without controller modification under 

the assumption of asymptotically decaying disturbances. More recently the 

literature has addressed techniques for asymptotic reference trajectory tracking 

whilst simultaneously rejecting bounded external disturbances. Boskovic, et 

al.
27
 proposed a control law for robust attitude tracking maneuvers that takes 

into account control input saturation explicitly and achieves effective 

compensation of external disturbances with upper bounded magnitude and 

dynamic model uncertainty. A continuous approximate signum function is 

implemented as the controller with a time-varying control parameter which is 

adjusted dynamically to guarantee bounded closed-loop signals and asymptotic 

stability of the trajectory tracking errors. In a related work Wallsgrove and 

Akella
28
 investigate a smooth analog of the variable structure design approach 

using continuous hyperbolic tangent functions which rigorously enforces 

control torque limits and achieves rejection of external disturbances. References 

27 and 28 assume that the available control torque authority is sufficient to 

simultaneously track the reference trajectory motion and reject any external 

disturbance torques. The major drawback of implementing the dynamic control 

parameter approach is that the parameter may approach zero prior to 

convergence of the tracking errors therefore preventing an asymptotic stability 

result.  

 

In the design of practical spacecraft attitude control systems the dynamic model 

is subject to uncertainty such as spacecraft inertia parameter uncertainty and 

external disturbances. The inertia uncertainty may be due to measurement error 

during the pre-launch testing phase, changes in the overall spacecraft system 

configuration (such as retrieval of a spacecraft by the space shuttle), or fuel 
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usage during the mission. Junkins et al.
39
 and Cristi

40
 et al. investigated a direct 

adaptive control framework for attitude maneuvers in the presence of inertia 

parameter uncertainty. The main limitation of this approach is that the algorithm 

does not ensure convergence of the adaptive inertia parameter estimates to their 

true values despite asymptotic converge of the trajectory tracking errors. In a 

related work Ahmed et al.
45
 designed a periodic reference maneuver which 

allows identification of the spacecraft inertia parameters. Accurate estimation of 

the inertia parameters is possible using an indirect adaptive control scheme
46
 

which replaces the parameter update law with a real-time parameter estimation 

algorithm such as an extended Kalman filter. More recently the problem of 

spacecraft inertia uncertainty has been addressed in the literature by designing 

asymptotically stable feedback control laws which are independent of the inertia 

parameters
27,28

.  

 

An important practical issue in the design of spacecraft attitude maneuvers is the 

real-time estimation of the controller state variables based on sensor 

measurements. The problem of asymptotic tracking of spacecraft maneuvers in 

the presence of state estimation error has not been addressed in the literature and 

therefore remains an open problem. Singla et al.
47
 developed a MRAC approach 

using a dead-zone technique to ensure boundedness of the model parameter 

estimates in the presence of sensor measurement error.  More recently the 

interest has been in combined nonlinear observer and feedback control law 

design which ensures asymptotic stability of the closed-loop system under the 

assumption of perfect attitude sensor measurements (absence of measurement 

noise)
43,44,50-53

. Attitude maneuvers in the presence of constant bias on the rate 

gyroscope measurements were investigated by Thienel and Sanner
49
 based on an 

early work by Boskovic et al.
48
. The observer is coupled with a nonlinear 

feedback control law based on the certainty equivalence principle and 

Lyapunov’s direct method demonstrates asymptotic stability of the closed-loop 

system. In a related work Thienel and Sanner
50
 proposed a nonlinear observer to 

estimate the angular rates of a non-cooperative target spacecraft during 

rendezvous-capture mission scenario. Boskovic et al.
43
 Stepanyan and 

Hovakimyan
44
 considered an observer-based strategy within a direct adaptive 

control framework. A fundamental limitation of nonlinear observer based 
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control law design is that the asymptotic stability properties of the trajectory 

tracking errors are compromised when the effect of realistic sensor models 

(sensor measurement noise resulting in non-zero bounded state estimation error) 

are considered. 

 

To increase the autonomy of spacecraft mission operations an attitude control 

system needs to be capable of accommodating a diverse class of actuator 

failures without substantially affecting the performance of the overall system. 

Tandale and Valasek
52
 investigated a fault tolerant MRAC strategy for the 

problem of actuator failures and control effector damage on redundantly 

actuated systems. The approach incorporates an actuator failure model in the 

controller so that different types of actuator failures can be identified as a 

change in the parameters of the failure model. Boskovic et al.
43
 considered 

MRAC fault tolerant controller design while simultaneously rejecting state 

dependant disturbances using a variable structure observer. 

 

The first novel contribution of this thesis is the development of feedback control 

strategy which provides global asymptotic trajectory tracking in the presence of 

sensor measurement error in addition to spacecraft inertia uncertainty, control 

torque magnitude limits, and external bounded disturbances. This controller 

may be considered an extension of the research by Wallsgrove and Akella
28

 for 

rigid spacecraft attitude regulation maneuvers in which dynamic model 

uncertainty and torque magnitude limits are accounted for in the controller 

structure, and disturbance rejection of bounded persistent external disturbances 

is achieved using a dynamic control gain parameter. A stability analysis is 

performed using Lyapunov’s direct method
17-20

, in conjunction with Barbalat’s 

lemma
19

. The novel control law proposed in this thesis considers the effect of 

additional state-dependent and upper bounded disturbance terms introduced 

into the Lyapunov stability analysis by state estimation error terms in the 

feedback control law and control gain parameter update law. A dynamic control 

gain parameter is implemented to ensure global asymptotic convergence of the 

trajectory tracking errors to zero and boundedness of the dynamic control 

parameter. Restrictions on the selection of the controller parameters are 

evaluated based on the expected reference trajectory motion, external 
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disturbance environment, and state estimation filter performance. 

Recommendations are also proposed regarding future research investigations. 

 

The second novel contribution of this thesis is the development of an adaptive 

control strategy for spacecraft attitude tracking maneuvers. This controller may 

be considered an extension of the research by Cristi et al.
40

 in which spacecraft 

inertia uncertainty is accounted for using a parameter update law. A bounded-

gain-forgetting (BGF) composite parameter update strategy
19

 is proposed, 

which ensures global exponential convergence of the trajectory tracking errors 

and parameter estimation errors to zero. This strategy utilises an auxiliary filter 

based on the exponential forgetting least-squares concept
19

. A stability analysis 

is performed using Lyapunov’s direct method
17-20

, in conjunction with Barbalat’s 

lemma
19

. The exponential convergence results provided by this control strategy 

require persistently exciting
36,44,96

 reference trajectory commands. Intelligent 

excitation
96

 of the reference commands is also considered to ensure exponential 

smooth tracking of the reference trajectory. 

 

The third novel contribution of this thesis is the development of an optimal 

control strategy for spacecraft attitude maneuvers. It is assumed that the rigid-

body spacecraft is equipped with a redundant reaction wheel configuration. This 

optimal strategy may be considered an extension of the research by Skaar and 

Kraige
97,98

 based on a minimum-power-squared performance index. In this 

thesis, a performance index is proposed which represents the total electrical 

energy consumed by the reaction wheels over the attitude maneuver interval. 

Pontryagin’s minimum principle
9
 is used to formulate the necessary conditions 

for optimality, in which the control torques are subject to time-varying 

magnitude constraints. Necessary conditions for the optimality of singular sub-

arcs and associated singular controls are established using Kelley’s necessary 

condition
8
. The two-point boundary value problem (TPBVP) is formulated using 

Pontryagin’s minimum principle. 
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1.2 Spacecraft Attitude Estimation 

The application of state estimation theory
53-56

 in designing spacecraft attitude 

filters has been extensively studied
60,74,81,84,92

. Crassidis et al.
57
 presents of 

current attitude estimation methods in the design of aerospace systems.  

 

The most efficient attitude filters process direction-type noisy measurement 

vectors (for example digital sun sensor unit-vector measurement in the direction 

of the sun) using a single-point least-squares deterministic estimation method
58-

64
. Attitude estimation based on the cost function for minimization proposed by 

Wahba in 1965 has become known as the Wahba’s Problem
58
. Various solutions 

have been proposed to the Wahba problem in the literature
59
 including the 

QUEST method
60
, singular value decomposition method

61
, and the Euler Q-

method algorithm
62
. More recently Mortari

63
 proposed an optimal linear attitude 

estimator based on the Gibbs vector attitude parameterisation which uses a 

different cost function to the Wahba function. Shuster
64
 proved that the QUEST 

estimate of the spacecraft attitude is equivalent to a maximum likelihood 

approach for a specific measurement model. Although least-squares based filters 

are computationally fast and generally do require any information regarding 

sensor noise parameters or filter initialisation parameters, they are only capable 

of estimating the spacecraft attitude parameters and not the angular rate 

parameters. Furthermore state estimates are only available at discrete 

measurement points. More recently recursive techniques
65-67

 have been 

developed which aim to incorporate QUEST-type measurement updates into a 

recursive filtering strategy to improve filter robustness and estimate additional 

parameters such as the spacecraft angular rates and sensor biases. Other 

techniques for estimating the spacecraft angular rates based on direction-type 

measurements without resorting to numerical differentiation of the attitude 

parameter estimates have also been proposed in the literature
68-72

. 

 

Sequential state estimation methods
53-56

 are capable of full-state estimation 

(attitude and angular rate parameters) which for spacecraft applications are 

typically based on a combination of direction-type sensor measurements and 

rate gyroscope measurements. The gyroscope measurement may be replaced 

with a dynamic model for the spacecraft angular rates in certain applications. 
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The sequential estimation technique of Kalman filtering applied to spacecraft 

attitude estimation has been extensively studied in the literature
73-81

 and offers 

improved estimation accuracy compared to deterministic least squares methods 

as well as imbedded covariance matrix information. The fact that all three 

parameter attitude representations are singular at certain orientations
6
 has led to 

the implementation of the globally nonsingular quaternion representation in 

Kalman filtering applications. The quaternion parameters are subject to a unity 

norm constraint which must be enforced in the Kalman filter design. The 

multiplicative extended Kalman filter (EKF) parameterises the global 

quaternion with a four element global quaternion whist using a three element 

representation for the attitude estimation errors used in the filter update stage
74
. 

The reduced dimension error representation also avoids any issues associated 

with singularity of the estimation error covariance matrix. The major limitations 

of the EKF is the inherent assumption that the estimation state-space is linear 

and filtering probability density function (PDF), process noise, and sensor 

measurement noise are Gaussian distributed.  

 

Various methods have been developed to overcome the inherent limitations of 

the extended Kalman filter
77,81,84

. Vathsal
77
 proposed a nonlinear EKF based on 

star tracker and rate gyroscope information which includes second-order 

corrections to the state propagation and measurement residual equations. More 

recently the unscented EKF
81
 was proposed for spacecraft attitude estimation 

which uses a set of carefully selected sample points to map the mean and 

covariance of the filtering PDF more accurately than the linearisation 

assumption of the standard EKF. Although the unscented EKF leads to faster 

convergence from poor initial filter conditions than the multiplicative EKF the 

zero and first order moments are not sufficient statistics to represent a general 

filtering PDF. A more general representation is possible using particle filtering 

methods
56,82-84

 (also called sequential Monte Carlo methods) which refer to a set 

of algorithms implementing a recursive Bayesian model using simulation-based 

methods. Particle filtering implements a general numerical filtering PDF model 

represented by a discrete support structure and allows general non-Gaussian 

process noise and sensor measurement noise models. Oshman and Carmi
84
 

proposed a particle filter for attitude quaternion estimation which employs a 
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genetic algorithm to the estimate the gyroscope bias parameters to improve the 

algorithm efficiency. This filter was compared with various implementations of 

the EKF and demonstrated superior performance in terms of filter convergence 

time and robustness with respect to filter initial conditions. Limitations exists 

however with particle filtering methods which currently limit their applicability 

in practical systems
85
 including approximations introduced to the optimal 

(minimum variance) filtering PDF support weights, the resampling procedure 

required to decrease particle degeneracy, and the large number of particles 

required to accurately represent the filtering PDF which requires large 

computational capabilities. Recently nonlinear observers have been applied to 

the spacecraft attitude estimation problem
48-51

. This approach is based on 

Lyapunov’s direct method
17
 and has the advantage of guaranteed convergence of 

the state estimation error to zero from any initial condition using ideal sensor 

measurement models. 

 

The optimal solution of the nonlinear attitude filtering problem requires 

propagation of the state variable filtering PDF conditioned on the sensor 

measurement history
53
. It is well known that all practical filters are 

approximations to this ideal scenario. Finite dimensional filters have been 

proposed in the literature
53,86-91

 which apply the Fokker-Planck equation 

(Kolmogorov’s forward equation) to propagate a non-Gaussian PDF between 

measurements and incorporate measurement information using Bayes theorem. 

More recently Markley
92
 developed an orthogonal filter which uses this 

approach based on earlier research
93-95

. The filtering PDF proposed by Markley 

consists of first-order terms in the attitude parameters, second-order terms and 

below in the bias parameters, and first-order correlation terms between the 

attitude and bias parameters. 

 

The fourth novel contribution of this thesis is the development of an attitude 

estimation algorithm which provides real-time estimates of the spacecraft 

attitude parameters and sensor bias parameters. This algorithm may be 

considered a generalisation of the research by Markley
92

 and Yau and Yau
94

, and 

is based on an attitude sensor suite consisting of a three-axis magnetometer and 

a three-axis rate gyroscope assembly. The key contribution is the 
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implementation of a Gaussian filtering probability density function (PDF) as 

proposed in Reference 94 consisting of second-order terms and below in the 

attitude parameters and sensor bias parameters, and first-order correlation 

terms. A key objective will be to investigate whether the addition of the second-

order attitude parameter terms improves the real-time state estimates based on 

the maximum aposteriori probability (MAP) principle. Nonlinear ordinary 

differential equations for the propagation of the filtering PDF parameters 

between measurements are developed using the Fokker-Planck equation, and 

the update of the filtering PDF parameters to incorporate the information in the 

magnetometer measurements is performed using Bayes theorem. Limitations of 

the attitude estimation algorithm are discussed and recommendations for future 

research are proposed. 
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Chapter 2 Literature Review 

2.1 Introduction 

The two spacecraft mission requirements for an attitude control system (ACS) 

are (i) the ability to perform spacecraft attitude estimation, and (ii) the ability to 

perform spacecraft attitude maneuvers, based on a specific sensor/actuator 

configuration. The configuration detail is driven by the spacecraft mission and 

payload pointing accuracy requirements. In more complex spacecraft systems 

involving rigid and flexible elements additional optical pointing capabilities are 

required. It is envisioned that future spacecraft missions will require several 

orders of magnitude improvement in pointing and estimation capabilities, which 

are anticipated to come from revolutionary advances in algorithms and hardware 

design. Furthermore many future missions are anticipated to consist of multiple 

spacecraft flying in formation, requiring coordinated control techniques. For 

such systems the design of the attitude control system must be sufficiently 

general as each individual spacecraft in the formation may be subject to distinct 

environmental disturbance torques, sensor measurement noise, and hardware 

configurations. This literature review will provide a survey of current 

algorithms relating to rigid spacecraft attitude maneuvers and attitude 

estimation.  

 

A key area of current interest in spacecraft attitude maneuver design is the 

incorporation of robust attitude controller characteristics such that highly 

accurate pointing and rapid maneuver capabilities are achieved in the presence 

of dynamic model uncertainty, control input saturation, bounded disturbance 

torques, sensor measurement noise, and control system failures. Key areas of 

current interest in spacecraft attitude estimation are improved robustness with 

respect to filter initialisation parameters, improved filter convergence rates, and 

generalisation of the process and sensor measurement noise models. In addition 

to these core issues, there is significant interest in (i) the selection of a suitable 

attitude parameter set to describe the spacecraft orientation, and (ii) the selection 

of the actuator type, which in turn impacts the spacecraft dynamic model.  
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The spacecraft attitude may be represented by several attitude 

parameterisations
A5-A8,A11,A13

 including the direction cosine matrix, Euler angles, 

Euler axis/angle parameters, quaternions, Gibbs vector, and the modified 

Rodrigues parameters. The most common attitude parameter sets used in 

spacecraft attitude control system design are the quaternion (also called Euler 

symmetric parameters) and the modified Rodrigues parameters (MRP). 

Quaternions offer the advantage of (i) offering a globally non-singular 

description of spacecraft attitude which is free of geometric singularities, (ii) 

being able to represent successive rotations by a convenient quaternion 

multiplication rule, and (iii) being well-suited to onboard real-time 

implementation (since no trigonometric functions are present in the rotation 

matrix or kinematic equations). The quaternion parameterisation is, however, 

non-unique, a fact which follows from the non-uniqueness property of the Euler 

axis/angle parameter set. Consequently the quaternion q(t) and its negative 

counterpart –q(t) describe identical physical spacecraft orientations. This 

ambiguity must be accounted for in the spacecraft attitude maneuver design to 

ensure that a minimum angular path maneuver is realised. The modified 

Rodrigues parameters represent a minimal coordinate attitude description and 

accordingly exhibit singular behaviour as the spacecraft orientation approaches 

a complete rotation (±360 degrees). Singularities are avoided by switching 

between the standard MRP set σσσσ(t) corresponding to q(t) and a shadow set σσσσs(t)  

corresponding to –q(t). This switching condition also ensures minimum angular 

path attitude maneuvers. Ultimately the selection of a suitable set of attitude 

parameters is left to the attitude control system designer.  

 

The specific actuators selected for the attitude control system dictate the 

dynamic equations of motion
A1-A9,A11

. Control systems are either equipped with 

external control torque devices such as PWPM jet thrusters in which Euler’s 

equations of motion apply, or internal torque devices (momentum exchange 

devices) such as reaction/momentum wheels and control moment gyroscopes in 

which a modified version of Euler’s equations of motion apply. Both thrusters 

and control moment gyroscopes are capable of rapid attitude maneuvers, 

however the operation of the control moment gyros is complex and the thrusters 
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are not suitable for precision attitude stabilisation due to their discontinuous 

operation. Both reaction/momentum wheels and control moment gyros are 

capable of precision attitude control due to their smooth operating mode but 

require regular momentum dumping
A5
.  

 

Specification of the reference trajectory (desired spacecraft angular rates and 

attitude parameters) is important in designing spacecraft attitude maneuvers. 

The reference trajectory may be a general rotating reference motion (for 

example the WMAP mission all-sky scanning control mode
A15

), may be derived 

from real-time navigation information (for example earth-pointing spacecraft), 

or may be derived under optimal control considerations (for example time-

optimal or fuel-optimal maneuvers). In general when the desired spacecraft 

motion has a fixed inertial orientation the attitude maneuver is called attitude 

regulation, while for tracking a rotating reference motion it is called attitude 

tracking. Control techniques may be applied to design a feedback control law 

such that the actual spacecraft attitude motion asymptotically tracks the 

reference trajectory. An alternate approach is dynamic model inversion
A14

 which 

solves for a nominal open-loop control torque history corresponding to a 

specified reference trajectory, and a feedback control law is designed to 

determine perturbations to the open-loop torque commands to ensure closed-

loop asymptotic stability.  

 

2.2 Optimal Control Theory 

2.2.1 Introduction 

Bryson presents an historical overview of optimal control theory in the design of 

aerospace systems
B39

. Betts presents a survey of numerical methods for 

trajectory optimisation
B44

 including dynamic programming, multiple shooting, 

and direct transcription methods. A number of textbooks on the general subject 

of optimal control are available
B1-B13

. The application of optimal control theory 

to spacecraft attitude maneuvers has been extensively studied over the last thirty 

years with the specific cases of fuel-optimal, time-optimal, and actuator-energy-

optimal cases proving most useful in practical attitude control system design. It 

is important to note that no single performance index can encompass all mission 
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objectives. For example minimum-time and minimum-fuel requirements are 

competing performance measures. The spacecraft designer has the option to 

compute the optimal control torque history in either open-loop or closed-loop 

form. The former requires application of the necessary optimality conditions to 

formulate a two-point boundary-value problem (TPBVP) which is solved using 

a numerical optimization algorithm such as a multiple shooting algorithm
B9
. 

This approach however is not suitable for real-time onboard implementation and 

the pre-computed open-loop torque is generally sensitive to dynamic model 

errors and external disturbance torques. The result of the design process is a 

nonlinear open-loop state trajectory with a corresponding open-loop control 

torque history. Lyapunov stability techniques are typically used to develop a 

closed-loop feedback control law capable of asymptotically tracking the open-

loop trajectory in the presence of spacecraft dynamic model uncertainty and 

external disturbance torques. The later closed-loop approach requires solution of 

the Hamilton-Jacobi-Bellman (HJB) partial differential equation which is 

generally difficult to solve but offers the advantage of state feedback control 

which is generally more robust to dynamic model errors and disturbances.  

 

State-of-the art techniques for open-loop spacecraft trajectory are algorithms 

which apply the direct transcription method to decompose an original optimal 

control problem into a nonlinear programming (NLP) problem
B48

. Sequential 

quadratic programming (SQP) is used to solve the NLP problem to determine 

the optimal control history for a specific nonlinear performance index with 

nonlinear state and/or control variable constraints. This is achieved by using a 

sequence of quadratic programming (QP) sub-problems where the constraints of 

each QP sub-problem are local linearisations of the constraints in the original 

problem, and the objective function of the sub-problem is a local quadratic 

approximation to the Lagrangian function. Direct transcription has been applied 

to detumbling a spacecraft with three-axis external torques
B31

, the design of 

optimal finite-thrust spacecraft transfer trajectories in an inverse-square 

gravitational field
B29

, and the design of minimum-time, low-thrust interplanetary 

transfer trajectories
B38

. Kim and Mesbahi
B46

 proposed a semi-definite 

programming algorithm for the rigid-body spacecraft reorientation problem 

which accounts for sun-avoidance constraints. 
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2.2.2 General Optimal Control 

A compressive treatment of the open-loop optimal control problem for 

asymmetric rigid-body spacecraft rest-to-rest attitude maneuvers with 

continuous external control torques was given by Junkins and Turner
B15,B16

. The 

necessary conditions for optimality are generated using Pontrayagin’s minimum 

principle
B1
 based on a performance index involving the integral of a quadratic 

term in the control torques. Pontryagin’s principle has the advantage that torque 

constraints are implicitly accounted for in the optimality analysis. A novel 

relaxation process is proposed which provides a more robust and efficient 

numerical solution to the two-point boundary value problem. Vadali and 

Junkins
B20,B22

 studied optimal rotational maneuvers for a rigid spacecraft 

equipped with reaction wheels. Pontrayagin’s principle is used to formulate the 

two-point boundary value problem for various performance indices involving 

the control torque and its higher-order derivatives leading to TPBVP which are 

solved using the method of particular solutions. The design of optimal feedback 

controls for spacecraft slew maneuvers was first investigated by Debs and 

Athans
B14

 who presented an exact analytical solution of the HJB equation for 

the special case of quadratic performance index and linear controls. Dwyer and 

Sena
B19

 solved the problem for rigid spacecraft with continuous external torques 

where the cost-to-go functional is expanded as a polynomial in the states, 

substituted into the HJB equation and solved recursively to generate the optimal 

control torque history. An alternate approach was provided by Carrington and 

Junkins
B21

 in which the open-loop controls are expanded as a polynomial in the 

states and recursively solved for the polynomial coefficients. This approach uses 

Pontryagin’s minimum principle to formulate the necessary conditions based on 

a quadratic performance index in the state and control variables. This idea was 

extended to the momentum transfer case of internal torques generated using 

reaction wheels in Reference B24. Optimal feedback control for rigid spacecraft 

equipped with reaction wheels was also investigated by Dwyer
B25

 in which a 

linearising feedback transformation is applied to the state equations to produce 

an equivalent linear quadratic regulator (LQR) optimal control problem 

resulting in state feedback (closed-loop) controls. Tsiotras
B42

 generalised this 

result using the passivity properties of the state equations to formulate closed-

form partial solutions to the HJB equation for an axially symmetric rigid 
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spacecraft with two control torques. More recently Vadali and Sharma
B49

 

presented a dynamic programming approach based on a power series expansion 

of the performance index, for determining finite-time optimal feedback 

controllers for nonlinear systems with nonlinear terminal constraints. 

 

2.2.3 Fuel Optimal Control 

The problem of fuel-optimal attitude maneuvers was investigated for the Space 

Shuttle
B26

 based on a linearised dynamic model for a three-axis reaction-control-

jet actuator configuration. This Optimised Rotation-Axis (ORA) trajectory 

algorithm solves a two-point boundary value problem for fuel-optimal fixed-

end-time maneuvers. A feedforward/feedback control structure is used to 

generate additional feedback jet commands to compensate for deviations from 

the nominal open-loop trajectory due to external disturbance torques. Seywald 

et al.
B35

 extended this work by providing a complete analysis of the singular 

control cases for fuel-optimal control. Liu and Singh
B40

 studied a weighted 

fuel/time performance index for optimal rest-to-rest maneuvers. 

 

2.2.4 Time Optimal Control 

A comprehensive survey of time-optimal attitude maneuvers over the period 

1960-1990 for both rigid-body and flexible spacecraft is provided in Reference 

B36. Junkins, et al.
B17

 developed a time-optimal attitude magnetic maneuver 

scheme for reorientation of the spin-axis for near-earth spin-stabilised spacecraft 

using Pontryagin’s minimum principle. This algorithm was the first on-orbit 

implementation of an optimal control derived from Pontryagin’s principle and 

was implemented on the NOVA family of navigation spacecraft. Direct 

application of the necessary conditions for optimality led to a twelfth-order 

nonlinear two-point boundary value problem which was reduced to fourth-order 

using a two-timescale approximation for real-time implementation. The optimal 

control is generated as a nonlinear bang-bang controller for the electromagnets. 

Another application of time-optimal control was investigated by Burdick et 

al.
B23

 for pointing instruments at small celestial bodies such as comets and 

asterioids during high-velocity spacecraft encounters. The control scheme 

involves using a specified parabolic switching curve during high spacecraft 
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angular rates and a straight switching line when the attitude error estimates are 

within the controller deadband. The requirement is to select the parabolic 

switching line to minimise the transient response time resulting from dust 

impacts and other disturbances.  

 

Li and Bainum
B28

 studied minimum-time rest-to-rest maneuvers for an inertially 

symmetric rigid spacecraft with three-axis external control torques using an 

approximate continuation-type approach to determine optimal state and control 

trajectories. Bilimoria and Wie
B32

 generalised this result to show that the 

eigenaxis (Euler rotation axis) rotation maneuver is not time-optimal in general 

and that the optimal solution is a bang-bang control torque structure with a 

significant nutational component. A multiple shooting algorithm is implemented 

to solve the TPBVP generating the optimal trajectories. A quasi-closed-form 

solution to the time-optimal rigid spacecraft reorientation problem was proposed 

by Byers and Vadali
B33

 using a piecewise solution to the state transition matrix. 

This approach provides analytical solutions for the approximate switching 

functions of the open-loop control torques. Seywald and Kumar
B34

 extends 

Reference B32 by investigating all possible singular optimal controls and 

higher-order necessary conditions for optimality of finite-order singular arcs are 

established using Goh’s transformations of the associated accessory minimum 

problem. Shen and Tsiotras
B45

 studied the minimum-time reorientation problem 

for a spacecraft equipped with two independent controls mounted perpendicular 

to the spacecraft symmetry axis. All possible structures including both singular 

and non-singular arcs are considered and an efficient method for numerically 

solving the optimal control problem based on a cascaded scheme using both 

direct and indirect methods is developed. A novel method of designing torque 

shaped reference maneuvers of the near-minimum-time (bang-bang) or near-

minimum-fuel (bang-off-bang) type was proposed by Bell and Junkins
B37

. In 

this approach the instantaneous switching is replaced by controllably sharp 

spline switching to reduce excitation of flexible degrees of freedom. A dynamic 

inversion approach is used to develop a Lyapunov stable trajectory tracking law 

to provide robustness in the presence of model uncertainty and bounded 

disturbance torques. One major limitation of time-optimal control for spacecraft 

is that instantaneous switching in the bang-bang controls can excite flexible 
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body modes or unmodelled dynamics. As an alternative to the dynamic 

inversion approach Hurtado and Junkins
B43

 proposed a novel performance index 

comprising a weighted combination of elapsed time and the first derivative of 

the control torques which results in smooth near-minimum-time optimal 

controls. 

 

2.2.5 Energy Optimal Control 

The problem of actuator-energy-optimal attitude maneuvers was studied by 

Skaar and Kraige
B18

 who considered the single-axis slew maneuver of a rigid 

spacecraft equipped with a single reaction wheel. A performance index 

involving the integral of the square of the power consumed by the wheel motors 

was applied to ensure a unique control torque history. 

 

2.2.6 Miscellaneous Optimal Control 

Schaub et al.
B45

 developed a universal attitude penalty function for which the 

spacecraft optimal control problem solutions are independent of attitude 

parameterisation and the function senses the shortest rotational path to the 

equilibrium state. 

 

2.3  Lyapunov Stability Theory 

2.3.1 Introduction 

The application of Lyapunov’s direct method
C1-C12

 in designing rigid spacecraft 

attitude maneuvers has been extensively studied over the last thirty years. A 

suitable feedback control torque and positive definite Lyapunov function 

(similar to a performance index) must be selected by the spacecraft designer 

user such that the first-order time derivative of the Lyapunov function is 

negative definite. In the event that the Lyapunov derivative is negative semi-

definite then LaSalle’s invariance principle
C1,C12

 or the more recent Mukherjee, 

R., and J.L. Junkins
C19

 theorem may be applied to conclude global asymptotic 

stability with respect to the equilibrium state. Another powerful theorem which 

may be applied when the Lyapunov derivative is negative semi-definite is 

Barbalat’s theorem
C4
 which has been used extensively in adaptive control. In 
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contrast to open-loop optimal control theory the result of the design process is a 

nonlinear state feedback (closed-loop) control law capable of asymptotically 

tracking a general time-varying reference trajectory. Lyapunov based control 

laws are generally robust with respect to sources of model error such as 

dynamic model errors and bounded disturbances. In practice these sources 

comprise the ability of the spacecraft attitude motion to perfectly track the target 

reference motion. Prominent sources of bounded disturbances include 

environmental disturbance torques such as the gravity-gradient torque, 

miscellaneous external torques (for example from mass expulsion processes), 

and uncertain dynamic model terms. Another source of dynamic model error is 

sensor measurement error which is the result of attitude estimation error in the 

state variables of the feedback control law. The problem of torque saturation 

limits for simple magnitude and/or rate constraints imposes a physical constraint 

to the modelled system which must be explicitly accounted for in the Lyapunov 

analysis. The objective of state-of-the art analyses is to develop a Lyapunov 

stable control law which is sufficiently robust in the presence of model errors, 

bounded disturbances, sensor measurement error, and actuator failures.  

 

Other control law design issues are apparent in practice, such as the requirement 

for apriori knowledge of certain model parameters and bounds on the reference 

motion, as well as any restricting assumptions used in the global asymptotic 

stability proof. A theoretical limitation of Lyapunov’s direct method is that there 

is no clearly defined method available to formulate the Lyapunov function. For 

the application of spacecraft attitude maneuvers this is generally determined 

from kinetic and potential energy arguments. Oh et al.
C18

 proposed a method of 

simplifying the control law design process by applying the work-energy rate 

principle from analytical dynamics to directly generate the Lyapunov function 

derivative. A novel application of Lyapunov stability theory was proposed by 

Tsiotras, et al.
C36

 consisting of an integrated power/attitude control system for a 

spacecraft equipped with reaction/momentum wheels and thrusters. In this 

concept the momentum wheels are used as attitude control actuators providing 

reference trajectory tracking torques and as energy storage mechanisms which 

power to the spacecraft by accelerating/deaccelerating the wheels to either store 

or release kinetic energy. To demonstrate the maturity of the Lyapunov based 
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attitude control approach consider the Clementine lunar orbiter launched in 

1994. The attitude control law for this approach was designed by Creamer et 

al.
C25

 using extensions of the methodology presented in Reference C15. A novel 

aspect is the incorporation of an integral term in the perturbative feedback 

control law intended to null the reaction wheel motor friction-induced steady-

state pointing errors. The reference attitude trajectory is a near-minimum-fuel 

profile producing bang-off-bang type reference control torques using the model 

inversion technique. Real-time attitude estimates of the state variables obtained 

from a combination of star camera and rate gyroscope sensor measurements are 

used directly in the perturbation feedback control law. 

 

2.3.2 Standard Lyapunov Control 

The first investigation into Lyapunov based attitude slew maneuver design for 

rigid spacecraft with continuous external torques was performed by 

Mortensen
C13

 with the feedback control law linear in the spacecraft angular 

momenta and attitude quaternion error. The Lyapunov function consists of the 

spacecraft kinetic energy and a quadratic term in the quaternion error 

representing a pseudo potential energy term. Wie and Barba
C15

 studied the same 

problem using a pulse-width pulse-frequency modulated (PWPM) reaction jet 

thruster actuator configuration, and introduced a signum function term in the 

feedback controls to ensure that the closest quaternion equilibrium point is 

selected during the attitude maneuver. Vadali and Junkins
C14

 generalised the 

previous results for the case of attitude tracking maneuvers both with external 

control torques and reaction wheel actuators. Wen and Kreutz-Delgado
C17

 

investigated several globally asymptotically stable control laws with a common 

structure of proportional-derivative feedback plus some feedforward terms 

which are either model-independent, provide Coriolis torque compensation, or 

provide adaptive compensation. The problem of minimum rotational path 

maneuvers for the quaternion attitude parameterisation is addressed using a 

novel Lyapunov function candidate. The main limitation of this work is that the 

asymptotic stability proofs require restrictive assumptions in terms of the 

feedback control gains and apriori model information including the spacecraft 

inertia parameters and reference model trajectory. A dynamic inversion method 
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for designing Lyapunov stable control laws was studied by Junkins
C6
 for the 

application of multi-body robotic space manipulators. This approach generates 

an open-loop reference control torque corresponding to a specific open-loop 

reference trajectory, and a perturbation feedback control torque is designed 

using Lyapunov stability theory to ensure closed-loop asymptotic stability in the 

ideal case of zero model errors. The design of feedback control laws based on 

the modified Rodrigues parameter kinematic representation was first 

investigated by Tsiotras
C21,C26

 where a Lyapunov function with a kinetic energy 

term and natural logarithmic term in the attitude parameters leads to a feedback 

control law which is linear in the spacecraft angular rates and attitude 

parameters. A novel method of designing torque shaped reference maneuvers of 

the near-minimum-time (bang-bang) or near-minimum-fuel (bang-off-bang) 

type was proposed by Bell and Junkins
C22

. In this approach the instantaneous 

control switching is replaced by controllably sharp spline switching to reduce 

excitation of flexible degrees of freedom and unmodelled dynamics. A dynamic 

inversion approach is used to develop a reference trajectory tracking 

perturbative feedback control law to provide robustness in the presence of 

model errors and bounded disturbances. Schaub, et al.
C27

 studied this problem 

for a landmark-tracking spacecraft equipped with reaction wheels. The concept 

of the switching between modified Rodrigues parameter sets is applied to ensure 

minimal rotational path maneuvers. A non-smooth feedback control law was 

developed by Tsiotras and Luo
C30

 which significantly reduces the amount of 

control torque effort required to perform rest-to-rest attitude maneuvers for 

initial conditions near the equilibrium state. Hall, Tsiotras, and Shen
C31

 also 

considered attitude slew maneuvers using the MRP coordinates but did not 

investigate parameterisation uniqueness. More recently, Wie et al.
C37

 developed 

Lyapunov based control laws for agile rigid spacecraft equipped with control 

moment gyros capable of rapid retargeting and fast transient response. 

 

2.3.3 Control Gain Selection 

A time-consuming practical reality of Lyapunov control law design is finding 

suitable control gain matrices such that the system reorientation time satisfies 

spacecraft mission requirements. Wie, et al.
C16

 showed that for exact spacecraft 
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inertia parameters a rest-to-rest slew maneuver about the Euler axis may be 

performed through suitable design of the feedback control gain matrices in the 

linear feedback controls. Robustness of the attitude slew maneuver with respect 

to spacecraft inertia parameter uncertainty is also investigated.  Schaub et al.
C27

 

applied the root locus technique to design suitable feedback control gain 

parameters based on a linearised form of the MRP kinematic equations and 

principal-axis representation of the spacecraft inertia matrix. 

 

2.3.4 Control Torque Limits 

An important practical issue in the design of Lyapunov based feedback control 

laws is the presence of control torque saturation limits which has only been 

studied recently for spacecraft attitude maneuvers. Robinett et al.
C29

 used 

Lyapunov’s direct method to design stable saturated control laws for general 

nonlinear systems which transitions continuously across the saturation 

boundary. This method however does not ensure at least a negative semi-

definite Lyapunov derivative during certain periods of torque saturation which 

may lead to system instability. Wie and Lu
C23

 and Wie et al.
C37

 developed a 

cascade saturation control law for rigid spacecraft slew maneuvers capable of 

handling actuator saturation, slew rate limits, and control bandwidth limits. 

Akella, et al.
C40

 proposed a passivity-based feedback control law for attitude 

tracking of a rigid spacecraft subject to actuator magnitude and rate constraints. 

The stability proof is accomplished using a novel Lyapunov function candidate 

which includes hyperbolic trigonometric functions and a passive filter variable 

synthesised through a first-order stable differential equation. Inequality 

constraints involving apriori information such as upper bounds on the initial 

spacecraft angular rates and reference trajectory profiles govern the selection of 

the feedback control gains. State-of-the-art methods
C38,C42

 approach the control 

torque saturation problem by carefully designing the structure of the feedback 

control law such that its magnitude cannot exceed the saturation limit. 

 

2.3.5 Disturbance Rejection 

Another important practical issue in Lyapunov control law design for spacecraft 

attitude maneuvers is the effect of bounded external disturbance torques and 
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dynamic model uncertainty. The model uncertainty terms may be considered an 

external disturbance in the Lyapunov analysis or may be addressed using an 

adaptive control approach. Solutions to this problem have only been proposed 

recently by Boskovic et al.
C38

 and Wallsgrove and Akella
C42

. Both approaches 

implement a time-varying control gain parameter in the control law which is 

governed by a first-order nonlinear differential equation. The control parameter 

is accounted for in the Lyapunov stability analysis by adding a positive-definite 

term to the nominal Lyapunov function candidate. The only assumption in the 

analysis is that the available control torque authority is sufficient to 

simultaneously track the reference trajectory motion and reject any external 

disturbances. 

 

2.3.6 Sensor Measurement Noise 

The problem of attitude tracking maneuvers in the presence of sensor 

measurement noise remains an open problem. The robustness of Lyapunov 

based control laws with respect to sensor measurement noise have been 

demonstrated in References C38 and C40 based on unfiltered raw sensor 

measurements. At present, however, the effect of sensor measurement noise 

manifesting as state estimation error needs a rigorous Lyapunov stability 

analysis to show asymptotic stability. 

 

2.3.7 Object Avoidance 

In many space missions a basic mission requirement is the ability to perform 

frequent attitude maneuvers in order to retarget payload instrumentation. For 

missions with sensitive payloads such as cryogenically cooled infrared 

telescopes the maneuver must be achieved whilst simultaneously avoiding 

pointing the payload towards the sun or other infrared bright regions of the sky. 

McInnes
C20

 proposed a novel Lyapunov function which includes a Gaussian 

artificial potential function to ensure bright object avoidance. Halbani
C34

 

developed a more complicated control algorithm capable of simultaneous bright 

object avoidance and maintenance of communication antenna contact with a 

ground station. 
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2.3.8 Angular Rate Independent Control 

The problem of spacecraft attitude maneuver design without spacecraft angular 

rate feedback has emerged as an area of research within the past 

decade
C24,C32,C35,C39,C40

. This framework is motivated by practical considerations 

in which angular rate measurements may not be available due to cost 

limitations, implementations constraints, or rate gyroscope failures. All existing 

solutions are based on the passivity principle which results in the construction 

of a dynamic filter driven by the attitude parameters thus avoiding numerical 

differentiation of noise-corrupted attitude signals. More recently Subbarao and 

Akella
C39

 proposed a novel velocity-free proportional-integral control law which 

is a generalisation of the existing passivity-based approaches. 

 

2.3.9 Actuator Failures 

To ensure increased autonomy of future spacecraft, their guidance, navigation 

and control systems must be capable of accommodating a large class of 

subsystem component failures and control effector damage without substantially 

affecting the performance and stability of the overall system. Boskovic et al.
C41

 

developed a decentralised failure detection, identification, and reconfiguration 

system to accurately detect different failures and appropriately reconfigure the 

control laws to maintain the closed-loop stability properties even in the presence 

of state-dependant disturbances. In a similar work Boskovic
C43

 developed a 

theoretical framework for the retrofit reconfigurable control of nonlinear 

aerospace systems that compensates for control effector damage. 

 

2.4 Sliding Mode Control Theory 

Sliding mode control
D1-D5,D7,D9

 (also called variable structure control) is an 

attractive alternative to Lyapunov-based spacecraft attitude maneuvers. 

Although the closed-loop stability analysis is performed identically for both 

types of control using Lyapunov’s direct method, sliding mode control results in 

a reduced-order dynamic model and offers high levels of robustness in the 

presence of parameter uncertainty and dynamic model errors (most significantly 

characterised by bounded external disturbances). In the context of sliding mode 

control an additional term is generally added to the feedback control law to 
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counteract residual external torques arising from dynamic model uncertainty 

such as spacecraft inertia parameter uncertainty and bounded disturbances. 

  

Excellent literature surveys of sliding mode control in industrial and aerospace 

applications are provided in References D5, D7, and D9. The design of 

spacecraft attitude maneuvers using sliding mode theory was first investigated 

by Vadali
D6
 for a rigid-body spacecraft equipped with three-axis continuous 

external control torques. This work proposes a novel method for designing 

analytical sliding surfaces based on minimising a quadratic performance index 

in the spacecraft angular rates and attitude quaternion. An important feature of 

this sliding vector design process is the incorporation of an additional signum 

function term in the scalar component of the quaternion tracking error. This 

term accounts for the non-uniqueness of the quaternion attitude parameterisation 

thus allowing minimum path rotational maneuvers to be performed. Vadali 

developed a continuous feedback control law to force the system trajectory 

towards the sliding manifold and maintain ideal motion along the sliding 

manifold using the equivalent control method. Additional terms were added to 

the controls to account for the effect of dynamic model uncertainty and external 

disturbance torques. Dwyer and Sira-Ramirez
D8
 motivated by Reference D6, 

proposed a general sliding-mode scheme based on nonlinear sliding manifolds 

and the Gibbs vector parameterisation of the spacecraft attitude. This design 

procedure, however, results in discontinuous controls which must be replaced 

with saturated controls to avoid chattering in the sliding dynamics at the 

expense of attitude tracking error. Chen and Lo
D10

 presented an approach similar 

to Vadali
D6
 and Dwyer and Sira-Ramirez

D8
 based on the Gibbs vector attitude 

parameters. Although Vadali
D6
 indirectly demonstrated via the kinematic 

equations that ideal motion on the sliding manifold is equivalent to zero 

quaternion and angular rate tracking error, Reference D10 proved this result 

using Lyapunov stability theory. An extension of this work is presented in 

Reference D11 where a modified version of standard sliding-mode control 

called smoothing model-reference sliding-mode control is proposed. This new 

scheme offers superior attitude tracking performance but the primary limitation 

of this work is that the minimum angular path maneuver issue has not been 

resolved due to the non-negative constraint on the scalar component of the 
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attitude quaternion corresponding to principal axis rotations up to 180 degrees. 

Crassidis and Markley
D12

 were the first researchers to apply the modified 

Rodrigues parameters in the context of sliding-mode based attitude maneuvers; 

however their work did not consider the issue of minimum rotational path 

maneuvers.  

 

Robinett and Parker
D13

 applied sliding-mode control to attitude tracking 

maneuvers for a spacecraft equipped with reaction wheels and proposed a novel 

method of selecting the matrix coefficient of the discontinuous disturbance 

accommodation portion of the feedback control law in order to satisfy general 

performance requirements. Kim et al.
D14

 combined standard sliding-mode 

control theory with disturbance accommodating control (signal synthesis 

adaptive control) for spacecraft attitude tracking maneuvers. The combined 

concept is more effective than traditional sliding-mode control since the steady-

state pointing errors are reduced in the presence of external disturbance torques 

and the robustness of sliding mode is guaranteed in the range of actuator 

capability. In a similar work Kim and Crassidis
D15

 conducted a comparative 

study of the disturbance accommodating sliding mode control
D14

 and time-

optimal control for a spacecraft equipped with PWPF modulated thrusters. More 

recently Crassidis et al.
D17

 generalised the work of Vadali
D6
 to design feedback 

controls which provide global asymptotic tracking of spacecraft maneuvers 

using either external control torques or reaction wheel internal torques. The 

novel aspects of this research work are that the multiplicative error quaternion 

definition is used for the reference trajectory tracking errors, and that the 

thickness of the sliding mode boundary layer in the presence of model errors 

and bounded external disturbances is analytically determined as a function of 

the dynamic model parameters, control gain parameters, and magnitude of the 

bounded disturbances. 

 

An important practical aspect of sliding mode based spacecraft attitude 

maneuvers is accounting for the presence of control torque saturation. Boskovic, 

et al.
D16,D18

 recently proposed an asymptotically stable control law for robust 

attitude stabilisation that takes into account control input saturation explicitly 

and achieves effective compensation of external disturbances and dynamic 
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model uncertainty. This work, however, only provides a Lyapunov stability 

analysis for spacecraft detumbling maneuvers (stabilisation of the spacecraft 

angular rates only) and the resulting feedback controls are discontinuous, which 

may lead to control chattering
D2
. These limitations were removed in a 

subsequent work by Boskovic
D19

 where a continuous version of the sliding 

mode control design approach of Reference D18 is applied based on a full state 

Lyapunov analysis. 

 

2.5 Adaptive Control Theory 

2.5.1 Introduction 

The application of adaptive control theory
E1-E11

 in designing rigid spacecraft 

attitude maneuvers has been extensively studied over the last twenty years. This 

literature survey will concentrate on direct adaptive control in which the 

uncertain dynamic model parameters are updated using a parameter update law 

as opposed to indirect adaptive control in which the parameters are recursively 

estimated using a state estimator (for example a least-squares or Kalman filter 

algorithm). Robust adaptive control seeks to ensure system parameter stability, 

and even asymptotic stability, in the presence of torque saturation, bounded 

disturbances, sensor measurement error, and actuator failures. 

 

2.5.2 Standard Adaptive Control 

All spacecraft dynamic models are subject to uncertainty such as spacecraft 

inertia matrix uncertainty and environmental external disturbances. The inertia 

uncertainty may be due to measurement error during the pre-launch testing, 

changes in the overall spacecraft system configuration (such as retrieval of a 

spacecraft by the space shuttle), or fuel usage during the mission. For spacecraft 

equipped with thrusters it is assumed that the inertia parameters are constant 

throughout a spacecraft attitude maneuver despite the consumption of fuel. The 

purpose of adaptive control is to account for the dynamic model uncertainty 

appearing in the feedback control law by extending the effective state vector to 

include these uncertain parameters. The stability analysis is performed using 

Lyapunov’s direct method such that direct adaptive control may be considered 
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an extension of standard Lyapunov control. Asymptotic convergence of the 

attitude tracking errors is possible despite the inertia parameter estimates not 

converging to their true values. Indirect adaptive control seeks not only to 

stabilise the system but to provide accurate parameter estimates as well. In 

addition to accounting for a single source of spacecraft dynamic model errors 

the design of robust adaptive controls which account for control torque 

saturation, bounded disturbances, and sensor measurement error have attracted 

considerable attention within the last ten years. 

 

The first study of spacecraft attitude maneuvers based on direct adaptive control 

was performed by Slotine and Di Benedetto
E12

. This work considered a 

Lyapunov function consisting of positive terms in the sliding vector tracking 

error and the parameter estimation error. The stability analysis, however, did not 

account for uncertainty in the axial inertia parameters of the reaction wheels. A 

direct adaptive controller for the International Space Station (ISS) modelled as a 

collection of rigid-body segments was developed by Parlos and Sunkel
E13

. The 

dynamic model consists of a rigid-body spacecraft equipped with momentum 

exchange devices linearised about an equilibrium point of a gravity-gradient 

stabilised spacecraft. A full state feedback controller is developed incorporating 

gain-scheduled adaptation of the attitude gains to ensure acceptable attitude 

tracking performance in the presence of significant mass property variations. 

Boussalis et al.
E14

 and Cristi et al.
E16,E18 

also considered the problem of 

spacecraft inertia uncertainty using a direct adaptive control approach. An 

indirect adaptive control approach based on recursive least squares estimation 

was also considered and the necessary conditions for convergence of the 

parameter estimates were derived. Sheen and Bishop
E17

 investigated two 

nonlinear adaptive control laws based on feedback linearisation for the attitude 

control and momentum management of the International Space Station equipped 

with control moment gyroscope actuators. The first parameter update law was 

driven by the tracking error for the first controller whilst information from both 

the tracking errors and estimation errors were used in the second controller. This 

work was extended in Reference E21 where an indirect adaptive nonlinear 

controller was developed. The control law is based on the theory of feedback 

linearization under a canonical state transformation of the original nonlinear 
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system. Accurate real-time spacecraft inertia parameter estimates are provided 

using an extended Kalman filter implementation with probing signals 

introduced to enhance observability. A novel method for nonlinear adaptive 

control of spacecraft near-minimum-time maneuvers of a rigid spacecraft 

equipped with reaction wheels was proposed by Junkins et al.
E22

. Open-loop 

control torques are developed which are cubic spline approximations of the near 

optimal minimum-time control torques in order to reduce the effects of flexible 

mode excitation. This approach allows the imposition of maximum saturation 

torque constraints. An inverse dynamics approach is used to solve for the open-

loop maneuver control law and an adaptive feedback control law solves for the 

perturbations to the nominal open-loop torque commands that will ensure 

asymptotic tracking of the reference motion in the presence of spacecraft inertia 

parameter uncertainty (the uncertainty in the reaction wheel axial uncertainty is 

not considered). Ahmed et al.
E26

 also studied rigid spacecraft attitude tracking 

maneuvers using external control torques and developed sufficient conditions to 

be satisfied by the reference attitude motion, such that the inertia parameter 

estimates convergence to their true values. Schaub et al.
E29,E32

 developed a 

nonlinear adaptive control law for spacecraft attitude regulation which yields 

linear closed-loop dynamics in the presence of large inertia and external 

disturbance errors. Their research was motivated by the earlier work of Paielli 

and Bach
E15

. This approach allows classical linear control methodologies such 

as root-locus plots to be applied to the tracking error dynamics in accordance 

with design requirements such as control bandwidth and settling time. A 

limitation of this work is that the external disturbance torque is assumed 

constant. An integrated power/attitude control system based on indirect adaptive 

control was developed by Yoon and Tsiotras
E33

 for spacecraft attitude tracking in 

the case of uncertain spin-axis direction of variable speed control moment 

gyroscopes based on an earlier work by Tsiotras et al.
E31

. A novel adaptive 

feedback controller only requiring spacecraft angular rate information was 

proposed by Miwa and Akella
E34

. 
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2.5.3 Inertia-Independent Control Laws 

Whilst traditional adaptive control seeks to directly account for dynamic model 

uncertainty using a parameter update law or real-time parameter estimation 

algorithm, more recent methods propose feedback controls which are 

independent of the spacecraft inertia parameters. Although these controllers 

cannot be strictly classified as adaptive controllers they do ensure that the 

spacecraft attitude maneuvers are robust to this form of dynamic model error as 

well as providing a simplified Lyapunov stability analysis environment. Inertia-

independant globally asymptotically stable control laws have been proposed by 

Joshi et al.
E19

, Boskovic et al.
E27,E30,E38

, and Wallsgrove and Akella
E40

. 

 

2.5.4 Control Torque Limits 

The problem of control torque saturation limits in the context of adaptive 

control has only been studied within the last ten years. Akella et al.
E24

 

considered a model reference adaptive control (MRAC) formulation with a 

boundary layer concept to account for actuator saturation. Tandale et al.
E36

 

developed a saturated control law based on a dynamic inversion approach. 

Lavretsky
E37,E43

 proposed a µ-modification approach for stable adaptive control 

in the presence of control input constraints based on a linear dynamic model. 

More recently Boskovic et al.
E38

, and Wallsgrove and Akella
E40

 proposed a 

solution to the torque magnitude constraint problem by designing the feedback 

control law according to a bounded structure. 

 

2.5.5 Disturbance Rejection 

Traditional methods of direct adaptive control in the presence of bounded 

external disturbance torques include the dead-zone, parameter projection, σ-

modification, switched σ-modification, e1-modification techniques, or the 

concept of persistent excitation
E5,E10,E11

. The σ-modification technique was 

applied to the MRAC of nonlinear systems by Akella and Junkins
E25

 which 

resulted in bounded attitude tracking error and parameter estimate errors. A 

problem associated with the σ-modification technique is a phenomenon known 

as bursting in which the tracking error may assume values higher than the order 
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of the disturbance for a short period of time. Subbarao and Junkins
E35

 

investigated a method of suppressing bursting behaviour using a dead-zone 

modification technique and applied the control algorithm to track agile aircraft 

maneuvers. Di Gennari
E20,E23

 applied direct adaptive control to spacecraft 

attitude maneuvers including the effects of the gravity-gradient disturbance 

torque. Schaub et al.
E32

 also proposed a direct adaptive control framework for 

disturbance rejection but this research is limited to constant magnitude 

disturbances. State-of-the-art techniques
E38,E40

 are capable of asymptotic 

reference trajectory tracking whilst simultaneously rejecting bounded 

disturbance torques acting on the spacecraft. This is achieved by introducing a 

time-varying control law gain which effectively increases the dimension of the 

Lyapunov stability analysis. 

 

2.5.6 Sensor Measurement Error 

The problem of adaptive spacecraft attitude maneuvers in the presence of sensor 

measurement noise is an active area of research. Boskovic et al.
E28

 considered 

attitude regulation maneuvers in the presence of a constant gyroscope bias on 

the angular rate measurements. The bias identification and state estimation 

processes was performed using a nonlinear adaptive observer. Singla et al.
E42

 

developed a MRAC approach to  spacecraft rendezvous and docking maneuvers 

for a rigid spacecraft equipped with reaction wheels. A dead-zone technique is 

introduced to ensure boundedness of the model parameter estimates in the 

presence of sensor measurement error sources. 

 

2.5.7 Miscellaneous 

Other miscellaneous open problems in adaptive control of spacecraft maneuvers 

have been addressed in the literature. Tandale and Valasek
E41

 derived a 

structured adaptive dynamic model inversion based control law for the problem 

of fault tolerance to actuator failures on redundantly actuated nonlinear model 

of an F-16 type aircraft. This approach incorporates an actuator failure model in 

the controller formulation so that an actuator failure can be identified as a 

change in the parameters of the failure model. 
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2.6 State Estimation Theory 

The application of state estimation theory
F1-F5

 in designing spacecraft attitude 

filters has been extensively studied over the last thirty years. Crassidis et al.
F6
 

presents an excellent survey of spacecraft attitude estimation methods in the 

design of aerospace systems. This literature review will survey only a small 

representative sample of the available literature on attitude filtering. 

 

The most efficient attitude filters process direction-type measurement vectors 

(for example digital sun sensor or magnetometer) only using deterministic least-

squares estimation methods
F7-F10

. Although these filters are computationally fast 

and do require any information regarding sensor noise parameters or filter 

initialisation parameters, they are only capable of estimating the spacecraft 

attitude parameters and not the angular rate parameters. In recent times various 

techniques have emerged to also estimate the spacecraft angular rates based on 

direction-type measurements
F11-F15

 without resorting to a numerical 

differentiation of the attitude parameter estimates or sensor measurements. 

Sequential state estimation methods
F1-F5

 are capable of full-state estimation 

(attitude and angular rate parameters) based on a combination of direction-type 

sensor measurements and rate gyroscope measurements. The sequential 

estimation technique of Kalman filtering has been extensively studied over the 

last thirty years and offers improved estimation accuracy compared to 

deterministic least squares methods as well as imbedded covariance matrix 

information. The basic form of the Kalman filter
F16

 has been generalised to the 

extended Kalman filter (EKF) for nonlinear aerospace applications
F17-F23

 to 

include the multiplicative EKF, the additive EKF, and more recently the 

unscented EKF which provides improved robustness for poor initial filter 

conditions. The main limitations of Kalman filtering methods are the 

assumption that the estimation state-space is linear and the attitude filtering 

condition probability density function (CPDF), process noise, and sensor 

measurement noise are all Gaussian distributed. Methods have been developed 

to improve the accuracy of the EKF by including high-order terms in the 

estimation state-space
F24

. 
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Poor performance of Kalman filtering methods due to their inherent 

assumptions has led to development of nonlinear filters, most recently the 

unscented EKF and particle filtering methods, at the expense of increased 

computational burden. Markley
F27

 developed an orthogonal filter based on 

earlier related research
F25,F26,F28

 for a spacecraft equipped with a three-axis 

gyroscopes and three-axis magnetometer. This filter propagates a non-Gaussian 

filtering PDF using the Fokker-Planck equation (Kolmogorov’s forward 

equation) and the state variable update stage is performed using Bayes theorem. 

The filtering PDF is a non-Gaussian function of the attitude matrix elements 

(redundant attitude parameters) and sensor bias parameters. The state estimates 

are extracted from the filtering PDF using a suitable numerical minimisation 

algorithm
F29,F30

. The results of the orthogonal filter were very similar to those 

generated using an EKF.  

 

Particle filtering methods
F5,F31-F34

 (also called sequential Monte Carlo methods) 

refer to a set of algorithms implementing a recursive Bayesian model using 

simulation-based methods. Cheng and Crassidis
F35

 investigated particle filtering 

for spacecraft attitude estimation for an attitude sensor suite comprising a three-

axis gyroscopes and star camera. The attitude filtering PDF is represented by a 

discrete support structure which continuously adapts in shape during recursive 

Bayesian estimation as opposed to a fixed functional form PDF whose 

parameters adapt. Particle filters allow flexible non-Gaussian process and sensor 

measurement noise distributions. Rapoport and Oshman
F36

 studied particle filter 

methods and applied Rao-Blackwellization technique to reduce the size of the 

particle set for state estimation. Oshman and Carmi
F37 

extended the results of 

Reference F35 to include an improved particle resampling filter stage and a 

comprehensive covariance analysis. A novel genetic algorithm is implemented 

to estimate the gyroscope bias parameters to improve the efficiency of the 

estimator. Simulation results of the particle filter show superior performance in 

terms of filter convergence time and robustness to filter initialisation compared 

to the Kalman filter variants. Although particle filters eliminate many of the 

restrictive assumptions associated with the Kalman filter, the issues of 

approximations to the optimal (minimum variance) filtering PDF support 
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weights and correct selection of a resampling procedure to decrease particle 

degeneracy are open problems. 
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Chapter 3 Spacecraft Attitude Maneuvers Using 
Lyapunov Stability Theory 

3.1 Introduction 

This chapter will consider the design of feedback control laws based on 

Lyapunov’s direct method
46
 for rigid spacecraft attitude maneuvers which must 

track a general reference trajectory motion. In Section 3.2, the kinematic and 

dynamic equations of motion for attitude tracking maneuvers are presented. In 

Sections 3.3 & 3.4, a complete Lyapunov stability analysis is performed for the 

controller developed by Wie and associates
15,16

 which ensures a minimum 

angular path to the reference trajectory. In Section 3.5, the effect of control 

torque limits in the stability analysis is considered according to Reference 29, 

while the effect of control torque and angular rate limits is addressed in Section 

3.6 according to Reference 23. Section 3.7 addresses control torque limits and 

bounded disturbance torques according to Reference 38. 

 

In Section 3.8 the research by Wallsgrove and Akella
42
 is extended for attitude 

tracking maneuvers and to incorporate the effects of state estimation error in the 

stability analysis. This is one of the major novel contributions to existing 

literature provided in this thesis. The proposed control strategy provides global 

asymptotic trajectory tracking in the presence of sensor measurement error in 

addition to spacecraft inertia uncertainty, control torque magnitude limits, and 

external bounded disturbances. Dynamic model uncertainty and torque 

magnitude limits are accounted for in the controller structure and disturbance 

rejection of bounded persistent external disturbances is achieved using a 

dynamic control gain parameter. The novel control law proposed in this chapter 

considers the effect of additional state-dependent and upper bounded 

disturbance terms, introduced into the stability analysis by state estimation error 

terms in the feedback control law and control gain parameter update law. A 

dynamic control gain parameter is implemented to ensure asymptotic 

convergence of the trajectory tracking errors to zero and boundedness of the 

dynamic control parameter. Restrictions on the selection of the controller 

parameters are evaluated based on the expected reference trajectory motion, 

external disturbance environment, and state estimation filter performance. In 



Chapter 3 

74 

Section 3.9 MATLAB
™
 simulation results are presented to demonstrate the 

performance of the various control algorithms developed in Sections 3.3-3.8. 

 

3.2 Spacecraft Dynamic and Kinematics 

This section presents the kinematic and dynamic equations of motion necessary 

to model spacecraft attitude maneuvers. The spacecraft is modelled as a rigid 

body with actuators that provide three-axis external control torques. Consider an 

inertial-fixed coordinate frame { } { }321
ˆ,ˆ,ˆ nnnN ≡  with an origin that is either 

fixed in inertial space or moving with a linear velocity relative to inertial space,  

and whose basis vectors are not rotating with respect to inertial space. Consider 

a spacecraft body-fixed coordinate frame { } { }321
ˆ,ˆ,ˆ)t( bbbB ≡  centered at a point 

P located in the rigid body and arbitrarily orientated with respect to the rigid 

body. The point P is not necessarily located at the center of mass of the 

spacecraft since this location may be unknown. Since { })t(B  is fixed with 

respect to the rigid body its angular velocity relative to inertial space will equal 

that of the rigid body spacecraft. Assume that an external body-fixed torque is 

produced about each spacecraft body-fixed axis using a cold-gas thruster system 

for example. To simplify the dynamic equations of motion center { })t(B  at the 

spacecraft mass center. A further simplification may be applied in which { })t(B  

is aligned to realise a principal axis coordinate system but this assumption is not 

used in this work. Euler’s equations of motion
44
 for the rotational motion of a 

rigid spacecraft are given by 

 

[ ][ ])t()t()t()t()t(
dt

d 1
duωJωJω ++×−= −                            (1) 

 

where 13)t( ×∈Rω  contains the { })t(B  components of the angular velocity of 

the spacecraft (or equivalently spacecraft body-fixed frame) with respect to the 

inertial frame { }N , 33×∈RJ  is the inertia matrix of the spacecraft, and 

13)t( ×∈Ru  are the { })t(B  components of the external control torque inputs, and 

13)t( ×∈Rd  is an external torque term representing the effect of all un-modelled 

dynamics and external disturbances. The dominant source of external 
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disturbances is assumed to be the gravity-gradient torque )t(ggu  resulting from 

the non-uniform distribution of the earth’s gravitational field over the rigid-body 

spacecraft. The ][⋅×  operator in Eq (1) is the vector cross-product operator 

defined by  

 

[ ]
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12

13

23

ω                                     (2) 

 

The spacecraft inertia matrix is a symmetric positive definite matrix which 

follows directly from the positive definite form of the rotational kinetic energy. 

In designing control laws based on the Lyapunov stability concepts the 

disturbance term in Eq (1) will be assumed to consist only of the gravity-

gradient torque whose approximate functional form is specified in Reference 8. 

In addition, the spacecraft inertia parameters will be assumed to be known 

exactly.  

 

For a spacecraft equipped with momentum exchange devices the spacecraft is 

not a rigid body and a modified version of Euler’s equations must be applied.  

Consider an actuator configuration comprising n reaction wheels, where three 

wheels are aligned with { })t(B  and the fourth wheel is arbitrarily orientated. 

The dynamic equations of motion
44
 are given by 

 

[ ]{ })t(~
)t()t()t(

dt

d T1
uChωJω s +×−= −                                (3) 

 

)t(
~

)t()t( T
ΩJCωJh w+= ∗                                       (4) 

 

)t(
dt

d~
)t()t(

dt

d 1
ωCuJΩ w −= −                                     (5) 

 

where 13)t( ×∈Rh  is the total angular momentum about the spacecraft mass 

center, 13)t( ×∈Ru  is the internal control torque applied to the reaction wheels 

by their electric motors, 13)t( ×∈RΩ  contains the reaction wheel angular 
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velocities, and 3n)t(
~ ×∈RC  is a rotation matrix whose rows are the { })t(B  

components of the n unit vectors along the reaction wheel spin axes. The 

remaining parameters include 33×∗ ∈RJ  as the spacecraft inertia matrix relative 

to { })t(B  (with reaction wheels locked), nn×∈RJw  as the reaction wheel axial 

inertia matrix defined by { }ia,Jdiag=wJ  for ni ...,1,= , and 33×∈RJ s  as the 

effective system inertia matrix relative to { })t(B  defined by [ ]CJCJJ ws

~~ T−= ∗ . 

The objective is to develop a feedback control law, for either the system defined 

by Eq (1) or Eq (2), that is in the form )t),t(()t( xuu ≡ , where )t(x  contains the 

state variables of the system. To solve for the n-dimensional reaction wheel 

control law )t(u , based on the system of Eq (3), requires the solution of the 

equation )t),t(()t(
~ T1

xfuCJ s =− . This requires, however, the inversion of the 3 x 

n matrix T1~
CJΓ s

−= , and it follows that the selection of the control law is 

underdetermined. Any suitable optimality criterion may used to select a 

particular control satisfying the equation, but a minimum torque criterion
6
 

which minimises the cost function )t()t(J T uu=  results in the control law 

 

[ ] )t),t(()t(
1TT xfΓΓΓu

−
=                                        (6) 

 

In this thesis, however, the dynamic model defined by Eq (1) will be applied to 

spacecraft attitude maneuver design and not the dynamic model of Eqs (3)-(5). 

 

The orientation of the spacecraft body-fixed coordinate frame { })t(B  with 

respect to an arbitrarily orientated inertial frame { }N  at a particular instant in 

time t may be expressed using the orthonormal direction cosine matrix
44,45

 

33)t( ×∈RC  according to 

 

  { } { }NCB )t()t( =                                               (7) 

 

where the direction cosine matrix is parameterised by the unit quaternion 

14TT

4

T

13 )]t(q)t([)t( ×∈= Rqq . The unit quaternion
44,45

 is a non-minimal 
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representation of the spacecraft attitude which globally avoids singular 

orientations. Consequently the solution of the kinematic equations remains 

underdetermined such that the unit-norm constraint must be enforced at each 

instant in time. The components of the quaternion are directly obtained using 

Euler’s theorem on the rotation of a rigid body based on a rotation 

π2Φ(t)0 ≤≤  about the principal Euler rotation axis )t(ê  according to 

 

)2/Φ(t)sin()t(ˆ)t(13 eq =                                         (8) 

 

)2/Φ(t)cos((t)q 4 =                                            (9) 

 

The direction cosine matrix parameterised by the quaternion parameters 

))t(()t( qCC ≡  is given by 

 

( ) [ ]×−+−= × )t()t(q2)t()t(2)t()t()t(q))t(( 134

T

13133313

T

13

2

4 qqqIqqqC       (10) 

 

where 33

33

×
× ∈RI  denotes the 3 x 3 identity matrix, and the skew-symmetric 

matrix [ ]×)t(13q   is defined with structure given by Eq (2). It follows from the 

definition of the quaternion that its components are not independent but satisfy 

the unit-norm constraint 

 

1)t(q)t()t()t()t( 2

413

T

13

T =+= qqqq                              (11) 

 

The quaternion parameters are not unique since )t(q  (generated using the Euler 

axis/angle parameter sets { })t(Φ),t(ê  and { })t(Φ),t(ˆ −− e ), and )t(q−  (generated 

using { }π2)t(Φ),t(ˆ −e  and { })t(Φπ2),t(ˆ −− e ) define the same physical 

orientation. This fact becomes important in the development of minimum 

angular path spacecraft rotational maneuvers based on the quaternion 

parameterisation. The kinematic equations of motion
44,45

 for the quaternion 

parameters are given by 

 

)t())t((
2

1
)t())t((

2

1
)t(

dt

d
ωqΞqωΩq ==                        (12) 
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where the individual matrices 44))t(( ×∈RωΩ  and 34))t(( ×∈RqΞ  are defined as 
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For spacecraft attitude tracking maneuvers the actual spacecraft motion must 

track a desired reference trajectory defined by a reference quaternion 

14)t( ×∈Rqd  and reference angular velocity 13)t( ×∈Rωd . More explicitly the 

reference motion is defined by the orientation of a target coordinate frame 

{ })t(R  with respect to an arbitrary inertial frame { }N  denoted by )t(dq , and the 

{ })t(B  components of the angular velocity of the reference trajectory coordinate 

frame { })t(R  with respect to the inertial frame { }N   denoted by )t(dω . The 

tracking error is the difference between the actual spacecraft attitude motion and 

the reference trajectory defined by the error quaternion 14)t( ×∈Rqδ  denoting 

the orientation of { })t(B  with respect to { })t(R , and error angular velocity 

13)t( ×∈Rωe  denoting the { })t(B  components of the angular velocity of { })t(B  

with respect to { })t(R . The error spacecraft attitude quaternion satisfies 

 

))t(())t(())t(( T

dqCqCqδC =                                     (15) 

 

The error quaternion may be obtained using quaternion multiplication 

 

)t()t()t( 1−⊗= dqqqδ                                          (16) 

 

where ⊗  is the quaternion multiplication operator
45
 and the conjugate 

quaternion describing the orientation of { }N  with respect to { })t(R  is defined 

by  

 

[ ]T4

T

13

1 )t()t()t( ddd qqq −=−                                    (17) 



Lyapunov Attitude Maneuvers 

 

79 

Performing the quaternion multiplication in Eq (16) gives  

 

)t())t(()t( qqΛqδ d=                                          (18) 

 

where the 44))t(( ×∈RqΛ d  matrix is defined as 
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The kinematic equation for the error quaternion is obtained by using )t(qδ  and 

)t(eω  in Eq (12) which gives 

 

)t())t((
2

1
)t())t((

2

1
)t(

dt

d
ee ωqδΞqδωΩqδ ==                     (20) 

 

The { })t(B  components of the error spacecraft angular rates are given by 

 

)t()t()t( de ωωω −=                                         (21) 

 

where the reference trajectory angular velocity )t(dω  is expressed in the { })t(B  

coordinate frame. In many applications the reference angular rate )t(~
dω  is 

available in { })t(R  such that a coordinate transformation is necessary given by 

)t(~))t(()t( dd ωqδCω = . The reference angular rate motion )t(dω  in Eq (21) 

may be defined in terms of the reference attitude parameters 

 

[ ]( ))t()t(2)t()t(q)t()t(q2)t( 131313d413d4 ddddd qqqqω &&& ×−−=            (22) 

 

and differentiating Eq (22) gives the reference trajectory angular acceleration 

 

( ) [ ] 1313134134 22 ddddddd qqqqqqω &&&&&&& ×−−=                          (23) 

 

which may be related to the reference angular acceleration expressed in { }N  

using the Coriolis theorem. Attitude regulation may be considered a special case 
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of attitude tracking maneuvers in which the desired orientation is fixed with 

respect to the inertial coordinate frame and the desired spacecraft angular 

velocity is zero. 

 

The dynamic equation of motion for the error spacecraft angular rates is 

obtained by substituting the first-order time derivative of Eq (21) into Eq (1) to 

obtain 

 

[ ] 




 ++−×−= − )t()t()t(
dt

d
)t()t()t(

dt

d 1
duωJωJωJω de               (24) 

 

Expanding the cross-coupling torque term in Eq (24) using Eq (21) gives 

 

[ ])t()t())t(),t(())t(),t(()t(
dt

d 1
duωωgωωfJω dddee +++= −

&           (25) 

 

where the auxiliary terms related to the reference trajectory motion are given by 

[ ] [ ] [ ]{ } )t()t()t()t()t())t(),t(( 13

eddeede ωJωωJωJωRωωf ×−×+×−=∈ ×  and 

[ ] )t()t()t())t(),t(( 13

ddddd ωJωJωRωωg && −×−=∈ × . If the reference trajectory 

parameters )t(~
dω  and )t(~

dω
&  are expressed in the reference trajectory 

coordinate frame { })t(R  then the ))t(),t(( de ωωf  term is replaced with  

[ ] [ ] )t()t(~))t(()t()t())t(,)t(~),t(( 13

edeede ωωqδCJωJωRqδωωf ×+×−=∈ ×  

[ ] [ ]{ }×+×− )t(~))t(()t(~))t(( dd ωqδCJJωqδC . The matrix term defined by 

[ ] [ ]×+×= )t(~))t(()t(~))t(())t(),t(~( ddd ωqδCJJωqδCqδωH  is a skew-symmetric 

matrix ))t(),t(~())t(),t(~( T
qδωHqδωH dd −=  which satisfies the expression 

0)t())t(),t(~()t(T =xqδωHx d  for all 13)t( ×∈Rx . Similarly, based on the 

reference trajectory parameters, the ))t(),t(( dd ωωg &  term is replaced with 

[ ] )t(~))t(()t(~))t(()t(~))t(())t(),t(~),t(~( 13

ddddd ωqδJCωqδJCωqδCRqδωωg && −×−=∈ × . 

 

In Sections 3.5-3.9 spacecraft attitude maneuvers will be designed which 

account for control torque saturation and bounded disturbance torques acting on 

the system. The external control torque vector is bounded by 
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{ }3,2,1u(t)u:)t()t( maxi =≤=∈ iuSu u . It is assumed that time-varying 

external disturbance torques of unknown functional form act on the spacecraft. 

The magnitude of these disturbances is upper bounded according to 

{ }max3211
d(t)d(t)d(t)d)t(:)t()t( ≤++==∈ ddSd d . It is assumed that 

internal torques and internal energy dissipation effects which decrease the 

system rotational kinetic energy are not present in the system. The upper bound 

on the norm of the spacecraft inertia matrix is given by J2
λ≤J . The reference 

trajectory motion for the spacecraft angular rates represented by )t(dω  and 

)t(dω& is upper bounded { } 2

2

12

2

20t νν)t()t(supν +=+= ≥ dd ωω & . It follows that 

the reference trajectory terms in Eq (25) are bounded according to vλ)t( J2
≤g  

and 
21J2

)t(vλ2)t()t( ee ωωH ≤ .   

 

The objective of the spacecraft attitude maneuver design process is to design an 

external control torque input )t(u  for the nonlinear plant of Eqs (1) and (12) 

with reference trajectory tracking error given by Eqs (20) and (25), such that for 

all initial conditions, all dSd ∈)t( ,  and all J  such that J2
λ≤J , the tracking 

error asymptotically approaches zero. The control objective is therefore to 

ensure that 13t )t(lim ×∞→ = 0ωe  and 1313t )t(lim ×∞→ = 0qδ .   

 

3.3 Control Law Design 

This section considers the development of global asymptotically stable feedback 

control laws for large-angle three-axis spacecraft attitude maneuvers based on 

Lyapunov’s direct method
46
. The novel aspect of this research is the 

development of a general feedback control law which drives the spacecraft 

attitude states to the desired equilibrium point in the shortest angular path. The 

introduction of additional terms in the control law to ensure minimum angular 

path maneuvers is necessary since the quaternion parameterization is based on 

the Euler axis/angle parameters which are not unique. Feedback controls for 

spacecraft equipped with external control torque actuators whose dynamics are 

governed by Eq (1) will be developed throughout this chapter. The reaction 
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wheel or control moment gyroscope case (internal control torques) can be 

developed using similar principles. A positive definite Lyapunov function and 

stabilizing feedback control law )t),t(()t( xuu ≡  must be designed so that the 

resulting form of the Lyapunov function derivative is negative definite, 

implying globally asymptotic stability for the desired system equilibrium state 

)t(eqx .  

 

For attitude tracking maneuvers the objective is to stabilize the spacecraft 

attitude motion relative to an arbitrarily rotating target coordinate frame. The 

desired equilibrium state for this time-varying target motion is specified as 

 

[ ]TTT )t()t()t( dddeq ωqxx =≡                                   (26) 

 

based on the dynamic and kinematic equations of motion given by Eqs (1) and 

(12). An equivalent method is to transform the original state equations 

describing the actual spacecraft attitude motion into a set of state equations in 

terms of the tracking error attitude motion with state variables 

  

[ ]TTT )t()t( ee ωqδx ≡                                         (27) 

 

governed by the tracking error dynamic and kinematic equations of Eq (20) and 

(24).  It follows that reaching the target states defined by Eq (26) asymptotically 

is equivalent to reaching the origin of the tracking error state-space in Eq (27). 

By definition of the system equilibrium state, following feedback stabilization 

the spacecraft attitude motion will remain at the equilibrium state even in the 

absence of control torques provided that no further external or internal torques 

act on the spacecraft.  

The traditional Lyapunov function candidate
13-15

 for full-state spacecraft attitude 

maneuvers is given by 

 

13

T

13

T

13
2

1
),()(V qδKqδωJωωqδVx eeee +=≡                      (28) 
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where K  is a positive-definite diagonal weighting matrix, J  is the spacecraft 

inertia matrix, )t(eω  is the tracking error angular rates, and )t(13qδ  is the 

vector component of the tracking error quaternion. The Lyapunov function of 

Eq (28) represents the total energy (kinetic and potential) associated with the 

tracking error motion. For the case of attitude regulation the first term reduces to 

the kinetic energy of the spacecraft rotational motion. The Lyapunov function of 

Eq (28) satisfies the necessary conditions for global asymptotic stability since it 

is (i) positive definite over the entire state-space 0)( >exV  for 16×≠ 0xe  where 

16

16

×
× ∈R0  is a null column matrix, (ii) radially unbounded ∞→)( exV  as 

∞→
2ex , (iii) vanishes at the equilibrium state 0)( =exV  for 16×= 0xe , and 

(iv) has continuous partial derivatives with respect to all elements of ex . Note 

that although Eq (28) does not explicitly include the scalar component of the 

error quaternion it is implicitly included via the quaternion unity norm 

constraint defined in Eq (11). To develop a control law which provides the 

minimum angular path to the desired equilibrium state, first a control law is 

developed for the nominal equilibrium state, then for its negative counterpart, 

and a general control law capable of stabilisation with respect to either 

equilibrium point is synthesised. Hence in the Lyapunov stability analysis for 

the general control law the Lyapunov function must not explicitly contain 

positive definite terms in the scalar component of the error quaternion, unless 

this term vanishes to zero at either equilibrium state. Differentiation of Eq (28) 

with respect to time provides the expression  

 

13

T

13

T 2)(V qδKqδωJωx eee
&&& +=                                   (29) 

 

since the K  weighting matrix is symmetric. Incorporating the tracking error 

dynamic equations of Eq (24) and kinematic equations of Eq (20) into Eq (29) 

gives  

 

[ ][ ] 13

T

4δq)(V qδKωωJuuωJωωx edgg

T

ee +−++×−= &&                (30) 
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Select a full-state feedback control law of the form 

 

[ ] )t()t(δq)t()t()t()t()t()t( 13241 qδKωKωJuωJωu edgg −−+−×= &        (31) 

 

where 1K  and 2K  are positive definite diagonal control gain matrices. 

Substituting the control law of Eq (31) into Eq (30) results in the Lyapunov 

function derivative 

 

[ ] 132

T

41

T δq)(V qδKKωωKωx eeee −−−=&                          (32) 

 

If the control law error quaternion gain is selected as KK =2  the final form of 

the Lyapunov derivative is given by 

 

0)( 1

T ≤−= eee ωKωxV&                                        (33) 

 

which is a globally negative semi-definite function (semi-definite due to the 

absence of error quaternion terms) since the 1K  is a positive definite matrix. 

Recall that Lyapunov’s direct theorem requires that )(V ex
&  is a globally negative 

definite function to prove global asymptotic stability of the equilibrium state.  

 

Lasalle and Lefschetz’s maximum invariant subspace theorem or invariance 

principle may be used to conclude global asymptotic stability when )( exV  is 

positive definite and )( exV&  is negative semi-definite each in a local bounded 

region Γxe ∈  containing the equilibrium point eqx . The set defined by 

{ }0)(, =∈= eee xVΓxxE &  for the Lyapunov derivative in Eq (33) is given by 

{ }13×== 0ωxE ee . The largest invariant set in E  is the origin of the tracking 

error state-space { }16×== 0xxM ee  and all solutions of the tracking error 

equations of motion tend to the origin as ∞→t . An alternative theory 

developed by Mukherjee and Junkins
19
 may be used to conclude asymptotic 

stability of the equilibrium state. Let Z denote the set of points for which )(V ex
&  

vanishes. A sufficient condition for global asymptotic stability is that the first 
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(k-1) time derivatives of )(V ex  are zero on Z to some even order (k-1) and the 

k
th
 nonzero Lyapunov function derivative evaluated on Z is of odd order and is 

negative definite (for all points on Z). If the Lyapunov derivatives vanish on Z 

up to infinite order then the sufficient conditions for global asymptotic stability 

are that )( exV  is positive definite and eqx  is the only equilibrium point. 

Applying this theorem to the spacecraft attitude maneuver problem, the set Z of 

points for which the Lyapunov derivative vanishes is the set of all real values for 

the error quaternion )t(13qδ  and zero values for the error angular rates )t(eω  

defined by { }13×== 0ωxZ ee
. The Lyapunov function derivatives up to third-

order are given by Eq (33) and the following expressions 

 

eee ωKωx &&&
1

T2)(V −=                                            (34) 

 

eeeee ωKωωKωx &&&&&&&
1

T

1

T 22)(V −−=                                 (35) 

 

Evaluating the Lyapunov derivatives for motion on Z gives zero for the first and 

second-order Lyapunov derivatives. Evaluating the third-order derivative on Z  

and substituting the tracking error dynamic equations given by 

132

1

4δq qδKJωe

−−=&  corresponding to closed-loop attitude motion on Z  

results in 

 

[ ] 132

1

1

1T

2

T

13

2

4δq2)(V qδKJKJKqδx
−−−=&&&    Zx∈∀                   (36) 

 

Since the second-order derivative vanishes on Z and the third-order derivative is 

negative definite on Z (and vanishes at the equilibrium point 1313 )t( ×= 0qδ ) 

provided that the matrix 2

1

1

1T

2 KJKJKB −−=  is positive definite, then the 

sufficient conditions of the Mukherjee and Junkins theorem are satisfied. The 

control law of Eq (31) therefore provides global asymptotic stability of the 

desired equilibrium point. To show that B  is positive definite first show that 

1

1

1

1

−−= JKJB  is positive definite. Since 1K  is a positive definite matrix by 

definition and the columns of 1−
J  are linearly independent then it follows that 

1B  is positive definite. A similar argument shows that B  is positive definite. 
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It is important to note that since the error quaternion )t(13qδ  is expressed as a 

quaternion of rotation then the Lyapunov function of Eq (28) will vanish when 

the spacecraft attitude coincides with the reference trajectory attitude )t(dq  or 

its negative counterpart )t(dq−  since both describe identical spacecraft 

attitudes. This highlights the fact that the attitude quaternion describing a 

specific physical orientation is not unique
45
 since it is based on the Euler 

axis/angle parameters, and consequently either equilibrium point is valid in the 

Lyapunov stability analysis. The )t(δq 4 term in the control law of Eq (31) 

ensures the shortest angular path to the desired physical spacecraft attitude. 

Although this control law ensures a globally asymptotically stable system a 

limitation exists with respect to stabilisation (settling time) when the initial error 

quaternion component )t(δq 04  is close to zero at the commencement of the 

spacecraft attitude maneuver. It is therefore necessary to replace the )t(δq 4 term 

with either a [ ])t(δqsgn 4  or [ ])t(δqsgn 04  function due to the loss of control 

torque effectiveness when )t(δq 04  is close to zero. The signum function for an 

arbitrary state vector 1n)( ×∈Rtx  defined by 

 

[ ]








<−

=

>+

=

0)t(x1

0)t(xundefined

0)t(x1

(t)xsgn

i

i

i

i           ni ...,1,=                  (37) 

 

is a singularity function since it has a discontinuous derivative evaluated at 

0)t(x i = . This discontinuity, however, is ignored by considering the derivative 

of )]t(usgn[ ius,  to be zero for all )t(x i  instead of zero for all 0)t(x i ≠  and the 

unit impulse function at 0)t(x i = . The modified version of the feedback control 

law of Eq (31) is given by  

 

[ ] [ ] )t()t(δqsgn)t()t()t()t()t()t( 13241 qδKωKωJuωJωu edgg −−+−×= &    (38) 

 

The control law of Eq (38) which includes a )]t(δqsgn[ 4  term is almost 

identical to Eq (29) of Reference 16 which uses a )]t(δqsgn[ 04  term instead. 
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MATLAB
™
 simulation results display near identical attitude motion for either 

control law. Furthermore the MATLAB
™
 simulations demonstrate that a 

positive initial condition for )t(δq 04  will result in the final condition given by 

1)t(δqlim 4t =∞→ , corresponding to the actual spacecraft attitude motion 

asymptotically tracking the reference trajectory )t(dq . A negative initial 

condition for )t(δq 04  will result in the attitude motion given by 

1)t(δqlim 4t −=∞→ , corresponding to the )t(dq−  equilibrium point. Hence the 

actual equilibrium point to which the spacecraft attitude motion asymptotically 

converges is dictated by the polarity of the initial condition for )t(δq 04 , or more 

generally by the polarity of )t(δq 4  for a critically damped response in the 

reference trajectory tracking error. The discontinuous nature of the control law 

of Eq (38) agrees with the results of Bhat and Bernstein
47
 who demonstrate that 

rigid body spacecraft attitude motion cannot be globally asymptotically 

stabilised using a continuous control law. 

 

To demonstrate Lyapunov stability of the closed-loop system based on the 

control law of Eq (38), the Lyapunov function candidate given by Eq (28) is still 

valid but the control law error quaternion gain in Eq (38) must be selected as 

KK (t)δq 42 = . If the K  matrix is constant with respect to time then )t(2K  is 

a positive definite time-varying matrix whose elements approach the K  matrix 

elements as the attitude motion converges to 1)t(δqlim 4t ±=∞→ . Alternatively if 

the 2K  matrix is constant with respect to time it is necessary for )t(K  to be a 

positive definite time-varying matrix which has the unique property that 

multiplying )t(K  by )t(δq 4  results in a time-invariant matrix. The dependence 

of )t(K  on time, however, needs to be accounted for when taking the derivative 

of the Lyapunov function given by Eq (28). When both the K  weighting matrix 

in the Lyapunov function candidate and the 2K  control gain matrix in Eq (38) 

are required to be constant with respect to time, then an alternative Lyapunov 

function candidate to Eq (28) is required to demonstrate asymptotic stability. 

This function is determined by considering separate Lyapunov stability analyses 

for each equilibrium point and then combining the results to produce a single 
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unified function. The Lyapunov function candidate for the )t(dq  equilibrium is 

given by 

 

( )[ ]2413

T

13

T δq1k
2

1
),()(V −++=≡ qδKqδωJωωqVx eeeee               (39) 

 

where K  is a positive definite weighting matrix given by 33k ×= IK  and k  is a  

positive scalar gain. It may be shown that the Lyapunov analysis based on Eq 

(39) results in the following feedback control law 

 

[ ] )t()t()t()t()t()t()t( 1321 qδKωKωJuωJωu edgg −−+−×= &            (40) 

 

where 1K  is a positive definite matrix and the error quaternion gain matrix is 

selected as 332 k ×== IKK  to ensure asymptotic stability of the )t(dq  

equilibrium point. The Lyapunov function candidate for the complementary 

equilibrium point )t(dq−  is formed by replacing the ( )24δq1−  term in Eq (39) 

with ( )24δq1+ . The resulting Lyapunov analysis produces a control law given 

by 

 

[ ] )t()t()t()t()t()t()t( 1321 qδKωKωJuωJωu edgg +−+−×= &            (41) 

 

Examining the common structural elements of Eqs (40) and (41) then the 

control law which ensures the minimum angular path to the equilibrium point is 

formed by replacing the positive/negative error quaternion feedback term with 

either [ ] )t(k)t(δqsgn 1304 qδ−  or [ ] )t(k)t(δqsgn 134 qδ−  since )t(δq 4  will be 

either uniformly positive or uniformly negative for the entire duration of the 

spacecraft attitude maneuver depending on which equilibrium point provides the 

minimum angular path to the reference trajectory. This is the theoretical 

justification for the control law of Eq (38). For initial conditions on )(tδq 04  

which are significantly larger than zero then )t(k)t(δq 1304 qδ−  or 

)t(k)t(δq 134 qδ−  may be used instead as the error quaternion feedback term in 

the control law, leading to the result given by Eq (31). The candidate Lyapunov 
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function used to demonstrate asymptotic stability for the controller given by Eq 

(38) is formed by replacing the ( )24δq1−  term in Eq (39) with a ( )24δq1−  

term. It is important to note that the presence of the ( )24δq1−  term in the 

general minimum path Lyapunov function candidate implies that the function 

has a discontinuous derivative at 0)t(δq 4 =  and therefore violates the necessary 

conditions required by Lyapunov’s direct method. However, careful selection of 

the control gains in Eq (38) ensures that the state trajectory does not cross the 

0)t(δq 4 =  point at any time during the spacecraft maneuver and eventually 

converges to 1)t(δqlim 4t ±=∞→ , depending on the initial condition for  )t(δq 4 . 

Consequently, either the Lyapunov function candidate for the )t(dq  equilibrium 

or its complement (corresponding to the )t(dq−  equilibrium point) is valid 

throughout the attitude maneuver. Both of these Lyapunov functions have 

continuous partial derivatives with respect to the state variables. 

 

The above Lyapunov stability result may be applied directly for the case of 

attitude slewing maneuvers (attitude regulation maneuvers) in which the desired 

spacecraft motion is inertial-pointing with zero angular rates (non-rotating target 

coordinate frame) such that the equilibrium state is time-invariant. The 

Lyapunov function candidate in this case is given by 

 

13

T

13

T

13
2

1
),()(V qδKqδωJωωqδVxe +=≡                        (42) 

 

and the control law of Eq (38) simplifies to  

 

[ ] )t()t(δq)t()t()t()t()t( 13241 qδKωKuωJωu gg −−−×=            (43) 

 

Selecting the control gain as KK =2  results in the Lyapunov function 

derivative 

 

ωKωxe 1

T)(V −=&                                          (44) 
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Note that identical results are obtained whether the nonlinear cross-coupling 

dynamic compensation term [ ] )t()t( ωJω ×  in Eq (43) is retained or neglected, 

since this term produces a vector in a direction perpendicular to the spacecraft 

angular velocity vector. Global asymptotic stability of the equilibrium point can 

be shown using Eq (44) and the Mukherjee and Junkins theorem (or other 

suitable theorems). Modifications to the control law of Eq (43) are easily 

performed to circumvent the problem of severely degraded attitude maneuver 

settling time due to the error quaternion component of the control law not being 

effective until (t)δq 4  becomes sufficiently large.  

 

The development of the nonlinear feedback control law of Eq (38) has been 

based on the assumption of zero dynamic model errors. Junkins and Kim
6
 point 

out that guaranteeing stability in the presence of zero model errors is not a 

sufficient condition to guarantee stability of the actual plant having arbitrary 

model errors such as spacecraft inertia matrix uncertainty and external bounded 

disturbance torques. The procedure, however, assists in defining a region in gain 

space for which the best model of the nonlinear system is globally 

asymptotically stable. Determination of the actual controller gain values 

selected from this region in gain space is usually based on system requirements 

taking into account the disturbance torque environment, sensitivity of the 

system to model errors, desired system settling time parameters, control torque 

saturation, and sensor/actuator bandwidth limitations. State-of-the-art 

controllers designed using Lyapunov stability theory explicitly account for the 

effects of torque saturation, bounded external disturbance torques, sensor 

measurement error, and actuator failures. These issues will be discussed in 

further detail in Sections 3.7 & 3.8. In addition, if precise models of the external 

disturbance torque environment are available (including required spacecraft 

attitude parameter information) then the disturbance torques may be 

compensated directly in the feedback control law. The gravity-gradient torque 

compensation term in Eq (38) is based on this assumption. If this assumption is 

not valid then more sophisticated disturbance rejection techniques are required 

(see Section 3.7). 
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3.4 Determination of Feedback Control Law Gains 

The specification of the control law proportional 2K  and derivative 1K  gain 

matrices under Lyapunov’s direct method requires both matrices to be positive-

definite. It is possible, however, to demonstrate that by selecting an alternate 

form of the Lyapunov function candidate this requirement can be relaxed. The 

alternate Lyapunov function is given by 

 

13

T

13

1T

2

1
)(V qδqδωJKωx eee += −                                  (45) 

 

where the matrix product JK
1−  must be positive definite for )( exV  to be a 

positive definite function. Proper selection of the controller gains will ensure 

that this term is positive definite. The derivative of Eq (45) incorporating the 

expression for the tracking error dynamics of Eq (24) is given by 

 

[ ][ ] 13

T

4

1T δq)(V qδωωJuuωJωKωx edggee +−++×−= −
&&               (46) 

 

Select a full-state feedback control law of the form 

 

[ ] )t()t(δq)t()t()t()t()t()t( 13241 qδKωKωJuωJωu edgg −−+−×= &      (47) 

 

where 1K  and 2K  are not necessarily positive definite weighting matrices 

whose characteristics are to be properly determined. The control law of Eq (47) 

results in the Lyapunov function derivative 

 

[ ] 13332

1T

41

1T δq)(V qδIKKωωKKωx eeee ×
−− −−−=&                  (48) 

 

Furthermore, if the control law error quaternion gain is selected as KK =2  the 

final form of the Lyapunov derivative is given by 

 

eee ωKKωx 1

1T)(V −−=&                                       (49) 
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which is a globally negative semi-definite function provided that 1

1KK −  is 

positive definite. Any suitable theorem may be applied to prove global 

asymptotic stability of the equilibrium point. The feedback control law of Eq 

(47) is identical to the originally proposed controller of Eq (38). A natural 

choice for the control gains to ensure that the matrix products JK
1−  and 1

1KK −  

are positive definite is JK d1 = and JKK k2 ==  where d and k are positive 

scalar constants. This result is significant since the requirement for positive 

definite control matrices corresponding to the Lyapunov function of Eq (28) can 

be relaxed. The control law of Eq (47) should be replaced with Eq (38) to 

eliminate the settling time issue when the initial condition )t(δq 04  is close to 

zero. Modification of the Lyapunov function candidate given by Eq (45) in 

order to demonstrate asymptotic stability of the closed-loop system, based on 

the control law of Eq (38), follows in a manner identical to Section 3.3. 

 

The scalar control gains d and k should be carefully selected to achieve the 

desired system closed-loop response for the spacecraft attitude maneuver. Wie et 

al.
16
 have shown analytically that the choice of the control gains JK d1 = and 

JKK k2 ==  for the control law of Eq (47) results in a slew maneuver about 

the eigenaxis (Euler axis) for the case of rest-to-rest attitude maneuvers or if the 

initial eigenaxis is collinear with the spacecraft angular velocity vector. In the 

general case where initial rates are nonzero, and the spacecraft angular velocity 

and quaternion parameter vectors are not collinear then it may be demonstrated 

analytically that the Euler axis direction will vary until time ∗t  and the 

subsequent motion for ∗≥ tt  will correspond to an eigenaxis rotation about 

)t(13

∗
q  which in general is different from )t( 013q . A further advantage of 

selecting the feedback control law gains to be linear functions of spacecraft 

inertia matrix is that the damped response of the system is not affected when 

transferring the maneuver to a spacecraft with different inertia parameters. To 

show this, substitute the control law of Eq (38) into the tracking error dynamic 

equations of Eq (24) with the desired equilibrium point for a rest-to-rest attitude 

maneuver given by [ ]TT

13

T )t()t( ×±=≡ 0qxx ddeq . This results in the closed-

loop dynamic equations satisfying the linear form 
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[ ] )t(k)t(δqsgn)t(d)t( 134 qδωω −−=&                              (50) 

 

For rest-to-rest attitude maneuvers corresponding to pure eigenaxis rotations the 

quaternion parameters are defined as eqδ ˆ)2/Φ(t)sin()t(13 =  and the spacecraft 

angular velocity is given by eω ˆ(t)Φ)t( &=  (where Φ(t)  is the Euler angle and 

)t(ê  is the Euler axis which remains constant during the attitude maneuver). 

Substituting these expressions into Eq (50) produces a second-order nonlinear 

ordinary differential equation in the Euler angle parameters  

 

0)2/Φsin(k)]t(δqsgn[ΦdΦ 4 =++ &&&                              (51) 

 

Assume that the [ ])t(δqsgn 4  term is unity throughout the attitude maneuver and 

for the purposes of selecting the control gains the )2/Φsin(  term may be 

approximated by )2/Φ( . This results in the second-order linear ODE given by 

 

0Φ)2/k(ΦdΦ =++ &&&                                         (52) 

 

where the damping ratio ζ and the natural frequency nω  satisfy nζω2d =  and 

2

nω2k = . The selection of these two parameters is based on the desired system 

settling time and response characteristics. The settling time for the simplified 

closed-loop system described by Eq (52) is given by 

 

)ζω/(8t ns =                                                (53) 

 

For the case of attitude tracking maneuvers the control law of Eq (38) results in 

closed-loop dynamic equations identical in form to Eq (50). It is difficult to 

analytically demonstrate that the attitude maneuver follows an eigenaxis 

rotation due to underlying assumptions established in Reference 16 which are 

generally not valid for attitude tracking maneuvers and the time-varying nature 

of the reference attitude trajectory. MATLAB
™
 simulations demonstrate, 

however, that the settling time expressions developed in this section may be 

used to calculate the feedback control law gains for the attitude tracking 

maneuver problem. 
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3.5 Modifications for Control Torque Limits 

A general procedure for developing feedback control laws for attitude control 

systems subject to control torque saturation constraints is now considered. This 

requirement is motivated by the physical limitations of nonlinear mechanical 

systems. For example, momentum exchange devices such as reaction wheels 

and variable-speed control moment gyoscopes (VSCMG) operating at nominal 

speed have a maximum torque limit specified by their manufacturer. In this 

section only torque magnitude constraints are considered, and not torque rate 

magnitude constraints. The concepts presented in this section are not novel 

contributions to the literature, but were developed by Robinett et al.
29
 and Wie 

and Lu
23
.  

 

Throughout this section it is assumed that the available external control torque 

for the i
th
 spacecraft body-fixed axis is limited to imax,iimin, u)t(uu ≤≤ . Robinett 

et al.
29
 proposed the following feedback control law to account for torque 

saturation limits 

 

[ ]





>

≤
=

imax,ius,ius,imax,

imax,ius,ius,

i
u)t(u)t(usgnu

u)t(u)t(u
)t(u           321 ,,=i              (54) 

 

where the unsaturated control law )t(usu  is given by Eq (38). The control law 

defined by Eq (54) ensures a continuous transition across the saturation 

boundary; it also prevents the possibility of control chattering due to the 

discontinuity at 0)t(u ius, =  in the signum function that would result for example 

if a bang-bang control law of the form )]t(usgn[u)t(u ius,imax,i =  was 

implemented. An additional advantage of the controller given by Eq (54) is that 

it allows some elements of the control torque vector to become saturated whilst 

others are within the saturation limits. Junkins and Kim
6
 point out that this 

feature differs from traditional gain scheduling and deadband methods, which 

typically reduce the feedback gains to keep all controls in the unsaturated range. 

Generalising the torque saturation function of Eq (54) to incorporate distinct 

upper and lower torque limits gives 

 



Lyapunov Attitude Maneuvers 

 

95 

[ ]
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Robinett et al.
29
 demonstrated that if a bang-bang saturation control law similar 

to Eq (54) is used for spacecraft detumbling maneuvers then the Lyapunov 

function derivative is negative definite even during intervals of torque 

saturation. It will be shown, however, that this property does not hold for the 

general spacecraft attitude tracking problem. The Lyapunov stability results 

summarised in the Section 3.3 apply to regions of unsaturated control. For 

instances during the attitude maneuver in which at least one control is saturated 

the sufficient stability conditions may be derived using a procedure similar to 

Reference 29. The limitation is that for higher-dimensional systems this 

procedure often leads to overly conservative estimates of the stability region, or 

equivalently the region of control constraint violation will be typically larger 

than the region corresponding to positive )(V ex
& .  

 

The derivative of the Lyapunov function of Eq (28) with the K matrix replaced 

by )t(δq/ 4K  may be expressed as 

 

( )[ ] [ ]∑∑
==

+++−×−=
3

1i
i13iei4

3

1i

iiie
δqωKδqsgnu][ω)(V ggde uωJωJωx &&     (56) 

 

Denoting the sets of saturated and unsaturated control indices by p and r = 3 - p 

respectively, and substituting the control law expression of Eqs (38) and (54) 

into (56) leads to 

 

   ( ) [ ][ ]∑
=

+++−×−=
p

1i
iusimaxi13i4iie
)usgn(uδqKδqsgn][ω)(V ggde uωJωJωx &&     

              ∑
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−
r

1i
i

2

ei1
ωK                                                                                          (57)              

 

where 
i1

K  and ii2
KK =  for 3,2,1=i  are the diagonal elements of the positive 

definite matrices KKK ,, 21  necessary to ensure global asymptotic stability of 
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the equilibrium state in the unconstrained control torque case. During periods of 

unsaturated control (all actuators are not saturated) the Lyapunov derivative is 

strictly negative implying that the system reference trajectory tracking error will 

decrease. For intervals in which at least one control torque component is 

saturated it is possible for the Lyapunov function derivative given by Eq (57) to 

be strictly positive, implying that the tracking errors will increase, or to be zero, 

corresponding to fixed trajectory tracking error energy. It is important to realise 

that during periods of control torque saturation the Lyapunov function derivative 

is not necessarily positive. In terms of overall global asymptotic stability results 

it is difficult to formulate an analytical expression encompassing the sufficient 

conditions to ensure a negative semi-definite or negative definite Lyapunov 

function derivative during periods of control saturation. This difficulty arises 

partly due to the complicated expression of Eqs (56) and (57). MATLAB
™
 

simulations demonstrate, however, that control saturation occurs only for a 

fraction of the overall attitude maneuver time, such that the spacecraft rotational 

kinetic energy is eventually reduced, the controls subsequently operate in their 

linear range, and the system converges to the desired equilibrium state.  

 

The above strategy for control saturation identifies which commanded control 

torque components are operating in the saturation range and limits the 

magnitude of the control torque. The controls operating in the linear range, 

however, are not modified such that overall direction of the commanded control 

torque is not preserved. An alternative strategy known as gain scheduling
23
 

identifies the maximum torque component and scales the torque magnitude, but 

retains the intended direction of the unsaturated controls. Based on this 

approach the control law is defined as  

 

[ ]

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1))t((σσ/)t(

1))t((σ)t(
)t(sat)t( σ
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uu                          (58) 

 

where ( )
imaxius, u/|)t(u|max))t((σ =usu  for mi ,...,1=  (where m is the number 

of external controls) is a positive scalar function of the unsaturated control given 

by Eq (38). Applying the control law of Eq (58) during periods of control 
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saturation in which at least control torque component is saturated 1))t((σ >usu  

to the Lyapunov function candidate given by 

 

13

T

13

4

T

δq

1
σ

2

1
)(V qδKqδωJωx eee +=                             (59)  

 

and selecting the quaternion tracking error gain as KK =2  results in the 

Lyapunov function derivative 

 

[ ][ ]dggeeee ωJuωJωωωKωxV && −+×−−−−= T

1

T )σ1()(                (60) 

 

The necessary conditions to ensure a negative definite Lyapunov function 

derivative during periods of control saturation may be established using Eq (60). 

A major practical limitation of the control law defined by Eq (58) is that it does 

not smoothly transition across the saturation boundary which introduces 

discontinuities into the control signal leading to abrupt changes in the spacecraft 

angular acceleration. 

 

3.6 Modifications for Control Torque Limits and Angular Rate 
Limits 

A general procedure for developing feedback control laws for attitude control 

systems subject to control torque limits and spacecraft angular rate constraints 

was developed by Wie and Lu
23
. This concept is useful for spacecraft equipped 

with low-rate saturation gyroscopes but will not be considered in this thesis. 

 

3.7 Modifications for Control Torque Limits and Bounded 
Disturbance Torques 

The objective of this section is to design feedback control laws for spacecraft 

attitude maneuvers subject to spacecraft inertia uncertainty, parameter control 

torque saturation, and bounded external disturbance torques. The issue of inertia 

uncertainty is avoided by designing the feedback control law independent of the 

inertia parameters. This avoids a direct adaptive control implementation of the 

control law which simplifies the Lyapunov stability analysis and avoids inertia 
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parameter update equations.  The primary disadvantage of the control torque 

saturation strategy of Section 3.6 is that it is not possible to show that the 

Lyapunov function derivative is negative semi-definite during periods of torque 

saturation. An alternative approach to the problem of control torque limits is to 

design the structure of the feedback control laws such that the limits cannot be 

violated when the control law is evaluated over the entire state-space of the 

system or over all possible state trajectories. Thus the structure of the control 

law usually comprises a single function bounded by the torque limits, or a linear 

sum of terms which are collectively bounded by the torque limits. This 

approach, however, does not in general ensure that the unwanted terms resulting 

from the dynamic equations present in the Lyapunov function derivative are 

cancelled exactly. It is therefore necessary to implement a dynamic feedback 

control law in the sense that the control gains are not constant, but rather are 

driven by a nonlinear first-order ordinary differential equation. Since the control 

gain update law is a general nonlinear function of the state variables, the 

dimension of the system (and Lyapunov stability analysis) is effectively 

increased by one. The basic principle is similar to direct adaptive control where 

the spacecraft inertia parameter update law increases the state variable 

dimension. The cancellation terms are introduced into the Lyapunov function 

derivative by expanding the Lyapunov function candidate to include a positive 

definite term in the time-varying control gain. The flexibility of the dynamic 

control law methodology has a number of advantages in addition to accounting 

for torque limits. The first advantage is that a globally negative definite 

Lyapunov function derivative can be designed. The second advantage is this 

negative definite property can be ensured in the presence of practical system 

limitations such as bounded external disturbance torques, sensor measurement 

error, and actuator failures. This is achieved by upper bounding the terms in the 

Lyapunov function derivative inequality resulting from these effects and 

introducing an additional term in the dynamic control gain differential equation 

to cancel these unwanted terms. The concepts presented in this section are not 

novel contributions to the literature, but were developed by Boskovic et al.
38
.  

Currently two solutions have been proposed in the literature which address the 

problem of spacecraft attitude maneuvers using Lyapunov’s direct method 

subject to external control torque saturation and bounded external disturbance 
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torques
38,42

. The solution of Boskovic et al.
38
 considered the problem of 

spacecraft attitude tracking maneuvers. A full-state feedback control law was 

proposed by Boskovic, given by 

 

δ)t(k)t(s

)t(s
u)t(u

2

i

i
maxi +

−=           3,2,1=i                        (61) 

 

where δ  is a positive scalar constant, )t(k  is a time-varying control gain with 

properties to be defined, and maxu is the torque limit for all three control torque 

components such that maximax u(t)uu ≤≤−  for i = 1,2,3. Although state-

dependant or time-varying torque limits may be implemented, either approach 

will complicate the Lyapunov stability analysis. Separate saturation limits imax,u  

for each control torque component or distinct lower/upper saturation limits 

imin,u  and imax,u  may also be implemented but this work assumes that a 

conservative torque limit [ ]imax,imax uminu =  is applied. The sliding vector )t(s  

(see Chapter 4.2) is defined by 

 

)t()t(k)t()t( 13

2
qδωs e +=                                    (62) 

 

The following Lyapunov function candidate is applied 
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where γ  is a positive scalar constant weighting factor. The following 

adjustment law for the time-varying control gain was proposed by Boskovic
38
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Using the dynamic equations of Eq (25) and the control law of Eq (61) it may be 

shown that the derivative of the Lyapunov function candidate of Eq (63) 

satisfies the inequality 

 

( ) 13

T

13

4

11max1413 ku)k,δq,,(V qδqδdgωqδω ee −−−−≤&              (65) 

 

where 
1

g  is a term associated with the reference trajectory attitude motion and 

1
d is the point-wise L1 norm of the external disturbance torques. The point-

wise L1 norm and L2 norm (also called the Euclidean norm) of a general n-

dimensional vector )t(x  are defined as ∑
=

=
3

1i

i1
)t(x)t(x  and 

2/1
3

1i

2

i2
)t(x)t( 







= ∑

=

x  respectively. It is assumed that 
11maxu dg +>> , which 

essentially states that the available control torque authority is sufficient to 

simultaneously track the reference trajectory and reject any bounded disturbance 

torques. The limitation of this approach is that the rate of convergence of the 

state variables based on Eq (65) may only be increased by using a larger value 

of the control torque saturation limit maxu . In a strict sense the Lyapunov 

function derivative inequality of Eq (65) is a negative semi-definite function 

inequality due to the absence of (t)δq 4  terms. However since the components of 

the attitude quaternion must satisfy the unity-norm constraint of Eq (11) it may 

be argued that the asymptotic convergence of the attitude motion to 

0)t(lim 13t =∞→ qδ  implies that 1)t(δqlim 4t =∞→  based on the Lyapunov 

function of Eq (63). Barbalat’s theorem is applied (see Reference 38) to show 

that the state trajectories converge to 0)t(lim t =∞→ eω  and 

0)t()t(klim 13

2

t =∞→ qδ . The fact that 0)t()t(klim 13

2

t =∞→ qδ  does not imply 

that 0)t(lim 13t =∞→ qδ , for example if 0)t(klim 2

t =∞→ . In addition, if k(t)  

converges to zero before )t(eω , this may result in chattering in the control 

torque, since the control law of Eq (61) reduces to [ ])t(ssgnu)t(u imaxi −= . 

However, the gain parameters in the control gain update equation of Eq (64) 

may be correctly adjusted to avoid the convergence of k(t)  to zero. Boskovic et 
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al.
38
 provide an analysis to show that k(t)  remains above some positive constant 

for all time. A key feature of the control law and associated control gain update 

law given by Eqs (61) and (64) is that no spacecraft inertia parameter 

information is required. The bound on the reference trajectory term, however, 

requires at least a coarse knowledge of these parameters.   

 

Similar to the methodology outlined in Section 3.3 it is necessary to modify the 

preceding results of this section to account for the non-uniqueness of the 

quaternion parameterisation of the spacecraft attitude. A feedback control law 

and associated control gain update law similar to Eqs (61) and (64) may be 

developed, which provide the minimum angular path to the desired equilibrium 

state. In Section 4.2, the sliding vector is specifically designed to provide a 

minimum angular path attitude maneuver by modifying its definition in Eq (62) 

according to 

 

[ ] )t()t(k)t(δqsgn)t()t( 13

2

4 qδωs e +=                            (66) 

 

The Lyapunov stability analysis provided by Eqs (61)-(65) may also be 

performed by defining a Lyapunov function candidate as the sum of a positive 

definite term in the sliding vector )t(s  and a quadratic term in the dynamic 

control parameter )t(k . 

 

3.8 Modifications for Control Torque Limits, Bounded 
Disturbance Torques, and Sensor Measurement Error 

In Section 3.7 a nonlinear feedback control law and associated control gain 

update law were developed which ensures Lyapunov stability (with respect to a 

reference attitude trajectory) for spacecraft attitude maneuvers. This formulation 

accounts for the practical limitations of spacecraft inertia parameter uncertainty, 

control torque saturation, and bounded external torques acting on the spacecraft. 

This section aims to develop a control strategy to additionally account for the 

effects of sensor measurement error which manifests as state estimation error. 

The state estimates are provided using a suitable attitude filtering algorithm (for 

example a multiplicative extended Kalman filter). Despite attempts by 
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numerous researchers this problem has not been comprehensively solved in the 

literature. Modern spacecraft are typically equipped with an attitude sensor suite 

that provides observation unit-vector measurements in the direction of a 

reference object (for example digital sun sensors, magnetometers, and star 

sensors), and gyroscope measurements of the spacecraft angular rates. The 

measurements are processed by an attitude estimation filter to provide real-time 

estimates of the spacecraft attitude parameter and angular rates which are used 

as input to a state-feedback control law. Since the state estimation process is not 

perfect the state estimates will contain a certain level of estimation error which 

is dependent on the sensor noise levels. The state variable estimates )t(x̂  are 

given by 

 

)t(~)t()t(ˆ xxx +=                                              (67) 

 

where )t(x  is the true value of the state vector and )t(~x  is the state estimation 

error which is upper bounded according to max12
x~)t(~)t(~ ≤≤ xx  in a statistical 

sense. The general state vector in Eq (67) may be populated with a suitable 

attitude parameterisation (for example modified Rodrigues parameters, 

quaternion, or sliding vector) and the spacecraft angular rates. The results of 

Section 3.7 may be extended to account for sensor measurement error by 

replacing the true state variables with their estimates in the control law and 

control gain update law of Eqs (61) and (64) respectively. Preliminary 

investigations show, however, that the asymptotic stability result provided by 

Boskovic is difficult to demonstrate when state estimation error is present in the 

control design process. 

 

This thesis will propose a novel algorithm to account for the effects of sensor 

measurement error based on previous research by Wallgrove and Akella
42
. This 

algorithm is one of the major novel contributions to the existing literature 

provided in this thesis. The first step in the methodology is to design an 

asymptotically stable feedback control law (and associated control gain update 

law) for spacecraft attitude maneuvers when bounded disturbances and sensor 

measurement noise are not present in the system. Both attitude regulation and 
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attitude tracking maneuvers will be considered. The structure of the proposed 

control law ensures that both spacecraft inertia parameter uncertainty and torque 

saturation will be taken into account. The next step is to account for the effect of 

bounded disturbances by modifying the control gain update law. The final step 

is to account for state estimation error by further modifying the control gain 

update law. In the proposed formulation the bounded disturbances and sensor 

measurement error effectively introduce upper bounded positive definite terms 

in the Lyapunov function candidate derivative, whose effect must be cancelled 

using the control gain update law. 

 

3.8.1 Attitude Regulation Maneuvers 

Consider the design of a feedback control law and control gain update equation 

for spacecraft attitude regulation maneuvers (time-invariant equilibrium state) 

based on the assumption that control torque limits are enforced but external 

disturbance torques and sensor measurement error are not present. Spacecraft 

inertia parameter uncertainty is accounted for by designing the feedback control 

law to be independent of the inertia parameters. Consider the Lyapunov function 

candidate 

 

( )[ ]2413

T

13max

T

413 δq1βu
2

1
)δq,,(V)(V −++=≡ qδqδωJωqδωxe         (68) 

 

which applies to the equilibrium point )t(dq  corresponding to the quaternion 

tracking error term 1(t)δq 4 = . The parameters )t(ω  and )t(qδ  are the 

spacecraft angular rates and attitude quaternion associated with the reference 

trajectory tracking error defined in Section 3.2, β  is a control gain parameter 

whose properties are to be defined, and maxu is the control torque upper limit 

such that maxi u(t)u ≤  for 3,2,1=i . Differentiation of Eq (68) with respect to 

time and substitution of the state equations given by Eqs (1) and (20) yields  

 

[ ]uqδωxe += 13max

T βu)(V&                                     (69) 
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Select a full-state feedback control law given by 
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213max
p
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tanhβ1)t(βu)t(

ω
qδu                          (70) 

 

where β  is a control gain parameter with limits 1β0 <<  due to the control 

torque constraint, and 2p  is a control gain parameter (called the sharpness 

function) that is lower bounded above zero ∞∈≤< Lpp0 22

min  and has a 

bounded derivative  ∞∈Lp 2& . The L∞ norm of the general n-dimensional vector 

function )t(x  is defined as { })t(xsupmax)t( i0tni1 ≥≤≤∞
=x . The notation 

∞∈L)t(x  means that the L∞ norm for )t(x  is bounded such that ∞<
∞

)t(x . 

Observe the similarity in structure between the control law of Eq (70) and the 

attitude regulation maneuver control law of Eq (43) with the relevant terms 

eliminated. Substituting the control law of Eq (70) in Eq (69) gives 
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which is a negative semi-definite function of the state variables. A disadvantage 

of this formulation is the lack of freedom in controlling the convergence of the 

state variables to the equilibrium point since the torque saturation limits are 

generally fixed by the spacecraft mission requirements. To conclude global 

asymptotic stability of the equilibrium point a suitable theorem (for example 

LaSalle’s invariance principle) must be applied. In the absence of a suitable 

theorem the control gain parameter (t)p 2  may be allowed to vary with time 

according to the asymptotically stable first-order nonlinear ordinary differential 

equation 

 

(t)(t)p(t)γp(t)
dt

d
13

T

13p qδqδ−=                                 (72) 

 

where pγ  is a positive scalar constant. Since the update law of (72) is a function 

of the state variables the dimension of the state-space for the Lyapunov stability 
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analysis is effectively increased by one. As a result the following Lyapunov 

function candidate is proposed 
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Differentiation of Eq (73) and substituting into this expression the state 

equations given by Eqs (1) and (20), the feedback control law of Eq (70), and 

the control parameter update law of Eq (72) gives 
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which is a globally negative definite function of the state variables and the 

sufficient conditions for a globally asymptotically stable equilibrium point are 

satisfied.  

This basic result demonstrates that a time-varying control parameter update law 

can introduce negative definite terms in the Lyapunov function derivative. This 

idea will become important when the effects of bounded external torques and 

sensor measurement error are taken into account in the Lyapunov stability 

analysis. 

 

3.8.2 Attitude Tracking Maneuvers 

Consider the extension of the above stability analysis for the case of spacecraft 

attitude tracking maneuvers. The tracking error state trajectory for the spacecraft 

angular rates is governed by Eq (25) and for the present analysis the external 

disturbance torque term is assumed to be zero. Consider the Lyapunov function 

candidate 
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where )t(eω  denotes the spacecraft angular rate trajectory tracking error. The 

derivative of Eq (75) using (i) the state equations of Eqs (20) and (25), (ii) the 

control law of Eq (70) with the spacecraft angular rate tracking error )t(eω  

replacing the actual spacecraft angular rates )t(ω , (iii) and the control gain 

parameter update law of Eq (72), is given by 
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which is an indefinite function due to the presence of the gωe

T  term. This term 

may be converted to a positive definite form using the inequalities 

22

T
gωgω ee ≤  and max11122

geee ωgωgω ≤≤ , where maxg  is an upper 

bound on the )t(g  term associated with the reference trajectory. The Lyapunov 

function derivative inequality that results from these inequality relationships is 
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A negative definite inequality expression may be achieved by adding and 

subtracting the term ( )
1maxuβ1 eω−  in Eq (77), which results in 
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Wallsgrove and Akella
42
 have shown that the hyperbolic tangent term in Eq (78) 

is upper bounded, independent of the spacecraft angular rate tracking error, 

according to 
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where α  is a positive constant with properties outlined in Reference 42. Using 

the upper bound given by Eq (79) in Eq (78) results in the negative definite 

Lyapunov function derivative inequality 

 

( )[ ]maxmax1

T guβ1)(V −−−−≤ eeee ωωHωx&                         (80) 

                                         ( ) 2

max13

T

13

2 puβ1α3p −+− qδqδ    

 

Defining ( ) 0guβ1a maxmax

2 >−−=  and ( ) 0uβ1α3c max

2 >−= , and eliminating 

the first quadratic term in the spacecraft angular rate tracking error using the 

inequality then Eq (80) is expressed as 

 

22

13

T

13

2

1

2 pcpa)(V +−−≤ qδqδωx ee
&                            (81) 

 

The control law parameter β  and the time-invariant control torque limit maxu  

must be selected to ensure that the 2a  and 2c  parameter inequalities are 

satisfied and the relevant state-dependent terms in Eq (81) are negative definite 

based on the reference attitude trajectory. In addition to the constraint 1β0 <<  

due to the control torque limits and the ( ) 0uβ1α3c max

2 >−=  term, the constant 

control gain parameter must satisfy ( )maxmax u/g1β −<  to ensure that 

( ) 0guβ1a maxmax

2 >−−= . This in turn ensures that angular rate tracking error 

term in Eq (81) is negative definite. Combining these two constraints results in 

an overall parameter constraint ( ) 1u/g1β0 maxmax ≤−<< , which is valid only 

if maxmax ug < , and reduces to 1β0 <<  in the absence of a time-varying 

reference trajectory (attitude regulation maneuvers). The state dependant 

positive definite term in Eq (78) has been transformed into a positive definite 

term which is independent of the state variables. This suggests the possibility of 

compensating for this term in the p(t)  control gain parameter update law. If this 

positive definite term is not compensated for in the Lyapunov stability analysis 

then the resulting state trajectory will not converge to the desired equilibrium 

state and a residual error set may be established to which the state variables 

)t(qδ  and )t(eω  and the sharpness parameter (t)p 2  converge. Following the 

approach of Wallsgrove and Akella
42
 the upper bound on the Lyapunov function 
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derivative inequality specified by Eq (81) implies that 0)(V <ex
&  for points 

along the state trajectory satisfying 222

1
pca −>eω  and all points satisfying 

c
213 >qδ . Alternatively stated, the Lyapunov function derivative is negative 

outside a compact region surrounding the equilibrium point )t(dq  defined by 

the set ( ){ }c,pca, 13

222

113 ≤≤= −
qδωqδωD ee . When the spacecraft 

angular rates and/or attitude quaternion are sufficiently large in magnitude then 

the negative definite terms in Eq (81) dominate and the state trajectory tends 

towards the equilibrium point. When these variables become sufficiently small 

then the Lyapunov function derivative becomes positive definite and further 

progress towards the equilibrium point cannot be guaranteed. This concept 

defines the boundary of a residual set to which all trajectories eventually 

converge, implying that (i) the equilibrium point is globally stable in the sense 

of Lyapunov, and (ii) the state variables are bounded )t(eω , )t(13qδ , 

∞∈L)t(p 13qδ . Furthermore, the boundedness of the tracking error quaternion 

)t(13qδ  directly follows from the unity norm constraint of Eq (11), independent 

of the stability of the state trajectory. The boundedness of the sharpness 

parameter (t)p 2  can be shown using Eq (72) although in MATLAB
™
 

simulations the update law parameters are selected such that (t)p 2  converges to 

a constant value before the state trajectory converges. Although the global 

boundedness of all state variables (including the sharpness function) are ensured 

based on Eqs (72) and (81), the desirable property of global asymptotic stability 

of the spacecraft angular rates and attitude quaternion must be demonstrated. 

Note that reducing the value of the sharpness function (t)p 2  reduces the size of 

the residual error set to which the state trajectory converges. This may lead, 

however, to increased sensitivity of the angular rate component of the nonlinear 

feedback control law in Eq (70).  Asymptotic stability of the equilibrium point 

may be achieved by modifying the update law of Eq (72) to compensate for the 

positive definite term in Eq (81) according to 

 

                            [ ]213

T

13p c(t)(t)p(t)γp(t)
dt

d
+−= qδqδ                              (82) 
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such that the Lyapunov function derivative inequality of Eq (81) reduces to 
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2 <−−≤ qδqδωx ee
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Applying the fundamental principles of Lyapunov’s direct method where 

0)(V <ex
&  shows that all state variables are upper bounded by the initial 

conditions of the state trajectory, such that )t(eω , )t(qδ , )t(δq4 , ∞∈Lp(t) . 

Furthermore, the Lyapunov function is finite for all time  

∞<≤≤≤ ∞ ))t((V))t((V))t((V0 0eee xxx  and integrating Eq (83) for 

∞≤≤ ttt 0  yields 
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which shows that ∞∩∈ LL)t( 1eω  and ∞∩∈ LL)t(p(t) 213qδ . It follows 

directly from Eq (82) that the sharpness function update law derivative 

∞∈L(t)p& . Similarly ∞∈L)t(eω&  since )t(eω , )t(u , )t(dω , ∞∈L)t(dω& , and 

[ ] ∞∈L)t(p(t)
dt

d
13qδ  since p(t) , (t)p& , ∞∈L)t(13qδ & . Applying Barbalat’s lemma 

to this problem
46
 results in 

 

13t )t(lim ×∞→ = 0ωe                                          (85) 

1313t )t(p(t)lim ×∞→ = 0qδ                                     (86) 

 

The conclusion that 1313t )t(p(t)lim ×∞→ = 0qδ  does not guarantee that the attitude 

maneuver objective 1313t )t(lim ×∞→ = 0qδ  will be achieved. The main issue is 

that the sharpness function (t)p 2  may converge to zero before the tracking error 

quaternion )t(13qδ  converges to zero. An analysis could be performed similar to 

Boskovic
38
 to show that under certain conditions 0p(t)p 22 >≥  for 0t ≥  where 

2p  is a scalar constant providing a lower bound on the sharpness function. It 

may be difficult, however, to establish a set of conditions for which the lower 
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bound exists. The convergence rate of (t)p 2  can be adjusted using the 

parameters in Eq (82) such that it converges to a positive constant or converges 

to zero more slowly than )t(13qδ  converges to zero.  

 

3.8.3 Bounded Disturbance Torques 

Consider the extension of the above stability analysis for the case of bounded 

external disturbance torques. In this case the functional form of the disturbance 

torque term in the dynamic equations of Eq (25) is not known but the upper 

bound given by max12
d)t()t( ≤≤ dd  on the magnitude of the disturbances is 

known. The Lyapunov stability analysis proceeds as in Section 3.8.2, based on 

the (i) Lyapunov function of Eq (75), (ii) the feedback control law of Eq (70), 

and (iii) the parameter update law of Eq (82). The indefinite term introduced by 

the bounded disturbance torque in the Lyapunov function derivative is converted 

to a strictly positive definite term according to the inequality 

max11122

T deeee ωdωdωdω ≤≤≤ . The Lyapunov stability analysis is 

identical to that in Section 3.8.2 except that the constants in Eqs (82) and (83) 

are replaced with ( ) 0dguβ1a maxmaxmax

2 >−−−=  and ( ) max

2 uβ1α3c −= . The 

assumption on the 2a  parameter loosely states that the control torque authority 

limited by max2
u)t( ≤u  is sufficient to simultaneously track the desired motion 

)t(dx  and reject any disturbance torques with upper bound max2
d)t( ≤d . 

Global asymptotic stability of the equilibrium state is demonstrated using 

Barbalat’s lemma
42
. The control law parameter β  and the control torque limit 

maxu  must be selected to ensure that the 2a  and 2c  parameter inequalities are 

satisfied, and to ensure that Eq (83) is a negative definite inequality based on the 

expected disturbance torque environment and reference trajectory motion. The 

overall parameter constraint is given by ( )[ ] 1u/dg1β0 maxmaxmax ≤+−<< , 

which is valid only if maxmaxmax udg <+ , and reduces to 1β0 <<  in the 

absence of a time-varying reference trajectory and disturbance torques. 
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3.8.4 State Estimation Error 

This remainder of this section is dedicated to extending the Lyapunov stability 

results of the previous sections to account for the effect of state estimation error. 

It is assumed that the true state variables are related to the state estimates 

according to Eq (67). In practice the measurement noise characteristics (in a 

statistical sense) of the attitude sensors are known prior to spacecraft launch. 

The state estimation error is assumed upper bounded according to 

max12
x~)t(~)t(~ ≤≤ xx  based on a suitable full-state estimator (for example a 

multiplicative extended Kalman filter). The estimation error upper bounds for 

the spacecraft attitude quaternion and angular rate trajectory tracking errors are 

given by max113 q~)t(~ ≤qδ  and max1
ω~)t(~ ≤eω  respectively based on Eq (18) 

and Eq (21). The methodology used to account for sensor measurement error is 

to use the Lyapunov stability results of the Sections 3.8.1-3.8.3 as a baseline 

design and investigate the effect of the additional terms introduced due to sensor 

measurement error. The additional terms are present since the true state 

variables appearing in the feedback control law of Eq (70) and the sharpness 

function update law of Eq (82) must be replaced by their corresponding state 

estimates. The feedback control law of Eq (70) with the state variables replaced 

by their estimates is given by 
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where )t(ˆ
13qδ  and )t(ˆ

eω  are the estimates of the spacecraft attitude quaternion 

and angular rates respectively,  and β  is a control parameter whose limits are to 

be defined. Expanding the control law of Eq (87) using Eq (67) gives 
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It is important to realise that the error in the quaternion appearing in Eq (88) is 

assumed to be additive. It is only valid to within first-order for small estimation 
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errors. The disadvantage with this approach is that an error quaternion may exist 

that violates the normality constraint of Eq (11). A multiplicative quaternion 

approach would alleviate this problem, but will result in a more complicated 

analysis. The hyperbolic tangent term in Eq (88) is simplified using the identity  

 

[ ])btanh()atanh(
)btanh()atanh(1

1
)batanh( +

−
=+                     (89) 

 

and the inequalities ( ) 1p/tanh
1

2 ≤eω  and ( ) 1χ~p/~tanh max
1

2 ≤<eω . Hence 

the denominator of the hyperbolic tangent identity is given by 

 

( ) ( ) ( ) ( ) 2

1

p/~tanhp/tanh1

1

p/~tanhp/tanh1

1
2222

−≤
+

−
≤

−

−

eeee ωωωω
      (90) 

 

and the control law of Eq (88) reduces to 

 

          ( ) ( ) 







−−
















−+−≤

2max213max
p

~
tanhuβ1

2

1

p
tanhβ1

2

1
βu ee ωω
qδu  

                13max
~βu qδ−                                                                                       (91) 

 

Similarly the update equation for the sharpness parameter given by Eq (72) is 

replaced with 

 

(t)ˆ(t)ˆp(t)γp(t)
dt

d
13

T

13p qδqδ−=                                   (92) 

 

Additional state independent terms will be added to Eq (92) later in the stability 

analysis to compensate for the positive definite terms generated from the 

bounded disturbance torques and sensor measurement error. Using the 

estimation error expressions of Eq (67) in Eq (92) gives 

 

{ }13

T

1313

T

1313

T

13p
~~~2pγp(t)

dt

d
qδqδqδqδqδqδ ++−=                    (93) 
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It convenient to eliminate and modify terms in Eq (93) to simplify the stability 

analysis  

 

{ }
113p13

T

13p13

T

1313

T

13p
~pγ2pγ~2pγp(t)

dt

d
qδqδqδqδqδqδqδ +−≤+−≤      (94) 

 

Hence, compared to the nominal design given by Eqs (75) and (76), there will 

be three additional terms appearing in the Lyapunov function derivative. 

Evaluating this derivative yields 

 

          ( ) 13
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13

2

2

T
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p
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2

1
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ω
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2
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T
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T
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p

~
tanhuβ1

2

1
qδqδω

ω
ω e

e

e +−







−−     (95) 

 

To reduce Eq (95) further the indefinite terms are converted to positive definite, 

the term ( )
1maxuβ1 eω−  is added and subtracted to Eq (95), and upper bounds 

on the reference trajectory, external disturbances and state estimation error are 

introduced. The hyperbolic tangent term in Eq (95) containing the spacecraft 

angular rate estimation error is upper bounded according to 

( ) 1χ~p/~tanh max
1

2 ≤<eω  such that 

 

( ) 13

T

13

2

2

ie,
3

1i

ie,maxmax1max1
p

p

ω
tanhωuβ1

2

1
dg)(V qδqδωωx eee −














−−+≤ ∑

=

&  

                  ( ) max

2

max1max1maxmax q~p2q~βuχ~uβ1
2

1
++−+ ee ωω  

    ( ) 







−−+ ∑

=
1

3

1i

ie,max ωuβ1
2

1
eω                                                      (96) 

 

 

Combining the relevant terms in Eq (96) gives 
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 ( ) [ ]
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
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
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


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Using the upper bound on the hyperbolic tangent term given by Eq (79) to 

reduce Eq (97) further yields 
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



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q~udgχ~q~21uβ1
2
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Simplify the above expression by defining  

 

( ) [ ] 0q~udgχ~q~21uβ1
2

1
a maxmaxmaxmaxmaxmaxmax

2 >






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( ) 0q~2uβ1α
2

3
c maxmax

2 >+−=                                  (100) 

 

such that Eq (98) becomes 

 

22

13

T

13

2

1

2 pcpa)(V +−−≤ qδqδωx ee
&                         (101) 

 

The positive definite term in Eq (101) establishes a residual set to which the 

state trajectory will eventually converge. This term may be cancelled by 

modifying the sharpness parameter update equation of Eq (92) 

 

[ ]213

T

13p c(t)ˆ(t)ˆp(t)γp(t)
dt

d
+−= qδqδ                             (102) 

 

such that the Lyapunov function derivative inequality is given by 

 

13

T

13

2

1
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Barbalat’s lemma is applied to conclude global asymptotic stability of the 

equilibrium state
42
. The limits on the control law parameter β  must be 

established to ensure that Eq (103) is a negative definite inequality based on the 

expected disturbance torque environment and state estimation error limits. 

Proceeding in the same manner as previous sections, the constraint 1β0 <<  is 

due to the control torque limit and the ( ) ( )[ ]maxmax αu3/q~41β +<  constraint is 

due to the 2c parameter inequality. However, since the parameters α , maxq~ , and 

maxu  are strictly positive, the later constraint is not consistent with 1β0 <<  and 

can be ignored. Combining this result with the 2a  parameter inequality results 

in the constraint 1λ1β0 ≤−<<  for the control gain parameter where 

( )( ) ( )maxmaxmaxmaxmaxmaxmax χ~q~21/q~udgu/2λ −+++= . This constraint requires 

( )( ) ( )maxmaxmaxmaxmaxmaxmax χ~q~21q~udgu/2 −+<++ , and reduces to 1β0 <<  

in the absence of a time-varying reference trajectory, disturbance torques, and 

state estimation error. 

 

There are three parameters α , β , pγ  in addition to the update equation initial 

condition )p(t 0  that must be tuned to ensure suitable closed-loop response of 

the spacecraft attitude maneuver. In contrast the algorithm of Wallsgrove and 

Akella
42
 requires tuning of five system parameters and two parameter gain 

update equations.  

 

3.8.5 Minimum Angular Path Maneuvers 

This section investigates the modification of the Lyapunov stability analysis 

presented in Sections 3.8.1-3.8.4 to account for the non-uniqueness property of 

the quaternion attitude coordinates. The objective is to develop a feedback 

control law similar to Eq (87) capable of automatically selecting the minimum 

angular path to the desired equilibrium point. In addition, a sharpness parameter 

update law similar to Eq (102) will need to be developed.  

 

Consider the modification of the feedback control law given by Eq (70) and the 

sharpness parameter update law of Eq (82), in the absence of sensor 
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measurement error, to ensure minimum angular path maneuvers. The Lyapunov 

function candidate for the )t(dq  equilibrium point is given by Eq (75), and the 

control law of Eq (70) and update law of Eq (82) ensures an asymptotically 

stable closed-loop system as demonstrated in Sections 3.8.1 through 3.8.3. For 

the complementary equilibrium point )t(dq−  the Lyapunov function candidate 

is given by 

 

( )[ ] 2

p

2

413

T

13max

T p
γ2

1
δq1βu

2

1
)(V ++++= qδqδωJωx eee              (104) 

 

The feedback control law that ensures asymptotic stability is given by  
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ω
u e                        (105) 

 

and the corresponding sharpness parameter update law is given by Eq (82). The 

Lyapunov function candidate corresponding to minimum angular path 

maneuvers (either equilibrium point )t(dq± ) is given by 

 

( )[ ] 2

p

2

413

T

13max

T p
γ2

1
δq1βu

2

1
)(V +−++= qδqδωJωx eee             (106) 

 

See the discussion in Section 3.3 regarding the continuity of the partial 

derivatives of Eq (106) with respect to its arguments. To ensure asymptotic 

stability of the closed-loop system requires the sharpness parameter update law 

of Eq (82) and the general control law given by 
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






+




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


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tanhβ1u)t( 1342max qδ

ω
u e              (107) 

 

In summary, to ensure minimum angular path attitude maneuvers (assuming 

zero state estimation error) (i) an additional )]t(δqsgn[ 4  term must be added to 

quaternion component of the control law given by Eq (70), and (ii) the 

sharpness parameter update law given by Eq (82) must not be modified. This 
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result is consistent with the developments in Section 3.3 where the control law 

of Eq (38) is a modification of Eq (40) to ensure minimum path maneuvers.  

 

When the effects of sensor measurement error are taken into account both the 

feedback control law and the sharpness parameter update equation must be 

implemented with the true state variables replaced with their estimates. The 

Lyapunov stability analysis for the )t(dq  equilibrium point is provided in 

Section 3.8.4 and is summarised by Eqs (75), (87), (102), and (103). The 

Lyapunov function candidate for the )t(dq−  equilibrium point is given by Eq 

(104) and the feedback control law is a modified version of Eq (105) given by 
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Following the procedure in Section 3.8.4 (summarised by Eqs (88) through 

(94)) leads to the Lyapunov function derivative 
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which is identical to the expression of Eq (95) except for the 13

T

max
~βu qδωe  term. 

However, since this term is upper bounded in the Lyapunov stability analysis it 

follows that the remaining steps are identical to Section 3.8.4 (see Eqs (96) 

through (103)). The Lyapunov function candidate for the )t(dq±  equilibrium 

point is given by Eq (106) and the feedback control law is a modified version of 

Eq (107) given by 
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The Lyapunov stability analysis is performed using the procedure outlined in 

Section 3.8.4. The presence of the )]t(q̂δsgn[ 4  term in Eq (110) will produce 

additional terms in the Lyapunov function derivative compared to Eq (95). 

Expanding the control law given by Eq (110) using Eq (67) gives  
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Simplifying the hyperbolic tangent term in Eq (111) using the identity of Eq 

(89) and the inequality (90), and rearranging the quaternion term gives 
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which the control law of Eq (107) with additional upper bounded terms due to 

the state estimation error. The reduction of the sharpness parameter update law 

due to the estimation error is identical to the procedure in Section 3.8.4 (see Eqs 

(92) through (94)). Using the Lyapunov candidate of Eq (106) and substituting 

all relevant expressions 

 

        ( ) 13

T

13

2

2

T

max

TT p
p

tanhuβ1
2

1
)(V qδqδ

ω
ωdωgωx e

eeee −







−−+−≤&  

                          ( ) [ ] 13

T

4max2

T

max
~q̂δsgnβu

p

~
tanhuβ1

2

1
qδω

ω
ω e

e

e −







−−  

[ ] [ ]{ }
113

2

13

T

44max
~p2δqsgnq̂δsgnβu qδqδω e +−−                (113) 

 

Compared to Eq (95) the Lyapunov function derivative inequality of Eq (113) 

has an additional term due to the generalisation of the control law given by Eq 

(110) for minimum angular path maneuvers. Furthermore, the 13

T

max
~βu qδωe−   

term in Eq (95) has been replaced by a [ ] 13

T

4max
~q̂δsgnβu qδωe−  term, however 

both terms have identical upper bounds. The additional term in Eq (113) may be 

upper bounded according to 
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[ ] [ ]{ }
1max1131max13

T

44max βu2βu2δqsgnq̂δsgnβu eee ωqδωqδω ≤≤−−    (114) 

 

It is important to consider the special case in which the state estimator is 

accurately initialised and provides estimates such that [ ] [ ]44 δqsgnq̂δsgn =  is 

valid throughout the entire attitude maneuver. In this case the additional term in 

Eq (113) is zero and the stability analysis is identical to Section 3.8.4. In the 

more general case the expression of Eq (113) is reduced using Eq (114) and the 

procedure defined by Eqs (96)-(103) in Section 3.8.4. Global asymptotic 

stability of the )t(dq±  equilibrium point is ensured provided the following 

terms are strictly positive 

 

( ) [ ] [ ] 0β2q~udgχ~q~21uβ1
2

1
a maxmaxmaxmaxmaxmaxmax
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( ) 0q~2uβ1α
2

3
c maxmax

2 >+−=                                 (116) 

 

The corresponding limits on the parameter β  are given by 1λβ0 ≤<<  where  

( ) ( )( ) ( )maxmaxmaxmaxmaxmaxmax χ~q~23u/1χ~udg2λ −+−++= . This constraint is 

valid provided that ( ) ( )( ) ( )maxmaxmaxmaxmaxmaxmax χ~q~23u1χ~udg2 −+<−++ , 

and reduces to 1β0 <<  in the absence of a time-varying reference trajectory, 

disturbance torques, and state estimation error. 

 

3.9 Design Example 

Several representative spacecraft attitude maneuver simulation results are 

presented in this section for both inertial pointing and earth-pointing scenarios 

to demonstrate the capabilities of the Lyapunov control law developed in 

Sections 3.2-3.8. The simulations were conducted using an attitude control 

system model developed in MATLAB
™
 Simulink

®
. The basic ACS model 

integrates Euler’s equations of motion for the rigid-spacecraft using a fourth-

order Runge-Kutta numerical integrator ODE4 in MATLAB
™
 Simulink

®
 with a 

fixed step size of sec1.0∆t = . An SGP4 numerical orbit propagator based on 

the two-line-elements (TLE) of the FEDSAT spacecraft provides a reference 
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800km sun-synchronous orbit. A key assumption is that for this particular orbit 

and the spacecraft configuration the gravity-gradient torque is the dominant 

source of environmental disturbance torques. The MATLAB
™
 line style 

designators for all simulation plots are 1-axis = solid line, 2-axis = dashed line, 

3-axis = dash-dot line, and 4-axis = dotted line. 

 

3.9.1  Attitude Regulation Maneuver 

This example is a rest-to-rest attitude maneuver for an inertial-pointing 

spacecraft using the control law of Eq (38) with reference trajectory, initial 

conditions, and control gains defined in Table 3-1. The only disturbance torque 

considered is the gravity-gradient torque although the external control torques 

for this example are orders of magnitude larger than the gravity-gradient torque. 

Based on the analysis presented in Section 3.4, selecting the control gains only 

requires the initial condition for the tracking error quaternion. The initial 

Euler/Euler axis parameterisation given in Table 3-1 corresponds to a 90 deg 

rotation with respect to the minimum angle maneuver equilibrium point 

)t(dq− . For a settling time requirement of sec50t s =  and a critically damped 

response 1ξ =  the natural frequency is 16.0ωn =  rad/sec and the control gains 

are 32.0d =  and 0512.0k = . 

 

Figure 3-1 through Figure 3-8 present the MATLAB
™
 simulation results of the 

rest-to-rest attitude maneuver. The error quaternion displays a critically damped 

response with the (t)δq 4  component settling to the desired minimum-angle 

maneuver equilibrium point, and the system settling time of 50 sec has been 

achieved to within the approximations of Section 3.4. The Euler axis (eigenaxis) 

unit-vector components corresponding to the error quaternion remain 

approximately constant through the attitude maneuver confirming Wie's 

theorem of an eigenaxis minimum-angle maneuver discussed in Section 3.4. It 

is interesting to observe in Figure 3-8 that the Lyapunov function derivative is 

always negative throughout the attitude rest-to-rest maneuver and eventually 

settles at the desired equilibrium point, despite the increase in magnitude of the 

tracking error rates early in the maneuver. Other control gain scenarios were 
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simulated by slightly modifying the control gains with respect to the critically 

damped maneuver and modifying the initial spacecraft angular rates to 

T

0 ]2.02.02.0[)t( −−=ω . The result was a marginally degraded settling 

time but the overall characteristics remained identical. 

 

Parameters Values 

Spacecraft Inertia Matrix 

















−

−

=

90.50725.017.0

25.044.61157.3

17.057.328.600

J  

 

Reference Trajectory [ ]T1000=dq  

[ ]T000=dω  

 

Initial Conditions [ ]T0 2/16/16/16/1)t( −−−=q  

[ ]T0 5774.05774.05774.0)t(ˆ −−=e  

270)θ(t 0 =  deg 

T

0 ]0.00.00.0[)t( =ω  

 

Control Gains JK 32.01 =  

JK 0512.02 =  

 
Table 3-1  Rest-to-Rest Attitude Maneuver 
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Figure 3-1  Spacecraft attitude quaternion tracking error 

 

 

Figure 3-2  Spacecraft angular rates 

 



Lyapunov Attitude Maneuvers 

 

123 

 

Figure 3-3  External control torques 

 

 

Figure 3-4  Gravity-gradient disturbance torques 
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Figure 3-5  Reference trajectory attitude quaternion 

 

 

Figure 3-6  Euler axis components of tracking error quaternion 
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Figure 3-7  Lyapunov function 

 

 

Figure 3-8  Lyapunov function derivative 
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3.9.2 Attitude Tracking Maneuver 

This example is an attitude tracking maneuver for an earth-pointing spacecraft 

in which the desired trajectory is generated numerically based on the spacecraft 

navigation information supplied by an SGP4 orbit propagator. The initial 

Euler/Euler axis parameterisation given in Table 3-2 corresponds to a 179.9 deg 

rotation with respect to the minimum angle maneuver equilibrium point )t(dq . 

 

Parameters Values 

Spacecraft 

Inertia Matrix 

















−

−

=

90.50725.017.0

25.044.61157.3

17.057.328.600

J  

 

Reference 

Trajectory 

Earth-pointing orientation based on SGP4 numerical orbit 

propagator 

 

Initial 

Attitude  
[ ]T0 7560.005430.06466.008592.0)t( −=q  

[ ]T0 08297.09879.01313.0)t(ˆ −−=e  

8.81)t(θ 0 =  deg 

[ ]T0 4958.04747.05945.04188.0)t( −=dq  

[ ]T0 5466.06846.04823.0)t(ˆ −=de  

6.120)t(θ 0 =  deg 

[ ]T0 0006176.07077.07065.00006165.0)t( −=qδ  

[ ]T0 7077.07065.00006165.0)t(ˆ −=eδ  

deg9.179)t(δθ 0 =  

[ ]T000 9.1790.09.89)γ,β,α( =  deg 

 

Initial 

Angular 

Rates 

[ ]T247

0 10948.510038.110812.1)t( −−− ×−×−×=dω deg/sec 

[ ]T0 2.02.02.0)t( −−=eω  deg/sec 

[ ]T0 2595.02.02.0)t( −=ω  deg/sec 

 

Control Gains JK 32.01 =  

JK 0512.02 =  

 
Table 3-2  Earth-Pointing Attitude Maneuver 
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Figure 3-9 through Figure 3-16 present the results of the earth-pointing attitude 

maneuver. The error quaternion displays a critically damped response with the 

)t(δq 4  component settling to the desired minimum-angle maneuver equilibrium 

point, and the system settling time of 50 sec has been achieved to within the 

approximations of Section 3.4. This example also demonstrates the effectiveness 

of replacing the control law of Eq (31) with Eq (38) for small values of )t(δq 04 . 

From Figure 3-14, only the y- and z-axis eigenaxis unit-vector components 

remain constant. This demonstrates that Wie's theorem of an eigenaxis rotation 

for rest-to-rest maneuvers does not apply in general for attitude tracking 

maneuvers, although an identical control gain selection strategy may be applied. 

The gravity-gradient torque is constant in spacecraft body-fixed coordinates for 

an earth-pointing spacecraft which is observed in Figure 3-12. Since the desired 

equilibrium point corresponds to an earth-pointing configuration, the gravity-

gradient torque provides a stabilising effect with respect to this equilibrium 

point. It is therefore not necessary to provide a term to counteract the gravity-

gradient torque in the control law of Eq (38). 

 

 

Figure 3-9  Spacecraft attitude quaternion tracking error 
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Figure 3-10  Spacecraft angular rate tracking error 

 

 

Figure 3-11  External control torques 
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Figure 3-12  Gravity-gradient disturbance torques 

 

 

Figure 3-13  Reference trajectory attitude quaternion 
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Figure 3-14  Euler axis components of tracking error quaternion 

 

 

Figure 3-15  Lyapunov function 
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Figure 3-16  Lyapunov function derivative 

 

3.9.3  Torque Magnitude Constraints 

Example 3 repeats the rest-to-rest maneuver of Section 3.9.1 with the initial 

conditions defined in Table 3-1 but subject to external control torque saturation 

constraints. The individual upper and lower actuator torque limits are assumed 

equal and are given by T

max ]1510[=u . In practice the control torque limits 

are specified by the actuator manufacturer. Figure 3-17 through Figure 3-24 

clearly demonstrate that the system remains asymptotically stable and the 

settling time is only slightly degraded with respect to Example 1. Although the 

control torques in Figure 3-19 are saturated early in the attitude maneuver, the 

Lyapunov function derivative shown in Figure 3-24 remains negative during 

this period. It is expected that lowering the torque magnitude constraints may 

result in intervals during torque saturation in which the Lyapunov derivative is 

positive leading to a brief increase in trajectory tracking error. Figure 3-22 

demonstrates that Wie's theorem of an eigenaxis rotation for rest-to-rest 

maneuvers does not apply when torque saturation limits are imposed.  
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Figure 3-17  Spacecraft attitude quaternion tracking error 

 

 

Figure 3-18  Spacecraft angular rates 
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Figure 3-19  External control torques 

 

 

Figure 3-20  Gravity-gradient disturbance torques 
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Figure 3-21  Reference trajectory attitude quaternion 

 

 

Figure 3-22  Euler axis components of tracking error quaternion 
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Figure 3-23  Lyapunov function 

 

 

Figure 3-24  Lyapunov function derivative 
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3.9.4  Total Stability in the Presence of Disturbances 

This example repeats the rest-to-rest maneuver of Section 3.9.1 with the initial 

conditions defined in Table 3-1, but subject to both a gravity-gradient 

disturbance torque and a sinusoidal miscellaneous external control torque given 

by 

 

[ ]T)tsin(5)t1.0sin(5)t5.0sin()t( −=miscu                       (117) 

 

It should be noted, however, that the miscellaneous torque is orders of 

magnitude larger than the gravity-gradient torque and will dominate the steady-

state attitude trajectory tracking errors. Figure 3-25 and Figure 3-26 illustrate 

that the sinusoidal disturbance torque translates to steady-state pointing errors 

with the same sinusoidal frequency components as the general disturbance 

torque. Investigations were also performed using constant miscellaneous torque 

components which resulted in constant steady-state tracking errors and with 

square wave disturbance torques which resulted in a low frequency sinusoidal 

components. Figure 3-31 demonstrates that Wie's theorem of an eigenaxis 

rotation for rest-to-rest maneuvers is not valid when general disturbances are 

present in the system. The lower bounded Lyapunov function of Figure 3-32 and 

its derivative in Figure 3-33 clearly illustrate the concept of total stability
1
 

where a persistent disturbance torque acting on an otherwise ideal 

asymptotically stable system results in a residual set centered on the equilibrium 

point to which the state trajectory eventually converges. The magnitude of the 

residual set and proximity of the Lyapunov function to the state-space origin is 

proportional to the magnitude of the disturbance torque. Figure 3-33 illustrates 

that the Lyapunov derivative is strictly negative outside the residual set but is 

indefinite inside the set, such that the Lyapunov function may increase during 

specific intervals in the maneuver. 
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Figure 3-25  Spacecraft attitude quaternion tracking error 

 

 

Figure 3-26  Spacecraft angular rates 
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Figure 3-27  External control torques 

 

 

Figure 3-28  Gravity-gradient disturbance torques 
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Figure 3-29  Miscellaneous disturbance torques 

 

 

Figure 3-30  Reference trajectory attitude quaternion 
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Figure 3-31  Euler axis components of tracking error quaternion 

 

 

Figure 3-32  Lyapunov function 
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Figure 3-33  Lyapunov function derivative 

 

3.9.5  Disturbance Torque Rejection 

This example repeats the rest-to-rest maneuver of Section 3.9.1 with the 

different initial conditions shown in Table 3-3 and subject to the both a gravity-

gradient torque and a miscellaneous torque given by Eq (117). The initial Euler 

axis/angle parameterisation corresponds to a 90 deg rotation with respect to the 

minimum angle maneuver equilibrium point )t(dq . The feedback control law is 

the disturbance rejection controller defined by Eq (61) with associated control 

gain update law given by Eq (64).  

 

Figure 3-34 through Figure 3-43 present the results of the rest-to-rest attitude 

maneuver. The error quaternion settles to the correct minimum-angle maneuver 

equilibrium point with a settling time of 80 sec. The )]t(δqsgn[ 4  term in the 

sliding vector definition of Eq (11) in Chapter 4 has not been applied to this 

maneuver. Figure 3-40 demonstrates that Wie's theorem of an eigenaxis rotation 

for rest-to-rest maneuvers is not valid for the disturbance rejecting control 
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strategy of Eqs (61) and (64). Comparing the results of Section 3.9.4 with no 

disturbance rejection capabilities, the control strategy is effective in rejecting 

the presence of the sinusoidal disturbance torques. A key observation, however, 

is that the theoretical asymptotic stability result developed in Section 3.7 is not 

observed in the MATLAB
™
 simulation. Instead the feedback control law dilutes 

the effect of the miscellaneous disturbance torque on the steady-state trajectory 

tracking errors but does not completely reject the disturbance. Figure 3-34 and 

Figure 3-35 demonstrate that the bounded residual set is significantly smaller 

than for the uncompensated case in Section 3.9.4. 

 

The time-varying control parameter )t(k  illustrated in Figure 3-43 converges to 

a finite positive steady-state value in approximately 80 sec which is reflected in 

the Lyapunov function of Figure 3-41. Furthermore this value is sufficiently 

large to ensure that control torque chattering does not occur. The effect of the 

disturbance torque in generating a residual set is not observed in Figure 3-41 

due to the dominance of the control gain parameter )t(k  quadratic term in the 

Lyapunov function. The external control torques illustrated in Figure 3-36 are 

saturated during the initial 70 sec of the attitude maneuver and subsequently 

compensate exactly for the miscellaneous disturbance torques. It is interesting to 

observe that the adaptation of the control torques to the general disturbance 

environment occurs automatically. Although the disturbance rejection 

characteristics are excellent as illustrated in Figure 3-35 the spacecraft angular 

rate function displays sharp discontinuities. This characteristic may result in the 

excitation of unmodelled dynamics and flexible modes of the spacecraft which 

are undesirable effects. The discontinuity points in the angular rate function 

correspond to near-infinite derivatives which are clearly visible in the Lyapunov 

function derivative of Figure 3-42. One possible method of overcoming this 

discontinuous behaviour is to modify the control gain parameters to trade 

system convergence time and smoothness of the angular rate function. The main 

difficulty is to ensure that during the convergence of the control gain parameter 

)t(k  its value does not become small enough to create control torque chattering.  
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Parameters Values 

Spacecraft Inertia Matrix 

















−

−

=

90.50725.017.0

25.044.61157.3

17.057.328.600

J  

 

Reference Trajectory [ ]T1000=dq  

[ ]T000=dω  

 

Initial Conditions [ ]T0 2/16/16/16/1)t( −=q  

[ ]T0 5774.05774.05774.0)t(ˆ −=e  

90)θ(t0 =  deg 

T

0 ]0.50.100.10[)t( −=ω  

 

Control Gains 20umax =  Nm 

001.0δ =  

0001.0γ =  

0.5)t(k 0 =  

 
Table 3-3  Rest-to-Rest Attitude Maneuver (with disturbance rejection) 

 

 

Figure 3-34  Spacecraft attitude quaternion tracking error 
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Figure 3-35  Spacecraft angular rates 

 

 

Figure 3-36  External control torques 
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Figure 3-37  Gravity-gradient disturbance torques 

 

 

Figure 3-38  Miscellaneous disturbance torques 
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Figure 3-39  Reference trajectory attitude quaternion 

 

 

Figure 3-40  Euler axis components of tracking error quaternion 
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Figure 3-41  Lyapunov function 

 

 

Figure 3-42  Lyapunov function derivative 
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Figure 3-43  Dynamic control parameter 

 

3.9.6  Disturbance and State Estimation Error Rejection 

This example repeats the rest-to-rest maneuver of Section 3.9.5 using the 

feedback control law and parameter update law defined by Eqs (87) and (102) 

respectively. The gravity-gradient disturbance torque and a miscellaneous torque 

given by Eq (117) are present in the simulation. The simulation initial 

conditions and control parameters are shown in Table 3-4. 

 

The state estimation process is performed using a deterministic observer 

developed by Thienel and Sanner
48
. This design is based on exact measurements 

of the spacecraft attitude quaternion and gyroscope measurements produced 

using the gyroscope model in Reference 49. The gyroscope drift-rate ramp noise 

parameter is 7

u 101σ −×=  rad/sec
3/2
, and the gyroscope measurement noise 

parameter is 4

v 101σ −×=  rad/sec
1/2
. The estimation errors in the spacecraft 

attitude quaternion and angular rates are presented in Figure 3-54 and Figure 

3-55 respectively.  The presence of the gyroscope noise sources is evident in the 
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spacecraft angular rate estimates, and therefore enters the control torque through 

the angular rate tracking commands. Consequently, the trajectory tracking 

commands are superimposed with a stochastic process, which would lead to 

problems in practical applications. Furthermore, it is evident from Figure 3-46 

that the gyroscope noise sources accumulate over time in the control torques. 

This scenario is unacceptable for practical applications and a recursive state 

estimator (for example an extended Kalman filter) should be implemented to 

provide smooth state estimates. 

 

Parameters Values 

Spacecraft Inertia Matrix 

















−

−

=

90.50725.017.0

25.044.61157.3

17.057.328.600

J  

 

Reference Trajectory [ ]T1000=dq  

[ ]T000=dω  

 

Initial Conditions [ ]T0 2/16/16/16/1)t( −=q  

[ ]T0 5774.05774.05774.0)t(ˆ −=e  

90)θ(t0 =  deg 

T

0 ]0.50.100.10[)t( −=ω  

T

0 ]1.01.01.0[)t( =b  deg/sec 

T

0 ]000[)t(ˆ =b  deg/sec 

T

0 ]1000[)t(ˆ =q  

 

Control Gains 20umax =  Nm 

0.3α =  

01.0β =  

75.0γ p =  

25.2a 2 =  

101c2 =  

0.10)t(p 0 =  

 
Table 3-4  Rest-to-Rest Attitude Maneuver (with disturbance/state estimation rejection) 

 

Figure 3-44 though Figure 3-53 present the results of the rest-to-rest attitude 

maneuver. The error quaternion settles to the desired equilibrium point with a 
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settling time of 200 sec. The )]t(q̂δsgn[ 4  term in the control law of Eq (110) has 

not been applied to this maneuver. Figure 3-50 demonstrates that Wie's theorem 

of an eigenaxis rotation is not valid for this control strategy. 

 

Figure 3-45 clearly demonstrates the disturbance rejection capabilities of the 

control strategy defined by Eqs (87) and (102). Identical to the results in Section 

3.9.5, the theoretical asymptotic stability result developed in Section 3.8 is not 

observed in the MATLAB
™
 simulation. However, the sharp discontinuities in 

the spacecraft angular rates of Figure 3-35 are not present in Figure 3-45. This is 

due to the selection of the system parameters which ensure smoother spacecraft 

angular rates, at the expense of increased system convergence time. However, 

since the maneuver time is larger, the dynamic control gain parameter )t(p  has a 

larger period of time to decrease. If its value becomes too small (prior to system 

convergence) then the spacecraft angular rate commands will be excessively 

amplified by the control law of Eq (87). Eventually, the hyperbolic tangent 

component of the control law will produce invalid values. 

 

 

Figure 3-44  Spacecraft attitude quaternion tracking error 
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Figure 3-45  Spacecraft angular rates 

 

 

Figure 3-46  External control torques 
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Figure 3-47  Gravity-gradient disturbance torques 

 

 

Figure 3-48  Miscellaneous disturbance torques 
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Figure 3-49  Reference trajectory attitude quaternion 

 

 

Figure 3-50  Euler axis components of tracking error quaternion 
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Figure 3-51  Lyapunov function 

 

 

Figure 3-52  Lyapunov function derivative 
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Figure 3-53  Dynamic control parameter 

 

 

Figure 3-54  Spacecraft attitude quaternion observer estimation error 
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Figure 3-55  Spacecraft angular rates observer estimation error 

 

3.10   Conclusion 

In this chapter, various feedback control laws were developed for attitude 

tracking maneuvers based on Lyapunov’s direct method. A novel control 

strategy was proposed which accounts for spacecraft inertia uncertainty, control 

torque magnitude saturation, bounded persistent external disturbances, and 

sensor measurement error. MATLAB
™
 simulation results were presented to 

demonstrate and validate the performance of the various control algorithms. 
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Chapter 4 Spacecraft Attitude Maneuvers Using 
Sliding Mode Control Theory 

4.1 Introduction 

In Section 3.3 of Chapter 3, a Lyapunov stable feedback control law was 

designed for three-axis attitude maneuvering of rigid-body spacecraft. This 

control law was based on accurate knowledge of the spacecraft inertia matrix, 

state variable feedback information, and required the development of detailed 

functional models for all expected external disturbance torques, required for 

compensation in the feedback control law. In practice, the inertia parameters and 

state variables are not known exactly and the disturbance torque models may 

either not be available or available with relatively low accuracy. In addition, 

there will be dynamic model errors due to unanticipated disturbance torques and 

un-modelled dynamics such as actuator frictional effects. All sources of 

dynamic model uncertainty will contribute to the steady-state trajectory tracking 

error if not accounted for in the Lyapunov stability analysis. More recent 

methods (discussed in Sections 3.7 and 3.8 of Chapter 3) are generally capable 

of accounting for these effects through careful design of the feedback controller 

and associated control dynamic parameter update equation. In this chapter, the 

variable structure or sliding mode method will be applied to design Lyapunov 

stable control laws. These controllers provide robustness in the presence of 

spacecraft inertia uncertainty and bounded disturbance torques. The 

developments are not intended to supersede the results of Chapter 3, but rather 

provide an alternative approach for designing feedback control laws using the 

concept of a sliding vector. Chapter 5 will draw on the results of this chapter 

(along with several concepts in adaptive control theory) to develop Lyapunov 

stable controls which explicitly account for spacecraft inertia parameter 

uncertainty using an adaptive parameter update law.  

 

The algorithms presented in Sections 4.2-4.4 are not novel contributions to the 

literature, but were developed in the early work by Vadali
6
 and more recently by 

Crassidis, Vadali, and Markley
17
. Section 4.2 presents the design of a stable 

sliding manifold such that ideal spacecraft attitude motion on this manifold 

results in global asymptotic convergence of the trajectory tracking errors to 
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zero. Also in this section, a modification is made to the definition of the sliding 

manifold to ensure a minimum angular path maneuver to the sliding manifold. 

Section 4.3 considers a methodology for feedback control law design including 

a disturbance compensation term in the controller which mitigates the effects of 

spacecraft inertia matrix uncertainty and external disturbance torques. Section 

4.4 provides an alternative design procedure based on the equivalent control 

principle
6,17

. In Section 4.5, MATLAB
™
 simulation results are presented to 

demonstrate the performance of the control algorithms in Section 4.3. 

 

4.2 Sliding Manifold Design 

To obtain the discontinuity surfaces a control law of the form ))t(()t( 13qωω =  

is sought which minimises the performance index 
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subject to the attitude kinematics of Eq (12) in Chapter 3, where 13qδ  is the 

vector component of the tracking error quaternion defined by 1−⊗= dqqqδ , eω  

is the spacecraft angular rate tracking error defined by de ωωω −= , ρ is a scalar 

weighting gain, and st  is the time of arrival at the sliding manifold (sliding 

mode). Using the principles of optimal control theory the Hamiltonian 

associated with minimising Eq (1) subject to the kinematic equation constraints 

is defined as 
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where )t(λ  is the co-state vector associated with the attitude kinematics. The 

necessary conditions for optimality are given by 
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Using Eq (2) and Eqs (12), (18), (19), (21) in Chapter 3 the solution of Eqs (3)-

(5) leads to the following two-point boundary value problem 
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2

1 T                                               (8) 

 

It may be shown based on a suitable analytical analysis
6,17

 that the following 

choice for the sliding manifold (intersection of the sliding surfaces) minimises 

the cost function of Eq (1) 

 

1313k ×=+= 0qδωs e                                              (9) 

 

provided that ρk ±= , where k is a scalar gain. The minimum value of the 

performance index of Eq (1) corresponding to this choice of sliding vector is 

given by
17
  

 

[ ])t(δq1k2),(J s413 −=∗∗
qω                                        (10) 

 

where k  must be strictly positive in the evaluation of Eq (10). It is critical to 

note that for the quaternion parameterisation of the spacecraft attitude )t(qδ  and 

)t(qδ−  represent identical physical tracking error rotations, although the former 

gives the shortest angular distance to the sliding manifold whilst the later gives 

the longest distance. Hence more control energy may be required to maneuver 

the spacecraft to the reference trajectory based on the )t(qδ−  tracking error 
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commands. Vadali
6
 and Crassidis et al.

17
 proposed a modification to the sliding 

manifold defined by Eq (9) to ensure that the spacecraft follows the shortest 

possible path to the sliding manifold (and also to the reference trajectory)  

 

[ ] 1313s4 )(tδqksgn ×=+= 0qδωs e                                  (11) 

 

where [ ]⋅sgn  is a signum function and it is assumed that )t(δq s4  is non-zero for 

a finite time. The performance index of Eq (1) evaluated for state trajectories 

satisfying Eq (11) is given by  

 

[ ])t(δq1k2),(J s413 −=∗∗
qω                                        (12) 

 

which provides a minimum value regardless of the quaternion tracking error 

representation. References 6 & 17 show that the ])(tδqsgn[ s4  term in Eq (11) 

may be replaced with ](t)δqsgn[ 4  (even before the sliding manifold is reached), 

which also produces a maneuver to the reference trajectory in the shortest 

distance. An alternative approach is to design the attitude maneuver using the 

modified Rodrigues parameter (MRP). This would result in a different 

functional form for the sliding manifold and the issue of minimum distance 

rotation maneuvers realised by switching between the normal MRP set and its 

shadow set. Substituting Eq (11) into the derivative of Eq (20) in Chapter 3 

leads to the following kinematic equations for “ideal sliding motion” on the 

sliding manifold 

 

[ ] [ ][ ]13s41313413 )t(δqsgnk2
2

1
δqk

2

1
qδωqδqδqδ d −×+−=&               (13) 

 

[ ]( )24s44 δq1)t(δqsgnk
2

1
qδ −=&                                   (14) 

 

The trajectory in state-space that slides on the sliding manifold (called the 

sliding mode) can be shown to be asymptotically stable using Lyapunov’s direct 

method (see Chapter 3). The following candidate Lyapunov function is 

proposed  
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13

T

1313
2

1
)(V qδqδqδ =                                         (15) 

 

Substituting Eq (13) into the derivative of Eq (15) leads to the following 

expression 

 

13

T

13413 δqk
2

1
)(V qδqδqδ −=&                                 (16) 

 

which is clearly negative definite provided k > 0. This results shows that attitude 

tracking error 1313 ×→ 0qδ  as ∞→t , and since the motion is on the sliding 

manifold defined by 13)t( ×= 0s  it follows that 13)t( ×→ 0ωe  as ∞→t . 

 

4.3 Control Law Design (Method 1) 

This section considers the design of a state feedback control law for the entire 

system (including the dynamic equations) so that the closed-loop system can 

asymptotically track a reference trajectory defined by [ ]TTT )t()t()t( ddd ωqx = . 

Section 4.3 considers control law design based on Lyapunov’s direct method in 

a manner similar to Chapter 3, whereas Section 4.4 will consider a more 

structured design approach based on the equivalent control method
5,6
. In many 

practical applications parameter uncertainty in the dynamic model or the 

presence of bounded external disturbances prevent perfect asymptotic tracking 

of the reference trajectory. The control law design process in this chapter will 

therefore explicitly account for these effects. This will be achieved by 

introducing an additional term in the control law which is specifically designed 

to cancel the effect of the external disturbances in the Lyapunov stability 

analysis.  

 

4.3.1 Ideal Case 

It was shown in Section 4.2 that the attitude kinematic motion on the sliding 

manifold defined by Eq (11) is asymptotically stable. To ensure that the 

spacecraft maneuvers to the reference trajectory in the shortest angular distance, 

a [ ])(tδqsgn s4  function was introduced into the sliding vector definition of Eq 
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(11). A stability analysis was presented in Reference 17 which allows this 

[ ])(tδqsgn s4  term to be replaced by [ ](t)δqsgn 4  over the entire attitude 

maneuver. Taking the derivative of the sliding vector expression of Eq (11) 

augmented with the [ ])t(δqsgn 4  term (and assuming this term is constant with 

respect to time) gives 

 

[ ] 134 )t(δqksgn qδωs e
&&& +=                                        (17) 

 

To prove that the spacecraft attitude motion convergences to the sliding 

manifold defined by 13)t( ×= 0s  and remains on the manifold such that 

13)t( ×= 0s&  the following Lyapunov function candidate is proposed 

 

Jsss
T

2

1
)(V =                                                  (18) 

 

This function is a valid candidate since it vanishes at the equilibrium point 

13)t( ×= 0s  and is globally positive definite for 13)t( ×≠ 0s  since the spacecraft 

inertia matrix J  is positive definite. The Lyapunov derivative is given by 

 

sJss && T)(V =                                                    (19) 

 

Substituting the expression for spacecraft rotational dynamics given by Eq (24) 

of Chapter 3 (where the gravity-gradient disturbance torque )t(ggu  and the 

general disturbance torque )t(d  have been separated) into Eq (17) leads to 

 

[ ] [ ] 134 )t(δqsgnk qδJωJduuωJωsJ dgg
&&& +−+++×−=                (20) 

 

This section considers the case of zero external disturbances such that 

13)t( ×= 0u gg  and 13)t( ×= 0d . Substituting Eq (20) into the Lyapunov function 

derivative given by Eq (19) yields 

 

[ ] [ ][ ]134

T )t(δqsgnk)(V qδJωJuωJωss d
&&& +−+×−=                   (21) 
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Select the external control torque according to 

 

[ ] [ ] )t()t(δqsgnk)t()t()t()t()t()t( 1341 qδJωJuωJωsKu dgg
&& −+−×+−=     (22) 

 

which ensures global asymptotic tracking of the reference trajectory due to the 

negative definite Lyapunov derivative given by 

 

sKssV
T

1
2

1
)( −=&                                            (23) 

 

such that 13)t( ×→ 0s  as ∞→t . This in turn implies that 1313 )t( ×→ 0qδ , 

1)t(δq 4 ±→  (depending on which equilibrium point is the minimum angular 

path), and 13)t( ×→ 0ωe  as ∞→t . The form of the control law given by Eq 

(22) is similar to the control law of Eq (38) in Chapter 3 developed using 

Lyapunov’s direct method. Both controllers contain linear terms in )t(13qδ  and 

)t(eω , as well as signum functions in the tracking error )t(δq 4  which ensure a 

minimum angle rotation to the equilibrium state. The key difference between the 

two control laws is that the sliding-mode control law of Eq (22) contains a 

)t(13qδ &  term which introduces nonlinear terms in )t(qδ  and )t(eω . Note that 

the derivative term )t(13qδ &  may be computed using the quaternion kinematic 

equations given by Eq (20) of Chapter 3, thus eliminating the need for 

numerical differentiation of the tracking error quaternion. An important 

advantage of the sliding-mode control design approach with respect to 

Lyapunov based methods is the effective reduction of the state-space dimension 

from 17)t( ×∈Rx  to 13)t( ×∈Rx . 

 

4.3.2 Bounded Disturbance Torque Case 

This section generalises the results of the previous section to consider the effect 

on the Lyapunov stability analysis of an external disturbance torque )t(d  whose 

functional form is unknown, but whose upper limit is known. Throughout 

Chapter 3 and in Section 3.3.1 it was assumed that all parameters necessary to 

compensate for the gravity-gradient torque )t(ggu  were available. In this section 
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the gravity-gradient torque is included as part of the general disturbance torque 

term )t(d . The control law given by Eq (22) is subsequently modified to 

mitigate the effect of all bounded disturbances in the Lyapunov stability analysis 

 

                         [ ] )t()t()t()t()t()t( 1 dgg ωJuωJωsKu &+−×+−=  

[ ] )t()t(δqsgnk 134 τqδJ +− &                                            (24) 

 

where )t(τ  is a disturbance rejection term specifically designed to counteract 

the effect of the all disturbance torques. To determine the required form of the 

disturbance rejection term consider the derivative of Eq (18) based on the 

modified control law of Eq (24) given by 

 

[ ]τdssKssV ++−= T

1

T

2

1

2

1
)(&                                   (25) 

 

Assume that the disturbance torque is bounded according to 

maxiimax,i Ψd)t(d <≤  3,2,1i =  for 0t ≥ . This assumption requires that the total 

disturbance torque limits are available to the spacecraft attitude control system 

engineer prior to the spacecraft launch. In practice the worst-case-scenario 

magnitude of certain torques such as the gravity-gradient torque are available 

for a representative orbit and known spacecraft inertia matrix. However the 

effect of un-modelled disturbances or poorly modelled disturbances may lead to 

uncertainty in assessing the torque limits. It is therefore necessary to tune the 

gains governing the magnitude of the disturbance compensation term during 

spacecraft operations. A signum function whose argument is the sliding vector is 

proposed as the disturbance compensation term 

 

[ ])t(sgn)t( max sΨτ −=                                         (26) 

 

where [ ]maximax Ψdiag=Ψ  is a diagonal matrix of disturbance limits and the 

vector signum function [ ]T321 )ssgn()ssgn()ssgn()sgn( =s  has individual 

components defined by  
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[ ]








<−

=

>+

=

0s1

0s0

0s1

ssgn

i

i

i

i           3,2,1=i                           (27) 

 

To show that the disturbance rejection term of Eq (26) results in an 

asymptotically stable system it needs to be shown that the [ ])t()t()t(T τds +  

term in Eq (25) is negative definite 

 

[ ] [ ]{ } [ ]{ }∑∑
==

−=−=+
3

1i

maxiiii

3

1i

imaxiii

T ΨssgndsssgnΨdsτds          (28) 

 

It follows from the disturbance torque limits that [ ] 0)t()t()t(T <+ τds  is a 

negative definite term and the Lyapunov derivative given by Eq (25) is therefore 

negative definite. Due to the disturbance compensation term of Eq (26) the 

presence of the )t(1sK−  term in the control law of Eq (24) is not entirely 

necessary in proving the asymptotic stability result, it is does provide control 

over the rate of decrease of the Lyapunov function derivative through the 1K  

matrix.  

 

Although the introduction of the disturbance compensation term )t(τ  allows us 

to conclude asymptotic stability, the primary disadvantage of this approach is 

that the signum function may create high-frequency chattering (high-frequency 

motion) in the control torques. This may in turn excite high-frequency dynamics 

neglected in the dynamic model (for example un-modelled structural modes, 

neglected time delays, etc.) and may eventually wear out mechanical hardware. 

This may be overcome by smoothing )t(τ  using a saturation function which 

offers a design trade-off between the steady-state trajectory tracking 

performance and dynamic model uncertainty, given the available control 

bandwidth. In this case, however, only Lyapunov stability (and not asymptotic 

stability) of the spacecraft attitude motion with respect to the equilibrium state 

can be guaranteed. Replacing the signum compensation term of Eq (26) with a 

saturation function 

 



Chapter 4 

172 

[ ])t(sat)t( max sΨτ −=                                             (29) 

 

in which the definition of the saturation function is given by 

 

[ ]









−<−

≤

>+

=

ii

ii

i

i

ii

i

εs1

εs
ε

s

εs1

ssat           3,2,1=i                              (30) 

 

where iε  is a positive constant scalar called the saturation boundary thickness. 

The saturation function and its associated boundary layer is illustrated in Figure 

4-1. 

 

Based on the definition of the saturation function given by Eq (30) it is clear 

that the standard signum function is used when a sliding vector component lies 

outside the boundary layer defined by ii εs > . It has been shown that the 

system is asymptotically stable under these conditions. When the spacecraft 

attitude motion is such that at least one sliding vector component lies within the 

boundary layer it is difficult to show that the Lyapunov function derivative of 

Eq (25) is negative definite since the term 

 

[ ] ∑∑∑
==∈

+−=







−=+

3

pi

ii

3

pi

2

i

i

imax,
3

pi i

iimax,

ii

T ds
2

1
s

ε

Ψ

2

1

ε

sΨ
ds

2

1

2

1
τds          (31) 

 

for p control torques lying within the boundary layer is not negative definite in 

general. The thickness of the boundary layer may be appropriately designed by 

adjusting the iε  parameter. The effect of using Eq (29) to compensate for the 

external disturbance torques is that state trajectories do not exactly move on the 

sliding manifold but are constrained to within the boundary layer defined by 

ii εs ≤  for 3,2,1=i . 
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Figure 4-1  Saturation function with boundary layer 2εi 

 

4.3.3 Bounded Disturbance Torque and Modelling Uncertainty 
Case 

In addition to the external disturbance torques appearing in the dynamic 

equations of motion the spacecraft is subject to model parameter uncertainty. 

This work will consider the case in which uncertainty present in the spacecraft 

inertia matrix is in the form 

  

J∆JJ += ∗                                                 (32) 

 

where J  is the true inertia matrix (constant over the spacecraft attitude 

maneuver), J* is the best estimate of the inertia matrix, and ∆J is the inertia 

matrix uncertainty. A modified version of the control law of Eq (24) must be 

applied under parameter uncertainty, in which the best estimate of the spacecraft 

inertia matrix is used 

 

                        [ ] )t()t()t()t()t()t( 1 dgg ωJuωJωsKu &∗∗ +−×+−=  

 [ ] )t()t()t(δqsgnk 134 τqδJ +− ∗ &                                       (33) 

si 

sat(si) 

+1 

-1 

2εi 
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Substitute the parameter uncertainty expression of Eq (32) into Eq (33) 

 

[ ] [ ] τqδJωJuωJωsKu dgg +−+−×+−= 1341 )t(δqsgnk)t( &&             (34) 

                     [ ] [ ][ ]134 )t(δqsgnk qδJ∆ωJ∆ωJ∆ω d
&& −+×−  

 

Define an augmented torque term due to all external disturbance torques and 

spacecraft inertia uncertainty terms 

 

[ ] [ ] 134 )t(δqsgnk
~

qδJ∆ωJ∆ωJ∆ωdd d
&& +−×−=                     (35) 

 

which has an upper limit given by imax,imax,i Ψ
~

d
~

)t(d
~

<≤ . With the addition of 

spacecraft inertia uncertainty the Lyapunov function derivative given by Eq (25) 

is replaced with  

 

[ ]τdssKss ++−=
~

2

1

2

1
)(V T

1

T&                                     (36) 

 

A suitable saturation function may be designed to cancel the effect of the 

augmented disturbance torque term using a procedure similar to that described 

in Section 4.3.2. 

 

4.3.4 Determination of Control Gains 

An approach similar to that in Section 3.4 of Chapter 3 is applied to select the 

control gain matrix 1K  and the sliding vector scalar gain k  to achieve a desired 

closed-loop system response. In the disturbance free case the ordinary 

differential equation governing the evolution of the sliding vector is obtained by 

substituting the feedback control law of Eq (22) into Eq (20) which produces the 

stable first-order linear ODE 

 

)t()t( 1

1 sKJs −−=&                                              (37) 

 

Any value of 1K  may be used to ensure that 13)t( ×→ 0s  as ∞→t  with larger 

values of the elements of 1K  giving rise to faster convergence rates. The 
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Lyapunov stability analysis for the sliding manifold shows that once the 

spacecraft attitude motion is tracking the sliding manifold then the reference 

trajectory tracking errors eventually converge to the origin. Although an 

arbitrary choice of 1K  achieves the desired tracking objectives it is desirable to 

design the system to achieve a desired closed-loop response. Consider the 

tracking error angular rate dynamics based on the control law of Eq (22) given 

by 

 

[ ] [ ] 13413411 )t(δqsgnk)t(δqsgnk qδJqδKωKωJ ee
&& −−−=             (38) 

 

By definition the vector component of the tracking error quaternion and angular 

rates are given by ( ) )t(ˆ2/)t(sin)t(13 eqδ θ=  and )t(ˆ)t(θ)t( eωe
&=  respectively, 

where )t(θ is the Euler angle of rotation and )t(ê  is the Euler axis which is 

assumed constant in direction during the spacecraft attitude maneuver. 

Substituting these expressions into Eq (38) results in a second-order nonlinear 

ordinary differential equation in terms of the Euler angle 

 

[ ] ( ) [ ]( ) ( ) eJeKeKeJ ˆ2/θcos2/θδqsgnkˆ2/θsinδqsgnkˆθˆθ 4141
&&&& −−−=      (39) 

 

Select the control gain as JK 11 k=  and assume that the [ ])t(δqsgn 4  term is 

unity throughout the spacecraft attitude maneuver. Also assume that for the 

purposes of selecting the control gains the approximations 2/θ)2/θsin( ≈  and 

1)2/θcos( ≈  are valid. The second-order linear ODE for the Euler angle given 

by Eq (39) reduces to 

 

( ) ( ) 0θ2/kkθk/2kθ 11 =+++ &&&                                 (40) 

 

where the damping ratio ζ and the natural frequency nω  satisfy 

n1 ζω22/kk =+  and 2

n1 ω2kk = . Solving these two simultaneous equations 

produces the differential equation 0ωkζω2k 2

n1n

2

1 =+−  which has two 

solutions for 1k . Take the positive solution for 1k  since the Lyapunov function 

derivative must be negative definite and solve for the remaining control 
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parameter using ( )2/kζω4k 1n −= . The natural undamped frequency parameter 

nω  is calculated using the settling time expression 

 

)ζω/(8t ns =                                                  (41) 

 

where the damping factor is 1ς =  for a critically damped closed-loop response. 

 

4.4 Control Law Design (Method 2) 

In this section the equivalent control method
5-6
 is used to develop a feedback 

control law that induces ideal sliding on the sliding manifold based on external 

control torque inputs in the absence of disturbances and dynamic model 

uncertainty. It will be shown using a Lyapunov stability analysis that the same 

control law can be used to force the state trajectory onto the sliding manifold
6
. A 

suitable disturbance compensation term will then be introduced into the control 

law which results in the state trajectories lying in a bounded region surrounding 

the sliding manifold. The control law development in this section is not intended 

to supersede the methodology introduced in Section 4.3 but rather provide an 

alternative approach for the controller design.  

 

The kinematic and dynamic equations associated with the trajectory tracking 

error are given by Eq (20) and Eq (24) in Chapter 3. This may be expressed as a 

system of n equations linear in the m controls   

 

( ) )t()t()t( Buxfx +=                                           (42) 

 

where 17)t( ×ℜ∈x  is the state vector, ( ) 17)t( ×ℜ∈xf  is a nonlinear function of 

the state variables, 37×ℜ∈B  is the control coefficient matrix, and 13)t( ×ℜ∈u  is 

the control torque vector. The specific structure for the spacecraft attitude 

maneuver problem are given by 

 

[ ]TTT sqδx =                                               (43) 
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[ ] [ ] 













+−+×−
=

−−
134

11 )t(δqsgnk

)(
2

1

)(

qδωuJωJωJ

ωqδΞ
xf

dgg

e

&&

             (44) 

 

[ ]T1

43

−
×= J0B                                             (45) 

 

based on the kinematic equations of Eqs (20) in Chapter 3 and the dynamic 

equations of Eq (20) without general external disturbance torques. During ideal 

sliding on the sliding manifold defined by 13)t( ×= 0s , the sliding vector 

derivative must also be zero. Applying the chain rule of differentiation to the 

sliding vector derivative 

 

13)( ×=+== 0PBuxPfxPs eq
&&                                 (46) 

 

where )t(equ  is the equivalent control torque and P  is the sliding vector 

Jacobian matrix with respect to the states defined by 
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P                                    (47) 

 

Evaluating the Jacobian matrix based on the definition of the sliding vector in 

Eq (11) leads to 

 

[ ][ ]3313334 )t(δqsgnk ×××= I0IP                              (48) 

 

where the [ ])t(δqsgn s4  term in Eq (11) is replaced with [ ])t(δqsgn 4 . The 

equivalent control torque can be obtained by rearranging Eq (45) 

 

[ ] )(
1

xPfPBueq
−−=                                         (49) 
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which has a unique solution provided that the matrix product PB  is non-

singular. Substituting Eqs (44), (45), and (48) into Eq (49) provides an 

expression for the equivalent control torque  

 

[ ] [ ] )t()t(δqsgnk)t()t()t()t()t( 134 qδJωJuωJωu dggeq
&& −+−×=           (50) 

 

where )t(13qδ &  is given by Eq (20) of Chapter 3. The control law of Eq (50) is 

almost identical to the control law of Eq (22) except for the linear term in the 

sliding vector. Under the influence of additional external disturbance torques 

and dynamic model uncertainty the equivalent control torque given by Eq (50) 

will not be sufficient to exactly maintain the ideal sliding motion. Hence it is 

necessary to modify the equivalent control in order to account for these non-

ideal effects such that the state trajectory will remain close to the sliding 

manifold. The modified control law is selected as 

 

[ ] [ ] )t()t()t(δqsgnk)t()t()t()t()t( 134 υJGqδJωJuωJωu dgg −−+−×= &&      (51)                 

 

where 33×ℜ∈G  is a constant positive definite diagonal matrix and )t(υ  is a 

saturation function defined by 

 


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


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εs1

εs
ε

)t(s

εs1

)t(υ

i

i
i

i

i           3,2,1=i                            (52) 

 

where ε is a positive scalar constant which defines the thickness of the boundary 

layer. The saturation function of Eq (52) is used to cancel the effect of un-

modelled dynamics and external disturbance torques whilst eliminating the 

possibility of chattering in the control torque. This will ensure that the 

spacecraft attitude motion remains within the boundary layer of the sliding 

manifold defined by εs i ≤  for 3,2,1=i . The feedback control law of Eq (51) 

may be considered the best approximation of a discontinuous control law (due 

to the signum function) that would maintain 13)t( ×= 0s  in the presence of 

dynamic model errors and bounded disturbance torques. A global stability 
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analysis to show that the control law of Eq (51) forces the spacecraft attitude 

motion toward the sliding manifold is based on Lyapunov’s direct method.  

Substituting the expression for spacecraft rotational dynamics given by Eq (24) 

of Chapter 3 and the feedback control law of Eq (51) into Eq (17) leads to 

 

υGdJs −= −1
&                                                 (53) 

 

The following candidate Lyapunov function is proposed 

 

sss
T

2

1
)(V =                                                  (54) 

 

which is similar to the Lyapunov function of Eq (18). Substituting Eq (53) into 

the derivative of Eq (54) produces the following expression 

 

[ ]υGdJss +−−= −1T)(V&                                       (55) 

 

which is negative definite function if the sliding vector is outside the boundary 

layer  εs i >  for 3,2,1=i  and indefinite if εs i ≤ . The disturbance 

compensation term must be properly designed to specify the thickness of the 

boundary layer. This Lyapunov stability analysis shows that the control law of 

Eq (51) may be used to force the state trajectory towards the sliding manifold 

and track the sliding manifold indefinitely within a boundary layer defined by 

εs i ≤  for 3,2,1=i .  

 

In the special case of zero external disturbance torques the Lyapunov function 

derivative given by Eq (55) reduces to
17
 

 

υGss T)(V −=&                                               (56) 

 

which is a negative definite function ensuring global asymptotic stability of the 

equilibrium point 13)t( ×= 0s . 

  



Chapter 4 

180 

4.5 Attitude Regulation Maneuver 

Spacecraft attitude maneuver simulation results are presented for an inertial 

pointing spacecraft to demonstrate the capabilities of the sliding mode control 

law developed in Section 4.3. The simulations were conducted using an attitude 

control system model developed in MATLAB
™
 Simulink

®
 with numerical 

integration performed using a fourth-order Runge-Kutta numerical integrator 

ODE4 with a fixed step size of sec1.0∆t = . The MATLAB
™
 line style 

designators for all simulation plots are 1-axis = solid line, 2-axis = dashed line, 

3-axis = dash-dot line, and 4-axis = dotted line. 

 

This design example is based on the control law of Eq (22) with simulation 

parameters defined in Table 4-1. The only environmental disturbance torque 

considered is the gravity-gradient torque which is compensated in Eq (22). The 

control gains are selected using the procedure outlined in Section 4.3.4. The 

initial Euler axis/angle parameterisation given in Table 4-1 corresponds to a 90 

deg rotation with respect to the minimum angle maneuver equilibrium point 

)t(dq− . For a settling time requirement of  sec50t s =  and a critically damped 

response 1ξ =  the natural frequency is 16.0ωn =  rad/sec and the control gains 

are 16.0k1 =  and 32.0k = . 

 

Figure 4-2 to Figure 4-9 present the results of the rest-to-rest attitude maneuver. 

The tracking error quaternion displays a critically damped response with the 

)t(δq 4  component settling to the desired equilibrium point, and the system 

settling time of 50 sec has been achieved to within the approximations 

introduced in Section 4.3.4. This demonstrates the )]t(δqsgn[ 4  term present in 

the sliding vector defined by Eq (11) is correctly forcing the spacecraft attitude 

motion towards the correct minimum angular path equilibrium point. Figure 4-7 

demonstrates that Wie's eigenaxis rotation theorem for rest-to-rest maneuvers 

discussed in Section 3.4 of Chapter 3 does not apply for sliding mode based 

attitude maneuvers. The Lyapunov function in Figure 4-8 and its derivative in 

Figure 4-9 are consistent with an asymptotically stable closed-loop system. 
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Parameters Values 

Spacecraft Inertia Matrix 

















−

−

=

90.50725.017.0

25.044.61157.3

17.057.328.600

J  

 

Reference Trajectory [ ]T1000=dq  

[ ]T000=dω  

 

Initial Conditions [ ]T0 2/16/16/16/1)t( −−−=q  

[ ]T0 5774.05774.05774.0)t(ˆ −−=e  

270)θ(t 0 =  deg 
T

0 ]0.50.100.10[)t( −=ω  

 

Control Gains JK 16.01 =  

32.0k =  

 
Table 4-1  Rest-to-Rest Attitude Maneuvers 

 

 

Figure 4-2  Spacecraft attitude quaternion tracking error 
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Figure 4-3  Spacecraft angular rates 

 

 

Figure 4-4  External control torques 
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Figure 4-5  Gravity-gradient disturbance torques 

 

 

Figure 4-6  Reference trajectory attitude quaternion 
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Figure 4-7  Euler axis components of tracking error quaternion 

 

 

Figure 4-8  Lyapunov function 
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Figure 4-9  Lyapunov function derivative 

 

4.6 Conclusion 

In this chapter, two alternate sliding mode control laws were developed for 

attitude tracking maneuvers. A saturation function was introduced to 

compensate for the effects of spacecraft inertia uncertainty and bounded 

external disturbance torques. MATLAB
™
 simulation results were presented to 

demonstrate the performance of the fundamental control algorithm. 
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Chapter 5 Spacecraft Attitude Maneuvers Using 
Adaptive Control Theory 

5.1 Introduction 

This chapter considers the development of a direct adaptive control strategy
5,6
 

for spacecraft attitude tracking maneuvers. This strategy explicitly accounts for 

spacecraft inertia uncertainty, and may be considered an extension of the sliding 

mode control design in Chapter 4. The stability analysis will be based on 

Lyapunov’s direct method, in conjunction with Barbalat’s lemma
6
. The main 

outcomes of this chapter will be to develop an adaptive control strategy which 

provides exponentially convergent reference trajectory tracking and ensures 

exponential convergence of the inertia parameter estimates to their true values. 

The incorporation of sensor measurement error in the context of direct adaptive 

control will not be addressed in this thesis.  

 

The inertia parameter convergence results in this chapter have not been 

addressed in the literature, and therefore represent one of the major novel 

contributions provided in this thesis. Section 5.2 presents the fundamental direct 

adaptive control strategy based on the research by Cristi et al.
18
 for attitude 

regulation maneuvers and Ahmed et al.
26
 for attitude tracking maneuvers. A 

feedback control law and associated parameter update law are proposed to 

ensure asymptotic trajectory tracking in the presence of parameter uncertainty. 

In Section 5.3, a constant gain parameter update law
6
 is proposed which 

accounts for both trajectory tracking errors and output model prediction errors 

in the parameter update process. This approach requires direct noiseless 

measurements of the control torque inputs. Global asymptotic convergence of 

the tracking errors and parameter estimation errors is demonstrated via a 

Lyapunov stability analysis, provided that the reference trajectories are 

persistently exciting
5,6
. The design of a bounded-gain-forgetting (BGF) 

composite parameter update strategy is addressed in Section 5.4. This 

framework guarantees global exponential convergence of the trajectory tracking 

errors and parameter estimation errors, provided a persistency of excitation 

condition is satisfied. In Section 5.5, MATLAB
™
 simulation results are 
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presented to demonstrate the performance of the control algorithm in Section 

5.2 and to investigate convergence of the inertia parameter adaptive estimates. 

 

5.2 Adaptive Control Strategy 

The closed-loop dynamic equations of motion are given by 

 

[ ] t)(t)(t)()t()t( uαJωJωsJ r +−×−=&                                (1) 

 

where J  is the inertia matrix, [ ] t)(t)(t)(~(t)η~λsgnt)(~t)( c rcc ωωεωs −=+=  is 

the sliding vector, λ  is a positive scalar constant, and the remaining parameters 

in Eq (1) are [ ] )t(~λ)t())t(~()t(~)t())t(~()t( cdRccdRcr εωqRωωqRα && −×−=  and 

[ ] )t(~)t(η~sgnλ)t())t(~()t( c cdRcr εωqRω −= . The reference trajectory tracking 

errors are defined as )t())t(~()t()t(~
dRcc ωqRωω −=  and )t()t()t(~ 1−⊗= dc qqq , 

where ⊗  denotes the quaternion multiplication operator. The reference 

trajectories are defined by the commanded spacecraft angular rates )t(dRω  

expressed in reference trajectory coordinates { })t(R , and the commanded 

spacecraft attitude quaternion )t(dq . 

 

In Chapter 4, the control law of Eq (24) was selected to ensure asymptotic 

convergence of the trajectory tracking error 13)t( ×→ 0s  as ∞→t . In the 

context of adaptive control it is assumed that the spacecraft inertia matrix )t(J  

is either completely unknown to the spacecraft designer, known to a certain 

level of certainty, or is time-varying with different load conditions. The true 

spacecraft inertia matrix is given by )t(
~

)t()t( JJJ += ∗ , where )t(∗J  is the 

current best estimate of the inertia matrix and )t(
~
J  is the inertia matrix 

uncertainty. The true inertia matrix may be constant or time-varying (due to fuel 

expenditure), but nin this research work it is assumed fixed throughout the 

duration of the spacecraft attitude maneuver. The spacecraft inertia parameter 

estimates are governed by a time-varying parameter update law to ensure that 

the control objectives are accomplished. It is therefore necessary from a 

practical viewpoint to replace the control law of Eq (24), without the gravity-
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gradient disturbance torque )t(ggu  and the disturbance rejection term )t(τ , with 

the control law given by 

 

                    [ ] )t()t()t()t()t( ωJωαJsKu rrD

∗∗ ×++−=                          (2) 

 

The control law of Eq (2) may be expressed as  

 

[ ] )t(~)t()t()t()t()t( uωJωαJsKu rrD +×++−=                      (3) 

 

 

[ ] )t(
~

)t()t(
~

)t(~ ωJωαJu rr ×−−=                                  (4) 

 

where )t(~u  is an additional torque term related to the uncertainty in the 

spacecraft inertia matrix. For adaptive control applications, it is necessary to 

linearly parameterise )t(~u  in terms of the time-varying parameter error vector 

defined by 

 

[ ]T121323332211 J
~

J
~

J
~

J
~

J
~

J
~

)t(
~

=θ                              (5) 

 

Use the following identities to achieve the linear parameterisation based on an 

arbitrary vector 13)t( ×∈Ra  

 

θaLaJ
~
)(

~
=                                                 (6) 

 

















=

0aaa00

a0a0a0

aa000a

)(

123

132

231

aL                                 (7) 

 

[ ] θaGaJa
~
)(

~
=×−                                            (8) 

 

           [ ] )()( aLaaG ×−=                                           (9) 

 

It follows from definitions Eqs (6)-(9) that Eq (4) may be expressed in the 

elegant form 
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)t(
~

))t(),t(),t(()t(~ T θαωωΦu rr=                                    (10) 

 

[ ]{ }T))t(()t())t(())t(),t(),t(( ωLωαLαωωΦ rrrr ×+−=                  (11) 

 

Using the control law of Eq (2) the closed-loop dynamic equations of motion 

are given by 

 

[ ] )t(~)t()t()t()t( usωJsKsJ D +×+−=&                                (12) 

 

Select a Lyapunov candidate function given by 

 

)t(
~

)t(
~

2

1
)t()t(

2

1
))t(

~
),t((V 1TT

θΓθJssθs
−+=                         (13) 

 

which is an extension of Eq (18) in Chapter 4 to include a positive definite term 

in the inertia parameter error vector, where 1−Γ  is a positive definite constant 

weighting matrix. The derivative of Eq (13) is given by 

 

)t(
~

)t(
~

)t()t())t(
~

),t((V 1TT θΓθsJsθs
&

&& −+=                            (14) 

 

A parameter update law )t(
~
θ
&

 must be designed to update the estimates of the 

spacecraft inertia parameters )t(∗J  such that the Lyapunov function derivative 

is negative semi-definite. Hence, the parameter update law only updates the 

inertia estimates to meet the control objectives. Consequently, convergence of 

the inertia parameter estimates to their true values is not guaranteed. To 

determine the specific structure of the update law substitute into Eq (14) the 

expression for the closed-loop sliding vector dynamics of Eq (12) 

 

)t(
~

)t(
~

)t(~)t()t()t())t(
~

),t((V 1TTT θΓθussKsθs D

&& −++−=                (15) 

 

Select the parameter update law to cancel the )t(~)t(T us  term in Eq (15) such 

that 
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)t())t(),t(),t(()t()t(
~

sαωωΓΦθθ rr−=−= ∗&&
                      (16) 

 

where )t(∗θ&  is the derivative of the inertia parameter estimate, and it is assumed 

that the true inertia parameters are time-invariant. Substituting Eq (16) into Eq 

(15) leads to 

 

)t()t())t(
~

),t((V T sKsθs D−=&                                  (17) 

 

which is identical to the Eq (25) of Chapter 4. The Lyapunov function derivative 

of Eq (17) may also be upper bounded according to 

 

)t()t(k))t(
~

),t((V T

d ssθs −≤&                                  (18) 

 

where )(λk mind DK=  is the minimum eigenvalue of the DK  control matrix. 

The selection of control gains for a desired closed-loop system response also 

follows the procedure outlined in Section 4.3.4. The parameter update law of Eq 

(16) may be modified using the e1-modification technique to compensate for the 

presence of external disturbance torques. Details of this technique may be found 

in Reference 25. 

 

Applying the fundamental principles of Lyapunov’s direct method, the negative 

semi-definite Lyapunov function derivative of Eq (17) guarantees that all state 

variables are upper bounded by the initial conditions of the state trajectory, such 

that  ∞∈L)t(s  and ∞∈L)t(
~
θ . This in turn implies that ∞∈L)t(~

cω  and the 

components of the spacecraft attitude quaternion are bounded by definition such 

that ∞∈L)t(~
cq . The positive definiteness of the spacecraft inertia matrix J  

implies that ∞∈LJ  and ∞
− ∈L1J . The positive definiteness of the control 

matrix DK  and the sliding vector gain λ  imply that ∞∈LDK  and ∞∈Lλ . The 

reference trajectory parameters ∞∈L)t(dRω  and ∞∈L)t(dRω&  are bounded, and 

∞∈L)t(dq  is also bounded by definition. The above results ensure that 

∞∈L)t(ω ,  ∞∈L)t(rα , ∞∈L)t(rω , ∞∈L))t(),t(),t(( rr αωωΦ , and 

∞∈L)t(q  is bounded by definition. Furthermore, the Lyapunov function is 
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finite 0tt ≥∀  such that ∞<≤≤≤ ∞ )t(V)t(V)t(V0 0  and integrating Eq (18) 

for 0tt ≥  yields 

 

∫∫
∞∞

≥−>∞
t

t

T

d

t

t 00

dτ)τ()τ(kdτ)τ(V ss&                           (19) 

 

which shows that ∞∩∈ LL)t( 2s . Since all terms in the closed-loop dynamics 

given by Eq (12) are bounded, this implies that ∞∈L)t(s& . Applying Barbalat’s 

lemma
6
 results in 13t )t(lim ×∞→ = 0s , which implies that 13t )t(~lim ×∞→ = 0ωc , 

13t )t(~lim ×∞→ = 0εc , and 1)t(η~lim ct ±=∞→  (depending on which equilibrium 

point is the minimum angular path). 

 

5.3 Inertia Parameter Convergence (Method 1) 

The objective of this section is to develop a composite adaptive update law for 

the inertia parameter estimates which guarantees asymptotic convergence of the 

inertia parameter estimates, in addition to asymptotic convergence of the 

trajectory tracking errors. Composite adaptation laws
6
 will be developed, which 

are driven by both the trajectory tracking error )t(s  and the output prediction 

error )t(e . A constant gain composite adaptation law
6
 is proposed 

 

[ ])t())t(),t(),t(()t())t(),t(),t(()t()t(
~ T eαωsWsαωωΦΓθθ rrr +−=−= ∗&&

    (20) 

 

The control torque may be expressed as 

 

)t())t(),t(),t(()t( 1 θαωsYu r
&=                                  (21) 

 

which is considered the system output model obtained by linearly 

parameterising the left-hand side of the closed-loop dynamics given by Eq (1), 

with [ ] ))t(())t(()t())t(())t(),t(),t((1 rr αLωLωsLαωsY +×+= && . The output of 

Eq (21) cannot be utilised directly for inertia parameter estimation, due to the 
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presence of the unmeasurable sliding vector derivative )t(s& . To avoid the 

dependence on this term, use a first-order filter defined by 

 

))t(),t(),t((
αp

α
))t(),t(),t(( 1 rr αωsYαωsW &

+
=                    (22) 

 

where p  is the Laplace operator and α  is a specified positive scalar constant. 

This leads to a new definition of the system output model given by 

 

)t())t(),t(),t(()t( θαωsWy r=                                 (23) 

 

The output prediction error is defined as the difference between the measured 

output )t())t(),t(),t(()t( θαωsWy r=  and the predicted output 

)t(ˆ))t(),t(),t(()t(ˆ θαωsWy r=  such that 

 

)t(
~

))t(),t(),t(()t(ˆ)t()t( θαωsWyye r=−=                     (24) 

 

The derivative of Eq (13) using the control law of Eq (2) and the parameter 

update law of Eq (20) is derived as 

 

     )t()t())t(
~

),t((V T sKsθs D−=&  

)t(
~

))t(),t(),t(())t(),t(),t(()t(
~ TT

θαωsWαωsWθ rr−           (25) 

 

Since the matrix product ))t(),t(),t(())t(),t(),t(( T

rr αωsWαωsW  is not positive 

definite in general, the Lyapunov function derivative of Eq (25) is negative 

semi-definite. Note that the introduction of the output error term in the 

parameter update law of Eq (20) results in an additional term in Eq (25) which 

is negative definite in the output prediction error. Intuitively, the form of Eq (25) 

indicates that the Lyapunov function ))t(
~

),t((V θs  will decrease when either the 

trajectory tracking error )t(s  or the output prediction error )t(e  is not zero. 

However, it is necessary to show asymptotic convergence of the trajectory 

tracking and the parameter estimation errors. 
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Applying the fundamental principles of Lyapunov’s direct method, the negative 

semi-definite Lyapunov function derivative of Eq (25) guarantees that all state 

variables are upper bounded by the initial conditions of the state trajectory, such 

that  ∞∈L)t(s  and ∞∈L)t(
~
θ . This in turn implies that ∞∈L)t(~

cω  and the 

components of the tracking error quaternion are bounded by definition such that 

∞∈L)t(~
cq . The positive definiteness of the spacecraft inertia matrix J  implies 

that ∞
− ∈L1J . The positive definiteness of the matrices DK  and 1−Γ , and the 

sliding vector gain λ  imply that ∞∈LDK , ∞∈LΓ  and ∞∈Lλ . The reference 

trajectory parameters ∞∈L)t(dRω  and ∞∈L)t(dRω&  are bounded, and 

∞∈L)t(dq  is also bounded by definition. The results provided above ensure 

that ∞∈L)t(ω ,  ∞∈L)t(rα , ∞∈L)t(rω , ∞∈L))t(),t(),t(( rr αωωΦ , and 

∞∈L)t(q  is bounded by definition. The output matrix is bounded 

∞∈L))t(),t(),t(( rαωsW  since ∞∈L)t(s , ∞∈L)t(ω , ∞∈L)t(rα . 

 

To apply Barblat’s lemma first demonstrate the boundedness of ))t(
~

),t((V θs&&  

since this will demonstrate that ))t(
~

),t((V θs&  is uniformly continuous. The 

derivative of Eq (25) is given by 

 

)t()t(2)t()t(2))t(
~

),t((V TT eesKsθs D
&&&& −−=                           (26)  

 

Hence, to apply Barbalat’s lemma it is necessary to show that )t(s&  and )t(e&  are 

bounded. The boundedness of all terms in the closed-loop dynamics of Eq (12) 

implies that ∞∈L)t(s& . It follows that ∞∈L)t(~
cω

&  and ∞∈L)t(~
cω

&  are bounded 

terms, and ∞∈L)t(~
cq
&  due to the boundedness of the )t(~

cω  and )t(~
cq  

parameters. The output prediction error derivative is given by 

 

)t(
~

))t(),t(),t(()t(
~

))t(),t(),t(()t( θαωsWθαωsWe rr

&&& +=               (27) 

 

The output prediction error is bounded ∞∈L)t(e  since the terms 

))t(),t(),t(( rαωsW  and )t(
~
θ  are bounded. The parameter update equation is 
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bounded ∞∈L)t(
~
θ
&

 since Γ , ))t(),t(),t(( rr αωωΦ , ))t(),t(),t(( rαωsW , )t(s , 

and )t(e  are all bounded. It follows that the )t(
~

))t(),t(),t(( θαωsW r

&
 term in Eq 

(27) is bounded. The boundedness of )t(s& , )t(ω , and )t(rα  implies the 

boundedness of ))t(),t(),t((1 rαωsY &  and that of the control torque given by Eq 

(21). Due to the fact that filter in Eq (22) is exponentially stable and strictly 

proper, and that ))t(),t(),t((1 rαωsY &  is bounded, the )t(
~

))t(),t(),t(( θαωsW r

&&  

term is bounded. It follows that the )t(
~

))t(),t(),t(( θαωsW r
&  term in Eq (27) is 

bounded. The above results guarantee the boundedness of the )t(e&  parameter. 

 

The boundedness of DK , )t(s , )t(e , )t(s& , )t(e&  implies the boundedness of  

))t(
~

),t((V θs&&  and the uniform continuity of ))t(
~

),t((V θs& . Application of 

Barbalat’s lemma
6
 shows that 0))t(

~
),t((V →θs&  as ∞→t . Consequently, the 

trajectory tracking error )t(s  and the output prediction error )t(e  asymptotically 

convergence to zero as ∞→t . The convergence of the tracking error 

13t )t(lim ×∞→ = 0s  guarantees that 13t )t(~lim ×∞→ = 0ωc , 13t )t(~lim ×∞→ = 0εc , and 

1)t(η~lim ct ±=∞→  (depending on which equilibrium point is the minimum 

angular path). 

 

However, it is necessary to show that the parameter estimation error 

asymptotically converge to zero. This proof relies on the persistent excitation 

and uniform continuity of the reference trajectory parameters
45
. It well known 

the reference trajectory may be persistently excited by superimposing a 

sinusoidal signal on the reference trajectory, as discussed in Reference 45. The 

limitation, however, of this approach is that the spacecraft attitude maneuvers 

will track the perturbed trajectory. A possible method of overcoming this 

problem is using an intelligently exciting signal
40,46

 which decays with the 

tracking and parameter estimation errors. Either approach however is valid to 

demonstrate asymptotic convergence of the inertia parameter estimates. The 

persistent excitation and uniform continuity of the reference trajectory 

parameters )t(dq  and )t(dRω , implies the persistent excitation and uniform 
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continuity of the matrix ))t(),t(),t((1 rddRd αωsY & . This matrix is formed by 

replacing the true spacecraft attitude quaternion )t(q  and angular rates )t(ω  

with reference trajectory values in the original ))t(),t(),t((1 rαωsY &  matrix. The 

persistent excitation and uniform continuity of ))t(),t(),t((1 rddRd αωsY &  in turn 

guarantees the persistent excitation of the matrix ))t(),t(),t(( rddRd αωsW , 

formed in a manner identical to the ))t(),t(),t((1 rddRd αωsY &  matrix. Provided 

that the tracking error )t(s  components converges to zero, then the persistent 

excitation of ))t(),t(),t(( rddRd αωsW  implies the persistent excitation of the 

matrix ))t(),t(),t(( rαωsW . The asymptotic convergence of the inertia 

parameter estimates to the true parameter values can be demonstrated by 

recognising that the parameter update law defined by Eq (20) represents an 

exponentially stable dynamic equation with convergent input 

)t())t(),t(),t(( sαωωΓΦ rr
. 

 

Therefore, the control law of Eq (2) and the composite and the constant gain 

composite adaptation law of Eq (20) ensure the asymptotic convergence to zero 

of both the trajectory tracking error and output prediction error. This is because 

composite adaptation uses information related to both these quantities. In 

contrast, the direct adaptive control strategy defined by Eq (2) and Eq (16) only 

guarantees asymptotic convergence to zero of the trajectory tracking errors. 

However, in addition to the more complex update law, the composite adaptive 

control strategy also requires the filtered torque of Eq (23). This torque is 

computable in practice because the control torque signals issued by the onboard 

computer are known. 

 

5.4 Inertia Parameter Convergence (Method 2) 

The objective of this section is to develop a composite adaptive update law for 

the inertia parameter estimates which guarantees exponential convergence of the 

inertia parameter estimates, in addition to exponential convergence of the 

trajectory tracking errors. However, before proceedings it is necessary to 

develop a theorem regarding exponential convergence of the trajectory tracking.  
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Consider the Lyapunov stability analysis given by Eqs (1) through (19), but with 

the choice of the control gain matrix ∗= JK D k . It may be shown that by 

modifying the matrix ))t(),t(),t(( rr αωωΦ  defined by Eq (11) according to 

 

 [ ]{ }T))t((k))t(()t())t(())t(),t(),t(),t(( sLωLωαLαωωsΦ rrrr −×+−=     (28) 

 

then the Lyapunov function derivative becomes  

 

)t()t(k))t(
~

),t((V T Jssθs −=&                                   (29) 

 

In the absence of spacecraft inertia uncertainty the choice of control gain matrix 

∗= JK D k  results in an exponentially convergent system since 

))t((kV2))t((V ss −=&  implies that kt2

0 e))t((V))t((V −= ss . Furthermore, since J  

is a positive definite matrix then kt2

0

T e))t((V))t((V)t()t()2/α( −=≤ ssss , where  

 )(λα min J=  is the minimum eigenvalue of the spacecraft inertia matrix. This 

demonstrates the exponential convergence of )t(s  to zero with convergence rate  

k . Furthermore, selecting kλ =  in the sliding vector definition, implies the 

exponential convergence of the tracking errors t)(~
cω  and t)(~

cε  to zero, with 

convergence an identical convergence rate to )t(s . 

 

Consider the development of an adaptive control strategy which ensures 

exponentially convergence of the trajectory tracking errors and inertia parameter 

estimates. The stability analysis is similar to Section 5.3 except that a bounded-

gain-forgetting (BFG) composite adaptation law
6
 is proposed 

 

                           )t())t(),t(),t(()t()t()t(
~

sαωωΦΓθθ rr−=−= ∗&&
 

     )t())t(),t(),t(()t( T eαωsWΓ r−                    (30) 

 

where )t(Γ  is a uniformly positive definite weighting matrix, and the remaining 

other parameters are defined as in Section 5.3. This parameter estimation 

strategy uses an exponentially forgetting least-squares gain update given by 
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))t(),t(),t(())t(),t(),t(((t)β(t)(t)
dt

d T11

rr αωsWαωsWΓΓ +−= −−         (31) 

 

where 











−=

0

F
0

k
1ββ(t)

Γ
 is a time-varying forgetting factor variable in which 

0β  and 0k  are positive scalar constants specifying the maximum forgetting rate 

and the upper bound on the gain matrix Γ  norm respectively, and 
F

Γ  denotes 

the Frobenius norm of the Γ  matrix. This gain update strategy ensures that 

0β(t) ≥  and 660k)t( ×≤ IΓ  for any signal ))t(),t(),t(( rαωsW , and that 

1ββ(t) ≥ , where 1β  is positive scalar constant, provided that 

))t(),t(),t(( rαωsW  is a persistently exciting matrix. 

 

The derivative of Eq (13) using the control law of Eq (2) (with gain matrix 

∗= JK D k )  and the parameter update law of Eq (30) is derived as 

 

       )t(
~

)t(
~

β(t)
2

1
)t()t(k))t(

~
),t((V 1TT

θΓθJssθs
−−−=&  

)t(
~

))t(),t(),t(())t(),t(),t(()t(
~ TT

θαωsWαωsWθ rr−         (32) 

 

Since the matrix product ))t(),t(),t(())t(),t(),t(( T

rr αωsWαωsW  and the 

constant β(t)  are not positive definite in general, the Lyapunov function 

derivative of Eq (32) is negative semi-definite. Note that the parameter update 

law of Eq (30) results in an additional term in Eq (32) in comparison with Eq 

(25). Intuitively, the form of Eq (32) indicates that the Lyapunov function 

))t(
~

),t((V θs  will decrease when either the trajectory tracking error )t(s  or the 

output prediction error )t(e  is not zero, or when the parameter estimation error 

)t(
~
θ  is not zero provided that 0β(t) > . However, it is necessary to show 

exponential convergence of the trajectory tracking errors and the parameter 

estimation errors. 

 

An analysis similar to that presented in Section 5.3 can be performed to show 

that the parameters )t(s , )t(
~
θ , )t(e , )t(s& , )t(

~
θ
&

, )t(e&  are bounded. In addition, 
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the forgetting factor β(t)  and its derivative (t)β&  are bounded, since the 

weighting matrix (t)Γ  and its derivative (t)Γ&  are both bounded. The above 

results imply that ))t(
~

),t((V θs&&  is bounded since the derivative of Eq (32) is 

given by 

 

                       )t(
~

)t(
~

(t)β
2

1
)t()t(k2))t(

~
),t((V 1TT

θΓθsJsθs
−−−= &&&&  

)t()t(2)t(
~

)t(
~

β(t) T1T eeθΓθ &
& −− −                          (33) 

 

 

The boundedness of ))t(
~

),t((V θs&&  implies that ))t(
~

),t((V θs&  is unirformly 

continuous. Application of Barbalat’s lemma
6
 shows that 0))t(

~
),t((V →θs&  as 

∞→t . Consequently, the trajectory tracking error )t(s , the output prediction 

error )t(e , and the )t(
~

)t(
~

β(t) 1T θΓθ −  term  asymptotically convergence to zero 

as ∞→t . The convergence of the tracking error 13t )t(lim ×∞→ = 0s  guarantees 

that 13t )t(~lim ×∞→ = 0ωc , 13t )t(~lim ×∞→ = 0εc , and 1)t(η~lim ct ±=∞→  (depending 

on which equilibrium point is the minimum angular path). 

 

However, it is necessary to show that the parameter estimation errors 

exponentially converge to zero. Asymptotic convergence may be demonstrated 

by recognising that the parameter update law of Eq (31) guarantees that 

660k)t( ×≤ IΓ  for any signal ))t(),t(),t(( rαωsW , and that 1ββ(t) ≥ , where 1β  is 

positive scalar constant, provided that ))t(),t(),t(( rαωsW  is a persistently 

exciting matrix (see discussion on persistent excitation in Section 5.3). 

Consequently, the inequality 

 

)t(
~
)t(

~

k

β
)t(

~
)t(

~
β(t) T

0

11T
θθθΓθ ≥−                                (34) 

 

and the convergence of )t(
~

)t(
~

β(t) 1T θΓθ −  to zero imply that 16t )t(
~

lim ×∞→ = 0θ . 

However, it is necessary to demonstrate the exponential convergence of both the 
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trajectory tracking and parameter estimation errors. The Lyapunov derivative of 

Eq (32) may be upper bounded according to   

 

)t(
~

)t(
~

β(t)
2

1
)t()t(k))t(

~
),t((V 1TT

θΓθJssθs
−−−≤&                      (35) 

 

Defining a strictly positive constant { }1β2k,minγ = , then Eq (35) may be 

further reduced to 

 

))t(
~

),t((γV))t(
~

),t((V θsθs −≤&                                    (36) 

 

Therefore, the solution to the Lyapunov function of Eq (13) is upper bounded 

according to γt

00 e))t(
~

),t((V))t(
~

),t((V −≤ θsθs .  This in turn implies the 

exponential convergence of the trajectory tracking error )t(s  and parameter 

estimation error )t(
~
θ  to zero. The exponential convergence of the tracking 

errors )t(~
cω  and )t(~

cε  to zero follows from the exponential convergence of 

)t(s , provided kλ =  in the sliding vector definition. The introduction of a time-

varying weighting parameter in the bounded-gain-forgetting composite 

adaptation law of Eq (30), allows a stronger result of exponential convergence 

to zero of the trajectory tracking errors and the parameter estimation errors.  

 

5.5 Attitude Regulation Maneuver 

Spacecraft attitude maneuver simulation results are presented for an inertial 

pointing spacecraft to demonstrate the capabilities of the direct adaptive control 

law developed in Section 5.2. The simulations were conducted using an attitude 

control system model developed in MATLAB
™
 Simulink

®
 with numerical 

integration performed using a fourth-order Runge-Kutta numerical integrator 

ODE4 with a fixed step size of sec1.0∆t = . The MATLAB
™
 line style 

designators for all simulation plots are 1-axis = solid line, 2-axis = dashed line, 

3-axis = dash-dot line, and 4-axis = dotted line. 
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Parameters Values 

Spacecraft Inertia Matrix 

















−

−

=

90.50725.017.0

25.044.61157.3

17.057.328.600

J  

 

















=∗

50000

05000

00500

)t( 0J  

 

Reference Trajectory [ ]T1000=dq  

[ ]T000=dω  

 

Initial Conditions [ ]T0 2/16/16/16/1)t( −−−=q  

[ ]T0 5774.05774.05774.0)t(ˆ −−=e  

270)θ(t 0 =  deg 
T

0 ]0.50.100.10[)t( −=ω  

 

Control Gains )t(16.0 01

∗= JK  

32.0k =  

335.0 ×= IK  

 
Table 5-1  Adaptive control attitude maneuver 

 

The control law of Eq (2) with the disturbance compensation term 13)t( ×= 0τ  

and inertia parameter update law of Eq (16) are implemented with reference 

trajectory, initial conditions, and control gains defined in Table 5-1. The only 

environmental disturbance torque considered is the gravity-gradient torque 

which is exactly compensated for in the control law design. The control gains 

are selected using the procedure outlined in Section 4.3.4 of Chapter 4 but the 

spacecraft inertia matrix present in the 1K  control gain is replaced with the 

inertia matrix estimate at the initial simulation time. 

 

Figure 5-1 through Figure 5-9 present the results of the rest-to-rest attitude 

maneuver which are similar to the Chapter 4 sliding mode design example. The 

error quaternion displays a critically damped response with the )t(δq 4  

component settling to the desired minimum-angle maneuver equilibrium point, 
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and the system settling time of 50 sec has been achieved. This demonstrates the 

)]t(δqsgn[ 4  term in the sliding vector defined by Eq (11) of Chapter 4 is 

correctly forcing the spacecraft attitude motion towards the correct minimum 

angle equilibrium point. Figure 5-6 demonstrates that Wie's theorem of an 

eigenaxis rotation for rest-to-rest maneuvers discussed in Section 3.4 of Chapter 

3 does not apply for direct adaptive control based attitude maneuvers. Despite 

the spacecraft moment of inertia parameters in Figure 5-9 not converging to 

their correct values (which is reflected in the Lyapunov function of Figure 5-7) 

the trajectory tracking errors asymptotically converge to zero. 

 

 

Figure 5-1  Spacecraft attitude quaternion tracking error 
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Figure 5-2  Spacecraft angular rates 

 

 

Figure 5-3  External control torques 
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Figure 5-4  Gravity-gradient disturbance torques 

 

 

Figure 5-5  Reference trajectory attitude quaternion 
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Figure 5-6  Euler axis components of tracking error quaternion 

 

 

Figure 5-7  Lyapunov function 
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Figure 5-8  Lyapunov function derivative 

 

 

Figure 5-9  Spacecraft Moment of Inertia Estimates 

 



Adaptive Attitude Maneuvers 

 

209 

5.6 Conclusion 

In this chapter, a novel direct adaptive control strategy with composite 

parameter adaptation was developed for attitude tracking maneuvers. This 

strategy accounts for spacecraft inertia uncertainty, and guarantees exponential 

convergence to zero of the trajectory tracking errors and parameter estimation 

errors. MATLAB
™
 simulation results were presented to demonstrate the 

performance of the basic control strategy and investigate the convergence 

properties of the inertia parameter estimates. 
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Chapter 6 Spacecraft Attitude Maneuvers Using 
Optimal Control Theory 

6.1 Introduction 

This chapter considers the development of an optimal control strategy
1-5
 for 

three-axis spacecraft attitude maneuvers, subject to control torque constraints. 

The specific configuration to be considered is a rigid-body spacecraft equipped 

with a redundant reaction wheel assembly. For attitude maneuvers using 

reaction wheels the minimisation of the electrical energy consumed by the 

wheel motors is a useful optimal criterion. Vadali and Junkins
14-15

 considered a 

class of optimal attitude maneuvers which minimise time integrals involving the 

reaction wheel motor torques and torque derivatives. Minimum motor torque 

maneuvers were investigated by Skaar and Kraige
12,13

 using a performance 

index which is the integral of the reaction wheel motor power squared over the 

maneuver interval. Although the integral of power of the maneuver interval is a 

more suitable performance index, it represents the total mechanical work. The 

disadvantage is that the optimal criterion rewards wheel braking (or negative 

work) and penalises positive work. In this chapter, a performance index is 

proposed which represents the total electrical energy consumed by the reaction 

wheel motors over the attitude maneuver interval. A torque-constrained optimal 

spacecraft attitude maneuver based on this performance index has not been 

addressed in the literature, and therefore represents one of the major novel 

contributions provided in this thesis. Pontryagin’s minimum principle
1,3,5

 is used 

to formulate the necessary conditions for optimality, in which the control 

torques are subject to time-varying magnitude constraints. Necessary conditions 

for the optimality of finite-order singular arcs are established and the 

computation of corresponding singular controls is performed using Kelley’s 

necessary condition
4
. The two-point boundary value problem (TPBVP) is 

formulated using Pontryagin’s minimum principle. 

 

Section 6.2 presents the spacecraft dynamic and kinematic models. A general 

formulation of the optimal control problem is outlined in Section 6.3. Sections 

6.4 and 6.5 develop the necessary conditions for optimality of the minimum-

torque and minimum-energy problems respectively, including the constrained 
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optimal control structure, singular controls, and the two-point boundary value 

problem. 

 

6.2 Spacecraft Dynamic and Kinematic Model 

This section specifies the dynamic and kinematic model for a rigid-body 

spacecraft equipped with m reaction wheels. A specific implementation for m = 

4 has three wheels aligned with the spacecraft body-fixed coordinate frame, and 

a fourth wheel skewed at 45 degrees with respect to this frame. 

 

6.2.1 Attitude Parameters 

The spacecraft body-fixed coordinate frame { })t(B  is related to the inertial 

coordinate frame { }N  via the direction cosine matrix
8-10

 33)t( ×∈RC  (also called 

the spacecraft attitude matrix) according to 

 

{ } { }NCB )t()t( =                                               (1) 

 

The unit quaternion [ ] 14T

4

T

13 )t(q)t()t( ×∈= Rqq  (also called the Euler 

symmetric parameters) is selected to parameterise the spacecraft attitude an any 

point in time t . The components of the unit quaternion are not independent but 

satisfy the unity-norm constraint 

 

1)t(q
4

1i

2

i =∑
=

                                                 (2) 

 

The quaternion parameters are related to the { })t(B  components of the 

spacecraft angular velocity 13)t( ×∈Rω  by the kinematic equations of motion
8-10

 

 

)t())t((
2

1
)t())t((

2

1
)t( qωΩωqΞq ==&                             (3) 

 

The matrices 34))t(( ×∈RqΞ  and 44))t(( ×∈RωΩ  are defined by 
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6.2.2 Spacecraft and Reaction Wheel Dynamics 

The total system angular momentum 13)t( ×∈RH  about point P (spacecraft mass 

center) is the sum of the spacecraft and reaction wheel momenta. Expressing the 

system angular momentum in { })t(B  gives 

 

)t(
~

)t()t( T ΩJCωIH += ∗                                       (6) 

 

where 33×∗ ∈RI  is the system inertia matrix relative to { })t(B  (with reaction 

wheels locked) , 3m~ ×∈RC  is a coordinate transformation matrix whose rows are 

the three orthogonal { })t(B  components of the m  unit vectors along the 

reaction wheel spin axes, mm×∈RJ  is the reaction wheel axial inertia matrix 

defined by { }aiJdiag=J  for mi ,...,1= , and  1m)t( ×∈RΩ  is a column matrix of 

the m  reaction wheel angular velocities. The evolution of the system angular 

momentum is governed by Euler’s equation of motion 

 

[ ] )t()t()t()t( NHωH =×+&                                      (7) 

 

where 13)t( ×∈RN  is the total external torque acting on the system about point 

P. The skew-symmetric matrix [ ] 33)t( ×∈× Rω  is defined by 
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Differentiating Eq (6) and substituting the result into Eq (7) gives the dynamic 

equations of motion for the overall system 

 

[ ] )t()t()t()t(
~

)t( T NHωΩJCωI =×++∗ &&                              (9) 

 

The equations of motion for the reaction wheels are given by 

 

)t()t(
~

)t( uωCJΩJ =+ &&                                          (10) 

 

where the m  components of the control torque vector 1m)t( ×∈Ru  are the axial 

torques applied to their respective wheels by the electric motors. The explicit 

dependence of Eq. (9) on the reaction wheel angular accelerations )t(Ω&  may be 

eliminated by multiplying Eq (10) by T~
C  and substituting the result into Eq (9) 

to obtain
8,9
 

 

[ ]{ })t()t(
~

)t()t()t( T1
NuCHωJω s −+×−= −&                           (11) 

 

where [ ] 33T ~~ ×∗ ∈−= RCJCIJ s  is an effective system inertia matrix relative to 

{ })t(B . In general, optimal control theory allows the solution of the three 

orthogonal { })t(B  components of the control torque vector given by 

)t),t(()t(~ xfu =  where )t(x  contains the state variables of the system. To solve 

for the m-dimensional reaction wheel control law )t(u , based on the system of 

Eq (10), requires the solution of the equation )t),t(()t(
~ T1

xfuCJ s =− . This 

requires, however, the inversion of the 3 x m matrix T1~
CJΓ s

−= , and it follows 

that the selection of the control law is underdetermined. Any suitable optimality 

criterion may used to select a particular control satisfying the equation, but a 

minimum torque criterion
9
 which minimises the cost function )t()t(J T uu=  

results in the control law 

 

[ ] )t),t(()t(
1TT xfΓΓΓu

−
=                                      (12) 
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6.2.3 State Transformation 

In the absence of the external torques acting on the spacecraft, the system 

angular momentum remains fixed (magnitude and direction) in inertial space. A 

special inertial momentum coordinate frame
14
 { }G  is introduced in which the 

2ĝ  axis is aligned with the system angular momentum )t(H . The remaining 

basis vectors 1ĝ  and 3ĝ  may be selected arbitrarily or defined by the direction 

of the 1n̂  inertial basis vector. Application of the momentum coordinate frame 

allows a reduction in the dimension of the system state variables. The two 

inertial coordinate frames are related by 

 

{ } { }GαCN )(=                                              (13) 

 

where α  is a set of constant quaternion parameters. The orientation of the 

spacecraft body-fixed coordinate frame { })t(B  with respect to the momentum 

frame { }G  is given by the projection 

 

{ } { }GδCB ))t(()t( =                                         (14) 

 

where )t(δ  is a new set of attitude kinematic parameters replacing )t(q . These 

two parameter sets are related according αqδ ⊗= )t()t(  which gives 

[ ] )t()()t( qααΞδ = . The new set of kinematic equations for )t(δ  are given by 

 

)t())t((
2

1
)t())t((

2

1
)t( δωΩωδΞδ ==&                           (15) 

 

The system angular momentum GH  expressed in the momentum frame { }G  has 

a single component along the 2ĝ  axis, equal to the magnitude of the system 

angular momentum H  which remains constant in the absence of external 

torques. Using the inertial frame { }N  components of system angular momentum 

[ ]Tn3n2n1 HHH=NH , the constant α  parameters are given by 
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The system angular momentum )t(H  is expressed in the spacecraft body-fixed 

frame { })t(B  as 

 

















−

+−+−

+

==

)δδδ2(δ

δδδδ

)δδδ2(δ

H))t(())t((

4132

2

4

2

3

2

2

2

1

4321

GHδCδH                        (20) 

 

The reaction wheel angular velocities are expressed as 

 

{ })t())t((
~

)t( 1 ωIδHCJΩ ∗− −=                                     (21) 

 

The dependence of the system dynamic equations on the reaction wheel 

momenta is eliminated by substituting Eq (20) into Eq (11), for the case of zero 

external torques, to obtain 

 

[ ]{ })t(~
)t)(()t()t( T1

uCδHωJω s +×−= −&                             (22) 

 

The kinematic equations given by Eq (15) and the dynamic equations given by 

Eq (22) represent the state equations for the optimal control problem. The 

corresponding state variables are [ ] 17TTT )t()t()t( ×∈= Rωδx . 
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6.3 General Optimal Control Formulation 

This section considers the formulation of the necessary and sufficient conditions 

for the minimisation of a general cost function based on the state equations and 

boundary conditions specified in Section 6.2. The general problem
1-5
 is to 

determine the optimal control torque )t(∗u  which transfers the system described 

by 

 

)t),t(),t(()t( uxfx =&                                          (23) 

 

from a set of initial conditions )t( 0x  to a set of final conditions ))t((ψ fx  whilst 

minimising a cost function defined by 

 

∫+=
f

0

t

t

ff dτ)τ),τ(),τ((g)t),t((h))t((J uxxu                         (24) 

 

The optimal state trajectory corresponding to the optimal control history )t(∗u  

is denoted by )t(∗x . For the spacecraft attitude maneuver problem, the final 

time ft  is fixed and all final conditions )t( fx  are fixed. There are no state 

variable constraints, but the control torque components are subject to simple 

magnitude constraints defined by 

 

)t(u)t(u)t(u imax,iimin, ≤≤           mi ,...,1=                       (25) 

 

Pontryagin’s minimum principle
1,3,5

 is used to formulate the necessary 

conditions for )t(∗u  to be a local extremal of the cost function defined by Eq 

(24). The Hamiltonian
5
 is defined by 

 

)t()t()t),t(),t((gt)),t(),t(),t(H( T xpuxpux &+=                    (26) 

 

where )t(p  is a vector of co-states (also called Lagrange multipliers) associated 

with the differential equation constraints of Eq (23). The necessary conditions
5
 

are given by 
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t)),t(),t(),t(H(t)),t(),t(),t(H( ∗∗∗∗∗ ≤ puxpux                           (29) 

 

The final necessary condition Eq (29) states that the optimal control )t(∗u  must 

globally minimise the Hamiltonian at each point in time. In general, the optimal 

control )t),t(),t(()t( ∗∗∗ = pxgu  is determined as a nonlinear function of the 

states and co-states (and in general time t ) using Eq (29). This expression is 

substituted into the state equations defined by Eq (27) to form 

 

)t),t(),t(()t( ∗∗∗ = pxhx&                                          (30) 

 

Equations (30) and (28), in addition to the state variable boundary conditions, 

constitute a nonlinear two-point boundary-value problem (TPBVP) whose 

solution produces the optimal histories for )t(x , )t(p , and )t(u . 

 

6.4 Minimum Torque Maneuvers 

This section considers minimum-torque
11,14,15

 spacecraft attitude maneuvers 

which minimise the performance index 

 

∫=
f

0

t

t

T dτ)τ()τ(
2

1
))t((J Wuuu                                     (31) 

 

The control torque weighting matrix W  is selected as either (i) mm×= IW  to 

emphasise each of the reaction wheel motor torques equally, or (ii) T~~
CCW =  to 

emphasise the three spacecraft body-fixed components of the motor torques 
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equally (in this case W  is not positive definite). The Hamiltonian for the cost 

function of Eq (31) is defined as 

 

)t()t()t()t()t()t(
2

1
H TTT

ωλδγWuu && ++=                        (32) 

 

where )t(γ  and )t(λ  are the co-states associated with )t(δ  and )t(ω  

respectively. The state equations )t(δ&  and )t(ω&  are given by Eqs (15) and (22). 

Application of Pontryagin’s minimum principle requires that the co-states 

[ ] 17TTT )t()t()t( ×∈= Rλγp  satisfy 
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where the system angular momentum )t((δH  Jacobian matrix with respect to 

)t(δ  is defined as 
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The optimal control )t(∗u  must minimise the Hamiltonian given by Eq (32) at 

each instant in time. If there are no control constraints the necessary condition to 

minimise H  is 1mH/ ×=∂∂ 0u  which implies 

 

( ) )t(
~

2)t( 11T
λJCWWu sus

−−
+=                                (36) 
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where the weighting matrix W  is generally not positive definite. Since the 

Hamiltonian for minimum-torque maneuvers given by Eq (32) is quadratic in 

the control variables the unbounded optimal control given by Eq (36) is a global 

minimum of the Hamiltonian. In addition the presence of the quadratic terms 

prevents singular controls and corresponding singular arcs in the state-space 

emerging during the spacecraft attitude maneuver. This is not the case for 

minimum-time or minimum-energy cost functions which have Hamiltonians 

that are linear in the controls as demonstrated in Section 6.5. Minimisation of 

the Hamiltonian subject to the time-dependent control constraints given by Eq 

(25) requires 

 









<

<<

>

=

)t(u)t(u)t(u

)t(u)t(u)t(u)t(u

)t(u)t(u)t(u

)t(u

imin,ius,imin,

imax,ius,imin,ius,

imax,ius,imax,

i           mi ,...,1=          (37) 

 

The control torques )t(u  are eliminated from the system dynamic equations by 

substituting Eq (37) into Eq (22). The two-point boundary-value problem is 

defined by Eqs (15), (22), (33), and (34), and the boundary conditions )t( 0x  

and ))t((ψ fx . Numerical solution of the TPBVP generates the optimal profiles 

for )t(δ , )t(ω , )t(γ , and )t(λ . The optimal control torque profile )t(u  is 

obtained directly from Eqs (36) and (37). The unsmooth nature of the optimal 

controls given by Eq (37) adds to the difficulty of finding a solution to the two-

point boundary-value problem. 

 

6.5 Minimum Energy Maneuvers 

6.5.1 Necessary Conditions 

This section considers minimum-energy
12,13

 spacecraft attitude maneuvers 

which minimise the performance index 

 

∫∑
=

=
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representing a positive measure of the total electrical energy expenditure by the 

m reaction wheel configuration over the entire attitude maneuver interval. The 

Hamiltonian for the cost function of Eq (38) is defined as 

 

)t()t()t()t()t(Ω)t(uH TT
m

1i

ii ωλδγ && ++=∑
=

                       (39) 

 

where )t(γ  and )t(λ  are the co-states associated with )t(δ  and )t(ω  

respectively. The state equations )t(δ&  and )t(ω&  are given by Eqs (15) and (22). 

Application of Pontryagin’s minimum principle requires that the costates )t(p  

satisfy Eqs (33) and (34). The co-state equations for minimum-torque and 

minimum-energy maneuvers are identical since both cost functions are 

independent of the state variables )t(δ  and )t(ω . The reaction wheel angular 

velocities are effectively removed from the system dynamic equations through 

the introduction of an inertial momentum reference frame as described in 

Section 6.2.3. This is an important transformation since the Hamiltonian is not 

continuously differentiable with respect to the wheel angular velocities, leading 

to discontinuous co-state equations. 

 

The optimal control )t(∗u  must minimise the Hamiltonian given by Eq (39) at 

each instant in time. In contrast to minimum-torque maneuvers this Hamiltonian 

is linear in the control variables. This property implies that for unbounded 

controls the necessary condition 1mH/ ×=∂∂ 0u  gives no information regarding 

the optimal controls which minimise the Hamiltonian. For bounded controls 

subject to time-dependent control constraints of Eq (25) global minimisation of 

the Hamiltonian requires 
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where the torque constraint is given by )t(u)t(u)t(u imin,imax,max ==  for 

mi ,...,1= . Furthermore, singular controls (and corresponding singular arcs in 

the state-space) may exist during the spacecraft attitude maneuver. Calculation 

of the singular controls is addressed in Section 6.5.2. The control torques )t(u  

are eliminated from the system dynamic equations by substituting Eq (40) into 

Eq (22). The two-point boundary-value problem is defined by Eqs (15), (22), 

(33), and (34), and the boundary conditions )t( 0x  and ))t((ψ fx . Numerical 

solution of the TPBVP generates the optimal profiles for )t(δ , )t(ω , )t(γ , and 

)t(λ . The optimal control torque profile )t(u  is obtained directly from Eq (40). 

The unsmooth nature of the optimal controls given by Eq (40) adds to the 

difficulty of finding a solution to the two-point boundary-value problem. 

 

6.5.2 Singular Controls 

This subsection investigates the singular controls
3-5
 for the minimum-energy 

optimal control problem developed in Section 6.5.1. A control torque 

component )t(u i  is called a singular control over a finite time interval 

]t,t[t 21∈  if the switching function [ ]
i

1

i )t(
~

)t(Ω λJC s

−±=  is satisfied on the 

interval. For time-optimal control problems
21-23

 the switching function is 

independent of the control variables such that successive differentiation of the 

function with respect to time is required to obtain the specific functional form 

singular control. Furthermore, Seywald and Kumar
23
 point out that not all 

possible combinations of singular and non-singular controls need to be 

considered. For example, in the case of one singular control, it may be assumed 

that )t(u1  is singular and )t(u 2 ,…, )t(um  are non-singular. For minimum-

energy spacecraft attitude maneuvers, however, the switching function provides 

sufficient information to determine the singular controls. Consider the singular 

interval in state-space corresponding to 

 

[ ] 0)t(
~

)t(Ω
i

1

i =+ − λJC s                                      (41) 
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The singular control is obtained substituting Eqs (10), (22), and (34) into the 

derivative of Eq (41), and rearranging to obtain 
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Similarly, the singular controls corresponding to the singular interval 

[ ] 0)t(
~

)t(Ω
i

1

i =− −
λJC s  are given by 
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6.6 Conclusion 

In this chapter, a novel optimal control strategy was developed for minimum-

energy spacecraft attitude maneuvers. The specific spacecraft configuration 

considered was a rigid-body spacecraft equipped with a redundant reaction 

wheel assembly. Bounded optimal controls were developed using Pontryagin’s 

minimum principle, and an associated two-point boundary-problem was 

constructed. Expressions for singular controls corresponding to singular sub-

arcs in the state-space were also developed.  
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Chapter 7 Spacecraft Attitude Estimation 

7.1 Introduction 

The objective of spacecraft attitude determination is the real-time estimation of 

the spacecraft attitude parameters using on-board sensor measurements. Modern 

spacecraft missions generally utilise continuous-time gyroscope measurements 

of the spacecraft angular rates and discrete-time line-of-sight measurements 

using an attitude sensor suite. Typical line-of-sight sensors include star sensors, 

digital sun sensors, and magnetometers. The resulting stochastic differential 

equations (SDE) governing the evolution of the system state and discrete 

measurements are given by
1
 

 

)t(d)t),t((dt)t),t(()t(d βxGxfx +=                                 (1) 

 

)t()t),t(()t( kkkk ηxhy +=                                        (2) 

 

where )t(x  and )t(β  are nR  random processes, and )t( ky  and )t( kη  are mR  

random sequences. Furthermore )t(β  has components which are independent 

Brownian motion processes, )t( kη  has components which are independent 

white Gaussian sequences, and )t(β , )t( kη , and )t( 0x  are assumed 

independent. The functions )t),t((xf  and )t),t(( kkxh  are assumed to be ∞C  

smooth. 

 

The continuous-discrete attitude filtering problem consists of calculating an 

estimate of the state )t(x  given a realisation of the sequence of observations 

{ })t(),...,t( k0 yyYk =  up to and including time tt k <  which is more concisely 

expressed as { }tst:)s( 0 ≤≤= yYk . To solve this problem it is necessary to (i) 

determine the evolution of the conditional probability density function (PDF) of 

the state )t(x  conditioned on all prior measurements kY  (called the filtering 

PDF), which is denoted by )t),t((ρ)t),t((ρ xYx k ≡  and (ii) update this filtering 

PDF when discrete measurements become available. Between measurements 
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k1k ttt ≤≤−  the filtering PDF )t,(ρ x  satisfies the Kolmogorov forward 

equation or Fokker-Planck equation
1 
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It may be shown that )t,(ρ x  is constructed by normalising a conditional PDF 

)t,(σ x  which satisfies the Duncan-Mortensen-Zakai equation
26
. This PDF is 

updated at time kt  to incorporate information in the measurement )t( ky  using 

Bayes theorem for probability densities 
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where )t,(σ
)(
x

kk xy −  is the non-normalised PDF for the sensor measurements 

conditioned on the pre-measurement state. The (−) and (+) subscript symbols 

denote pre-measurement and post-measurement parameters respectively. 

 

This chapter develops a novel attitude estimation algorithm that provides real-

time estimates of the spacecraft attitude parameters and sensor bias parameters. 

The mission scenario is a spacecraft in low-earth orbit equipped with an attitude 

sensor suite consisting of a three-axis magnetometer and a three-axis rate 

gyroscope assembly. The objective is to solve the nonlinear attitude filtering 

problem described above through a real-time solution of the Fokker-Planck 

equation, based on an initial Gaussian filtering PDF, in terms of solutions of 

nonlinear ordinary differential equations (ODE). This algorithm may be 

considered an extension of the orthogonal attitude filter developed by Markley
27
 

and the nonlinear filtering algorithm developed by Yau and Yau
26
. Markley 

proposed a filtering PDF, parameterised by the attitude parameters and sensor 

bias parameters, consisting of first-order terms in the attitude parameters, first 
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and second-order terms in the bias parameters, and first-order correlations terms 

between the attitude and bias parameters. A major contribution of this thesis is 

the implementation of a Gaussian filtering PDF, as proposed in Reference 26, 

consisting of second-order terms (and below) in the attitude parameters and 

sensor bias parameters, and first-order correlation terms. A key objective will be 

to investigate whether the additional second-order attitude parameter terms 

better represents the filtering PDF, and improve the real-time state estimates. 

 

In Section 7.2 a dynamic stochastic model is developed to describe the 

spacecraft attitude motion by augmenting the spacecraft kinematic equations of 

motion with Farrenkopf’s gyroscope model
39
. Section 7.3 specifies the filtering 

PDF for the combined real-time estimation of the attitude parameters and sensor 

bias parameters, based on the maximum aposteriori probability (MAP) 

principle. The development of nonlinear ordinary differential equations for the 

propagation of the filtering PDF parameters between magnetometer 

measurements, using the Fokker-Planck equation, is considered in Section 7.4. 

The update of the filtering PDF parameters using Bayes theorem, to incorporate 

the information in the magnetometer measurements, is addressed in Section 7.5. 

In Section 7.6, the main limitations of the attitude estimation algorithm are 

discussed and recommendations for future research are proposed. 

 

7.2 Spacecraft State Model 

The orthogonal spacecraft attitude matrix )t(D  satisfies the differential equation 

 

[ ] )t()t()t(
dt

d
DωD ×−=                                           (5) 

 

where )t(ω  is the spacecraft angular velocity. The skew-symmetric matrix 

operator is defined by 

 

[ ]
















−

−

−

=×

0ωω

ω0ω

ωω0

)t(

12

13

23
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To formulate a stochastic differential equation (SDE) for the attitude kinematic 

motion the true angular rate )t(ω  is augmented using Farrenkopf’s gyroscope 

model
39
 

 

dt

)t(d
)t()t()t( v

vdg

w
Gxωω ++=                                     (7) 

 

where )t(gω  is the three-axis gyroscope measurement, )t(dx  is the gyroscope 

drift-rate bias, and )t(d vw  is a Wiener random process representing the 

gyroscope measurement noise with constant weighting matrix vG . Note that 

Farrenkopf’s three-axis gyroscope model should be modified if more than three 

independent gyroscope measurements are available. Substituting into Eq (7) the 

expression for the infinitesimal angular rotation dt)t(d)t(d θω =  gives 

 

[ ] )t(ddt)t()t()t(d vvdg wGxωθ −−=                                  (8) 

 

Let )t(u , )t(v , and )t(w  denote the columns of the attitude matrix 

 

[ ])t()t()t()t( wvuD =                                             (9) 

 

Defining the attitude parameter states [ ]TTTT )t()t()t()t( wvuxa =  and the 

matrix [ ] [ ] [ ][ ]×××= )t()t()t())t(( wvuxΓ aa  provides the SDE for the attitude 

parameters 

 

)t(d))t(()t(d θxΓx aaa −=                                           (10) 

 

Substituting into Eq (10) the expression for )t(dθ  from Eq (8) gives 

 

[ ] )t(d))t((dt)t()t())t(()t(d TT

vvaagdaaa wGxΓωxxΓx +−=                ( 11) 

 

The gyroscope drift-rate bias is assumed to obey the SDE 

 

)t(d)t(d uud wGx =                                               (12) 



Attitude Estimation 

 

235 

where )t(d uw  is a Wiener random process representing the gyroscope drift-rate 

bias ramp noise. A similar SDE governs the magnetometer measurement bias 

parameters 

 

)t(d)t(d mmm wGx =                                          (13) 

 

with the Weiner process )t(mw  similarly defined. Defining the sensor bias 

parameter states [ ]TTT )t()t()t( dmb xxx =   and Wiener process 

[ ]TTT )t(d)t(d)t(d umb www =  provides the SDE for the bias parameters 

 

)t(d)t(d b

u3)(N3

33)(Nm

b w
G0

0G
x 




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
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−×

×−
                               (14) 

 

The overall nonlinear filter state vector is defined as [ ]TTT )t()t()t( ba xxx =  

which obeys the SDE 

 

)t(d))t((dt))t(()t(d wxGxfx +=                                  (15) 

 

where the relevant parameters are defined by 

 

[ ]















 −

=

×

×−

13

13)(N

gdaa

0

0

ωxxΓ

xf

)t()t())t((

))t((

T

                              (16) 
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                        (17) 

 

[ ]TTTT )t(d)t(d)t(d)t(d umv wwww =                             (18) 

 

Markley points out that Eq (15) should be interpreted as a Stratonovich SDE 

rather than an Ito SDE. The main reason is that solutions of a Stratonovich SDE 

obey the usual laws of calculus including the product rule for differentiation, 
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whereas this is not true for an Ito SDE. This ensures that the orthogonality 

constraint on the spacecraft attitude matrix is preserved by a Stratonovich SDE. 

The dimensions for all vectors and matrices defined previously are as follows: 

19×∈Rxa , 1N×∈Rxa , 93×∈RΓa , 13×∈Rxd , 13×∈Rωg , 33×∈RG v , 13×∈Rw v , 

13×∈Rxd , 33×∈RGu , 13×∈Rw u , 1)3N( ×−∈Rxm , )3N()3N( −×−∈RGm , 

1)3N( ×−∈Rwm , 1)9N( ×+∈Rx , 1)9N()( ×+∈Rxf , )3N()9N()( +×+∈RxG , 1)3N( ×+∈Rw . 

    

7.3 Spacecraft State PDF 

This subsection specifies the form of the joint conditional probability density 

function (CPDF) for the attitude parameters and sensor bias parameters. It also 

discusses one possible approach for simultaneously estimating these parameters. 

In Reference 27 Markley develops the orthogonal filter with individual 

conditional PDF’s for the attitude parameters and bias parameters. The attitude 

parameter PDF consisted of linear (first-order) and lower terms in the attitude 

parameters, whilst the bias parameters were assumed to be Gaussian distributed. 

By definition the joint PDF is the multiplication of the individual attitude 

parameter and bias parameter PDF’s in the case that all parameters are 

independent.  This simple form, however, will not suffice if the parameters are 

correlated, and no theoretical methods exist to construct this correlated 

parameter PDF. Markley
27
 points out that the term in the extended Kalman filter 

(EKF) for spacecraft attitude estimation
17
 describing the correlation between the 

attitude parameters and bias parameters is linear in the components of the bias 

parameter vector and the attitude parameter vector. The orthogonal filter 

developed by Markley uses this approach to specify a joint PDF which includes 

a correlation term which is linear in the bias vector and the attitude matrix 

(attitude parameters). In this work the joint PDF for the attitude and bias 

parameters in the interval 1kk ttt +≤≤  conditioned on all sensor measurements 

up to and including time kt  is assumed to be given by 

 

[ ])t(c)t()t()t()t()t(expα)t),t((ρ TT ++= xbxAxYx k                     (19) 
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where α  is a normalising constant to ensure unity probability over nR .  The 

filtering PDF of Eq (19) includes linear correlation terms between attitude and 

bias parameters similar to Markley’s joint PDF function
27
. It is assumed that the 

PDF parameters )t(A , )t(b , and )t(c  are the sufficient statistics necessary to 

represent the finite dimensional filtering PDF defined by Eq (19), such that no 

higher-order moments are required. In general the normalised PDF )t,(ρ x  may 

be constructed by normalising the PDF )t,(σ x  according to 

 

∫
=

n
R

kkt

kt

k

xYx

Yx
Yx

d)t,(σ

)t,(σ
)t,t)((ρ                                     (20) 

 

It can be shown that )tt),((σ kYx  satisfies the Duncan-Mortensen-Zakai (DMZ) 

equation
26
. The log-likelihood function corresponding to )tt),((σ kYx  is defined 

as 

 

[ ] t)(ct)(t)(t)(t)(t)()t),t((σln)t),t((J TT ++== xbxAxYxYx kk           (21) 

 

This function simplifies the measurement update process defined in Section 7.5 

by decomposing Bayes update law into the linear superposition of the apriori 

filtering PDF and measurement model. A number of options exist for specifying 

the estimation criteria for the state estimate at any given point in time. The most 

common criteria include the conditional expectation (mean), maximum 

aposteriori probability (MAP) estimate, and the minimum mean-square error 

(MMSE) estimate. Markley
27
 uses the singular value decomposition (SVD) to 

solve for the MAP estimate of a joint PDF defined in terms of the spacecraft 

attitude matrix and sensor bias parameters. This procedure, however, breaks 

down when the joint PDF is expanded to incorporate second-order terms in the 

attitude matrix elements as in Eq (19). This research uses the MAP estimates 

defined by  

 

[ ] [ ])t),t((Jmaxarg)t),t((ρmaxargˆ
kRxkRx

MAP

kt
YxYxx nn ∈∈

==              (22) 
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subject to the nonlinear equality constraints 130xc ×=)(  which follow directly 

from the orthogonality property of the attitude matrix 
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Numerous techniques exist to solve the above nonlinear programming (NLP) 

problem specified by Eqs (22) and (23). The large dimension of the state vector, 

however, may prevent the use of a NLP based algorithm. In this case the 

problem may be solved by simultaneously solving the equations 

 

[ ])t),t(ˆ),t((Jmaxargˆ
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a
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=                              (24) 
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subject to the nonlinear constraints 
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Since Eq (25) is the optimization of a state quadratic equation not subject to 

constraints on the state variables it may be solved analytically to give the 

necessary conditions 

 

( ){ }2T
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4kt,
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The estimate in Eq (27) makes uses of the fact that )t(A  is a symmetric matrix. 

The filtering PDF parameters are decomposed according to 
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[ ]TT

2

T

1 bbb =                                                (29) 

 

where the dimensions of the sub-matrices and sub-vectors are 99

1

×∈RA , 

9N

2

×∈RA , N9

3

×∈RA , NN

4

×∈RA , 19

1

×∈Rb , and 1N

2

×∈Rb . Due to the 

nonlinear constraints of Eq (26) an analytical solution for the MAP estimate 

given by Eq (24) is not available. A numerical algorithm such as that proposed 

by Psiaki
30
 is required to evaluate the state estimate at any instant in time.  

 

7.4 Propagation of State PDF 

This section considers propagation of the filtering PDF )t),t((ρ kYx  over the 

time interval 1kk ttt +≤≤ . Alternatively stated, this section considers 

propagating )t),t((ρ kk kYx  to )t),t((ρ 1k1k kYx ++ . This propagation stage in the 

attitude filter corresponds to the time interval between sensor measurements.  

The Fokker-Planck partial differential equation (PDE) which governs the 

evolution of the conditional PDF is used to derive equivalent analytical 

expressions in the form of nonlinear ordinary differential equations (ODE) for 

the parameters )t(A , )t(b , and )t(c  which define the filtering PDF. Since the 

un-normalised version of the conditional PDF )t,(σ)t,(σ xYx k ≡  defined in 

Section 7.3 is related to )t,(ρ)t,(ρ xYx k ≡  by a constant term which is 

independent of the filter state, then )t,(σ x  also satisfies the Fokker-Planck 

equation given by 
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Expanding the individual terms of the Fokker-Planck equation gives 
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The objective of the propagation stage is to use the Fokker-Planck equation to 

solve for )t),t((σ kYx  over 1kk ttt +≤≤  in the form specified in Section 7.3 and 

based on an initial conditional PDF at ktt =  given by 

 

[ ])t(c)t()t()t()t()t(exp)t),t((σ kkk

T

kkk

T

kk0 ++= xbxAxx             (32) 

 

Before evaluating the individual terms of the Fokker-Planck equation an 

expression for the symmetric matrix elements [ ]
ij

T )()( xGxG  and a polynomial 

expression for )(f i x , as well as their partial derivatives are required. Partial 

derivatives of the conditional PDF )t,(σ x  are also required. The analytical form 

of )()( T xGxG  is given by 
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with the process noise power spectral density matrices defined by T

vvv GGQ = , 

T

mmm GGQ = , T

uuu GGQ = , and bQ  defined in Eq (33). The individual matrix 

dimensions are 9)(N9)(NT +×+∈RGG , 99T ×∈RΓQΓ ava , 33×∈RQ v , 

3)(N3)(N −×−∈RQm , 33×∈RQu , and NN×∈RQb . For the special case where 

33v IG ×= , 3)(N3)(Nm IG −×−= , and 33u IG ×=  the expression for )()( T xGxG  

reduces to 

 



Attitude Estimation 

 

241 









=

××

×

NN9N

N9aa

I0

0xΓxΓ
xGxG

)()(
)()(

T

T                                 (34) 

 

Simplifying the )()(T
xΓxΓ aa  matrix in Eq (34) using the orthogonality and unit-

norm properties of the columns of the attitude matrix gives 
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The expression for [ ]
ij

T )()( xGxG  is given by 
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T

ijij )()()()()(Θ xΓQxΓxGxGx ava=≡           9,...,1=ji,                   (36) 

 

                 [ ] [ ]
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which may be expressed in the general form  
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The ≡  operator in (36) refers to the definition of a new variable based on 

existing nomenclature. The coefficients ijγ  follow directly from the definition of 

[ ]
ij

T )()( xGxG  

 

0γ ij =                            9,...,1=ji,                   (39) 

 

[ ]
ij

ijγ bQ=                     ( )9N,...,10 +=ji,       (40) 

 

The ij

klΓ  coefficients are determined by expressing the )(Θ ij x  term in Eq (36) as 

a second-order polynomial in the states. By definition 

  



Chapter 7 

242 

[ ] [ ]∑
=

=
3

1k
jk

T

ik

T

ij )()()(γ vava GxΓGxΓx            9,...,1=ji,                      (41) 

 

[ ] ∑
=

=
n

1k

k

ij

kij

T xΓ)( va GxΓ                                9,...,1=i ; 3,...,1=j        (42) 

 

The definition of the ij

kΓ  terms are listed in Table 7-1, with unlisted elements 

being equal to zero.  

 

 
Table 7-1   

ij

kΓ  Coefficients 

 

Based on the definition of ij

kΓ  in Eq (42) and Table 7-1, ijθ  may be expressed as 

a second-order polynomial in the state variables 
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Expressions for the first and higher-order partial derivatives of [ ]
ij

T )()( xGxG  

are 
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The expression for )(xf  is given by 

 

[ ]
gdaa ωxxΓx −= )()(f T

i                  9,...,1=i                    (50) 

 

0)(f i =x                                           ( )9N,...,10 +=i        (51) 

 

The nonzero component of )(xf  given by Eq (50) may be expressed as a 

second-order polynomial 
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The definition of the i

jkΦ  and i

jχ  terms are listed in Table 7-2 and Table 7-3 

respectively, with unlisted elements equal to zero. The matrix 99)( ×∈RωΛ g  

constructed with elements [ ] i

jij
χ)( ≡gωΛ  is skew-symmetric. Expressions for 

the first and high-order partial derivatives of )(f i x  are 
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Table 7-2   
i

jkΦ Coefficients 

 

 
Table 7-3   
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jχ  Coefficients 

 

The expressions for the partial derivatives of )t,(σ x  are given by 
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The remainder of this section will evaluate the individual terms of the Fokker-

Planck equation given by Eq (31) using the expressions Eqs (33)-(58). The first 

term on the left-hand-side of Eq (31) is given by 
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The first term on the right-hand-side of Eq (31) is given by 
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Expanding the terms in Eq (60) gives 
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Each term of Eq (61) is evaluated below. The auxiliary E  matrix is defined as        
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In summary, the first term on the right-hand-side of the Fokker-Planck equation 

of Eq (31) is given by 
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The second term on the right-hand-side of Eq (31) is given by 
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Each term of Eq (83) is evaluated as follows: 
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In summary, the second term on the right-hand-side of the Fokker-Planck 

equation of Eq (31) is given by  
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The third term on the right-hand-side of Eq (31) is given by 
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Hence, 
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In summary, the third term on the right-hand-side of the Fokker-Planck equation 

of Eq (31) is given by  
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Collecting all individual terms of the Fokker-Planck equation derived in Eqs 

(59)-(103) into a single equation yields 
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Since terms higher than second order in the state variables are not present on the 

left-hand-side of Eq (104) then the higher-order terms on the right-hand-side of 

Eq (104) must be neglected or approximated with a second-order Taylor series. 

In this work the higher order terms are neglected which will introduce error into 

the filtering PDF propagation process. 
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Equating the filtering parameters in Eq (105) results in a system of nonlinear 

ordinary differential equations between sensor measurements 1kk ttt +≤≤  given 

by 
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7.5 Sensor Measurement Update 

This previous section considered propagation of the filtering PDF )t,(σ x  from 

k1-k ttt ≤≤  to produce the un-normalised conditional PDF of the state variables 

at time kt  conditioned on all sensor measurement up to and including time 1-kt  
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This section considers improving the filtering PDF based on sensor 

measurements available at time kt . The normalised and un-normalised versions 

of the sensor measurement PDFs conditioned on the pre-measurement state, 

denoted by )(ρ kk xy  and )(σ kk xy  respectively, are assumed to be Gaussian 

distributed 
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where ky  is the tri-axial magnetometer measurement of the ambient 

geomagnetic field with constant bias mx  expressed in the spacecraft body-fixed 

coordinate frame and with Gaussian measurement errors specified by the 

measurement information matrix m

kF . The kD  term represents the true 

spacecraft attitude matrix, and α  is a normalising constant to ensure unity 

probability over the state-space nR , i.e. ∫ =
n

R

kkk xxy 1d)(ρ . The normalised 

filtering PDF )(ρ kk Yx  is updated following a measurement ky  at time kt  

using Bayes theorem 
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An equivalent form of Bayes theorem using the un-normalised filtering and 

measurement PDFs is given by 
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Taking the natural logarithm of Eq (116) gives  
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It is important to note that the final term on the RHS of Eq (117) is independent 

of the state variables and is therefore not required to compute the MAP state 

estimate discussed in Section 7.3. The Bayesian update can be performed 

providing that that each side of Eq (117) has the same functional dependence on 

the state variables, otherwise approximations will be required. The first step of 

the update stage is to express )(J kk xy  as a second-order polynomial in the state 

variables. Expanding Eq (113), noting that the measurement information matrix 

m

kF  is symmetric, gives  
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The remainder of this section evaluates each term in Eq (118) using the 

definition of the state vector [ ]TTTTTT

dm xxwvux =  and the spacecraft 

attitude matrix [ ]wvuD = . The first term on the right-hand-side of Eq 

(118) is given by 
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which is independent of the state variables. The second term on the right-hand-

side of Eq (118) is given by 
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The third term on the right-hand-side of Eq (118) is given by 
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The fourth term on the right-hand-side of Eq (118) is given by 
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Each term of Eq (124) is evaluated below: 
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In summary, the fourth term on the right-hand-side of the Fokker-Planck 

equation of Eq (118) is given by 
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The individual components of the fifth term on the right-hand-side of Eq (118) 

are given by 
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In summary, the log-likelihood function of Eq (118) is given by 
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which has an identical functional form to the state PDF of Eq (110). Substituting 

Eqs (110) and (138) into Eq (117) gives the Bayes measurement update equation  
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where the parameters )(+A , )(+b , and )(c +  correspond to the post-

measurement filtering PDF )t),t((σ kk kYx  and the parameters )(−A , )(−b , 

and )(c −  correspond to the pre-measurement filtering PDF )t),t((σ 1kk −kYx  at 

time kt . The update measurement equation given by Eq (139) may be expressed 

generally as 
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The equivalent update terms for the filtering PDF parameters are given by 
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Section 7.3 outlines a procedure for obtaining the MAP state estimates directly 

following a sensor measurement update.  

 

7.6 Limitations of Filtering Algorithm 

The major limitations of the Yau filtering algorithm exist in the propagation of 

the state PDF parameters and in the computation of the state estimate based on 

the MAP estimate. Incorporating additional second-order terms and linear 

correlation terms in the attitude parameters and gyroscope bias parameters can 

be achieved by assuming that the (N+3) independent PDF parameters are 

Gaussian distributed according to Eq (19). In fact the total number of free PDF 

parameters required is ½N(N + 3) + 3(N + 3) in comparison to the ½N(N + 3) + 

9(N + 1) parameter PDF proposed by Markley
27
. The nonlinear ordinary 

differential equation governing the evolution of each parameter must be 

evaluated and propagated between successive sensor measurements. The large 

number of PDF parameters translates to a heavy computational burden which 

prohibits the real-time filtering of the sensor measurements. Another aspect of 

the algorithm which is computationally expensive is the state estimation stage. 

As discussed in Section 7.3 the MAP estimate of the filter states can be 
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equivalently posed as a constrained NLP problem. This requires using existing 

NLP software routines to numerically determine the global maximum of the 

filtering PDF subject to the three unity norm constraints on the columns of the 

spacecraft attitude matrix. Filtering simulations using the Optimization Toolbox 

in MATLAB
™
 show that this numerical optimisation process is either not 

possible with current computational capabilities as the process terminates at one 

hundred iterations without converging to a solution, or an alternative 

optimisation algorithm is required with greater computational efficiency. One 

possible method of improving the convergence rate is to simultaneously 

estimate the attitude parameters based on the most recent estimate of the bias 

parameters, and vice-versa. This procedure was used by Markley
27
 for a filtering 

PDF containing a quadratic term in the bias parameters, a linear term in the 

attitude parameters, and linear correlation terms. Due to the specific structure of 

this PDF, the attitude parameters were estimated using the singular value 

decomposition (SVD) method, and the bias parameters were solved analytically. 

The more complex structure of the filtering PDF given by Eq (19) does not 

exhibit such elegance, and therefore it is unlikely that the convergence rate can 

be improved based on this philosophy. 

 

A major limitation of the Yau filtering algorithm
26
 is the higher-order terms 

generated by the Fokker-Planck equation, and the Gaussian approximation for 

the filtering PDF. The second-order partial derivative term in Eq (30) results in 

the introduction of higher-order state variable terms (than those contained in the 

PDF) into the propagation equations. As demonstrated in Section 7.4 these 

terms must be either neglected or approximated using a lower-order Taylor 

series approximation. Neglecting the terms may or may not be significant 

depending on the values of the state variables, whereas using a Taylor series 

approximation will further complicate the filtering algorithm by introducing 

additional terms into the propagation process. These approximation terms are 

based on the current state estimate, and will consequently be poor when 

knowledge of the true attitude is poor (for example during the initial filter 

convergence period). Even if it were possible to develop an equation similar to 

the Fokker-Planck equation which did not introduce higher order terms, the 

filter developed throughout this chapter is limited by the assumption that the 
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process noise and filtering PDF are Gaussian distributed. If this assumption is 

not suitable then alternative state estimation techniques such as particle 

filtering
5,37

 may achieve faster convergence and possibly better steady-state 

estimation accuracy. Particle filtering does not assume a continuous filtering 

PDF with a specific functional form but rather approximates an arbitrary 

continuous distribution with a finite set of support weights. The primary 

advantage of this approach is the flexibility of the filtering PDF to adapt with 

time to varying structures which in general are not Gaussian distributions.  

 

Further research is required to evaluate the Cramer-Rao lower bound
5,27,37

 on 

the estimation error covariance from the Fisher information matrix, in order to 

asses the asymptotic statistical efficiency of the proposed attitude estimation 

algorithm.  

 

7.7 Conclusion 

This chapter presented a novel algorithm for spacecraft attitude estimation based 

on a sensor suite comprising a three-axis magnetometer and a three-axis rate 

gyroscope assembly. Computational limitations of the algorithm were discussed 

in detail and recommendations for future research were proposed. 
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Chapter 8 Conclusion 
 

In this thesis novel feedback control strategies and attitude estimation 

algorithms have been developed for a three-axis stabilised spacecraft attitude 

control system.  

 

The first novel contribution is the development of a robust feedback control 

strategy in Section 3.8 for tracking an arbitrary time-varying reference attitude 

trajectory, in the presence of dynamic model uncertainty in the spacecraft inertia 

matrix, actuator magnitude constraints, bounded persistent external 

disturbances, and state estimation error. The proposed control strategy contains 

a parameter which is dynamically adjusted to ensure global asymptotic stability 

of the overall closed-loop system. A stability proof was presented based on 

Lyapunov’s direct method, in conjunction with Barbalat’s lemma. Simulation 

results using MATLAB
™
 verify the performance of the proposed control 

algorithm. These results demonstrate nearly asymptotic rejection of the 

persistent disturbances and boundedness of the trajectory tracking errors, 

dependent upon the sensor noise levels. Further research includes assessing the 

performance of the control algorithm based on a recursive state estimation 

strategy. 

 

The second novel contribution is the development of a direct adaptive control 

strategy in Chapter 5 for tracking an arbitrary time-varying reference attitude 

trajectory, in the presence of dynamic model uncertainty in the spacecraft inertia 

matrix. The proposed strategy incorporates a bounded-gain-forgetting (BGF) 

composite parameter update law with a dynamic weighting matrix, which 

guarantees global exponential stability of the overall closed-loop system. A 

stability proof was presented based on Lyapunov’s direct method, in conjunction 

with Barbalat’s lemma. Further research includes simulation studies to assess 

the capabilities and performance of the proposed adaptive control strategy. 

 

The third novel contribution is the development of an optimal control strategy in 

Chapter 6 for spacecraft attitude maneuvers. The dynamic model consists of a 



Chapter 8 

268 

rigid-body spacecraft equipped with a redundant reaction wheel assembly. A 

performance index is proposed which represents the total electrical energy 

consumed by the reaction wheels over the attitude maneuver interval. 

Pontrayagin’s minimum principle
9
 is used to formulate the necessary conditions 

for optimality, in which the control torques are subject to time-varying 

magnitude constraints. Necessary conditions for the optimality of singular sub-

arcs and associated singular controls are established using Kelley’s necessary 

condition
8
. The two-point boundary value problem (TPBVP) is formulated 

using Pontryagin’s minimum principle. Further research includes simulation 

studies to assess the capabilities and performance of the proposed optimal 

control strategy. 

 

The fourth novel contribution is the development of an attitude estimation 

algorithm in Chapter 7 which estimates the spacecraft attitude parameters and 

sensor bias parameters from three-axis magnetometer and three-axis rate 

gyroscope measurement data. The algorithm assumes a Gaussian distributed 

filtering probability density function (PDF) and magnetometer measurement 

model. Ordinary differential equations were developed for propagation of the 

filtering PDF parameters between measurements based on the Fokker-Planck 

equation. Update equations were developed using Bayes theorem to incorporate 

information in the three-axis magnetometer measurements. Simulation results, 

however, were not obtained due to the heavy computational burden of the 

filtering and state estimation stages. Further research is required to evaluate the 

Cramer-Rao lower bound on the estimation error covariance, in order to assess 

the statistical efficiency of the proposed attitude estimation algorithm. 
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