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Abstract

Obtaining the distribution of the profit and loss (PL) of a portfolio is a key

problem in market risk measurement. However, existing methods, such as those

based on the Normal distribution, and historical simulation methods, which use

empirical distribution of risk factors, face difficulties in dealing with at least one

of the following three problems: describing the distributional properties of risk

factors appropriately (description problem); deriving distributions of risk factors

with time horizon longer than one day (time aggregation problem); and deriving

the distribution of the PL given the distributional properties of the risk factors

(risk aggregation problem).

Here, we show that expansion methods can provide reasonable solutions to all

three problems. Expansion methods approximate a probability density function

by a sum of orthogonal polynomials multiplied by an associated weight function.

One of the most important advantages of expansion methods is that they only

require moments of the target distribution up to some order to obtain an ap-

proximation. Therefore they have the potential to be applied in a wide range of

situations, including in attempts to solve the three problems listed above. On the

other hand, it is also known that expansions lack robustness: they often exhibit

unignorable negative density and their approximation quality can be extremely

poor. This limits applications of expansion methods in existing studies.

In this thesis, we firstly develop techniques to provide robustness, with which

expansion methods result in a practical approximation quality in a wider range of

examples than investigated to date. Specifically, we investigate three techniques:

standardisation, use of Laguerre expansion and optimisation. Standardisation

applies expansion methods to a variable which is transformed so that its first and

second moments are the same as those of the weight function. Use of Laguerre



expansions applies those expansions to a risk factor so that heavy tails can be cap-

tured better. Optimisation considers expansions with coefficients of polynomials

optimised so that the difference between the approximation and the target dis-

tribution is minimised with respect to mean integrated squared error. We show,

by numerical examples using data sets of stock index returns and log differences

of implied volatility, and GARCH models, that expansions with our techniques

are more robust than conventionl expansion methods. As such, marginal distri-

butions of risk factors can be approximated by expansion methods. This solves

a part of the description problem: the information on the marginal distributions

of risk factors can be summarised by their moments. Then we show that the

dependence structure among risk factors can be summarised in terms of their

cross-moments. This solves the other part of the description problem. We also

use the fact that moments of risk factors can be aggregated using their moments

and cross-moments, to show that expansion methods can be applied to both

the time and risk aggregation problems. Furthermore, we introduce expansion

methods for multivariate distributions, which can also be used to approximate

conditional expectations and copula densities by rational functions.

Keywords: Conditional expectations; Copulas; Hermite polynomials; Laguerre

polynomials; Orthogonal expansion; Risk aggregation.
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Table of Symbols and Abbreviations

• BS formula: Black and Scholes formula (for European call option premium).

(Section 5.2)

• d: A function d : Rp 7→ R, which maps the p risk factors to a PL. (Section

2.2.1)

• ES: Expected shortfall. (Section 2.1.2)

• HS method: Historical simulation method. (Section 2.2.2)

• HV: Historical volatility. (Section 5.2)

• i.i.d.: Independently identically distributed.

• ISE: Integrated squared error. (Section 4.2.1)

• IV: Implied volatility. (Section 5.2)

• KS: Kolmogorov-Smirnov (test statistic). (Section 3.2)

• MC: Monte Carlo (method). (Section 2.2.1)

• MISE: Mean integrated squared error. (Section 3.1)

• RMSE: Root mean squared error. (Section 3.2)

• pdf: Probability density function.

• PL: Profit and loss (of a portfolio). Here, losses are expressed as negative

profits. (Section 2.1.2)

• VaR: Value at Risk. (Section 2.1.2)

• D
= : Random variables on the left and right hand sides have the same

distribution.
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Chapter 1

Introduction

Market risk can be considered as potential loss that can happen to a portfolio

due to possible changes in market conditions. Market risk consists of two basic

contributions: the components of a portfolio and possible changes in market

conditions. Measuring market risk might be considered as quantifying these two

basic contributions1.

There are many technical issues associated with measuring market risk. For

instance, a risk factor — a market variable which can affect the profit and loss

(PL) of a portfolio — can be described as a random variable, and this treatment

can involve a number of arguments on modelling techniques. Furthermore, when a

portfolio is affected by more than one risk factor, we must deal with a multivariate

distribution and aggregate the risk factors, which can be even more troublesome.

In spite of being so technical, measuring market risk is one of the most actively

discussed subjects by both academia and the financial industry, and several papers

on this topic have been published2. This particularly suggests the existence of

1Measures of market risk which only account for the components of a portfolio do exist.

A possible loss of a portfolio under an arbitrarily defined market scenario can be an example.

However, we do not deal with such measures in this thesis.
2Some of those papers are cited in Chapter 2.
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unsolved problems and the need for better practices.

This thesis deals with some of the technical problems which can arise in mea-

suring market risk of a portfolio. It attempts to propose reasonable solutions to

these problems — methods to derive measures of market risk which are capable of

capturing characteristics both of a portfolio and of risk factors — in the following

manner.

In Chapter 2, we firstly overview a general background of market risk measure-

ment practices, and discuss the fact that obtaining the distribution of the PL of a

portfolio can be prominent in measuring market risk. Then we state the following

three technical problems which can arise when we derive a PL distribution.

The first problem is related to the fact that the PL of a portfolio, in general, is

exposed to multiple risk factors. How do we describe the marginal distributions

of risk factors and the dependence structure among them and pass these pieces

of information to the calculation process of PL distribution? The use of classi-

cal parametric multivariate distributions may be capable of dealing with them;

however, tractable multivariate distributions, such as the multivariate Normal

distribution, are exceptional. Let us call this the description problem.

The second problem arises when we are interested in measuring market risk

with a long time horizon such as ten days. Distributional properties or features of

risk factors with time horizon of one day may be inferred from daily observations

of market variables. However, use of less frequent observations in order to infer

the properties of risk factors with a longer time horizon can result in insufficient

numbers of observations. Let us call this the time aggregation problem.

The third problem is to determine how to derive the distribution of the PL

given the distributional properties of the risk factors. This problem is not trivial,

especially when a portfolio is subject to multiple risk factors, or when the effect

of risk factors on the PL of a portfolio is non-linear. Let us call this the risk

aggregation problem.

2



Further review of existing methods reveals that they face difficulty in coping

with at least one of the three problems. For instance, we often observe heavy

tails in distributions of risk factors in real markets. However, the methods which

assume that the risk factors have a multivariate Normal distribution fail to cap-

ture these heavy tails. We discuss the fact that they also face difficulty in dealing

with the risk aggregation problem. On the other hand, the historical simulation

(HS) methods, which use empirical distributions of risk factors, do not have a

solution to the time aggregation problem.

Then, we demonstrate that expansion methods, which approximate a prob-

ability density function (pdf) by the sum of orthogonal polynomials multiplied

by an associated weight function, can provide solutions to all of the three prob-

lems, and that those solutions are capable of capturing characteristics both of a

portfolio and of risk factors.

Expansion methods only require moments of target distributions, and there-

fore have the potential to be applied to a wide rage of situations, including the

three problems described above. However, their biggest shortcoming is a lack of

robustness: approximations by expansion methods can often exhibit unignorable

negative density.

Here we set our aim of this thesis as solving these three problems using expan-

sion methods, despite their shortcoming. That is, we attempt to make the most of

the advantage of expansion methods — expansion methods only require the mo-

ments of a target distribution to approximate that distribution — by developing

techniques to mitigate their shortcoming.

Estimating moments in various situations may be tricky and can be a vast

study area in its own right. In this thesis, we do not deal with such estimation

problems; instead, we will show that our methods can be applied as long as

moments are available, no matter which method is used for their estimations.

In Chapter 3, we introduce techniques, which combine to provide robustness

3



to expansion methods, and which are essential for further applications of ex-

pansion methods beyond those in existing studies. We also demonstrate with

extensive numerical examples that expansion methods with these techniques can

approximate the distributions of risk factors fairly well, given the moments of

risk factors. This solves half of the description problem: marginal distributions

of risk factors can be described in terms of their moments.

In Chapter 4, we discuss applications of expansion methods to the time ag-

gregation problem. We show that expansion methods can be applied to the time

aggregation problem when the moments of the risk factors are available. Further-

more, if the autocross-moments are available, expansion methods are capable of

capturing serial dependence structure of risk factors.

In Chapter 5, we apply expansion methods to the risk aggregation problem.

There are two necessary conditions for expansion methods to be applied to risk

aggregation: that moments and cross-moments of the risk factors are available,

and that a deterministic function which links the risk factors to the PL distri-

bution can be approximated by its Taylor expansion. We discuss the fact that

the dependence structure among the risk factors is described in terms of their

cross-moments.

In Chapter 6, we develop expansion methods for joint distributions and dis-

cuss further applications to approximating conditional expectations and copula

densities. We demonstrate with numerical examples for bivariate cases that, given

moments and cross-moments of risk factors, expansion methods can be used to

successfully visualise the dependence structure between two risk factors. This,

together with the discussion in Chapter 5, solves the remaining half of the de-

scription problem: dependence structure among the risk factors can be described

in terms of their cross-moments.

Chapter 7 concludes the thesis.

4



Chapter 2

Market Risk Measurement and

Its Technical Aspects

In this chapter, we firstly review the background and existing studies of market

risk measurement, and then we discuss some technical issues associated with

current practices. We also describe the aim and scope of this thesis.

2.1 Overview of market risk measurement

We discuss in this section the motivation for market risk measurement with re-

lation to liquidity of markets, and review the development and application of

measures of market risk.

2.1.1 Liquidity of markets and measuring market risk

There is a close relationship between liquidity of markets and the need for market

risk measurement, which can be explained as follows.

Suppose that we have a portfolio subject to market risk. If the liquidity of

the market were unlimited and we could cash our portfolio at any instant at

5



the market price, then measuring market risk might not matter so much. For

instance, we could avoid an unexpected loss by the following procedure: we set

a limit level to the loss of the portfolio, monitor the net present value of the

portfolio, and cash the portfolio as soon as the loss hits the limit level.

Unfortunately, however, the liquidity of real markets is limited, and the size

of an average financial institution’s portfolio can be unignorable compared to the

daily traded volume in markets. Therefore, one must sell a portfolio bit by bit,

find a counterpart to buy the portfolio, or construct a hedge position in order to

eliminate the market risk. In any way, it is more realistic to assume that it takes

a certain period of time, say T > 0 days, before one can cash the portfolio and

get out of the market. During the period after the decision to cash the portfolio

and before the transaction is completed, the portfolio is exposed to market risk,

and this can be a chance to incur an unexpected loss. Measuring market risk can

be a powerful means to know about what could possibly happen to a portfolio,

and therefore it can help with preparing for adverse outcomes.

We also find from this discussion that it makes sense to associate the time

horizon for measures of market risk with the expected time needed either to get

out of the market, or to change financial decisions1.

2.1.2 Development of measures of market risk

The development of measures of market risk is summarised by Szegö (2002).

According to him, market risk used to be considered as a correcting factor of

expected return, and risk-adjusted returns were defined on an ad hoc basis, until

Markowitz (1959) suggested measuring the market risk of a portfolio using the

variance of returns of all the assets involved and the covariance of their pairs. His

1This point is discussed, for example, in Sections 1.3.3 and 5.2.2 of Jorion (2001).
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risk measure is given by

V(S1 + · · ·+ Sp) =
∑

i

V(Si) + 2
∑

i<j

Cov(Si, Sj),

where Si, i = 1, . . . , p, are random variables which represent the returns on

the p assets, and V and Cov denote variance and covariance respectively. His

main innovation is that he included the covariances in the measure of risk, which

account partly for the dependence structure among the returns of the assets.

In 1994, the concept of Value at Risk, or VaR was introduced (RiskMetrics

1994)2. VaR is defined as a tail quantile of the profit and loss (PL) distribution

of a portfolio at a given time horizon, namely,

VaRα = max{− inf{z|P (Z ≤ z) ≥ α}, 0},

where Z is a random variable which represents the PL at the time horizon, and

α is the parameter called probability level. For the market risk measurement

purposes, α = 0.01 is the most commonly used3. Note that the PL of a portfolio

at a given time horizon is considered to be the difference between present value of

the portfolio and a potential value of the portfolio at the time horizon, provided

the composition of the portfolio stays the same, while an actual portfolio can

change by transactions. Here, losses are expressed as negative profits.

Since VaR does not assume a specific type of distribution for risk factors and

PL, it is capable of capturing more information than variance and covariance,

such as skewness and kurtosis of individual risk factors and the PL, or dependence

structure other than through covariances. Practically, this point was considered

2Rogachev (2007) suggests that VaR first received wide representation in the report by the

Group of Thirty (1993), however, Szegö (2002) dates the introduction of VaR to the disclosure

of the risk management practice using VaR by JP Morgan, which is known as the first edition

of RiskMetrics (1994).
3α = 0.01 is also suggested by the Basel Committee (1996). Since it is the 0.99 quantile of

the loss distribution, VaR with α = 0.01 is often called 99%VaR.
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to be convenient for measuring the market risk of derivative positions4, whose

PL distribution may not be well characterised by variance and covariance alone.

Due to such advantages, VaR soon became a common measure of market risk in

the financial industry5.

However, Artzner, Delbaen, Eber & Heath (1999) introduced the idea of co-

herent measures of risk, and they showed that VaR may not be coherent. That

is, they defined a measure of risk ρ as a mapping from a set of random variables,

which represent risk factors that can affect the PL, into the real numbers, and

suggested that a coherent measure should satisfy the following four conditions.

• Transition invariance: For all risk factors X and all real numbers α, we

have ρ(X + α(1 + rf )) = ρ(X) + α, where rf is the return on a risk free

asset.

• Subadditivity: For all pairs of risk factors X1 and X2, ρ(X1+X2) ≤ ρ(X1)+

ρ(X2).

• Positive homogeneity: For all risk factors X and real numbers λ ≥ 0,

ρ(λX) = λρ(X).

• Monotonicity: For all pairs of risk factors X and Y with X ≤ Y , we have

ρ(Y ) ≤ ρ(X).

Then they showed an example where VaR does not satisfy the Subadditivity

condition. In fact, VaR is coherent only when the joint distribution of the risk

factors is elliptic6.

4See Part III of RiskMetrics (1996).
5The use of VaR is also mentioned by the regulators. See Basel Committee (1996).
6A random vector X is elliptic if there exists an affine transformation Y = AX + b, where

A and b are a real matrix and vector respectively, such that Y is spherical. Y is spherical if, for

any orthonormal transformation Q, Y
D
= QY , where ‘

D
=’ denotes that the both sides have the

same distribution. An orthonormal transformation is defined as a transformation which always

preserves the length of any vector and the angle between any two vectors.
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Instead, it is shown by Acerbi & Tasche (2002) that the expected shortfall

(ES), which is defined as an expected loss under the condition that the loss

exceeds the VaR, namely

ESα = −E(Z|Z ≤ −VaRα),

is coherent as long as the PL distribution is continuous.

Moreover, Rockafellar & Uryasev (2000) showed that the portfolio can be

optimised with respect to ES unig a simple algorithm. They proposed a linear

programming algorithm to find a portfolio with a minimum ES for a given level

of expected return. An advantage of ES over VaR is that VaR may have local

optima, and therefore searching for the global optimum is much more difficult for

VaR than for ES, which may be optimised using linear programming.

For such reasons, ES is attracting people’s attention, although VaR still is the

most popular practice in the industry7.

One aspect of such development of measures of risk is that it stresses the

importance of obtaining reliable distributions of risk factors and of the PL. For

instance, the definitions of VaR and ES implicitly assume that a reliable PL distri-

bution of a portfolio can be obtained. Furthermore, the problem with coherence

of VaR is, in a sense, encouraging the pursuit of sophisticated estimation of distri-

butions of risk factors, since the problem only arises when an elliptic distribution,

such as the Normal distribution, turns out to be a poor approximation.

2.1.3 Applications of measures of market risk

Several of applications of market risk measures are proposed. Here we list only

some of these mentioned by RiskMetrics (1996), Mina & Xiao (2001), Duffie &

7According to a survey by Rogachev (2007) over 57 Swiss private banks, nearly one third

of respondents reported that their banks currently implement a VaR concept, while none is

reported to use ES.

9



Pan (1997) and Jorion (2001).

Risk limit

Position limits, or limits to the amount of assets a portfolio can hold set by risk

managers, have traditionally been expressed in nominal terms, futures equivalents

or other denominators (RiskMetrics 1996). Setting limits in terms of a measure of

market risk is more sensible because such measures are associated with possible

loss, for which one needs to prepare.

Regulation

Regulators can set a rule on market activities of financial institutions using a

measure of market risk. For instance, the Basel Committee (1996) allows banks

to calculate their capital requirement using VaR.

Risk analysis and reporting

A measure of market risk based on a PL distribution provides a common ground

for different classes of assets such as equity and foreign currency. By measuring

the risk of each asset class, one can analyse how much risk one is taking, and in

which markets. Reporting such analyses to the senior management, shareholders

and regulators can increase the transparency of market business, by which some

financial institutions might benefit8.

8See Chapter 7 of Mina & Xiao (2001) for an example of risk analysis and reporting practice.

They suggest that reporting PL distributions as well as the risk measures is also informative.

10



2.2 Technical aspects of market risk measure-

ment

As discussed in Section 2.1, obtaining distributions of risk factors and of a PL is

a key problem in market risk measurement.

In this section, we review some technical aspects of current practices for ob-

taining PL distributions. We firstly state the problems on which we focus, and

then review how current practices deal with these problems. Finally, we describe

the aim and scope of this thesis.

2.2.1 Obtaining PL distributions and related problems

Current practices of VaR calculation, which almost inevitably involves the esti-

mation of a PL distribution, are well explained in RiskMetrics (1996), Mina &

Xiao (2001), Jorion (2001), Duffie & Pan (1997) and Linsmeier & Pearson (1996).

Based on this literature, the general idea of obtaining the PL distribution can

be summarised as the following three steps9.

1. Identify the risk factors x = (x1, . . . , xp) which can affect the PL of the

portfolio, and formulate a deterministic function d which expresses the PL

z, namely, z = d(x).

2. Describe the risk factors as random variables X = (X1, . . . , Xp).

3. The PL distribution is given as the distribution of the random variable

Z = d(X).

We have, however, a number of technical problems when we implement this

procedure. The following three are among the most frequently discussed.

9See, for instance, Chapter 6 of RiskMetrics (1996) and Linsmeier & Pearson (1996).
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Description problem

The first problem arises in the second step above: how do we describe the risk

factors as random variables X = (X1, . . . , Xp)? It involves the description of p

marginal distributions and of the dependence structure among them. We also

need to pass these pieces of information to the calculation process of the PL

distribution. The use of classical parametric multivariate distributions may be

capable of dealing with them; however, tractable multivariate distributions, such

as the multivariate Normal distribution, are exceptional. Let us call this the

description problem.

This problem can be too obvious to be clearly stated in most of academic

literature; however, the studies which pursue better models of asset returns and

dependence structure among them might be considered as dealing with this prob-

lem. We will review some of these in Section 2.2.2.

Time aggregation problem

The second problem can be considered as a special case of the first one: how do

we describe the risk factors when the time horizon is long (such as T = 10 days as

suggested by the Basel Committee (1996))? It can be especially difficult to infer

the characteristics of the risk factors from the past records due to unavailability of

sufficiently large samples. For example, we need around 20 years’ records in order

to obtain 500 non-overlapping samples of 10-day increments of markets variables,

however, this is not realistic in many cases. Such difficulties in dealing with risk

factors with a long time horizon is called the time aggregation problem10.

We might describe a risk factor with a T -day time horizon XT using a series

10See Section 4.5 of Jorion (2001), for example. He treats this problem as one of the building

blocks of calculation of VaR. This problem is also discussed by Dańıelsson (2002), however,

he only mentions “the difficulty given current technology of creating reliable 10 day VaR” and

criticises Basel Committee (1996) for setting a regulation which relies on 10 days VaR.
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of the risk factors with a one-day time horizon X1(t), t = 1, . . . , T by XT =

X1(1)+ · · ·+X1(T ) or similarly using transformations such as logarithms. Then,

the problem becomes that of deriving the distribution of the sum of T random

variables.

Risk aggregation problem

The third problem is: given the distributional properties or features of the risk

factors, how do we derive the distribution of PL? It is generally non-trivial, given

random variables X = (X1, · · · , Xp) and a deterministic function d, to obtain the

distribution of Z = d(X). This problem is called the risk aggregation problem11.

A naive solution when the joint density function f of X is available is to

integrate numerically P (Z ≤ z) =
∫

d(x)≤z
f(x)dx, perhaps by the Monte Carlo

(MC) method, which might be costly in terms of computational load12.

2.2.2 Current practices

Now we discuss how the current practices deal with these problems. According

to RiskMetrics (1996), Mina & Xiao (2001), Jorion (2001), Duffie & Pan (1997)

and Linsmeier & Pearson (1996), the most common solutions to these problems

seem to be categorised into two groups, with one group based on the Normal

distribution and the other on empirical distributions. The methods based on

11This problem is discussed widely in the literature, if not called “risk aggregation problem,”

including RiskMetrics (1996), Mina & Xiao (2001), Jorion (2001) and Duffie & Pan (1997).

The discussion by Artzner et al. (1999) also has a close relationship with this problem, since

the subadditivity condition concerns the measure of multiple risks.
12Since risk measures are mainly concerned with the tails of a distribution, the number of

samples needed can be much more than when we are interested in statistics such as mean or

variance of a distribution. Moreover, when p is not small, it can be another problem to generate

p−variate pseudo-random numbers. Section 9.4.3 of Jorion (2001) points out the problems of

MC method used in market risk measurement, including these.
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empirical distributions are called historical simulation (HS) methods13.

Normal based methods

Modelling the risk factors using the Normal distribution is one of the most com-

mon methods to obtain a PL distribution in practice14. These methods are also

discussed in, for instance, Chapter 6 of RiskMetrics (1996), Chapter 2 of Mina &

Xiao (2001), Section 9.2 of Jorion (2001), and Duffie & Pan (1997).

Here we review how Normal based methods deal with the problems in Section

2.2.1.

Description problem. Among the Normal based methods, the most basic

solution to the description problem is to assume that the risk factors have a

multivariate Normal distribution15. This approach has an advantage in terms

of tractability: it only requires the mean vectors and covariance matrix of the

risk factors. On the other hand, however, it ignores other characteristics such as

skewness and heavy tails of risk factors, and dependence structures among them

other than through covariances, which are often observed in the markets16.

According to Duffie & Pan (1997), jump diffusion and stochastic volatility

models are proposed in order to describe the heavy tails which are often observed

in asset return distributions. The jump diffusion model can be regarded as adding

a random variable, which represents a shock that arrives randomly, to a Normally

distributed variable. The shock arrival process can be modelled as a Poisson

distribution. Stochastic volatility models assume that the volatility (the square

13 According to a survey by Rogachev (2007) over 57 Swiss private banks, approximately 75%

of the banks using the VaR apply the HS method, and more than 20% apply methods based

on the Normal distribution.
14See footnote 13.
15See, for instance, Chapter 6 of RiskMetrics (1996), Chapter 2 of Mina & Xiao (2001) and

Section 9.2 of Jorion (2001) for details of this method.
16See, for instance, Rachev (2003) for heavy tails observed in the markets.
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root of the variance of the Normal distribution) is also random. They comprise

a wide variety of models, including the regime-switching volatility model, which

assumes that the volatility process is a finite state Markov chain; and ARCH17

and GARCH18 models, which are capable of incorporating the autocorrelation of

volatility.

The drawback of using these models in measuring market risk is that they re-

quire additional parameter estimation. Since they centre upon quantities such as

the jump process and volatility process, which cannot be observed in the market,

the calibration of the model to fit the observations can be another tricky prob-

lem. Also, the distributions of risk factors under such models are not necessarily

Normal, and therefore can be less tractable, especially when faced with the time

and risk aggregation problems19.

Time aggregation problem. The most common solution of the Normal based

methods to the time aggregation problem can be to assume further that the risk

factors are serially independent20. Under this assumption, a risk factor with a

T -day time horizon is a sum of T independent Normal risk factors with one-

day time horizons and therefore has a Normal distribution. The mean vector and

covariance matrix can be obtained by multiplying those of risk factors with a one-

day time horizon by T , or equivalently, we have a scaling property: XT −Tµ1 D
=

√
T (X1 − µ1), where µ1 is the mean vector of risk factors with a one-day time

horizon and XT and X1 denote the risk factors with a T -day and one-day time

horizons, respectively.

17Autoregressive conditional heteroscedasticity. See Engle (1982).
18Generalised autoregressive conditional heteroscedasticity. See Kim, Shephard & Chib

(1998). We will discuss GARCH models later in Chapter 3.
19See Duffie & Pan (1997) and Kim et al. (1998).
20For instance, see Section 4.5 of Jorion (2001). Chapter 2 of Mina & Xiao (2001) implicitly

assumes that the risk factors are serially independent.
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In order to incorporate the serial dependence of second moments of the risk

factors, the GARCH21 and the regime-switching volatility models are also pro-

posed. The drawbacks are as described above.

Risk aggregation problem. There seem to be two common directions for

Normal based methods to solve the risk aggregation problem. One is to apply a

Taylor approximation to the function d.

When only the linear terms are included in the approximation, it is called the

delta-Normal method22. This method is particularly handy, because under this

approximation, the PL is a linear combination of risk factors, whose distribution

is also Normal. However, since it ignores non-linear effects of the risk factors,

it is considered to be unsuitable to measure the market risk of some types of

derivative positions such as options.

If the Taylor approximation includes up to the quadratic terms, it is called

the delta-gamma-Normal method23. It can be considered to be more reliable

in the sense that it include some non-linear effects of the risk factors; however,

the PL distribution is not Normal and obtaining the PL distribution function

requires further approximation. In this topic, Feuerverger & Wong (2000) com-

pared technical aspects of the saddlepoint approximation24 with those of the

Fourier inversion25 applied to approximating the PL distribution under the delta-

21See, for instance, Duffie & Pan (1997), Chapter 5 of RiskMetrics (1996) and Section 8.2.3

of Jorion (2001).
22See Section 6.3.2 of RiskMetrics (1996), Section 2.3 of Mina & Xiao (2001), Section 9.1.1

of Jorion (2001) and Duffie & Pan (1997).
23See Section 6.3.3 of RiskMetrics (1996), Section 9.1.3 of Jorion (2001).
24 This approximation method can be regarded as a variation of expansion methods, which

approximates a distribution using a non-negative function and polynomials. Such expansion

methods are related to the main focus of this thesis, and therefore we will cite this article again

in the context of reviewing studies on expansion methods. See, for instance, Kolassa (1997) or

Jensen (1995) for details about the saddlepoint approximation.
25The characteristic function of the PL distribution under the delta-gamma-Normal method
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gamma-Normal method. They concluded that the two are best viewed as being

complementary. That is, there are contrasts between these two such as that the

saddlepoint approximation requires a cumulant generating function of a tractable

form while the Fourier inversion requires characteristic function in a form which

can be numerically integrated in a practical computational time.

Jaschke (2002) proposed an application of the Cornish-Fisher expansion26

to approximate the quantile of PL distribution under the delta-gamma-Normal

method. He concluded that the quality of an approximation by the Cornish-Fisher

expansion is comparable to those by other methods such as Fourier inversion,

saddlepoint expansion and the MC method, if the PL distribution is close to the

Normal distribution.

The other direction for solving the risk aggregation problem is to use the MC

method, as mentioned in Section 2.2.1. For a mean vector and covariance matrix,

either estimated directly from the observations or given from models such as jump

diffusion and stochastic volatility models, we generate N pseudo random vectors

x(i), i = 1, . . . , N , from a multivariate Normal distribution, then we have N

samples of PL, z(i) = d(x(i)), i = 1, . . . , N . We use the empirical distribution of

{z(i)} as an approximation of the PL distribution. The drawbacks of this method

are discussed in Section 2.2.1.

Historical simulation methods

HS methods use the empirical distribution of risk factors to derive the PL distri-

bution. Suppose that we observe N samples x(i), i = 1, . . . , N , of risk factors from

the historical records, then we have N samples of PL z(i) = d(x(i)), i = 1, . . . , N .

is derived. Numerical Fourier-inversion of this can be used to compute an approximation for

the distribution function.
26 The Cornish-Fisher expansion is also one of the expansion methods, and this article will

be cited again as well. See footnote 24. See, for instance, Hall (1992) for details about the

Cornish-Fisher expansion.
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We use the empirical distribution of {z(i)} as an estimate of PL distribution27.

Description problem. When the number of observations is large enough, us-

ing the empirical distribution of risk factors can be a reasonable solution to the

description problem, since it incorporates, in a natural way, characteristics of the

marginal distributions and dependence structures of the risk factors, including

skewness, heavy tails and dependence structures other than through covariances,

which are ignored in Normal based methods.

The drawback can be that the discreteness may not be favourable especially

in the tails where the observations are sparse.

Time aggregation problem. For the time aggregation problem, however,

available solutions for HS methods are not so attractive28. Even if we assume

that the risk factors are serially independent, it is not easy to obtain the distri-

bution of risk factors with a T -day time horizon. For instance, assume that the

risk factors with a one-day time horizon X1(t), t = 1, . . . , T , are independently

distributed with an empirical distribution with realisations {x(1), . . . , x(N)}. The

risk factor with a T -day time horizon is given by XT = X1(1) + · · · + X1(T ).

The number of possible realisations of XT is of the order of NT , which can easily

exceed the range of computational practicality29.

Instead, scaling by
√

T , which is used in the Normal based method, is some-

times applied as a rule of thumb (Mina & Xiao 2001).

Sampling T days increments from past records allows for the serial dependence

in a natural way; however, non-overlapping sampling can be difficult because of

27See Section 2.3 of RiskMetrics (1996), Chapter 3 of Mina & Xiao (2001) and Section 9.3 of

Jorion (2001) for details of HS methods.
28Finger (2006) discusses problems of the HS method including this point.
29 For the case with T = 10 days time horizon and N = 500 samples, NT ∼ 1026. Drawing

enough, but not too many, samples randomly from {x(1), . . . ,x(N)}T may also be an option,

however, reliability of such a ‘simulation on simulation’ is debatable.
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the insufficient number of samples, as mentioned in Section 2.2.1. Instead, over-

lapping sampling is often employed in practice, although this causes very strong

dependence among the samples and therefore the estimation can be inefficient30.

Risk aggregation problem. For the risk aggregation problem, the HS method

provides a handy solution: given samples x(i), i = 1, . . . , N , and function d,

we can use the empirical distribution of z(i) = d(x(i)) as an estimator of the

distribution of Z = d(X).

The drawbacks are that discreteness, especially in the tails where the observa-

tions are sparse, can be unfavourable, and that tails of the empirical distribution

might be regarded as too sensitive to a small number of observations. For in-

stance, the 0.01 quantile of the empirical distribution of 500 samples can only

depend on five smallest observations, or particularly, on the fifth smallest obser-

vation alone31.

Other methods

Other less common methods in use include the following. Here we also review

the use of expansion methods, which is the main focus of the thesis.

Copulas. Copulas32, which are used to describe dependence structure more

generally among the risk factors, can solve a part of the description problem

30See Vlaar (2000) for example. He investigated the HS methods applied to a Dutch bond

portfolio using overlapping samples, fully aware of the problem, and commented that the use

of overlapping samples might have caused an underestimation of VaR.
31Schachter & Butler (1996) suggest use of a kernel density estimator to obtain a continuous

PL distribution function; however, calculating quantiles of their kernel density estimator can

require intensive numerical calculation.
32A class of p−variate copula functions can be defined as distribution functions on [0, 1]p,

which have standard uniform marginal distributions. We will further discuss copulas later in

Chapter 6.
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(Junker & May 2005). A copula is flexible enough to account for the dependence

structure other than through covariances, however, it requires specification of the

copula function a priori33. Also, we may have to rely on MC methods or other

numerical integration methods to deal with the risk aggregation problem.

EVT based methods. The tails of marginal distributions can be approxi-

mated using extreme value theory (EVT), which can solve another part of the

description problem which copulas do not. Namely, EVT yields that, under gen-

eral conditions, the distribution of a random variable X beyond a sufficiently

large cutoff point u can be approximated by

P (X > x + u|X ≥ u) ≃ 1 − Gβ,ξ(x) = exp

(

−
∫ x

β

0

dv

(1 + ξv)+

)

,

where Gβ,ξ is the distribution function of the generalised Pareto distribution,

β > 0 and ξ ∈ R are scale and shape parameters, respectively, and (·)+ is defined

for y ∈ R as (y)+ = max{0, y}. Methods to estimate the parameters β and ξ

from observations or models have been proposed34.

The methods based on EVT also provide a scaling property similar to that of

Normal based methods, which can be applied to the time aggregation problem

when we assume serial independence. That is, the scale parameter of a risk factor

with a T -day time horizon can be approximated by T ξ times the scale parameter

of the risk factor with a one day time horizon, while the shape parameter remains

ξ the same35.

The dependence structure among the risk factors, however, has to be dealt

33Although a non-parametric copula has been introduced, its calibration is not trivial. See

Capéraà, Fougères & Genest (1997).
34Embrechts, Klüppelberg & Mikosch (1997) is one of the standard references for EVT and

its application to finance. Further theoretical details of EVT are given by Resnick (1987) and

Pickands III (1975).
35See Dańıelsson (1997) or Chapter 10 of Jorion (2001).
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with by other methods such as using a copula (Natale 2006)36.

Also, EVT based methods do not have a handy solution for the risk aggrega-

tion problem, except that Longin (2000) proposed a formula to approximate the

VaR of a portfolio using a linear combination of quantiles of risk factors.

Use of non-Normal distributions. Instead of the Normal, the multivariate

Student’s t distribution can also be used in order to describe heavy tails of the risk

factors’ distributions37. Similarly to the Normal based methods, it also ignores

the dependence structure other than through covariances. For the time and risk

aggregation problems, similar solutions to those of the Normal based method are

available. Note that the multivariate Student’s t distribution is also elliptic.

Furthermore, the class of stable distributions38, generalised error distribu-

tions39 and the mixed Normal distribution40 are among the proposed distribu-

tions. They might capture some characteristics of risk factors better than the

Normal distribution; however, in general, they can be less tractable than the

Normal distribution, especially when faced with the problems described in Sec-

tion 2.2.1.

Use of expansion methods. Besides the methods discussed so far, approxi-

mation techniques called expansion methods are sometimes used to obtain dis-

tributions of risk factors and of the PL of a portfolio.

36Multivariate extreme value theory has been discussed by Ari Hauksson, Dacorogna,

Domenig, Müller & Samorodnitsky (2001). They showed that they can make an inference

on tails of multivariate distributions, however, their method requires sufficiently frequent and

long records, such as 12 years’ hourly observations, which may not be always available.
37See Appendix A.2 of Mina & Xiao (2001) or Section 4.2.4 of Jorion (2001).
38See Weron (2004).
39See Section 4.2.4 of Jorion (2001)
40See Appendix A.2 of Mina & Xiao (2001). Mixed Normal distribution can be viewed as a

jump diffusion model with Normally distributed shocks.
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Expansion methods approximate a probability density function by the sum

of orthogonal polynomials multiplied by an associated weight function41. One of

the advantages of expansion methods over other methods to approximate distri-

butions, such as methods based on EVT, is that expansion methods only require

the moments of the target distribution up to some order. They also have a closed

form which can be used for calculating ES42.

Because of such advantages, expansion methods have the potential to be ap-

plied in a wide range of situations. In fact, successful examples of their appli-

cations to asset return distributions can be found in, for example, Mauleón &

Perote (2000b). Furthermore, an application to the PL of a portfolio which is de-

scribed as a linear combination of risk factors is considered by Perote & Del Bŕıo

(2001). Apart from applications to market risk measurement, Buckland (1992)

considers a density estimator based on expansion methods. That is, he formu-

lates the estimator as a polynomial multiplied by a weight function and estimates

the coefficients of the polynomial using maximum likelihood. He points out that

this provides a good fit to observations. However, this is a parametric approach,

in stark contrast to our methodology, which might limit further applications of

Buckland’s method43.

In general, however, expansion methods are subject to a serious problem:

they are lacking in robustness. Very often their approximation quality is poor,

especially in the tails, and can exhibit unignorable negative probability density44.

Mainly due to this disadvantage, most applications of expansion methods to risk

41 We will define orthogonal polynomials and an weight function in Section 2.2.3.
42This closed form has not appeared in financial literature, as far as we can determine.

Including this, properties of expansion methods are discussed in more deatil in Section 2.2.3.
43 Other important applications of expansion methods include Aı̈t-Sahalia (2002), who uses

expansion methods for constructing the likelihood function to estimate the parameters of

stochastic differencial equation.
44For instance, Gordy (2002) and Jaschke (2002) point out this problem. This will be dis-

cussed later in Section 2.2.3.
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measurement so far are limited to dealing with certain classes of models or to

some special cases.

For example, an application of the saddlepoint approximation, a refinement of

the conventional expansion methods, to the PL under the delta-gamma-Normal

method is considered by Feuerverger & Wong (2000)45. Note that the saddlepoint

approximation can be applied only to the cases where the cumulant generating

function of the target distribution is of a tractable form. Jaschke (2002) ap-

plied the Cornish-Fisher approximation46 also to the PL under the delta-gamma-

Normal method. He concludes that the approximation by the expansion is com-

petitive if the PL distribution is reasonably close to the Normal distribution. An

expansion up to fourth order has been applied to the GARCH model by Lillo &

Mantegna (2002). They analysed the market data after a crash and found some

evidence of power-law characteristics, which cannot be captured by the GARCH

model.

Despite such a disadvantage, we expect that the expansion methods may

provide reasonable solutions to all of the description, time aggregation and risk

aggregation problems. Therefore, we elaborate expansion methods in Section

2.2.3, and we explain in Section 2.3 our attempt at applying expansion methods

to these three problems in wider situations than existing studies.

2.2.3 Orthogonal polynomials and expansion methods

As briefly introduced in Section 2.2.2, expansion methods have the potential to

be applied to a wide range of situations, including the three problems described

in Section 2.2.1, while they suffer from lacking in robustness.

45See footnote 24.
46An expansion method which approximates the target distribution by the product of the

Normal pdf with the sum of Hermite polynomials. See footnote 26. The Hermite polynomials

are defined in Section 2.2.3.
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In this section, we firstly review orthogonal polynomials and expansion meth-

ods using them. Then we discuss properties of expansion methods. Further the-

oretical background for orthogonal polynomials and expansion methods is given

by Szegö (1975), Jackson (1963) or Freud (1971).

Orthogonal polynomials

Let {gk; k = 0, 1, . . .} be a series of polynomials, each of which is of kth degree, and

w be a non-negative function with support S ⊆ R which satisfies
∫

S
w(u)du = 1.

Then {gk} is said to be a set of orthogonal polynomials with weight function w if

∫

S

w(x)gk(x)gl(x)dx =







0 (k 6= l)

ek > 0 (k = l)
.

When ek = 1 for k = 0, 1, . . ., the set is called orthonormal. For any orthogonal

polynomials {gk}, {gk/
√

ek} is orthonormal, and therefore we can deal only with

orthonormal polynomials without loss of generality. We call the combination

(w, {gk}) an orthonormal system.

Expansion methods

Consider a probability density function (pdf) f with support S belonging to a

Hilbert space47 H, and let {gk; k = 0, 1, . . .} be an orthonormal polynomial basis

of H with weight function w. That is, assume that f can be expressed as

f(x) = w(x)
∞
∑

k=0

Ckgk(x), (2.1)

for some real coefficients C0, C1, . . .. Then, from orthonormality, the coefficients

are given by

Ck =

∫

S

gk(u)f(u)du

47A vector space for which an inner product 〈·, ·〉, such as 〈φ, ψ〉 =
∫

S φ(u)ψ(u)du, is de-

fined and the norm ‖φ‖ =
√

〈φ, φ〉 makes the space complete. That is, all Cauchy sequences

{φ1, φ2, . . .} that satisfy limmin{m,n}→∞ ‖φm − φn‖ = 0, are convergent.
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for k = 0, 1, . . .. Let X be a random variable with pdf f . Then, Ck = E(gk(X))

is a linear combination of moments of X up to kth order. Note that g0(x) is a

constant and C0 = g0(x) ≡ 1 is required so that
∫

S
f(u)du = 1 is satisfied.

Given the moments E(X), . . . , E(Xn), Equation (2.1) can be approximated

by a sum up to finite n, and we have the approximation for the density function

f(x) ≃ f̂(x) = w(x)
n
∑

k=0

E(gk(X))gk(x). (2.2)

This approximation technique is called the expansion method.

Expansion methods can be distinguished by the orthonormal system em-

ployed. The following two expansions are often discussed.

Hermite expansion. For the support S = (−∞,∞), the Hermite system is

the most commonly used; that is, gk is the kth Hermite polynomial given by

gk(x) = Hek(x) =
(−1)k

√
k!

e
x2

2

dk

dxk
e−

x2

2 , (2.3)

and w is the pdf of the standard Normal distribution48. Then, Equation (2.2) is

of the form

f̂(x) =
1√
2π

e−
x2

2

n
∑

k=0

E(Hek(X))Hek(x). (2.4)

Let us call this the Hermite expansion. For the distribution function, by using

Equation (2.3), we have

∫ x

−∞

f(u)du ≃ 1√
2π

{

∫ x

−∞

e−
u2

2 du − e−
x2

2

n
∑

k=1

E(Hek(X))√
k

Hek−1(x)

}

. (2.5)

48Actually, orthonormal systems can be constructed using arbitrary weight functions with

support S, and approximations using Equation (2.2) can be made using them. See Jackson

(1963) and Appendix A.1 for Schmidt’s process, which explains a procedure to obtain a set of

orthogonal polynomials associated with an arbitrary weight function. However, useful properties

such as Equations (2.5), (2.6), (2.8) and (2.9) may not be available in general.
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Furthermore, we have

∫ x

−∞

uf(u)du ≃ 1√
2π

{

−e−
x2

2 + E(He1(X))

(
∫ x

−∞

e−
u2

2 du − xe−
x2

2

)

−e−
x2

2

n
∑

k=2

E(Hek(X))

(

xHek−1(x)√
k

+
Hek−2(x)
√

k(k − 1)

)}

, (2.6)

which can be used for calculating the ES49.

Laguerre expansion. For the support S = [0,∞), the generalised Laguerre

system is often used; that is, gk is the kth generalised Laguerre polynomial given

by

gk(x) = L
(β−1)
k (x) =

√

Γ(k + 1)Γ(β)

Γ(k + β)

k
∑

l=0

(

k + β − 1

k − l

)

(−x)l

l!
,

where β > 0 is a parameter, and w is the pdf of the standard gamma distribution

with the parameter β. Then Equation (2.2) is of the form

f̂(x) =

{

1

Γ(β)
xβ−1e−x

} n
∑

k=0

E(L
(β−1)
k (X))L

(β−1)
k (x). (2.7)

Let us call this the Laguerre expansion. Similarly to the Hermite expansion, using

the identity

L
(β−1)
k (x) =

√

Γ(β)

Γ(β + k)Γ(k + 1)
x−(β−1)ex dk

dxk

(

xβ−1+ke−x
)

,

we have

∫ x

0

f(u)du ≃ 1

Γ(β)

{

∫ x

0

uβ−1e−udu + xβe−x

n
∑

k=1

E(L
(β−1)
k (X))√

βk
L

(β)
k−1(x)

}

, (2.8)

49Neither this formula, nor Equation (2.9), has been used in financial literature as far as we

can determine.

26



and

∫ x

0

uf(u)du ≃ 1

Γ(β)

{(

1 − E(L
(β−1)
1 (X))√

β

)

∫ x

0

uβe−udu

+xβ+1e−x

(

n
∑

k=1

E(L
(β−1)
k (X))√

βk
L

(β)
k−1(x)

−
n
∑

k=2

E(L
(β−1)
k (X))

√

β(β + 1)(k − 1)k
L

(β+1)
k−2 (x)

)}

. (2.9)

Properties of expansion methods

Now, let us discuss some properties of approximation by Equation (2.2).

First of all, the approximation by Equation (2.2) only requires the moments

of the target distribution up to nth order50.

Moreover, given the moments E(X1), . . . , E(Xn), Equation (2.2) assures

∫

S

ukf̂(u)du = E(Xk),

for k = 0, 1, . . . , n. This suggests that an approximation by expansion meth-

ods may preserve up to nth moments of original variable X. For higher order

moments, we have
∫

S

ukf̂(u)du =

∫

S

ukw(u)du,

for k = n + 1, . . ., which suggests that the higher order moments of the approx-

imated distribution can be those of the weight function. Therefore we might

expect a good approximation quality if the target distribution is close to the

weight function.

On the other hand, the approximation by expansion methods is lacking in ro-

bustness. We find that Equation (2.2) does not exclude the possibility of negative

density: f̂ has some region where f̂(x) ≤ 0 whenever
∑n

k=0 E(gk(X))gk(x) = 0

50See Sections 3.2.2 and 4.2.2 and Appendix A.6 for examples and discussion on expansion

methods applied to distributions for which some moments do not exist.
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has real roots. We might try to mitigate the negative density by increasing n

in Equation (2.2), however, it can be considered as rather exceptional that f̂ in

Equation (2.2) converges to f in Equation (2.1) as n → ∞, and therefore increas-

ing n does not necessarily improve the approximation quality51. This can be the

biggest drawback of the expansion methods.

These facts outline the properties of expansion methods.

2.3 Aim and scope of this thesis

In this thesis, we aim to demonstrate that expansion methods provide reasonable

solutions to the three problems described in Section 2.2.1, despite their lack of

robustness.

We firstly attempt to develop techniques which can provide robustness for ex-

pansion methods, before we deal with the three problems associated with market

risk measurement. The three problems, then, will be dealt with in the following

manner.

As explained in Section 2.2.3, expansion methods only require the moments

of the target distribution. This suggests that the marginal distributions of the

risk factors can be expressed in terms of their moments. Also, we show that the

dependence structure among risk factors can be expressed adequately in terms of

cross-moments. These will be the solution to the description problem.

For the time aggregation problem, where we wish to find the distribution of

a risk factor with a T -day time horizon XT = X1(1) + · · · + X1(T ), expansion

methods can provide a solution even when we assume some serial dependence, as

51 Jaschke (2002) points out this convergence problem for Edgeworth expansions, which

have similar formulae to those of the Hermite expansion, but derived differently. See Hall

(1992) for construction of Edgeworth expansions. See also Freedman (1981) or Szegö (1975)

for convergence properties of expansions. We will also discuss the effect of n on approximation

quality later in Chapter 3.
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long as moments and autocross-moments of X1(1), . . . , X1(T ) are available.

The Taylor approximation of the function d is a polynomial in X1, . . . , Xp,

and therefore the moments of Z = d(X1, . . . , Xp) can be approximated using the

moments and cross-moments of the individual risk factors. This suggests that,

given moments and cross-moments of the individual risk factors, expansion meth-

ods can be applied to approximate the distribution of Z. This can be a solution

for the risk aggregation problem. Note that, unlike the Normal based method,

expansion methods can handle higher order terms. Also, the approximations

by expansion methods are continuous. This can be an advantage over the HS

methods, which suffer from discreteness.

Estimating the moments and cross-moments in various situations can also be a

tricky problem, however, we limit the scope of this thesis to discussing expansion

methods and their solutions to the description, time aggregation and risk aggrega-

tion problems, given the estimates of the moments and cross-moments. Therefore,

we use conventional methods for estimating moments and cross-moments, where

necessary.
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Chapter 3

Expansion Methods Applied to

Risk Factors

In this Chapter, we discuss the application of expansion methods to approxi-

mating the risk factors’ marginal distributions and introduce related techniques

which can provide robustness for expansion methods. Numerical examples are

also given1.

This Chapter has two purposes. One is to examine expansion methods in the

simplest situations, where expansion methods are applied to univariate distribu-

tions. Here we develop techniques to provide robustness for the conventional use

of Hermite expansions and demonstrate how the techniques works. The other

is to solve a part of the description problem in Section 2.2.1. That is, if the

expansion methods successfully approximate the marginal distributions of risk

factors, we might be able to describe the marginal distributions in terms of their

moments.

Further applications and multivariate cases are discussed in later Chapters.

1Parts of this Chapter and of Chapter 4 are summarised in Marumo & Wolff (2007).
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3.1 Application and related techniques

Based on the properties of expansion methods explained in Section 2.2.3, we

discuss here the applications of these methods to approximating the risk factors’

marginal distributions. Here we also develop techniques to provide robustness to

the expansion methods.

3.1.1 Application to distributions of risk factors

It is natural that we apply the Hermite expansion, whose support is (−∞,∞),

to approximating distributions of risk factors and the PL, which can take either

positive or negative values. In fact, the expansions employed by existing studies

including those reviewed in Section 2.2.2 can be categorised as either the Hermite

expansion or a version of it, as far as we can determine. However, as pointed

out by Gordy (2002) and Jaschke (2002), the Hermite expansion is lacking in

robustness, and a naive use of the Hermite expansion — such as plugging the

sample moments of a risk factor into Equation (2.4) directly — can result in a

very poor approximation.

Therefore, some improvement which provides robustness to the conventional

use of expansion methods might be essential for further applications than those

considered in existing studies.

3.1.2 Techniques to provide robustness

Here we introduce three techniques, combinations of which can provide robustness

for the naive Hermite expansion.

Standardisation

As discussed in Section 2.2.3, if the target pdf is not so different from the weight

function, we expect that the expansion method can provide a good approximation.
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One obvious way to make the target pdf closer to the weight function is to

standardise the variable so that the first and second moments of the target pdf are

equal to those of the weight function. Actually, this technique is used, sometimes

implicitly, in most existing applications.

For the Hermite expansion, where we wish to approximate a pdf f of a random

variable X, let µ = E(X), σ2 = E(X2) − µ2, X ′ = (X − µ)/σ and fX′ be the

pdf of X ′. We apply the Hermite expansion Equation (2.4) to X ′ to obtain its

approximation f̂X′ . The pdf of X can be approximated by f̂(x) = f̂X′

(

x−µ
σ

)

1
σ
.

For the Laguerre expansion, let

µ = E(X) and β =
{E(X)}2

E(X2) − {E(X)}2 ,

and apply the Laguerre expansion with parameter β to X ′
L = βX/µ to obtain the

approximation for the density function f̂X′

L
of X ′

L. We have f̂(x) = f̂X′

L

(

βx
µ

)

β
µ
.

Note that C1 = C2 = 0 is assured by such standardisation.

Use of Laguerre expansions

Very often asset return distributions exhibit heavier tails than those of the Nor-

mal distribution, and this can be regarded as one of the reasons why the Hermite

expansion can perform poorly, especially at the tails. Since the gamma distribu-

tion has a heavier right tail than that of the Normal, we expect that the Laguerre

expansion, whose weight function is the gamma density, can approximate the

heavy tail better.

In fact, the Laguerre expansion is often used to approximate the distribu-

tions of physical quantities, such as light scattered by the turbulent atmosphere

(Barakat 1999), intensity of photoelectrons’ arrival (Barakat 1996) and the cosmic

microwave background (Gaztañaga, Fosalba & Elizalde 2000).

However, since the support of the Laguerre expansion is non-negative, it can-

not be applied directly to variables which can take either positive or negative val-
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ues. One modification is to shift the variable by some M > 0 so that XL = X+M

can be regarded as non-negative and then apply the Laguerre expansion to XL

to obtain the approximation f̂L of the pdf of XL. Hence f is approximated by

f̂(x) = f̂L(x + M).

Furthermore, we can apply the Laguerre expansion to XL∗ = (X + M)2, so

that XL∗ is non-negative, and obtain approximation f̂L∗ of the pdf of XL∗ . Thus f

is approximated by f̂(x) = 2(x+M)f̂L∗ ((x + M)2). Let us call this the Laguerre

expansion with squaring. We expect that it works for large enough M , so that

M + X can be regarded as positive2. Note that, since we deal with the squared

variable, Equation (2.9) is not available for obtaining the conditional expectation

of X, however, it still can be calculated by a linear combination of incomplete

Gamma functions. See Appendix A.4 for details.

Since the left end of the support of these Laguerre expansions is bounded, the

approximation quality of the Laguerre expansions at the left tail can be poor.

This problem can be dealt with by applying these expansions to −X.

Such use of the Laguerre expansions has not been introduced in the literature

yet, to the best of our knowledge.

Optimisation

Consider the case where we have unbiased estimators of E(gk(X)) and (E(gk(X)))2,

k = 0, . . . , n. A typical situation is the case where we observe i.i.d. observations

X(1), . . . , X(N) from f . Also assume that f can be expanded as

f(x) = w(x)

∞
∑

k=0

Ckgk(x),

where Ck = E(gk(X)). We might use Ĉk = N−1
∑N

i=1 gk(X
(i)) as an estimator for

E(gk(X)) and plug this into Equation (2.2) in order to construct an approximation

2See Appendix A.5 for discussion about the choice of M .
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for f . Alternatively, we can consider another class of estimator

f̂(x) = w(x)

n
∑

k=0

αkĈkgk(x)

and choose the coefficients αk ≥ 0, k = 0, 1, . . . , n, to minimise the weighted

mean integrated square error (MISE)3

E







∫

S

{

f̂(u) − f(u)
}2

w(u)
du






. (3.1)

Here, the weight function w in the denominator of Equation (3.1), which is iden-

tical to the weight function in Equation (2.2), works in two ways. One is to put

more importance on the error in the tail than that of the centre of the distri-

bution. The other is that it makes Equation (3.1) tractable. In fact, it can be

shown that the MISE in Equation (3.1) is equal to

n
∑

k=0

α2
kE
(

Ĉ2
k

)

− 2
n
∑

k=0

αkC
2
k +

∞
∑

k=0

C2
k . (3.2)

See the Appendix A.2 for details. An unbiased estimator for this MISE is given

by
n
∑

k=0

α2
kĈ

2
k − 2

n
∑

k=0

αk
NĈ2

k − B̂2
k

N − 1
+

∞
∑

k=0

NĈ2
k − B̂2

k

N − 1
, (3.3)

where B̂2
k = N−1

∑N
i=1

{

gk(X
(i))
}2

. Now we consider {αk} which minimises Equa-

tion (3.3). Firstly, α0 = 1 is required so that
∫

S
f̂(u)du = 1 is satisfied. If the

variable is already standardised so that the first and second moments are identical

to those of w, we have C1 = C2 = 0, and therefore we might set α1 = α2 = 0.

For k = 3, . . . , n, Equation (3.3) is minimised when

αk =
NĈ2

k − B̂2
k

(N − 1)Ĉ2
k

,

3An almost equivalent discussion for approximating a discrete distribution is found in Hall

(1983b). He considers a case with a different orthogonal system from ours in which MISE is

not weighted.
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if NĈ2
k − B̂2

k > 0, and αk = 0, otherwise.

This optimisation, as well as the use of Laguerre expansions, has not been

introduced in the literature yet, to the best of our knowledge.

3.2 Numerical examples

Now we apply the expansion methods and related techniques to distributions of

risk factors and show how they work.

We design our exhibition as follows. We firstly demonstrate in Section 3.2.1

how the expansion methods approximate the empirical distributions, given sample

moments. As discussed in Chapter 2, empirical distributions naturally capture the

characteristics of risk factors, but they suffer from discreteness especially in the

tails. Therefore, continuous approximations for empirical distributions might be

particularly desired. Furthermore, if the approximation is successful, it might be

justified to summarise the information about the marginal distributions in terms

of their moments, which can solve a part of the description problem discussed

in Section 2.2.1. In Section 3.2.2, we apply the expansion methods to GARCH

model as an example of expansion methods applied to a parametric model.

We have found from preliminary investigation that the approximation quality

of expansions without standardisation is far from practical and therefore it will

not be discussed in this thesis.

When we discuss the adequacy of approximations, we focus on the following

outputs.

Tail plots. Measures of market risk such as VaR and ES concern tails of dis-

tribution functions. Here we focus on distribution functions, rather than density

functions. The first reason for this is that it makes it possible to make a com-

parison between approximations and observations. That is, by comparing the
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distribution functions obtained by expansions and other approximations with

empirical distribution of observations, we can evaluate visually the quality of ap-

proximations in the tails. Secondly, distribution functions are more relevant to

quantiles, which are necessary for calculation of VaR. Furthermore, we can use the

closed form in Equation (2.5) or (2.8) for deriving distribution functions by ex-

pansion methods. Note that non-monotonicities in these plots indicate existence

of negative density.

Measures of difference. In order to compare the overall fit of an approximated

distribution function to an empirical distribution, we show the Kolmogorov-

Smirnov (KS) test statistics4 and root mean squared error (RMSE), which are

defined as

KS = sup
x∈S

{|F̂ (x) − S(x)|} (3.4)

and

RMSE =

√

√

√

√

1

N

N
∑

i=1

(F̂ (x(i)) − S(x(i)))2, (3.5)

where F̂ is the approximation for the distribution function, S is the empirical dis-

tribution function, and x(i) are the observations. KS and RMSE can be considered

as measures of difference between F̂ and S. Therefore, we might consider that

smaller KS and RMSE indicate that F̂ is fits better to the empirical distribution.

Total area of negative density. As discussed in Section 2.2.3, the approxima-

tions by expansion methods may have some regions where the density is negative.

We define the total area of negative density of an approximation f̂ for a pdf by

−
∫

f̂(x)<0

f̂(x)dx =
1

2

(
∫

S

|f̂(x)|dx − 1

)

. (3.6)

4See Massey (1951).
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3.2.1 Approximating empirical distributions

Here we apply the expansion methods to the empirical distribution. We firstly

apply the Hermite expansions to the risk factors’ marginal distributions. The

purpose of these examples is to investigate the conventional use of the Hermite

expansion, which has already been studied by literature including those reviewed

in Section 2.2.2. Then we apply our techniques introduced in Section 3.1 in order

to show how they improve the conventional use of the Hermite expansion.

Four market variables, Nikkei 225 stock index daily log-returns, the daily log-

differences of Black and Scholes implied volatility (IV)5 of a call option (three

month, at-the-money) on it, S&P 500 stock index daily log-returns, and the daily

log-differences of IV of call option (three month, at-the-money) on it are chosen

as examples of risk factors. See Table 3.1 for summaries of the data.

N225 N225 IV SP500 SP500 IV

Observation period From 25/10/2004 From 25/10/2004

to 6/11/2006 to 18/10/2006

Number of observations 500 500

Mean (×10−4) 8.574 −2.931 −4.425 −5.006

Std. dev. (×10−2) 1.081 3.987 0.654 5.018

Skewness (×10−1) −2.269 3.125 0.715 −2.510

Kurtosis 4.013 4.957 3.376 4.782

Min (×10−1) −0.423 −1.375 −0.185 −2.275

Max (×10−1) 0.352 1.996 0.213 1.910

Correl. coef. −0.3612 −0.7443

Table 3.1: Summary statistics of the data sets. Correlation coefficients are shown

for later reference.

5See Section 5.2 for discussion on IV.
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Approximation by the Hermite expansion

Here we investigate the approximation quality of the standardised Hermite ex-

pansions.

At the same time, we also show how the degree of expansion, n in Equation

(2.4) changes the approximations. In existing studies, for instance, n = 4 (Gordy

2002, Feuerverger & Wong 2000, Gaztañaga et al. 2000), n = 5 (Barakat 1999)

and n = 8 (Mauleón & Perote 2000b) are employed. Although criteria for the

choice of n is not given in existing studies as far as we can determine, it seems that

all employ n = 4 or larger so that the approximation captures important features

such as skewness and kurtosis. Here, we compare expansions with degrees n = 2,

4, 8 and 16, similarly to Jaschke (2002). Note that the Hermite expansion with

n = 2 is equivalent to an approximation by the Normal distribution.

In Figures 3.1 to 3.4 we show the tails of empirical distributions and approxi-

mations obtained by Hermite expansions. Tables 3.2 and 3.3 show the measures

of overall difference, and Table 3.4 shows the total area of negative density.

We can summarise our findings as follows.

• Non-monotonicities are found in the Hermite expansion with a high degree

such as n = 8 and 16 in Figure 3.2 and n = 8 in Figure 3.4. These

demonstrate visually recognisable existence of negative probability density.

In fact, Table 3.4 shows that the these three approximations have the largest

total area of negative density. This typically suggests naive use of the

Hermite expansion can perform poorly.

• For other examples, expansions resulted in better fits to the empirical dis-

tribution than approximation by the Normal distribution (Tables 3.2 and

3.3).

• A Smaller measure of difference does not necessarily mean a smaller total

area of negative density (Tables 3.2 to 3.4).

38



We might consider searching for an optimal n, however, such optimisation

may have the following drawbacks. Firstly, the optimisation has to combine a

measure of difference and a total area of negative density; however, such criteria

may be determined arbitrarily. For instance, in the Nikkei 225 example, n = 16

fits better to the empirical distribution while n = 8 has smaller total area of

negative density, and determining which is the better can be a tricky problem.

Secondly, the optimisation has to be done for each example. For instance, the

optimal n for Nikkei 225 might be around 8 or even larger, while the optimal n

for Nikkei 225 IV might be around 4, and expansion with n = 8 can be useless.

This particularly indicates that the optimal n can vary largely depending on the

data considered, and therefore n may not have a convenient value that works

fairly well for a wide range of examples.

Instead, our approach is to develop techniques which can provide robustness,

with which approximations work fairly well for a wide range of situations, rather

than to choose an optimal n.

In the next set of examples, we work with cases with n = 8. The Hermite

expansion with n = 8 exhibits visually recognisable negative densities (Figures 3.2

and 3.4). Therefore cases with n = 8 allow us to see if our techniques introduced in

Section 3.1 provide robustness. Also, expanding with n = 8 covers the examples

studied by literature mentioned above, except for n = 16 by Jaschke (2002),

who compared the results from n = 2, 4, 8 and 16, and commented that the

approximation with n = 16 is the least reliable. In the next set of examples, we

show how our techniques work using the same data sets.
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Figure 3.1: The empirical distribution function of daily log-returns of Nikkei 225

and Hermite expansions applied to it: n corresponds to the degree of expansion

in Equation (2.4). Upper and lower plots show the right tails and left tails,

respectively. From the lower plots, we can see that expansions capture the heavy

tail of the empirical distribution better than the approximation by the Normal

distribution (n = 2). See Tables 3.2 and 3.3 for the overall difference, and Table

3.4 for the total area of negative density.
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Figure 3.2: The empirical distribution function of daily log-differences of Black

and Scholes implied volatility of Nikkei 225 call option (three months, at-the-

money) and Hermite expansions applied to it: n corresponds to the degree of

expansion in Equation (2.4). Upper and lower plots show the right tails and left

tails, respectively. Upper plots show that expansions with n = 8 and 16 can be

very poor approximations. See Tables 3.2 and 3.3 for the overall difference, and

Table 3.4 for the total area of negative density.
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Figure 3.3: The empirical distribution function of daily log-returns of S&P 500

and Hermite expansions applied to it: n corresponds to the degree of expansion

in Equation (2.4). Upper and lower plots show the right tails and left tails,

respectively. Upper plots show that expansions capture the heavy tail of empirical

distribution better than the approximation by the Normal distribution (n = 2).

See Tables 3.2 and 3.3 for the overall difference, and Table 3.4 for the total area

of negative density.
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Figure 3.4: The empirical distribution function of daily log-differences of Black

and Scholes implied volatility of S&P 500 call option (three months, at-the-

money) and Hermite expansions applied to it: n corresponds to the degree of

expansion in Equation (2.4). Upper and lower plots show the right tails and left

tails, respectively. Lower plots show that the expansion with n = 8 shows slight

non-monotonicity. See Tables 3.2 and 3.3 for the overall difference, and Table 3.4

for the total area of negative density.
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(×10−2) Nikkei 225 Nikkei 225 IV S&P 500 S&P 500 IV

n = 2 (Normal) 6.336 4.445 3.944 3.640

n = 4 4.709 3.273 3.543 6.081

n = 8 3.895 5.067 2.807 2.697

n = 16 2.511 3.839 2.709 2.214

Table 3.2: KS test statistics defined by Equation (3.4): n denotes the degree

of expansion in Equation (2.4). we use this test statistic as a measure of overall

difference between an approximation and the empirical distribution function. See

Figures 3.1 to 3.4 for the tail fit. In the statistical testing sense, the null hypothesis

that the distribution of observations is identical to the approximation is rejected

with 10% significance only for n = 2 for Nikkei 225 and n = 4 for S&P 500 IV.

(×10−2) Nikkei 225 Nikkei 225 IV S&P 500 S&P 500 IV

n = 2 (Normal) 2.916 2.271 1.885 1.604

n = 4 2.082 1.513 1.605 2.335

n = 8 1.643 2.965 1.065 0.830

n = 16 0.887 1.810 0.883 0.726

Table 3.3: RMSE defined by Equation (3.5): n denotes the degree of expansion

in Equation (2.4). This also can be used as a measure of overall difference of an

approximation to the empirical distribution function. See Figures 3.1 to 3.4 for

the tail fit.
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Nikkei 225 Nikkei 225 IV S&P 500 S&P 500 IV

n = 2 (Normal) 0 0 0 0

n = 4 0 0 0 0

n = 8 1.106 × 10−5 8.010 × 10−3 1.376 × 10−4 4.107 × 10−4

n = 16 1.430 × 10−4 7.561 × 10−3 2.437 × 10−4 4.999 × 10−5

Table 3.4: Total area of negative density defined by Equation (3.6): n denotes

the degree of expansion in Equation (2.4). See Figures 3.1 to 3.4 for the tail.
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Comparison of techniques

In this next set of examples, we compare optimised Hermite expansions and

Laguerre expansions with squaring with Hermite expansions. Since we saw in the

previous set of examples that Hermite expansions performed poorly for Nikkei

225 IV and S&P 500 IV, it is especially interesting to see if expansions with

techniques introduced in Section 3.1 perform better for these two cases.

Figures 3.5 to 3.8 show tails of the empirical distributions and approximations

using the Hermite expansion, the optimised Hermite expansion, the Laguerre ex-

pansion with squaring, and the Normal distribution. Tables 3.5 to 3.7 compare

their measures of difference and total area of negative density. The Hermite ex-

pansions are the same as those in the previous set of examples. For all expansions,

n = 8, as mentioned above.

From these Figures and Tables, we can point out the following:

• The optimised Hermite expansion and Laguerre expansion with squaring

are stable in all cases, and the total area of negative density is smaller for

those than for the Hermite expansion. This suggests that the expansions

with the techniques introduced in Section 3.1 are more robust, at least for

these examples.

• Except in the cases where negative density is observed, the Hermite expan-

sion is almost identical to the Laguerre expansion with squaring (lower plots

of Figure 3.5 and both plots of Figure 3.7) or its approximation quality is

comparable to that of the Laguerre expansion with squaring.

• From Tables 3.5 and 3.6, we can see that approximation quality of expan-

sions is much better than the Normal distribution, in the sense that it is

closer to the empirical distribution, except for the Hermite expansion for

Nikkei 225 log-return.
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• Figures 3.5 to 3.8, show that the approximations by expansion have heavier

tails than the Normal distribution, except in the upper plots in Figure 3.5.

We might conclude that the optimised Hermite expansion and the Laguerre

expansion with squaring are more robust than naive Hermite expansion, and that

the overall fit of these expansions is better than that of a Normal approximation,

at least for our four examples.
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Figure 3.5: The empirical distribution function of daily log-returns of Nikkei 225

and three expansions applied to it. ‘Hermiteo’ and ‘Laguerre*’ correspond to

the optimised Hermite expansion and to the Laguerre expansion with squaring

respectively: n = 8 in Equation (2.2) for all expansions. Upper and lower plots

show the right tails and left tails respectively. Lower plots show that expansions

capture the heavy tail of empirical distribution better than the approximation by

the Normal distribution. See Tables 3.5 and 3.6 for the overall difference.
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Figure 3.6: The empirical distribution function of daily log-differences of Black

and Scholes implied volatility of Nikkei 225 call option (three months, at-the-

money) and three expansions applied to it. ‘Hermiteo’ and ‘Laguerre*’ correspond

to the optimised Hermite expansion and to the Laguerre expansion with squaring

respectively: n = 8 in Equation (2.2) for all expansions. Upper and lower plots

show the right tails and left tails respectively. We can see that the optimised

Hermite expansion and the Laguerre expansion with squaring are more stable

than the Hermite expansion. See Tables 3.5 and 3.6 for the overall difference.
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Figure 3.7: The empirical distribution function of daily log-returns of S&P 500

and three expansions applied to it. ‘Hermiteo’ and ‘Laguerre*’ correspond to

the optimised Hermite expansion and to the Laguerre expansion with squaring

respectively: n = 8 in Equation (2.2) for all expansions. Upper and lower plots

show the right tails and left tails respectively. We can see that the Hermite

expansion and the Laguerre expansion with squaring are almost identical to each

other. See Tables 3.5 and 3.6 for the overall difference.
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Figure 3.8: The empirical distribution function of daily log-differences of Black

and Scholes implied volatility of S&P 500 call option (three months, at-the-

money) and three expansions applied to it. ‘Hermiteo’ and ‘Laguerre*’ corre-

spond to the optimised Hermite expansion and to the Laguerre expansion with

squaring respectively: n = 8 in Equation (2.2) for all expansions. Upper and

lower plots show the right tails and left tails respectively. Lower plots show that

the optimised Hermite expansion and the Laguerre expansion with squaring are

more stable than the Hermite expansion. See Tables 3.5 and 3.6 for the overall

difference.
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(×10−2) Nikkei 225 Nikkei 225 IV S&P 500 S&P 500 IV

Hermite 3.895 5.067 2.807 2.696

Hermiteo 4.602 3.037 3.288 3.560

Laguerre* 3.558 3.417 2.824 3.901

Normal 6.335 4.445 3.943 3.639

Table 3.5: KS test statistics defined by Equation (3.4). We use this test statistic

as a measure of overall difference between an approximation and the empirical

distribution function. See Figures 3.5 to 3.8 for the tail fit. In the statistical

testing sense, the null hypothesis that the distribution of observations is identi-

cal to the approximation is rejected with 10% significance only for the Normal

approximation for Nikkei 225.

(×10−2) Nikkei 225 Nikkei 225 IV S&P 500 S&P 500 IV

Hermite 1.642 2.965 1.065 0.830

Hermiteo 1.964 0.931 1.249 1.460

Laguerre* 1.579 1.359 1.062 1.276

Normal 2.916 2.271 1.885 1.604

Table 3.6: RMSE defined by Equation (3.5). This also can be used as a measure

of overall difference of an approximation to the empirical distribution function.

See Figures 3.5 to 3.8 for the tail fit.
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Nikkei 225 Nikkei 225 IV S&P 500 S&P 500 IV

Hermite 1.106 × 10−5 8.010 × 10−3 1.376 × 10−4 4.107 × 10−4

Hermiteo 6.504 × 10−9 1.046 × 10−6 9.831 × 10−5 0

Laguerre* 9.451 × 10−6 1.931 × 10−6 1.128 × 10−4 2.414 × 10−5

Normal 0 0 0 0

Table 3.7: Total area of negative density defined by Equation (3.6). See Figures

3.5 to 3.8 for the tail.
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For completeness, we also subjected data from the S&P 500, in the period 1

September 2000 to 4 September 2002, to the same analyses. The index returns

exhibited much greater volatility than the sample period in the previous examples

(see Tables 3.1 and 3.8). In brief, our empirical findings were not challenged.

SP500 (2)

Observation period From 1/9/2000

to 4/9/2002

Number of observations 500

Mean (×10−4) −10.639

Std. dev. (×10−2) 1.446

Skewness (×10−1) 2.716

Kurtosis 4.265

Min (×10−1) −0.505

Max (×10−1) 0.557

Table 3.8: Summary statistics of the more volatile data set.
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Figure 3.9: The empirical distribution function of daily log-returns of S&P 500

and three expansions applied to it. The observation period is different from

that in Figure 3.7 (see Table 3.8). ‘Hermiteo’ and ‘Laguerre*’ correspond to

the optimised Hermite expansion and to the Laguerre expansion with squaring

respectively: n = 8 in Equation (2.2) for all expansions. Upper and lower plots

show the right tails and left tails respectively. We can see that the expansions

capture the heavy right tail better than the approximation by Normal. See Table

3.9 for the overall difference.
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f− KS (×10−2) RMSE (×10−2)

Hermite 1.960 × 10−5 2.468 1.022

Hermiteo 5.138 × 10−7 2.321 1.037

Laguerre* 2.389 × 10−5 2.530 0.908

Normal 0 4.751 2.285

Table 3.9: Total area of negative density (f−) defined by Equation (3.6), KS test

statistics defined by Equation (3.4) and RMSE defined by Equation (3.5), of daily

log-return of S&P 500. The observation period is different from that in Tables

3.5 to 3.7. See Table 3.8 for summary statistics and Figure 3.9 for the tail.

3.2.2 Application to GARCH models

GARCH models are widely used in studies and practices in finance. As discussed

in Section 2.2.2, they are capable of describing the autocorrelation of volatility and

of realising heavier tails than the Normal distribution. However, the closed form

for associated distributions may not be available. On the other hand, expansion

methods only require the moments of the variable, which can be calculated for

GARCH models, as long as they exist and are finite. In this section, as an example

of the application of expansion methods to a parametric model, we discuss the

GARCH models.

We present two sets of numerical examples: a case where the variable has

heavy tails, and a case where the variable has light tails. Note that the optimisa-

tion is not available here, since the unbiased estimator for MISE is not available.
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GARCH models

Let {X(t) : t = 1, 2, . . .} be a process adapted to a filtration6 {F(t)}. Then

{X(t)} is said to be a GARCH(p, q) model if it satisfies

E(X(t)|F(t− 1)) = 0

and

E(X(t)2|F(t− 1)) = σ(t)2 = c +

p
∑

i=1

aiX(t − i)2 +

q
∑

j=1

bjσ(t − j)2, (3.7)

where c, a1, . . . , ap, b1, . . . , bq are positive parameters. Note that {σ(t)} is {F(t−
1)}−adapted. We focus on the GARCH model with Gaussian innovations, X(t)|F(t−
1) ∼ N(0, σ(t)2) where σ(t)2 is given in Equation (3.7), which is the most fre-

quently discussed. It is convenient to denote X(t) = σ(t)W (t), where {W (t)} is

an i.i.d. Normal sequence adapted to {F(t)}.

Unconditional distribution in the stationary state

From Equation (3.7), we can see that the distribution of X(t) depends on the

time t. However, X(t) may converge to a state in which the distribution f of

X(t) does not depend on time as t → ∞. Let us call it the stationary state7

and the distribution f the unconditional distribution in the stationary state, or

simply the unconditional distribution.

In this set of examples, we aim to approximate the unconditional distribution

in the stationary state, for which a closed form is not available8.

6See Appendix A.3 for definitions of terms related with stochastic processes.
7 For conditions for existence of a stationary state see, for example, Gouriéroux (1997). For

GARCH models, the stationary state is unique, if it exists.
8The conditional distribution of X(t) given F(t− 1) is the Normal distribution with known

variance and therefore dealing with such conditional distributions can be trivial.
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Unconditional moments of the GARCH variables

Even when the GARCH process is in a stationary state, the unconditional mo-

ments of the variable may not be finite9. However, as long as they exist and are

finite, we can use the following procedure to obtain the unconditional moments

analytically.

The unconditional variance of X(t) can be derived by solving

m2 = c +

p
∑

i=1

aim2 +

q
∑

j=1

bjm2

for m2.

For p = q = 1 in Equation (3.7), the higher order moments can be similarly

derived by solving

m2k =

k
∑

i=0

i
∑

j=0

k!

(k − i)!(i − j)!j!
ck−iaj

1b
i−j
1

µN
2jµ

N
2k

µN
2i

m2i (3.8)

for m2k, where

µN
2k =

(2k)!

2kk!

is the 2kth moment of the Normal distribution, and m2k−1 = 0 from symmetry.

In this case, the autocross-moments E(X(t)2kX(t − s)2l) can be derived by

recurrence. From Equation (3.7) we have

σ(t)2 = c + (a1W (t − 1)2 + b1)σ(t − 1)2.

By applying this s times, X(t)2kX(t − s)2l can be expressed in terms of σ(t − s)

and W (t), . . . , W (t − s) only. Since W (t), . . . , W (t − s) are i.i.d. Normal, the

autocross-moment can be calculated from up to the 2(k + l)th moments of X(t).

Also from symmetry, we have E(X(t)2k−1X(t − s)2l) = E(X(t)2kX(t − s)2l−1) =

E(X(t)2k−1X(t − s)2l−1) = 0.

9See, for example, Carnero, Peña & Ruiz (2004).
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For general cases with p ≥ 2 or q ≥ 2 in Equation (3.7), solving a system

of linear equations is required in order to obtain the higher order moments and

autocross-moments10.

Heavy tailed case

Here we show application of the Hermite expansion and the Laguerre expansion

with squaring to a GARCH(1, 1) model with heavy tails. A set of parameters

a1 = 0.13, b1 = 0.82 and c = 0.1 in Equation (3.7) realises an unconditional

kurtosis of 4.592, which is within the range of sample kurtosis values found in

Table 3.1.

For this example, only the moments up to 6th order exist, and therefore, the

degree of expansion employed is n = 6 for the Hermite expansion, and n = 3

for the Laguerre expansion with squaring. This can be an interesting example,

since it exhibits how expansion methods perform when higher moments do not

exist. From the properties of expansion methods discussed in Section 2.2.3, we

find that the higher order moments, which do not exist for the ‘true’ distribution,

are replaced by those of the weight functions.

Figure 3.10 shows the approximations for the distribution function of the

GARCH model by the Hermite expansion, the Laguerre expansion with squaring

and the Normal distribution. Since the closed form for the ‘true’ distribution is

not available, we show in Figure 3.10 the empirical distribution of 5,000 samples

from the MC method instead. The measures of difference in Table 3.10 are for

10As an example, we describe the procedure of deriving unconditional 4th moment of the

GARCH(2,2). Consider E(X(t)4) = E(σ(t)4)µN
4 . Expanding the right hand side using Equa-

tion (3.7) and the stationarity show that it involves the terms associated with E(σ(t)4),

E(σ(t)2σ(t−1)2), E(σ(t)2X(t−1)2), E(σ(t)2) and a constant. By expanding E(X(t)2X(t−1)2)

and E(X(t)2X(t−2)2) in similar ways, we have two other equations with terms associated with

the same moments only. The 4th moment, as well as the autocross-moments E(σ(t)2σ(t− 1)2)

and E(σ(t)2X(t− 1)2), can be derived by solving this system of three linear equations.
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the difference from the MC sample empirical distribution and not from the ‘true’

distribution.

From Figure 3.10 and Table 3.10, we find that the Hermite expansion can

be a very poor approximation, while the Laguerre expansion with squaring is

stable. The tail plots suggest that the Laguerre expansion with squaring has

heavier tails than the Normal distribution, and that the Laguerre expansion with

squaring agrees with the empirical distribution of the MC samples in the tail.

By comparing the measures of difference, we might say that the approximation

quality of the Laguerre expansion with squaring can be slightly better than that

of the Normal distribution; however, it also must be noted that they are the

measures of difference from the MC sample empirical distribution, not from the

true distribution.

With respect to the point that we apply expansion methods to a distribution

which does not have higher order moments, the results from this particular exam-

ple do not exhibit obvious evidence that the Laguerre expansion with squaring is

an inappropriate approximation.
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Figure 3.10: Approximations for the unconditional distribution function of the

GARCH(1, 1) model with a1 = 0.13, b1 = 0.82 and c = 0.1 in Equation (3.7).

The empirical distribution function of 5,000 samples from MC method is also

shown. ‘Laguerre*’ corresponds to the Laguerre expansion with squaring: n = 6

in Equation (2.2) for the Hermite expansion and n = 3 for the Laguerre expansion

with squaring. Upper plots show the overall fit and lower plots magnify the right

tails. They show that the Hermite expansion is a very poor approximation,

while the Laguerre expansion with squaring is stable. We can also see that the

Laguerre expansion with squaring captures the heavy tail better than the Normal

approximation. See Table 3.10 also.
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f− KS (×10−2) RMSE (×10−2)

Hermite 0.253 23.760 15.651

Laguerre* 0 2.734 1.521

Normal 0 3.061 1.601

Table 3.10: The total area of negative density (f−), KS test statistics and

RMSE, defined in Equations (3.6), (3.4) and (3.5), respectively, of the three

approximations shown in Figure 3.10. KS and RMSE measure the difference

from the MC sample empirical distribution.

Light tailed case

Here we show applications of the Hermite expansion and the Laguerre expansion

with squaring to a GARCH(1, 1) model with light tails. A set of parameters

a1 = 0.05, b1 = 0.9 and c = 0.1 in Equation (3.7) realises an unconditional

kurtosis 3.1622, which is closer to the Normal distribution than the previous

example. For this example, the moments up to 16th order exist, and therefore,

we employ n = 8 as the degree of expansion for both expansions. We also show the

empirical distribution of 5,000 samples from MC method. Again, the measures

of difference in Table 3.11 are the differences from the MC sample empirical

distribution.

From Figure 3.11 and Table 3.11, we find that all approximations perform

fairly well, including the approximation by the Normal distribution. We also find

that expansion methods have slightly heavier tails than the Normal (lower plots of

Figure 3.11), which might be reflecting a slightly larger kurtosis than that of the

Normal distribution. By comparing the measures of difference, we might say that

the approximation quality of the Hermite expansion can be the best of the three,

however, again it also must be noted that they are the measures of difference

from the MC sample empirical distribution, not from the true distribution.
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For completeness, we also applied the analysis to a GARCH(1, 1) model with

a large persistence parameter b1; that is, we used a1 = 0.01, b1 = 0.95 and

c = 1.0×10−5. It resulted in a distribution very close to the Normal distribution,

with a kurtosis value of 3.008, and all the approximations were almost identical

to each other. Figures are omitted for brevity.
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Figure 3.11: Approximations for the unconditional distribution function of

GARCH(1, 1) model with a1 = 0.05, b1 = 0.9 and c = 0.1 in Equation (3.7).

The empirical distribution function of 5,000 samples from MC method is also

shown. ‘Laguerre*’ corresponds to the Laguerre expansion with squaring: n = 8

in Equation (2.2) for all expansions. Upper plots show the right tails and lower

plots magnify far right tails. We can see that all approximations are perform-

ing well, while lower plots show that expansions capture the heavy tails slightly

better than the approximation by the Normal distribution. See Table 3.11 also.
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f− KS (×10−2) RMSE (×10−3)

Hermite 0 1.108 4.404

Laguerre* 5.726 × 10−6 1.443 5.636

Normal 0 1.208 4.895

Table 3.11: The total area of negative density (f−), KS test statistics and

RMSE, defined in Equations (3.6), (3.4) and (3.5), respectively, of the three

approximations in Figure 3.11. KS and RMSE measure the difference from the

MC sample empirical distribution.

3.3 Summary of this Chapter

In this Chapter, we considered applications of expansion methods to marginal dis-

tributions of risk factors. We firstly introduced techniques to provide robustness

to the conventional use of the Hermite expansion. Note that the two techniques,

the use of Laguerre expansions and optimisation, have not appeared in literature

to the best of our knowledge.

Then we applied expansions to the empirical distributions of risk factors using

real markets’ observations, and to GARCH models, as an example of parametric

models.

We found cases where the Hermite expansion performs poorly, from both

empirical and GARCH examples. Then we also showed that expansions with our

techniques can provide fairly good approximations for those examples in which

the Hermite expansions performs poorly.

For the GARCH example with heavy tails, where moments higher than 6th

order do not exist, the approximation by the Laguerre expansion with squaring

agreed with the empirical distribution of MC samples. This suggests the possibil-

ity that expansion methods can perform well even though the target distribution

does not have some higher order moments.
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If our purpose is only to obtain a continuous approximation which fits well

to a given empirical distribution, some smoothing technique such kernel11 might

perform better. Further work would usefully involve comparisons of expansion

methods with such competing methods. However, expansion methods can also

be applied to a parametric model as shown in Section 3.2.2, where an empirical

distribution is not available.

At least for our examples in this Chapter, expansion methods successfully ap-

proximated the distributions given the moments of the risk factors. Considering

the properties of expansion methods discussed in Section 2.2.3 and the construc-

tion of related techniques discussed in Section 3.1, we expect that expansion

methods can be successfully applied more widely to examples other than those

in this Chapter.

This can solve a part of description problem stated in Chapter 2: the marginal

distributions of risk factors can be described in terms of their moments.

Furthermore, since expansion methods are now shown to have some robust-

ness, they might be applied to a wider range of situations than ever. Therefore,

expansion methods might be able to deal with other problems discussed in Chap-

ter 2. This will be the purpose of the following Chapters.

11See Hall (1983a), for instance.
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Chapter 4

Application to Time Aggregation

As discussed in Chapter 2, we are often interested in distributions of risk factors

and PL with a time horizon longer than one day, such as T = 10 days. Such

time horizons might be determined with relation to the time needed to eliminate

market risk. Also, the Basel Committee (1996) suggests the use of VaR with a

ten-day time horizon.

We also discussed in Section 2.2.1 that it can be particularly difficult to infer

distributional properties or features of risk factors with a long time horizon, due

to unavailability of sufficiently large samples. Instead, we might describe a risk

factor with a T -day time horizon XT using a series of the risk factor with a

one-day time horizon X1(t), t = 1, . . . , T , by

XT = X1(1) + · · ·+ X1(T ), (4.1)

or similarly using transformations such as logarithms. Then the time aggregation

problem is that of deriving the distribution of the sum of T random variables.

However, as reviewed in Section 2.2.2, current practices often face difficulty in

obtaining the distribution of XT even using Equation (4.1).

In this Chapter, we discuss applications of expansion methods to the time ag-

gregation problem, or time-aggregated expansions. We also show example anal-
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yses using time-aggregated expansions. Here, we only deal with univariate cases.

Discussion on multivariate cases is given in Section 5.1.2 and Chapter 6.

4.1 Solutions for the time aggregation problem

In this section, we firstly elaborate in Section 4.1.1 on some issues associated with

current practices to deal with the time aggregation problem, which were reviewed

briefly in Section 2.2.2. Then we discuss application of expansion methods to the

time aggregation problem in Section 4.1.2. Some ideas for further applications

using these time-aggregated expansions are discussed in Section 4.1.3.

4.1.1 Current practices

Normal based methods

As we reviewed in Section 2.2.2, solutions to the time aggregation problem which

are available for the Normal based methods can be categorised into the following

two kinds.

One is to assume that risk factors are from a serially independent and identical

Normal distribution, namely, X1(t), t = 1, . . . , T , in Equation (4.1) are from

independent Normal distributions with the same mean and variance. Then the

time aggregation is simply obtaining a sum of i.i.d. Normal variables and we have

the scaling rule

XT − Tµ1 D
=

√
T (X1 − µ1), (4.2)

where µ1 = E(X1(1)).

The other kinds of methods use parametric models, such as GARCH models,

in order to incorporate serial dependence. These methods can be, however, less

tractable than cases with the i.i.d. Normal assumption and closed form for the
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distribution of XT may not be available. We will discuss in Section 4.2.2 the

application of expansion methods to time aggregation with GARCH models.

Historical simulation methods

For HS methods, which use empirical distributions of risk factors, we do not

have a reasonable solution to the time aggregation problem. This is due to the

difficulty of obtaining an empirical distribution of XT from observations.

For instance, consider the time aggregation of HS methods where we assume

serial independence of a risk factor. From an analogy with the Normal based

methods, we can deduce that X1(t), t = 1, . . . , T , in Equation (4.1) are indepen-

dent and their marginal distributions are common and identical to the empirical

distribution of the risk factor with a one-day time horizon. A naive solution to

obtain the distribution of such XT would be to consider a ‘virtual’ risk factor

with a T -day time horizon X̃T as follows. Assume that we observe N realisations

{x1,(1), . . . , x1,(N)} of a risk factor with a one-day time horizon. Then, virtual re-

alisations of X̃T = X1(1)+ · · ·+X1(T ) can be obtained by sampling each X1(t),

t = 1, . . . , T , from {x1,(1), . . . , x1,(N)}, for all possible combinations. Thus, we

have NT virtual observations of X̃T . However, NT can easily exceed the range of

computational practicality1, and therefore the empirical distribution of X̃T may

not be obtained by this naive method.

Instead, as a rule of thumb, scaling by
√

T in Equation (4.2) is often applied

to approximating the distribution of X̃T . This scaling rule is an exact result when

random variables are i.i.d. Normal. However, more generally, including empirical

distributions, scaling only adjusts the first and second moments and does not

account for higher order moments, and therefore its reliability is not very clear.

In Sections 4.1.2 and 4.1.3, we will show that expansion methods also can provide

approximations for the distribution of X̃T , and that they account for higher order

1See footnote 29 in Section 2.2.2.
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moments.

4.1.2 Time aggregation problem and expansion methods

As we showed in Chapter 3, expansion methods successfully approximated the

empirical distributions of risk factors given their moments, at least for the con-

sidered examples. We might deduce that the distributions of risk factors can

be approximated fairly well given their moments, even for the cases where we

cannot observe the empirical distributions of risk factors. We notice that time

aggregation can be one such case, since, as discussed in Section 4.1.1, empir-

ical distributions of risk factors or the PL with a T -day time horizon are not

observable, while their moments can be available by the following procedure.

Time aggregation of moments

Now we show that the moments of XT , a risk factor with a T -day time horizon,

can be calculated from moments and autocross-moments of X1(t), t = 1, . . . , T ,

a time series of a risk factor with a one-day time horizon. Let mT
k be the kth

moment of XT . Then, by definition, we have

mT
k = E((X1(1) + · · ·+ X1(T ))k)

=
∑

k1+···+kT =k

k!

k1! · · ·kT !
E(X1(1)k1 · · ·X1(T )kT ). (4.3)

and therefore mT is expressed in terms of moments and autocross-moments of

X1(t).

If we further assume that X1(t) are i.i.d., we have

mT
k =

∑

k1+···+kT =k

k!

k1! · · · kT !
m1

k1
· · ·m1

kT
, (4.4)

where m1
k is the kth moment common to X1(t), t = 1, . . . , T .
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Time-aggregated expansions

Equations (4.3) and (4.4) suggest that expansion methods can be applied to the

distribution of XT as long as moments and autocross-moments of a risk factor

with a one-day time horizon are available. Let us call these expansion methods

which use time-aggregated moments, time-aggregated expansions.

This is the solution to the time aggregation problem available for expansion

methods.

Since the empirical distribution of XT is not available, here we do not have

measures of fit to evaluate how well time-aggregated expansions approximate the

distribution of XT , unlike the cases with a one-day time horizon with which we

dealt in Chapter 3. However, it seems reasonable to assume that time-aggregated

expansions are as reliable as ordinary expansions in Chapter 3. That is, we assume

that time-aggregated expansions approximate the distribution of XT fairly well,

unless they exhibit unignorable negative density2.

4.1.3 Applications of time-aggregated expansions

By using sample moments of a risk factor with a one-day time horizon in Equation

(4.4), expansions can approximate the distribution of X̃T discussed in Section

4.1.1, whose exact distribution is not available. We might use a time-aggregated

expansion as a proxy for this distribution.

Furthermore, we might be able to evaluate the adequacy of the current prac-

tices, such as the use of i.i.d. Normal distribution and scaling in Equation (4.2),

2Needless to say, we are aware that additional assumptions introduced when we deal with the

time aggregation, such as serial independence of risk factors or specific type of models applied

including GARCH models, can reduce the reliability of approximations. However, this problem

depends on how appropriately we model and estimate the moments and autocross-moments of

risk factors. As discussed in Section 2.3, this is beyond the scope of this thesis and therefore

we do not deal with this problem.
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by comparing them with this proxy. Note that the use of the Normal distribution

and scaling only account for the first and second moments, while expansions are

capable of incorporating the effect of time aggregation on higher order moments.

Similarly, applying time-aggregated expansions to parametric models, we can

analyse the effect of serial dependence on time aggregation. That is, we can com-

pare the expansions using Equation (4.3), which account for serial dependence,

with those using Equation (4.4), which assumes serial independence.

Such analyses using time-aggregated expansions have not been done elsewhere

as far as we can determine. Numerical examples of these analyses are shown in

Section 4.2

4.2 Example analyses

In this Section, we demonstrate numerical examples of analyses introduced in

Section 4.1.3.

In Section 4.2.1, we investigate the adequacy of approximation by the Normal

distribution and scaling using Equation (4.2), using the same data sets as in

Section 3.2.1. Then, in Section 4.2.2, we investigate the effect of serial dependence

on time aggregation using GARCH models with the same parameter sets as in

Section 3.2.2.

We consider cases with T = 10 days, as suggested by the Basel Committee

(1996).

Total area of negative density will not be shown, since it was at most of the

order of 10−5 and considered to be negligible, except for one obvious example in

Section 4.2.2.
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4.2.1 Adequacy of current practices

In this Section, we assume that risk factors are serially independent and consider

the distribution of X̃T discussed in Section 4.1.1. Since the exact distribution of

X̃T is not available, here we use approximations by time-aggregated expansion

as proxies for the distribution of X̃T . Then we discuss the adequacy of existing

approximations, such as those using the Normal distribution and using scaling in

Equation (4.2), by comparing them with time-aggregated expansions.

We use the same risk factors as in Section 3.2.1. Table 4.1 shows the summary

statistics of X̃T obtained by using time aggregation in Equation (4.4) and obvious

properties of X̃T such as max{X̃T} = max{X1(1)+· · ·+X1(T )} = max{X1}×T .

N225 N225 IV SP500 SP500 IV

Number of observations 9.765 × 1026 9.765 × 1026

Mean (×10−3) 8.574 −2.931 −4.426 −5.006

Std. dev. (×10−2) 3.414 12.598 2.066 1.585

Skewness (×10−2) −7.177 9.884 2.262 −7.938

Kurtosis 3.101 3.196 3.037 3.178

Min −0.423 −1.375 −0.185 −2.275

Max 0.352 1.996 0.213 1.910

Table 4.1: Summary statistics of X̃T , the virtual data sets of risk factors with

10 days time horizon. See Section 4.1.1 for definition of X̃T . See Table 3.1 to

compare with those with a one-day time horizon.

Comparing the statistics in Table 4.1 with those in Table 3.1, the skewness

values are reduced and the kurtosis values are closer to 3, due to the central limit

theorem (CLT). This suggests that the distributions of risk factors with a 10-day

time horizon can be closer to the Normal than those with one day time horizon.
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Adequacy of approximations by Normal distribution

Figures 4.1 to 4.4 show the tails of approximations for distribution function of

risk factors with a 10-day time horizon, obtained by time-aggregated expansions

and using the Normal distribution.

From these Figures, we can see that the approximations by expansions are

almost identical to each other. This may allow us to use only one of the expansions

as a proxy for the distribution of X̃T .

The Normal approximations are closer to the expansions, than they were

for the cases with a one-day time horizon in Section 3.2.1. Although this is

rather obvious from the CLT, we investigate this point further by introducing the

weighted integrated squared error (ISE) for the Normal distribution as a measure

of difference between approximations for the density function by the Normal

distribution and by expansion. Note that here we measure the difference between

two density functions, not distribution functions, for computational convenience.

That is, we define

ISE =

∫

S

{

f̂(u) − φ
(

u−µ
σ

)

1
σ

}2

φ
(

u−µ
σ

)

1
σ

du, (4.5)

where

f̂(x) = w(x)
n
∑

k=0

Ckgk(x)

is an approximation for the pdf of a random variable X, φ(x) = exp(−x2/2)/
√

2π

is the pdf of the standard Normal distribution, µ = E(X) and σ2 = E(X2) −
{E(X)}2. If we use an Hermite expansion as f̂ in Equation (4.5), we have ISE =
∑n

k=1 C2
k .

Table 4.2 compares the ISE of 10-day time-aggregated approximations with

those for a one-day time horizon. Here, an optimised Hermite expansion with

n = 8 in Equation (2.2) is used as f̂ in Equation (4.5). We can confirm that

the Normal approximations with a 10-day time horizon are much closer to the
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expansions than those with a one-day time horizon.

We also find from Figures 4.1 to 4.4 that distribution functions by expansions

have heavier tails than those of the Normal distribution on one side lighter tails

on the other side. That is, in Figures 4.1 and 4.4, the expansions have heavier

left tails and lighter right tails while in Figures 4.2 and 4.3, they have lighter left

tails and heavier right tails. We might assume that these systematic differences

between expansions and the Normal distributions can be due largely to skewness

of X̃T , rather than to its kurtosis. For instance, we can find from Table 4.1 that

they are consistent with the fact that the distributions with a positive skewness

value have a light left tail and heavy right tail.

From these results, we might say that the Normal distribution can approxi-

mate better the distribution of X̃T than it can approximate the distribution of

X1, which was considered in Section 3.2.1.
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Figure 4.1: Approximations for distribution function of Nikkei 225 log-return

with a 10-day time horizon by three expansions and the Normal distribution.

‘Hermiteo’ and ‘Laguerre*’ correspond to the optimised Hermite expansion and

to the Laguerre expansion with squaring respectively. All expansions are time-

aggregated using Equation (4.4): n = 8 in Equation (2.2) for all expansions.

Upper and lower plots show the right tails and left tails respectively. We can see

that expansions are almost identical to each other, while the Normal approxima-

tion is slightly different.
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Figure 4.2: Approximations for distribution function of log-differences of Black

and Scholes implied volatility of Nikkei 225 call option (three months, at-the-

money), with a 10-day time horizon by three expansions and the Normal distri-

bution. ‘Hermiteo’ and ‘Laguerre*’ correspond to the optimised Hermite expan-

sion and to the Laguerre expansion with squaring respectively. All expansions

are time-aggregated using Equation (4.4): n = 8 in Equation (2.2) for all ex-

pansions. Upper and lower plots show the right tails and left tails respectively.

We can see that expansions are almost identical to each other, while the Normal

approximation is slightly different.
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Figure 4.3: Approximations for distribution function of S&P 500 log-return with a

10-day time horizon by three expansions and the Normal distribution. ‘Hermiteo’

and ‘Laguerre*’ correspond to the optimised Hermite expansion and to the La-

guerre expansion with squaring respectively. All expansions are time-aggregated

using Equation (4.4): n = 8 in Equation (2.2) for all expansions. Upper and

lower plots show the right tails and left tails respectively. We can see that all

approximations are almost identical to each other.
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Figure 4.4: Approximations for distribution function of log-differences of Black

and Scholes implied volatility of S&P 500 call option (three months, at-the-

money), with a 10-day time horizon by three expansions and the Normal distribu-

tion. ‘Hermiteo’ and ‘Laguerre*’ correspond to the optimised Hermite expansion

and to the Laguerre expansion with squaring respectively. All expansions are

time-aggregated using Equation (4.4): n = 8 in Equation (2.2) for all expan-

sions. Upper and lower plots show the right tails and left tails respectively. We

can see that expansions are almost identical to each other, while the Normal

approximation is slightly different.
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(×10−2) N225 N225 IV SP500 SP500 IV

T = 10 days 0.132 0.361 0.015 0.259

T = 1 day 3.193 9.018 0.976 13.805

Table 4.2: Comparison of ISE defined in Equation (4.5), which shows how differ-

ent the approximation for the pdf of a risk factor by the Normal distribution is

from that by a Hermite expansion. Here, the optimised Hermite expansion with

n = 8 in Equation (2.2) is used as f̂ in Equation (4.5). ‘T = 10’ denotes weighted

ISE of X̃T , a virtual risk factor with a 10-day time horizon defined in Section

4.1.1, and ‘T = 1’ denotes that of a risk factor with a one-day time horizon, which

we dealt with in Section 3.2.1.

Adequacy of approximations by scaling

As discussed in Sections 2.2.2 and 4.1.1, we sometimes apply scaling by Equation

(4.2) to the empirical distributions of a one-day time horizon in order to make up

for the absence of such a distribution for a risk factor with a T -day time horizon

in HS methods. However, its adequacy is not very clear. From Equation (4.2),

we find that a scaled risk factor has the same mean and variance as the time-

aggregated risk factor X̃T . On the other hand, scaling does not account for the

effect of the CLT, and skewness and kurtosis of a scaled risk factor are the same

as those of a risk factor with a one-day time horizon. By comparing skewness

and kurtosis of scaled risk factors with those of X̃T in Tables 3.1 and 4.1, we can

see that scaled risk factors are more skewed and have larger kurtosis.

Here we investigate how well scaling in Equation (4.2) can approximate the

distribution of X̃T . That is, we compare an expansion applied to a risk factor

scaled by using Equation (4.2) to a time aggregated expansion using Equation

(4.4) as a proxy for the distribution of X̃T . If the approximation by scaling is

adequate, we might expect that a scaled expansion can be close to a corresponding
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time-aggregated expansion.

Since the time-aggregated expansions in the previous set of examples were

almost identical to each other, in this set of examples, we only use the time-

aggregated and optimised Hermite expansion with n = 8 in Equation (2.2) as a

proxy of the distribution of X̃T .

Figures 4.5 to 4.8 compare the tails of the scaled and optimised Hermite

expansion using Equation (4.2) with those of the time-aggregated and optimised

Hermite expansion. Approximations by the Normal distribution are also shown

for comparison.

From these Figures, we find that the approximations by scaling are not as

close to the time-aggregated expansions as approximations by the Normal distri-

bution. Approximations by scaling have heavier tails than other approximations

in all examples, possibly reflecting larger kurtosis discussed above. Thus, approx-

imation by scaling can result in overestimation of measures of market risk such

as VaR or ES.

Similarly to the previous set of examples, we can introduce a measure of

difference between two approximations by Hermite expansions for a pdf as follows.

We define a weighted ISE for two Hermite expansions,

f̂a(x) = φ

(

x − µ

σ

)

1

σ

n
∑

k=0

Ca
kHek

(

x − µ

σ

)

and

f̂b(x) = φ

(

x − µ

σ

)

1

σ

n
∑

k=0

Cb
kHek

(

x − µ

σ

)

,

by

ISE =

∫

S

{

f̂a(u) − f̂b(u)
}2

φ
(

u−µ
σ

)

1
σ

du =

n
∑

k=1

(Ca
k − Cb

k)
2. (4.6)

Table 4.3 shows the ISE between a time-aggregated optimised Hermite ex-

pansion and a scaled and optimised Hermite expansion. The ISE for an approx-

imation by the Normal distribution, which is the same as ‘T = 10’ in Table 4.2,
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is also shown for comparison. Here, we also see that the approximations by the

Normal distribution are much closer to time-aggregated expansions than are the

approximations by scaling.

From these results, we might say that approximations by the Normal distribu-

tion can be more appropriate for time aggregation under the assumption of serial

independence, than those by scaling. This conclusion is valid at least for our four

examples, however, considering that time aggregation under i.i.d. assumption in

general can be strongly affected by the CLT, we might expect to meet the same

conclusion in a wider range of examples, especially when T = 10 days or longer.
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Figure 4.5: The optimised Hermite expansions and the Normal approximation

applied to Nikkei 225 log-return with a 10-day time horizon. ‘Hermiteo’ denotes

the time-aggregated and optimised Hermite expansion, while ‘Hermiteo (S)’ cor-

responds to the scaled and optimised Hermite expansion using Equation (4.2):

n = 8 in Equation (2.2) for all expansions. Upper and lower plots show the right

tails and left tails respectively. The scaled expansion does not necessarily agree

with the time-aggregated expansion and has heavier tails than the others, while

the Normal approximation is close to the time-aggregated expansion.
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Figure 4.6: The optimised Hermite expansions and the Normal approximation

applied to log-differences of Black and Scholes implied volatility of Nikkei 225

call option (three months, at-the-money), with a 10-day time horizon. ‘Hermiteo’

denotes the time-aggregated and optimised Hermite expansion, while ‘Hermiteo

(S)’ corresponds to the scaled and optimised Hermite expansion using Equation

(4.2): n = 8 in Equation (2.2) for all expansions. Upper and lower plots show the

right tails and left tails respectively. The scaled expansion does not necessarily

agree with the time-aggregated expansion and has heavier tails than the others,

while the Normal approximation is close to the time-aggregated expansion.
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Figure 4.7: The optimised Hermite expansions and the Normal approximation

applied to S&P 500 log-return with a 10-day time horizon. ‘Hermiteo’ denotes

the time-aggregated and optimised Hermite expansion, while ‘Hermiteo (S)’ cor-

responds to the scaled and optimised Hermite expansion using Equation (4.2):

n = 8 in Equation (2.2) for all expansions. Upper and lower plots show the right

tails and left tails respectively. The scaled expansion does not necessarily agree

with the time-aggregated expansion and has heavier tails than the others, while

the Normal approximation is close to the time-aggregated expansion.
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Figure 4.8: The optimised Hermite expansions and the Normal approximation

applied to log-differences of Black and Scholes implied volatility of S&P 500 call

option (three months, at-the-money), with a 10-day time horizon. ‘Hermiteo’

denotes the time-aggregated and optimised Hermite expansion, while ‘Hermiteo

(S)’ corresponds to the scaled and optimised Hermite expansion using Equation

(4.2): n = 8 in Equation (2.2) for all expansions. Upper and lower plots show the

right tails and left tails respectively. The scaled expansion does not necessarily

agree with the time-aggregated expansion and has heavier tails than the others,

while the Normal approximation is close to the time-aggregated expansion.
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(×10−2) N225 N225 IV SP500 SP500 IV

scaling 2.360 6.656 0.894 11.444

Normal 0.132 0.361 0.015 0.259

Table 4.3: The row ‘scaling’ shows ISE as defined in Equation (4.6), which

shows how different the approximation for the pdf of a risk factor by a scaled

and optimised Hermite expansion is from that by a 10 days time-aggregated and

optimised Hermite expansion. Here, n = 8 in Equation (2.2). For comparison,

we show in the row ‘Normal’ ISE as defined in Equation (4.5), which is the same

as ‘T = 10’ in Table 4.2.

4.2.2 Analysing effect of serial dependence

As discussed in Section 4.1.2, time-aggregated expansions are capable of incor-

porating serial dependence as long as the moments and autocross-moments are

available. Therefore, as discussed in Section 4.1.3, time-aggregated expansions

allow us to see the effect of serial dependence on the distribution function by

comparing the expansions using Equation (4.3), which account for the serial de-

pendence, with those using Equation (4.4), which assumes that a time series of a

risk factor is serially independent.

Such analysis, for instance, can give us some idea about the effect of ignoring

serial dependence when it possibly exists.

Here, we investigate the effect of serial dependence of GARCH models on a

time-aggregated distribution. As we discussed in Section 3.2.2, GARCH models in

general have serial dependence in variance; also moments and autocross-moments

for the GARCH models are available, as long as they exist and are finite, while

exact distributions of random variables from GARCH models are not available.

We assume that X1(t), t = 1, . . . , T are from a GARCH model and consider

the distribution of XT = X1(1) + · · · + X1(T ). Since X1(t), t = 1, . . . , T are

87



serially dependent, Equation (4.3) should be used for time aggregation. Then

the distribution of XT which accounts for the serial dependence is approximated.

In this example analysis, however, we also consider another time series X1
iid(t),

t = 1, . . . , T , which is serially independent and each X1
iid(t) has the same distribu-

tion as the marginal distribution of X1(t). We define XT
iid = X1

iid(1)+· · ·+X1
iid(T ).

Then, each component of XT and XT
iid has the same marginal distribution. The

only difference is that the components of XT are serially dependent while those of

XT
iid are independent of each other. Therefore, the difference between the distri-

bution of XT and that of XT
iid can be considered as the effect of serial dependence

on a time-aggregated distribution. The distribution of XT
iid can be approximated

similarly to that of XT , but using Equation (4.4) for time aggregation. We exhibit

two examples in Figures 4.9 and 4.10. Figure 4.9 compares distribution functions

of XT with those of XT
iid of GARCH(1, 1) model with parameters a1 = 0.13,

b1 = 0.82 and c = 0.1, which are the same as those in ‘Heavy tailed case’ in

Section 3.2.2. Two expansions, Hermite and Laguerre with squaring are applied

to each of XT and XT
iid. The expansions applied to XT

iid are indicated by ‘(iid)’.

Figure 4.10 is obtained similarly, but using the parameters a1 = 0.05, b1 = 0.9

and c = 0.1 for GARCH(1, 1) model, which are the same as those in ‘light tailed

case’ in Section 3.2.2.

From Figure 4.9, we find that the Hermite expansion with serial dependence

can be a poor approximation, while others are stable. We can see from the tail

plots that the two expansions with serial independence agree with each other,

but are clearly different from the Laguerre expansion with squaring and serial

dependence. This difference can be considered as the effect of serial dependence

structure on the time-aggregated distribution, as discussed above.

From Figure 4.10, we can also see that the two expansions with serial inde-

pendence agree with each other. Also, they are different from expansions with

serial dependence, if not as large a difference as in Figure 4.9, showing the effect
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of serial dependence. The two expansions with serial dependence show some dif-

ference from each other; however, inferring which can be a better approximation

is not easy due to unavailability of the ‘true’ distribution.

Except for the Hermite expansion in Figure (4.9), which is obviously a poor

approximation, expansions which incorporate serial dependence have heavier tails

than expansions with serial independence. This suggests that we might underesti-

mate measures of market risk such as VaR and ES, if we ignore serial dependence

structure, when a risk factor is from a GARCH model.
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Figure 4.9: Approximations for the 10-day time-aggregated unconditional distri-

bution function of GARCH(1, 1) with (a1, b1, c) = (0.13, 0.82, 0.1) in Equation

(3.7), as in ‘Heavy tailed case’ in Section 3.2.2. ‘Laguerre*’ corresponds to the

Laguerre expansion with squaring: n = 6 and 3 in Equation (2.2) for Hermite

and ‘Laguerre*’, respectively, similarly to Figure 3.10. Expansions with ‘(iid)’

use Equation (4.4), which assumes serial independence, while others use Equa-

tion (4.3), which captures serial dependence of the GARCH model. Upper and

lower plots show the overall shapes and the right tails, respectively. The expan-

sions with ‘(iid)’ are close to each other, but different from the time-aggregated

‘Laguerre*’. The time-aggregated Hermite performs poorly.
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Figure 4.10: Approximations for the 10-day time-aggregated unconditional dis-

tribution function of GARCH(1, 1) model with (a1, b1, c) = (0.05, 0.9, 0.1) in

Equation (3.7), as in ‘Light tailed case’ in Section 3.2.2. ‘Laguerre*’ corresponds

to the Laguerre expansion with squaring. We set n = 8 in Equation (2.2). The

expansions with ‘(iid)’ are those using Equation (4.4), which assumes serial in-

dependence, while others use Equation (4.3), which captures serial dependence

of the GARCH model. Upper plots show the right tails and lower plots magnify

the far right tails. We can see that expansions with ‘(iid)’ are almost identical to

each other, but different from the time-aggregated expansions.
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4.3 Summary of this Chapter

In Section 4.1.2, we proposed a solution to the time aggregation problem using

expansion methods. That is, we proposed expansion methods to approximate a

distribution of a risk factor with a T -day time horizon, when T is large such as

T = 10 days. These time-aggregated expansions are available where the moments

and autocross-moments are available.

We discussed the possibility that time-aggregated expansions can be used

as proxies for time aggregation of empirical distributions. As far as we could

determine, reasonable solutions to obtain time-aggregated empirical distributions

are not known, but are necessary for the HS methods with a longer time horizon

than one day. Our methods can incorporate the effects of time aggregation on

high moments such as skewness, kurtosis and even higher, while exising methods

only adjust moments up to second order.

Example analyses using the market observations as in Section 3.2.1 suggested

that the Normal distribution might better approximate distributions of time-

aggregated risk factors than approximation by scaling, due to the CLT. This

result is valid for our examples under the assumptions that the risk factors are

serially independent and that time-aggregated expansions approximate exact dis-

tributions of time-aggregated risk factors fairly well.

When the autocross-moments are available, time-aggregated expansions are

capable of accounting for serial dependence. We compared numerical examples of

expansions with serial dependence with those assuming serial independence, but

with the same marginal distributions, and demonstrated that expansion methods

can capture the effect of serial dependence of GARCH models on time-aggregated

risk factors’ distributions. By the construction described in Section 4.1.2, the

application of time-aggregated expansions is not limited to the examples dealt

with in this Chapter.
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Chapter 5

Application to Risk Aggregation

As discussed in Chapter 2, obtaining a PL distribution is one of the key problems

in market risk measurement. In general, risk factors are described as random

variables X = (X1, . . . , Xp), and they are linked to a PL Z of a portfolio using

a deterministic function d as Z = d(X). Obtaining the distribution of Z, or risk

aggregation, is not trivial, especially when the number of risk factors p is larger

than one and when d is not a linear function.

Review of current practices in Section 2.2.2 showed that HS methods, which

use empirical distributions of risk factors, can give reasonable solutions to this

problem, but they suffer from discreteness.

In this Chapter, we propose continuous approximations for PL distributions

using expansion methods.

5.1 Solutions for the risk aggregation problem

In Section 5.1.1, we firstly summarise the current practices for dealing with the

risk aggregation problem, which we discussed in Section 2.2.2. Then, in Section

5.1.2, we discuss the application of expansion methods to the risk aggregation

problem.
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5.1.1 Current practices

Existing solutions for the risk aggregation problem reviewed in Section 2.2.2 can

be categorised into the following two directions.

One is to apply a Taylor expansion to the function d, which links the risk

factors to the PL of a portfolio, and consider only the linear terms and, for

some tractable cases, quadratic terms. This Taylor approximation can provide

a continuous distribution as long as we assume the risk factors’ distribution is

continuous, such as the Normal distribution. However, even when we assume

that the risk factors are Normally distributed, including second order moments

can require further approximations, as discussed in Section 2.2.2.

The other direction is that of the HS methods, which use the empirical distri-

bution of risk factors; that is, given N observations x(1), . . . , x(N) of risk factors,

we use the empirical distribution of d(x(1)), . . . , d(x(N)), as the approximation for

the distribution of a PL. Since the HS methods implicitly use the joint empiri-

cal distribution of the risk factors, it incorporates the characteristics of the risk

factors such as heavy tails or dependence structures among the risk factors in a

natural way. On the other hand, the distribution function provided by the HS

methods is discrete and this can be inconvenient, especially when we are inter-

ested in the tails of the distribution where the observations are sparse. Also, tails

of the empirical distribution might be regarded as too sensitive to a small number

of observations. For instance, the 0.01 quantile of the empirical distribution of

500 samples will only depend on the five smallest observations.

5.1.2 Expansion methods and risk aggregation

Here, we expect that expansion methods can provide a continuous approximation

for the PL distribution which incorporates the characteristics of the market in

a natural way. Furthermore, by using Equations (2.5), (2.6), (2.8) and (2.9),
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we might also avoid numerical integration when we calculate the quantiles and

conditional expectations, which reduces the computational load of calculating

VaR and ES.

Let us explain our basic concept using a simple example with two risk fac-

tors X1 and X2. The extension to the case with three or more risk factors is

straightforward.

Approximating the PL of a portfolio

Let Z = d(X1, X2) be the PL of the portfolio. Assume that d can be approximated

by a finite sum of the form

d(x1, x2) ≃
∑

i,j

1

i!j!

∂i+j

∂xi
1∂xj

2

d(0, 0)xi
1x

j
2

=
∑

i,j

Dijx
i
1x

j
2,

where

Dij =
1

i!j!

∂i+j

∂xi
1∂xj

2

d(0, 0)

are known constants. Then the PL is approximated by

Z =
∑

i,j

DijX
i
1X

j
2 . (5.1)

Aggregating the moments

From Equation (5.1), we notice that moments of the PL Z can be derived from

the moments and cross-moments of X1 and X2. That is, the kth moment mZ
k of

the PL Z can be approximated by

m̂Z
k = E





(

∑

i,j

DijX
i
1X

j
2

)k


 ,

which can be expanded so that it is expressed as

m̂Z
k =

∑

i,j

D′
ijE(X i

1X
j
2), (5.2)
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a linear combination of moments and cross-moments of X1 and X2, with known

coefficients D′
ij.

Expansions with risk aggregation

Equation (5.2) suggests that expansion methods can be applied to approximating

the distribution of PL with non-linear and multiple risk factors, as long as the

moments and cross-moments of risk factors are available.

This is the solution to the risk aggregation problem available for expansion

methods.

Here, we notice that the dependence structure between X1 and X2 is expressed

in terms of cross-moments1.

We might view that our method at once summarises the information of the

risk factors by their moments and cross-moments, and then approximates the

moments of the PL. Needless to say, if our purpose is only to obtain the distribu-

tion of the PL for situations where enough observations of all the risk factors are

available, it is much simpler to use the sample moments of d(x(1)), . . . , d(x(N))

directly. However, we notice that the procedure described above is applicable to

more general situations. For example, it can be applied to the case where some

of the risk factors are given as models, as long as the moments of the models

are available, or to the case where some of the risk factors have shorter records

than others. Also, our method allows combination with time aggregation as in-

troduced in Section 4.1.2. That is, for instance, if we assume serial independence,

we can apply Equation (4.4) to m̂T
k , and, if autocross-moments of risk factors are

available, we can use Equation (4.3), which incorporates serial dependence.

Note that this method, which does not assume a certain class of models for risk

factor dynamics or portfolios, can be applied to a very wide range of situations.

There are only two necessary conditions: that moments and cross-moments of the

1This point will be further discussed later in Chapter 6.
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risk factors up to some order are available, and that the function d, which links

the risk factors to the PL of the portfolio, can be approximated by its Taylor

expansion. The main shortcoming of the expansion methods, lack of robustness,

can be mitigated by the techniques introduced in Section 3.1. Such applications

of expansion methods have not been introduced in the literature to the best of

our knowledge.

5.2 Option premium and the Black and Scholes

formula

Before we move on to the numerical examples to see how our method explained

in Section 5.1.2 works, we review the Black and Scholes formula for pricing a

European call option and consider applications of the discussion in Section 5.1.2

to measuring the market risk associated with a European call option.

A European call option is a security whose payoff at maturity depends upon

its underlying asset price: it pays S − K units of currency if S > K and 0 oth-

erwise, where K is the prespecified strike price and S is the underlying asset

price at maturity. Naturally, the premium for the option traded in the markets

before maturity has a strong correlation with the underlying asset price at the

corresponding time. It is often easier to treat the innovation of the underlying

asset price as a risk factor and then evaluate the option premium using a pric-

ing formula for the European call option than to deal with the observed option

premium directly.

In this section we review the Black and Scholes (BS) formula for the European

call option premium, discuss risk involved in the option premium, and consider

approximations for the BS formula, which are used for applying the expansion

methods.
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5.2.1 The Black and Scholes formula

The BS formula states that the European call option premium c with time to

maturity τ > 0 is given by

c = SΦ(d1) − Ke−rτΦ(d1 − σ
√

τ), (5.3)

where Φ is the distribution function of the standard Normal distribution,

d1 =
log(S/K) + rτ

σ
√

τ
+

σ
√

τ

2
,

S is the price of the underlying asset, K ≥ 0 is the strike price (constant), r ≥ 0

is the risk free continuously compounded interest rate (constant), and σ is the

volatility of the underlying asset price (constant)2.

BS delta and gamma

Although the relationship between the option premium and the underlying asset

price in Equation (5.3) is non-linear, it is useful to consider a linear component.

The first partial derivative of a portfolio value in terms of the underlying asset

price is called “delta” and denoted using the Greek letter δ. For the case where

the portfolio consists only of the call option described in Equation (5.3), the delta

is given by

δ =
∂c

∂S
= Φ(d1).

Similarly, the second partial derivative is called “gamma” and for the case of the

call option, it is given by

γ =
∂2c

∂S2
= φ(d1)

1

σS
√

τ
,

where φ is the pdf of the standard Normal distribution.

2See Black & Scholes (1973).
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BS implied volatility and vega risk

The BS formula assumes that the volatility of the underlying asset process is con-

stant, which is not realistic in many cases3. As a result, the empirical volatility

obtained from observations of underlying asset price innovations (the histori-

cal volatility or HV) and σ in Equation (5.3) calculated from observed option

premium (the Black and Scholes implied volatility or IV) can be significantly

different4, and the IV can fluctuate over time (see Figure 5.1)5. Therefore the

option position is in fact exposed to the risk of change in the IV as well as that

of change in the underlying asset price6. This is called the vega risk.

The (linear) sensitivity of a portfolio to the IV change is called “vega” and

often denoted by κ. For a portfolio consisting only of the call option in Equation

(5.3), the vega is given by

κ =
∂c

∂σ
= St

√
τφ(d1).

5.2.2 Risk factors

Now we apply the discussion in Section 5.1.2 to the portfolio consisting only of

the at-the-money call option.

Let t = 0 be the present time. We are interested in the distribution of the

change in option premium from t = 0 to t = ∆t > 0. Since we identify the risk

3In fact, pricing formulae which incorporate time varying volatility exist. For example,

Heston & Nandi (2000) study an option pricing formula where the underlying asset price return

is from the GARCH model.
4See, for example, Fabozzi (2007) or Duffie & Pan (1997).
5In fact, IV can be different for each transaction. Some studies model IV as a function of

moneyness K/S and time to maturity τ . This function is called the implied volatility surface.

See, for example, Malz (2000) or Cont & Fonseca (2002). However, in this example, we only

focus on the at-the-money three months option premium.
6 Strictly speaking, it is also exposed to the risk of change in the risk free interest rate;

however, we ignore it in this example.
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Figure 5.1: The daily innovations of Nikkei 225 index call option implied volatility

(three months, at-the-money, IV) and ten days historical volatility (HV) of Nikkei

225. The observation period is from 9 November 2004 to 6 November 2006.

factors as change in the underlying asset price and change in the at-the-money

IV, the distribution of the PL is determined by the joint distribution of these risk

factors at t = ∆t.7

As for the underlying asset price, it is almost a standard practice to work with

the log-return8; that is, we define the log-return of the underlying asset as

X = log S∆t − log S0,

where S0 is the underlying asset price at the present time and S∆t is the underlying

7 We can see from Equation (5.3) that the time to maturity τ is reduced by ∆t as time

passes from t = 0 to t = ∆t and this also affects the option premium. This is called “time

decay”. However, when ∆t is small enough compared to τ , the difference is small and therefore

we ignore it in our example.
8See, for example, RiskMetrics (1996), Duffie & Pan (1997) and Mina & Xiao (2001).
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asset price at time ∆t, and then consider the distribution of X. This standard

practice is related to the fact that, under many models including the Black and

Scholes model, X is assumed to be Normally distributed9.

Although there seems to be no standard treatment for IV, here we consider

the distribution of the log-difference, similarly to Malz (2000),

ν = log σ∆t − log σ0,

where σ0 is the IV at the present time and σ∆t is the IV at time ∆t, similarly to

the underlying asset price10.

Now the VaR of the portfolio consisting only of the call option is given by the

quantile of the random variable

Z = d(X, ν) = c(S0e
X , σ0e

ν) − c(S0, σ0).

5.2.3 Approximation for the BS formula

In order to apply expansion methods, we consider the following approximations

for function d.

i) Delta-gamma approximation

dδγ(X, ν) = δS0X +
1

2
(δS0 + γS2

0)X
2;

ii) Delta-vega approximation

dδκ(X, ν) = δS0X + κσ0ν;

9See Chapter 4 of Jorion (2001).
10 We are aware that estimating the moments of X and ν can be tricky especially when

asset returns and log differences of the IV cannot be regarded as being stationary. Estimating

moments under such circumstances may require some parametric models which incorporate

time-inhomogeneity and serial dependence; however, as mentioned in Section 2.3, this is beyond

the scope of this thesis. Instead, we notice that the expansion methods are available as long as

the moments and cross-moments are available, regardless of which methods or models we use

to estimate them.
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iii) Delta-gamma-vega approximation

dδγκ(X, ν) = δS0X +
1

2
(δS0 + γS2

0)X
2 + κσ0ν.

These allow us to approximate the moments of Z using the moments and

cross-moments of X and ν.

Adequacy of BS approximations

Let us discuss the adequacy of these three approximations for the BS formula

using two numerical examples, the call options on Nikkei 225 and on S&P 500

(three months, at-the-money). See Table 3.1 in Section 3.2.1 for a summary of

the data sets.

Table 5.1 shows the root mean square differences between the BS formula d

and the approximations d∗, defined by

√

√

√

√

1

N

N
∑

i=1

(d(X(i), ν(i)) − d∗(X(i), ν(i)))
2
, (5.4)

where (X(i), ν(i)) are the observed samples. Figures 5.2 and 5.3 compare the ef-

fects of these approximations on the tails of the one day PL distribution. In Fig-

ures 5.2 and 5.3, “full evaluation” shows the empirical distribution of d(X(i), ν(i)),

i = 1, . . . , N . The other plots are obtained similarly, but using approximations

for the function d.

They show that the delta-gamma-vega is a good approximation for the BS

formula and incorporating higher order terms may not make a large difference.

It is notable that the delta-gamma approximation and the delta-gamma-vega

approximation are significantly different. This suggests that vega risk is worth

considering.

Needless to say, we could incorporate higher order terms if necessary.
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Nikkei 225 Call option S&P 500 Call option

δγ 20.02 1.567

δκ 10.71 0.507

δγκ 0.93 0.155

Table 5.1: Root mean square differences between the BS formula and the ap-

proximations defined by Equation (5.4). The Greek letters show the components

included in the approximations.
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Figure 5.2: The empirical distributions of one day PL of Nikkei 225 call option

(three months, at-the-money) by evaluating the BS formula and three approxi-

mations for the BS formula. The Greek letters show the components included

in the approximations. Upper plots are the right tail and the lower plots are

the left tail. We can see that the δγκ approximation is almost identical to ‘full

evaluation’. See also Table 5.1 for overall approximation quality.
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Figure 5.3: The empirical distributions of one day PL of S&P 500 call option

(three months, at-the-money) by evaluating the BS formula and three approxi-

mations for the BS formula. The Greek letters show the components included in

the approximations. Upper plots are the right tail and the lower plots are the

left tail. We can see that the δγκ approximation is very close to ‘full evaluation’,

while others show a large difference. See also Table 5.1 for overall approximation

quality.
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5.3 Numerical examples

We apply our method described in Section 5.1.2 to the distribution of the PL

of call options, using the result of Section 5.2. Here, we use empirical moments

and cross-moments as inputs to expansion methods, similarly to the examples in

Sections 3.2.1 and 4.2.1. We might use some parametric models such as GARCH

models to estimate the moments and cross-moments of risk factors. However,

as discussed in Section 2.3, estimating risk factors’ moments and cross-moments

is beyond the scope of thesis11. Instead, using empirical moments and cross-

moments enables us to make some judgement about how well the expansion

methods are approximating the target distribution, by comparing expansions

with empirical distributions. We also notice that the empirical distribution of

a PL is equivalent to the PL distribution derived by the HS methods, which is

widely used in the financial industry.

Figures 5.4 and 5.5 provide two examples, PLs of the call options on Nikkei

225 and on S&P 500 (three months and at-the-money) respectively. The data set

used is the same as the one used in Sections 3.1 and 5.2.3. See Table 3.1 for a

summary of the data sets.

11See also footnote 10.
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Figure 5.4: Two empirical distributions of one day PL of Nikkei 225 call option

(three months, at-the-money), the approximations by the Hermite expansion, the

optimised Hermite expansion (‘Hermiteo’), the Laguerre expansion with squaring

(‘Laguerre*’) and the Normal distribution. The empirical distributions are the

same as in Figure 5.2: n = 8 in Equation (2.2) for expansions. The upper and

lower plots are the right and left tails. We can see that expansions are close to

each other and capture the tail shape of ‘full evaluation’ better than the Normal

approximation.
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Figure 5.5: Two empirical distributions of one day PL of S&P 500 call option

(three months, at-the-money), the approximations by the Hermite expansion, the

optimised Hermite expansion (‘Hermiteo’), the Laguerre expansion with squaring

(‘Laguerre*’) and the Normal distribution. The empirical distributions are the

same as in Figure 5.3: n = 8 in Equation (2.2) for expansions. The upper and

lower plots are the right and left tails. We can see that expansions are close to

each other and capture the tail shape of ‘full evaluation’ better than the Normal

approximation.
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Tables 5.2 and 5.3 show the tail quantiles (Q) and conditional expectations

(CE) of these distributions which correspond to 99% VaR and to ES. They show

that the approximation by the Normal distribution has the largest difference from

the ‘full evaluation’ which corresponds to the VaR and ES by HS method.

Probability 0.01 0.99

Q CE Q CE

full evaluation −178.2 −193.1 267.8 286.5

δγκ approx. −177.3 −190.1 265.6 284.3

Hermite −176.9 −200.8 249.5 281.7

Hermiteo −172.0 −192.1 247.5 281.5

Laguerre* −176.0 −207.7 250.1 284.3

Normal −191.0 −220.6 216.1 245.7

Table 5.2: Tail quantiles (Q) of the PL of Nikkei 225 call option and the expecta-

tion with the condition (CE) that the PL exceeds the quantiles. The distributions

are the same as in Figure 5.4. For the empirical distributions, the 5th smallest and

largest observations are used as the 0.01 and 0.99 quantiles respectively: n = 8

in Equation (2.2) for expansions. CE for Laguerre* is obtained by using incom-

plete gamma functions (See Appendix A.4 for details), while those for Hermite

expansions were obtained by using Equation (2.6).
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Probability 0.01 0.99

Q CE Q CE

full evaluation −8.804 −9.566 13.14 13.96

δγκ approx. −8.807 −9.647 12.73 13.41

Hermite −9.054 −9.757 12.34 13.71

Hermiteo −9.069 −10.106 12.12 13.48

Laguerre* −8.988 −9.912 12.41 13.86

Normal −9.396 −10.084 10.49 11.94

Table 5.3: Tail quantiles (Q) of the PL of S&P 500 call option and the expectation

with the condition (CE) that the PL exceeds the quantiles. The distributions are

the same as in Figure 5.5. For the empirical distributions, the 5th smallest and

largest observations are used as the 0.01 and 0.99 quantiles respectively: n = 8

in Equation (2.2) for expansions. CE for Laguerre* is obtained by using incom-

plete gamma function (See Appendix A.4 for details), while those for Hermite

expansions were obtained by using Equation (2.6).

Nikkei 225 Call option S&P 500 Call option

KS RMSE f− KS RMSE f−

(×10−2) (×10−2) (×10−4) (×10−2) (×10−2) (×10−4)

Hermite 3.501 1.721 1.671 2.847 1.296 7.455

Hermiteo 4.503 2.255 2.048 3.171 1.493 2.524

Laguerre* 3.984 1.841 0.022 2.843 1.250 1.521

Normal 7.100 3.425 0 5.041 2.376 0

Table 5.4: The KS statistics, RMSE and the total area of negative density (f−)

of approximations of PLs. The distributions are the same as in Figures 5.4 and

5.5: n = 8 in Equation (2.2) for expansions.
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From Figures 5.4 and 5.5, we can see that the three expansions agree with

each other, while the Normal approximations are distinctly different from them.

More importantly, the expansions seem to capture the tail behaviour of the

empirical distributions better than the Normal approximations. This can con-

firmed from the tail statistics in Tables 5.2 and 5.3. The tail quantiles of the

expansions are much closer to those of the empirical distributions.

The measures of difference from the empirical distributions of expansions in

Table 5.4 are much smaller than those of the Normal approximations.

The total area of negative density of the Hermite expansion for S&P 500 Call

option is relatively large; however, non-monotonicity is not visually recognisable

in Figure 5.5. The Laguerre expansion with squaring has the smallest measures

of difference and total area of negative density of the three expansions for both

examples. This might suggest greater robustness for the Laguerre expansion with

squaring.

These results suggest that approximations to the distribution by the expansion

methods are significantly different from approximations by the Normal distribu-

tion and are closer to the empirical distribution. From these findings, we might

conclude that the expansion methods can capture some non-Normal characteris-

tics of the risk.

5.4 Summary of this Chapter

We proposed a method to apply the expansion methods to risk aggregation, which

can be used for the calculation of measures of market risk such as VaR and ES

of a portfolio. We showed that our methods can be applied to the cases where a

portfolio has non-linear and multiple risk factors. The numerical examples which

deal with the market risk associated with the option premium showed that the

expansion methods capture some characteristics of the market observations bet-
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ter than methods based on the Normal distribution. It is also notable that the

expansion methods have analytical solutions for the cumulative density function

and conditional expectation, which can help us to avoid numerical integration.

Further work could usefully compare our methods with those requiring such nu-

merical integration for accuracy.

Since our methods only require the moments and cross-moments of the risk

factors (and their unbiased estimators, for optimisation), they can also be applied

to a wider range of cases than the examples in this thesis, such as those where

some of the risk factors are given as models, as long as the moments and cross-

moments are available.
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Chapter 6

Multivariate Expansions

As discussed in Chapter 2, when a portfolio involves multiple risk factors, we

sometimes wish to deal with a joint distribution of multiple risk factors; how-

ever, in reality, not many methods are available1. Use of the multivariate Normal

distribution is one of the most common methods. This only requires the mean

vector and the covariance matrix; however, it ignores heavy tails or dependence

structure other than covariance, both of which are often observed in the market.

Alternatively, empirical distributions incorporate market observations such as

heavy tails or non-linear dependence structures among the risk factors. However,

discreteness, especially in the tail where the observations are sparse, can be un-

favourable2. Also, the empirical distributions do not have joint density functions,

which give us a comprehensive visual image of dependence structures. By using

copulas, we can describe the dependence structure among risk factors, and non-

parametric copula estimation is proposed3; however, many other copula-based

methods require specification of the copula function a priori.

1See, for instance, Mina & Xiao (2001) and Jorion (2001) for use of Normal distribution and

empirical distribution. For the discussion on the use of other distributions, see Section 2.2.2.
2See Finger (2006) for example.
3See Section 2.2.2 for the use of copulas.
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Besides these methods, we show in this Chapter that expansion methods can

be applied to approximating the joint distribution of risk factors. In Chapter

3, we showed that marginal distributions of risk factors can be approximated by

expansion methods, given their moments. Here, we show that expansion methods

can approximate the joint distribution of risk factors, given moments and cross-

moments. In addition to the discussion on the PL distribution with multiple risk

factors in Chapter 5, deriving joint distributions from the moments and cross-

moments further supports our assumption that the dependence structure among

risk factors may be described in terms of their cross-moments.

In this topic, Mauleón & Perote (2000a) studied a bivariate expansion which

incorporates linear correlation of risk factors. However, the extension of expansion

methods more generally to multivariate distributions has not been studied in the

literature as far as we can determine.

We also show that conditional moments and copula density functions, which

also give a comprehensive view on dependence structures, can be approximated

by rational functions using our expansion methods.

6.1 Expanding a bivariate joint density function

We firstly introduce in Section 6.1.1 a natural extension of expansions introduced

in Section 2.2.3, and then discuss in Section 6.1.2 bivariate versions of techniques

introduced in Section 3.1. Numerical examples are shown in Section 6.1.3.

6.1.1 Basic formula

Let X and Y have a joint density function f(x, y) with support S × S. Assume

that the conditional distribution, which is defined as

f(x|Y = y) =
f(x, y)

∫

S
f(u, y)du

,
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can be expanded using Equation (2.1) as

f(x|Y = y) = w(x)

∞
∑

k=0

gk(x)

∫

S

f(u|Y = y)gk(u)du.

By multiplying both sides by
∫

S
f(u, y)du, we have

f(x, y) = w(x)
∞
∑

k=0

gk(x)

∫

S

f(u, y)gk(u)du. (6.1)

Similarly, we can expand the density function with respect to y,

f(x, y) = w(y)
∞
∑

l=0

gl(y)

∫

S

f(x, v)gl(v)dv. (6.2)

By plugging Equation (6.2) into the right hand side of Equation (6.1), we have

the expansion for a joint density function,

f(x, y) = w(x)

∞
∑

k=0

∫

u∈S

w(y)

∞
∑

l=0

∫

v∈S

f(u, v)gl(v)dv gl(y)gk(u)du gk(x)

= w(x)w(y)

∞
∑

k=0

∞
∑

l=0

E(gk(X)gl(Y ))gk(x)gl(y). (6.3)

Since gk are polynomials, E(gk(X)gl(Y )) are linear combinations of moments and

cross-moments of X and Y , therefore we notice that all the information from X

and Y is summarised in terms of the moments and cross-moments.

Based on Equation (6.3), given the moments and cross-moments of X and Y ,

E(XpY q), p = 0, . . . , n, q = 0, . . . , n, the joint density function of X and Y can

be approximated by

f̂(x, y) = w(x)w(y)

n
∑

k=0

n
∑

l=0

E(gk(X)gl(Y ))gk(x)gl(y). (6.4)

By construction, we also notice that the expansions applied to X and Y do

not have to be the same. Also, the degree of expansions n does not have to be

the same for X and Y , however, we use a common n for simplicity.
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Properties of bivariate expansions

Here, a similar discussion to Section 2.2.3, where we discussed the properties of

univariate expansions, can be made. That is, the approximation by expansions

may preserve the moments and cross-moments of the original variables (X, Y ) up

to the nth order, E(XkY l), k = 0, . . . , n, l = 0, . . . , n, while, for k = n + 1, . . .,

and l = n + 1, . . . , the moments and cross-moments of the approximation are

replaced by those of the product of the weight functions w(x)w(y). Therefore,

similarly to univariate expansions, we might expect a good approximation quality

if the target distribution is close to w(x)w(y), which, in the bivariate case, is a

joint density function of two independent variables.

When some moments or cross-moments do not exist, they are also replaced

by the moments or cross-moments of w(x)w(y).

By construction, these bivariate expansions do not exclude the possibility of

negative density.

The marginal densities fX and fY of X and Y , respectively, can be expanded

as

fX(x) = w(x)

∞
∑

k=0

E(gk(X))gk(x) (6.5)

fY (y) = w(y)
∞
∑

l=0

E(gl(Y ))gl(y), (6.6)

so it is easy to see that when X and Y are independent and E(gk(X)gl(Y )) =

E(gk(X))E(gl(Y )), we have f(x, y) = fX(x)fY (y).

6.1.2 Application and related techniques

Here, similarly to the discussion in Section 3.1, we expect that a naive application

of the Hermite expansion can result in a poor approximation, and that the same

techniques — standardisation, use of the Laguerre expansions and optimisation
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— may provide expansion methods with greater robustness. We discuss the

application of these techniques in the bivariate case and show numerical examples.

Use of the Laguerre expansion is explained together with standardisation.

Standardisation

Similarly to the univariate case, we expect that matching first and second mo-

ments of the variables to those of the weight function by standardisation can

improve the approximation quality. The difference from the univariate case is

that we have the cross-moment term E(XY ) here. Our bivariate weight function

is w(x)w(y), which is the joint density function of two independent variables. This

suggests that the variables should be transformed so that their covariance is 0. For

example, let Z = γX+Y , where γ = −(E(XY )−E(X)E(Y ))/(E(X2)−(E(X))2),

then the covariance of X and Z is 0.

Other moments can be matched to those of the weight function in the same

way as the univariate case; that is, for the Hermite expansion, let X ′ = (X −
µX)/σX and Z ′ = (Z − µZ)/σZ , where µX = E(X), σ2

X = E(X2) − (E(X))2,

µZ = E(Z) and σ2
Z = E(Z2) − (E(Z))2, and apply the expansion to (X ′, Z ′) to

obtain f̂X′Z′. The approximation of f is given by

f̂(x, y) = f̂X′Z′

(

x − µX

σX

,
γx + y − µZ

σZ

)

1

σXσZ

.

For the Laguerre expansion, assume that XL = X + MX and ZL = Z + MZ

can be regarded as non-negative for some MX > 0 and MZ > 0 and let X ′
L =

βXL
XL/µXL

and Z ′
L = βZL

ZL/µZL
, where

µXL
= E(XL), βXL

=
E(XL)

E(X2
L) − (E(XL))2

,

µZL
= E(ZL), and βZL

=
E(ZL)

E(Z2
L) − (E(XL))2

.

We obtain the approximation f̂X′

L
Z′

L
of the joint density function of (X ′

L, Z ′
L) by
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applying the Laguerre expansion with parameters βX and βZ and we have

f̂(x, y) = f̂X′

L
Z′

L

(

βXL
(x + MX)

µXL

,
βZL

(γx + y + MZ)

µZL

)

βXL
βZL

µXL
µZL

.

Note that the moments and cross-moments required for these expansions with

standardisation are E(XpY q), p = 0, . . . , 2n, q = 0, . . . , n.

For the Laguerre expansion with squaring, where we consider XL∗ = (X +

MX)2 and YL∗ = (Y +MY )2, ZL∗ = γ∗XL∗ +YL∗ is defined so that the covariance

between XL∗ and ZL∗ is 0; that is, γ∗ = (E(XL∗ZL∗)−E(XL∗)E(ZL∗))/(E(X2
L∗)−

(E(XL∗))2). We may need to consider ZL∗ + MZ , MZ > 0 when ZL∗ cannot be

regarded as non-negative. Then, X ′
L∗ = β∗

XXL∗/µ∗
X and Z ′

L∗ = β∗
Z(ZL∗ +MZ)/µ∗

Z

are the standardised variables, where the parameters are defined the same way as

those for the Laguerre expansion. From the approximation f̂X′

L∗
Z′

L∗
of the joint

density function of (X ′
L∗ , Z ′

L∗), we obtain

f̂(x, y) = 4(x + MX)(y + MY )

× f̂X′

L∗Z′

L∗

(

β∗
X(x + MX)2

µ∗
X

,
β∗

Z(γ∗(x + MX)2 + (y + MY )2 + MZ)

µ∗
Z

)

× β∗
Xβ∗

Z

µ∗
Xµ∗

Z

.

This expansion requires E(XpY q), p = 0, . . . , 4n, q = 0, . . . , 2n.

Optimisation

We can make a parallel discussion to the univariate case in Section 3.1 as follows.

Consider the case where we observe i.i.d. samples (X(i), Y (i)), i = 1, . . . , N from

f , and f can be expanded as

f(x, y) = w(x)w(y)

∞
∑

k=0

∞
∑

l=0

CXY
kl gk(x)gl(y),

where CXY
kl = E(gk(X)gl(Y )). Let ĈXY

kl = N−1
∑N

i=1 gk(X
(i))gl(Y

(i)) then E(ĈXY
kl ) =

CXY
kl . We consider a class of estimator

f̂(x, y) = w(x)w(y)
n
∑

k=0

n
∑

l=0

αklĈ
XY
kl gk(x)gl(y)
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and optimise the coefficients αkl ≥ 0, k = 0, 1, . . . , n, l = 0, 1, . . . , n, so that the

weighted mean integrated square error (MISE)

E







∫

S

∫

S

{

f̂(u, v) − f(u, v)
}2

w(u)w(v)
dudv






(6.7)

is minimised. Thus Equation (6.7) is equal to

n
∑

k=0

n
∑

l=0

α2
klE
(

(ĈXY
kl )2

)

− 2
n
∑

k=0

n
∑

l=0

αkl(C
XY
kl )2 +

∞
∑

k=0

∞
∑

l=0

(CXY
kl )2. (6.8)

An unbiased estimator for Equation (6.8) is given by

n
∑

k=0

n
∑

l=0

α2
kl(Ĉ

XY
kl )2 − 2

n
∑

k=0

n
∑

l=0

αkl
N(ĈXY

kl )2 − (B̂XY
kl )2

N − 1

+
∞
∑

k=0

∞
∑

l=0

N(ĈXY
kl )2 − (B̂XY

kl )2

N − 1
, (6.9)

where (B̂XY
kl )2 = N−1

∑N
i=1

(

gk(X
(i))gl(Y

(i))
)2

. Again, α00 = 1 is required so that
∫

S

∫

S
f̂(u, v)dudv = 1 is satisfied. If the variables are standardised, we can set

αkl = 0 for k + l = 1, 2. For k + l ≥ 3, Equation (6.9) is minimised when

αkl =
N(ĈXY

kl )2 − (B̂XY
kl )2

(N − 1)(ĈXY
kl )2

, (6.10)

if N(ĈXY
kl )2 − (B̂XY

kl )2 > 0, and αkl = 0, otherwise.

6.1.3 Numerical examples

We show numerical examples using two data sets the same as in Chapter 5: one

consists of daily log-returns of the Nikkei 225 stock index and daily log-differences

of the European call option implied volatility (three month, at-the-money) on the

Nikkei 225 and the other consists of daily log-returns of the S&P 500 stock index

and daily log-differences of the European call option implied volatility (three

month, at-the-money) on the S&P 500. Summary statistics are given in Table

3.1.
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Figures 6.1 to 6.3 are numerical examples of bivariate expansions. Each ex-

ample approximates the joint density of the log-return of an index and the log-

difference of its implied volatility (IV).

We can see that the optimised Hermite expansion and the optimised Laguerre

expansion with squaring applied to the Nikkei 225 data set in Figures 6.1 and 6.2

agree with each other: they both capture a high concentration of the observations

around the origin with only a few observations around them. On the other hand,

the optimised Hermite expansion applied to the S&P 500 data set in Figure 6.3 is

clearly different from them: it captures a high concentration of the observations

along the line from rear-left to front-right, which also can be seen as a high

correlation coefficient in Table 3.1.
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Figure 6.1: Two dimensional standardised and optimised Hermite expansion ap-

plied to Nikkei 225 log-return and the IV log-difference (3 month, at-the-money

European call option). The observation period is from 25 Oct 2004 to 6 Nov

2006 (500 samples). The sums in Equation (6.4) are taken up to n = 8. The

observations are scattered on the plane z = −400. We can see that it captures

some characteristics of original observations, like skewness.
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Figure 6.2: Two dimensional standardised and optimised Laguerre expansion with

squaring applied to Nikkei 225 log-return and the IV log-difference (3 month, at-

the-money European call option). The observation period is from 25 Oct 2004 to

6 Nov 2006 (500 samples). The sums in Equation (6.4) are taken up to n = 8.

The observations are scattered on the plane z = −400.
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Figure 6.3: Two dimensional standardised and optimised Hermite expansion ap-

plied to S&P 500 log-return and the IV log-difference (3 month, at-the-money

European call option). The observation period is from 25 Oct 2004 to 18 Oct

2006 (500 samples). The sums in Equation (6.4) are taken up to n = 8. The

observations are scattered on the plane z = −400.
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6.2 Conditional expectations and expansion

We show that, using expansion methods, conditional expectations can be approx-

imated by rational functions.

6.2.1 Basic formula and related techniques

For q = 0, 1, . . ., consider E(gq(Y )|X = x), the expectation of gq(Y ) under the

condition X = x, defined as

E(gq(Y )|X = x) =

∫

S
gq(y)f(x, y)dy
∫

S
f(x, y)dy

.

By applying expansions to f , we have

E(gq(Y )|X = x) =

∫

S
gq(y)w(x)w(y)

∑∞

k,l=0 CXY
kl gk(x)gl(y)dy

w(x)
∑∞

k=0 CX
k gk(x)

=

∑∞

k=0 CXY
kq gk(x)

∑∞

k=0 CX
k gk(x)

, (6.11)

where CXY
kl = E(gk(X)gl(Y )) and CX

k = E(gk(X)). We can approximate the

conditional expectation by taking sums in Equation (6.11) up to some finite n.

The conditional moments such as E(Y q|X = x) can be obtained by solving a

system of linear equations in E(g0(Y )|X = x), . . . , E(gq(Y )|X = x).

Standardisation

Conceptually, Equation (6.11) gives an expression for the conditional expectation

as a rational function; however, we might consider the standardisation introduced

in Section 6.1 in order to improve the approximation quality, that is, we use

Equation (6.11) for the standardised variables and then obtain the conditional

moments of the original variables.

For the Hermite expansion, we apply Equation (6.11) to (X ′, Z ′) where X ′ =

(X − µX)/σX and Z ′ = (γX + Y − µZ)/σZ , and we obtain the rational approx-

imations of E(gi(Z
′)|X ′ = x′), i = 0, . . . , q. From these we derive E(Z ′i|X = x),
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i = 0, . . . , q, where x′ = (x − µx)/σX . Since E(Z ′i|X = x) is expanded as

E(Z ′i|X = x) =
1

σi
Z

i
∑

j=0

(

i

j

)

E(Y j|X = x)(x − µX)i−j ,

E(Y i|X = x), i = 0, . . . , q, can be calculated.

For the Laguerre expansion, the procedure is almost the same as that of the

Hermite expansion, except that the standardised variables are given by XL =

βXL
(X + MX)/µXL

and ZL = βZL
(γX + Y + MZ)/µZL

.

For the Laguerre expansion with squaring, however, a similar procedure only

provides E ((Y + MY )2i|X = x), i = 0, . . . , q, and the conditional moments of Y

cannot be obtained.

Optimisation

Consider again the case where we observe i.i.d. samples (X(1), Y (1)), . . . , (X(N), Y (N))

from f , and f can be expanded as

f(x, y) = w(x)w(y)

∞
∑

k=0

∞
∑

l=0

CXY
kl gk(x)gl(y).

Define hq(x) ≡
∫

S
gq(v)f(x, v)dv = w(x)

∑∞

k=0 CXY
kq gk(x), then E(gq(Y )|X =

x) = hq(x)/fX(x). By considering the estimator

ĥq(x) = w(x)

n
∑

k=0

αkqĈ
XY
kq ,

which minimises the weighted MISE

E







∫

S

{

ĥq(u) − hq(u)
}2

w(u)
du






, (6.12)

we find that exactly the same αkq as those in Section 6.1 are optimal.

Now f̂X , the estimator for the marginal distribution of X, can be optimised

as the univariate distribution.
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6.2.2 Numerical examples

Figures 6.4 and 6.5 are numerical examples using the same data sets as in Figures

6.1 to 6.3. Both plots show the expected value of IV log-difference conditioned on

stock index log-return (solid line) and ±conditional standard deviation (dotted

lines). Both are obtained by applying the standardised and optimised Hermite

expansion whose sums in Equation (6.11) are taken up to n = 8.

From Figure 6.4, we can see that the conditional standard deviation vanishes

at the tail parts. This is because the approximation for the variance in these

regions is negative and the standard deviation is imaginary. This suggests that

the expansion is not successful in these regions. In fact a close look at these parts

in Figure 6.6 reveals that the approximation for the probability density is slightly

negative.

On the other hand, the expansion applied to the S&P 500 data set in Figure

6.5 does not suffer from negative density. This is most likely to be due to the

fact that the conditional expectation of S&P 500 data set is closer to being linear

than that of Nikkei 225 data set, and therefore the standardisation by a linear

transformation more successfully reduces dependency between the variables. As

discussed in Section 6.1, this can result in a better approximation quality.
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Figure 6.4: Expected value of Nikkei 225 IV log-difference conditioned on Nikkei

225 log-return (solid line) and ±conditional standard deviation (dotted lines).

Both are obtained by applying the standardised and optimised Hermite expansion

whose sums in Equation (6.11) are taken up to n = 8. The data used are the

same as in Figures 6.1 and 6.2. Scattered dots represent observations. We can see

that the conditional standard deviation vanishes at the tail parts. This is because

the approximation for the variance in these regions is negative and the standard

deviation is imaginary. This suggests that the expansion is not successful in these

regions. In fact a close look at these parts reveals that the approximation for the

probability density is slightly negative. See Figure 6.6.
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Figure 6.5: Expected value of S&P 500 IV log-difference conditioned on S&P

500 log-return (solid line) and ±conditional standard deviation (dotted lines).

Both are obtained by applying the standardised and optimised Hermite expansion

whose sums in Equation (6.11) are taken up to n = 8. The data used are the

same as in Figure 6.3. Scattered dots represent the observations.
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Figure 6.6: A close look at the tail of the approximated density of Nikkei 225 log-

return and Nikkei 225 IV log-difference. See Figures 6.1 and 6.4. We see negative

density around (0.035,−0.05). The numerically obtained minimum value of the

density is −8.48, which is about 1.4% of the density maximum 595.67 in absolute

value.
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6.3 Copula functions and expansion

Here we show that, using expansion methods, copula densities can be approxi-

mated by rational functions.

6.3.1 Copula functions and densities

The two dimensional copula is a function C : [0, 1]2 7→ [0, 1] which satisfies

C(t, 0) = C(0, t) = 0, (6.13)

C(1, t) = C(t, 1) = t, (6.14)

for all 0 ≤ t ≤ 1 and

C(u1, v1) − C(u2, v1) − C(u1, v2) + C(u2, v2) ≥ 0, (6.15)

for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

Let F (x, y) be the joint distribution of X and Y and FX(x) and FY (y) be

their marginal distributions. Then, Sklar’s theorem4 yields that there is a unique

copula representation for F , given by

F (x, y) = C(FX(x), FY (y)). (6.16)

Assume that F is differentiable. Then, from Equation (6.16), the joint density

function is given by

f(x, y) = fX(x)fY (y)c(FX(x), FY (y)), (6.17)

where

c(u, v) =
∂2

∂u∂v
C(u, v)

is the copula density and fX and fY are the marginal densities of X and Y ,

respectively.

4For details about Sklar’s theorem and other properties of copulas, see for example Nelsen

(1999).
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6.3.2 Basic formula and related techniques

From Equations (6.3), (6.5) and (6.6), we have an expression for c in Equation

(6.17) as a rational function:

c(FX(x), FY (y)) =
f(x, y)

fX(x)fY (y)

=

∑

k,l C
XY
kl gk(x)gl(y)

∑

k,l C
X
k CY

l gk(x)gl(y)
. (6.18)

or

c(u, v) =

∑

k,l C
XY
kl gk(F

−1
X (u))gl(F

−1
Y (v))

∑

k,l C
X
k CY

l gk(F
−1
X (u))gl(F

−1
Y (v))

. (6.19)

Note that it is also possible to remove the marginal functions FX and FY from

Equation (6.19) by applying an expansion with support [0, 1] to the variables

(U, V ) = (FX(X), FY (Y )). However, the advantage of our method is that it only

requires moments and cross-moments of the original variables. See Freedman

(1981) for an expansion with closed support.

Standardisation and optimisation

From Equations (6.11) and (6.18), we find that the copula density can be ex-

pressed using the conditional expectation

c(FX(x), FY (y)) =

∑∞

l=0 E(gl(Y )|X = x)gl(y)
∑∞

l=0 CY
l gl(y)

. (6.20)

This suggests that standardisation and optimisation are available for the copula

density as long as they are available for the calculation of conditional expectation.

6.3.3 Numerical examples

Figures 6.7 and 6.8 are the examples using the same data sets as in previous

sections. Figure 6.9 is a copula density obtained by applying standardised and

optimised Hermite expansion to 500 random samples from the Clayton copula
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(θ = 2.882) with the Normal marginal distributions. The Clayton copula function

with parameter θ is defined by C(u, v) = (uθ + vθ − 1)
1

θ . By comparing Figure

6.9 with the theoretical shape of the Clayton copula density in Figure 6.10, we

can get some idea how close the copula by the expansion can be to the ‘true’

copula density. In fact, except for the tails where the observations are sparse, the

expansion produces a shape similar to that of the Clayton copula density.

From Figures 6.7 and 6.8, we can see that the dependence structures inherent

in the Nikkei 225 data set is different from that in the S&P 500 data set.

We can see from all of the Figures 6.7, 6.8 and 6.9, that the approximations

are erratic near the boundary. This is most likely to be because, as we can see

from Equations (6.19) and (6.20), our method uses rational functions, which can

be erratic at the extremes, for approximating the copula densities.
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Figure 6.7: Copula density obtained by applying standardised and optimised

Hermite expansion to Nikkei 225 log-return and Nikkei 225 IV log-difference.

The data used are the same as in Figures 6.1 and 6.2. Sums in Equation (6.20)

are taken up to n = 8.
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Figure 6.8: Copula density obtained by applying standardised and optimised

Hermite expansion to S&P 500 log-return and S&P 500 IV log-difference. The

data used are the same as in Figure 6.3. Standardised and optimised. Sums in

Equation (6.20) are taken up to n = 8.
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Figure 6.9: Copula density obtained by applying standardised and optimised

Hermite expansion to 500 random samples from the Clayton copula (θ = 2.882)

with the Normal marginal distributions. Sums in Equation (6.20) are taken up

to n = 8. By comparing this with theoretical value of the Clayton copula density

in Figure 6.10, we can get some idea of how close the copula approximated by the

expansion can be to the ‘true’ copula density. In fact, except for the tails where

the observations are sparse, the expansion produces a shape similar to that of the

Clayton copula density.
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Figure 6.10: The Clayton copula density (θ = 2.882). The Clayton copula func-

tion with parameter θ is given by C(u, v) = (uθ + vθ − 1)
1

θ . (See also Figure

6.9.)
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6.4 Extension to p−variate case

Let f(x1, . . . , xp) be the joint density function of (X1, . . . , Xp), p ≥ 3. Similarly

to Section 6.1, we have

f(x1, . . . , xp) = w(x1) · · ·w(xp)

×
∑

k1,...,kp

E(gk1
(X1) · · · gkp

(Xp))gk1
(x1) · · · gkp

(xp). (6.21)

Standardisation is done by a linear transformation of (X1, . . . , Xp) into (Z1, . . . , Zp)

so that the covariances between Zi and Zj (i 6= j) are 0. Such a linear transfor-

mation can be found, for example, by inverting the Cholesky decomposition of

the covariance matrix of the original variables. Note that Zi obtained in this way

is a linear combination of X1, . . . , Xi.

For the case where we have N i.i.d. samples, we can make a parallel discussion

on optimisation to that of the bivariate case.

Conditional expectations

Consider the expectation of gki+1
(Xi+1) · · · gkp

(Xp) under the condition X1 =

x1, . . . , Xi = xi. From Equation (6.21), we have

E(gki+1
(Xi+1) · · · gkp

(Xp)|X1 = x1, . . . , Xi = xi) =
∑

k1,...,ki
E(gk1

(X1) · · · gkp
(Xp))gk1

(x1) · · · gki
(xi)

∑

k1,...,ki
E(gk1

(X1) · · · gki
(Xi))gk1

(x1) · · · gki
(xi)

. (6.22)

Conditional moments such as E(X
ki+1

i+1 · · ·Xkp
p |X1, . . . , Xi) are obtained by solv-

ing a system of linear equations of E(gri+1
(Xi+1)) · · · grp

(Xp)|X1, . . . , Xi), ri+1 ∈
{0, . . . , ki+1}, . . . , rp ∈ {0, . . . , kp}.

Standardisation is done by applying Equation (6.22) to (Z1, . . . , Zp) and solv-

ing a system of linear equations, to obtain the conditional moments of (X1, . . . , Xp).

We can make a parallel discussion on optimisation to that of bivariate case.
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Copula density

Using Equation (6.21), a p-variate copula density function can be expressed as

c(F1(x1), . . . , Fp(xp))

=
f(x1, . . . , xp)

f1(x1) · · · fp(xp)

=

∑

k1,...,kp
E(gk1

(X1) · · · gkp
(Xp))gk1

(x1) · · · gkp
(xp)

∑

k1,...,kp
E(gk1

(X1)) · · ·E(gkp
(Xp))gk1

(x1) · · · gkp
(xp)

, (6.23)

where Fi is the marginal distribution function of Xi and fi is its density function.

From Equations (6.22) and (6.23), we have

c(F1(x1), . . . , Fp(xp)) =
∑

k2
E(gk2

(X2)|X1 = x1)gk2
(x2)

∑

k2
E(gk2

(X2))gk2
(x2)

× · · ·

×
∑

kp
E(gkp

(Xp)|X1 = x1, . . . , Xp−1 = xp−1)gkp
(xp)

∑

kp
E(gkp

(Xp))gkp
(xp)

,

and we can apply standardisation and optimisation to this whenever they are

available for the conditional moments.

6.5 Summary of this Chapter

We showed that simple extensions of univariate expansion methods are applica-

ble to joint density functions, and demonstrated using bivariate case. It is also

notable that, using our multivariate expansions, the conditional moments and the

copula densities can be approximated by rational functions.

Related techniques such as standardisation, use of the Laguerre expansions

and optimisation can make the approximation quality sufficient for many purposes

such as visualising the non-linear dependence structure, approximating the con-

ditional mean, and approximating the copula density; however, even with these

techniques, the expansions showed negative density. Dealing with this problem

can be our future work.
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Chapter 7

Conclusion

In this thesis, we firstly posed three problems related to market risk measurement:

description, time aggregation and risk aggregation problems. We reviewed that

existing methods including those using the Normal distribution and HS methods,

can provide solutions to one or two of these problems; however, they have difficulty

in solving at least one of these problems.

Here, we focused on the potential ability of expansion methods to solve all

three problems. Expansion methods can approximate a target distribution using

its moments only, and therefore have a potential to be applied to a wide range of

situations, although they can lack robustness.

Then we proposed three techniques, combinations of which can provide ro-

bustness for the conventional use of expansion methods: standardisation, use of

Laguerre expansions and optimisation. It is notable that use of Laguerre expan-

sions and optimisation have not been introduced in the literature to the best of

our knowledge.

Using expansion methods together with these techniques, the three problems

were dealt with as follows.

The description problem — how we describe the distributions and dependence

structure of risk factors — was shown solved: the marginal distributions of risk
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factors can be described in terms of their moments (Chapter 3), and the depen-

dence structure among them can be described in terms of their cross-moments

(Chapters 5 and 6).

In Chapter 4, it was shown that, given autocross-moments, expansion methods

can be applied to the time aggregation problem: how we deal with risk factors

with a long time horizon. Since the HS methods do not have a reasonable solution

to this problem, we discussed the idea that approximations by expansion methods

can be used as proxies.

In Chapter 5, we showed that expansion methods can provide a reasonable

solution to the risk aggregation problem: how we derive the PL distribution

given a description of the risk factors. Here, expansion methods do not assume a

certain class of models for the risk factors or the portfolio. They only require two

conditions: that the moments and cross-moments of risk factors are available,

and that the function d, which links risk factors to the PL, can be approximated

by its Taylor expansion.

Numerical examples using observations on real markets and GARCH mod-

els showed that the solutions to these problems by expansion methods can be

fairly reasonable. They provided good approximations for empirical distribu-

tions, where empirical distributions were available. We might deduce from this

that the approximation quality of expansion methods can also be good for the

cases where empirical or ‘true’ distributions are not available, such as applications

to the time aggregation or GARCH models.

Based on the findings in these Chapters, we might conclude that expansion

methods provide reasonable solutions to all three problems. As discussed in

Section 2.2.2, HS methods can also provide reasonable solutions to description and

risk aggregation problems, when a sufficient number of observations is available.

However, the expansion methods can offer solutions even to the cases where

HS methods cannot be applied, such as the time aggregation and cases with
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parametric models including the GARCH models.

In Chapter 6, we proposed methods to deal with joint distributions using ex-

pansion methods. These new methods have a potential for further applications.

In fact, applications to approximating conditional expectations and copula densi-

ties have not been introduced in the literature as far as we can determine. Numer-

ical examples for two dimensional distributions showed that expansion methods

can successfully produce a visual representation of the dependence structure be-

tween two random variables from their moments and cross-moments. At the same

time, one example showed visually recognisable negative density, even with our

techniques to provide robustness. This may be suggesting that another technique

to provide further robustness can be useful for multivariate cases. This can be

our future work.

Also, our future work may involve comparison of expansion methods with

other competing methods. For instance, kernel methods can do many of the

things that expansion methods can, as long as a sufficient number of observa-

tions are available. However, unlike for our expansion methods, it may not be

straightforward to apply kernel methods to the cases where variables are given

as models, rather than as a set of observations. Besides kernel methods, it can

be of interest to compare our methods with expansion methods which use other

orthogonal systems, such as wavelets1. We notice that, however, our expansion

methods only require the moments and cross-moments of the target distributions

and that this may not be the case with other expansion methods in general. We

expect that this point is an advantage for our methods over expansion methods

based on other orthogonal systems.

Since our expansion methods do not require intensive computations — once

the moments of the target distribution are obtained, the approximation only

requires evaluation of polynomials and of an associated weight function — and

1See (Hall & Neumeyer 2006), for instance.
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the logic behind the methods can be easily understood, we might expect that

they can be adapted to further use in industry and the academy.
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Appendix A

Appendix

A.1 Schmidt’s process

Here, we review the Schmidt’s process, which can be used for obtaining an or-

thonormal polynomial basis {gk} for a given weight function w with support S,

which satisfies
∫

S

w(u)du = 1

and w(x) ≥ 0 for x ∈ S. Jackson (1963) explains a more general method where

the basis is not limited to polynomials.

Firstly,

g0(x) ≡ 1

is given by a similar discussion to those in Section 2.2.3.

For k = 1, let

G1(x) = x − c1,0g0(x),

where

c1,0 =

∫

S

w(u)ug0(u)du,

and

e1 =

∫

S

w(u){G1(u)}2du,
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then g1 is given by

g1(x) =
G1(x)√

e1
.

For k = 2, 3, . . ., similarly define

Gk(x) = xk −
k−1
∑

i=0

ck,igi(x),

where

ck,i =

∫

S

w(u)ukgi(u)du,

and

ek =

∫

S

w(u){Gk(u)}2du,

then gk is given by

gk(x) =
Gk(x)√

ek
.

We find from this procedure, that w needs to have moments up to the 2nth

order to allow construction of the orthonormal polynomials up to nth order.

A.2 Tractable formula for MISE

We derive Equation (3.2) in Section 3.1. We have
{

f̂(u) − f(u)
}2

w(u)
= w(u)

{

n
∑

k=0

αkĈkgk(u) −
∞
∑

k=0

Ckgk(u)

}2

= w(u)

{

n
∑

k=0

n
∑

l=0

αkαlĈkĈlgk(x)gl(x)

−2
n
∑

k=0

∞
∑

l=0

αkĈkClgk(u)gl(u)

+
∞
∑

k=0

∞
∑

l=0

CkClgk(u)gl(u)

}

.

By orthonormality, we have

∫

S

{

f̂(u) − f(u)
}2

w(u)
du =

n
∑

k=0

α2
kĈ

2
k − 2

n
∑

k=0

αkĈkCk +
∞
∑

k=0

C2
k .
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By taking expectation of both sides, we have Equation (3.2). Since

E

(

NĈ2
k − B̂2

k

N − 1

)

= C2
k ,

Equation (3.3) is an unbiased estimator for Equation (3.2).

A.3 Definitions of terms associated with stochas-

tic processes

Here we give some definitions of terms associated with stochastic processes, which

can help with understanding the definition of GARCH models in Section 3.2.2.

These ideas are given rather axiomatically, and therefore may not have a clear

relationship with intuitive interpretation.

Standard references for discrete time stochastic processes include Williams

(1991).

A set called the sample space is denoted by Ω. Each element ω ∈ Ω might

be intuitively interpreted as being a realisation of one possible occurrence, or a

possible sample path, and Ω as being the set of all possible occurrences.

A σ−algebra F on Ω is defined as a family of subsets of Ω which satisfies the

following.

• Ω ∈ F .

• A ∈ F ⇒ AC ∈ F , where A ∪ AC = Ω and A ∩ AC = ∅.

• A1 ∈ F , A2 ∈ F , . . . ⇒ ⋃∞

i=1 Ai ∈ F .

A probability measure P on F can be defined as a map P : F 7→ [0, 1] which

satisfies the following.

• A ∈ F ⇒ 0 ≤ P (A) ≤ 1.
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• P (Ω) = 1.

• Ai ∩ Aj = ∅, i 6= j ⇒ P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai).

A combination of these three, (Ω,F , P ) is called the probability space. For

a given probability space (Ω,F , P ), a filtration is an increasing sequence of

σ−algebra which satisfies {∅, Ω} ⊆ F(0) ⊆ F(1) ⊆ · · · ⊆ F(∞) ⊆ F . Intu-

itively, it can be interpreted as a sequence of sets of information available at

corresponding times.

An F−measurable random variable X is defined as a map X : Ω 7→ R which

satisfies {ω : X(ω) ≤ x} ∈ F for all x ∈ R. A stochastic process {X(ω)(t) : ω ∈
Ω, t = 1, 2, . . .} is a sequence of random variables, and it is adapted to a filtration

{F(t)} if X(t) is F(t)−measurable for all t = 1, 2, . . ..

Now let X be an F−measurable random variable satisfying E(|X|) < ∞ and

G ⊆ F be a σ−algebra. The conditional expectation of X given G is defined as

a G−measurable random variable Y which satisfies E(|Y |) < ∞ and
∫

g

Y dP =

∫

g

XdP, (A.1)

for all g ∈ G, and is denoted as E(X|G) = Y . It is known that such a ran-

dom variable Y is unique, in an ‘almost sure’ sense. That is, let Ỹ be another

G−measurable random variable satisfying E(|Ỹ |) < ∞ and Equation (A.1), then

P (Ỹ = Y ) = 1 is satisfied1.

A.4 Incomplete gamma function and approxi-

mations

Here we show that

Iα =

∫ xα

−∞

uf(u)du, (A.2)

1For proof, see, for example, Chapter 9 of Williams (1991).
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where xα is the α−quantile of a random variable X and f is its pdf, can be

approximated in term of incomplete gamma functions, when f is approximated

by the Laguerre expansion with squaring. That is, f is approximated by

f̂X(x) =
2β

µ
(x + M)f̂L∗

(

β

µ
(x + M)2

)

,

where

f̂L∗(z) =
zβ−1e−z

Γ(β)

n
∑

k=0

CkL
(β−1)
k (z),

µ = E((X + M)2), β = µ2/(E((X + M)4) − µ2 and M is some constant. Now,

xf̂X(x) =
2β

µ
(x + M)2f̂L∗

(

β

µ
(x + M)2

)

− M
2β

µ
(x + M)f̂L∗

(

β

µ
(x + M)2

)

,

and therefore Iα in Equation (A.2) can be approximated by

Îα =

∫ xα

−M

uf̂(u)du

=

√

µ

β

∫ zα

0

z
1

2 f̂L∗(z)dz − M

∫ zα

0

f̂L∗(z)dz

=

√

µ

β

∫ zα

0

z
1

2 f̂L∗(z)dz − Mα, (A.3)

where zα is the α−quantile of β(X + M)2/µ given by zα = β(xα + M)2/µ. Since

z
1

2 f̂L∗(z) =
1

Γ(β)

n
∑

k=0

k
∑

i=0

Ckl
(β−1)
k,i zβ+i+ 1

2
−1e−z,

where l
(β−1)
k,i are constants determined by the Laguerre polynomials

L
(β−1)
k (z) =

k
∑

i=0

l
(β−1)
k,i zi,

Equation (A.2) can be expressed by

Îα =

√

µ

β

1

Γ(β)

n
∑

k=0

k
∑

i=0

Ckl
(β−1)
k,i Γ

(

β + i +
1

2
, zα

)

− Mα,

where incomplete gamma functions for a ≥ 0 and b ≥ 0 are defined by

Γ(a, b) =

∫ b

0

ua−1e−udu.

147



A.5 Effect of shift parameter on Laguerre ex-

pansion with squaring

Here we investigate the effect of the shift parameter M on the Laguerre expansion

with squaring. Figure A.1 shows the RMSE defined by Equation (3.5) as a

measure of difference plotted against the shift parameter M introduced in Section

3.1.

From these plots, we can see that each curve has some oscillation near the

origin and then converges to a value as M increases.

We might use the M which minimises the RMSE found within the oscilla-

tion near the origin for our Laguerre expansion with squaring. However, such

optimisation may have the following problems. Firstly, such optimisation is only

possible when an empirical distribution is available, while we also deal with the

cases where empirical distributions are not available. Secondly, the optimisa-

tion has to be done numerically and therefore may be unfavourable in terms of

computational load.

Instead, we find that the RMSE is almost constant for a large M , and its level

is not largely different from the minimum. Therefore, it can be considered to be

more practically convenient to use some large enough value which is within the

range that the RMSE is almost constant for M in expansions than to search for

an optimal M . In fact, we use five times the standard deviation as the value of

M in our numerical examples, such as in Section 3.2.1, which show such choice

of M can provide approximation quality comparable with or better than Hermite

expansions and optimised Hermite expansions.
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Figure A.1: RMSE defined by Equation (3.5) for Laguerre expansions with squar-

ing, plotted against the shift parameter M (see Section 3.1) applied to the dis-

tributions of four risk factors (see Section 3.2.1): n = 8 in Equation (2.2).

A.6 Applications to a non-central t distribution

In Sections 3.2.2 and 4.2.2, we dealt with distributions for which higher order

moments do not exist. In these examples, our approach was to include existing

moments only into the expansions.

Here, we consider Monte Carlo experiments based on a different approach.

Assume that a random variable X does not have moments of order higher than

n0. If the distribution function is known, we can generate a finite set of pseudo-

independent random samples {X(i)}, i = 1, . . . , N from X. Then, the sample

moments N−1
∑N

i=1(X
(i))k exist even for k > n0. Therefore, we can apply expan-

sion methods to this empirical distribution. Such empirical moments converge to

some finite value for k ≤ n0 as N → ∞, however, they do not for k > n0.

A non-central t distribution is one distribution for which moments of some

high order do not exist. When Y has the Normal distribution with mean δ and

variance 1 and V has the χ2 distribution with degrees of freedom p, and Y and

V are independent, the ratio of two random variables X = Y/
√

V/p is defined
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to have a non-central t distribution with degrees of freedom p and non-centrality

parameter δ. It is known that moments exist only up to order p − 12.

Table A.1 shows summary statistics of the non-central t distribution with

p = 4 and δ = 1, for which moments only up to third order exist. Columns (a)

and (b) show sample statistics of two sets of 500 pseudo random samples3. We

can see that the sample kurtosis values of the two sets, for which the theoretical

value does not exist, are very different from each other. It is notable that the

sample skewness values, for which the theoretical value does exist, are also quite

different from each other.

As such, we can see that the estimates of the moments can depend heavily

on which sample set we use. In fact, by comparing expansions applied to sample

set (a) in Figure A.2 with those applied to sample set (b) in Figure A.3, we can

see that the approximation quality can be very different according to the choice

of the sample set. Figure A.2 shows that, except for the Hermite expansion,

the approximations by expansions are successful. However, in Figure A.3, all

the expansions perform poorly, even with the techniques introduced in Section

3.1. Note that increasing the number of observations N may not improve the

situation, since the sample moments of order higher than three do not converge

as N → ∞, as discussed above.

Analytically, a sufficient condition for convergence of a Laguerre expansion

is given as
∫∞

0
f(u)u−(β−1)/2eu/2du < ∞ (Freedman 1981). However, it can be

easily shown, using the fact that non-central t distributions do not have a moment

generating function, that non-central distributions do not satisfy this condition.

Hence, expansions may not be valid.

We might conclude that expansions which use pseudo-sample moments when

the theoretical moments do not exist are not very reliable. They may work fairly

2See standard text books in statistics including Minotani (1998).
3Here we use the Matlab command “nctrnd” to generate the pseudo-random samples.
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well as in Figure A.2; however, whether it works or not largely depends on the

choice of the sample set.

theoretical (a) (b)

Number of observations — 500 500

Mean 1.253 1.247 1.184

Std. dev. 1.559 1.460 1.684

Skewness 2.364 1.083 2.361

Kurtosis — 6.273 10.468

Min — −4.040 −2.761

Max — 9.000 12.838

Table A.1: Summary statistics of a non-central t distribution (with degrees of

freedom 4 and non-centrality parameter 1) and of two sets (a) and (b) of 500

pseudo random samples.
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Figure A.2: Three expansions and the Normal approximation applied to sample

set (a): n = 8 in Equation (2.2). See Table A.1 for sample set (a). The empirical

distribution and theoretical value of the distribution function are also shown.

Upper plots show the right tails and lower plots show the left tails.
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Figure A.3: Three expansions and the Normal approximation applied to sample

set (b): n = 8 in Equation (2.2). See Table A.1 for sample set (b). The empirical

distribution and theoretical value of the distribution function are also shown.

Upper plots show the overall shape of the approximations and lower plots magnify

the right tails.
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