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Abstract

This thesis addresses the pose stabilization of a car-like vehicle using omnidirectional

visual feedback. The presented method allows a vehicle to servo to a pre-learnt target

pose based on feature bearing angle and range discrepancies between the vehicle’s current

view of the environment and that seen at the learnt location. The best example of such a

task is the use of visual feedback for autonomous parallel-parking of an automobile.

Much of the existing work in pose stabilization is highly theoretical in nature with few

examples of implementations on ‘real’ vehicles, let alone vehicles representative of those

found in industry. The work in this thesis develops a suitable test platform and implements

vision-based pose stabilization techniques. Many of the existing techniques were found

to fail due to vehicle steering and velocity loop dynamics, and more significantly, with

steering input saturation. A technique which does cope with the characteristics of ‘real’

vehicles is to divide the task into predefined stages, essentially dividing the state space

into sub-manifolds. For a car-like vehicle, the strategy used is to stabilize the vehicle to

the line which has the correct orientation and contains the target location. Once on the

line, the vehicle then servos to the desired pose. This strategy can accommodate velocity

and steering loop dynamics, and input saturation. It can also allow the use of linear control

techniques for system analysis and tuning of control gains.

To perform pose stabilization, good estimates of vehicle pose are required. A simple,

yet robust, method derived from the visual homing literature is to sum the range vectors

to all the landmarks in the workspace and divide by the total number of landmarks — the

Improved Average Landmark Vector. By subtracting the IALV at the target location from

the currently calculated IALV, an estimate of vehicle pose is obtained. In this work, views

of the world are provided by an omnidirectional camera, while a magnetic compass pro-

vides a reference direction. The landmarks used are red road cones which are segmented

from the omnidirectional colour images using a pre-learnt, two-dimensional lookup table

of their colour profile. Range to each landmark is estimated using a model of the optics of

the system, based on a flat-Earth assumption. A linked-list based method is used to filter

v



the landmarks over time. Complementary filtering techniques, which combine the vision

data with vehicle odometry, are used to improve the quality of the measurements.
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⎧⎪⎨
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⎧⎪⎨
⎪⎩
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Chapter 1

Introduction

1.1 Motivation for research

Autonomous mobile machines have potential applications in a diverse range of industries

including mining, cargo handling, forestry, and construction. Such machines have the

potential to improve productivity and yield, and to reduce safety incidents. For example,

the operators of heavy mobile machinery are exposed to whole-body vibration often with

sustained and awkward postures which puts them at significant risk to the development

of musculo-skeletal disorders [Wilder and Pope, 1996; Zimmerman et al., 1997; Donati,

2002]. The automation of such equipment provides a means of eliminating this exposure,

with on-board machinery operators becoming remote machinery managers.

A further example is provided by the operation of machinery in environments which

are either inhospitable or too dangerous for humans. The obvious benefit is the removal

of operators from potentially dangerous work environments. An additional benefit is the

potential to more fully exploit these operations with the accompanying increases in yield

and productivity. Furthermore, autonomous mobile robots could open the door to the

exploration of hostile environments — including those on other planets. The significant

communication delays due to the massive distances between Earth and other interesting

objects in the Universe restrict the usefulness of remotely-controlled vehicles. Already we

have seen Mars through the eyes of the Mars rover; to extend the range of such missions

requires significant improvements in mobile robotic technology.

1
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1.2 Limitations of present mobile robots

Mobile robotics is a technically challenging field of research as it requires the integration

of many spheres of knowledge. Progress over the last three decades has been steady but

by no means astounding given the early expectations of the public and researchers alike.

Before we can expect the likes of R2D2 of Star Wars fame to be an ubiquitous part of our

lives, a leap of understanding in autonomous navigation and the related fields of Artificial

Intelligence and cognition is required.

A significant factor hindering the development of mobile robot technology is a per-

ceived need for complete metric models of the robot’s workspace and for continuous

estimates of the robot’s position in the environment. This is a result of the classical ap-

proach to navigation which defines the problem in terms of [Levitt and Lawnton, 1990;

McKerrow, 1991; Leonard and Durrant-Whyte, 1991]:

1. Where am I?

2. Where is everything else?

3. How do I get to other places?

This definition of navigation leads to a sense-model-plan-act architecture in which the

robot’s sensors are used to update, and build, a single global representation of the robot’s

‘world’, from which, in combination with a mission specification, motor commands are

derived — see Figure 1.1 for an illustration of this concept.

Building and maintaining complex metric representations of the robot’s world is a

difficult process which does not scale well to large environments. The computational

overheads of sequentially abstracting sensor data in order to update the world model leads

to a bandwidth limitation which, at times, leaves the mobile robot effectively ‘blind’ to

the real world [Nehmzow, 2000; Thrun, 1998b].

Despite the near equivalence of presently available processing power to that available

to a small insect, the best of our mobile robots are no match for an insect’s system in terms
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MODEL / INTERNAL REPRESENTATION

bandwidth

abstraction

Figure 1.1: A typical hierarchical architecture used by classical navigation systems. Sen-
sor data is passed up through the system, updating world models and the position estimate
of the robot. In combination with a mission specification, the world model is then used
by the path planning module, which compares estimated position to desired position. A
series of tasks is then specified and the task execution module sends information to the
motor control module which in turn sends commands to the robot’s actuators (diagram
adapted from [Corke, 1994] and [Nehmzow, 2000]).

of reliability, flexibility and performance [Srinivasan et al., 1999]. Early attempts at mim-

icking insect behaviours resulted in the fields of behaviour-based or reactive robotics in

which a tight coupling between sensing and action [Brooks, 1986; 1990; Arkin, 1995;

1989a] is used to bypass the computationally intense modelling stage in the classical ap-

proach. An example reactive architecture is shown in Figure 1.2. Instead of using a single

global representation of the world, reactive systems refer directly to the environment for

information; in the words of Brooks [Brooks and Flynn, 1989] ‘The world really is a

rather good model of itself’.

Although purely behaviour-based robots were very successful, eliciting purposive

tasks from such robots was difficult. It soon became clear that in order to move forward,

the classical and behaviour-based approaches had to be united [Arkin, 1989b; Gat, 1998;

Jarvis, 1997]. Figure 1.3 shows an example of a hybrid system illustrating that integrating

reactivity and deliberation can reduce the level of ‘abstractness’ required of a system. To-
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Figure 1.2: A typical architecture for a behaviour-based system. In a behaviour-based
system there is a tighter coupling between sensors and actuators. Sensor information is
processed in parallel by a selection of different controllers or ‘behaviours’. Commands
from these behaviours are then fused, through a weighted summation and/or switching
strategies, and sent to the actuators. Note the difference in structure to that of a classical
deliberative system, depicted in Figure 1.1.

day, nearly every autonomous mobile robot navigation system has a reactive component

at some level.

A growing body of research has extended the insect and animal inspired naviga-

tion approaches to beyond the level of taxis1 and obstacle avoidance. An example of

a biologically-inspired development is visual homing in which discrepancies between tar-

get and current views of the workspace drive the agent toward the target location, without

resorting to complex metric representations. Visual homing has a finite ‘catchment area’

limited by the range of view of the sensor used — it is a ‘local’ navigation technique.

However, visual homing can be used as a tool for larger scale navigation through the use

of topological maps. A topological map is a network of nodes and links, in which the

nodes represent distinctive locales and the links represent the interconnections between

distinctive locales; see Figure 1.4 for an example. Such maps provide a means of reducing

1In biology, taxis is the reaction of a free organism to an external stimulus by movement in a particular
direction.
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Figure 1.3: An example of a hybrid architecture. World modelling is used to influence
the behaviour of the reactive control system, whether it be through selecting particular
behaviours or by providing ‘hints’ or advice to the reactive level.

the computational overheads of navigation, while still providing adequate representational

knowledge to facilitate purposive navigation.

However, as with many classical approaches, many of the biologically-inspired navi-

gation methods have been implemented on mobile robots which are not representative of

existing vehicles in the civil and industrial domains. ‘Real world’ vehicles such as cars,

trucks, and the articulated vehicles found in the civil and mining industries have signifi-

cant constraints on the ways in which they can move compared to traditional laboratory

mobile robots. In fact, from a control-theory point of view, the control of these ‘real

world’ vehicles is a very challenging non-linear control problem.

A particularly difficult problem is that of pose stabilization, i.e. moving from an initial

position and orientation in the workspace to a desired position and orientation. Parallel

parking of a car is a perfect example of this problem. This problem can be attacked by

either an open-loop, sense-model-plan-act strategy or by a closed-loop, reactive strategy.

The open-loop strategies are again computationally intense and sensitive to disturbances

in the sensed environment and the model of the robot. In contrast, the feedback strategies

provide robustness against uncertainties in the sensed environment and the mobile robot
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Figure 1.4: An example topological map. The nodes represent distinctive places, which
are defined by salient features in the environment. Each node, or distinctive place, is
connected to other nodes by the links which contain information linking the two nodes
(e.g. wall-following).

itself. However, in the control of these vehicles, it is usually assumed that the full robot

state is available from proprioceptive and exteroceptive sensors [Conticelli et al., 1999],

that is, reconstructed from models of the environment and the vehicle’s motion. This

state estimate can be corrupted by wheel-slip, errors in the vehicle model and noise. An

alternative is to close the feedback loop at the sensor level, a candidate sensor being

computer vision.

Vision is one of the most widespread and powerful sensors used in nature, where

it serves for both high-level cognition and low-level motor control. Biological vision

systems have a wide field of view and the ability to focus attention on ‘interesting’ objects

in the environment. When combined with the neural and visual ‘short-cuts’ evolved over

millions of years, biological vision systems are astonishingly effective.

From the earliest days of robotics, vision has also been a prominent sensor. How-

ever, vision has traditionally been used in a sense-model-plan-act manner, reconstructing

a scene into a metric model from which navigation proceeds. Because of the huge amount

of data provided by vision, this re-constructional approach places a huge demand on com-
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putational resources. Thus, vision has largely been restricted to the open-loop control dic-

tated by the hierarchical, sense-model-plan-act structure of many existing navigation sys-

tems. Similar paradigms were encountered with robot manipulators. In manipulators, the

development of visual servoing techniques, in which vision is used as a feedback sensor

[Corke, 1996; 1994], has proved to be a powerful technique for avoiding the sense-model-

plan-act process. The work in this thesis uses similar processes for the local control of a

car-like vehicle.

The advent of the omnidirectional camera has provided a means of mimicking the

wide field of view found in many biological systems, and thus would seem to be an

excellent sensor for the control of a mobile robot. In fact, omnidirectional cameras have

been used for some time, usually in the context of visual homing. Again, these robots

have generally had much simpler kinematics than those of a car-like vehicle.

1.3 Research questions and methodology

This thesis proposes and demonstrates the use of omnidirectional vision as the primary

sensor for the closed-loop control of a car-like vehicle. It investigates insect-inspired vi-

sual strategies and the seemingly disparate field of nonholonomic pose control strategies.

The primary contribution of this thesis is the integration of these two strategies allowing

the pose stabilization of a car-like vehicle using omnidirectional visual feedback.

The central topic addressed in this thesis is:

Can omnidirectional visual feedback be used as the primary sensor for the

pose stabilization of a nonholonomic, car-like vehicle?

This central topic gives rise to the following questions, which are addressed in this thesis:

1. What are the relative strengths and weaknesses of the visual homing techniques and

how can they be adapted for a car-like vehicle?

2. Can current vision techniques (feature extraction, blob tracking, feature correspon-

dence, optic flow etc.) be adapted and developed for an omnidirectional camera?
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3. Can the vehicle’s motion model be used to assist omnidirectional camera feature

tracking?

4. Can the vehicle be stabilized to a position with no constraint on its final orientation,

in the spirit of the visual homing literature?

5. Which of the pose stabilization techniques can accommodate ‘real world’ vehicle

kinematics, constraints, dynamics, and sensor limitations?

These questions give rise to an additional thesis objective:

To develop a test platform representative of industrial vehicles2, enabling test-

ing of navigation and control methods for this and future land navigation re-

search.

1.3.1 Scope of work

The scope of the problem addressed is limited to:

• No metric map — the robot finds the target location based upon discrepancies be-

tween a pre-stored view of the target location and the current view.

• The primary sensor used is an omnidirectional camera.

• The workspace is to be similar to an industrial or building site comprising of a

ground-plane and approximately planar vertical surfaces.

1.4 The test-bed

The test-bed is a Toro ride-on mower, which has been fitted with the relevant actuators,

microprocessors, sensors and computer hardware allowing for the testing of autonomous

navigation techniques. The design and construction of this vehicle formed a large pro-

portion of the initial stages of this research and as such, the vehicle is comprehensively

described in Chapter 3.
2In this context, ‘representative’ means having similar motion constraints and significant dynamics in

the steering and speed control loops.
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1.5 Contributions

The contributions of this research include:

• Design and construction of an automated a ride-on mower which serves as an exper-

imental platform representative of many existing industrial vehicles. This vehicle

will also serve as a testbed for much future land navigation research at the CSIRO.

• Identification and characterization of the dynamic response of the vehicle’s steering

and velocity loops. Subsequently developed an accurate model of the vehicle using

the bicycle model for the kinematics, and the experimentally determined models

of the vehicle’s response to control demands. The model also includes non-linear

effects such as input saturation and rate-limiting.

• Simulated several different landmark-based homing strategies illustrating their strong

dependence on landmark configuration. Developed a simple homing technique

based upon a visual servoing framework.

• Extended the landmark-based ALV homing strategy to include range information,

eliminating the landmark configuration dependence. Illustrated and characterized

the sensitivity of the method to sensing errors.

• Developed a robust vision system to track a set of coloured landmarks in a workspace,

using an omnidirectional camera.

– Applied colour-based object segmentation techniques based upon a pre-taught

two-dimensional colour profile of the target object colour.

– Presented and validated a model for range estimation based on the optics of

a catodioptric omnidirectional camera with an equiangular mirror, and using

the ‘flat-Earth’ assumption.

– Developed robust landmark tracking techniques based upon the vehicle kine-

matics and vehicle-object motion models.
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– Applied complementary filtering methods which combined data from the dis-

parate sensors, improving the quality of the measurements.

• Developed a position control technique which allows a vehicle to servo precisely to

a pre-learnt position based on the discrepancies between the vehicle’s current view

of the world and that at the pre-learnt location.

• Simulated and developed several pose control techniques for a car-like vehicle illus-

trating the negative effects that ‘real world’ characteristics such as saturated inputs

have on many existing methods.

• Developed, simulated and experimentally tested switching control laws for the pose

stabilization of a car-like vehicle. These laws are robust to significant velocity and

steering loop dynamics, and input saturation.

• Demonstrated vision-based, state feedback position and pose stabilization of a car-

like vehicle.

The research in this thesis is distinguished from other similar work in the following

ways:

• The experimental vehicle is significantly larger than most other vehicles in the non-

holonomic pose stabilization literature. Because of its larger size, the vehicle re-

quires more space to execute the required motions.

• This work explicitly considers the dynamics of the vehicle’s steering and velocity

loops, and other factors such as input saturation. In general, larger vehicles are less

responsive than smaller ones, and the slower dynamics have a significant influence

on the success of pose stabilization methods.

• The larger vehicle motions place further demands on the vision system which is

used to track landmarks and servo to the pre-learnt pose. Furthermore, this work

demonstrates vision-based pose stabilization in an outdoor environment.
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• This work is the first, to the author’s knowledge, to use omnidirectional vision

for the pose stabilization problem. The vision-based pose stabilization literature

normally uses monocular cameras for which the additional constraint of keeping

landmarks in the camera field of view must also be accommodated in the control

design. In addition, most of this literature considers unicycles rather than car-like

vehicles.

1.6 Structure of the thesis

The thesis aims to unite and develop results from control theory, mobile robotics (both

the traditional and biologically-inspired literature) and computer vision. The work is

structured as follows:

• Chapter 2 begins with a comprehensive introduction to mobile robotics, giving a

sense of the history of the field and the major obstacles to be overcome. Naviga-

tion of mobile robots in general is then addressed from which vision-based pose

stabilization is identified as an interesting, and potentially useful, area of research.

This is followed by a comprehensive review of the pose stabilization literature for

nonholonomic systems. In particular, the vision-based pose stabilization literature

is addressed, alongside the biologically-inspired approach to a similar problem —

visual homing.

• Chapter 3 presents the development of the test platform for the research. This in-

cludes descriptions of the vehicle’s control system and the software used to interact

with the vehicle. Also included is the identification and development of realistic

models which accurately describe the system. These models have been extensively

used in the thesis, expediting the selection, development and testing of vehicle con-

trol algorithms

• Chapter 4 presents the sensing strategy used for the vehicle control. In this chap-

ter, several landmark-based homing strategies are presented and compared, along
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with a planar image-based visual servoing technique. These strategies are then

demonstrated to have a significant dependence on landmark configuration — the

introduction of landmark range is demonstrated to eliminate this dependence. A

correspondence-free, landmark configuration independent homing method is then

developed, and a method of using this technique for pose estimation described. The

sensors and sensor processing used to implement the strategy, using vision and a

magnetic compass, are then presented. Methods of isolating landmarks in a colour

omnidirectional image are then described, and techniques for estimating landmark

range are presented. In considering the sensing, complementary filtering techniques

are developed which improve the quality of the desired measurements by combin-

ing vision and magnetometer data with vehicle odometry. Finally, errors associated

with the sensing and sensing strategy are identified and characterized.

• Chapter 5 presents the main contribution of the thesis in which control algorithms

for position and pose stabilization are presented. The position controller relies on a

discrete event supervisor to switch between a set of two control laws, bringing the

vehicle to the origin with no constraint on its final orientation — this corresponds

to the visual homing problem addressed in the biologically-inspired mobile robot

literature. The problem of pose stabilization is then addressed. First, many existing

algorithms are demonstrated to fail with the inclusion of characteristics found on

real vehicles, such as dynamics and non-linearities. A controller which can cope

with these effects is then developed. Like the position controller developed earlier

in the chapter, the pose controller also relies on a discrete event supervisor, this time

switching between a set of three control laws. This controller drives the vehicle to

the origin with the additional constraint on the vehicle’s orientation. Both con-

trollers are extensively tested in simulation and implemented on the vehicle using

the vision system for feedback.

• Chapter 6 Summarises the work and presents the concluding remarks and direc-

tions for future research.



Chapter 2

Mobile Robot Navigation

Navigation is distinguished from other spatial behaviours, such as obstacle avoidance,

by the requirement for attaining a goal. There is a hierarchy of navigation competencies

that enable a goal to be reached. These competencies can be broadly categorised as lo-

cal and global, with the difference being that global navigation requires representation of

‘things’ that may be outside the current range of perception. The majority of mobile robot

research has focused on the highest level in the navigation hierarchy, survey navigation, a

global competency, which embeds spatial information pertaining to the environment in a

common coordinate frame. This leads to sense-model-plan-act architectures using metric

models of the environment, which to date have been infeasible for large-scale environ-

ments. In effect, the hardest task in the navigation hierarchy has been attempted first,

without mastery of the lower level navigation competencies. Of the local navigation tech-

niques, the attainment of a goal based on the spatial arrangement of surrounding objects

is a fundamental competency if mobile robots are to perform purposive tasks. For car-like,

and other nonholonomic vehicles, this requires fundamentally nonlinear approaches.

2.1 Navigation

Before the age of accurate maps and charts, ship navigation was only possible through

the accumulated knowledge of experienced sailors. These sailors, and their sailing notes

known as rutter’s, were highly sought after by the then dominant powers of the sea, Eng-

13
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land, Spain, Portugal, and the United Dutch Provinces [Dash, 2002]. Their knowledge

included that of the prevailing currents and winds for particular areas, known landmarks

and hazards, expected journey times, and other characteristics such as what bird-life to

expect. This knowledge was very closely guarded and often considered state secret.

With the advent of accurate maps and charts, and a method of determining longitude,

ship navigation became more of a science than an art. Today, the Oxford English Dictio-

nary defines navigation as:

The art or science of directing the movements of ships on the sea, including

more especially, the methods of determining a ship’s position and course by

the principles of geometry and nautical astronomy.

To do this, a ship’s navigator performs three recurring tasks [Franz and Mallot, 2000]:

1. Determine the ship’s position on a chart or map;

2. Relate this plotted position to the destination, reference points or hazards;

3. Based on this information, set the course of the ship.

Classically, mobile robot research has adopted a similar stance with many papers in

the field concerned with the questions [Hill and Wilfong, 1990; Levitt and Lawnton, 1990;

McKerrow, 1991; Leonard and Durrant-Whyte, 1991]:

1. Where am I?

2. Where are other things?

3. How do I get to other places?

This view of navigation clearly has its roots in the nautical approach, decomposing

the problem into a logical set of subproblems. The classical answer to these questions

relies on complete and accurate maps of the robot’s operating environment and the robot’s

position in it. These methods are variously known as metric [Thrun, 1998b; Trullier et
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al., 1997], absolute [Roberts et al., 2000], or survey navigation [Franz and Mallot, 2000].

Such methods typically use a hierarchical, sense-model-plan-act architecture in which

sensor data is sequentially abstracted to build or update a single global representation

of the environment from which a plan is formulated and executed. Thus, control of the

robot’s actions is largely an open-loop process, relying on the accuracy of the world model

and the estimation of the robot’s state in the ‘world’.

More and more mobile robotics researchers are discarding the nautically derived ‘ab-

solute’ view of the navigation problem in favour of a broader view which includes all of

the processes required to move a robot from one point to another, including what have

traditionally been seen as lower-level tasks such as the guidance and control of the robot.

In fact, the Institute of Electronics and Electrical Engineers defines navigation as the pro-

cess of directing a vehicle so as to reach the intended destination [IEEE, 1983]. This

definition does not imply a need to answer all, or even any, of the questions posed by

the absolute approach. Observations of navigation in biology reveal a similar philoso-

phy, with the most important question for a navigating organism being ‘How do I reach

the goal?’ [Franz and Mallot, 2000]. This has lead to the development of mobile robot

navigation systems which operate relative to the environment, referring to comparatively

‘sparse’ environmental representations, rather than complex metric models.

This chapter is organised as follows: Section 2.2 presents a brief history of mobile

robotics; Section 2.3 briefly describes typical architectures for the navigation and control

of mobile robots; Section 2.4 briefly summarizes the sensors available to mobile robots,

outlining the relative strengths and weaknesses of different sensors; Section 2.5 presents

a hierarchy of navigation competencies or behaviours; Section 2.6 introduces nonholo-

nomic systems and reviews the literature on the topic of pose stabilization for mobile

robots; and Section 2.7 completes the chapter with some concluding remarks.
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Figure 2.1: Elsie, one of the earliest autonomous robots. Elsie was a three
wheeled, front-wheel steered and driven device equipped with a light sensor and
a proximity sensor. Two vacuum tubes provided for control of the robot’s ac-
tuators. Energy was supplied by a telephone DC battery. Image courtesy of
http://epub.org.br/cm/n09/historia/documentos i.htm.

2.2 A brief history of mobile robotics

The earliest autonomous mobile robot is attributed to W. Grey Walter who, in 1948, built

a robotic ‘tortoise’ he called ‘Elsie’. Elsie was capable of avoiding large obstacles and

finding a re-charging station signalled by the presence of a light [Walter, 1953]. Dr.

Grey Walter was a neuro-physiologist, interested in reflex actions and complex behaviour

arising from neural connections [Holland, 1997]. Elsie, see Figure 2.1, provided the

foundations for the more modern field of behaviour-based mobile robotics [Arkin, 1999].

The early 1960s saw further development of mobile robotics with the creation of the

Hopkins ‘beast’, see Figure 2.2, by the Johns Hopkins University Applied Physics Lab-

oratory. It was equipped with sonar which enabled it to wander corridors, and was able

to feel walls for a re-charging socket when its batteries were low. Later modifications

included the addition of a photo-cell that enabled the ‘beast’ to see re-charging sockets by

means of the contrast between the colour of the socket and a wall.

Shakey, see Figure 2.3, created in the late 1960s at the Stanford Research Institute, saw
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Figure 2.2: Two versions of the Hopkins ‘beast’, the larger of which is re-charging at
the wall socket. Image courtesy of the Robotics Institute at Carnegie Mellon University
http://frc.ri.cmu.edu/˜hpm/book97/index.html.

a move towards robots capable of more deliberative action — the birth of what is termed

in this thesis the absolute, deliberative approach to mobile robot navigation. Shakey could

plan using a symbolic world model, with computer vision providing information to main-

tain and update the world model’s representations. This robot was very large, while the

controlling computer filled a room. It took several hours to plan and achieve the nominal

task of finding and moving a coloured block using vision to find the block and a laser

scanner to determine its range. Encoders on the locomotion motors allowed the robot

to estimate its position in the world with respect to a global coordinate system [Nillson,

1969].

Also using the absolute, deliberative approach, the Stanford Cart, built in the late

1970s at the Stanford University Artificial Intelligence Laboratory, used stereo vision to

locate objects in three dimensions. Using a model built from this information, it could

plan an obstacle-avoiding path to a goal. However, it was only reliable for short runs

and took upwards of fifteen minutes to move a distance of one metre [Moravec, 1990].

Morovac later moved on to build the Carnegie Mellon University (CMU) Rover, and,

with Elfes [Moravec and Elfes, 1985], pioneered the occupancy grid-based methods of
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Figure 2.3: The Stanford Research Institute’s Shakey. This robot was one of the first to use
what is termed the absolute navigation method. Image courtesy of the Robotics Institute
at Carnegie Mellon University http://www.frc.r.cmu.edu/‘hp,/book98/fig.ch2/p027.html.

navigation.

In 1977, HILARE was created at the Laboratoire d’Automatique et d’Analyse des

Systèmes (LAAS) in France, see Figure 2.4. It was a highly successful robot still in use

over a decade later. This robot continued with the absolute, deliberative approach, with

planning conducted in a multi-level representational space consisting of geometric models

representing distances and measurements of its world (an office-like environment), with a

relational model expressing the connectivity of rooms and corridors [Giralt et al., 1979].

This relational model is an early instance of a topological map.

In 1984, Braitenberg re-ignited interest in behaviour-based robotics with a series of

thought experiments designed to explore the seemingly complex behaviours that could

emerge from a simple set of tight sensor-motor couplings [Braitenberg, 1984]. Shortly

later in 1986, Brooks also took inspiration from biology, creating his subsumption archi-

tecture [Brooks, 1986]. This architecture was implemented on many subsequent robots

with a great deal of success, outperforming the best that classical mobile robotics could

offer at the time, culminating in Mataric´’s robot Toto, which was able to construct maps

and plan within a behaviour-based architecture [Mataric´, 1990; 1992].
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Figure 2.4: HILARE, an early robot built at LAAS. It has a laser range finder, sixteen
ultrasonic sensors, odometry, four on-board computers and weighs 400kg. Image cour-
tesy of LAAS at http://www.laas.fr/˜matthieu/robots/hilare. The LAAS Internet web site
reports that the robot now supports a table.

Arkin’s motor-schema behaviour-based architecture soon followed [Arkin, 1987], with

a recognition shortly after by many researchers for a need to unite the behaviour-based

and the classical, deliberative approaches [Arkin, 1989b; Gat, 1998; Jarvis, 1997]. To-

day, few robots are built without consideration of both behaviour-based and deliberative

control.

2.3 Typical architectures

The brief history of mobile robotics presented in Section 2.2 highlighted several different

navigation architectures. In this section, the deliberative and behaviour-based approaches

are explored more fully in terms of their relative strengths and weaknesses and the desir-

ability of uniting the two in a ‘hybrid’ architecture.

2.3.1 Deliberative / Hierarchical

The typical control / navigation architecture for a system based on the absolute, delib-

erative approach relies on the sequential processing of data resulting in a hierarchical
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Figure 2.5: A typical architecture for a classical navigation system. Sensor data is passed
up through the system, updating world models and the position estimate of the robot.
In combination with a mission specification, the world model is then used by the path
planning module, which compares estimated position to desired position. A series of
tasks is then specified and the task execution module sends information to the motor
control module which in turn sends commands to the robot’s actuators (diagram adapted
from [Corke, 1994] and [Nehmzow, 2000]).

architecture [Brooks, 1986; Nehmzow, 2000], as shown in Figure 2.5. The sense-model-

plan-act cycle is realised through the deliberative architecture. No action is taken by the

system without an analysis of its consequences. Central to the system is a model of the

environment, usually in the form of a metric map.

Sensor data is fed through the system, updating and sometimes building the map

(also called the model), while estimating the robot’s position on the map. Position is

notoriously difficult to track using odometry (see e.g. [Borenstein et al., 1996; 1997;

Everett, 1995] for a detailed explanation of sensors and their associated problems) so

data from different sensing modalities is often fused using a Kalman filter or similar

techniques (see e.g. [Smith and Cheeseman, 1986; Nebot and Durrant-Whyte, 1999;

Dissanayake et al., 1999; Adam et al., 1999; Aono et al., 1998; Chung et al., 2001]). The

path planning module uses the world model and the mission specification to determine

a path from the start to the goal location by performing a search which produces a least
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cost path. Least cost paths can be defined in terms of shortest distance, minimum energy

usage, maximum distance from obstacles, or any combination of relevant measures. One

of the functions of the task execution module is to maintain a given path by comparing

the robot’s estimated position with the desired position. This and any other required tasks

are processed into actuator commands by the motor control module. The robot itself and

the actuators must be modelled, allowing prediction of the consequences and interactions

of the proposed actions.

Throughout the deliberative process, the robot is responding to the estimated model of

the environment, not directly to what it perceives. A robot using deliberative techniques

requires relatively complete knowledge of the world, using this to analyse the outcomes of

its actions. This allows it to optimise its performance, and in terms of navigation, gener-

ally produces least-cost or optimal paths. However, if the information used for planning,

i.e. the model, is incorrect, then the robot’s actions may also be incorrect for the task at

hand. This is why sensor data is used to continuously update the model of the world and

state of the robot [Nehmzow, 2000; Arkin, 1999].

Deliberative / hierarchical systems are well suited to highly structured and predictable

environments in which the outcome of actions is predictable. However, unstructured and

uncertain environments present problems particularly when it comes to world modelling.

It is difficult to track and model dynamic objects, reason about their behaviour and pro-

duce acceptable control commands in real-time1 [Nehmzow, 2000; Arkin, 1999]. In some

cases, sensor data may not be processed fast enough for the actuators to respond due to

the bottleneck in the system caused by the need for world modelling and state estimation.

This effectively leaves the robot ‘blind’ to the real world.

2.3.2 Behaviour-based / Reactive

In contrast to the deliberative architecture, behaviour-based systems have a much tighter

coupling between sensing and action [Brooks, 1986; Arkin, 1999; Nehmzow, 2000].

1Real-time operation refers to a level of computer responsiveness that a user senses as sufficiently im-
mediate or that enables the system to keep up with some external process.
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Figure 2.6: In a behaviour-based system there is a tighter coupling between sensors and
actuators. Sensor information is processed in parallel by a selection of different con-
trollers or ‘behaviours’. Commands from these behaviours are then fused, through a
weighted summation and/or switching strategies, and sent to the actuators. Note the dif-
ference in structure to that of the classical, deliberative system depicted in Figure 2.5.

Behaviour-based navigation systems are structurally different to their deliberative coun-

terparts — behaviour-based systems process information in parallel rather than sequen-

tially. Figure 2.6 shows a typical behaviour-based architecture. Note the difference in

information flow to that of the deliberative system of Figure 2.5.

Sensor data is distributed to individual, parallel modules, each of which performs a

specific task, for example ‘avoid obstacles’ or ‘follow walls’. In a sense, each behaviour is

competing to control the actuators. Hence, there must be a mechanism for arbitrating the

commands. In Brooks’ [1986] subsumption architecture, higher level behaviours could

examine data from lower levels and either inhibit or subsume signals from the lower level

layers. The command arbitration module in Figure 2.6 is shown merely to illustrate that

commands from different behaviours must be combined in some manner, whether it be

subsumption-based, a voting scheme, or some form of command weighting [Arkin, 1999].

The difference between an individual ‘behaviour’ and a traditional control-loop, whether

it be open or closed-loop, is slim and in many cases the terms could be used interchange-
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ably. Arkin [1999] defines an individual behaviour as:

a stimulus/response pair for a given environmental setting that is modulated

by attention and determined by intention.

Attention focuses sensory resources and prioritises tasks based upon current environmen-

tal context. Intention determines which set of behaviours should be active for the robot to

achieve its goals and objectives.

Purely reactive systems use no explicit abstract model of the world, instead referring to

the environment directly for information [Brooks, 1986; Arkin, 1999; Brooks and Flynn,

1989; Brooks, 1990]. In the words of Brooks and Flynn [1989]

The world really is a rather good model of itself.

This is particularly important in unknown or uncertain environments as the robot can react

directly to stimulus rather than performing the time consuming and error-prone process

of building an abstract model and reasoning about it [Arkin, 1999]. In particular, reactive

systems have a much higher bandwidth because of the lack of abstraction used. Actuators

can more readily respond to sensors without the intervening stage of world modelling

and state estimation. Because of this tight link, behaviour-based systems are capable of

operating in real-time with vastly less computational ability than required for hierarchical

systems.

The design of behaviour-based systems is a modular process; behaviours can be added

as desired without necessarily redesigning or discarding the existing system. An ad-

vantage of purely behaviour-based systems is robustness — failure of a single or even

multiple behaviours leads to a degradation in performance rather than total robot fail-

ure. Behaviours can simply be built on top of each other, gradually extending the robots

capability.

Because of this ‘system modularity’, it has been claimed that these systems are easier

to design and debug. However, researchers have found that the behaviour interactions are

hard to predict and control. Planetary rovers were seen as a potential application for purely
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behaviour-based systems. Desai and Miller [1992] showed that a sensor impoverished

system could perform useful tasks if it was designed for its environment. However their

work served to highlight a key limitation to purely reactive systems — taskability. As

behaviours were built into the control structure, specification of a different task would

require an almost complete redesign of the system.

Although successful in particular environments, purely reactive navigation has sev-

eral limitations. Firstly, to achieve a different task or behaviour, the robot control system

needs to be redesigned. Each level of behaviour is designed to respond to stimuli in par-

ticular ways: changing the task would require changing the (task-achieving) behaviours

[Reignier et al., 1997]. Secondly, it is very difficult to express plans in a behaviour-based

architecture [Nehmzow, 2000]. If behaviours respond directly to stimuli, they are unable

to respond to externally specified instructions. In short, purely reactive systems are not

taskable, and it is difficult to express plans, as we know them, to such a system [Nehmzow,

2000; Gat, 1998; Arkin, 1995; 1999]. Also, the assumption of the world being its own

best model only holds when it is sensed often and accurately enough. In the real-world,

sensors are noisy and can be unreliable [Kuipers and Byun, 1991]. The performance

ceiling of purely reactive navigation was quickly reached [Gat, 1998].

2.3.3 Hybrids

In response to the weaknesses of both the purely deliberative and behaviour-based ar-

chitectures, many researchers saw the need to unite the two [Arkin, 1989b; Gat, 1998;

Jarvis, 1997]. Many different forms of hybrid architectures exist, with the majority of

systems incorporating reactive behaviours for low-level tasks such as obstacle avoidance.

In general, there are three ways in which deliberative and reactive architectures can be

tied [Lyons and Hendriks, 1992]:

1. Hierarchical integration of planning and reaction — A deliberative system is ‘piggy-

backed’ onto a reactive system. Whether the system is planning or reacting depends

on the situation at hand.
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Figure 2.7: An example of a hybrid architecture. World modelling is used to influence
the behaviour of the reactive control system, whether it be through selecting particular
behaviours or by providing ‘hints’ or advice to the reactive level.

2. Planning to guide reaction — The deliberative layer configures and sets parameters

for the reactive layer or provides ‘advice’. Everything is executed by the reactive

layer and the reactive layer may or may not follow the instructions or advice given

by the deliberative layer.

3. Coupled planning and reaction — Deliberative and reactive layers are coupled, each

guiding the other and acting concurrently.

An example architecture is shown in Figure 2.7. This architecture is of the ‘planning

to guide reaction’ form, allowing the robot to respond to the environment directly while

providing a means for representing knowledge of the world. The robot is free to act

based upon its sensor readings, and is guided by the deliberative level of the architecture.

Figure 2.7 represents just one of the various ways in which a deliberative and reactive

architecture can be combined. Which element, deliberative or reactive, should dominate

the architecture is still a subject of debate. Hybrid architectures can fuse the best of the

deliberative and purely reactive approaches; on the other hand they can also fuse the worst

of both methods if care is not taken [Arkin, 1989b].
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2.3.4 Discussion

Today, virtually no mobile robot is built without considering both planning and reactivity.

Methods of best combining planning and reactivity are on ongoing field of research which

is not specifically addressed within this thesis. However, it is recognised that a measure

of both planning and reactivity is essential for successful navigation systems.

To date, the incorporation of reactive elements in navigation architectures has nor-

mally been restricted to spatial behaviours in general, for example obstacle avoidance

and wall-following, rather than navigation. Navigation is distinct from other spatial be-

haviours in that it requires the robot to reach, and recognise, some goal position or pose.

One of the major objectives of this thesis is to ‘close-the-loop’ at a higher level in the

navigation architecture allowing a car-like vehicle to attain a particular pose, based on

visual feedback. This will allow a robot to achieve a goal pose without ‘thinking’ about

it, freeing up resources for higher level functions.

2.4 Sensing

Fundamental to any navigation system is the ability to sense the state of the vehicle and

its surrounds. Just as we have senses to give us information about the environment we

inhabit, robots too require a means of perceiving the operating environment. Sensors fall

into two categories: internal and external sensors. Internal sensors monitor the state of

the robot itself, whereas external sensors provide data about the operating environment or

the ‘world’2. Within the category of external sensors, there are active and passive types.

Active sensors project energy into the environment and interpret the return signal. For

example, an ultrasonic sensor projects acoustic waves and interprets the time-of-flight for

the return signal. Passive sensors are stimulated by the environment directly. For example,

a colour camera receives information regarding the intensity and colour structure of the

immediate environment which is of course dependent on lighting conditions.

2In the biological literature, these categories are known as proprioceptive and exteroceptive sensors
respectively.
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The type of sensors available to the designer of a mobile robot influence the control

strategies available for autonomous navigation. Each type of sensor has inherent limita-

tions and advantages that need to be compensated for and exploited respectively. Com-

monly, data from several different sensors is ‘fused’ to improve accuracy and reliability.

However, this usually relies on an accurate model of the vehicle kinematics, dynamics,

and sensor behaviour.

This section briefly discusses the different sensor modes, and how each relates to nav-

igation. The discussion is not intended to be comprehensive, serving merely as an intro-

duction to the types of sensors available and their relative strengths and weaknesses. For a

comprehensive treatment of sensors for mobile robots refer to [Everett, 1995; Borenstein

et al., 1996; 1997].

2.4.1 Internal sensors

Internal sensors monitor the state of the robot, traditionally measuring such things as joint

angles in robotic manipulators. In mobile robots, internal sensors are commonly used

for path integration, also known as dead-reckoning or odometry. However, computer

vision-based path integration has also been demonstrated [Chahl and Srinivasan, 1996;

Srinivasan et al., 1997; Mallet et al., 2000].

Although dead-reckoning techniques are well researched, none can match some of the

astonishing feats of biological systems. Take for example the desert ant cataglyphis bi-

color, which forages at distances exceeding 200 m from its nest, returning to a nest open-

ing of less than 5 mm [Wehner and Wehner, 1990]. An example of such a foray is given in

Figure 2.8 (figure from [Franz and Mallot, 2000]). The high ground temperatures encoun-

tered exclude the use of odour trails and hence, it is hypothesised that this ant navigates

through a combination of path integration and visual homing [Wehner and Wehner, 1990;

Franz and Mallot, 2000; Collett and Collett, 2000]. Note, in the figure, the almost direct

route back to the nest on conclusion of the out-bound section of the foraging journey. If

we assume that path integration is the dominant behaviour in effect here, this ant’s path

integration system navigates with a drift rate of less than 0.0025% of distance travelled.
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Figure 2.8: An example of the amazing navigation feats of the humble ant. Diagram
courtesy www.neuroscience.unizh.ch/e/groups/wehner00.htm, Rudiger Wehner.

Compare this with currently available high end Inertial Measuring Units with drift rates

of the order of 0.1% of distance travelled [Everett, 1995]. Of course, just as the ant can

presumably compensate for accumulated errors in its odometry system based upon previ-

ously seen landmarks, so too the information from our man-made internal sensors can be

corrected with an external reference.

Odometry and Dead-reckoning

In (wheeled) mobile robots, shaft encoders can be used to measure wheel rotations and

the relative orientation of steering wheels (steering angle). Given a method of measur-

ing wheel rotation, distance travelled and velocity can be calculated with knowledge

of the wheel radius and the measuring time increment. Such measurements are highly

prone to error due to wheel slip, variations in rolling wheel diameter (e.g. due to wear,

pressure and temperature variations or inaccurate measurements), and to inaccuracies in

wheel base measurement. The fundamental idea of odometry is the integration over time

of incremental motion information, which leads to an unbounded accumulation of error

[Borenstein et al., 1997; Hague et al., 2000]. These errors can be categorised as follows

[Borenstein et al., 1997]:
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1. Systematic — result from kinematic imperfections of the robot and inexact mea-

surements.

2. Non-systematic — result from interactions of the terrain with the wheels, e.g.

wheel-slip.

Systematic errors can be accounted for, but not completely eliminated by, improved mea-

surements of wheel diameters and a more accurate vehicle and sensor model. Non-

systematic errors are unpredictable and cannot be corrected without resorting to another

sensing modality — usually an external reference such as landmarks.

Odometric sensors such as shaft encoders are cheap and can provide a high sample

rate. Although widely criticised, they have seen extensive use.

Inertial sensors

Inertial sensors measure either rate of rotation or acceleration from which position infor-

mation can be derived. As for the odometric sensors, error is again unbounded due to

the accumulated error from integrating velocity, or double integrating acceleration mea-

surements [Borenstein et al., 1997; Hague et al., 2000]. Any small error in the sensor is

magnified by the integration process.

Internal sensors are generally good for short periods or distances — much research has

focussed on extending the period for which they are considered accurate. This is normally

done by referring to an external sensor to correct accumulated error, also referred to as

drift (see e.g. [Borenstein et al., 1997; Hague et al., 2000; Dissanayake et al., 1999]).

2.4.2 External sensors

Examples of external sensors include magnetic compasses, global positioning systems

(GPS), active beacons, vision, and range-finders (e.g. ultra-sonics, laser scanners, and

radar). Generally, external sensors are much more reliable than internal sensors because

they measure angle and distance directly rather than integrating from velocity and accel-
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eration measurements. However, there are problems when accessing the external environ-

ment for perception including:

• line of sight requirements;

• interference due to occlusion and reflections, or, in the case of compasses, the pres-

ence of steel structures, buried pipes, cables and even certain rocks;

• perceptual aliasing.

Perceptual aliasing occurs when separate locations in an environment return similar sensor

data; it can be difficult to distinguish one location from another [Nehmzow, 2000].

External sensors can measure an absolute quantity such as magnetic North, or they

can measure a relative quantity like the range to another object. Within the category of

external sensing, there are two sensing modes [Hebert, 2000]:

1. Active sensors — actively emit a beam of energy, measuring some quantity in the

environment, usually range. Examples include ultra-sonics, laser range-finders and

radar.

2. Passive sensors — receive information from the environment without interfering

with it. Examples include computer vision and GPS.

External sensors usually have a lower update rate than internal sensors. However, the

measurement is referenced to the environment, and hence is not subject to the accumula-

tion of error experienced by internal sensors.

2.4.2.1 Active sensors

Active beacons

Active beacon systems use a set of beacons mounted at known locations in an environ-

ment. These beacons transmit signals that enable a robot equipped with a receiver to esti-

mate its pose through trilateration3 techniques [Borenstein et al., 1997; Everett, 1995]. A

3In robotics, trilateration is the process of determining the vehicle’s position based upon distance mea-
surements to beacons at known positions. Triangulation is the process of determining position based upon
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minimum of three beacons are required, at least three of which must be ‘visible’. Active

beacon systems provide accurate position information with a minimum of processing.

However, modification of the operating environment is not always possible and active

beacon systems can be expensive to install and maintain.

Range-finders

To date the most commonly used range sensor for mobile robotics has been ultra-sonic

range-finders. This is due to their relatively low cost through extensive development in

the photographic industry. However, laser range-finders are becoming cheaper and finding

ever increasing application due to their superior accuracy and range over ultra-sonics.

Range-finders work by transmitting an energy pulse and measuring either the time-of-

flight or phase-shift of the beam on its return. Spurious measurements can occur in the

presence of obscurants such as rain or dust.

2.4.2.2 Passive sensors

Orientation sensors

Error in orientation is the most insidious of positioning errors leading to large displace-

ment errors over long traverses. Magnetic compasses provide a means of measuring ab-

solute orientation and hence finding the orientation of a vehicle. However, magnetic com-

passes measure the Earth’s local magnetic field and are susceptible to fluctuations caused

by man-made objects such as ferrous structures and the dynamically induced fields pro-

duced by electric motors. The magnetic field direction also varies over the Earth’s surface.

An alternative method for providing a reference direction is to use the polarisation

pattern produced by the atmospheric scattering of sunlight [Lambrinos et al., 1997; 2000].

This technique was derived from observations of insect behaviour [Rossel and Wehner,

1986]. Early work in this thesis research showed that a CCD camera with a polarising

filter could be used to observe this pattern [Usher et al., 2001]. First, a look-up table

angle measurements. Triangulation can also refer to to the process of determining the range to some ob-
ject, based upon two angle measurements and the distance between the measurement locations, as in stereo
vision.
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Figure 2.9: The variation of average light intensity with changes in the orientation of a
polarising filter as measured by a CCD camera focussed on the sky. By comparing these
values to a current average light intensity, an estimate of orientation can be determined.

of the average sky intensity at different orientations of the polarising filter is created,

see Figure 2.9. Then, by comparing the average intensity of the polarised image at an

arbitrary orientation to the look-up table of intensity values, the current orientation can

be estimated. However, a look-up table is only valid for a relatively short period, and the

method is also dependent on a significant amount of blue sky being visible. In addition,

the symmetry of the polarisation pattern gives an ambiguity at 0◦ and 180◦ with respect

to the solar meridian. This ambiguity leads to four possible solutions for orientation4.

Lambrinos et al. [1997] overcame this ambiguity by using a set of three photo-diodes

with polarising filters, with filter angles at 120◦ to each other. They present an analytical

method of determining orientation based on these three measurements without the need

for a look-up table. However, the method is still brittle with respect to lighting conditions

and restricted to operating at certain times of day.

Motivated by the requirements of planetary rovers operating on other planets which

may not have a magnetic field, NASA developed an orientation measuring system that

4The data in Figure 2.9 was collected for orientations from −90◦ to 180◦ and only shows three of the
possible four solutions.
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tracks the Sun throughout the day, providing a reference direction through knowledge of

its motion [Trebi-Ollennu et al., 2001]. In contrast to the experiments of [Lambrinos et

al., 1997; 2000; Usher et al., 2001], the Sun was tracked with a CCD rather than using

the polarising pattern of the sky. Although the system was shown to be reliable with

a reasonable amount of cloud cover, excessive cloud cover is clearly a problem and of

course such a system cannot function at night.

Global Positioning Systems

GPSs provide longitude, latitude and altitude position information through triangulation

techniques using signals from a number of suitable satellites. Some units can also provide

velocity and heading information (provided the GPS receiver is moving). Global position-

ing systems are becoming more common due to consumer demand in the automotive and

maritime industries. The use of GPS in robots is also now more common but of course

restricted to those operating in an outdoor environment.

The accuracy of GPS can be affected by [Everett, 1995]:

• the number of satellites available due to occlusions from buildings or a lack of

satellites in the area;

• multi-path reflections;

• satellite position — geometric dilution of precision;

• ionospheric and tropospheric effects.

Another disadvantage of GPSs are their relatively slow update rates (generally of the order

of 1 Hz, although current high-end units can operate at up to 10 Hz).

Differential GPS (dGPS) has an increased accuracy over that of standard GPS by

correlating the error of a dGPS receiver with that of a signal received at a fixed reference

station. However, the overall accuracy and reliability of GPS prevents it from being of

significant use in the work presented in this thesis. Of significant influence in this decision
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is the target operating environment, an industrial site, in which the presence of buildings

leads to the potential loss of signal. For example, as of November 1999, less than 5% of

the city of Tokyo, Japan, was covered by GPS [Chen, 1999]. Of course, this figure will

improve with time but it is representative of the often overstated usefulness of GPS for

precise positioning.

In addition, a GPS capable of the required positional precision (of the order of 10 cm)

is not within the budget of this project. However, in the latter stages of the project, an

RTK-GPS5 became available and has been used where possible for ground-truth purposes.

Computer vision

With few exceptions, all animals have eyes but, in general, have extremely complex and

powerful parallel processors and dedicated low-level feature extraction ‘circuits’ which

have evolved over millions of years to handle the complexity of visual information. For

example, in humans, from the moment an image reaches the eye, low-level processes

extract ‘useful’ information, such as the location of edges. This information, in parallel

with a multitude of other extracted features and the image itself, is passed to the brain,

where the information is used, for example, to construct internal representations of scenes,

to identify and track objects, and, because we are highly social animals, to identify people.

In fact, in biology, the eye has independently evolved in life forms ranging from octopi,

insects and mammals — in each case, a large proportion of the brain is dedicated to vision

processing and image understanding. Clearly, vision is a powerful skill for navigating and

performing tasks in the animal kingdom and would seem to be a good choice of sensor

for a mobile robot.

Vision arguably provides the most comprehensive information of all sensors available

to mobile robots but because of its complexity and sensitivity to factors such as lighting

conditions, it is difficult to use effectively. Many decades of research have given us some

very effective vision systems but, by and large, these are still embryonic when compared

5Real Time Kinematic GPS which can give position information to a stated best accuracy of 2 cm at
10Hz.
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to the the feats of biology.

Computer vision is in itself a stand-alone field of research but the links to applications

in mobile robotics are clear. Recently, there has been much interest in omnidirectional

camera systems (also known as panospheric) as they can provide a panoramic view of

a scene. In general there are three ways to provide a panospheric image [Chahl and

Srinivasan, 1997b]:

1. Rotate a conventional camera about a vertical axis and combine the resulting mon-

tage of images.

2. Fish-eye (wide-angle) lens systems which can provide a hemispherical view of a

scene, although with some distortion.

3. Catadioptric systems which consist of a camera aimed at a mirror, where the mirror

usually resembles a cone or sphere.

The first method requires significant post-processing. In addition, it is difficult to acquire

the image set quickly, limiting the usefulness of the approach for dynamic applications

[Chahl and Srinivasan, 1997b]. Fish-eye lens system are generally much more expensive

because they are difficult to manufacture with the required accuracy. Poor control of lens

tolerances can lead to significant image distortion. Even with a well manufactured lens,

distortion away from the optical axis is very significant [Chahl and Srinivasan, 1997b].

Catadioptric systems are in general much cheaper because they are currently easier to

manufacture. In addition, a panoramic image can be obtained from a single image, giv-

ing this method an advantage over rotating a conventional camera. Mirror shapes for

such systems vary but are essentially a compromise between resolution, field of view,

and elevational and radial gain (see, for example, Baker and Nayer [1999] for further

explanation).

A subject which divides researchers in omnidirectional vision is whether the omnidi-

rectional image should be ‘un-wrapped’ (or de-warped) to the panoramic view more easily

interpreted by humans. The un-wrapping process consumes computational resources that
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(a) A catadioptric omnidi-
rectional system.

(b) A sample image.

Figure 2.10: An omnidirectional camera and a sample image.

could otherwise be dedicated to more useful tasks, as the image content is unchanged. In

fact, the un-wrapping process often leads to a degradation in image quality but, on the

other hand, it does allow the use of existing image processing techniques.
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Likened to insect vision, omnidirectional cameras are proving to be a powerful tool for

mobile robotics. An example is Srinivasan et al. [1997] use of an omnidirectional camera

for dead reckoning using the image motion observed by the camera to calculate distance

travelled. Others have used omnidirectional vision for visual homing [Hong et al., 1991;

Franz et al., 1998a] and appearance-based navigation6 [Krose et al., 2001; Ulrich and

Nourbakhsh, 2000; Krose et al., 2000].

A key advantage of omnidirectional cameras over their monocular counterparts, is that

landmarks, or targets, are always within the field of view of the camera, provided they are

within range. This is particularly important for the problem of vision-based feedback

pose stabilization addressed in this thesis. If a monocular camera is used, specific control

mechanisms must be provided to ensure that landmarks remain in the field of view of the

camera. When using an omnidirectional camera, these viewing constraints are relaxed.

2.4.3 Sensor fusion

Because of the somewhat complementary strengths and weaknesses between different

sensing modalities, sensor data is often fused to reduce the uncertainty in the overall

measurement [Smith et al., 1990; Chatila and Laumond, 1985; Smith and Cheeseman,

1986]. In particular, dead-reckoning sensors are accurate over short distances and provide

a relatively high update rate but their fundamental principle of operation involves a single

or double integration leading to an unbounded accumulation of error. Reference-based

sensors, e.g. landmark detection using a laser range-finder, generally have a slower update

rate but are grounded in the environment and hence are not subject to drift. One method

of combining sensor data is the Kalman filter or the Extended Kalman filter. Figure 2.11

shows the typical operation of a sensor data fusion loop. Dead-reckoning data is fed

through the system and gives a prediction of the pose estimate based upon a kinematic

model of the vehicle. This prediction is then compared with data from the reference-

based sensor, generating an error signal which is used to compensate for any error in the

6Appearance-based navigation is a technique of localisation through matching of a currently viewed
scene with a database of images of previously visited locations.
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Figure 2.11: Outline of a sensor data fusion loop (adapted from [Nebot and Durrant-
Whyte, 1999]).

dead-reckoning sensors.

Many different sensing modes have been combined, for example: computer vision and

odometry[Adam et al., 1999; Hague and Tillet, 1996]; GPS and dead reckoning[Aono et

al., 1998]; odometry and a high accuracy fibre-optic gyro7 [Chung et al., 2001]; omnidi-

rectional camera and a map [Das et al., 2001]; vision, odometry and a magnetic compass

[Hague et al., 1997]; and twin loops of GPS/IMU and millimetre wave radar and encoders

[Nebot and Durrant-Whyte, 1999].

2.4.4 Discussion

All real sensors are affected by noise arising from inherent sources as well as from the

environment. They suffer from trying to decompose a multi-dimensional environment

into a lower dimensional representation. Much research over recent years has focussed

on ways of best combining and fusing various sensor sources.

The sensors available for this project are wide ranging in terms of mode of operation,

bandwidth and update rates. The primary sensor used will be a catadioptric omnidirec-

tional camera, given that to date it has not been fully exploited for the pose stabilization

problem. However visual homing also relies on a reference direction, for which a mag-

7Both dead-reckoning sensors.
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netic compass will be used. All sensors are noisy — to reduce this noise, simple tech-

niques will be presented based upon the concept of complementary filtering, leading to

much smoother and hence more useful measurements. In addition, an RTK-GPS will be

used where possible to provide a ground-truth but serves no function in the control of the

vehicle.

2.5 Navigation competencies

The IEEE definition of navigation, that is, the process of directing a vehicle so as to reach

the intended destination, captures a broader spectrum of behaviours than that implied by

the classical, absolute approach. What sets navigation apart from other spatial behaviours

(for example wandering or obstacle avoidance) is the ability to recognise a goal when it

is reached [Franz and Mallot, 2000].

Navigation behaviours are divided into two fundamentally different categories: local

and global navigation8. Local navigation behaviours require the recognition of a single

location — the goal. The only required sensory perceptions are those that are in the

immediate environment; there is no need for representation of ‘things’ outside of this

‘sensory horizon’ [Franz and Mallot, 2000; Trullier et al., 1997]. In contrast, global

navigation behaviours require the recognition of multiple goals, some of which may not

be available in the current range of perception [Franz and Mallot, 2000; Trullier et al.,

1997]. A means of representing ‘things’ external to the immediate sensory horizon is a

prerequisite for this range of behaviours.

Within local and global navigation there are a range of behaviours and competencies,

which Franz and Mallot [2000] summarised into a hierarchy of navigation competencies;

these are shown in Table 2.1. This hierarchy is based upon an original scheme presented

by Trullier et al. [1997], modified and extended to more aptly apply to mobile robots.

The first four entries in Table 2.1 correspond to local navigation behaviours. Within this

group, each successive competency depends upon the behavioural prerequisites of prior

8Way-finding is the more popular term in the literature on biological navigation; in mobile robotics,
global navigation is more common and is the term adopted here.
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Table 2.1: The navigation hierarchy as presented by Franz and Mallot [2000]. The first
four competencies do not require sensory perceptions, or representation, of ‘things’ out-
side of the immediate environment and are thus grouped as local navigation competencies.
The last three competencies require representation of ‘things’ which may lie outside of
the current sensory horizon and are thus grouped as global navigation competencies.
Competency Behavioural prerequisite Navigation competence

Search Ability to move and Finding the goal without
recognize the goal goal direction knowledge

Instruction following9 Ability to follow course Finding the goal from one
instructions approach direction

Aiming Ability to align goal direction Finding a salient goal from
with direction of motion a catchment area

Homing10 Ability to attain spatial relation Finding a goal defined by
to surrounding objects relation to the surroundings

Recognition-triggered Associate a set of stimuli to a Following fixed routes
response set of responses
Topological navigation Integration of fixed routes and Flexible concatenation of

planning route segments
Survey (metric) Embedding environment Finding paths over novel
navigation representation into a common terrain

reference frame

competencies. The last three entries belong to the global navigation category. Competen-

cies within this group do not necessarily require all of the local navigation competencies

[Franz and Mallot, 2000]. Each competency is briefly explained in the following sections,

based upon the original presentation by Franz and Mallot.

2.5.1 Search

The search competency requires only the ability to move and the ability to recognise the

goal. No knowledge of the goal direction is used for this behaviour, the agent simply wan-

ders the environment until the goal location is recognised. Figure 2.12 illustrates such a

9Franz and Mallot refer to this as direction following in the sense of following a set of instructions. This
term could be confused with direction in the compass sense and hence the term has been altered here to
instruction following to avoid confusion.

10Franz and Mallot refer to this as guidance. Guidance in the robotics literature refers to trajectory
generation, and the kinematics, dynamics and feedback control of a vehicle [Cox and Wilfong, 1990].
Hence, the term has been altered here to homing to avoid confusion.
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starting pose

goal

Figure 2.12: Illustration of the search competency (adapted from [Franz and Mallot,
2000]).

competency in which the agent searches the environment until the goal is attained. Shown

here is an almost random pattern of motion but the search competency can use more so-

phisticated motion patterns to improve the chances of finding the goal, for example spiral

motions.

In mobile robotics, this is not a popular method due to its inefficiency. The search

behaviour is of little use but could perhaps be used if the robot became ‘lost’. In contrast to

a search behaviour, exploration requires the robot to wander the environment while it does

not recognise a location. Wandering behaviours have been implemented on many mobile

robots, enabling the robot to explore an environment while avoiding obstacles (see e.g.

[Brooks, 1986; Yamauchi et al., 1998; Mataric´, 1992; 1990; Donnart and Meyer, 1996;

Diaz et al., 2001]). With the current interest in Simultaneous Localisation and Mapping11

(see e.g. [Smith et al., 1990; Guivant et al., 2000; Thrun et al., 2000; Rencken, 1994;

Bailey, 2002; Leonard et al., 1992]), exploration competencies have become an integral

part of many navigation systems.

11Also known as Concurrent Localisation and Mapping.
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goal

trail (sensed internally or externally)

Figure 2.13: Illustration of the instruction following competency (adapted from [Franz
and Mallot, 2000]).

2.5.2 Instruction following and path integration

This class of behaviour requires the agent to follow a set of instructions defined in terms

of an internal or external reference, for example ‘head North for 200 metres’. The goal

does not necessarily need to be visible for the entire journey, merely recognised when it is

reached. Importantly, this competency only allows a goal to be approached from a single

direction.

Internal references could take the form of odometry or inertial sensing which can be

used for path integration, also known as dead-reckoning. In path integration, the distance

and direction travelled are integrated to estimate position with reference to some starting

position. The use of a compass direction, which is an external reference, can greatly

improve path integration, vastly reducing errors in orientation. Other external references

such as a wall or a road edge can also be used in a set of instructions for finding a goal.

An example of the instruction following competency is shown in Figure 2.13, where the

vehicle follows a a trail, which has some defining characteristic, leading to the goal. Even
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for a vehicle with complex kinematics, instruction following in this context is relatively

straightforward.

As far back as the 1950s, Autonomous Guided Vehicles have been operating in facto-

ries. Early versions followed a guide wire and were able to traverse fixed routes through

an environment. In the 1970s this technology was extended to allow AGVs to follow

buried guide wires (detected via magnetic inductance), and later, painted lines on the

ground. The buried wires required significant modification to the environment but on the

other hand were reliable and permanent. Painted lines allowed for greater flexibility and

faster route generation but required higher maintenance to ensure reliability against wear

and fading [Bailey, 2002]. Even later still, the installation of retro-reflective lines or lines

of lights in mining tunnels has allowed Load-Haul-Dump vehicles to autonomously nav-

igate along the fixed routes defined by the tunnels [Roberts et al., 2000]. Similar systems

exist for navigating along corridors in office settings.

Edge-following is another well developed technique with a great deal of research hav-

ing been conducted using a variety of sensors including computer vision, ultrasonics,

and laser range-finders. The main edges used have been those associated with walls and

roads. Road-following techniques have enabled car-like vehicles to autonomously follow

many thousands of kilometres across Europe and the United States of America (see e.g.

[Pomerleau, 1993; Thorpe, 1990; Dickmanns et al., 1994; Rodriguez et al., 1998]). Oth-

ers have used computer vision to track crop rows [Ollis, 1997; Hague et al., 2000; 1997;

Hague and Tillet, 1996; 2001] and laser range-finders in the reactive, wall-following nav-

igation of a Load-Haul-Dump vehicle in a mining application [Roberts et al., 2000].

Wall-following techniques using monocular computer vision have been developed

for indoor applications [Horswill, 1993; Vassalo et al., 2000; Kosecka, 1997] and wall-

following using omnidirectional computer vision has been developed [Das et al., 2001;

Gaspar et al., 2000; Winters et al., 2000]. However, the work of Gaspar et al. [2000] and

Winters et al. [2000] uses a vehicle which can spin on its own axis, and the work of Das et

al. [2001] uses a toy remote control truck with computer processing performed off-board.
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starting pose

Figure 2.14: Illustration of the aiming competency (adapted from [Franz and Mallot,
2000]).

2.5.3 Aiming

The aiming competency requires the agent to orient its body such that the goal is in the

direct path of the vehicle. As such, the goal has to be associated with some salient cue.

Aiming is distinguished from instruction following and path integration by the fact that

the goal can be approached from any direction. Not every location can be associated

with aiming, as the goal is required to have a salient cue. An illustration of the aiming

competency is given in Figure 2.14, where the vehicle heads to the goal based on the

presence of a salient cue at the goal. This occurs regardless of the approach direction,

as the goal is defined in terms of some cue which is visible from all locations within a

‘catchment area’. The catchment area is the extent of the region of attraction, in this case

limited by the visibility of the salient cue at the goal.

Aiming is one of the simplest navigation competencies to implement with examples

dating back to the earliest days of robotics. Elsie, introduced in Section 2.2 is probably

the earliest instance of autonomous aiming. This robot was capable of approaching a
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Figure 2.15: Illustration of the homing competency (adapted from [Franz and Mallot,
2000]).

charging station based on sensing of a light using a photo-cell. In 1984, Braitenberg re-

ignited interest in low-level sensor-motor couplings with a series of thought experiments.

One such experiment included aiming behaviours which have since been the foundation

of many robotic implementations.

2.5.4 Homing

Homing allows an agent to position itself with respect to salient objects in the environ-

ment. In order to do this, a means of perceiving the environment is required, which

distinguishes homing from instruction following and path integration. A goal is defined

with respect to salient cues in the surrounding environment rather than at the goal itself,

as in aiming. An example of the homing competency is shown in Figure 2.15. In this

example, the agent attempts to minimise the error between what it currently perceives and

a ‘remembered’ view at the goal location.

In this thesis, the main topic addressed will be visual homing. However, other sensing

modalities have been successfully used with the same basic characteristics (e.g. Nehmzow
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and Owen [2000] who used omnidirectional ultra-sound). Homing techniques have sev-

eral advantages as a navigation method. Firstly, there is a tight coupling between sensing

and action — local planning and control are closely intertwined. Secondly, it is possible

to formulate homing techniques that have inherent obstacle avoidance (see e.g. [Weber et

al., 1998]). Lastly, complex models of the operating environment are not required — the

environment itself is used for navigation.

Drawbacks of homing techniques include:

1. Perceptual aliasing — different locations in the environment cannot be guaranteed

to be be perceived uniquely. This problem is however not isolated to homing, it is

common to most navigation methods which ‘look’ to the environment for informa-

tion, whatever ‘look’ may mean for a particular system.

2. Feature extraction — finding features that can reliably be extracted from a location

with robustness to occlusions, lighting conditions and dynamic environments. Also,

matching features with previously viewed features, known as correspondence, can

be difficult.

3. Agent must be in the catchment area — landmarks surrounding the target location

must be visible from the agent’s current location.

4. Paths generated can be sub-optimal — this drawback again is not unique to hom-

ing. The only way of generating optimal paths is with complete knowledge of the

environment and a competent global planner.

Visual homing, like reactive navigation (see e.g. [Brooks, 1986]), evolved out of a

recognition of the fact that using three-dimensional representations of the world to nav-

igate is time consuming and computationally expensive in both acquiring and using the

model [Hong et al., 1991]. To date, most homing algorithms allow the robot to attain a

home position rather than a home pose. The main contribution of this thesis is to solve

the pose stabilization problem, drawing upon results from the homing literature. Visual

homing is reviewed in greater detail in Section 2.6.3.4.
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and associated actions
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Figure 2.16: The recognition-triggered response. Circles indicate a recognised location,
while the arrows indicate the associated action. Figure adapted from [Franz and Mallot,
2000].

2.5.5 Recognition-triggered response

Recognition-triggered response is the simplest of the global navigation techniques. Here,

recognition of a starting location triggers a set of actions which take the robot to the

goal location. The recognition of both a start and goal location, which may not both lie

within the sensory horizon at all times, distinguishes recognition-triggered response from

the local navigation competencies. The recognition-triggered response competency is

illustrated in Figure 2.16. In this example, the robot associates a particular response with

the recognition of each ‘place’ signified by a circle in the diagram. For example, at the

door, the associated response is to head forward through the opening. Past the door, the

associated response is to head for the next distinctive place by turning right.

Recognition-triggered responses can be used to generate ‘routes’ through an environ-

ment by connecting a series of sub-goals, where each sub-goal triggers actions which

enable the next sub-goal to be reached. No planning is involved and the robot responds

in an inflexible manner. In reaching the goal, the robot is confined to using the same se-
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quence of sub-goals. If a route is blocked, the method will fail and an alternative strategy

must be initiated.

2.5.6 Topological navigation

When using the routes generated by recognition-triggered responses, the robot is confined

to using the same set of sub-goals to reach the goal. Topological12 navigation allows the

use of different sets of sub-goals to reach the same goal. This requires that multiple

paths passing through a goal or sub-goal be identified and the possibly different sensory

associations for that particular goal or sub-goal need to be merged, see Figure 2.17. Here,

if the door was approached and found to be closed, a new plan could be formulated taking

the robot along a different set of way-points. If such a situation was encountered when

using a recognition-triggered response type competency, the robot would become stuck.

Like recognition-triggered responses, topological mapping associates a particular dis-

tinctive place with an action — in the figure the associated actions are shown as arrows.

Unlike recognition-triggered responses, each distinctive place may have multiple actions

associated with it. Thus, multiple ‘distinctive places’ can be connected by the actions re-

quired to reach other distinctive places. This can be represented graphically with a topo-

logical or nodal map, where the nodes represent distinctive places, and the links represent

the actions required to reach other distinctive places; see Figure 2.18 for an example.

The concept of topological maps stems from studies of human and biological navi-

gation (see [Kuipers, 1977; Trullier et al., 1997] for reviews). Such a map provides a

parsimonious environmental representation which can be used to navigate relative to the

environment rather than to an absolute frame of reference. Take as an example walking

from Brisbane central railway station to the Regent cinema on Queen Street. It is enough

to know your location to the accuracy of a block, maintaining a position relative to the

footpath. On reaching street corners, or some other defining locale in the environment,

you re-localise, following a set procedure to reach the intended destination. In contrast,

12Topology is the science of place but the term has come to refer to the way in which constituent parts
are arranged or inter-related [OED, 2000].
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and associated actions
recognised locations

starting pose

goal

Figure 2.17: The topological competency. Circles indicate a recognised location, while
the arrows indicate the associated actions. Unlike recognition-triggered responses,
the topological competency associates many different actions with a distinctive loca-
tion. Thus, the topological competency allows for re-planning, whereas the recognition-
triggered response competency is limited to fixed routes. Figure adapted from [Franz and
Mallot, 2000].

on entering a doorway, much more precise information is needed to prevent a collision

and the environment is referenced directly for information [Gaspar et al., 2000].

The strength of topological maps lies in the lack of requirement for rigorous metric

information or grounding in an absolute coordinate system, although they are often aug-

mented with metric information. This idea of ‘multi-level representations’ was presented

by Chatilla and Laumond [Chatila and Laumond, 1985] in the mid 1980s. Many topo-

logical models to date have been constructed from an initial geometric map of the envi-

ronment (see e.g. [Nehmzow and Owen, 2000; Golfarelli et al., 2001; Thrun et al., 1998;

Thrun, 1998b]). Because of the presence of the full metric representation, they suffer

from many of the drawbacks of metric systems, namely the computational overheads.

The museum tour guide robot of Thrun et al. [1998], uses a topological map built from

an evidence grid representation and is probably one of the more successful robots to date,
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Figure 2.18: An example topological map. The nodes represent distinctive places, which
are defined by salient features in the environment. Each node, or distinctive place, is
connected to other nodes by the links which contain information linking the two nodes
(e.g. wall-following). Of course, the linking information can be context dependent, a
route between two distinctive places would usually contain information linking the nodes
in both directions.

although it is somewhat limited in the scale of environment it can traverse.

A further example of the usefulness of topological maps is the work of Roberts et

al. [2000] who demonstrated just how powerful topological maps can be. Their system

allows a 30 tonne articulated (nonholonomic) mining vehicle to autonomously navigate

through a network of tunnels using a topological map and a reactive wall-following be-

haviour. Mining tunnels have much in common with an indoor environment in that the

robot is confined to move between the walls — a topological map is ideally suited to an

environment with such a structure.

Topological maps allow a particular goal to be reached by multiple routes and thus a

level of planning is required for topological navigation. This gives greater flexibility over

the fixed routes generated by the recognition-triggered response technique. Maps are

simple and approximate, making them relatively easy to construct and change. However,

topological navigation is restricted to the ‘known’ (or learnt) paths connecting distinctive

places, and the generation of paths over novel (unvisited) terrain is not possible. However,
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Figure 2.19: A typical feature-based map. Features used typically include: edges, corners
and lines. Range and bearing sensors are the most common means of sensing features.

in practice this is not a significant restriction in the majority of industrial situations or

applications. Integral to the use of a topological map is the ability to find and recognise

distinctive places, and traverse the expanses that connect them. The main weakness with

topological navigation is the robust recognition of these distinctive places.

2.5.7 Survey (metric) navigation

Survey or metric navigation embeds known locales or features in a common coordinate

frame and thus allows the generation of paths over novel terrain. This method of navi-

gation has received the most attention from the robotics community. The approaches to

survey navigation are numerous with the most popular environmental representations be-

ing the grid-based and feature-based methods [Jensfelt, 1999]. However, some systems

use a topological-like representation, grounded in a global coordinate system. Each is

discussed in the following paragraphs.

Feature-based methods

The feature-based methods use easily identifiable objects in the environment, parameter-

ising them with reference to, for example, colour, width, length and position [Jensfelt,
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1999]. These features are then embedded into a common coordinate system [Betge-

Brezetz et al., 1996; Rencken et al., ; Leonard et al., 1992; Chatila and Laumond, 1985;

Smith et al., 1990]. These methods usually represent the state of the robot, and of the

features in the environment, with an estimated state-vector and an associated covariance

matrix. An extended Kalman filter is typically used to track the pose of the robot, with

predictions of the robot’s future pose provided by odometry and a vehicle model. Odom-

etry is subject to an unbounded accumulation of error and hence, as the robot moves

through the environment, the covariance grows. By periodically sensing features in the

environment, and matching these to map features, the robot relative feature location can

be used to improve the estimate of the state-vector and decrease its covariance [Bailey

and Nebot, 2001]. An example feature-based map is shown in Figure 2.19.

The main advantages of this technique are its efficiency and the provision of an op-

timal global estimate of pose. However, this method is brittle in the face of modelling

errors and the computational complexity becomes unmanageable for large-scale environ-

ments due to the large number of vehicle-to-feature and feature-to-feature correlations.

Critically:

• Features are generally required to be viewpoint invariant; and

• Correct correspondences between (feature) observations and the map are required.

Currently, feature-based methods are limited to maps of approximately one thousand fea-

tures.

In contrast to the active beacon systems mentioned in Section 2.4, feature-based navi-

gation relies on the detection of known, salient and distinctive features in an environment

whether they be natural or artificial. Natural landmarks may be man-made objects or fea-

tures that serve a function other than for robot navigation, e.g. the corner of a wall [Boren-

stein et al., 1997]. Artificial landmarks are essentially passive beacons, specifically placed

in the environment for the purpose of aiding robot navigation, e.g. a pattern or bar-code

[Borenstein et al., 1997]. Landmarks, or features, can be unique or anonymous. A unique
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landmark is defined by some distinctive characteristic, such as a barcode, which unam-

biguously distinguishes that landmark from other similar landmarks in the workspace.

Anonymous landmarks are, of course, detectable in the workspace but have no individu-

ally defining characteristics — an example of such a landmark is an edge detected in an

image. Once detected, landmarks then need to be matched to pre-known landmarks given

an approximated position and a map, from which the robot can more precisely estimate its

pose. Typical sensors used include computer vision, laser range-finders, and ultra-sonic

range-finders.

The main task in feature-based or landmark navigation is feature recognition. It re-

quires substantially more processing than that required for the active beacon systems.

However, natural landmarks require no environmental modification and artificial land-

marks are inexpensive compared to their active beacon counterparts [Everett, 1995; Boren-

stein et al., 1997]. Robotic sensors often perceive the environment differently than we do.

For example, using an ultrasonic sensor, it is impossible for a robot to ‘see’ a door. It is

easier for such a sensor to ‘see’ the doorways [Nehmzow, 2000]. Thus, care is required

when selecting relevant landmarks. Thrun [1998a] developed a technique which allows

a robot to learn its own landmarks. However, the learning phase was quite long and the

technique did not allow a human to influence landmark selection.

Grid-based methods

The grid-based representation of the environment, also known as an occupancy grid, was

initially proposed by Moravec and Elfes [1985] and now, is probably the most popular

means of environmental representation. Essentially, the environment is represented by

a matrix of cells, each of which contains information on whether that particular cell is

occupied by an object. An example grid-based map is shown in Figure 2.20. Moravec

and Elfes matched locally constructed occupancy grids to a global one using a correlation

technique. This method of localising was computationally intense and the robot could

not move continuously. Schultz and Adams [1998] presented a similar system, however

rather than waiting until a position error was detected, a locally constructed occupancy
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Figure 2.20: A typical occupancy grid representation. Here, the environment is repre-
sented by a matrix of cells. Each cell represents a small region in the environment and is
assigned a probability of being occupied by an object at that location.

grid was matched to a global one continuously. Thrun et al. [1998] attacked the problem

from a statistical view point with each cell in the grid continually updated with an estimate

of the probability that the robot is in that cell.

More recent developments in the grid-based methods include the introduction of framed

quad-trees [Yahja et al., 1998; 2000]. The framed quad-tree approach places a frame of

small cells around each quad (large cell). This allows many more exit directions for seg-

ments connecting the cells and therefore produces paths that are closer to optimal, as

the paths generated for fixed grid sizes can be highly quantised. Other researchers have

looked at fuzzy rules for classifying terrain (see e.g. [Seraji, 2000]) and multi-levelled

maps with differing cell resolution (see e.g. [Hsu and Hwang, 1998]). More popularly,

grid-based methods now incorporate probabilities of grids being occupied — otherwise

known as occupancy grids (see e.g [Moravec and Elfes, 1985; Thrun et al., 2000]).

Grid-based approaches are conceptually the simplest means of representing the envi-

ronment and it is relatively easy to integrate multiple sensing modes into the one represen-

tation. However, distinguishing similar environments is difficult because of the reduced

information content available, and the computational costs of localising the robot are high
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[Thrun, 1998b]. Also, the memory requirements of such a representation are proportional

to the area of the environment unless a sacrifice in resolution is made [Thrun, 1998b].

Absolute topological methods

Some systems use topological maps grounded in an absolute coordinate system. Nehm-

zow et al. [Duckett and Nehmzow, 1999a; 1999b; 2000; Nehmzow and Owen, 2000]

experimented with such a strategy in rather large-scale indoor environments. Distinctive

places were defined by a local occupancy grid13. These distinctive places were linked

by distance and heading information and, using this metric information, each distinctive

place was assigned coordinates in an absolute coordinate system. The method was ro-

bust to sensor imperfections and was demonstrated on a real robot, albeit in an indoor

environment.

2.5.8 Discussion

An advantage of the metric or survey systems over a purely reactive system is the fact that

path planning methods can be used to determine in advance whether the goal is achievable

[Laubach et al., 1998; Latombe, 1991; Choset and Burdick, 2000]. Furthermore, as the

map used is usually of the same form we would use, the goal is easily specified and it is

easy to communicate with the robot. Paths are usually optimal or nearly optimal, which

is important when energy considerations are required, such as for planetary rovers.

Systems using survey navigation require a considerable amount of computational ef-

fort for updating and maintaining world models and these approaches have been criticised

due to their heavy reliance on computational resources [Brooks, 1986; Brooks and Flynn,

1989; Desai and Miller, 1992]. This is particularly true of grid-based methods in which

memory and computational requirements are proportional to the area of the environment,

unless a sacrifice in resolution is made [Thrun, 1998b]. Consider Yamauchi’s robot which

requires three computers to navigate and map a small office/corridor environment — two

off-board computers (Sparcstation 20’s) deal with localisation and world modelling sep-

13Local here refers to containing information available to a current sensor reading
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arately, with an additional on-board computer dealing with motor control and low-level

sensor processing [Yamauchi et al., 1998]. Of course, the available computational power

is ever increasing, and methods which were untenable a decade ago are now well within

reach.

A more relevant criticism for survey navigation is its reliance on accurate and con-

tinuous position estimation [Nehmzow, 2000; Brooks, 1986; Donnart and Meyer, 1996;

Nagatani et al., 1998]. Classical survey navigation techniques are essentially blind to

the real world, seeing only abstract representations. Maintaining continuous estimates

of position is a burden on the navigation system due to the difficulty and uncertainty in

tracking position [Smith and Cheeseman, 1986; Borenstein et al., 1997]. Furthermore,

world models are generally hard to obtain, unreliable and difficult to maintain — clearly,

dynamic environments in particular are problematic [Nehmzow, 2000; Arkin, 1995].

Many researchers see the answer to these problems in Simultaneous Localisation and

Mapping (SLAM), also known as Concurrent Localisation and Mapping (CLM). This in-

volves the somewhat circular process of localising the robot and exploring an environment

while building a map (see e.g. [Smith et al., 1990; Guivant et al., 2000; Thrun et al., 2000;

Rencken, 1994]). In the words of Rencken [1994]:

This is similar to the famous question of which came first the chicken or

the egg?

In order to localise, the robot needs a map — in order to build a map, the robot needs

to know its position on the map. A particularly difficult problem is that of cyclic envi-

ronments with long traverses. Much research has focussed on map-matching and pose

estimation from sensor readings in order to cope with cycles in the environment (see e.g.

[Gutmann and Konolige, 2000; Lu and Milios, 1997; Yamauchi et al., 1998; Scott et

al., 2000]. Pose estimation (localisation) is still a key problem for robots operating in

real-world environments, particularly when the environments contain cycles. In addition,

despite advances in computing technology, systems relying on metric representations are

limited in the scale of environments they can traverse by the inefficiency of such repre-
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sentations.

On the other hand, systems which navigate relative to the environment, such as topo-

logical navigation systems, can be built such that they do not have a need for continuous

knowledge of the robot’s position. This is not to say that relative systems cannot ‘get

lost’, merely that because the robot is not continually localised, one mode of failure is

almost eliminated. Relative systems can be augmented with metric data where it is appro-

priate, but do not rely solely on the abstract representations central to the operation of an

absolute, metric system. Because the time-consuming and error prone abstraction stage

is by-passed, relative systems can operate in real-time dealing with real environments.

Relative navigation can be more than a set of way-points or distinctive places, it can

provide a means of mapping an environment in the sensory domain rather than in terms

of geometry [Krose and Bunschoten, 1999]. Gaspar et al. [2000; 2000] use a set of

omnidirectional images for long range navigation, and visual path following for more

precise tasks such as door entry. Krose and Bunschoten [1999; 2001] pursue a similar

line of research but instead use probabilistic techniques, concentrating on determining

where the robot is in a given image set. Both of these systems map the image sets into

Eigen-space, reducing the dimensionality of the image data, and have so far only been

implemented on indoor systems. This form of navigation is also known as appearance-

based navigation which correlates directly to relative navigation. More recently Milford

and Wyeth [2003] presented a promising SLAM type technique based on hippocampal

models of rat navigation — the method did not explicitly use metric information, rather

the relations between distinctive regions in an environment were embedded in a neural

network architecture.

However, there are some drawbacks with relative navigation systems. First, truly au-

tonomous operation would have robots’ exploring and building up representations of the

environment that allow the subsequent definition and achievement of some goal. Relative

systems do not refer to a ‘hard’ map, making any self-built environmental representation

subjective and perhaps hard to interpret for a human. Further disadvantages include the

fact that distinctive locales are difficult to robustly recognise.
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Relative navigation is not hindered by a need for complete world modelling. It can

draw on many of the control techniques developed for the absolute systems. A relative

system can move away from the classical geometric environment representations to rep-

resentation that are based in the sensory domain. Relative navigation systems can be built

without a need for continuous knowledge of the robot’s position, and hence, one mode

of failure is almost eliminated. Relative navigation allows the redefinition of navigation

from [Franz and Mallot, 2000]:

the science of course and position estimation

to

determining and maintaining a course to a goal location.

The aim of this thesis is to demonstrate feedback control at a relatively high-level in

the navigation architecture, allowing a vehicle with significant motion constraints, such

as a car, to stabilize to a target pose based upon what it can presently ‘see’ in the environ-

ment. Whether using a relative or absolute navigation method, this can free up computing

resources for use by the higher level tasks, such as, for example planning paths through

complex environments. The next section provides some background material on nonholo-

nomic systems and reviews the literature on the pose stabilization problem.

2.6 Nonholonomic control systems

Nonholonomic systems have been studied in classical mechanics for over 150 years but it

is only recently that the control of such systems has received significant attention [Astolfi,

1996]. Nonholonomic systems arise when there are constraints on allowable local motion

in the system but not on the globally reachable configurations. In other words, such

systems have restrictions on allowable velocities which do not impact on the allowable

configurations which they can attain. Mathematically speaking, nonholonomic systems

have velocity constraints that cannot be integrated to position constraints.

The classic example of a nonholonomic control problem is parallel parking of an

automobile. In control terms, this is a stabilization problem in which the goal is to drive
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Figure 2.21: A disc on a rail. The disc’s motion is constrained by geometry but the
velocities of the system can be integrated to get the position of the disc – a holonomic
system.

the system configuration to some desired point. As anyone who has driven a car knows,

this is indeed possible for a car-like vehicle but may require considerable back and forth

manoeuvring.

This section addresses the literature on the stabilization of nonholonomic control sys-

tems, looking in particular at car-like and similar vehicles. The section begins with an

explanation of nonholonomy, introducing the kinematics of a commonly used platform

in the the literature, the unicycle. Car-like vehicle kinematics are then introduced, and

the stabilization control of nonholonomic systems is then reviewed. Finally, a review on

visual pose stabilization and visual homing is presented.

2.6.1 Nonholonomy explained

Consider the disc, see Figure 2.21, rolling in a one-dimensional track without slip. Two

coordinates can describe the disc’s state — angle of rotation, φ, and distance moved along
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Figure 2.22: A disc on a plane. The disc’s motion is constrained to the plane but its
configuration is determined by the path taken to the present position. The velocities of the
system cannot be integrated to obtain the system configuration – a nonholonomic system.

the track, x; the system has one input, φ̇. A relationship between distance travelled and

the angle of rotation of the disc can easily be established which reduces the number of

coordinates required to describe the state of the disc. The rate of angular rotation, φ̇, can

be integrated to completely describe the state (also called configuration) of the system.

If we know the current angular position of the disc and we were to roll the disc along

the track, on restoring the original angle of rotation (restoring the internal state), the disc

would be at the same position on the track. In other words, the state of the system is not

path dependent and the system is holonomic.

Contrast this to a disc moving without sideways slip on a two dimensional surface, see

Figure 2.22. The disc’s configuration is described by the point of contact on the plane,

(x, y), its roll angle, φ, and its yaw angle, θ. Demands to the system are the rate of roll,
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φ̇, and rate of yaw, θ̇. The no-slip condition gives rise to constraints on the allowable

velocities in the system:

ẋ − rφ̇ cos θ = 0 (2.1)

ẏ − rφ̇ sin θ = 0 (2.2)

where r is the rolling radius of the disc. These constraints are not integrable and there is no

limitation on the configurations which can be attained by the disc [De Luca et al., 1997].

When the generalised velocity of a mechanical system satisfies an equality constraint that

cannot be written as an equivalent condition on the generalised position, the system is

called a nonholonomic system [Wen, 1995; Latombe, 1991]. The disc-on-a-plane system

is nonholonomic — for a nonholonomic system, the state of the system is path dependent.

The disc-on-a-plane system is also known as a unicycle for which the kinematic equa-

tions of motion are [De Luca et al., 1997]:
⎡
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ẋ
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where the demands are v = rφ̇ and ω, and the remaining coordinates are as previously

defined. No reduction in the number of coordinates (3) required to describe the system

is available, and the number of control inputs (2) is less than the number of generalised

coordinates. When a nonholonomic system has fewer control inputs than generalised

coordinates, the system states cannot be driven to a desired configuration using smooth,

state feedback laws [Brockett, 1983]. For a vehicle system, driving all the system states

towards a desired configuration is known as pose stabilization. Unicycle systems are

well-studied in the nonholonomic pose stabilization literature.

So, in determining whether a system is nonholonomic, the important question is:

• Are the system velocity constraints integrable to position constraints?

If a system is nonholonomic, and the system is to be controlled, the important additional

question is:
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Figure 2.23: Car-like vehicle kinematics. Like the disc on a plane, the car’s motion
is constrained to the plane but its configuration is determined by the path taken to it’s
present position. The velocities of the system cannot be integrated to obtain the system
configuration – a nonholonomic system.

• Are the number of inputs less than than the number of generalised coordinates?

Such systems present challenging control problems as they allow the attainment of virtu-

ally any configuration available in the workspace but the attainment of a particular con-

figuration is intimately related to the path taken.

2.6.2 Car-like vehicle kinematic model

Figure 2.23 shows a car-like vehicle moving in a plane with velocity v and steering angle

φ. When modelling such a vehicle, it is normal to collapse the front and rear wheels into

a single, virtual wheel at the centre of each axle, the bicycle model. The front wheel can

be steered while the rear wheel orientation is fixed relative to the vehicle. The generalised

coordinates for this system are q = (x, y, θ, φ) where x and y refer to the coordinates of

the midpoint of the rear-axle (i.e the position of the rear virtual wheel), θ is the orientation

of the longitudinal axis of the vehicle with respect to the x-axis, and φ is the vehicle’s
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steering angle. This geometry constrains movement of the vehicle to rotation about point

K, the instantaneous point of rotation, provided there is no sideways slip of the wheels.

The no-slip condition gives rise to two kinematic constraints, one for each (virtual) wheel:

ẋf sin(θ + φ) − ẏf cos(θ + φ) = 0 (2.4)

ẋ sin(θ) − ẏ cos(θ) = 0 (2.5)

where xf and yf refer to the coordinates of the mid-point of the front-axle.

These constraints impose zero lateral velocity for both wheels. Using the rigid-body

constraint14:

xf = x + L cos θ (2.6)

yf = y + L sin θ (2.7)

where L is the distance between the vehicle’s front and rear axles, the first kinematic

constraint (Equation 2.4) becomes:

ẋ sin(θ + φ) − ẏ cos(θ + φ) − θ̇L cos φ = 0 (2.8)

These constraints can be shown to be non-integrable using a corollary of the Frobenius

theorem (see Latombe [1991] for a more complete explanation) so the car-like system is

nonholonomic.

For a rear-wheel drive vehicle, the kinematic model is given by [De Luca et al., 1997]:
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where v1 is the vehicle’s forward velocity (measured at the centre axle of the rear wheels)

and v2 is the steering angle rate. This system is a non-linear, driftless15 system with fewer

14A holonomic constraint.
15The term driftless refers to the fact that no motion takes place under zero input. On a flat plane, with

no control inputs a car-like vehicle remains in equilibrium. This is not the case for a flying vehicle which,
in general, will fall to the ground if no control inputs are provided.
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control inputs (2) than generalised coordinates (4) [De Luca et al., 1997] — a car-like

system cannot be feedback stabilized using smooth, state feedback laws [Brockett, 1983;

De Luca et al., 1997; Samson, 1993; Latombe, 1991; Samson and Ait-Abderrahim, 1991;

Campion et al., 1991; Bloch and McClamroch, 1989].

In the control community, the problem of stabilizing a mobile robot to a specific pose

has generally been approached from two directions; the open-loop and closed-loop strate-

gies. For the task at hand, we argue the case for the closed-loop control methods, with

vision used as the primary sensor. However, it is clear that a measure of open-loop plan-

ning is also usually required in order to prevent deadlock situations from occurring. The

next section explores the open and closed-loop strategies of pose control, together with a

review of vision for the position and pose control of mobile robots.

2.6.3 Pose stabilization

In this section, the literature on pose stabilization is reviewed. This literature is dominated

by results from the control community, usually using mobile robots with unicycle-like

kinematics. Solutions to the problem largely rely on complete state knowledge of the

robot, and as will be shown, real experiments are few. Following the review on pose

stabilization, a review of the literature which exclusively deals with vision-based control

is presented. This includes visual homing which is based upon the homing competency

discussed in Section 2.5.4. Visual homing, in essence, solves the position stabilization

problem, where the robot is driven towards a goal position, with no requirement on its

orientation, using visual feedback. Results in this field of the literature largely come from

the ‘biologically-inspired’ school of thought, with many solutions attempting to emulate

the visual and control ‘shortcuts’ exhibited by insects in particular. Our aim is to unite the

two fields of research, solving the pose stabilization problem using vision as the primary

sensor.

As noted in the Section 2.6.2, the pose stabilization problem has been attacked from

two major fronts, the open-loop approach and the closed-loop feedback approaches. We

begin the discussion with the open-loop approaches.
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2.6.3.1 Open-loop control

Open-loop control, or path-planning, and mobile robots have been synonymous areas of

research for many years due to the sense-model-plan-act approach common to mobile

robot systems. For a summary of early work refer to Latombe [1991] and Li and Canny

[1993].

Open-loop strategies seek to find a bounded sequence of control inputs, driving the

vehicle from an initial position to some arbitrary position, usually working in conjunction

with a motion planner (see e.g. [Latombe, 1991; Murray and Sastry, 1993]). Finding

this sequence of control inputs is difficult for the nonholonomic case and, in the event of

disturbances or modelling inaccuracies, a new plan has to be formulated [Oriolo et al.,

1998]. Computing power is ever increasing, however the compromise between optimality

and real-time operation still does not favour these approaches, particularly in our case

were we wish to run vision and control on a single on-board computer.

Early work on open-loop control concentrated on search-based techniques which es-

sentially performed an exhaustive search of all possible control input variations, satisfying

the nonholonomic constraints, which stabilized a vehicle to a desired configuration (see

e.g. [Barraquand and Latombe, 1989]). They usually operate through some decomposi-

tion of the configuration space into cells, after which some graph is constructed which

connects a starting and goal configuration. A search algorithm, such as A∗, is then used

to identify the ‘best’ path from a starting configuration to the goal configuration. ‘Best’

paths are described in terms of distance, minimal control inputs, shortest time, or any

other relevant cost measure or combination of cost measures.

These methods are computationally very expensive which motivated research on more

efficient techniques. Murray and Sastry [1993] looked at more efficient and elegant meth-

ods based on the tools from geometric control theory, applied to a car-like vehicle. More

recently, Kelly and Nagy [2002] looked at on-line trajectory generation with a promis-

ing parametric optimal control based approach, but again published results have so far

been limited to simulation studies. Oriolo et al. [1998] turned to learning-based control
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to overcome the computational costs but have so far been restricted to simulation stud-

ies. Other work has looked at path-space iteration (see e.g. [Divelbiss and Wen, 1997;

Lizarralde and Wen, 1996]) in which the problem is transformed to a root-finding prob-

lem and solutions performed in an iterative, feedback type manner.

Open-loop control in general fails when the robot is subjected to disturbances or if

there are inaccuracies in the plant model. The on-line approaches overcome some of the

shortcomings of open-loop control, enabling the robot to re-plan in the event of model

inaccuracies or other disturbances which affect the true path taken by the vehicle. How-

ever, many of these strategies are computationally very expensive, preventing the running

of other required processes, in our case computer vision, on the same computer proces-

sor. As computer power increases, providing more resources and time for running other

required processes, these on-line strategies will become more attractive — the open-loop

strategies can offer optimal, or close to optimal, solutions to the problem and can more

reliably deal with other constraints, such as the presence of obstacles in the workspace.

2.6.3.2 Closed-loop control

The closed-loop strategies consist of designing a feedback loop using proprioceptive and

exteroceptive sensors to provide estimates of the vehicle’s state (see e.g. [De Luca et

al., 1997]). Feedback control systems are generally more robust to uncertainty and distur-

bances when compared to their open-loop counterparts. All real mobile robots and sensors

are subject to noise and uncertainty — feedback control would thus seem essential.

Brockett’s theorem states that for a closed-loop system to be stabilizable to a desired

configuration using smooth, state feedback laws, the number of control inputs must be

greater than or equal to the number of generalised coordinates. For a vehicle with car-like

kinematics this is not the case and fundamentally non-linear feedback techniques must

be used. However, as the experience of anyone who has driven an automobile shows,

the system is controllable and stabilizable. For mathematical proofs for the general case

of driftless, nonholonomic systems the reader is referred to [Brockett, 1983] and for the

case of mechanical systems, refer to [De Luca et al., 1997; Samson, 1993; Latombe,
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1991; Samson and Ait-Abderrahim, 1991; Campion et al., 1991; Bloch and McClamroch,

1989].

Although smooth state feedback cannot be used to stabilize nonholonomic robots to

a pose, nonlinear feedback laws do exist. These laws rely on time-varying strategies,

discontinuous control or combinations thereof [Kolmanovsky and McClamroch, 1995].

For a comparison of the three strategies, refer to Canudas de Wit et al. [1993] or Kim and

Tsiotras [2002].

Here, the literature is discussed based upon the above taxonomy, restricting the dis-

cussion, unless necessary, to mobile robot systems rather than nonholonomic systems in

general. Importantly, much of the literature does not address what has been found in this

study to be a significant limitation of many control algorithms for the closed-loop pose

stabilization of car-like vehicles — input saturation and the dynamics of the steering and

velocity loops. Further to this, few researchers have implemented systems on real robots.

Discontinuous, time-invariant control

Discontinuous techniques operate by providing either piecewise continuous feedback

laws, or through a non-smooth transform of coordinates in which a smooth controller

is designed in the new coordinate system — when transformed back to the original coor-

dinate system, these controllers are no longer smooth. The discontinuous techniques have

by far seen more implementations on real systems and demonstrate considerably faster

convergence rates than their time-varying counterparts. However, most real implementa-

tions have been on unicycle-like robots which, although nonholonomic, are much simpler

in their kinematics.

The existence of piecewise smooth feedback controllers for nonlinear control sys-

tems was shown by Sussman [1979] and later demonstrated on several examples of low-

dimensional systems by Canudas de Wit and Sørdalen [1992a]. The piecewise smooth

techniques operate by splitting the configuration space into sub-manifolds. A supervisory

level in the controller then switches a set of time-invariant low-level controllers such that

stabilization to each sub-manifold of the configuration space proceeds, eventually leading
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to stabilization of the system to the desired configuration. This can occur with sliding

mode type controllers or with discrete-event switching.

Bloch et al. [1992] were one of the earliest researchers to present this type of ap-

proach, using a discrete event supervisor which switched between low-level, smooth,

time-invariant controllers. In this approach, there are two stages of design:

• First, find an open-loop strategy which will achieve the desired vehicle pose from

any initial configuration.

• Second, transform the motion sequence into a succession of equilibrium manifolds,

each of which can be stabilized by feedback.

Such an approach is very simple provided a suitable motion sequence can be determined.

This simplicity of design can allow the use of linear control tools for each motion phase,

with the resulting control being much easier to analyse and predict. However, the tech-

nique relies on the ability to devise an open-loop strategy for the system stabilization —

such strategies may not be obvious for some nonholonomic systems. In addition, dis-

turbances to states which are not controlled in the current phase of control cannot be

corrected at the time they occur unless another phase of control is initiated [De Luca and

Oriolo, 1995].

Later work by Lee et al. [1999] used a similar switching technique rooted in this

philosophy, which allowed a car-like vehicle to stabilize to a pose. Feedback in this work

was provided by inertial sensors which were integrated to give robot pose. As discussed

in Section 2.4.1, current inertial sensors are subject to drift, which upon integration to a

position estimate, leads to a significant accumulation of error if an outside sensing source

is not used for correction. However over the short distances in these experiments, the

method was successful at stabilizing the vehicle to a desired pose.

Sliding mode controllers for the problem of stabilizing a unicycle-like mobile robot

to a pose were presented by Guldner and Utkin [1994]. Later work by Lu et al. [2000]

extends sliding mode control to a car-like vehicle in simulation. Implementation on a real

vehicle has not been demonstrated.
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Some of the switching type controllers16 are susceptible to ‘chatter’, in which the sys-

tem oscillates around discontinuities in the system. Of course there are means to alleviate

such problems, for example, by providing boundary layers for the switching surfaces.

An alternative approach to nonholonomic pose stabilization is to use a coordinate trans-

formation. Systems, which operate with smooth controllers in a transformed coordinate

system avoid the chattering encountered in systems which rely on switching or sliding

mode strategies.

Changes in coordinates were initially exploited by Badreddin and Mansour [1993]

who used a fuzzy tuned state feedback control law based in the polar representation of a

unicycle-like vehicle’s pose. This transformation allows the design of smooth controllers

in polar-space, but creates a discontinuity at the origin. Their method involved the fuzzy

selection of gains, based upon measurement of the robot state. They present simulation

results but claim that the method has been functioning on a real robot for some time.

Aicardi et al. [1995] and many later authors (see e.g. [Pourboghrat, 2002; Aguiar

et al., 2000; Kantor and Rizzi, 2003; De Luca et al., 2002]) have based their system on

the original Cartesian to polar transformation of Badreddin and Mansour. Aicardi et al.

present more explicit proofs of the stability of the method and use fixed gains to stabilize

a unicycle-like robot to the origin in simulation. Later work includes the use of vision

as a feedback sensor, using switching strategies to ensure that visual targets remain in

view [Conticelli et al., 1999; 2000]. Indiveri [1999] attempted to adapt the model to

the bicycle model, commonly used for car-like vehicles, including analysis of saturation

of the velocity input. However, for a car-like vehicle, the important input in terms of

saturation is the steering angle and that work did not address this issue. In addition, all

experiments were simulated.

Parallel to the work of Aicardi et al., Astolfi [1995] developed techniques applicable

to all chained form nonholonomic systems and explicit methods to design discontinuous

controllers based upon a suitable coordinate transform. Astolfi [1995]; [1996] addresses

16Sliding mode control is not strictly a discrete state switching controller but it is conceptually similar,
operating by suppressing terms in the control law rather than switching between controllers.
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car-like vehicles but again, it is assumed that the modelled vehicle has no steering angle

or velocity input saturation. Although Astolfi experimented with a unicycle-like robot,

all experiments on a car-like vehicle were simulations. Canudas de Wit and Sørdalen

[1992b] also use a change of coordinates, designing a smooth feedback law in this new

coordinate system to stabilize a simulated unicycle to a pose. Their change of coordi-

nates is based upon a circle tangent to the desired configuration, rather than a transform

designed to put the system into chained form. This work provided excellent stabilization

times and avoided ‘chattering’ at the discontinuities of the piecewise continuous control

law however, all experiments were simulations.

Time-varying control

Time-varying strategies use continuous feedback strategies combined with an exogenous

time variable which essentially gives the system control energy at configurations where

it would otherwise become stuck in ‘local minima’. One of the earlier researchers to use

time-varying strategies was Samson [1991]. An exogenous time variable combined with

a smooth, static state feedback law allowed a simulated mobile robot to stabilize to a pose

using either velocity or torque inputs. Based upon this result, Coron [1992] proved that all

controllable, driftless systems could be stabilized to a pose using smooth periodic, time

varying feedback but did not provide any feedback laws. Feedback law design approaches

using a similar method were presented by Pomet [1992] and Samson and Ait-Abderrahim

[1991]. The former work was based upon transferring the system state representation into

a chained form. The latter work was based upon following the trajectory of a ‘reference

cart’. Samson [1993] later also incorporated the idea of transforming coordinates to help

controller design.

More recent results in the time-varying literature include analysis of saturated inputs

for a unicycle-like robot [Jiang et al., 2001]. In the case of this work, the convergence

rate is again exceedingly slow for the stabilization problem and control inputs are, as with

most of the time-varying literature, highly oscillatory which could lead to problems on

‘real’ robots. Others, have used adaptive control techniques in an effort to deal with plant
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uncertainty (see e.g. [Pourboghrat and Karlsson, 2002]).

Kim and Tsiotras [2002] studied several time-varying controllers on a Khepera robot,

and found that all were very slow, in comparison to other types of controllers, and in one

case divergent. In general, real, non-simulated studies of time-varying strategies have

come to similar conclusions.

Hybrid discontinuous and time-varying control

A criticism of time-varying control is the slow convergence rate. M’Closkey and Murray

[1997] built on the results of Pomet [1992], presenting a design approach to construct-

ing time-varying feedback laws with exponential convergence rates when stabilizing to

a desired configuration. This is based upon a non-smooth state feedback combined with

an exogenous time variable. Their results included application to a real, car-like robot,

in which their controller compared favourably with earlier work in time-varying control,

including Pomet [1992]. The mobile robot used was attached to a mechanical linkage

which provided the state feedback used for control.

Sørdalen and Egeland [1995] presented a method which combined a discontinuous

controller with an exogenous time variable, applying it to general nonholonomic systems

which could be transformed to the chained form. They present results for a simulated

car-like vehicle showing excellent convergence rate. However, as with much of the work

in the field, results were simulated and the effects of saturated control inputs were not

considered.

2.6.3.3 Visual pose stabilization

Much of the work in pose stabilization has been on simulated models of vehicles, rather

than real vehicles. In this section, the research which has produced real working vehicles

is reviewed, focusing on those systems which use vision for feedback.

Many implementations have been in indoor environments, taking advantage of the

structure and the ground plane constraint (i.e. the ground in the environment is completely

flat allowing an estimation of the range of an object from its vertical position in the image
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— Horswill [1993] was one of the earlier researchers to take advantage of this).

In addition, most of the vision-based pose stabilization literature uses monocular cam-

eras for which the controller must also maintain the target in the camera field of view, as

well as stabilizing the vehicle. In order to do this, most researchers use switching control

techniques similar to the work of Bloch et al. [1992]; [1990]. Here, a discrete-event super-

visor chooses the appropriate controller from a suite of controllers, based upon the current

state of the robot. Of course, for such a strategy to work, the target features must be in

view at the robot’s initial pose, unless a further ‘feature search’ type behaviour is provided

at the initial pose. This constraint restricts the applicability of monocular cameras to the

pose stabilization problem. A sensor more suited to the problem is the omnidirectional

camera. An omnidirectional camera avoids the requirement for control mechanisms to

maintain the target features in the field of view because the field of view is panoramic.

However, like monocular cameras, target occlusion can still occur.

Kantor and Rizzi [2003] experimented with a small unicycle-like robot equipped with

a colour, monocular camera. They use an engineered coloured cube with each face painted

a different colour, allowing full pose estimation from a single monocular image. Their

work is based upon the Variable Constraint Control (VCC) paradigm which divides con-

trol problems into a natural sequence of subproblems which can be solved using feedback

— this technique is used to stabilize the robot and to maintain the ‘beacon’ within the

image frame during robot motion. As noted earlier, the use of an omnidirectional camera

would avoid this latter requirement because targets do not ‘disappear’ as easily from such

an image due to the panoramic field of view. They report results from a stabilization ex-

periment but, because the strategy is also maintaining the landmark in the field of view,

convergence to the goal configuration is relatively slow.

Similarly, Conticelli et al. [1999] rely on a supervisory level which switches be-

tween low-level controllers to ensure features are maintained in the image, and the robot

is stabilized to a pose. Like much of the work in this field, their vision system relies on

tracking of corner or edge-based features, in other words, distinctive regions in an image

of high intensity curvature. In this case, Conticelli et al. [1999] use corner tracking to
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track a landmark against a white background. The low-level controllers in this work were

based upon the polar representation pioneered by Badreddin and Mansour [1993]. Later

work by Conticelli et al. [2000] simulates a robot and vision system, again using features

extracted from the artificial environment, combining vehicle odometry with vision to es-

timate vehicle-object relative positioning. However this work relies on more complicated

switching between low-level controllers. Extensions to this work using a similar switch-

ing strategy were experimentally implemented on a unicycle-like robot [Murrieri et al.,

2002]. Here, corner features were tracked using multiple temporal windowing and filter-

ing of the grabbed images — this process increases the signal-to-noise ratio of the vision

system. However as with the work of Kantor and Rizzi [2003], convergence is slow and

necessarily oscillatory to maintain features in the camera’s field of view.

‘Artificial’ visual cues on a wall are a popular means of providing systems with

‘landmarks’. Hashimoto and Noritsugo [1997] use such visual cues to control a car-

like, remote-control vehicle. They use blob extraction techniques to find the features

and assume knowledge of the world coordinates of these features. All processing occurs

off-board, based upon vision transmitted from a monocular camera mounted on the ve-

hicle. Their controller is an extension of that presented by Canudas de Wit and Sørdalen

[1992b], who used a discontinuous transform of coordinates based on a virtual circle with

a tangent at the origin. They transform this representation to an image-based form. In

combination, these transformations can produce a singularity which prevents full pose

stabilization (i.e. if an orientation error exists on reaching the target position, there is not

enough control effort to resolve it). To overcome this, Hashimoto and Noritsugo [1997]

introduce a switching strategy. This switching strategy does not provide a specific mech-

anism to ensure that features remain in the image — in this case such a mechanism is not

required because their controller is resolving the robot pose error in image coordinates.

However, it must be assumed that when the robot begins its motion that the features are

already in view. Resulting vehicle motion is highly oscillatory at the origin although the

time to convergence is relatively fast. However, given the size of the vehicle, the residual

error on reaching the target pose is relatively large, of the order of 0.15 m.
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Lietmann and Lohmann [2000] also use artificial visual cues on a wall, again in a

visual servoing framework. The features used are four ‘blobs’ which are extracted from

the image using thresholding and blob-analysis. They combine an image-based visual

servoing system, which does not cope with the nonholonomy of the system, with a trajec-

tory generator, which constantly provides ‘virtual’ goal points which are reachable given

the nonholonomic constraints of the vehicle. These virtual goal points lead the vehicle

towards the desired configuration.

An alternative to an omnidirectional camera is to fit the vehicle with a manipulator

mounted monocular camera17 which can be used to track features during the vehicle’s

motion. Using a hybrid time-varying and discontinuous control law rather than a switch-

ing strategy, Tsakiris et al. [1997] stabilize a car-like vehicle fitted with a monocular

camera mounted on a robot arm. Because the camera was mounted on a robot arm, the

target features could be tracked and the stabilization of the mobile base did not require

specific motions to keep the target in view. Off-board VLSI chips were used to process

the vision data, relying on the concept of active-windowing to track regions of interest

— a Kalman filter was attached to each region of interest, performing tracking. The ob-

ject providing the corners for tracking was a fixed target, the size of which was assumed

to be known. They present methods and results for three different tasks: stabilizing the

robot arm-mounted camera to a pose, stabilizing the mobile base to a pose (while track-

ing the image features by servoing the robot arm) and, stabilizing the mobile base and

camera pose. Their method is based upon the earlier work of Samson [1995], in hybrid

time-varying and discontinuous controllers. The convergence rate of this type of control

is slow, and results presented by Tsakiris et al. [1997] are for very modest initial con-

ditions (the vehicle’s initial distance from the goal was less than 25 cm for which it took

188.4 seconds to stabilize).

Das et al. [2001] experimented with a small toy truck equipped with an omnidirec-

tional camera. Images are transported to an off-board computer and the processed data

used to control the position of the truck. The controller is based upon a transformation of

17A pan-tilt camera would be just as effective.
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coordinates, and position control is achieved with the use of a reference cart. It is noted

that this research does not solve the pose stabilization problem, it merely allows the vehi-

cle to attain a goal position with no requirement on goal pose, similar to the visual homing

literature. However, earlier work by Das et al. [1998] involved simulating formations of

mobile robots and parallel parking based upon a ‘follow-the-leader’ concept in which the

leader followed some optimal path derived off-line, and the follower vehicles mimicked

the leader’s motion using feedback control techniques.

Other systems rely on optic flow techniques alone to provide information on time-to-

collision and also stabilization with respect to a visually rich target (i.e. a target with a

large number of edges allowing good optic flow calculations), see for example [Santos-

Victor and Sandini, 1994].

Another means of providing visual feedback is from an off-board camera. De Luca

et al. [2002] use a calibrated camera attached to the ceiling to track the robot. The robot

is equipped with a top mounted board containing three LEDs which form an isosceles

triangle pointing to the front of the vehicle. The LEDs are found in the image using

thresholding and blob-analysis, from which the position of the triangle can be deduced

and the pose of the vehicle estimated. They compare two sets of controllers, the first

based on the polar representation of Badreddin and Mansour [1993] and the second based

on Dynamic Feedback Linearisation (DFL). The DFL method augments the robot state by

addition of an integrator on the linear velocity input leading to a PD type controller. The

DFL controller compares favourably but careful selection of gains is required to avoid

singularities at the origin.

The discussion so far has been limited to robots operating indoors as the majority of

research conducted in pose stabilization is for small indoor robots, usually unicycles. An

exception is the work of Minten et al. [2001] who looked at docking type behaviours,

in indoor and outdoor settings. Their work is based upon potential-field type approaches

to illicit the required response from the vehicle. The potential field is designed to give

the robot the correct orientation on reaching the goal — in this case, the task is to dock a

small robot with a ‘mother robot’. The vehicle uses a monocular colour camera to track
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a landmark which contains two horizontally adjacent rectangles of different colours. In

contrast to the techniques described above, the control law is simply based on the pixel

counts of each rectangle. For example, if the ratio of right to left pixel count is greater

than one then turn left. Vehicle velocity is set according to the total number of pixels.

Minten et al. [2001] conducted trials in a variety of indoor and outdoor environments

of differing lighting conditions, demonstrating a relatively high success rate, albeit from

relatively close starting positions.

2.6.3.4 Visual homing

Stabilization has been researched by two disparate sets of groups. The first is the con-

trol community, who usually solve the problem with full robot state knowledge, with few

instances of real functioning systems. However, as the previous section demonstrated,

there is a growing body of literature on vision-based pose stabilization for mobile robots.

The second group take inspiration from biology, seeking solutions which are much sim-

pler, using visual and control ‘shortcuts’ to solve the problem of positioning a mobile

robot with respect to its surroundings — in this literature no constraint is placed upon

the robot’s goal orientation. In other words, this literature solves the position rather than

pose stabilization problem, and this behaviour is referred to as homing, as discussed in

Section 2.5.4. The vast majority of the literature on this problem is based upon the use of

visual feedback and is often inspired by biology, in particular insect navigation. The use

of omnidirectional vision is much more common in this literature, and avoids the prob-

lems discussed in the previous section of maintaining features within the camera’s field

of view.

Much like early work in reactive navigation, visual homing was driven by the inade-

quacies of classical path planning approaches and their need for complete knowledge of

the operating environment. There are two major schools of thought on navigation using

vision-based feedback [Weber et al., 1998]:

1. Landmark-based homing — salient features in the current and target views are ex-

tracted with the differences used to derive a homing vector
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2. Image-based homing — differences in the raw images taken at the current and target

locations are used to derive a homing vector.

This categorisation is based upon competing hypotheses for the mechanisms of insect

navigation — Do insects use features within a retinal image or the retinal image itself

to find locations in an environment [Möller, 2001]? For robotics, the former is the more

popular.

Image-based techniques rely on matching whole images obtained at the goal and start-

ing location. Early work using this type of approach includes that of Franz et al. [1998a;

1998b; 1997] who use a slice of an omnidirectional view of the world at the horizon. This

current view of the world is then distorted in such a way as to bring it closer in appearance

to the home view, from which a homing direction is derived. They implemented their sys-

tem on a small robot operating in an artificial ‘town like’ environment. They report good

results for starting locations which are close to the target location (< 15 cm) but success

drops away dramatically as the robot is displaced further from the goal.

More recently, Zeil et al. [2003] performed experiments with an omnidirectional cam-

era mounted to a gantry which allowed three-dimensional translations. They showed that

through simple image subtraction, using whole images rather than a reduced view relying

on a slice at the horizon, the system was able to return to a target location within a fairly

small ‘region of attraction’ ( 1 m). Importantly, their system operated outdoors in unmod-

ified environments. However, as with most of the image-based techniques, the catchment

area (or region of attraction) is fairly small in comparison to the landmark-based tech-

niques.

Turning to the landmark-based approach, Hong et al. [1991] were one of the ear-

liest researchers to experiment with a mobile robot equipped with an omnidirectional

camera for homing. Their paper titled ‘Image-based homing’ is more aptly categorised

as a landmark-based approach as their method relies on the detection and extraction of

salient features in images rather than the raw images themselves to derive a homing vec-

tor. Their work was implemented on a small robot in an office environment and showed
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that homing to a set of 17 distinctive places at a spacing of approximately 30 cm allowed

a robot to traverse an environment. Hong et al. [1991] used a 360◦ grey-level view of

the world obtained from a catadioptric omnidirectional camera. This view was condensed

into a one-dimensional location signature which contained the required information for

the robot to home-in on a series of target locations. This one dimensional signature was

essentially a slice of the panospheric image taken at the horizon. Location signatures were

distinguished by a list of characteristic points (in Hong’s experiment 15 were used) ranked

according to the gradient of change in intensity of the image measured over an angular

interval in the image. Normalised correlation functions were used to match location sig-

natures of current and target views. To deal with illumination changes, they assumed that

the difference between the target signature and the current signature at the same location

was some affine transformation of the brightness profile. To help deal with perceptual

aliasing, Hong’s robot was not able to rotate; each image taken had essentially the same

perceptual frame of reference.

Much subsequent work in visual homing relies on similar visual processes, i.e. sam-

pling a one-dimensional view at the horizon of a panoramic image, obtained either us-

ing an omnidirectional camera (see for example [Franz et al., 1998a; 1998b; Möller

et al., 1998; Hafner and Saloman, 2002; Hafner and Möller, 2001]), or a conventional

camera combined with a rotating behaviour (see for example [Gaussier et al., 2000;

Weber et al., 1998; 1999]), or a ring of photo-diodes (see [Möller, 2000]). The advantages

of sampling this one-dimensional subspace of the original image at the horizon include

[Franz et al., 1998a]:

1. Smaller number of pixels reduces processing time.

2. Landmarks at the horizon do not leave the field of view during rotation and transla-

tion unless they are occluded by other objects.

3. The 360◦ view is more robust to changes affecting only part of the view, for example

moving objects.
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4. Places can be encoded with a single view without having to ‘stitch together’ multi-

ple representations.

Hong et al. [1991] assumed that the camera orientation was fixed with respect to the

environment — subsequent work makes similar assumptions or use another sensor to

provide a reference direction so that the world can be viewed at the same orientation.

There is very little literature on visual homing for robots outside the confines of indoor

laboratories. Lambrinos et al. [2000] performed a simple visual homing experiment in

the Saharan desert but used man-made black cylinders as artificial landmarks, which were

very easy to segment from the stark background. The calculation of the homing vector

was conceptually much simpler than the approaches of previous authors, and probably

more effective, requiring no correspondence or matching of landmarks between views.

More recent visual homing systems adopted by the robotics community include Bianco

and Zelinsky [1999] who use colour template matching to generate ‘reliable’ landmarks

in an image which are then subsequently tracked. They initially used a monocular cam-

era but later moved to a catadioptric omnidirectional camera, using an unwrapped image

[Thompson et al., 1999; 2000; Thompson and Zelinsky, 2002]. A similar region matching

system was implemented by Gaussier et al. [2000], inspired by the biological literature.

They used a neural network architecture which learned to associate actions with a set of

images from around the goal area. Their system showed that navigation could proceed

completely independently of any metric information.

A similar strategy, which used automatically selected landmarks, was also presented

by Rizzi et al. [2000]. In this work, a monocular camera was used, so it must be assumed

that the robot is facing (or tracking) the goal location and it’s initial position is reasonably

close to the goal location.

As noted earlier, corners can also be used as landmarks. Argyros et al. [2001] used

corners detected in an image for landmarks then tracked them using a KLT corner tracker.

Their method was similar in concept to Hong et al. [1991], homing to a sequence of

‘intermediate points’ to reach a goal location. Their work showed that ‘corners’ could
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only be used for a relatively short period of traversal when using omnidirectional vision.

To overcome this, they used ‘intermediate points’ which switched to tracking new lo-

cally available corners for landmarks, linking the intermediate points in a path eventually

leading to ‘home’ — this is very much in the vein of the recognition-triggered response

competency discussed in Section 2.5.5 where the robot has to follow a fixed route to the

target location.

In a loose sense, visual homing is a form of the broader field of visual servoing. Visual

servoing is usually associated with the control of the pose of a fixed robot’s end effector

using visual information in a closed feedback loop [Hutchinson et al., 1996]. An error

signal, being the differences in the current and desired images, is used to drive the plant

in such a manner as to minimise this error term. Hutchinson et al. [1996] give a detailed

explanation of visual servoing in the context of position-based and image-based systems.

Visual homing corresponds most closely with image-based visual servoing in that features

of the desired and target images are used directly to define an error signal. Position-based

visual servoing uses image features to derive robot pose (via a sensor and object model)

with the differences in current and desired pose defining the error signal. Thus, position-

based visual servoing is more closely related to survey navigation in which models of the

environment are used to determine the mobile robot pose and deduce navigation instruc-

tions [Corke, 2001].

In fact, visual navigation in general can be seen as a planar version of visual servoing.

Corke [2001] presented an image-based visual servoing technique, in simulation, for an

omnidirectional robot (i.e. a holonomic system in which the vehicle can independently

translate and rotate) based upon an omnidirectional view of the environment. This method

has many interesting parallels with visual homing and the control theory-based approach

to pose stabilization. It relies on the use of a snapshot of the landmarks at a target location,

from which the feature bearing error between the target view and the current view are

used to drive the vehicle towards the target location. However, the ‘catchment area’ of

the method as presented by Corke [2001] is smaller than for the landmark-based visual

homing strategies.
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2.6.4 Discussion

The majority of the visual homing literature assumes that the camera is either rotationally

invariant (i.e. the camera on the vehicle maintains a constant heading irrespective of the

base) or that a reference direction is supplied by some other means. Omnidirectional

vision is commonplace in this literature. Importantly, the panoramic view provided by

such a sensor prevents the need for specific control mechanisms to keep landmarks in the

camera field of view.

In contrast, the pose stabilization literature using visual feedback does not assume

this knowledge of camera orientation but extracts it from the image itself. However, om-

nidirectional imaging is much rarer in this literature. Recently published studies involve

the use of monocular cameras for which the controller must be designed to ensure that

landmarks are kept in the field of view. Common to the literature reviewed is a lack of

research on a realistically sized vehicle using vision to solve the full pose stabilization

problem. In fact, as Kelly and Nagy [2002] note, in the field of pose stabilization for non-

holonomic systems, there is an abundance of theoretical work but few instances of real

implementations.

In terms of vision-based systems, pose stabilization for nonholonomic vehicles has

not been achieved using feedback from an omnidirectional camera. Work on real vehicles

has so far been restricted to ‘laboratory-like’ environments and ‘laboratory-like’ robots.

In summary, the following major points were highlighted in this literature review:

• Many existing control strategies have not been tested outside of simulation studies

which consider only the kinematics of the system. Dynamic effects, such as steering

loop actuator dynamics, and additional nonlinear effects, such as input saturation,

may prevent the physical implementation of these strategies.

• There are few instances of physical implementations of pose stabilization strategies

on car-like vehicles.

• A growing body of literature is emerging on the application of vision for feedback
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pose stabilization of mobile robots. These robots have so far been limited to small

laboratory unicycle-like vehicles. Although in the visual homing literature, which

solves the position rather than pose stabilization problem, omnidirectional vision is

popular, there is little literature from the control community using such a sensor.

• Many existing visual pose stabilization techniques may not scale well to larger ve-

hicles because larger vehicles require more space to execute the necessary motions

for stabilization — this additional space means that vision systems must be able to

sense landmarks from a longer range. Furthermore, techniques which attempt to

maintain the landmarks in the image while also servoing to the desired pose may

encounter problems with the larger motions required to stabilize bigger vehicles.

The major contribution of this thesis is the development and implementation of a vision

based pose stabilization scheme operating on a real car-like vehicle with significant actu-

ator dynamics, also dealing with nonlinearities such as input saturation.

2.7 Conclusions

The fundamental behavioural prerequisites for any of the navigation competencies pre-

sented in Table 2.1 are the ability to move through an environment and to recognise a goal

when it is acquired. For flexibility and manoeuvrability purposes, many mobile robots to

date have kinematics which allow them to rotate about their own vertical axis. If a goal

location is attained, such robots can simply rotate to provide the correct orientation, and

hence pose. This approach is suitable for indoor applications, where robotic technology

will probably be implemented on ‘new’ vehicle designs. However, industrial applications

of mobile robotics will probably involve retro-fitting systems to existing vehicles or ve-

hicle designs. Many industrial vehicles have kinematic constraints which prevent them

from rotating on their own vertical axis and thus, the attainment of a particular pose in

an environment can only be achieved with proper path selection. If a mobile robot is to

perform useful tasks, interacting with the environment, it must have the ability to reach a

destination with a particular orientation, i.e. it must be able to stabilize to a pose.
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A car-like vehicle is constrained to moving in a series of arcs and lines and thus the

attainment of a particular pose is highly dependent on the path taken. For nonholonomic

systems with less control inputs than generalised coordinates, such as car-like vehicles,

Brockett [Brockett, 1983] showed that there are no smooth, state feedback stabilization

laws. The pose stabilization problem for car-like vehicles can be solved by open or closed-

loop strategies. The open-loop strategies attempt to find a bounded sequence of control

inputs which take the vehicle to the desired pose, given an initial pose. These usually

operate in conjunction with a motion planner, which is normally associated with the clas-

sical, absolute navigation methods. Such systems are computationally expensive, and in

the event of a disturbance due to inaccuracies in the environmental or vehicle model, a

new plan needs to be formulated. In contrast, the closed-loop systems operate by minimis-

ing the error between sensed and desired pose, through the application of some feedback

control law. Brockett’s result requires that the control law be discontinuous, time-varying,

or a combination of both. An alternative is to relax the constraint on orientation and sta-

bilize to a position rather than a pose. This has been the strategy used by much of the

biologically-inspired homing strategies.

The work of this thesis unites results from the visual homing and pose stabilization

literature, using an omnidirectional camera as the primary sensor. In addition, a compar-

atively larger vehicle will be used than found in previous studies and the control must

be able to cope with the associated dynamics and limitations in the steering and velocity

loops.
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Chapter 3

The Test-bed: the Autonomous Tractor

The Autonomous Tractor is a ride-on mower which has been fitted with an array of actu-

ators, sensors and a computer system allowing the implementation and testing of control

and navigation algorithms. The vehicle is car-like and is driven by a petrol engine which

also supplies power to all on-board systems. The vehicle’s design is such that it can

operate in three modes: manual, remote or automatic. The vehicle can operate as a

stand-alone unit but can also communicate to a network of computers through a wireless

LAN connection. For simulation purposes, the vehicle’s kinematics are represented by the

bicycle model, while the velocity and steering loops are modelled using experimentally

derived dynamic models which also encompass non-linearities such as input saturation.

3.1 Introduction

An important aspect in field robotics is the energy source for the robot. Many current mo-

bile robots rely on chemical batteries or a tethered connection to an external power supply

[Debenest et al., 2002]. Mobile robots consume a considerable amount of power for ac-

tuating levers, powering sensors, and running communications and computer systems. In

the case of battery-powered robots, the normal tasks of the robot quickly consume the

available energy, limiting operating times. In the case of tethered robots, operating times

are essentially unlimited but manoeuvrability and range of operation are limited by the

tether. In addition, both methods require significant electrical infrastructure, either to

85
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Figure 3.1: The Autonomous Tractor.

charge batteries or to provide the external power source transmitted by the tether [Deben-

est et al., 2002]. Such infrastructure may not exist in the desired operating environment.

The research platform developed and used in this thesis is a Toro ride-on mower, a

rear-wheel driven, front steered vehicle with car-like kinematics. This vehicle is repre-

sentative of many existing vehicles in industry yet is small enough to enable experiments

to proceed in relative safety. It is also driven by a petrol engine which supplies all the nec-

essary power for the on-board systems. Figure 3.1 shows the automated vehicle, which is

referred to as the Autonomous Tractor (AT).

The modified vehicle is capable of three modes of operation:

• Manual — the vehicle is driven manually by a person sitting on the vehicle.

• Remote — the vehicle’s controls are electrically actuated with demands supplied

by a person using a hand-held remote control transmitter.
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• Automatic — the vehicle’s controls are electrically actuated with demands supplied

by the on-board computer system.

The design brief for the automation of the vehicle called for minimal obvious or visible

modification — it should look largely unchanged. Further to this, the vehicle’s levers

should move when operated by the automation system and the automation system should

not preclude the manual operation of the vehicle.

This chapter outlines the design of the automation system and also describes the kine-

matic and dynamic modelling of the vehicle.

3.2 The original vehicle

The ride-on mower is a 16 hp Toro Wheelhorse on loan to CSIRO Manufacturing and In-

frastructure Technology from the School of Civil and Environmental Engineering, Faculty

of Engineering, at the University of New South Wales. It is an Ackerman steered vehicle

(i.e. it is a car-like, nonholonomic vehicle), capable of forward and reverse motion. The

vehicle’s rear wheels are powered by a hydraulic drive (hydro-drive), which in turn is pul-

ley driven by the petrol engine. The hydraulic drive permits proportional control of the

vehicle’s speed. Top speed in the forward direction is approximately 12 kmh−1. For the

initial stage of automation, the mower blades have been removed. However, the design of

the automation system is such that the blades can be re-fitted when desired.

Figure 3.2 shows the main vehicle controls. When driven by a human operator (manual

operation), the vehicle is controlled using the:

• Steering wheel — Provides control over the heading of the vehicle.

• Forward-reverse (speed) pedal — Operated by the right foot, provides control of

the vehicle’s speed and direction of motion.

• Brake pedal — Operated by the right foot (for safety reasons the foot has to be

removed from the speed pedal to operate the brake). This brake disengages the belt
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Figure 3.2: The AT’s control levers.

which drives the hydro-drive, and also operates a series of friction pads on one of

the rear axles.

• Park brake pedal — Mechanically locks the brake pedal in the ‘on’ position once

the brake pedal has been depressed.

• Throttle — A lever operated by the left hand. Essentially it is a three position lever:

slow, fast, and choke, although there is a limited range of proportionality between

the slow and fast positions. This lever operates a cable connected to the engine
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carburettor and sets a nominal engine speed.

• Blade engage — This lever engages the mowers blades (not automated).

• Blade adjust — This lever adjusts the cutting height of the blades (not automated).

The speed pedal controls the vehicle’s forward-reverse direction and rate of motion

in an approximately proportional manner. The throttle sets the vehicle’s engine speed,

which effects the amount of power transmitted to the hydraulic drive. Higher engine

speed means more power to the hydraulic drive which, in turn, means a higher vehicle

speed for a given speed pedal position. Under normal operation, the throttle is set on

high.

3.3 Control system design

The AT has been fitted with an array of actuators, sensors, and a computer system, allow-

ing complete control of the vehicle’s function. To satisfy the requirement of not preclud-

ing manual operation, a means of disengaging the steering automation system has also

been fitted, resulting in a total of six axes of control.

An overall schematic of the entire AT control system is shown in Figure 3.3. The sys-

tem consists of a set of HC12 microprocessors which control the individual actuators for

each axis of control. The HC12 processors can receive demands from either the hand-held

radio transmitter or the computer system. However, computer system demands can only

be sent to the HC12 system if the computer senses that the key-switch is in automatic-

ready mode, the automatic pushbutton has been pressed, and the software switch for the

particular axis of control has been activated.

The following description is divided into two main sections. First, the low-level con-

trol system including the HC12 system, actuators and low-level feedback sensors are de-

scribed. Second, the computer system hardware and software is presented. Video footage

of the AT’s first remote control test is included in the supplementary material contained

in Section A.1.
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Figure 3.3: A schematic of the entire control system on the AT. Included is the odometry
system which was fitted with the rest of the control system.

3.3.1 Low-level control

The six vehicle inputs are monitored and controlled by a stack of three, independent

Motorola HC12D60 microprocessors, each of which controls two axes. These are grouped

as follows:

• steering / engage

• brake pedal / park brake

• throttle lever / speed pedal

Figure 3.4 shows a schematic of the HC12 stack. Each axis of control has four common

elements:

1. An actuator.
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Figure 3.4: A schematic of the HC12 stack. The stack consists of 3 pairs of microproces-
sor and driver boards, each of which is responsible for two axes of control.

2. A feedback sensor (actuator or lever position).

3. A controller.

4. A means of providing a control demand.

A schematic of an individual HC12 microprocessor / power drive pair is illustrated in

Figure 3.5 (a), also showing the common elements of each control axis. Feedback for
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each axis of control is in the form of an analogue or logical 0 − 5 V signal. Control

demands to the HC12 are provided by the radio remote or via a serial link to the on-

board computer. When the system is in remote mode, demands are supplied from the

hand-held radio transmitter. When the system is in automatic mode, each individual

control axis can be controlled by either the computer or the remote. Switching between

the two demand sources is selected by the computer, with the default source being the

remote control, see Figure 3.5 (b). When the AT is in remote or automatic mode, the

HC12’s compare the desired demands with the feedback sensor, applying a control law to

the resulting error signals. These control inputs are then amplified and converted to high

frequency PWM signals (simulating a variable DC voltage) which drive the actuators. All

the control actuators are nominally 12 V.

Each axis of control has different requirements in terms of the type of feedback, ac-

tuator, and control law used. The following sections briefly describe the individual axes

of control, including a section on the other modifications made to the vehicle. A pictorial

overview of the modifications made to the vehicle is given in Figure 3.6.

3.3.1.1 Steering

The original steering mechanism on the AT consisted of a gear and linkage system oper-

ated by turning the steering wheel. To automate the steering, the steering column has been

fitted with a spur gear which is driven by a rotary motor-gear set1, as shown in Figure 3.7.

Steering angle feedback is provided by an absolute encoder mounted on the pivot point of

the front left-hand wheel, see Figure 3.8 (a).

The geometry of the steering linkage is such that the left and right-hand wheels are

rotated equally. Because of this, the vehicle is not strictly Ackerman steered, and the front

wheels will slip slightly when the vehicle is turning. However, the vehicle is only capable

of relatively slow speeds and the slip has not been found to be significant. The steering

angle range is approximately ±30◦. When the steering actuation system is engaged, and

the system is in remote or automatic mode, the steering angle of the vehicle is controlled

1A wind-screen wiper motor from an automobile.



3.3 Control system design 93

microprocessor
HC12

link
RS422

signal

error signals

power
driver board

0 − 5V

0 − 5V

signal
PWM

signal
PWM

position

position
sensor (2)

sensor (1)

actuator (1)

actuator (2)

computer
Linux

PWM
receiver

RC

(a) Each HC12 microprocessor controls two of the control axes.

er
ro

r
si

gn
al

sensor
set point

algorithm
control

Individual control axis on HC12

computer
Linux

position

RC
receiver

(b) The source of the demand on the HC12 is switched by the computer. The default is
remote control. Each axis can be switched individually.

Figure 3.5: Data flow through an individual HC12 microprocessor / power driver pair.
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Figure 3.6: The control system as fitted to the AT illustrating where particular items are
situated.

by a PID loop implemented on the HC12 microprocessor.

3.3.1.2 Steering actuator engage

Because of the high gearing in the steering actuation system, manual operation of the

steering wheel is difficult when the motor-gear set is engaged. Thus, a mechanism has

been devised which allows the gear on the motor to ‘disengage’ from the gear on the

steering column. Engaging and disengaging of the driving gear is achieved by sliding the

gear along the splined output shaft of the rotary motor. The motion of this gear along

the splined shaft is controlled by a lever attached to a two-position, linear actuator from

a standard automobile central-locking mechanism, as shown in Figure 3.8 (b). When

engaged, a spring holds the gear in position. When disengaged, a set of rare-earth magnets

holds the driving gear clear of the gear on the steering shaft. To ensure meshing of the gear
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Figure 3.7: The steering actuation system. Note how ‘cramped’ this area is.

teeth, on an engage / disengage command, the linear actuator is pulsed, giving a relatively

high frequency back-and-forth motion of the gear along the shaft. Simultaneously, the

steering actuator is pulsed, giving the driven gear a back and forth motion. This tactic

ensures that the gear teeth mesh on engagement, and de-mesh on disengagement.
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Figure 3.8: The absolute encoder and steering disengage mechanisms.

Feedback is provided by a switch internal to the actuator mechanism indicating the

state of the actuator, extended or retracted. When in remote or automatic mode, the

steering actuation system can be engaged or disengaged with the state of the actuator

controlled by a state-machine on the HC12 microprocessor.
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3.3.1.3 Brake pedal

Power is transmitted from the AT’s petrol engine to its wheels via a pulley system con-

nected to the hydraulic drive. When the brake is depressed, the initial portion of the pedal

stroke takes power off of the hydraulic drive by slackening the drive belt. The final portion

of the pedal stroke operates a mechanism which applies a set of friction pads to one of

the output shafts of the hydraulic drive, i.e. one of the driving wheel axles. To actuate the

brake pedal, a rotary motor2 drives the pedal through a simple cable-and-pulley system,

see Figure 3.9. Brake actuation is not fail-safe — if the actuator or cable fails, the brake

will not be applied.

Pedal position feedback is provided by a potentiometer connected to the output shaft

of the brake rotary motor. When in remote or automatic mode, a PID loop on the HC12

microprocessor controls the motor position.

3.3.1.4 Park brake

Manual operation of the park brake lever simply locks the brake pedal in the ‘ON’ posi-

tion. This lever can only be used when the brake is ‘ON’. Actuation to this lever is again

provided by a two position linear actuator from a standard automobile central-locking

mechanism.

Feedback is provided by a switch internal to the actuator mechanism which indicates

the state of the actuator, extended or retracted. When in remote or automatic mode, a

state-machine on the HC12 controls the park brake. This state-machine first activates the

brake pedal, then applies the park brake. Figure 3.7 (b) illustrates where this actuator is

fitted on the AT.

3.3.1.5 Speed pedal

The petrol engine supplies power, through a set of pulleys, to the hydraulic drive, which

in turn powers the rear wheels. Forward and reverse with proportional speed control, is

provided by a foot-pedal which, through a linkage system, moves a lever on the hydraulic

2A wind-screen wiper motor from an automobile.
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(a) Side view of the brake actuation system.

(b) Bottom view of the brake actuation system.

Figure 3.9: The cable-and-pulley system which actuates the brake pedal.

drive (controlling the separation distance of a fluid coupling — separation distance deter-

mining level of power transmission). An automatic spring return is fitted to the mecha-

nism so that when not in use, the hydraulic drive returns to the neutral position and the

vehicle halts.

Automation of the speed pedal directly was not possible due to space constraints.
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Figure 3.10: The motors used for the control of the speed pedal and throttle lever.

Instead, the hydraulic drive lever is actuated by a rotary motor3 through a simple two-link

mechanism. This system also actuates the speed pedal. Feedback to the motor is provided

by a potentiometer connected directly to the motor shaft, see Figure 3.10 (a). When in

remote or automatic mode, a PID loop on the HC12 microprocessor controls the motor

position.

3.3.1.6 Throttle

The throttle lever operates a cable connected to a butterfly valve on the carburettor. There

are three throttle positions: choke, fast, and slow. The existing throttle lever and bracket

were replaced with similar items that could accommodate a small MAXON motor-gear

head combination driving a shaft at the pivot point of the throttle lever. Throttle lever

position feedback is provided by a potentiometer coupled to the pivot point of the throt-

tle adjustment lever and motor output shaft. Figure 3.10 (b) shows a photograph of the

throttle control system. When in remote or automatic mode, a PID loop on the HC12

3Again, a wind-screen wiper motor from an automobile.
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microprocessor controls the throttle lever position.

3.3.1.7 Safety systems

The first safety system is the key-switch and automatic button system. This system al-

lows switching between the modes of operation, manual, remote or automatic. The

key-switch has three positions. In the first, or manual position, no power is supplied to

the actuators and hence the vehicle cannot be controlled by the HC12 system. In the sec-

ond, or remote position, power is supplied to the actuators but the HC12 stack can only

accept demands from the hand-held radio transmitter. In the third, or automation-ready

position, power is again supplied to the actuators and the HC12 can accept demands from

the hand-held radio transmitter. A safety card on the PC104 stack senses the position of

the key-switch and the automatic button. If the key-switch is in the automation-ready

position and the automatic button has been pressed, then the system is in automatic

mode. Demands can then be sent to the HC12 stack from the computer. Additionally, the

computer monitors software switches which allow each axis of control to be individually

switched to automatic mode if the safety card conditions described previously are met.

For example, in the majority of experiments conducted in this research, when the system

was in automatic mode, control of the speed pedal and steering wheel was given to the

computer, while the user maintained control of the vehicle’s braking functions through

the hand-held radio transmitter.

A SICK Proximity Laser Scanner (PLS) has been mounted to the front of the vehicle.

This sensor provides a 180◦ range sweep at 0.5◦ intervals up to a range of 50 m. It also

has relays which are activated when an object enters custom programmed ‘fields’ in the

sensor’s field of view. On the AT, this sensor’s primary purpose is collision avoidance and

its fields have been programmed to activate a relay. This relay cuts the vehicle’s ignition

on sensing an object within a 120◦ forward facing arc at 1.5 m from the vehicle, as shown

in Figure 3.11. Of course, because the sensor is facing forward, this feature only provides

protection from frontal collisions. Range data from this sensor is also fed into the AT’s

computer system and can be accessed for navigation purposes.
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field ~ 1.5m
extent of

laser

collision protection
laser field ~ 50m

Figure 3.11: The SICK laser field of view showing the collision detection field.

Two Emergency Stop (E-Stop) buttons have been fitted on each side of the rear of the

vehicle, see Figure 3.13. These buttons are also connected to a relay which immediately

cuts the vehicle’s ignition on activation of either of the E-Stops. Additionally, a rotating

red warning light has been fitted to the rear of the vehicle, see Figure 3.13. It is activated

when the key-switch described earlier is in remote or automation-ready mode.

3.3.1.8 Other modifications

Odometry

An odometry system has been fitted to the tractor. It consists of a pair of proximity

switches which are used to monitor the revolution of a specially manufactured disc (two
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disc
toothed

proximity
switches

Figure 3.12: The odometry system fitted to the tractor. Used together with the absolute
encoder fitted to the steering system, relative heading and distance information can be
determined.

switches are required to determine which direction the disc is rotating). This disc has 40

‘teeth’ on its face. The disc has been fitted to rotate about the same axis as the front-left-

hand wheel, see Figure 3.12. This system is, in effect, a rather coarse phase-quadrature

incremental encoder, its main purpose in this work is to provide feedback of the vehicle’s

speed. The proximity sensors measure the rising and falling edges of the disc’s teeth,

resulting in an angular resolution of 160 counts
revolution

.

Heavy-duty alternator

Power consumption tests revealed that the AT’s original alternator, which supplied 3 Amps

at the vehicle’s nominal operating voltage of 12 Volts, was not sufficient to supply power

to the retro-fitted items and maintain the charge to the vehicle’s existing on-board battery.

When in remote or automatic mode, this would in effect limit the vehicle’s operating

time. Rather than upgrading the battery to extend the vehicle’s operating time, the alter-

nator was upgraded to 16 Amps, which is more than sufficient to maintain the battery and

supply power to all of the retro-fitted electrical items.
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Figure 3.13: The electronics housing and other equipment fitted to the rear of the vehicle.

Miscellaneous modifications

Other modifications include the fitting of various brackets and housings to accommodate

the electronics, and to mount motors and sensors, as shown in Figure 3.13. An electronics

box, which holds the HC12 stack, the PC104 stack and various other electrical items, has

been fitted to the rear of the vehicle. Above the box is a series of shelves to which the

radio LAN and remote control aerials have been fitted, along with the warning light and

E-Stop buttons.

Various navigation sensors have also been fitted to the vehicle including:

• EyeSee 360 omnidirectional camera: the primary navigation sensor in this work.

• CROSSBOW high-speed orientation sensor: used for a compass direction.
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Figure 3.14: Mounting points of the PLS, omnidirectional camera, and the orientation
sensor.

• Real Time Kinematic (RTK) GPS: used for a ground truth in this work.

The aerial for the optional GPS is fitted to the electronics housing, as shown in Figure

3.13, while the GPS unit is housed on the shelf (the grey box in Figure 3.13). The camera

and the orientation sensor perform the primary sensing for the work in this thesis and are

described in more detail in Section 4.3 — their mounting locations are shown in Figure

3.14, together with the location of the SICK PLS.



3.3 Control system design 105

3.3.2 Low-level sensing

The HC12 stack receives feedback on:

• brake pedal actuator position: a potentiometer with a resolution4 of 1024 counts
revolution

• park brake actuator position: a two-position switch, ON or OFF

• speed pedal actuator position: a potentiometer with a resolution of 1024 counts
revolution

• throttle position: a potentiometer with a resolution of 1024 counts
revolution

• steering angle: an absolute encoder with a resolution of 4096 counts
revolution

• steering mechanism engage position: a two-position switch, ON or OFF

• front left-hand wheel rotation (odometry): a phase-quadrature encoder with a reso-

lution of 160 counts
revolution

all of which are sent to the computer.

In this work, anti-clockwise rotation of the steering wheels is defined as positive for

which the vehicle will undergo a left-hand turn when travelling forwards, and a clockwise

rotation is defined as negative for which the vehicle undergoes a right-hand turn when

travelling forwards.

The Ackerman configuration on the vehicle is designed to limit slip of the front wheels

when the vehicle is undergoing a turn by rotating the inner-front-wheel on the turn slightly

more than the outer-front-wheel [Everett, 1995]. As described in Section 2.6.2, car-like

vehicles are commonly modelled by the so-called bicycle model in which the wheels on

the front and rear axles are collapsed to a single ‘virtual’ wheel on each axle. Because the

vehicle speed and steering measurements are that of the front left-hand wheel, corrections

need to be made to calculate the steering angle at the mid-point of the front-axle and the

vehicle speed at the mid-point of the rear-axle. For example, if the vehicle undergoes

a left-hand turn, the measured speed of the front-left-wheel will be slightly slower than

4Determined by A/D conversion.
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Figure 3.15: The AT’s steering geometry.

the true speed of the vehicle. Likewise for a right-hand turn, the speed measured will be

slightly higher than the actual vehicle speed.

The steering measurement is first converted from an encoder reading to an angle in

radians, referenced to a previously determined centre position:

φL =
(encodercentre − encodercurrent)2π

4096
(3.1)

with an anti-clockwise rotation defined as positive. This sensing arrangement gives a

resolution on steering angle of ±0.0879◦. The steering measurement on the left wheel

is translated to the mid-point of the front axle using the well-known Ackerman equation

[Everett, 1995] (recalling that turning the wheels to the left is defined as a positive steering

angle):

φ = arctan

(
1

cot φL + d
2L

)
(3.2)

where φL refers to the angle as measured at the left wheel, d = 0.74 m is the separation

distance of the wheels on the front-axle and L = 1.2 m is the distance between the front

and rear axle.
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The odometry measurement allows calculation of the vehicle’s speed and relative dis-

tance travelled. The odometry measures the rotation of the front left-hand wheel and is

translated to distance travelled through knowledge of the wheel diameter:

distance =
(encodercurrent − encoderref )2πrw

160
(3.3)

where rw = 0.175 m is the rolling wheel radius. Velocity can be calculated through

knowledge of the measuring time increment between encoderref and encodercurrent:

vL =
distance

Δt
(3.4)

At a frequency of 1 Hz, the resolution on velocity is ±0.0069 ms−1. However, for control

purposes, velocity needs to be measured at a higher frequency, resulting in poorer reso-

lution. A frequency of 2 Hz was found to be a good compromise, providing a velocity

resolution of ±0.0137 ms−1.

The velocity measurement also requires correction to translate the measurement to

the mid-point of the rear axle. Again referring to Figure 3.15, using the fact that when

turning, each point on the vehicle has the same angular velocity:

vf =
sin φ

sin φL

vL (3.5)

where vf refers to the velocity of the ‘virtual’ wheel at the midpoint of the front axle, and

vL refers to the velocity as measured at the left-hand front wheel, and φ is the effective

steering angle calculated using Equation 3.2.

The velocity of the mid-point of the rear axle, shown as point ‘r’ in Figure 3.15, is

easily calculated by again recognising that every point on the vehicle rotates about point

K with an equal angular velocity:

vr = v = vf cos φ (3.6)

Figure 3.16 compares measured speed and steering angle at the left-hand wheel with

the corrected values showing that the importance of the correction is fairly limited for the

majority of the range of operation for these vehicle inputs. In practice, these corrections
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have been found to make little difference to the control of the vehicle as the object of the

thesis is to use feedback control which, if effective, will compensate for inaccuracies in

the plant estimation.
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(a) Steering angle correction. The subscript
‘L’ refers to the measurement at the front-left
wheel.

280 300 320 340 360 380 400

−1.5

−1

−0.5

0

0.5

1

1.5

ve
lo

ci
ty

 (
m

s−
1 )

time (sec)

Velocity Corrections

v
L

v
f

v
r

(b) Velocity correction. The subscript ‘L’ refers
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the midpoint of the rear axle.

Figure 3.16: Steering angle and velocity correction. Note that the corrections are rela-
tively minor except for the case of large inputs.

3.3.3 Computing

The PC104 stack is a stripped down, miniaturised personal computer, built for operation

in rugged environments. It is the ‘brains’ of the navigation system, passing instructions

to the HC12 stack which in turn controls the vehicle’s actuators.

3.3.3.1 Hardware

The PC104 stack is connected by radio LAN to the CSIRO Pinjarra Hills computing

network allowing remote communication with the AT’s computer system. The AT’s com-

puter runs under the Linux operating system. Figure 3.17 shows a schematic of the com-

puter system together with its connection to the HC12 stack. The essential components
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Figure 3.17: Schematic of the AT’s PC104 stack.

of the computer stack are:

• a CPU — Crusoe 800 MHz processor

• hard-drive — a 256 Mb flash disk (solid state hard-drive)

• frame grabber — allows connection of two cameras

• serial port board — allows connection of up to eight serial devices



110 The Test-bed: the Autonomous Tractor

• adaptor board – allows connection of a keyboard and monitor to the PC104 stack

Currently, three of serial ports on the 8-way serial board are used for communication

with the HC12 stack (i.e. one for each HC12 processor in the stack). The remaining

ports are available for connecting sensors, currently an orientation sensor and a GPS. An

omnidirectional camera is connected to the frame-grabber, while data from the SICK laser

is also made available to the computer.

3.3.3.2 Software

At the heart of the AT’s software system is the store. The store provides a shared memory

block which is used as a data repository. Client processes can create data structures in this

repository and then read or write data to these structures. This allows communication

between individually running processes, provided each of the processes connects to the

store and registers a variable of the same type with the same handle. A logger client

process allows time-stamped recording of data written to the store.

Figure 3.18 (a) illustrates the communication mechanisms available to client pro-

cesses. For communication with the HC12s, tractor-server reads data coming from the

HC12s, applies scaling if required and places it in an appropriate structure, here called

tr pos, which is then written to the store for use by other processes. Client processes

can read the state of the HC12s by accessing tr pos in the store. These processes can

then make command decisions and write demands to the store in the appropriate structure,

here called tr demand. The demand structure is then in turn read by the tractor-server,

scaled, and commands issued to the HC12 stack.

Although the AT’s on-board computer has the facility to connect a monitor and key-

board, under normal operation this is not available. Data can be imported and exported

from the AT computer to a remote computer through the use of the Remote Tool Con-

trol facility, rtc-export. This facility allows interfacing with remote computers through

Tcl/Tk scripts, enabling monitoring of variables and adjustment of parameters within pro-

cesses running on the AT’s PC104 stack. An example of such a Graphical User Interface,

running on a remote machine is shown in Figure 3.19.
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Figure 3.18: An overview of the AT’s software systems.

A typical set of processes running on the AT computer is shown in Figure 3.18 (b).

In this case, sensor data is read and processed by the vision and orientation server pro-

cesses, and written to the store. The control program reads this processed data, making

command decisions based on this data, and perhaps the current state of the HC12s which

is also read from the store. On making the command decisions, the control program
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Figure 3.19: An example of a GUI running on a remote machine. Shown is an interface for
the speed lever. The auto speed field is used to place the axis of control into automa-
tion mode, provided the key-switch and pushbutton conditions are met. The speed pos
field is the current pedal position and the speed sp is the pedal set-point which can be
changed by the user, and also read from the control program.

places the data into the demand structure which is written to the store. tractor-server

reads this demand data, scales it and issues commands to the relevant boards in the HC12

stack. All data written to the store can also be logged to disk.

The tractor-server

In addition to facilitating communication between the computer and the HC12s, the tractor-

server also monitors the position of the three-way switch and push-button on the dash of

the AT, which determines the state of the system (i.e. manual, remote or automatic).

When the state of the system is automatic, the control system can accept demands from

the computer. Contained in the the demand structure written to the store is the software

switch for each individual control axis. If this software switch is activated, then tractor-

server can send the appropriate demand to the HC12 stack (recall Figure 3.5 (b)).

As noted earlier, after data is read from the HC12s, it is scaled before being written

to the store. For example, the true demand for the steering control is an encoder value

in the range 0 to 4096 counts5. However, users of the AT do not necessarily need to

know the encoder position, rather a steering angle in radians is more useful. Likewise

when demands are read from the store, they need to be scaled to the original HC12 form

before they are written to the HC12s. In effect, the tractor-server takes care of the details

5Because the steering angle range is limited to ±30◦, the range of encoder values is in fact limited to
0 to 342 counts, with some offset to place the range away from the end of the encoder count, preventing
problems with wrapping.
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of communicating with the HC12s allowing the user to demand and read the following

vehicle states:

• steering angle: proportional in the range [−0.52, 0.52 rad]

• steering engage: ON or OFF

• brake: ON or OFF

• park brake: ON or OFF (also applies the brake if brake is OFF)

• throttle: CHOKE, HIGH or LOW

• speed pedal, either

– vehicle speed: proportional in the range [−1, 2 ms−1] or

– speed pedal position: proportional in the range [−1, 1]

Figure 3.20 (a) gives an example of the structure containing data read from the HC12s,

scaled and written to the store. Figure 3.20 (b) shows the demand structure which is read

from the store by tractor-server, and subsequently scaled back to the form required by

the HC12s.

The tractor-server module also calculates the vehicle’s speed, based on the odometry

readings. In the case of the speed pedal, it is important to note that tractor-server sets the

position of this lever, which is then maintained by a PID loop on the HC12, rather than

specifically setting a vehicle velocity. A program switch allows the tractor-server pro-

cess to switch between controlling the vehicle’s velocity or speed pedal position directly

(in the demand structure this software switch is the variable vel pid). The velocity loop

is implemented with a PID loop running at the tractor-server level. The output of this

PID loop is the speed pedal position set-point, which is written to the HC12.

3.3.3.3 Speed control

Speed control loops for other mechanically similar vehicles have relied on fuzzy logic

approaches [Kodagoda et al., 2002; Trebi-Ollennu et al., 1999] and PD control with a
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(a) The structure containing the scaled data read
from the HC12s and written to the store.

(b) An example of the demand structure written
to the store by a client process. This structure is
then read by tractor-server, scaled, and written
to the HC12s.

Figure 3.20: Examples of the store variables used for reading from and writing to the
HC12s.
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Figure 3.21: The speed control loop.

Speed ( ms−1) kf kp ki

|v| > 0.13 0.0 0.25 0.45
0 < v ≤ 0.13 0.05 0.25 0.85
−0.13 < v ≤ 0 0.1 0.25 0.85

Table 3.1: Manually tuned gains for the speed control loop.

discontinuous switching ON-OFF term [Debenest et al., 2002]. Our approach is similar to

that used by Liubakka et al. [1993], who use PI control with gains based upon the vehicle

speed (amongst other parameters). However, for the control of the AT, an additional

feed-forward term is used which helps with stiction of the speed pedal, particularly at

low speed (|v| < 0.1 ms−1). A block diagram of the velocity control loop is illustrated

in Figure 3.21. Although not shown in the diagram, the gain values are adapted to the

demand. Control gains were tuned experimentally and are shown in Table 3.1.

Responses to various step inputs for low and high speed demands are shown in Fig-

ure 3.22. Tracking is good for the demand of ±1 ms−1 with little overshoot observed.

For the demand of ±0.1 ms−1, tracking is oscillatory. This is due to quantization of the

speed sensing, as discussed in Section 3.3.2. Sampling at 1 Hz gives a speed resolution

of 0.0069 ms−1. However, this sampling rate is too low to give adequate control and has

been increased to 2 Hz, for which the resolution on speed is 0.0137 ms−1 — hence the os-

cillatory behaviour around the speed set-point. In addition, both responses exhibit a large

latency, of the order of 1 seconds for the first demand, and 3 seconds for the second. This

latency can be attributed to the relatively low sampling rate, the poor sensing resolution
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Figure 3.22: Results from the speed control loop, demand is v∗ and response is v. Note
that the oscillations are largely attributable to quantisation of the speed measurement.

and the communication delays between issuing a demand on the computer and reading

back from the HC12s. Also contributing is stiction effects on the speed pedal — this is

particularly important for low speed demands and is the reason a feed-forward term is

required.

Despite the limitations, this approach is sufficient for the purposes of the work in

this thesis. However, a higher resolution encoder on the speed sensing would certainly

improve the ease of control of the vehicle.

3.4 Modelling the vehicle

To facilitate the development of various control and navigation algorithms, mathematical

models of the vehicle’s kinematic and dynamic response to demands from the computer
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Figure 3.23: The SIMULINK model of the AT system.

system were developed. The standard kinematic model for a rear-wheel driven car-like

vehicle was presented in Section 2.6.2. This model can be used for path integration pur-

poses and for simulating the vehicle’s motion. Dynamic models of the vehicle are specific

to this vehicle given the uniqueness of the automation system and the platform itself —

these dynamic models were acquired through experimentation. Both the kinematic and

dynamic aspects of the modelling are used in MATLAB and SIMULINK for developing,

and analysing, control and navigation algorithms expediting the physical experimentation

on the AT.

The overall model of the vehicle is shown in Figure 3.23. It consists of a dynamic

block which models the response of the steering and velocity loops, and a kinematic

block which models the geometry and motion of the vehicle. The model allows us to

gauge the performance of different controllers in a realistic but convenient environment.

In most cases, the controller also feeds back a STOP SIMULATION switch variable which

stops the simulation when a particular event has occurred, for example when the vehicle
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is within a tolerance distance of the goal pose.

When implementing software for the AT, most of the processes have been written

such that they can be run in an on-line or off-line manner. On-line refers to the process

using real data in real time whereas off-line processing is used for testing of processes

with either simulated data or data collected on-line. In particular, in the control code,

an equivalent version of the MATLAB / SIMULINK model is integrated in the code for

off-line testing. This ensures accurate translation of controllers developed in MATLAB to

the ‘C’ code on the vehicle.

The following sections describe the development of the kinematic and dynamic mod-

els of the vehicle.

3.4.1 Kinematic model

A geometric model of a car-like vehicle is shown in Figure 3.24. It is usual to assume for

such a vehicle that the two wheels on each axle collapse to a single wheel — the bicycle

model. Referring to Figure 3.24, the kinematic equations for a car-like vehicle with rear

tyres aligned with the vehicle and front tyres allowed to rotate about the vehicle’s vertical

axis are: ⎡
⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

cos θ

sin θ

tan φ
L

⎤
⎥⎥⎥⎥⎥⎦

v (3.7)

where v is the vehicle’s forward velocity (measured at the midpoint of the rear axle), L

is the axle separation distance, φ is the steering angle, and the point (x, y) refers to the

coordinates of the midpoint of the rear axle. When commanding the vehicle, the demands

v and φ are multiplicatively coupled in Equation 3.7 which can present problems in some

cases6 . An alternative representation with four state variables leads, to the following

6For example, if the vehicle requires a negative angular velocity, this can be achieved by setting v > 0
and φ < 0 or vice versa.
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Figure 3.24: The vehicle and the coordinate system used. All angles are counter-
clockwise positive.

kinematic representation [De Luca et al., 1997]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ
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φ̇

⎤
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L

0
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v +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φ̇ (3.8)

In equation 3.8, the inputs to the system are the translational velocity v and the steering

angle rate φ̇.

The different approaches are distinguished by the input to the steering loop. For sim-

ulation purposes, a kinematics block was created in MATLAB/SIMULINK, as shown in

Figure 3.23. The subcomponents of this block are shown in Figures 3.25-3.28.

In Chapter 5, several different controllers are tested, some of which require φ as a

demand and others which require φ̇. In SIMULINK, it is a simple matter to integrate the

input before it enters the kinematic block (this is implemented with a manual switch in

the simulation, as shown in the top right of Figure 3.23).
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Figure 3.25: SIMULINK model ‘AT kinematics’.
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Figure 3.26: SIMULINK model x-coordinate block: calculates x position of the AT using
initial x position (x0), velocity v and vehicle orientation θ.
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Figure 3.27: SIMULINK model y-coordinate block: calculates y position of the AT using
initial y position (y0), velocity v and vehicle orientation θ.
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Figure 3.28: SIMULINK model theta block: calculates orientation (θ) of the AT using
initial orientation (θ0), velocity v and steering angle φ. The angle wrapper ensures that
the vehicle orientation θ remains in the range(−π, π].

3.4.2 Dynamic modelling

Many control algorithms for car-like vehicles fail to consider the realities of implementa-

tion on a vehicle, for example steering angle limitations and the dynamics of the actuators

which drive the vehicle. In this work, models of the vehicle’s dynamic response to de-

mands are used, including non-linear effects such as input saturation. This allows the

realistic testing and development of control algorithms in simulation. Although the pre-

sented models are rather simple, they are sufficient to capture the general behaviour of the

system. Their use has significantly reduced controller development time.

The demands to the vehicle are, for the purposes of modelling, limited to steering

angle and velocity. Of particular importance is to note that on the real vehicle, the velocity

is set by a loop around the speed pedal and the odometry system, as described in Section
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v( ms−1) ωn( rads−1) ζ

0.1 0.57 0.78
0.3 0.72 0.78
0.5 0.72 0.78
1.0 0.82 0.80
1.5 0.82 0.80

Table 3.2: Variation of steering loop parameters with vehicle velocity.

3.3.3.3.

3.4.2.1 Steering models

An approximate model of the steering dynamics was experimentally identified from the

response of the AT’s steering loop to unit step changes in desired steering angle (provided

from the computer). The response was determined to be approximately second-order of

the form (in the Laplace domain):

φ(s)

φ∗(s)
=

ω2
n

s2 + 2ζωn + ω2
n

The parameters ωn and ζ where found to vary due to the complexity of the interactions

between the terrain and the wheels on different surfaces and also varied with the vehicle’s

translational speed. Table 3.2 shows the experimentally derived parameter values for

different vehicle speeds, where the vehicle was driven on a flat concrete surface. In effect,

the response of the steering loop is marginally ‘faster’ for higher vehicle speeds, with

greater control effort required at lower vehicle speeds resulting in slower actuation. As

the velocity of the vehicle approaches zero, the steering loop becomes uncontrollable —

a large steering demand cannot be effected as the friction in the system is greater than

the available control effort. For the purposes of simulation, constant parameter values

corresponding to a velocity of 0.5 ms−1 are used.

Figure 3.29 shows a plot of the experimental and model response of the steering loop

to a unit step. For the experimental data, the vehicle was travelling over smooth, flat

concrete at a speed of 1 ms−1. Although not exact, the match between experimental data

and the model is adequate for the purposes of the work in this thesis.
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Figure 3.29: Step response of the steering loop. Model data is plotted as a dashed line
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Figure 3.30: SIMULINK model of the steering loop.

The steering angle on the AT is limited to ±0.523 rad (±30◦) which is modelled in

SIMULINK using a non-linear saturation block. Also modelled is the limitation on the

rate of change of steering angle, with a rising and falling limit of π
6

rad s−1. Rate limiting

is simulated using the rate limit block in SIMULINK. The full SIMULINK model of the

steering loop is shown in Figure 3.30.

3.4.2.2 Velocity models

The velocity loop was empirically determined to have a first-order response which is

represented in the Laplace domain as:

v(s)

v∗(s)
=

Kv

τvs + 1

Figure 3.31 illustrates the AT’s response to a unit step change in velocity while trav-

elling on level ground (concrete). Also shown is the response of the first-order model
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Figure 3.31: Unit step response of the speed loop. Model data is plotted as a dashed line
and experimental data is plotted as a solid line.

where Kv = 1 and τv = 1.33. Note the ‘quantisation’ of the experimental velocity mea-

surements7.

The parameters (Kv and τv) will again vary slightly due to differences in the velocity

response on sloping terrain, different surfaces and under different loading conditions. For

simulation purposes, the above parameter values are used.

The forward speed of the AT is limited to approximately 3 ms−1 while the reverse

speed is limited to approximately 1.5 ms−1. Velocity saturation is modelled in SIMULINK

using a non-linear saturation block. Also modelled is the limitation on the rate of change

of velocity, which was empirically determined to be 5 ms−2 on acceleration and 2 ms−2

on deceleration. Rate limiting is simulated using the rate limit block in SIMULINK. The

full SIMULINK model of the velocity loop is shown in Figure 3.32.

7For the model identification task, the velocity loop rate was increased to 10Hz, as opposed to the
normally used for control. The normal loop rate of 2Hz provides for finer control over velocity at low
speeds.
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Figure 3.32: SIMULINK model of the velocity loop.

3.4.3 Software modelling

As noted earlier, although the models of the vehicle presented here have been based

around MATLAB / SIMULINK blocks, the vehicle kinematics and dynamics have also

been modelled within the vehicle control code. This serves two purposes:

1. It enables testing of control code as it is written in the accompanying process.

2. It allows forward modelling / simulation of the vehicle behaviour within the con-

troller itself which can be useful for obstacle avoidance and other control tasks.

In essence, this type of simulation involves two steps; predicting future values of the

vehicle velocity and steering angle, and predicting the vehicle pose. The former task

involves the solution to the differential forms of the models of the steering and velocity

loops, while the later task uses the vehicle kinematics and Runga-Kutta integration.

3.5 Conclusion

This chapter has outlined the design of the Autonomous Tractor which serves as a test-bed

for the work presented in this thesis. The vehicle can be driven either manually, by remote

control, or it can be controlled by the on-board computer. Unlike many current mobile

robots, it is a fully self-contained vehicle which can operate for indefinite periods provided

it is regularly refuelled. Also presented in this chapter was a speed controller designed to

control the translational speed of a petrol-powered, hydraulically driven vehicle.

Models of the vehicle’s kinematics were also presented along with dynamic models of

the vehicle’s response to inputs. These models were then validated against experimental

data. Importantly, the work in this thesis goes beyond much of the current mobile robot
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control literature and considers the dynamic aspects of controlling a vehicle’s heading and

speed. Included in this analysis are limitations on speed, acceleration, steering angle and

steering angle rate. The models developed in this chapter are used for simulations which

serve to expedite the experimentation on the AT, eliminating unreliable or unworkable

solutions before they are tried on the real vehicle. These vehicle models are also used

within the control software, providing a means of testing the software off-line and also

providing a useful tool for obstacle avoidance and prediction of the AT’s future motion

based on the current demands.



Chapter 4

Visual Homing and Pose Estimation

Bearing-only visual homing methods have a strong dependence on landmark configura-

tion. By incorporating landmark range, this dependence can be eliminated and a full

vehicle pose estimate with respect to some target pose obtained. A reference direction,

required for techniques which use anonymous landmarks, is provided by a magnetic com-

pass. Vast improvements can be made to the orientation measurement by combining it

with an estimate of the vehicle’s angular rate, provided by odometry and a vehicle model.

Landmarks are found using an omnidirectional camera and extracted based upon a pre-

learnt look-up table of the landmark colour profile. Landmark range can be estimated

using the ground-plane constraint and a geometric model of the omnidirectional cam-

era’s optics. Tracking over time is achieved by using vehicle-object motion models which

rely on vehicle odometry. These same models are then used in complementary filters to

improve the estimates of landmark range and bearing.

4.1 Introduction

In this chapter, a comparison of several landmark-based visual homing strategies is pre-

sented, showing that when using bearing only strategies, it is difficult to obtain consistent

performance for varying landmark configurations. For this reason, these strategies are not

suitable for the control of a car-like vehicle. A technique which incorporates landmark

range, eliminating the landmark configuration dependence, is then developed.

127
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A description of the sensing system used to implement the homing strategy is then

provided. The Autonomous Tractor is fitted with a magnetometer which is used to pro-

vide the reference direction required for homing. The vehicle is also fitted with a colour

omnidirectional camera. This is used to track a set of coloured objects in the environment

which serve as landmarks in this work. Object range is estimated using a model of the

omnidirectional camera optics and the ground-plane constraint. The chapter concludes

with an analysis of possible error sources in the range and bearing based homing strategy.

4.2 Visual homing and pose estimation

In this section, a method for estimating a vehicle’s pose with respect to a target pose is

developed based upon the discrepancies between the current ‘view’ of the workspace and

some pre-stored view of the target pose. First, a comparison of several landmark-based

homing techniques is presented, followed by the development of a range and bearing

based technique.

All methods considered here assume that landmarks are homogeneous, i.e. landmarks

do not necessarily need to be uniquely identified. Importantly, no a priori knowledge

of landmark positions is required — this knowledge is embedded in a snapshot of the

landmark configuration at the target location. In addition, these methods require that the

landmarks are visible throughout the vehicle’s journey. The methods considered here also

require an external reference direction which effectively allows the environment to be

viewed with a constant orientation.

An alternative to the requirement for a reference direction is to introduce unique land-

marks from which vehicle orientation can be determined, provided the requirements of

triangulation are satisfied. However, this can introduce further sources of error and adds

a higher level of sophistication to the vision system requirements.

Throughout the following discussion, it is assumed that the target location, i.e. the

goal, is the origin of the local coordinate system, and the coordinate system is defined as

a right-handed trihedral frame with the the x and y axes defining the ground-plane and
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the z axis pointing upwards.

4.2.1 Homing strategies

Here, a comparison of several homing techniques is presented. These are the Weighted

Vector (WV) method, a planar Image-Based Visual Servoing (IBVS) technique, and the

Average Landmark Vector (ALV) method. Based on this analysis, a new homing method

is developed which overcomes some of the shortcomings of these and other similar meth-

ods by incorporating landmark range.

4.2.1.1 WV method

The Weighted Vector method1 was initially presented by Weber et al. [1999] and is an

extension of the earlier work of Hong et al. [1991]. Hong et al. [1991] relied on the

summation of unit vectors, based upon landmark bearings, to derive the homing vector.

Rather than unit vectors, Weber et al. [1999] use the difference in landmark bearings

to weight each contributing vector. A similar weighting method was independently pre-

sented by Lambrinos et al. [2000]. Both methods bear similarity to the hypotheses on bee

navigation presented by Cartwright and Collett [1983].

The WV method requires storage of a list of the landmark bearings as seen from the

target location. This list is then matched with the currently viewed landmark bearings,

from which a homing vector is calculated. Weber et al. present several different methods

of obtaining correspondence between the current and target lists, ranging from ‘optimal’

pairing using an exhaustive search, through to voting schemes. The method used here in-

volves least square matching with preservation of landmark order — this method matches

the exhaustive search method in terms of homing success rate [Weber et al., 1999].

Current and target landmark bearings are correlated by finding the minimum of the fol-

lowing matching function (preserving adjacency in the target and current bearings lists):

n∑
i=1

|α∗
i � αi|2 (4.1)

1A name applied here, the original authors referred to the technique simply as ‘homing’.
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where n is the number of landmarks, α∗
i ∈ (−π, π] is the landmark bearing viewed from

the target and αi ∈ (−π, π] is the currently viewed landmark bearing. The � operator

refers to the shortest angular distance around a circle between the two angles, referenced

to the first angle eliminating problems caused by discontinuities in angle representations.

The ⊕ operator represents the corresponding angular addition. Note, throughout this

work, unless otherwise specified, all angles are defined in the range (−π, π].

After matching, or landmark correspondence, is performed, the homing vector is cal-

culated according to the following vector additions:

HWV =
n∑

i=1

Vi (4.2)

where a vector is expressed as a magnitude and angle pair (M � θ) and the component

vectors, Vi, are given by:

Vi = |α∗
i � αi| � ηi (4.3)

and

ηi =

⎧⎪⎨
⎪⎩

α∗
i ⊕ π

2
if αi < α∗

i

α∗
i � π

2
otherwise

(4.4)

where ηi ∈ (−π, π]. An illustrative example of WV homing vector calculation is shown

in Figure 4.1 Note in the example that the homing vector, HWV , is not directed exactly

towards home. As the current position approaches the target, this discrepancy is reduced.

Figure 4.2 illustrates the results of applying the WV technique at discrete points on a grid

covering a workspace (in this and all cases cited in this section, the workspace is defined

as x, y ∈ [−20, 20] and the grid spacing is 1). Figure 4.2 (a) contains landmarks which are

well distributed around the the target position — a distributed landmark configuration. In

this case, the home vectors provide a close approximation to the true target direction and a

scaled version of the distance to the target location. In addition, the WV method appears to

have an inherent obstacle avoidance type characteristic, as can be seen from the vectors at

positions which are ‘behind’ landmarks with respect to the target. However, the situation
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Figure 4.1: Example of the WV method. The vectors have been scaled by a factor of 10
for visibility.

is different for the case where landmarks are less radially distributed with respect to the

target position — here called a clustered landmark configuration, as in Figure 4.2 (b). For

this case, the quality of the homing vector over the workspace deteriorates, even without

considering the sensing process itself (e.g. landmarks leaving the perception horizon and

inaccuracies in determining landmark bearing). The obstacle avoidance characteristic is

preserved but vectors near obstacles have a higher magnitude which is counter-intuitive.

In addition, far away from the landmarks, the homing vector magnitude diminishes.

4.2.1.2 Planar IBVS method

An interesting approach to homing and local navigation is to treat the problem as a planar

version of the well-known technique of visual servoing [Corke, 2001]. Image-based vi-

sual servoing is an approach to controlling robots using visually defined tasks rather than

tasks defined in Cartesian coordinates (see, for example, [Hutchinson et al., 1996]) — it

has traditionally been applied to manipulator type robots. The parallels to mobile robotic
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(b) WV method with clustered landmark layout.

Figure 4.2: WV method applied at discrete points covering a workspace, illustrating the
effect of landmark configuration. No scaling has been applied to the homing vectors.

navigation were explored by Corke [2001] where IBVS techniques were used to derive

control laws to stabilize a (simulated) omnidirectional mobile robot to a pose. Here the

development of these control laws, in a homing context, is presented.

This particular application of visual servoing relates the bearing angle changes of

selected landmarks to desired motion through a simple ‘Image Jacobian’ [Corke, 2001]:

β̇i =
[

sin(βi+θ)
Ri

− cos(βi+θ)
Ri

−1

]
⎡
⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎥⎥⎥⎥⎦

(4.5)

where x and y are the current position, θ is the current orientation with respect to the

x-axis, βi is the robot relative landmark orientation, and Ri is its range; see Figure 4.3 for

a description of the coordinate system. Note that in this work, the range to each landmark

is assumed to be a constant as in Corke [2001] — this is quite similar to the bearing-

only homing strategies (like the WV method) which also by default presume a constant

landmark range. A difference here from the work of Corke [2001] is that each landmark

range is set equal to the landmark range as observed from the target location rather than
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Figure 4.3: The coordinate system and conventions used for planar IBVS.

set to some arbitrary positive constant, i.e.:

Ri = R∗
i (4.6)

where Ri is the current landmark range and R∗
i is the landmark range observed at the

target location. This strategy produces more accurate homing vector directions over a

wider array of initial positions. Incidently, using the correct current landmark range in the

calculation produced vectors with larger direction errors throughout the workspace.

For three or more features, the equations can be stacked:

β̇ = Jẋ (4.7)

where x =
[

x y θ

]T

. By finding the inverse (three landmarks) or the Moore-Penrose

pseudo-inverse (more than three landmarks) an explicit relationship for desired velocity

based on the feature velocity can be obtained. The feature velocity is chosen to be pro-

portional to the feature error, which is given by the difference between the desired feature

bearings and the current feature bearings:

β̇ = Γ(β∗ � β) (4.8)
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where Γ is a positive definite gain matrix (here, Γ = [0.1, 0.1, 0.1]T ), β∗ is the desired

feature bearing vector found from a snapshot at the target location, and β is the current

feature bearing vector.

Intuitively, Equation (4.5) is resolving two errors, a translational error (given by ẋ

and ẏ) and a rotational error (given by θ̇). For homing, only the translational error terms

are required. By using the solutions for ẋ and ẏ found from Equation (4.5) a magnitude,

corresponding to the desired velocity:

eIBV S =
√

ẋ2 + ẏ2 (4.9)

and a direction, corresponding to the desired heading angle:

δIBV S = arctan2(ẏ, ẋ) (4.10)

can be found. Here, arctan2(y, x) ∈ (−π, π] is the four-quadrant inverse tangent function.

This resolves the translational error, taking the vehicle towards the desired location but

like most homing strategies it does not resolve orientation error on reaching the target.

Figure 4.4 shows the application of this strategy at discrete points on a grid covering

a workspace as defined in the previous section. For the case of Figure 4.4 (a), homing is

successful from within an area defined by the polygon made by the landmarks. In fact, the

error between the true target direction and that given by the IBVS method, when within

the polygon defined by the landmarks, is far superior to the WV method. Outside this

polygon, the vectors are not as ‘well behaved’. Unlike the WV method, this method pro-

duces homing divergence at positions near and around landmarks, rather than providing

obstacle avoidance. Figure 4.4 (b) indicates that this method breaks down dramatically

at positions near and around landmarks, with divergent behaviour expected from starting

positions behind the landmarks with respect to the target position. However, for other

starting positions, the IBVS method generates excellent homing vectors.

Corke [2001] observed that the IBVS method displayed divergent behaviour for start-

ing positions outside the polygon formed by the landmarks in the workspace. The perfor-

mance of the IBVS method should deteriorate for the landmark configuration of Figure
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Figure 4.4: Planar IBVS method applied at discrete points covering a workspace, illus-
trating the effect of landmark configuration. No scaling has been applied to the homing
vectors.

4.4 (b) whereas in fact the behaviour is better than for the distributed landmark config-

uration. Perhaps the reason for this previously observed divergent behaviour is that the

method is driving the bearing angle error of, at least, three landmarks towards zero; for

some cases, bearing error must actually increase before it can be driven towards zero and

the method is ill-posed for these cases2. When the landmarks are aligned, as in Figure 4.4

(b), the landmark bearing errors can be driven to zero immediately (i.e. errors do not need

to increase before they can decrease) over a much wider region of the workspace. For

some initial positions on the right-hand side of the plot, the bearing errors must increase

before they can decrease, and the homing vector behaviour for these starting positions is

divergent.

Interestingly, by removing orientation considerations, Equation 4.5 becomes:

α̇i =
[

sin(αi)
Ri

− cos(αi)
Ri

] ⎡
⎢⎣

ẋ

ẏ

⎤
⎥⎦ (4.11)

where αi = βi + θ. In this case, the minimum number of landmarks is now two (as there

2Peter Corke, personal communication, 22 December 2003.
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(a) Planar IBVS method with distributed land-
mark layout.
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Figure 4.5: Planar IBVS method with the removal of orientation from the calculation,
applied at discrete points covering a workspace, illustrating the effect of landmark con-
figuration. No scaling has been applied to the homing vectors.

is now only two unknowns ẋ and ẏ). Using similar techniques to the case for β̇, ẋ and ẏ

can be found. For this case, the bearing error is given by

α̇ = Γ(α∗ � α) (4.12)

where Γ = [0.1, 0.1], and α∗ and α are the vectors of target and current absolute bearing

angles respectively. Figure 4.5 shows results from the distributed and clustered land-

mark configurations. From the plots, it can be seen that the homing vectors near and

around landmarks appear to flow around the landmarks, as for the WV method, and that

divergence no longer occurs. Note that the results of Figure 4.4 and 4.5 presume that

the landmark correspondence problem has been solved which in reality is a reasonably

difficult problem.

4.2.1.3 ALV method

The Average Landmark Vector method was initially presented by Lambrinos et al. [2000]

and is an extension of a hypothesis on the navigation behaviour of the desert ant, cataglyphis
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bicolor. Like the WV method, it is a bearing-only strategy. However, the only storage re-

quired for this method is a single vector which summarises the view at the target location

— landmark correspondence is not required. Correspondence is a notoriously difficult

problem and the simplicity of the ALV approach can result in a very robust system pro-

vided stable landmarks are available.

An ALV for a particular location is found by vectorially summing the unit vectors

towards each visible landmark:

ALV =
1

n

n∑
i=1

Ui (4.13)

where Ui is the unit vector towards landmark i, and n is the number of landmarks currently

seen. The homing vector is formed by subtracting the (stored) target ALV, ALV ∗, from

the ALV at the current location, ALV :

HALV = ALV − ALV ∗ (4.14)

An illustrative example of homing vector calculation is shown in Figure 4.6, while ap-

plication of the ALV method at discrete points covering a workspace is shown in Figure

4.7. Again, the effect of landmark distribution with respect to the target position is quite

marked. As with the previous two methods, from the same position, the magnitude and

direction of the homing vector is dependent on the landmark configuration — this can

make it difficult to control vehicles with significant motion constraints, as for a car-like

vehicle.

4.2.1.4 Improved Average Landmark Vector method

All methods considered so far have a considerable dependence on the landmark configu-

ration. This work has found that by incorporating landmark range, this dependence can

be eliminated. The ALV strategy relies on the summation of the unit vectors towards

each landmark. If instead the range vectors are summed, a measurement of position with

respect to the centroid of the landmarks in the workspace is obtained. This method, de-

veloped from the work in this thesis, is termed the Improved Average Landmark Vector

method.
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(b) ALV method with clustered landmark lay-
out.

Figure 4.7: ALV method applied at discrete points covering a workspace, illustrating the
effect of landmark configuration. No scaling has been applied to the homing vectors.
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Many of the bearing-only homing strategies are inspired by observations of navigation

behaviours in biology, particularly in insects. It is interesting to note that many insects

and animals are thought to estimate range through a variety of cues, including ‘height in

image’ (see for example [Zeil, 1998; Kral, 1999; Sekuler and Blake, 1994]) as is used in

this work. Thus the introduction of range information does not necessarily move away

from the ‘biologically inspired’ approaches.

Using the same type of strategy as for the ALV method, an IALV for a particular lo-

cation is found by vectorially summing the range vectors towards each visible landmark:

IALV =
1

n

n∑
i=1

Li (4.15)

where Li is the range vector towards landmark i (consisting of the range Ri and the

bearing αi), and n is the number of landmarks.

When calculating the homing vector, landmark correspondence is again not required

and the only storage needed is the IALV at the target location, IALV ∗. As for the ALV

method, the homing vector is formed by subtracting the target IALV from the IALV at the

current location, IALV :

HIALV = IALV − IALV ∗ (4.16)

An illustrative example of homing vector calculation is shown in Figure 4.8, while Figure

4.9 shows the application of the IALV method at discrete points covering the workspace.

Note that in the figure the homing vectors have been scaled for visibility purposes — the

magnitude of each vector is in fact the distance to the target location. In contrast to the

previous methods, the incorporation of range information has eliminated the effects of

landmark configuration, at least for the case considered here where ‘perfect’ sensing is

available.

4.2.2 Comparing the methods

In this section, the clustered landmark configuration of Figure 4.9 (b) is used to compare

the effectiveness of the homing methods presented in the preceding sections. The homing

vector magnitude and the angle errors over the workspace for the IALV method are shown
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Figure 4.8: Example of the IALV method. All vectors are to scale.
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Figure 4.9: IALV method applied at discrete points covering a workspace, illustrating the
effect of landmark configuration. The IALV is independent of landmark configuration.
All vectors in the plot have been scaled, the magnitude of each vector is in fact the distance
to ‘home’.
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Figure 4.10: IALV method vector magnitude, and homing vector direction error, for the
landmark configuration of Figure 4.9 (b).

in Figure 4.10, and for the WV, IBVS, and ALV methods the same information is shown

in Figure 4.11. First, it is noted that the IALV method of Figure 4.10, provides the exact

distance and orientation to home. The shape of the ‘attractive well’ for the magnitude of

the IALV homing vector is conical and ‘even’ throughout the workspace — it does not

depend on landmark configuration. A mathematical sketch of this observation follows.

Using similar terminology to Möller [2000], if the Cartesian position of landmark i is

represented by the vector:

xi = (xi, yi) (4.17)

the target position by the vector:

x∗ = (x∗, y∗) (4.18)

and the current position by the vector:

x = (x, y) (4.19)

where xi and yi are the Cartesian position of landmark i, x∗ and y∗ are the Cartesian

position of the target location, and x and y are the current Cartesian position, the IALV

strategy calculates the homing vector as (effectively):

HIALV = IALV − IALV t
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=
1

n

n∑
i=1

(xi − x) − 1

n

n∑
i=1

(xi − x∗) (4.20)

which reduces to:

HIALV = x∗ − x (4.21)

This is in fact equivalent to the negated gradient of the attractive potential field pro-

duced by a parabolic well, commonly found in the Artificial Potential Field literature

(see Latombe [1991]):

HIALV ≡ −∇U (4.22)

where

U =
1

2
(x − x∗)2 (4.23)

for a parabolic well. For the case of the IALV strategy, there is no mathematical depen-

dence on landmark configuration in the homing vector calculation.

For the IBVS method, the second technique involving the absolute bearing angles

α̇ is used for comparison purposes. The magnitude of the homing vector varies vastly

at positions near the landmarks as does the error in homing vector direction, as shown

in Figures 4.11 (a) and (b). However, an attractive well is clearly visible at positions

well away from the landmarks and the error in homing direction is well behaved at these

starting positions.

For the bearing-only strategies, the situation is quite different as the shapes of the

homing vector magnitude ‘attractive wells’ are highly distorted for all cases. In the case

of the WV method, Figures 4.11 (c) and (d), the distortion in the homing vector magnitude

near the landmarks can be explained by the inherent obstacle avoidance characteristic of

this method. However, even far from the landmarks, the well for the WV method is not

particularly evenly shaped. Also, the difference in true direction to the target location and

the direction calculated by the WV method is marked over the entire workspace. For the

case of the ALV method, Figures 4.11 (e) and (f), the shape of the attractive well for the

magnitude of the homing vector is equally as bad as for the WV method. However, the

direction of the ALV homing vector does not appear to deviate quite as much as for the

WV method.
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(f) ALV homing vector angle error.

Figure 4.11: Comparison of the methods, for the landmark configuration of Figure 4.9
(b).
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A mathematical sketch of the above observations for the ALV strategy follows. Us-

ing the same terminology as for the IALV case, the ALV homing vector is, effectively,

calculated as:

HALV = ALV − ALV t

=
1

n

n∑
i=1

(xi − x)

‖xi − x‖ − 1

n

n∑
i=1

(xi − x∗)
‖xi − x∗‖ (4.24)

Rearranging terms leads to:

HALV =
1

n

n∑
i=1

[(
xi

‖xi − x‖ − xi

‖xi − x∗‖
)

+

(
x∗

‖xi − x∗‖ − x

‖xi − x‖
)]

(4.25)

In this calculation, the xi terms, which represent the landmark positions, do not cancel as

they did in the IALV case. When landmarks are evenly distributed around the workspace,

the summation introduces some term cancellation, effectively eliminating the effects of

the xi terms. However, for pathological landmark distributions, this term cancellation

due to the summation does not occur, leading to attractive fields with steep gradients at

some workspace locations and very shallow gradients in others, as shown in Figure 4.11

(e). However, convergence still occurs and, as the goal is approached, the ‖xi − x∗‖ and

‖xi−x‖ terms (which are in fact the landmark range at the goal, and the current landmark

range) approach each other and convergence improves due to the decreased influence of

the xi terms — the convergence behaviour approaches a scaled version of the parabolic

Artificial Potential Field (Equation 4.23). Incidently, the Artificial Potential Function for

the ALV case is given by [Möller, 2000]:

U =
n∑

i=1

‖xi − x∗‖ − xi − x

‖xi − x∗‖(xi − x) (4.26)

The potential wells for the IALV and ALV cases, with the clustered landmark configura-

tion, are shown in Figure 4.12, highlighting the difference in convergence behaviour.

The bearing-only methods are, by design, approximate and cheap, only requiring sens-

ing of landmark bearing and a reference direction. Here, the landmark configuration has
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Figure 4.12: IALV and ALV potential function value over the workspace, for the landmark
configuration of Figure 4.9 (b).

been chosen to highlight the shortcomings of these strategies. However, less pathologi-

cal landmark configurations show similar characteristics, although not quite as markedly.

The key point is that bearing-only strategies are highly dependent on landmark config-

uration. If one is to use a bearing-only strategy, particularly for the ‘simple’ homing

strategies as compared to the more sophisticated SLAM-based approaches (see for ex-

ample [Shimshoni, 2002; Fitzgibbons and Nebot, 2002; Bailey, 2003; Deans and Hebert,

2000]), careful consideration of the landmark distribution in the workspace is required

as the convergence behaviour to the target location may vary depending on the starting

location.

Figure 4.13 shows the difference in homing vector, using the same target and cur-

rent positions, with different landmark configurations. This illustrates the difficulty of

applying consistent commands to a vehicle given the same displacement from the tar-

get location. The homing vector provides a representation of the direction to the target

location, and a scaled version of the distance. If these quantities vary with landmark con-

figuration, it is difficult to make intelligent decisions on the control of the vehicle. For

example, if the vehicle’s initial position is (x, y, θ) = (0, 2, 0), because of the limitation

on the steering angle, the vehicle cannot reach the goal using a simple linear controller
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Figure 4.13: Homing vector dependence on landmark configuration.

— a back and forth motion is required. In contrast, if the vehicle is a long way from the

goal, it has plenty of time and space to align its longitudinal axis with the homing vector

direction and homing to the target location would more than likely be successful. In this

latter case, varying the landmark configuration merely changes the path followed by the

vehicle.

If the estimates of the distance and heading to the goal vary with landmark configura-

tion how can intelligent decisions as to the type of motion required be made? Of course,

if using ‘natural’ landmarks, control of landmark configuration is not always possible.

When controlling a car-like vehicle, which has significant local motion constraints, the

use of these strategies is not viable.

The IBVS method performed comparatively well at certain regions in the environment

but near and around landmarks, the homing vector direction and magnitude can be unpre-

dictable. Although convergence to the target position still occurs, the requirement for

landmark correspondence, and the need for at least two landmarks (three for the case of

relative landmark bearings) leaves the IALV strategy as the preferred option. The IALV
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strategy does not require landmark correspondence and at a minimum requires just one

landmark.

In this work, it is assumed that the workspace is relatively flat and that all landmarks

used for navigation will lie on the ground-plane. The next section discusses the sensing

system used to provide a reference direction and the landmark range and bearings required

for the IALV strategy.

4.3 Sensing

The previous section identified the sensing required for the IALV strategy as:

• Measurement of vehicle orientation.

• Measurement of landmark range and bearing.

The AT has facility for carrying a variety of sensors. The primary sensors used for the

work in this thesis are a magnetic compass (in the form of a CROSSBOW high-speed

orientation sensor) and an omnidirectional camera. As mentioned is Section 3.3.1.7, a

SICK PLS is used for low-level collision avoidance but the range data is also fed into the

computer, making it available for high level navigation functions.. These sensors, and

their location on the vehicle, are indicated in Figure 4.14.

This section presents the sensing system used to estimate the required parameters for

the IALV strategy. Included is an analysis of the effects of sensing errors on the strategy,

and a means of obtaining the full vehicle pose estimate (x, y, θ) with respect to a target

pose.

4.3.1 CROSSBOW orientation measuring system

A reference direction is critical for any homing system. In this work, a magnetic compass

is used for this purpose, as it was simple and available.

A CXM543 high-speed digital output orientation measuring system has been fitted to

the front of the vehicle. The sensor can operate in either angle or vector modes. When in
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Figure 4.14: An overview of the AT’s sensors.

angle mode, the output is in the form of roll, pitch and azimuth, all measured in radians.

When in vector mode, the output is the raw data from the three-axis accelerometer and

three-axis magnetometer. This sensor is connected to the computer by a serial line.

In this work, the Crossbow unit is used in angle mode and data is fed into the store

for use by other processes. The azimuth reading is filtered within the Crossbow unit, and
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corrected for roll and pitch. Due to the highly vibratory environment, and the presence

of EM fields produced by the vehicle’s actuators, the vehicle’s engine and alternator, the

unit’s azimuth reading can be extremely noisy, varying by as much as ±20◦ when the

vehicle’s engine is running, even when the vehicle is stationary — see the raw azimuth

readings plotted in Figure 4.15 for an example. This noise is probably caused by the

vibration of the vehicle which excites the accelerometers in the CROSSBOW unit. In

angle mode, the unit uses these acceleration measurements to estimate the direction of

the gravity vector in order to determine the magnetic field vector in the horizontal plane.

4.3.1.1 Complementary filtering

To reduce noise and improve the accuracy of the measured variable, the azimuth reading

from the Crossbow unit is combined with an estimate of the vehicle’s angular rate of

rotation found from vehicle odometry. Recalling the standard vehicle kinematic model

presented in Section 2.6.2, estimates of the vehicle’s angular rate are given by the well-

known kinematic equation of the angular rotation rate of a car-like vehicle:

θ̇ =
v tan φ

L
(4.27)

where L = 1.2 m as measured on the vehicle, v is the velocity of the vehicle’s rear-axle

midpoint, and φ is the steering angle, both of which are measured.

Figure 4.15 (a) illustrates the complementary filter used for heading estimation. This

filter operates by subtracting the heading reference signal, supplied by the magnetome-

ter, θmag from the estimate, θ̂ [Buskey et al., 2003]. This error signal is then scaled by

γθ, which includes a component representing the sampling time, and subtracted from the

angular rate signal calculated from vehicle odometry, θ̇. The resulting value is then inte-

grated to give the heading estimate, θ̂. This process in effect provides low-pass filtering

of the heading reference, θmag, and high-pass filtering of the vehicle angular rate mea-

surement, θ̇. Here, γθ = 1.4, at a magnetometer sampling rate of 5 Hz, provides a good

compromise on the reliance of each measurement signal. Figure 4.15 (b) shows the re-

sult of the application of the filter on real AT data, along with the original raw azimuth
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Figure 4.15: The complementary filter on vehicle heading together with its application to
real AT data.

As Figure 4.15 illustrates, the complementary filtering is highly successful at rejecting

noise in the system with very little phase lag. However, in practice a much ‘cleaner’

azimuth reading is extracted by using the raw magnetometer readings from the Crossbow

unit in vector mode, rather than the azimuth signal from the angle mode, which has been
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corrected for roll and pitch using the accelerometer readings. This tactic assumes that the

AT is operating on a relatively flat surface, which is one of the underlying assumptions of

this work.

4.3.1.2 Discussion

As discussed in Section 2.4.2.2, the drawback of using a magnetic sensor for orienta-

tion estimates is that such a sensor measures the Earth’s local magnetic field which can

be distorted by, for example, the presence of ferrous structures and the dynamically in-

duced fields produced by electric motors. The magnetic field direction also varies over

the Earth’s surface.

The sensor is mounted as far as physically possible from the AT’s electric system and

electric motors in order to minimise ‘self-induced’ interference. Distortions to orientation

readings can still occur, as much of the intended operating environment will contain fer-

rous structures which interfere with the compass. However, for the purposes of this work,

sensing orientation using a magnetic compass is adequate.

An alternative method to determine orientation would be to use unique landmarks

which would enable vision to completely determine the pose of the vehicle, provided the

requirements of triangulation are satisfied. Of course, this requires a more sophisticated

vision system.

4.3.2 Tractor vision

Vision as related to pose stabilization and visual homing was reviewed in Sections 2.6.3.3

and 2.6.3.4. In this section, the vision system and the techniques used for tracking a set

of coloured landmarks, estimating their range and bearing are presented.

Vision and robotics have been synonymous for many years. For reviews see for exam-

ple [Batlle et al., 2000; DeSouza and Kak, 2002]. The system developed here is relatively

simple but is robust. Because the system can sense landmarks at a relatively long range

when compared to other vision systems for pose stabilization, the vehicle is given a rela-

tively large ‘region of operation’. This is important because the AT is significantly larger
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than most platforms used for pose stabilization research and requires the additional space

to perform the necessary motions.

The vision system is designed to extract and track objects, relying on colour segmen-

tation using a pre-learnt look-up table of the desired object colour. For testing purposes,

red witches hats (also known as road cones) are used as landmarks for the visual homing

process. However, the system is designed to track multiple sets of objects with differing

colour profiles. Objects are assumed to lie on the ground-plane, from which their range

can be estimated using a geometric model of the camera-mirror optics. A vehicle-object

motion model is then used to track objects over time, and a complementary filter is used

to reduce noise.

An overview of the algorithm follows:

1: Grab first image

2: Extract objects

3: Calculate object locations relative to image centre

4: Estimate object ranges

5: Initialise object list for tracking

6: loop

7: Grab image

8: Extract objects

9: Calculate object image location relative to image centre

10: Estimate object ranges

11: Match currently extracted objects to those in the list updating the relevant object

{temporal filtering}
12: Perform complementary filtering

13: Write object list to the store

14: end loop

Following a description of the hardware, the sections which follow discuss each of the ma-

jor processes in this loop. First, colour segmentation and range estimation are discussed.
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The temporal filtering process is then described and a description of the complementary

filtering process is provided. A method for obtaining a full vehicle pose estimate is then

presented, based upon the IALV strategy and the storage of an additional characteristic of

the target pose, the orientation at the target location. The section concludes with an anal-

ysis of the likely errors when using the IALV method and the these sensing techniques.

4.3.2.1 Hardware

An omnidirectional camera system, made by EyeSee 360 Inc., has been fitted to the front

section of the vehicle, mounted above the engine as shown in Figure 4.14. Images from

the camera are grabbed and fed to the computer using a Sensorray frame-grabber. The

image formats supported by the camera are RGB or YCrCb colour images, or grey-level

images.

The camera-mirror system consists of a WATEC LCL-217 colour camera, targeted at

a curved mirror. The mirror is shaped such that each pixel in the image spans an equal

elevation angle increment irrespective of its distance from the centre of the image [Ollis

et al., 1999]. Such mirror shapes are known as ‘equiangular mirrors’. To maximise the

available field of view, and to minimise vibration effects, a number of modifications to

the camera-mirror assembly were made. These are discussed below.

Firstly, the assembly has been stiffened to minimise relative motion between the mir-

ror and camera caused by vibration on the Autonomous Tractor. This modification has

reduced the radial field of view to approximately 330◦, due to the presence of the addi-

tional bracing.

Secondly, the camera has been shifted to sit closer to the mirror. By moving the

camera closer to the mirror, the elevational view is reduced from the manufactured value

of 140◦ to approximately 125◦. However, the portion of the image which contains the

ground-plane has been increased, giving a better view of the immediate environment

around the AT. The large elevational field of view also lead to problems when work-

ing outdoors due to saturation effects when the Sun, or any overhead light for that matter,

shone directly into the camera or reflected from the mirror. To reduce these effects, a ‘sun
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shade’ was fitted above the camera-mirror system which further restricts the field of view

in elevation to approximately 110◦.

4.3.2.2 Colour segmentation

If landmarks are to be used for navigation, a means of extracting them from the omnidi-

rectional images is required. An image is simply a matrix, each cell of which is a digital

representation of the corresponding pixel on a camera CCD. Each cell of the matrix has

some value representing the intensity of light for that particular pixel. In a grey level im-

age, once digitised, this value is a number ∈ [0, 1] or an integer ∈ [0, 255]. In segmenting

grey-level images, it is common to use thresholding techniques in which all pixels in an

image are set to ON if they exceed the threshold value and to OFF otherwise. An example

of this process is shown in Figure 4.16 (b), where a grey-level image from the omnidirec-

tional camera has been thresholded at 180 — the original image is shown in Figure 4.16

(a). Thresholding is but one tool in the process of image segmentation. For a complete

(a) The original intensity image. (b) Image thresholded at 180.

Figure 4.16: Example of image thresholding of a grey-level image, threshold level set to
180 where image intensity is represented by an integer ∈ [0, 255].

treatment of image segmentation processes, refer to any of the commonly available texts,

such as [Russ, 1992]. Here a brief explanation in relation to colour imaging is given.

Image segmentation is the process of partitioning an image into a set of non-overlapping

regions whose union is the whole image [Haralick and Shapiro, 1992]. In order to be use-
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ful, these partitioned regions should have some meaning to the application at hand. In

this work, colour is used as the main identifying characteristic for landmarks. Hence, the

meaningful regions in an image are those which contain the desired colour (or colours)

and those that do not. For example, red road cones (also known as witches hats) are used

as ‘artificial landmarks’ and meaningful regions of the image for control purposes are

those that correspond to the colour of red witches hats. Of course, it is easy to ‘confuse’

such a simple system as it extracts all objects matching the colour description. Other

cues can then be used to reinforce the selection — for example, in this work the expected

motion of the objects is used to track, and hence filter, the objects over time.

Extraction of ‘interesting’ objects from images has been a goal of image processing

for over three decades, with advances mainly coming in the form of increased processing

power. The amount of data to analyse in an image makes real-time processing difficult,

particularly with colour images. Much of the work in the field assumes that lighting is

sufficient for good exposure, diffuse and time invariant. In addition, the object to be

segmented normally consumes a significant proportion-of the image — an example is the

‘face tracking’ literature, see e.g. [Bradski, 1998]. When using colour, further difficulties

arise as the colour of an object varies with the illuminant colour, reflectance of the object,

illumination geometry, viewing geometry and other sensor specific parameters [Batlle et

al., 2000].

However, the use of colour can enable the determination of the identity of an ob-

ject, and also the location within an image of objects with known colour profiles [Swain

and Ballard, 1991]. When using colour as a defining characteristic, this can be achieved

without knowledge of the shape of the object. This latter point is particularly important

for mobile robots because the shape of objects varies with viewpoint — omnidirectional

vision distorts objects with viewpoint even further.

A colour space is a mathematical coordinate system used for assigning numerical

values to colours. Colour spaces are usually used in relation to computers, televisions and

other graphical interfaces. There are many different colour spaces, all claiming particular

advantages over each other for their usefulness in particular situations. As Batlle et al.
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[2000] note, the question of which colour space to use does not have a single or perfect

solution.

The most well known colour space is RGB, in which each pixel in an image is repre-

sented by a vector, whose elements are the intensity in the Red, Green and Blue parts of

the light spectrum [Russ, 1992]. Closely related to the RGB colour space is YCrCb space.

In this space, the Y component combines the red, blue and green components in propor-

tion to the human eyes sensitivity to each, giving a representation of image intensity, and

the Cr and Cb components represent the chrominance. Both the RGB and YCrCb colour

spaces are hardware oriented schemes [Russ, 1992], with the latter space used for colour

computer displays. Both colour spaces are cubic.

Other colour spaces are more closely related to human perception, for example the

Hue, Saturation and Value (HSV) colour space. This colour space involves a non-linear

transform from the RGB space and is represented by a cone in three dimensional space.

In this space, hue is a representation of colour as described by wavelength, saturation is

the amount of colour present, and value is a representation of the light intensity.

Thresholding techniques can also be used for colour images, where each component

of the colour image is thought of as an individual image. Thresholds can then be set on the

components of the colour vector, and the resulting images combined with a pixel-by-pixel

AND operation.

Histogramming and variations of this concept are also popular in the colour seg-

mentation and tracking literature and the related problem of Image Retrieval from large

databases of images. A one-dimensional histogram of an image is obtained by counting

the number of times each intensity level occurs in the image array — such a histogram

can be used to set threshold levels for example. Similarly, a colour histogram is obtained

by discretizing the image colours, and counting the number of times each colour occurs

in the image [Swain and Ballard, 1991] — for an RGB, or any 3-space image, this can

occur in three-dimensions. Such histograms can be used to identify and locate objects.

Early work by Swain and Ballard [1991] was based upon three-dimensional his-

tograms of ‘quantised’ colour, with object identification and localisation performed based
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on pre-taught histograms. Many later techniques build upon the work of Swain and Bal-

lard [1991]. For example, Rasmussen et al. [1996] use three-dimensional histogramming

but fit a model to the pre-taught data from which image segmentation proceeds. Improve-

ments to Swain and Ballard [1991] histogramming technique have used the relationship

between the colours of neighbouring pixels to improve object / image recognition (see for

example [Huang et al., 1999; Chang and Krumm, 1999]).

Others have used techniques based on two-dimensional tables which are adaptive to il-

lumination, rather than capturing the three-dimensional colour data, see for example [Lee

et al., 2001]. This of course substantially reduces the computational overheads of storing

a three-dimensional histogram and the associated costs of looking up such a representa-

tion.

Initial investigations

In this work, the initial investigations in segmentation were centred on the RGB colour

space, relying on an image subtraction between the R and G components of an image

and the subsequent thresholding of the resulting image to find the desired object. The

process used is described below, where R, G and B represent the matrices of the colour

components vectors, also known as the colour planes.

1: Apply a spatial mask to the image, eliminating the camera-mirror assembly, mounting

brackets and the AT.

2: Subtract the green colour component from the red (R − G), scaling to ∈ [0, 1].

3: Threshold the image at a manually tuned threshold level.

4: Perform morphological opening on the thresholded image with a 3x3 mask — this

reduces the occurrence of isolated ‘noisy’ pixels.

5: Perform morphological closing on the the resulting image with a 3x3 mask — this

reduces the occurrence of ‘holes’ in blobs.

6: Extract blobs and perform image labelling.

7: Eliminate blobs which are too large or too small.
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Over a series of images, an ‘optimum’ threshold could be obtained but was highly depen-

dent on lighting conditions. Figure 4.17 shows the steps in the process.

Figure 4.18 shows the results, for the same image set, of segmenting a series of images

in which the AT was driven towards a set of five witches hats. The figure illustrates the

sensitivity to the thresholding levels. The first set of results were obtained with a well-

tuned threshold, while the next two sets show the results of setting the threshold too

low and too high respectively. Segmentation in this colour space is quite susceptible to

changing lighting conditions, requiring repeated ‘tuning’ of the threshold.

This lead to the investigation of segmentation in HSV space. Although much more

successful under varying lighting, the transformation from RGB to the HSV colour space

is nonlinear and was far too expensive in terms of processor use and processing time.

Two-dimensional loop-up table segmentation

The susceptibility to lighting conditions in RGB space, and the computational over-

heads of converting to HSV space lead us to investigate segmentation based upon a two-

dimensional histogram method in YCrCb space. This colour space is provided directly by

the frame-grabber at no additional computational cost. Segmentation in this colour space

provided the best compromise between speed and segmentation effectiveness.

The Cr and Cb colour components from the image are used to create a bi-variant

histogram on the desired colour or colours, with the first axis being Cr and the second Cb.

This histogram is created through a Graphical User Interface in which the user clicks on

objects (regions) of the desired colour in a training image. The Cr and Cb counts for the

selected regions are then recorded in a two-dimensional histogram. This histogram itself

can be viewed as an image, and standard image processing tools, such as morphological

processes, can be used to manipulate it. The histogram is transformed to a simple binary

bi-variant look-up table by applying a threshold to the colour counts in the histogram.

The bi-variant look-up table is then used for image segmentation.

A two-dimensional (or bi-variant) look-up table can be viewed as a means of relating

two input variables to a single output. In this case, the input variables are the Cr and Cb
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(a) The original image.
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(b) The masked image.
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(c) Red component minus the green
component.
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(d) The image in (c) is thresholded,
here 0.12 was used.
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(e) Morphological opening and clos-
ing of image resulting from the image
in (d).
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(f) Results of blob extraction with
very big and very small blobs elimi-
nated. The star indicates the centroid
of the blob.

Figure 4.17: The segmentation process in the RGB colour space.
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(b) Results from a lower than optimal
threshold.
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(c) Results from a higher than optimal
threshold.

Figure 4.18: Evolution of landmark bearing over a series of images showing the effect
of different threshold levels. Note in image (b) the landmarks at the start of the image
sequence at a bearing of between 100◦ and 150◦. This is in fact a fire hydrant which is in
the middle of the testing area.

values of the current image, and the output is whether the particular pixel is defined as

being ‘ON’ or ‘OFF’.

After training the system for a particular colour or group of colours, colour segmenta-

tion proceeds as described in Algorithm 1. Figure 4.19 (a) shows the input image, while

Figure 4.19 (b) illustrates the results of the segmentation process described in Algorithm
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Algorithm 1 Colour segmentation of an image.

1: Apply the mask, eliminating superfluous elements in the image.
2: Perform look-up using current image and the 2-d look-up table of the desired colour.
3: Extract blobs from the resulting binary image and perform image labelling.
4: Eliminate blobs which are too large or too small.
5: Calculate individual blob properties (position of blob centroid in image, pixel count

etc.).
6: Calculate blob pixel distance and bearing w.r.t image centre.
7: Estimate blob range using geometric model of camera-mirror and the flat-Earth as-

sumption (described in Section 4.3.2.3).

1. Figure 4.19 (c) shows the look-up table used.

4.3.2.3 Range estimation

Using a flat-Earth assumption, an estimate of range can be determined in a similar manner

to Horswil’s range from height-in-image method [Horswill, 1993; Das et al., 2001] if the

geometry of the camera-mirror system is known. An alternative to using the geometry

of the system is to determine an empirical relationship between ground-plane range and

radial image distance. Another alternative method to determine range is to use image

reconstruction techniques based upon the vehicle’s motion, see for example Srinivasan

et al. [Chahl and Srinivasan, 1996; Srinivasan et al., 1997; Nagle and Srinivasan, 1996;

Chahl and Srinivasan, 1997a]. However, initial investigations with simple versions of

these optic flow type techniques proved that the AT odometry measurements were too

coarse to achieve accurate estimates of range.

The mirror in the omnidirectional camera-mirror assembly has equiangular optics

meaning that for a given angle of incidence into the mirror, the reflected ray is elevated by

a particular gain depending on the camera-mirror separation distance [Chahl and Srini-

vasan, 1997b]; for an illustration of this point refer to Figure 4.20. The details of this

mirror’s design are given in [Ollis et al., 1999]. This mirror is slightly different in shape

to the equiangular optic design originally presented by Chahl and Srinivasan [1997b]

which relies on a small angle approximation. However, Srinivasan’s mirror shape design

has a closed form solution as opposed to the numerical method required to produce the
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(a) The image prior to segmentation. (b) Segmented image.

(c) An example lookup table of
the red witches hats contained
in the image of Figure (a). Im-
age inverted for clarity.

Figure 4.19: Segmentation using the two-dimensional look-up table.

shape of the EyeSee 360 mirror. This closed form solution is used in this work, and it is

noted that the designers of the EyeSee 360 mirror (i.e. [Ollis et al., 1999]) also used this

closed form solution for analysis purposes.

The equation describing the surface of equiangular mirrors is [Chahl and Srinivasan,

1997b]: (
r

ro

)− 1+α
2

= cos

[
θ(1 + α)

2

]
(4.28)

where the parameters are defined with reference to Figure 4.20.

As received from the manufacturer, the mirror was designed to operate with ro =

14 cm and with an α value of 11. As noted earlier, the camera has been moved closer to
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Figure 4.20: The geometry of the omnidirectional camera system related to the ground-
plane. Diagram adapted from [Chahl and Srinivasan, 1997b]

the mirror (reducing ro) in order to increase the proportion of the image containing the

ground-plane — this in effect reduces the angular magnification, α, and can have an effect

on the assumption of the constancy of α at high angular elevations [Chahl and Srinivasan,

1997b]. However, α remains constant over most of the angular range of the mirror [Chahl

and Srinivasan, 1997b].

Using the geometry of the system, the ground-plane range can be estimated using a

flat-Earth assumption, given a pixel distance from the centre of the image. Referring to

Figure 4.20, the distance d1 can be calculated by:

d1 = (h + r cos θ) tan(αθ + φ) (4.29)
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and the distance d2 is given by:

d2 = r sin θ (4.30)

Adding these together3 gives the theoretically determined ground-plane distance, R̂. Com-

bining equations 4.28, 4.29 and 4.30, the equation for R̂ is:

R̂= d1 + d2

= ro

[
cos

(
θ(1 + α)

2

)]− 2
1+α

sin θ +

⎡
⎣h + ro

[
cos

(
θ(1 + α)

2

)]− 2
1+α

⎤
⎦ tan(αθ + φ) (4.31)

where the parameters are defined with reference to Figure 4.20 and R̂ refers to the range

estimate (i.e. d1 + d2).

Now to map a ground-plane distance into the image plane a relationship between θ

and radial pixel distance g is required. Referring to Figure 4.21:

tan θ =
u

f
=

gp

f
(4.32)

where u is the distance from the centre of the image measured on the image plane, g

is the distance in the image measured in pixels, p is the pixel pitch and f is the focal

length of the camera. Using the known radius of the mirror at its outer edge rmin, and the

corresponding pixel distance of this edge in an image g0, a relation for f is determined as

follows:

g0p

f
=

rmin

ro + rmin

(4.33)

Here rmin = 3.68 cm, and the distance of its edge as it appears in the image is go =

172 pixels. The pixel pitch p is 17.639× 10−6 m found from the image size (384 pixels×
288 lines)4 and the CCD diagonal which is 1

3
inches. This leads to the following relation-

ship for f :

f =
pgo(ro + rmin)

rmin

(4.34)

3In fact d2 	 d1 and d2 could be omitted with little error.
4For a YCrCb image, the intensity image (Y), is double the resolution of the chrominance images (Cr

and Cb). The size specified here is the chrominance image size.
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Figure 4.21: Relationship between f and u.

and the relationship for θ at any pixel distance g (measured with respect to the centre of

the image) is then given by:

θ = arctan

[
grmin

g0(rmin + r0)

]
(4.35)

Substituting the relevant values leads to:

θ = arctan

[
21.395 × 10−3g

36.8 × 10−3 + ro

]
(4.36)

where ro is given in metres and g in pixels.

Determining imaging parameters

A method for estimating the unknown camera parameters (r0, φ, α and h) is now pre-

sented. These must be identified in order to use Equation 4.31 for ground-plane range

estimation. To determine these parameters, a series of images of a red road cone at spe-

cific distances from the camera was gathered and the corresponding pixel distance from

the centre of the image determined. The centre of the image was found by fitting a circle
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Parameter Value

ro 0.0836 m
h 1.2961 m
α 7.1411
φ 0.1680 rad

Table 4.1: Parameter values as determined using fminsearch in MATLAB.

to the outer edge of the mirror, visible in the image. Numerical optimisation (MATLAB’s

fminsearch) was used to adjust these imaging parameters so that the estimated range

R̂ matched the true, measured ground-plane range R. The error (or cost) function used to

optimise the parameters was:

J(R, R̂) =
n∑

i=1

(∣∣∣Ri − R̂i

∣∣∣ (Ri < 5)w1

)
+

n∑
i=1

(∣∣∣Ri − R̂i

∣∣∣ (Ri > 5)w2

)
(4.37)

where R was the actual measured range for a particular pixel distance, R̂ was the es-

timated range for a particular pixel distance, n was the number of measurements, and

w1 = 5 and w2 = 1 were weighting terms for ranges below and above 5 m respectively. A

weaker weighting was placed on Ri > 5 m as these were less accurate due to the reduction

in resolution with rising angular elevation in the image. The resulting parameters values

for this system are shown in Table 4.1. These values correlate well with the parameters

which can be estimated directly in the system, i.e. the height of the camera is approxi-

mately 1.3 m and the camera mirror separation is approximately 0.1 m. Also, α = 14 for

the camera-mirror system as manufactured — by moving the camera closer to the mirror,

α is expected to decrease as indicated by these results. In addition, the focal length of

the lens (Cosmicar TS812A) is specified as 8 mm. Substituting the estimated imaging

parameters into Equation 4.34 gives a focal length of 9.9 mm, which is also a relatively

close match.
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Range estimation results

Figure 4.22 (a) shows a plot of estimated range, as determined using Equations 4.31 and

4.36, versus pixels distance. Range was estimated using the parameter values of Table

4.1. Also shown is the true ground-plane distance, versus pixel distance. Figure 4.22 (b)

illustrates the difference between the range estimate and the measured value. The match is

excellent for ranges of up to 9 m, with the error between experimental data and estimated

range being less than 0.1 m for ranges less than 8 m. Inaccuracies at greater ranges can

be attributed to measuring errors and to degradation of the constant α assumption at high

angular elevations [Chahl and Srinivasan, 1997b], i.e. high radial distances.

Note that the maximum range of the sensor for this particular object (a large red

witches hat) is approximately 12 m. This limitation is largely due to the reduction in

angular resolution with rising elevation in the mirror. Similar range limitations would be

encountered with a monocular camera. The minimum range is limited to approximately

1 m due to the presence of the vehicle itself, and the central bolt which holds the mirror

to the camera assembly.

Variation with landmark bearing

This range estimation technique relies on the flat-Earth assumption and perpendicular

alignment of the camera-mirror system vertical axis with the ground-plane. Deviations

from these assumptions can lead to distortions in the range estimate. Most of the terrain

encountered by the vehicle will be relatively flat. Hence, the major source of error is

camera-mirror ground-plane perpendicular misalignment. This can lead to landmarks at

equal ground-plane ranges but different bearings having different range estimates. Perfect

alignment of the camera-mirror system is difficult because:

• The ground is not always ‘flat’.

• The platform itself vibrates considerably.

• The camera-mirror system may be poorly mounted — even small errors can have a
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Figure 4.22: Range estimation results.



4.3 Sensing 169

0 2 4 6 8 10 12
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Error in Range Estimate (for different bearings)

groundplane range (m)

gr
ou

nd
pl

an
e 

ra
ng

e 
−

 e
st

im
at

ed
 r

an
ge

 (
m

)
0°

90°

−90°

135°

−135°

Figure 4.23: Variation of range estimate with landmark bearing.

considerable influence.

In addition, small aberrations on the mirror surface can lead to large range estimate varia-

tions. At larger ranges, a difference of a single pixel in the image leads to a difference of

several metres in ground-plane range — see for example Figure 4.22 for which ground-

plane ranges of 8 < R < 11 metres show a pixel distance change of only 3 pixels (i.e. a

pixel distance of 98 to 101 pixels in the figure).

Figure 4.23 illustrates the differences in range estimation for five different bearings,

taken under conditions where the AT was on a relatively flat surface with the engine off.

Here, the system was aligned with the local ground-plane as best as physically possible.

Redesigning the camera-mirror system to accommodate more sophisticated alignment

adjustments may be a fruitless exercise because of the highly vibratory environment and

the fact that small misalignments lead to considerable differences in range estimation.

In operation, the error in the range estimate will have two sources:

1. Systematic error caused by misalignments between the camera-mirror system and

the local ground-plane, and camera-mirror aberrations.
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2. Non-systematic error caused by vibrations to the camera-mirror platform from the

engine and motion of the vehicle.

Non-systematic errors seems to ‘average’ out over several measurements and do not sig-

nificantly affect navigation performance. However, the systematic errors lead to some

profound results in position and pose stabilization. In terms of this sensing arrangement

it is much easier to stabilize to a pose because all systematic errors in the system will be

negated as the target image will ‘look’ like the current image as the vehicle gets closer

to home. For position stabilization this is not the case because the vehicle may approach

the home position with any orientation meaning that the image at the target will not have

the same systematic errors as the images currently seen when the vehicle approaches the

target position.

4.3.2.4 Temporal filtering (tracking)

After segmentation and range estimation, the colour objects are tracked over time in order

to reduce the effects of incorrect image segmentation. In this work, a rather simple but

effective means of tracking objects over time was developed based upon the frequency

and recent history of sightings, and the expected evolution of the relative object position.

This is termed temporal filtering, as distinct from the spatial filtering discussed in Section

4.3.2.2.

Given that the Autonomous Tractor is a nonholonomic, car-like vehicle its means of

translation and rotation are constrained. Thus, the motion of objects relative to the vehicle

can be predicted with knowledge of the vehicle’s translational and rotational velocities.

For example, if an object is ahead and to the right of the vehicle, and the vehicle maintains

a straight course, the object’s bearing should evolve clockwise with respect to the vehicle.

The temporal filter is based upon a model of this vehicle-object relative motion. Referring

to Figure 4.24, the equations for the motion of an individual object are (for a car-like

vehicle):

Ṙ = −v cos β (4.38)
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Figure 4.24: The vehicle, a landmark and the coordinate system used. All angles are
counter-clockwise positive.

β̇ =
v sin β

R
− v tan φ

L
(4.39)

where R is the object’s ground-plane range relative to the AT, v is the vehicle’s velocity,

β is the relative orientation of the object with respect to the AT, φ is the vehicle’s steering

angle, and L is the length of the vehicle. If v, φ and L, are known or measured, Ṙ

and β̇ can be calculated and used to predict future values of R and β through simple

Euler integration. In practice, this method is used to predict future object positions. This

allows us to get ‘correspondence’ between tracked points but this correspondence is not

a necessary feature of the system, it just helps with noise reduction in the event of falsely

detected beacons resulting from poor image segmentation.

To track objects over time, linked lists are used where each node in the list represents

an object. Each node consists of the following information:
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– relative bearing

– pixel distance w.r.t image centre

– estimated range

– time first seen

– time last seen

– number of times seen

– status (good or bad)
The first image captured is used to bootstrap the list with all extracted objects assumed

to be ‘good’. The list is maintained as each subsequent image is processed, with the

‘good’ objects being stored for use by other processes (e.g. to control the vehicle). The

temporal filtering process is described in Algorithm 2. For landmark tracking, we wish

Algorithm 2 Temporal filtering

1: Grab the first image
2: Extract the beacons from the image
3: Boot strap the list with the first set of beacons
4: loop
5: Grab next image
6: Extract beacons from image using Algorithm 1
7: Match beacons in list to current beacons using Equations 4.38 and 4.39 and Euler

integration for prediction of object positions
8: if no match then
9: add another node to the list

10: end if
11: Upgrade relevant nodes to ‘good’ status, based on times seen and when last seen
12: Demote relevant nodes to ‘bad’ status, based on when last seen
13: Eliminate old nodes, based on when last seen
14: Perform complementary filtering using vehicle odometry (described in Section

4.3.2.5)
15: Write properties of ‘good’ beacons to the STORE for use by other processes
16: end loop

the image to be as large as possible because the beacons assume a relatively small pro-

portion of the image (at 8 metres a large road cone occupies approximately 10 pixels in a

768 pixels×576 lines colour image5.) This large image size limits the processing speed to

5This is the maximum image size of the intensity plane of the image (i.e. the Y component). The colour
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approximately 7 Hz including image acquisition. However, the loop rate has been reduced

to 5 Hz to ensure that there is adequate time for other processes to run.

The system is designed to enable the use of multiple lists, and hence tracking of dif-

ferent groups of colour objects. Each list can use its own set of parameters for promotion

and demotion etc. For example, these different types of objects could be landmarks and

obstacles. Within the algorithm there are several tuning parameters:

• Object age

– Age of promotion

– Age of demotion

– Age of elimination

• Constraints on object’s relative position evolution

– Depends on accuracy of vehicle motion knowledge and errors in extraction of

object relative position (e.g. vehicle vibration may induce errors in where the

object appears in the image).

When tracking landmarks for positioning purposes, the parameters are adjusted so

that landmarks will remain stable in the list. When tracking obstacles, the parameters

are adjusted so that list maintenance is much more responsive when adding and deleting

items from the relevant list.

For an example of the temporal filtering process, refer to the raw range and bearing

results in Figures’ 4.25 (b) and 4.26 (b), which show tracking of a witches hat over a

period of approximately 70 s.

4.3.2.5 Complementary filtering

As described in Section 4.3.1.1, the idea of a complementary filter is to fuse the comple-

mentary features of different sensing sources to produce a more accurate measurement

planes (CR and Cb) have half this resolution.
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of the desired quantity. In the case of range estimation, an estimate of range is available

from the vision system. An estimate of how a particular object’s range should change

based on the motion of the vehicle and the relative orientation of the landmark is also

available, as given by Equation 4.38. This quantity is obtained from vision and odome-

try. Object range as determined from vision is combined with the rate of change of range

measurement using a complementary filter as shown in Figure 4.25 (a). Some represen-

tative results of this process are given in Figure 4.25 (b). For these results, the gain was

set equal to γr = 1.3 at a vision sampling rate of 5 Hz. In practice, it was found that filter

performance is improved at low vehicle speeds by setting the gain to a lower value — for

|v| < 0.1 ms−1, γr = 0.1.

Similarly, for the bearing estimate of an object the bearing angle from vision can be

combined with the rate of change of bearing angle given by Equation 4.39, as shown in

Figure 4.26 (a). Sample results of this process are shown in Figure 4.26 (b). Here it is

noted that although the data has been smoothed somewhat, the filtering process on the

bearing measurement actually gives a phase lead to the estimate. This is probably due to

the fact that the measurements of β and β̇ are coupled. The filter gains are as used for the

range estimate.

In both cases the complementary filter was compared with a second-order Butterworth

filter on the range and bearing measurement, empirically tuned with a cut-off frequency of

1.25 Hz. The improvement in signal-to-noise ratio provided by the Butterworth filtering

did not justify the problems that would be encountered by the large phase-lag introduced

by the filter (of the order of 1 second). In any case, the complementary filtering has far

superior performance in terms of noise reduction and introduced almost no phase lag.

An Extended Kalman Filter was also applied to the combined data (range, bearing and

odometry) but it was found that tuning and software implementation was less favourable

against the single parameter complementary filters presented here.

For an illustration of the complete landmark tracking process, please refer to the video

lm tracking sequence.avi contained in the supplementary material in Section A.1. This

video shows the AT moving through an industrial shed-like environment, tracking a set of
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vehicle moves through a workspace.

Figure 4.25: The complementary filter on landmark range, with an example of the tech-
nique applied to real AT data.

witches hats.

4.3.3 Implementing the IALV and determining vehicle pose

Obtaining a pose estimate using the IALV strategy is straight-forward as it provides the

distance and heading to the target location, relative to some reference direction. As de-
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Figure 4.26: The complementary filter on landmark bearing, with an example of the tech-
nique applied to real AT data. Tracking for this filter is not as good and in fact leads
the original signal. This is due to coupling in the filtering equations as β appears in the
calculation of β̇.

tailed in Section 4.3.2.1, the camera-mirror system is mounted over the centre of the front

axle, and is capable of finding coloured objects and returning their bearing with respect

to the vehicle, βi, and their ground-plane range, Ri. The magnetometer on the vehicle
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returns the vehicle’s current orientation, Nθ, with respect to North.

The IALV strategy defines the target position as the local origin of the coordinate sys-

tem. Because the desired vehicle orientation at the target pose is not always aligned with

North, the vehicle orientation at the target pose also needs to be stored. All subsequent

vehicle orientation measurements are then made with respect to this target orientation,

that is:

θ = Nθ � Nθ∗ (4.40)

where θ ∈ (−π, π], Nθ is the current vehicle orientation with respect to North, and Nθ∗

is the target orientation with respect to North — the target orientation defines the x-axis.

Referring to Figure 4.27, the range vectors to the individual landmarks in the workspace

are given by:

Li = Ri � (θ ⊕ βi) (4.41)

To determine vehicle pose with respect to a target pose, the vehicle is first driven to the

desired pose and the target orientation and IALV are captured and stored. Subsequently,

the IALV method is used to find the range and bearing to the target location, e and δ,

where δ is measured with respect to the x axis. This can then be transformed to a Cartesian

representation:

xf = −e cos δ (4.42)

yf = −e sin δ (4.43)

where (xf , yf ) are the coordinates of the front-axle. However, the vision sensor is mounted

over the midpoint of the front-axle — for control purposes, the position of the midpoint

of the rear-axle is required. With knowledge of the vehicle’s length, L, and its orientation,

θ, the position of the midpoint of the rear-axle is given by the rigid-body constraint:

x = xf − L cos θ (4.44)

y = yf − L sin θ (4.45)
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Figure 4.27: IALV method used to determine vehicle pose (x, y, θ) with respect to the
target pose.

where (x, y) are the coordinates of the rear-axle. Thus, the full vehicle pose estimate,

(x, y, θ), with respect to the target pose, can be determined using the IALV method and

data from the magnetometer.

4.3.4 IALV range and bearing error sensitivity

Determining landmark range is relatively straight-forward with an omnidirectional cam-

era however, as shown in Section 4.3.2.3, range estimation with this sensor does not pro-
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vide an accurate measurement when compared to other dedicated range sensors such as,

for example a SICK scanning laser range-finder. In addition, when using the ground-plane

constraint, object apparent range can vary depending on object bearing with respect to the

camera due to imperfections in the camera-mirror system and when the camera axis is not

perpendicular to the ground-plane (recall Figure 4.23). Landmark bearing estimation is

straight-forward and less prone to error than range estimation.

Here, a simple experiment is performed to illustrate range error effects on the IALV

strategy. The workspace used is as previously defined in Section 4.2.1 (i.e. x, y ∈ [−20, 20]

with an overlaid grid of spacing 1) with landmarks located at (x1, y1) = (−10, 10),

(x2, y2) = (10, 10) and (x3, y3) = (10,−10) as in Figure 4.9 (a). First, it is assumed that

the target ‘snapshot’ is obtained correctly but a scale error occurs on every subsequent

landmark range measurement such that R = 0.8Rtrue for each landmark. The effect of

this offset can be seen in Figures 4.28 (c) and (d), while the ‘perfect case’ is shown in

Figures 4.28 (a) and (b). As the figure shows, for such an error homing occurs to a point

displaced from the true target location.

Range and bearing error effects can be explained very simply. Recall the Cartesian

version of the IALV homing vector calculation:

HIALV = IALV − IALV ∗

=
1

n

n∑
i=1

(x̂i − x) − 1

n

n∑
i=1

(xi − x∗) (4.46)

where x̂i has been introduced to refer to the current landmark estimated position and all

other terms are as defined in the preceding sections. x̂i consists of the actual landmark

position, and an error component εi caused by landmark range and bearing errors, i.e.:

x̂i = xi + εi (4.47)

εi encapsulates all errors associated with determining where a landmark is. This includes

random errors such as those associated with vibration of the vehicle, and errors caused by

sensor misalignments.
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For ‘perfect’ range and bearing estimation, such that εi = 0 for all landmarks, Equa-

tion 4.46 reduces to:

HIALV = x∗ − x (4.48)

However, for imperfect range and bearing estimation, complete term cancellation does

not occur leaving:

HIALV = (x∗ − x) +
1

n

n∑
i=1

(x̂i − xi)

= (x∗ − x) +
1

n

n∑
i=1

ε̂i (4.49)

The terms in the summation produce the homing vector offset. The contribution from

these terms is dependent of course on the magnitude of the range and bearing errors

but also depends on the radial distribution of the landmarks with respect to the target

location. Some landmark configurations will diminish the effects of these errors, as for

landmarks which are equally radially distributed around the target location, while other

configurations will magnify the effects. In practice, systematic sensing errors, such as the

dependence on bearing for the range estimate discussed in Section 4.3.2.3, form the bulk

of the error term while random errors, such as those caused by vibration, tend to cancel

due to averaging effects.

As mentioned earlier, the use of this sensing arrangement and such a ‘simple’ localisa-

tion strategy has some important consequences when servoing to a position as opposed to

a pose — the world can ‘look’ different from the same location when viewed at different

orientations when using an omnidirectional camera which is not perpendicularly aligned

with the local ground-plane. When servoing to a pose, the goal is approached with the

same vehicle orientation as the ‘target snapshot’ and any vision sensing errors appear at

the same location in the snapshot and hence, cancel out. However, when servoing to a po-

sition with no constraint on the vehicle final orientation, the goal can be approached with

any vehicle orientation and the current snapshot of the environment appears different to

the target snapshot — the world ‘looks’ slightly different and the vehicle homes to the

incorrect position. This homing error is theoretically equal to 1
n

∑n
i=1 ε̂i.
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Figure 4.28: Effect of range errors on IALV homing vectors for the landmark configura-
tion of Figure 4.9 (a).

Finally, although increasing the number of landmarks may help reduce problems with

landmark sensing errors, it can also limit the available workspace. As explained in Section

4.3.2.3, the vision system is limited to sensing landmarks within a range of 1 to 12 m. Be-

cause of this limitation, and the simple strategy used, the usable navigation area becomes

quite limited as the number of landmarks increases. Figure 4.29 gives an example of a

workspace containing three fairly widely spaced landmarks and the associated limitation

to the available space for which the IALV strategy can be used with this range limited
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sensor. For this reason, most of the experiments on the vehicle were conducted with one

limit
landmark detection

landmark
landmark

R = 12metres

landmark

usable area

Figure 4.29: Useful navigation space when using the IALV strategy.

landmark in the workspace.

4.4 Conclusion

In this chapter, several landmark-based homing strategies were investigated. These strate-

gies rely on comparing the current view of the environment with some remembered view

of a target location to drive the robot towards the target position. In this work, it has been

shown that the bearing-only landmark-based homing strategies have a strong dependence

on landmark configuration with respect to the target position. By introducing range in-

formation to such strategies, this dependence can be eliminated. The Improved Average

Landmark method developed in this work includes landmark range information and is

also free of the need for correspondence between features in the current and target view.
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By storing the vehicle orientation at the the target location, a full vehicle pose estimate

with respect to the target pose can also be obtained.

The sensors and sensing strategies used to implement the IALV homing method were

then presented. First, a reference direction is provided by a CROSSBOW high-speed

orientation sensor. To reduce noise effects, measurements from this sensor were com-

bined with estimates of the angular rate of the vehicle found from vehicle odometry.

These measurements are combined using a complementary filter which provides signifi-

cant signal-to-noise ratio improvements, without introducing any significant delays in the

system. Landmarks are sensed using an omnidirectional camera. Landmarks are found

in an image based on a pre-learnt look-up table of their colour profile. Landmark range

is estimated using a model of the omnidirectional camera’s optics, and the landmarks are

subsequently tracked using a vehicle-object motion model. These models are also used in

complementary filters to improve the estimates of landmark range and bearing.

Importantly, the IALV method is correspondence-free — there is no need for match-

ing of the current and target landmarks. In addition, it is simple, requiring only vector

addition and subtraction of landmark range vectors. The method requires a minimum of

one landmark as opposed to the minimum of three required by the bearing-only strategies.

Also, the method is simple to implement in terms of sensing, using a magnetic compass

for a reference direction and an omnidirectional camera to determine landmark range and

bearing. Furthermore, unwrapping of the omnidirectional image is not required, provid-

ing a further computational saving.

However, the success of this visual pose estimation strategy is somewhat limited by

the sensors and the simple sensing strategies used. For example, small range errors caused

by non-perpendicular alignment of the omnidirectional camera with the ground-plane can

lead to significant errors in position. Thus, the method is suited to pose stabilization, in

which errors between the current and target views cancel out.
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Chapter 5

Position and Pose Stabilization —
Visual Homing for a Car-Like Vehicle

The position stabilization problem for car-like vehicles can be solved by using a two-stage

state feedback approach: first stabilize the relative heading to the goal with respect to the

vehicle’s longitudinal axis; then stabilize the relative heading and the distance to the

goal. Likewise, the pose stabilization problem for such a vehicle can also be solved with

a multistage state feedback strategy: First home to the goal region; second, servo to the

x-axis with the desired final orientation; finally, servo to the goal. In practice, when using

the IALV strategy with the sensing arrangement described in the previous chapter, pose

stabilization is more successful than position stabilization because errors in the target

and current views cancel out. When stabilizing to a position, this does not always occur.

5.1 Stabilization of mobile robots

If mobile robots are to perform useful tasks, they will require the ability to stabilize to

specified positions and poses in the environment — these competencies are central to a

mobile robot’s ability to do useful things in a workspace. For example, if a mobile robot

is to perform a drilling task, it must position and orient itself in a precise manner with

respect to the hole to be drilled. No matter how detailed the map it is provided, it still

must possess the ability to accurately manoeuvre itself. Although computing power is

ever increasing, solutions based upon path-planning and optimal control are still beyond

185
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the requirements of operating in real-time, particularly if high-level sensing is also to

occur on-board. This is important in the case when the robot is required to replan on-line

because of accumulated errors associated with robot motion, errors in the model of the

robot, and mapping errors.

In many industries, robotic systems will be retrofitted to existing vehicles, and hence,

the control must be able to cope with the dynamics and constraints of the vehicle. The ex-

ample used in this thesis is that of a car-like vehicle which is limited to moving in a series

of clothoids and lines. The vehicle has significant dynamics in the steering and velocity

loops (as detailed in Section 3.4), leading to significant delays between a demand being

issued and the vehicle’s response. Similar challenges are faced in automating industrial

vehicles.

This chapter is divided into two sections; the first section concentrates on the problem

of position stabilization in which the aim is to stabilize1 the vehicle to a particular position

in a workspace without a constraint on the vehicle’s final orientation; the second section

adds the constraint of stabilizing the vehicle to a particular position with a particular final

orientation, i.e. pose stabilization.

5.2 Position stabilization

First, the problem of position stabilization is considered in which the goal is to stabilize

a car-like vehicle to a target position with no constraint on its final orientation. Here,

the IALV method and sensing techniques of the previous chapter are used to estimate the

vehicle pose with respect to a target pose, based on the discrepancies between the current

and target views of the workspace.

Like pose stabilization, position stabilization can be attacked on several fronts. The

open-loop strategies seek to find the bounded sequence of control demands which will

bring the vehicle to the target position from some arbitrary position in the workspace.

The closed-loop strategies require the design of a feedback law which provides the control

1The term ‘stabilize’ is used to describe driving a state, or set of states, towards zero.
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demands based upon the current robot state. In this work, the closed-loop strategy is used

as it is more robust to model and sensor uncertainty.

The visual homing strategies discussed in Section 4.2.1 fall into the closed-loop con-

trol category. These methods operate by providing a homing vector, using the vector’s

magnitude and direction to set the vehicle speed and direction of travel. This strategy

works well for vehicles which can rotate about their own vertical axis (i.e rotate on the

spot), provided that the vehicle lies within some ‘catchment’ area of the target location.

However, a car-like vehicle cannot rotate about its own vertical axis and the visual hom-

ing strategies are not as effective, particularly if the vehicle’s starting location is relatively

close to the goal position — this is because a car-like vehicle needs significant ‘space’ to

align itself with the homing vector and it is more likely to get ‘stuck’ in local control min-

ima where the vehicle rocks back and forth between competing homing vectors, or cannot

resolve errors in the final approach stages. Figure 5.1 (a) shows a successful homing run

in which the ALV strategy was used to set the vehicle speed and heading angle. Figure

5.1 (b) gives an example of a failure case, in which the vehicle was unable to resolve the

final error. This example demonstrates the limitations of linear controllers for the control

of nonholonomic vehicles. Of course, in this example, the vehicle could reverse and align

itself with the goal but with the inconsistent information provided by the ALV strategy, it

is difficult to make these decisions ‘autonomously’.

Besides the visual homing type literature, this problem has received little attention in

the literature. Similar competencies have been studied in terms of providing behaviours

for vehicles and characters in the computer gaming industry (see for example [Reynolds,

1999]). In the control community, position stabilization is little studied. An exception

is the early work of Samson and Ait-Abderrahim [1991], who simulated a unicyle-like

vehicle, illustrating the controllability of the system and demonstrating stabilization to a

position. However, they do not consider the dynamic effects of steering and velocity loop

responses.

Here a non-linear feedback law is designed which allows a vehicle to stabilize to a

position without getting ‘stuck’ at local control minimums while also naturally accom-
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Figure 5.1: Example of position control with ALV strategy. Vehicle starts at the specified
poses, and the ALV strategy is used to set vehicle speed and heading to drive it towards
the origin.

modating the dynamics of the system, such as the response of the steering and velocity

loops, and non-linearities such as input saturation. Such a competency could be used, for

example, to ensure that a mobile robot passes precisely through a navigation ‘way-point’.

In developing the control law, extensive testing was conducted using the simulation

model of the vehicle (refer to Section 3.4 for details of the vehicle model) and it is assumed

that pose information is available using the techniques described in Section 4.2.1.4.

5.2.1 Control law design

Repeating the kinematic equations for a car-like vehicle in Cartesian space:
⎡
⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

v cos θ

v sin θ

v tanφ
L

⎤
⎥⎥⎥⎥⎥⎦

(5.1)

where the demands for the system are v and φ, and x, y and θ are defined with reference

to the target position and the x-axis as shown in Figure 5.2. The relation

ω = v
tanφ

L
(5.2)
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Figure 5.2: Coordinate system for control.

will be substituted during the analysis for simplification, it is an easy matter to transform

between the two representations.

Transforming the Cartesian representation into a vehicle relative target representation,

see Figure 5.2, leads to the following vehicle state equations:
⎡
⎢⎢⎢⎢⎢⎣

ė

ψ̇

δ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−v cos ψ

v sin ψ
e

− ω

v sin ψ
e

⎤
⎥⎥⎥⎥⎥⎦

(5.3)

where e is the distance to the target position, ψ ∈ (−π, π] is the bearing to the target

position relative to the vehicle’s longitudinal axis and δ ∈ (−π, π] is the bearing to the

target position relative to the x-axis. Note the similarity to the vehicle-object motion



190 Position and Pose Stabilization — Visual Homing for a Car-Like Vehicle

equations presented in Section 4.3.2.4. These equations are quite a ‘natural’ form for a

vehicle moving through a workspace and are commonly found in the literature on the pose

control of unicycle-like vehicles (see e.g. [Badreddin and Mansour, 1993; Aicardi et al.,

1995; 1994; Pourboghrat, 2002]).

The control strategy used here is to break the state-space into sub-manifolds, each of

which is then sequentially stabilized [Bloch and McClamroch, 1989; Bloch et al., 1990].

To stabilize a car-like vehicle to a point, the first stage of control stabilizes the bearing

of the target position relative to the vehicle’s longitudinal axis ψ. The second stage of

control then stabilize the heading ψ and the distance to the target position e. That is,

• First stage (bearing stabilization): ψ → 0

• Second stage (homing): ψ → 0 and e → 0

To achieve this, the individual controllers of each stage are designed using suitably cho-

sen Lyapunov functions, based upon the well-known Lyapunov stability theory (see for

example Slotine and Li [1991]).

5.2.1.1 First stage: bearing stabilization

For the first stage of control, a suitable Lyapunov function is:

V =
1

2
ψ2 (5.4)

which is a positive semi-definite function. The time derivative of this function is:

V̇ = ψψ̇

= ψ

(
v sin ψ

e
− ω

)
(5.5)

where the state equation for ψ̇ from Equation 5.3 has been substituted. For the system to

converge to ψ → 0, V̇ ≤ 0. This can be achieved through the judicious choice of v and

ω, where for the time being the dynamics are ignored (i.e. v∗ = v and ω∗ = ω).
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This stage of control aims to stabilize the vehicle to a line defined by ψ = 0 and hence

v can be chosen in an essentially open-loop manner depending on the vehicle’s initial

orientation with respect to the goal.

v∗ =

⎧⎪⎨
⎪⎩

k1 if cos ψinitial ≥ 0

−k1 otherwise
(5.6)

where k1 > 0. The choice for the vehicle velocity direction, that is the sign of v, has some

important consequences for stability, particularly when the angular velocity is saturated

— this is discussed further in the section on input saturation.

Now to ensure that V̇ ≤ 0, ω∗ is chosen as:

ω∗ = k2ψ +
v∗ sin ψ

e
(5.7)

where k2 > 0. The actual steering demand to the vehicle is the steering angle which is

given by rearranging Equation 5.2:

φ∗ = arctan
(

ω∗L
v∗

)
(5.8)

where φ∗ refers to the demanded steering angle. Substituting the choice for ω∗ back into

Equation 5.5 gives:

V̇ = ψ

(
v sin ψ

e
− ω

)

= ψ

(
v sin ψ

e
−

{
k2ψ +

v∗ sin ψ

e

})

= −k2ψ
2 (5.9)

which is negative semi-definite (i.e. V̇ (0) = 0 and V̇ (ψ) ≤ 0) and uniformly continu-

ous; by the Lyapunov stability theory and using Barbalat’s lemma (required because V̇

is negative semi-definite), the Lyapunov function (Equation 5.4) is therefore stable and

ψ → 0.

Analysis so far has assumed perfect response of the v and ω control loops (i.e. v = v∗

and ω = ω∗). The next section studies the effects of dynamics in these loops together

with an analysis of saturated inputs.
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Dynamic effects and gain tuning

Recall from Section 3.4 that the response of the vehicle’s velocity loop is first-order and

given by:

v(s)

v∗(s)
=

Kv

τvs + 1
(5.10)

where v∗ indicates the demand, v is the response, and Kv = 1 and τv = 1.33 as determined

in Section 3.4. In state space form, Equation 5.10 becomes:

v̇ =
1

τv

(v∗ − v) (5.11)

Again, recall from Section 3.4 that the response of the vehicle’s steering loop is

second-order and given by:

φ(s)

φ∗(s)
=

ω2
n

s2 + 2ζωns + ω2
n

(5.12)

where φ∗ indicates the demanded steering angle, φ is the response, and ωn and ζ are the

natural frequency and damping ratio of the steering loop (refer to Section 3.4 where it was

found for this system that ωn = 0.8 and ζ = 0.8). In addition, the steering angle is limited

to φ = ±30◦. Over this angular range, linearization gives:

tan φ � φ (5.13)

with approximately 10% error at the extremities. Thus, the vehicle angular velocity from

Equation 5.2 can be approximated by:

ω =
v

L
φ (5.14)

and Equation 5.8 becomes:

φ∗ =
ω∗L
v∗ (5.15)

The equation relating demanded angular velocity ω∗ and actual angular velocity ω is

(combining Equations 5.12, 5.14 and 5.15):

ω(s)

ω∗(s)
=

ω2
n

s2 + 2ζωns + ω2
n

(5.16)
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which can be reduced to two state equations, through the introduction of an intermediary

state:

ρ̇ = ω2
n (ω∗ − ω) (5.17)

ω̇ = ρ − 2ζωnω (5.18)

Linearising the system equations 5.3, 5.11, 5.17 and 5.18 about ψ = 0, and assuming

that the vehicle is relatively far from the origin (for which e 
 v∗) leads to the following

system state equations:

ė = −v

ψ̇ = −ω

δ̇ = 0

ρ̇ = ω2
n (ω∗ − ω)

ω̇ = ρ − 2ζωnω

v̇ = 1
τv

(v∗ − v)

(5.19)

Linearising the feedback laws about the same point gives:

v∗ = k1 (5.20)

ω∗ = k2ψ (5.21)

Inserting the linearised feedback laws in to Equation 5.19 leads to the closed loop state

equation: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ė

ψ̇

ω̇

ρ̇

v̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1

0 0 −1 0 0

0 0 −2ζωn 1 0

0 ωnk2 −ω2
n 0 0

0 0 0 0 − 1
τv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

ψ

ω

ρ

v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

k1

τv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.22)

The equations for ė and v̇ are independent of the equations for ψ̇, ω̇ and ρ̇, and will not be

considered further (in any case, the sub-loop for ė and v̇ is not controlled in this stage of

control).
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Figure 5.3: Block diagram for ψ loop in first stage position control.

In closed-loop form, the linearised system is then represented by:
⎡
⎢⎢⎢⎢⎢⎣

ψ̇

ω̇

ρ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0

0 −2ζωn 1

k2ω
2
n −ω2

n 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ψ

ω

ρ

⎤
⎥⎥⎥⎥⎥⎦

(5.23)

The block diagram for the system is given in Figure 5.3. and the characteristic equation

of the system is:

s3 + 2ζωns2 + ω2
ns + k2ω

2
n = 0 (5.24)

The stability of the system with reference to the k2 gain is analysed by rearranging the

characteristic equation (to the form 1 + k2GH):

1 + k2
ω2

n

s3 + 2ζωns2 + ω2
ns

= 0 (5.25)

for which the root locus plot is shown in Figure 5.4. The root locus plot indicates that the

system is stable for 0 < k2 < 1.28.

To select k2, the problem is treated as a parameter optimization problem, in the spirit

of Linear Quadratic Regulator (LQR) control and other optimised control design tech-

niques. Here, an unconstrained non-linear optimizer is used, the Nelder-Mead simplex

search method for multidimensional parameter optimisation (of course, here there is only

a single parameter and a multidimensional search is not required but this technique is

still applicable). This is a function commonly available in mathematical packages such
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Figure 5.4: Root locus for first stage of position control, where k2 is varied.

as MATLAB. It operates by minimising some cost function, J , given a starting vector for

the desired parameters, in this case the single parameter k2.

For this problem, the response of the linearised system is simulated using the closed-

loop state equations (Equation 5.23) given some arbitrary initial state. The cost function is

based upon the speed of convergence of the ψ state and the amount of overshoot and set-

tling time, where k2 is adjusted to obtain the desired system behaviour. The cost function

must be carefully chosen to ensure that the desired behaviour is obtained — the design

of cost functions requires a good understanding of the problem and can be an iterative

process in order to obtain the desired system convergence. Here, it was found that the

following cost function produces the desired results:

J(ψ) =
∫ t=T

t=0

(
ψ(t)

ψ(0)

)2

dt + ξ1(ψ) + ξ2(ψ) (5.26)

where ψ(t) is the state value at time t, ψ is the vector of the evolution of the ψ state

throughout the simulation, ξ1(ψ) is a function which calculates the maximum overshoot

in ψ and ξ2(ψ) is a function which calculates the settling time — these latter two quantities

are defined in Figure 5.5. Overshoot is defined for the general state x as the maximum
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excursion beyond zero from the starting point x0, referenced to the initial value of the

state i.e.:

ξ1(x) =

⎧⎪⎨
⎪⎩

100
∣∣∣xmax

x0

∣∣∣ if a zero crossing occurs

0 otherwise
(5.27)

where the quantities are as defined in Figure 5.5. Settling time for the general state x is

defined as the time taken to settle to within a defined percentage, εx, of the initial state

value, x0, that is:

ξ1(x) = ts (5.28)

where ts is the time taken for the transients in the evolution of the state x to settle to

within predefined bounds of the final state, relative to the initial state, x0. These bounds

are given by εxx0, where for the case of the stabilization of ψ, εψ = 0.02.
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ψ0 (k2)

2 0.2139
1 0.2139
0.5 0.2139
0.1 0.2139

Table 5.1: Optimisation results for k2 in Stage 1 position control determined using fmin-
search in MATLAB, for different initial target angle (ψ) errors.

Having defined the cost function, the fminsearch function in MATLAB is used

to simulate the behaviour of the system, minimising the cost function by numerically

searching the parameter space of k2 — the process terminates on minimisation of the cost

function. Table 5.1 summarises the results of the optimisation procedure to a range of

initial values for the variable ψ. The cost function produces similar values for k2 over a

wide range of initial state values and initial values for the parameter search.

In terms of system stability, the gain selection of k2 = 0.2139 leads to the following

roots for the characteristic equation of the system (Equation 5.24):

−0.5870 and −0.3465 ± 0.3364i

indicating that the poles for the closed-loop system are well-placed for this gain selection.

For the velocity law of Equation 5.6, we select k1 = 0.3. Selecting the gain for the

velocity control was an iterative process, requiring a balance between minimised time to

stabilize, and minimised ‘space’ to stabilize, given that a higher velocity will require more

area for the vehicle to turn within.

The simulated response of the vehicle to the demands supplied by this stage of control

using the full non-linear vehicle model developed in Section 3.4 is now considered. The

evolution of ψ and the associated demands and response of the velocity and steering

loops are illustrated in Figure 5.6 for the case where the initial pose of the vehicle is

(x, y, θ) = (−30,−10,−π
2

rad). Note from these plots, that the ψ loop is stable and

converges to zero even for initial values of ψ well outside the linear assumptions used in

the analysis. It is also noted that although there is overshoot in the steering angle demand
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Figure 5.6: Response in Stage 1 of the position control loop. Initial vehicle pose is
(x, y, θ) = (−30,−10,−π

2
rad).

and response, the overshoot in the ψ state variable is minimal.

The observed effects, in simulation, of increasing the k2 gain is increased oscillation

in the evolution of ψ, and a consequently longer settling time eventually leading to insta-

bility.

Input saturation

The limits of the steering angle (|φmax| = 30◦), and velocity (|vmax| � 2 ms−1) can lead

to a saturation of ω, the vehicle’s angular velocity. In this case, the magnitude of the

velocity demand is limited to k1 by the control law of Equation 5.6, and hence:

|ωmax| =
k1 tan φmax

L
(5.29)

= 0.1443 (5.30)

Saturation of ω can lead to stability problems. These problems can be observed and

predicted by analysing Equation 5.5 for the cases were ω saturates, i.e.:

V̇ = ψψ̇

= ψ

(
v∗ sin ψ

e
− sat (ω∗, ωmax)

)
(5.31)
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A surface plot of the variation of V̇ for the space defined in e ∈ [0, 4] and ψ ∈ [−π, π]

is shown in Figure 5.7. In this plot, v∗ and ω∗ have been calculated for each point using

Equations 5.6 and 5.7, and V̇ is calculated using Equation 5.31. From the plot, it can be

seen that for some combinations of e and ψ, V̇ is positive meaning the system is unstable

and ψ �→ 0.

Because the vehicle is stabilizing about ψ = 0, and v∗ is set in an essentially open-

loop manner, this saturation can be overcome through the correct selection of the velocity

direction (i.e. the sign of v∗). One way to do this is to always choose the vehicle velocity as

negative — this has the effect of minimising the angular velocity demand because the two

terms in Equation 5.7 are then given an opposite sign. However, this is not practical for

all cases. A better technique is to pre-calculate the demands, v∗ and ω∗ (using Equations

5.6 and 5.7), and then check the value of V̇ using Equation 5.31. If V̇ > 0, then the sign

of the velocity demand should be changed to negative:

v∗ = −k1 if V̇ > 0 (5.32)
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The angular velocity demand, ω∗, is then recalculated using Equation 5.7.

Figures 5.8 (a) and (b) illustrate results for the case with no saturation logic in which

the sign of v is chosen incorrectly leading to the vehicle simply driving in a circle around

the target position for certain starting positions. Figures 5.8 (c) and (d) illustrate results

from the same starting position with saturation logic which leads to the correct selection

of the velocity direction. The starting pose for both examples is (x, y, θ) = (−1, 0, π
4

rad)

which ensures immediate saturation of the angular velocity ω. Only one case is presented

here, the Monte Carlo simulations presented in Section 5.2.2.1, with the full switching

control law, will further demonstrate the validity of these design decisions.

5.2.1.2 Second stage: homing

The second stage of control aims to stabilize e → 0 and ψ → 02 given that ψ has already

been stabilized by the first stage of control. This stage of control corresponds to homing

where an estimate of the distance and direction to the target location are used to drive the

vehicle towards this location. Again, using a Lyapunov-based design approach, a suitable

Lyapunov function is:

V =
1

2
e2 +

1

2
ψ2 (5.33)

which is a positive semi-definite function. The time derivative of this function is:

V̇ = eė + ψψ̇

= −ev cos ψ + ψ

(
v sin ψ

e
− ω

)
(5.34)

where the state equations for ė and ψ̇ from Equation 5.3 have been substituted.

Now to minimise the first term in Equation 5.34, v∗ is selected as:

v∗ = k1e cos ψ (5.35)

where k1 > 0. In this stage of control, it is assumed that ψ has already been stabilized

to zero by the first stage of control and thus, the cos ψ term in Equation 5.35 could be

2ψ is also controlled here to counteract disturbances.
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Figure 5.8: Response in Stage 1 of the position control loop where the angular ve-
locity (steering angle) is saturated and there is insufficient space to resolve the error
(a) and (b). Figures (c) and (d) show the results of selecting the correct initial veloc-
ity direction, based on pre-calculation of the vehicle demands. Initial vehicle pose is
(x, y, θ) = (−1, 0, π

4
rad) for both cases.

linearised at this stage. However, it is retained in order for the controller to be able to

cope with excursions outside the assumed linear region of operation.
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ω is again chosen as in Equation 5.7:

ω∗ = k2ψ +
v∗ sin ψ

e
(5.36)

where k2 > 0 which ensures that the second term in Equation 5.34 is negative. Again, the

true demand to the system is φ, rather than ω — we convert between the two as required.

Substituting these choices for v∗ and ω∗ back into Equation 5.34 leads to:

V̇ = −e cos ψ (k1e cos ψ) + ψ

(
v sin ψ

e
−

{
k2ψ +

v∗ sin ψ

e

})

= −k1e
2 cos ψ2 − k2ψ

2 (5.37)

which is again negative semi-definite and uniformly continuous meaning that with this

choice of demands, V → 0 and hence e → 0 and ψ → 0 again by using the Lyapunov

stability theory and Barbalat’s lemma. Again, these demand selection assume that v∗ = v

and ω∗ = ω. Next, the dynamic effects in the steering and velocity loops are considered,

followed by an analysis of the effects of input saturation.

Dynamic effects and gain selections

From the first stage of control (Section 5.2.1.1), the following state equations for the

steering and velocity loops were derived:

v̇ =
1

τv

(v∗ − v)

ρ̇ = ω2
n (ω∗ − ω) (5.38)

ω̇ = ρ − 2ζωnω

Again, linearising Equation 5.3 about ψ = 0:
⎡
⎢⎢⎢⎢⎢⎣

ė

ψ̇

δ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−v

vψ
e
− ω

vψ
e

⎤
⎥⎥⎥⎥⎥⎦

(5.39)

The feedback laws are linearised about the same point; Equation 5.35 becomes:

v = v∗ = k1e (5.40)
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and Equation 5.36 becomes:

ω∗ = k2ψ +
v∗

e
ψ

ω∗ = k2ψ + k1ψ (5.41)

Combining Equations 5.38 and 5.39, and inserting the linearised feedback laws leads to:

ė = −v

ψ̇ = vψ
e
− ω

δ̇ = vψ
e

ρ̇ = ω2
n ((k2ψ + k1ψ) − ω)

ω̇ = ρ − 2ζωnω

v̇ = 1
τv

(k1e − v)

(5.42)

There is considerable multiplicative coupling between the states v, ψ and e in the above

equations. In order to eliminate the effects of this coupling, in terms of the analysis and

the control, a slight modification to the velocity control law of Equation 5.35 is made such

that v∗ � v. This is achieved by limiting the rate of change of v as follows:

v∗
rl = v + sat

(
v∗ − v

τ2

,
v̇max

τ2

)
(5.43)

where v∗ is as given in Equation 5.35, which when linearised about ψ = 0 gives:

v∗
rl = v + sat

(
k1e − v

τ2

,
v̇max

τ2

)
(5.44)

In this work, τ2 = τv and v̇max = τ 2
v . Because the velocity loop dynamics are significantly

faster than the steering loop dynamics, this change in the velocity control law allows us

to now make the assumption that v∗
rl � v. This simplifies the analysis and also further

stabilizes the control. With the above assumption, the velocity loop dynamics can be

ignored for which the closed-loop, linearised system equation becomes:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ė

ψ̇

ω̇

ρ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1 0 0 0

0 k1 −1 0

0 0 −2ζωn 1

0 ω2
n (k1 + k2) −ω2

n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

ψ

ω

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.45)
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Figure 5.9: Block diagram for the ψ and e loops in the second stage of position control.

where the lines separating the e loop from the lower three equations indicate that, through

linearization and the assumption that v = v∗, it has been made independent of the other

equations — it is retained in the state matrix equations for convenience. The block di-

agram for the system is shown in Figure 5.9. In this system, there are two parameters

which can be independently adjusted to alter the response of the system, k1 and k2.

First, the stability of the system with respect to these two gains is assessed, noting that

the state equation for e is independent of all other states (this is due to the term cancella-

tion in the linearised state equations and feedback laws). The characteristic equation for

the lower part of the system, that is the lower three equations of Equation 5.45, is:

s3 + (2ζωn − k1) s2 +
(
ω2

n − 2k1ζωn

)
s +

(
k2ω

2
n

)
= 0 (5.46)

Rearranging for the k2 gain allows us to use MATLAB’s rlocus tool:

1 + k2
ω2

n

s3 + (2ζωn − k1) s2 + (ω2
n − 2ζωnk1) s

= 0 (5.47)

Figure 5.10 illustrates the root locus for the case where k2 is varied and k1 is fixed at 0.1,

0.2 and 0.5. Increasing the k1 gain pushes the two poles towards the origin, eventually

resulting in an inherently unstable system. The characteristic equation for the k1 gain is:
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Figure 5.10: Root locus for second stage of position control, where k2 is varied and
k1 = 0.1, 0.2, 0.5.

1 + k1
(−s2 − 2ζωns)

s3 + 2ζωns2 + ω2
ns + k2ω2

n

= 0 (5.48)

and the root locus for the case where k1 is varied and k2 is fixed at 0.1, 0.5 and 1.4 is

shown in Figure 5.11. Increasing the k2 gain beyond 1.4 leads to an inherently unstable

system.

Given an indication of the stability behaviour of the system, tuning of the system gains

can be addressed. As for the first stage of control, the technique used here is to formulate

the problem as a parameter optimisation problem. However, for this stage of control, the

parameter search occurs in two dimensions, k1 and k2.

The behaviour of the system is simulated using the closed-loop state equation (Equa-

tion 5.45) given some arbitrary initial state. Again a cost function is created based upon

the speed of convergence of the states e and ψ, and the amount of overshoot in stabilizing

these states, adjusting k1 and k2 to obtain the desired system behaviour. Here, the cost

function is designed to obtain quick convergence of the states with minimal overshoot —
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Figure 5.11: Root locus for second stage of position control, where k1 is varied and
k2 = 0.1, 0.5, 1.4.

the cost function used to achieve this is:

J(e, ψ) = w1J(e) + J(ψ) (5.49)

where

J(e) =
∫ t=T

t=0

e(t)

e(0)

2

dt + ξ1(e) + ξ2(e) (5.50)

and

J(ψ) =
∫ t=T

t=0

ψ(t)

ψ(0)

2

dt + w2ξ1(ψ) + ξ2(ψ) (5.51)

where e(t) and ψ(t) are the state values at time t, e and ψ are the state evolution vectors

throughout the simulation, and ξ1 and ξ2 are functions which calculate the overshoot and

settling time for each state, as defined in Figure 5.5, and Equations 5.27 and 5.28. w1

and w2 are weighting factors, here set equal to 0.5 and 1.2 respectively. These weighting

factors allow a higher ‘importance’ to be placed on the ψ state and on the requirement for
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(e0, ψ0) (k1, k2)

(50, 1) (0.1087, 0.1715)
(10, 1) (0.1087, 0.1715)

(10, 0.1) (0.1087, 0.1715)
(5, 0.3) (0.1087, 0.1715)

Table 5.2: Optimised Stage 2 position control gains determined using fminsearch in
MATLAB. Note that the initial values for the other states were set to ω = 0 and ρ = 0 for
all optimization runs.

minimal overshoot. As for the first stage of control, for the function ξ2, εe = 0.02 and

εψ = 0.02.

Having defined the cost function, the fminsearch function in MATLAB is used

to simulate the behaviour of the system, minimising the cost function by numerically

searching the parameter space of the gains — the process terminates on minimisation of

the cost function. Performing the optimization produces similar gains for a wide range of

initial conditions of the state e and ψ, a snapshot of which is provided in Table 5.2.

In terms of system stability, the gain selection of k1 = 0.1087 and k2 = 0.1715 leads

to the following roots for the characteristic equation of the system (Equation 5.46):

−0.6671 and −0.2521 ± 0.3178i

indicating the system poles are well-placed for this selection of gains..

The simulated response of the second stage of control on the full model of the vehicle

(i.e. including all dynamics and non-linearities as described in Section 3.4), with the above

tuned gains is shown in Figure 5.12. In this simulation, the initial orientation error is

quite large (−60◦), illustrating the robustness of the controller, even outside the ‘linear’

region of operation. In addition, the assumption that the velocity loop dynamics were

insignificant is validated because the stabilization of the e loop closely follows a first-

order response which would not occur if the velocity loop dynamics were significant

(significant contribution by the first-order model of the velocity loop would make the e

loop dominately second-order). Additionally, the state ψ converges relatively quickly to
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Figure 5.12: Response in Stage 2 of the position control loop. Initial vehicle pose is
(x, y, θ) = (−20, 0, π

3
rad).

zero and does not appear to be affected by the inclusion of the velocity loop.

Saturation of the steering angle for this stage of control is not significant, as this stage

is only initiated upon stabilization to ψ = 0 by the first stage of control. Saturation of the

velocity controller actually helps stability as it limits the available velocity used in the ψ

stabilization loop. For the velocity loop, saturation is not significant in terms of stability,

it merely limits the rate at which e stabilizes to 0.

5.2.1.3 Control supervision

In order to obtain the desired behaviour from the system, that is position stabilization, a

control supervisor needs to be designed which switches between the Stage 1 and Stage 2

controllers upon detection of discrete events in the state-space. This is relatively easy for

this simple case but requires the provision of a mechanism to push the control through

the discontinuities introduced by switching between controllers, otherwise the system

‘chatters’ about the switching boundaries. In addition, due to sensing inaccuracies and

the asymptotic nature of these controllers, ψ and e will never reach zero in finite time and

thus, thresholds are required to switch between the controllers and to determine when the

vehicle has reached the origin.
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The control supervisor operates as described in Algorithm 3. In the algorithm, εψ and

εe are the tolerances on ψ and e respectively, ηfinish is the tolerance on the time elapsed be-

fore the goal is considered to be reached, and η2 is the tolerance on the time elapsed before

the ControlState variable is changed to ‘Stage 2’. The variables goalReached-

Timer++, stageOneTimer and stageTwoTimer record the time elapsed since de-

tecting the particular state. The default state of the system is ‘Stage 1’.

Algorithm 3 Control supervision for position controller.

1: ControlState = Stage 1 {default state}
2: GoalReached = FALSE {default state}
3: while (NOT GoalReached) do
4: {First check if the goal has been reached}
5: if (|e| < εe) then
6: if (goalReachedTimer++> ηfinish) then
7: GoalReached = TRUE
8: v∗ = 0
9: ω∗ = 0

10: end if
11: {if no, check if Stage 1 is required}
12: else if (|ψ| < εψ) then
13: if (stageTwoTimer++> η2) then
14: ControlState = Stage 2
15: stageOneTimer = 0
16: goalReachedTimer = 0
17: end if
18: {if no, Stage 1}
19: else
20: ControlState = Stage 1
21: end if
22:

23: {The rest of the loop implements the appropriate controller}
24: .
25: .
26: .
27: end while

Recapping, the control laws for each stage are:
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• Stage 1

v∗ =

⎧⎪⎨
⎪⎩

k1 if cos ψinitial ≥ 0

−k1 otherwise

where k1 = 0.3, and

ω∗ = k2ψ +
v∗ sin(ψ)

e

where k2 = 0.2139. To avoid instability due to input saturation, check for V̇ > 0

using

V̇ = ψ

(
v∗ sin ψ

e
− sat (ω∗, ωmax)

)

where ωmax = k1 tan φmax

L
= 0.1443. If this condition is true, then the vehicle

velocity is set to:

v∗ = −k1

and the angular velocity demand ω∗ is recalculated.

• Stage 2

v∗ = k1e cos ψ

ω∗ = k2ψ +
v∗ sin(ψ)

e

where k1 = 0.1087, k2 = 0.1715 and rate-limiting using Equation 5.43 is applied

to the velocity control law.

5.2.2 Experiments

Simulation results are now presented illustrating that the switching controller does indeed

work over the entire workspace. In these experiments, the vehicle was started from dif-

ferent positions in the workspace, all with a common orientation. Then, the vehicle was

started from a common position, with different initial orientations. The final simulation is
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a Monte Carlo simulation in which the controller is presented with 1000 random initial po-

sitions. In these, and all, simulations, the vehicle kinematics and dynamics are modelled

as described in Section 3.4. A single landmark is used, from which the IALV strategy is

used to derive the vehicle’s pose relative to the target pose, nominally the origin. By way

of comparison, results from experiments on the real vehicle are then presented.

5.2.2.1 Simulations – covering the state space

In this first experiment, simulation results were obtained for the vehicle servoing to

the origin from starting poses located on a circle of radius 5 m at angular intervals of

π
4

radians, all with an initial vehicle orientation of 0 radians. The simulated vehicle paths

are plotted in Figures 5.13 and 5.14. Note the uniformity of behaviour for mirrored start-

ing positions.

The next case to analyse is a constant starting position with a varying initial orien-

tation, results from these simulation are shown in Figures 5.15 and 5.16. Again, these

experiments show that the controller is robust to initial conditions, the only requirement

being that the landmarks in the workspace are visible.

Figure 5.17 illustrates results from a Monte Carlo simulation in which position control

was simulated from 1000 random initial poses in the range x, y ∈ [−12, 12] and θ ∈
(−π, π]. Figure 5.17 (a) shows the resulting final vehicle positions for each of the random

initial poses, and Figure 5.17 (b) shows the time taken to stabilize to the target position

for each simulation. This further demonstrates the validity of the control law for position

stabilization.

5.2.2.2 Experiments on the vehicle

Here, the results from experiments conducted on the vehicle are analysed. A detailed

analysis of one particular experiment from a particular starting position is presented,

comparing results with the predicted results from a simulation run with the same initial

conditions.

The experiment in position control was conducted in an outdoor environment, in
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(d) Path generated from initial pose of
(x, y, θ) = (3.5356, 3.5356, 0).

Figure 5.13: Effect of initial position. Vehicle servoing to position (x, y) = (0, 0) from
different starting locations, with a constant orientation.

which the vision system was trained to track a red ‘witches hat’ located within a rela-

tively flat workspace. A landmark was placed at approximately (x, y) = (5,−1) with

respect to the intended target pose. The vehicle was manually driven to the target pose,

at which point the IALV strategy was initiated giving a pose estimate with respect to

this target position. The vehicle was then driven to the ‘initial condition’ position at

(x, y, θ) = (−0.5, 2.85, 3◦), from which control was activated. For ground-truth purposes,

data from an RTK-GPS mounted on the vehicle was logged, along with all the relevant
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(b) Path generated from initial pose of
(x, y, θ) = (−3.5356,−3.5356, 0).
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(c) Path generated from initial pose of
(x, y, θ) = (0,−5, 0).
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(d) Path generated from initial pose of
(x, y, θ) = (−3.5356,−3.5356, 0).

Figure 5.14: Effect of initial position. Vehicle servoing to position (x, y) = (0, 0) from
different starting locations, with a constant orientation

data from the vision and control system. Note that the GPS is used for ground-truth only

and is not at any stage used for control.

Figure 5.18 (a) shows the ground-plane path of the vehicle, illustrating the differences

in position information obtained from the vision-magnetometer system using the IALV

strategy, the ground-truth position information obtained from the GPS, and the simulated

data.

These results indicate that the simulation of the vehicle is more conservative in the
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(a) Path generated from initial pose of
(x, y, θ) = (3, 1, π).
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(x, y, θ) = (3, 1,−π
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Figure 5.15: Effect of starting orientation. Vehicle servoing to position (x, y) = (0, 0)
from the starting poses indicated.

limitation of the angular rate of the vehicle (brought about through the second-order model

on the steering loop and saturation effects) — the vehicle is in fact capable of ‘turning

faster’ than predicted by the model. Two factors contribute to this:

• The simulation uses constant values for ωn and ζ in the second-order steering loop

model whereas in fact, these parameters vary with the vehicle speed.

• Differences in frictional effects between the parameters experimentally determined

for the vehicle modelling, and those found under the current experimental condi-
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(a) Path generated from initial pose of
(x, y, θ) = (3, 1, 0).
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4 ).

−10 −5 0 5 10

−10

−5

0

5

10

Navigation Plane

x−axis (m)

y−
ax

is
 (

m
)

(c) Path generated from initial pose of
(x, y, θ) = (3, 1, π

2 ).

−10 −5 0 5 10

−10

−5

0

5

10

Navigation Plane

x−axis (m)

y−
ax

is
 (

m
)

(d) Path generated from initial pose of
(x, y, θ) = (3, 1, 3π

4 ).

Figure 5.16: Effect of starting orientation. Vehicle servoing to position (x, y) = (0, 0)
from the starting poses indicated.

tions (for example, increased tyre wear, different surface, differences in temperature

etc.).

This serves to emphasise the difficulty in using open-loop strategies, as model errors

significantly impact on the outcome of control — if this model was used in an open-loop

controller, significant errors would result if no on-line re-planning occurred.

The next point to note is the difference between the ground-truth reading found from

the GPS and the ground-plane path according to the vision-magnetometer system. There
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Figure 5.17: Final position results and stabilization times from Monte Carlo simulation
on position control. In this simulation, 1000 random initial poses were presented to the
position controller, all simulations brought the vehicle to within the specified tolerance of
the goal, e < 0.1.

are several factors in effect here. Recapping, the pose estimate used for control is a func-

tion of range and bearing estimates from the vision system and an orientation estimate

from the magnetometer. Firstly, the landmark range and bearing estimates are rather noisy,

as shown in Section 4.3.2.3. The second factor to consider is the variation of estimated

range with object bearing (again this was illustrated in Section 4.3.2.3). Range estimation

through the omnidirectional image is a highly nonlinear process, complicated by mis-

alignments in the camera-mirror system and in the camera axis perpendicular alignment

with the ground-plane. An additional likely source of error is the possible corruption of

the magnetometer readings which are used to provide a reference direction for the IALV

strategy. Reinforcing steel is often used in the construction of large concreted areas, such

as the workspace of this experiment. This could introduce unpredictable influences on the

compass reading, further corrupting the pose estimate.

Consider next the evolution of the state variables e and ψ, shown in Figure 5.18 (b).

Experimental and simulation results for the distance to the target, e, correlate well with the

exception of the ‘bump’ in the experimental results at t = 7 seconds. This sudden rise can
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Figure 5.18: Comparisons of the response of the experimental and simulated systems.
Initial position of the vehicle is (x, y, θ) = (−0.5, 2.85, 3◦).

be explained by the fact that the vehicle initially moves away from the target position and

the landmark. The landmark is then further away, for which the estimate of range becomes

more inaccurate (in the vision system an image distance of 1 pixel can equate to a distance

of 1 m in the ground-plane range estimate for ranges over about 9 m). However, after this

initial bump, the correlation between experiment and simulation is very good. Correlation

between the experimental and simulated values of ψ are extremely good until the vehicle

gets close to the target position when the experimental reading starts to oscillate. Again,

this can be explained by noise in the system. When the vehicle gets close to the target

position, noise in the system can throw the estimation of the vehicle’s position from one

side of the target position to other, with the associated large changes in the relative angle to

the goal, ψ. This effect does not occur with the e variable, as it is a distance measurement

which is always positive. When close to the goal, this distance is very small, no matter

which side of the goal the vehicle ‘apparently’ is according to the IALV strategy.

The oscillation in the ψ state estimate as the goal position is neared, influences the

steering demand and response in the experiment, as shown in Figure 5.19 (a). Here, the
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Figure 5.19: Comparisons of the response of the experimental and simulated systems.
Initial position of the vehicle is (x, y, θ) = (−0.5, 2.85, 3◦). Bottom plot in both figures
is the stage of control.

steering angle response follows the demand quite nicely in the experimental system for

the initial stage but when e becomes smaller and the estimate of ψ becomes unreliable,

the steering angle demand starts to oscillate. However, when this occurs, the vehicle is

already close to the target position and the effect on position stabilization is minimal. In

simulation, the behaviour of the steering demand and response is much smoother but is of

a similar form to that seen in the experiment, see Figure 5.19 (b).

In the experiment, the velocity demand is of a similar form to that seen in the simu-

lation but the response of the vehicle’s velocity is quite different. Firstly, when reversing,

there is a large oscillation about the demand — a momentary frictional effect could have

caused a build up of the integral component in the PID controller on the vehicle. This

characteristic is again observed when the velocity swings to the forward direction —

there is quite a delay between the issue of a forward demand, and the execution (see Fig-

ure 5.19 (a) at t � 7 seconds). The fact that the simulation and experimental results for the

state evolution and ground-plane path of the vehicle are so similar, despite these marked

differences in the predicted and actual velocity response, could be due to the similarity
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in the time it takes to respond to the demands (when going from a negative to a positive

demand). From the plots, it is observed that after t = 10 seconds, the experimental and

simulation results for the velocity response correlate very well.

In addition, it is noted that the time taken to stabilize to a position in the experi-

ment and simulation correlates very well (42 seconds and 43 seconds respectively). Also,

switching between the controllers occurs at approximately the same time.

Further examples of position control are provided in the supplementary material in

Section A.1. These videos illustrate several position stabilization runs in an outdoor en-

vironment for several different initial poses. In these videos, note the changing lighting

conditions and the relative robustness of the vision system. Also note the number of other

‘red’ objects in the environment, and the systems ability to maintain a pose estimate, and

drive the vehicle back to the target position.

5.2.3 Summary – Position stabilization experiments

From the experiments on the vehicle it can be inferred that the vehicle modelling is rep-

resentative of the actual motion and response of the vehicle. Although there were quite

marked differences in the velocity response between the simulation and the experiment,

the overall outcome of the velocity response (which of course integrates to a position re-

sponse) was very similar. The simulation results are therefore a reliable indicator that the

position stabilization control law developed here is suitable for a car-like vehicle with sig-

nificant actuator dynamics, allowing ‘homing’ from any position within the environment.

Experiments on the vehicle highlighted the limitations of the sensing strategy, with

the vision system often failing due to poor segmentation of the witches hats. In addition,

the homing repeatability, or accuracy, is affected by sensing errors, mainly due to the

camera axis of the omnidirectional camera not being precisely perpendicular with the

ground-plane. This will lead to a degradation in the homing accuracy, and the vehicle will

stabilize to within a wider tolerance of the goal than that specified in the control law — this

point was addressed in Section 4.3.4. In addition, because the sensing-localising strategy

is so simplistic, there is the constraint in the real-world experiments that landmarks must
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be visible. This makes this controller, when combined with the IALV method for position

estimation, a highly local behaviour.

5.3 Pose stabilization

The topic of pose stabilization, which adds a constraint on the final orientation of the

vehicle on reaching the target, is now considered. Pose stabilization for nonholonomic

systems, such as unicycle and car-like vehicles, has received much attention in the liter-

ature due to the fundamentally nonlinear nature of these systems. The literature on the

subject was reviewed in Section 2.6.3 where three major points were highlighted. First,

many existing control algorithms may not be physically realizable because they do not

consider the dynamics of ‘real’ systems, such as velocity and steering loop dynamics and

further non-linearities such as input saturation. Secondly, there are few instances of im-

plementations of these algorithms on real vehicles, particularly for car-like vehicles (this

probably relates back to the first point). Thirdly, there is a growing body of research

which is attempting to apply vision in the feedback loop but these robots have so far been

limited to small laboratory unicycle-like vehicles and there is little literature on the use of

omnidirectional vision for the problem.

The work in this section addresses these points. In the first instance, the simulation

model of the vehicle developed in Section 3.4 is used to test several existing pose stabi-

lization strategies, illustrating when and why these methods can fail. Then a controller

is presented which does cope with the characteristics of ‘real’ systems. An instability in

this controller is addressed, and the controller is further developed for application with

the landmark-based pose estimation strategy, the IALV method.

5.3.1 Control law comparisons

In this section, several different pose controllers are presented, highlighting the deficien-

cies of many nonholonomic control algorithms when they are applied to ‘real’ systems

with significant dynamics in the velocity and steering loops. In particular, overcoming
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Figure 5.20: Coordinate system for control.

steering input saturation is the key to stabilizing a car-like vehicle to a desired pose. In

this section, the nomenclature of the original authors is preserved were possible.

5.3.1.1 Chained form for a car-like vehicle

Before exploring these controllers, the car-like system kinematics are revisited and a com-

mon canonical representation of the system, the chained form, is presented.

Referring to Figure 5.20, and repeating the equations presented in Section 2.6.2, the

system kinematic equations are:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

φ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ

sin θ

tan φ
L

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

v1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

v2 (5.52)

where the demands to the system are the translational velocity, v1 = v, and the steering

angle rate, v2 = φ̇. Canonical forms for nonholonomic systems are useful for the system-

atic development of control strategies, both open and closed-loop [De Luca et al., 1997].
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One of the more useful canonical structures is the chained form. Although nonlinear, the

chained form has a strong underlying linear structure [De Luca et al., 1997]. Methods for

the systematic conversion of nonholonomic systems to a chained form were presented by

Sørdalen [1993]. Here, the conversion for the case of a car-like vehicle is presented. The

first step is a change of coordinates:

x1 = x

x2 = tan φ
L

sec3 θ

x3 = tan θ

x4 = y

(5.53)

followed by the input transformation:

v1 = u1

cos θ

v2 = − 3 sin θ
L cos2 θ

sin2 φu1 + L cos3 θ cos2 φu2

(5.54)

leading to the chained form representation:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1

(5.55)

This structure is commonly used in the literature on nonholonomic mobile robot systems

as it is easily extendible to higher-order problems, such as a car-like vehicle towing n-

trailers. Other canonical forms exist (see e.g. Huo and Gei [2001]) but the chained form

is by far the most widely used.

5.3.1.2 Continuous, time-varying control

Time-varying control for car-like vehicle pose stabilization is based upon the intuitive

notion that an approximately periodic forward / reverse motion with appropriate steering

demands will bring the vehicle to the desired pose. This first controller considered here

is constructed from a smooth function of the robot state combined with an exogenous
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time-varying term provided by a ‘heat’ function [Samson, 1995; De Luca et al., 1997],

exploiting the internal structure of the chained from representation of the car-like vehicle

system. Controller design occurs in two stages. First, it is assumed that one control input

is given; the second control is then designed around the reduced sub-vector of the system

state. The second stage of design aims to stabilize the remaining variable, i.e. the variable

not contained in the sub-vector of the system state, using the first control input.

First, for convenience, the variables are reordered:

χ = (χ1, χ2, χ3, χ4) = (x1, x4, x3, x2) (5.56)

bringing the chained system to the following form:

χ̇1 = u1

χ̇2 = χ3u1

χ̇3 = χ4u1

χ̇4 = u2

(5.57)

De Luca et al. [1997] introduce the modified chained form, aiming to put the system

into a skew-symmetric form. The first step involves the further change of coordinates:

z1 = χ1

z2 = χ2

z3 = χ3

z4 = k1χ2 + χ4

(5.58)

leading to the skew-symmetric form of the chained system:

ż1 = u1

ż2 = u1z3

ż3 = −k1u1z2 + u1z4

ż4 = −k2u1z3 + w2

(5.59)

where w2 is a new input signal

w2 = (k1 + k2) u1z3 + u2 (5.60)
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and k1, k2 > 0.

De Luca et al. [1997]; Samson [1995] prove the asymptotic stability of the system

through the following choice of control inputs:

u1 = −ku1z1 + η (z2, z3, z4, t) (5.61)

where

η (z2, z3, z4, t) =

⎧⎪⎨
⎪⎩

kη if z2
2 + z3

3 + z4
4 ≥ ε

0 otherwise
(5.62)

with ε being some tolerance around the goal pose, and

u2 = −k
′
w2

z1|u1|z4 − (k1 + k2)u1z3 (5.63)

The gains, k1, k2 and k
′
w2

are chosen based upon an analysis of the eigenvalues of the

system, for details refer to De Luca et al. [1997]. For these simulations, the following

gain values were used:

k1 =
1

3
, k2 =

8

3
, kw2 = 3, ku1 = 5, kη = 20 and ε = 10−3 (5.64)

Figure 5.21 illustrates the results of the above control law applied to the car-like vehi-

cle simulation with no dynamics or input saturation. Note the quite natural behaviour of

the system at the start of the journey and the similarity to what intuitively, the path would

appear when parallel parking a car. However, as the vehicle gets closer to the goal, the

forward / reverse motion is rather erratic. In addition, note the large excursions outside

the allowable demand for the steering angle.

The first problem with this controller is an instability for an initial orientation of θ =

±π
2

rad leading to either a computational error or wild robot motion — in either case a

failure. This is due to the chained form representation. The chained transforms, Equations

5.53 and 5.54, both contain a 1
cosθ

term, which approaches infinity for θ → π
2
. In practice,

this ‘state’ is hardly likely to occur on a real system due to noise and in any case could be

avoided through the use of logic.
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(b) Demands and responses (simulation).

Figure 5.21: Response of the smooth, time-varying control, first simulation. Initial posi-
tion of the vehicle is (x, y, θ) = (0, 5, 0). No dynamics or input saturation included.
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Figure 5.22: Response of the smooth, time-varying control, second simulation. Initial
position of the vehicle is (x, y, θ) = (0, 5, 0). Dynamics and input saturation included.

The inclusion of dynamic effects or input saturation leads to complete failure of the

system, see Figure 5.22. Re-tuning the gains of the controller did not improve the be-

haviour of the system and including the vehicle dynamics in the controller design appears
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to be a daunting task given the complexity of the controller. In addition, even for the case

of a ‘perfect’ car-like vehicle, the resulting motion of the vehicle is highly oscillatory and

contains a discontinuity for |θ| → π
2

due to the chained from transformation.

5.3.1.3 Piece-wise continuous, time-varying control

Next the controller developed by De Luca et al. [1997] is presented. This controller was

in turn was based upon the work of Sørdalen and Egeland [1995]. Again, this controller

is time-varying, similar in many ways to the first controller, except that the feedback law

depends, in addition to the exogenous time-varying function, on a piecewise continuous

function of the state. Design proceeds using the back-stepping method, which is a com-

mon technique for chained form integrator systems.

First, repeating the chained form system equations,

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1

(5.65)

the state vector is partitioned as X = (x1, X2), where X2 = (x2, x3, x4). u1 is chosen

in an open-loop fashion and is updated as a function of state at discrete instants of time.

It also contains the exogenous time-varying term which gives the system control energy

at points it would otherwise have little or none. Given a sequence of equi-distance time

instants {t0, t1, t2, . . .}:

th = hT (5.66)

where T = th+1 − th > 0, the first control is

u1 = k(X(th))f(t) (5.67)

which is a function of the state X at time-step t = th, and during the interval, is defined

in open-loop. k(X) is given by:

k(X) = sat
(
−ω

π

[
x1 + sgn(x1)κ

√
x2

2 + x2
3 + x2

4

]
, K

)
(5.68)
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where the states are provided at t = th. The function f(t) is:

f(t) =
1 − cos(ωt)

2
, ω =

2π

T
(5.69)

The parameters ω, κ, and K are positive, real values, used to tune the system response.

Design of the control law for the second input proceeds using the back-stepping

method on the lower part of the partitioned system,

Ẋ2 =

⎡
⎢⎢⎢⎢⎢⎣

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

u2

k(X(th))x2

k(X(th))x3

⎤
⎥⎥⎥⎥⎥⎦

(5.70)

Back-stepping is a general method for controlling systems in cascaded form3 (see e.g.

[Krstić and Kokotović, 1996]). Essentially, back-stepping takes the last equation in the

system of Equation 5.70, and treats x3 as a dummy variable which is used to drive the state

x4 towards the target state (x4 → 0). The next variable in the chain, x2, is then considered

as the dummy variable, and is used to drive x3 towards the target state. This process is

repeated until the top equation is reached which contains the true input, u2. Details of

the derivation for this controller are given in De Luca et al. [1997], where stability and

convergence proofs are also presented. The final form of the second input is:

u2 =
[

Γ2(k(X(th)) Γ3(k(X(th)) Γ4(k(X(th))

]
⎡
⎢⎢⎢⎢⎢⎣

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦

(5.71)

where

Γ2 = −λ2 + f 2(t)g23

Γ3 =
f(t)

[
λ2f(t)g23 + 2ḟ(t)g23 + f(t)ġ23 + f 2(t)g24

]

k(X(th))

Γ4 =
f(t)

[
λ2f(t)g24 + 2ḟ(t)g24 + f(t)ġ24 + f 2(t)g25

]

k2(X(th))

3Cascaded form systems are those in which the state equations are linked by a chain of integrators.
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(b) Demands and responses (simulation).

Figure 5.23: Response of the non-smooth, time-varying control, first simulation. Initial
position of the vehicle is (x, y, θ) = (0, 5, 0). No dynamic or input saturation included for
this simulation.

and

g23 = −λ3 − λ4f
2(t)

ġ23 = −2λ4f(t)ḟ(t)

g24 = −λ4

(
λ3f

4(t) + 4ḟ(t)
)

ġ24 = −4λ3λ4f
3(t)ḟ(t) − 4λ4f(t)

g25 = 0

The parameters used for this simulation are (as in De Luca et al. [1997]):

K = 1, ω = 1, κ = 3, λ2 = λ3 = λ4 = 1 (5.72)

Figure 5.23 illustrates the response for an initial pose of (x, y, θ) = (0, 5, 0). This non-

smooth (piecewise continuous), time-varying controller elicits a much smoother response

from the vehicle than the continuous, time-varying controller presented in Section 5.3.1.2.

The excursions outside the allowable demand bounds are also modest. However, similar

problems arise when dynamics and input saturation are introduced. Figure 5.24 illustrates
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Figure 5.24: Response of the non-smooth, time-varying control, second simulation. Initial
position of the vehicle is (x, y, θ) = (0, 5, 0). Dynamics and input saturation are included
for this simulation.

the response for an initial pose of (x, y, θ) = (0, 5, 0), where input saturation and dy-

namics have been included in the model. Even with significant gain tuning, a satisfactory

behaviour could not be obtained. In the case of no vehicle dynamics or input saturation,

shown in Figure 5.23, the demands were not significantly outside the allowable bounds.

this indicates that it is the combination of dynamics and input saturation which causes

problems. As with many of the strategies which attempt to resolve pose stabilization in

one step, when dynamics and input saturation are included, gain tuning is often highly

dependent on initial conditions, and with the complexity of this controller, very difficult

to do in an analytical fashion.

5.3.1.4 Discontinuous control (coordinate transform induced)

The next strategy tested was developed by Astolfi [1996]. This strategy also relies on a co-

ordinate transformation, not unlike that used to transform nonholonomic systems into the

chained from. It allows for the design of smooth controllers in the new coordinate system,

which upon transformation back to the original system, again become discontinuous.
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Repeating the original system kinematic equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

φ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ

sin θ

tan φ
L

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

v1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

v2 (5.73)

Astolfi [1996] then applies the standard input transformation as used for chained form

systems:

v1 =
u1

cos θ
(5.74)

v2 = − 3 sin θ

L cos2 θ
sin2 φu1 + L cos3 θ cos2 φu2 (5.75)

The states of Equation 5.73 are then transformed using the σ process [Astolfi, 1996]:

ξ1 = x

ξ2 = tan φ
L

sec3 θ

ξ3 = tan θ
x

ξ4 = y
x2

(5.76)

Like the chained form transformation of Equations 5.53, this transformation contains a

discontinuity for |θ| → π
2

but here, a further discontinuity exists for x → 0. In any case,

in the new coordinate system, the kinematics of the car-like vehicle are described by:

ξ̇1 = u1

ξ̇2 = u2

ξ̇3 = ξ2−ξ3
ξ1

u1

ξ̇4 = ξ3−2ξ4
ξ1

u1

(5.77)

For almost exponential stabilization, Astolfi [1996] proposes the following feedback law,

presenting proofs of convergence for the entire state-space with the exception of ξ1 = 0:

u1 = −kξ1

u2 = p2ξ2 + p3ξ3 + p4ξ4

(5.78)
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where k > 0 and pi are system gains. In choosing values for pi and k, the lower three

equations in Equation 5.77 are considered. Substituting the feedback laws (Equation

5.78), in matrix form the closed-loop system is:
⎡
⎢⎢⎢⎢⎢⎣

ξ̇2

ξ̇3

ξ̇4

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

p2 p3 p4

−k k 0

0 −k 2k

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ξ2

ξ3

ξ4

⎤
⎥⎥⎥⎥⎥⎦

= AX (5.79)

pi and k are chosen such that the Eigenvalues of the matrix A are negative. Using this

strategy, for this case, the values of these parameters are:

k = 1, p2 = 1, p3 = 3, p4 = 5 (5.80)

The first simulation could not be conducted with an initial condition of (x, y, θ) =

(0, 5, 0), as this particular controller is not defined for x = 0. Instead, the initial position

is moved to (x, y, θ) = (−2.5, 5, 0). The results of the application of the control to the

system in the absence of any dynamic or saturation effects are shown in Figure 5.25. From

the plots, for both the demands, excursions outside the allowable values are significant.

Figure 5.26 illustrates the response for an initial pose of (x, y, θ) = (−2.5, 5, 0), where

dynamic and saturation effects have been included. Again, these results indicate that the

controller fails to cope with the characteristics of a real vehicle. Tuning of the system to

accommodate these dynamics is difficult due to the complexity of the controller. In any

case, the controller design is such that it excludes the entire y-axis. This is probably of

limited importance in a real system as, due to noise, this state is unlikely to occur exactly.

Nonetheless, erratic behaviour results on approach to the y-axis and although theoretically

interesting, this controller is unacceptable for further investigation.

5.3.1.5 Discussion

In summary, the controllers presented here are representative of the range of controllers

experimented with early in the thesis work. These controllers were unable to cope with

the characteristics found in a real vehicle, namely velocity and steering loop dynamics
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(b) Demands and responses (simulation).

Figure 5.25: Response of the coordinate transform based controller, first simulation. Ini-
tial position of the vehicle is (x, y, θ) = (−2.5, 5, 0). No dynamic or input saturation
included for this simulation.

and input saturation. The analysis of the system with the inclusion of these effects is

difficult due to the inherent complexity of these controllers. Failure occurs because pose

stabilization is attempted in essentially one step — on saturation of the steering input wild

control demands are elicited.

In addition, the required coordinate transforms introduce discontinuities. In practice,

few of these controllers have been implemented on a car-like vehicle, rather the unicycle-

like system is more popular for experimentation. In Cartesian space, the kinematics of

the unicycle are (repeating from Section 2.6.2):
⎡
⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

v cos θ

v sin θ

ω

⎤
⎥⎥⎥⎥⎥⎦

(5.81)

where the demands for the system are v and ω, and x, y and θ are the coordinates of

the vehicle. This system can readily be transformed into a polar form ([Badreddin and
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Figure 5.26: Response of the coordinate transform based controller, second simulation.
Initial position of the vehicle is (x, y, θ) = (0, 5, 0). Dynamics and input saturation are
included for this simulation.

Mansour, 1993]): ⎡
⎢⎢⎢⎢⎢⎣

ė

δ̇

ψ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−v cos ψ

v sin ψ
e

− ω

v sin ψ
e

⎤
⎥⎥⎥⎥⎥⎦

(5.82)

in which linear controllers can be designed. The discontinuity introduced in the unicycle-

like system is usually restricted to the origin rather than occupying an entire axis in Carte-

sian space as for the car-like vehicle (see Equations 5.54 and 5.53), and thus, experiments

with ‘real’ unicycles have been relatively successful (see e.g. [Astolfi, 1996]).

The next section explores the use of a switching control strategy consisting of a set of

piecewise continuous controllers, linked together by a control supervisor. This overcomes

many of the problems with existing controllers, illustrated in this section. It also allows

for the use of linear tools for system analysis and gain tuning.
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5.3.2 Control law design

The idea of splitting the state-space into sub-manifolds, each of which is sequentially

stabilized, was proposed by Bloch and McClamroch [1989]; Bloch et al. [1990]. This

approach consists of two stages [Bloch and McClamroch, 1989; Bloch et al., 1990;

De Luca and Oriolo, 1995]:

• First, find an open-loop motion strategy which can achieve the desired behaviour of

the system.

• Second, transform the motion sequence into a succession of equilibrium manifolds,

each of which can then stabilized by feedback.

Overall, the resulting feedback is discontinuous, due to switching between the different

control laws for each of the manifolds [De Luca and Oriolo, 1995]. The method is sim-

ple, and the development of open-loop motion sequences for many systems in straight-

forward. The simplicity of the method allows for the use of linear control tools for each

phase of control and dynamic and input saturation effects can readily be accommodated.

However, the technique relies on the ability to form an open-loop motion strategy for

the system stabilization — such strategies may not be obvious for some nonholonomic

systems. In addition, disturbances to states which are not controlled by the current phase

of control cannot be corrected at the time they occur unless another phase of control is

initiated [De Luca and Oriolo, 1995]. This has not been a significant limitation in this

work.

Although not recognised as such, this idea was successfully applied to a differentially

steered robot which was artificially constrained (through software) to mimic the motion of

a car-like vehicle by Lee et al. [1999]. The controller presented here is based on the work

of Lee et al. [1999] and operates by splitting the state-space into a set of sub-manifolds,

each of which is sequentially stabilized, as was done in Section 5.2.1.

The controller is designed in Cartesian space, as shown in Figure 5.27, and does not

require any coordinate or input transformations. Without loss of generality consider the
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Figure 5.27: Coordinate system for pose control.

target pose to be (x, y, θ) = (0, 0, 0). In the original work of [Lee et al., 1999], the

control operated in two distinct phases: stabilize the vehicle to the x-axis with a zero

vehicle orientation (i.e. stabilize y → 0 and θ → 0), then stabilize to the origin (i.e.

x → 0). Here, an additional stage to the controller has been added which aims to minimise

the space used in servoing to a pose by using a position stabilization strategy (as used in

Section 5.2.1) which is activated when the vehicle is ‘far from home’, reverting to the pose

stabilizing controller on reaching some tolerance distance to the home location. Note that

this stage of control is rarely required as the range of operation of the vehicle is limited

by its sensing capacity. Once within this ‘home zone’, the vehicle cannot exit the area,

again minimizing the required space for pose stabilization.

The switching strategy is summarised as:

• First stage (homing): If e > re, e → re and ψ → 0

• Second stage (servo-to-line): y → 0 and θ → 0

• Third stage (servo-to-point): x → 0

where re is the radius of the area ‘homed’ to, see Figure 5.28.
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control: homingcontrol: homing

control: homing control: homing

control: servo−to−point

control: servo−to−line

Figure 5.28: The pose stabilization strategy. The first stage takes the vehicle to within a
tolerance distance of the goal, the second stage stabilizes the vehicle to the x-axis, facing
θ = 0, and the third stage stabilizes to the point x = 0.

5.3.2.1 First stage: homing

This first stage of control uses the position controller presented in Section 5.2.1 and, as

such, in effect has two sub-stages of control. Gain tuning and control design proceed as

described in Section 5.2.1 — the difference here is that homing occurs to a much broader

tolerance of the goal position, of the order of re = 6 metres. Once this region is reached,

the next stage of control is initiated.
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5.3.2.2 Second stage: servo-to-line

First, repeating the system kinematic representation, with φ rather than φ̇ as the second

input:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v tan φ
L

(5.83)

where the demands for the system are v and φ, and x, y and θ are defined with reference

to the target position and the x-axis as shown in Figure 5.27. As for the design of the

position controller, the relation

ω = v
tanφ

L

will be substituted during the analysis for simplification, it is an easy matter to transform

between the two representations.

This stage of control aims to take the vehicle to the x-axis with an orientation of θ = 0.

A suitable Lyapunov function to do this is:

V =
1

2
k1y

2 +
1

2
θ2 (5.84)

which is radially unbounded and positive semi-definite. Its derivative is:

V̇ = k1yẏ + θθ̇ (5.85)

= k1yv sin(θ) + θω (5.86)

By choosing:

ω∗ = −
(
k2θ + k1v

∗ sin(θ)

θ
y

)
(5.87)

where k1, k2 > 0, the derivative of the Lyapunov function is always negative and, by the

Lyapunov stability theory combined with Barbalet’s lemma, the system is asymptotically

stable, with y and θ stabilizing to zero [Lee et al., 1999].

Vehicle velocity v for this stage of control is chosen in an open-loop manner, based

upon the initial orientation of the vehicle with respect to the goal. If the vehicle is facing
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the goal, it is given a positive velocity, else it is given a negative velocity:

v∗ =

⎧⎪⎨
⎪⎩

k3 if cos ψinitial ≥ 0

−k3 otherwise
(5.88)

where k3 > 0. Motion direction (i.e. forward or reverse) v∗ can be switched at any time,

depending on obstacle layout and requirements to minimise the space used by the vehicle

in stabilizing to a pose.

A characteristic of the original controller presented by Lee et al. [1999] is that the

selection of the initial direction can lead to a large motion away from the goal. Sensing

limitations make this characteristic undesirable — in this case, if the vehicle moves too

far away for the goal, landmarks will start to disappear and pose estimation will break

down. This can be overcome with a set of logical rules that switch the velocity direction

in the second stage of control, based upon current robot state. This is also useful if, for

example, the velocity needs to be reversed due to the presence of obstacles.

The analysis has so far assumed perfect vehicle response (i.e. v∗ = v and ω∗ = ω).

Next, an analysis of the system with the inclusion of the system dynamics and saturation

effects is presented.

Dynamic effects and gain tuning

The following state equations for the steering and velocity loops were derived in Section

5.2.1:

v̇ =
1

τv

(v∗ − v)

ρ̇ = ω2
n (ω∗ − ω) (5.89)

ω̇ = ρ − 2ζωnω

where, as in Section 5.2.1, the state equations for the steering loop are considered in the

angular rate form given by combining Equations 5.12, 5.14 and 5.15. Parameters values

are as experimentally derived in Section 3.4.
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Linearising the system equations 5.83 about θ = 0:

ẋ = v

ẏ = vθ

θ̇ = ω

(5.90)

and linearising the feedback law for ω∗ (Equation 5.87) about the same point:

ω∗ = −
(
k2θ + k1v

∗ sin(θ)

θ
y

)

ω∗ = − (k2θ + k1v
∗y) (5.91)

where l’Hoptial’s rule has been applied (i.e. for θ → 0, sin(θ)
θ

→ 1).

Inserting the linearised feedback law into the state equations (Equations 5.89 and 5.90)

leads to:
ẋ = v

ẏ = vθ

θ̇ = ω

ρ̇ = ω2
n (− (k2θ + k1v

∗y) − ω)

ω̇ = ρ − 2ζωnω

v̇ = 1
τv

(v∗ − v)

(5.92)

In these equations, there is multiplicative coupling between v and y. This is eliminated

using the same approach as for Section 5.2.1.2. That is, v∗ is set such that v � v∗,

v∗
rl = v + sat

(
v∗ − v

τ2

,
v̇max

τ2

)
(5.93)

where v∗ is as set by Equation 5.88.

Again, τ2 = τv and v̇max = τ 2
v . Because the velocity loop dynamics are significantly

faster than the steering loop dynamics, this change in the velocity control law allows us

to now make the assumption that v∗
rl � v. This simplifies the analysis and also further

stabilizes the control. With the above assumption, the velocity loop dynamics can be

ignored. The simulations and experiments will verify the validity of this assumption. The
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Figure 5.29: Block diagram for the y and θ loops in the second stage pose control.

closed-loop, linearised system equation becomes:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ

θ̇

ω̇

ρ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 v 0 0

0 0 1 0

0 0 −2ζωn 1

−k1vω2
n −k2ω

2
n −ω2

n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y

θ

ω

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.94)

The block diagram for the system is shown in Figure 5.29. In this system, there are two

parameters which can be independently adjusted to alter the response of the system, k1

and k2.

First, the stability of the system is assessed with respect to these two gains. The

characteristic equation is:

s4 + 2ζωns3 + ω2
ns

2 + k2ω
2
ns + k1v

2w2
n = 0 (5.95)

Rearranging for the k2 gain allows the use MATLAB’s rlocus tool to generate the root

locus plots:

1 + k2
ω2

ns

s4 + 2ζωns3 + ω2
ns

2 + k1v2w2
n

= 0 (5.96)

Figure 5.30 illustrates the root locus for the case where k2 is varied and k1 is fixed at 0.01,

0.05, and 0.1. In this plot, each root locus for a fixed value of k1 is shown. Increasing

the k1 gain results in an increasingly unstable system. Now, the stability of the system is
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Figure 5.30: Root locus for second stage of position control, where k2 is varied and
k1 = 0.01, 0.05, 0.1.

strongly influenced by the k1v
2 term in the characteristic equation:

1 + k1v
2 ω2

n

s4 + 2ζωns3 + ω2
ns

2 + k2w2
ns

= 0 (5.97)

and the root locus for the case where k1 is varied and k2 is fixed at 0.1, 0.5 and 1.4 is

shown in Figure 5.31. Increasing the k2 gain beyond 1.4 leads to an inherently unstable

system. Note that to keep the system poles at fixed locations, k1 must be adjusted with

the vehicle speed v.

Given an indication of the stability behaviour of the system, the system gains can be

tuned. As for the design of the position controller in Section 5.2.1, the technique used

here is to formulate the problem as a parameter optimisation problem. For this stage of

control, the parameter search occurs in two dimensions, k1 and k2.

System behaviour is simulated using the closed-loop state equation (Equation 5.94)

given some arbitrary initial state. Again, a cost function is created based upon the speed

of convergence of the states y and θ, and the amount of overshoot in stabilizing these

states, adjusting k1 and k2 to obtain the desired system behaviour. Here the cost function
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Figure 5.31: Root locus for second stage of pose control, where k1 is varied and k2 =
0.1, 0.5, 1.4.

is designed to ensure quick convergence of the states with minimal overshoot — the cost

function used to achieve this is:

J(y, θ) = w1J(y) + w2J(θ) (5.98)

where

J(y) =
∫ t=T

t=0

y(t)

y(0)

2

dt + ξ1(y) + ξ2(y) (5.99)

and

J(θ) =
∫ t=T

t=0

θ(t)

θ(0)

2

dt + ξ1(θ) + ξ2(θ) (5.100)

where y(t) and θ(t) are the state values at time t, y and θ are the state evolution vectors

throughout the simulation, and ξ1 and ξ2 are functions which calculate the overshoot and

settling time for each state, as defined in Figure 5.5, and Equations 5.27 and 5.28. w1 and

w2 are weighting factors, here set equal to 1 and 1 respectively. As for the position control

design, for the function ξ2, εy = 0.02 and εθ = 0.02.
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(y0, θ0) (k1v
2, k2)

(5, 0.0) (0.03980.3115)
(5, 0.1) (0.0389, 0.3080)
(5, 0.2) (0.0374, 0.3042)
(5, 0.3) (0.0371, 0.3018)
(5, 0.5) (0.0357, 0.2966)
(5, 1.0) (0.03350.2875)
(1, 0.0) (0.0399, 0.3115)
(1, 0.1) (0.0357, 0.2966)
(1, 0.2) (0.0335, 0.2875)
(1, 0.3) (0.0323, 0.2815)
(1, 0.5) (0.0603, 0.4916)
(1, 1.0) (0.0617, 0.6226)

Table 5.3: Optimised Stage 2 pose control gains determined using fminsearch in MAT-
LAB. Note that the initial values for the other states were set to ω = 0 and ρ = 0 for all
optimization runs.

Having defined the cost function, the fminsearch function in MATLAB is used

to simulate the behaviour of the system, minimising the cost function by numerically

searching the parameter space of the gains — the process terminates on minimisation of

the cost function. Performing the optimization produces similar gains for a wide range of

initial conditions of the state y and θ, a snapshot of which is provided in Table 5.2. From

the table, it is noted that unlike for the cases considered in Section 5.2.1, the optimised

parameters depend considerably on the initial conditions. This is probably due to the

strongly non-linear nature of this particular system — recall that the system has been

linearised about θ = 0 for which ẏ = vθ rather than ẏ = v sin θ for the nonlinear case.

However, by choosing:

k1v
2 = 0.035 (5.101)

k2 = 0.3 (5.102)

the desired response from the system can be elicited from a wide array of initial condi-

tions, as the simulations and experiments will show. Note that k1 must be adjusted with
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Figure 5.32: Response in Stage 2 of the pose control loop. Initial vehicle pose is
(x, y, θ) = (−10, 10, π

4
rad).

vehicle speed to keep the system poles at a fixed location. For the velocity law of Equa-

tion 5.88 k3 = 0.3. This gain allows the vehicle to servo to the x-axis in a reasonable

time and within a reasonable space — it was determined through an iterative process of

observing the outcome of simulations for a variety of initial conditions.

In terms of system stability, the gain selection of k1v
2 = 0.035 and k2 = 0.3 leads to

the following roots for the characteristic equation of the system (Equation 5.95):

−0.6448, −0.3345 and −0.1504 ± 0.3274i

indicating the system poles are well-placed for this selection of gains.

The simulated response of the second stage of control on the full model of the vehicle

(i.e. including all dynamics and non-linearities as described in Section 3.4), with the above

tuned gains is shown in Figure 5.32. In this simulation, the initial orientation error is quite

large (initial pose is (x, y, θ) = (−10, 10, π
4
)) illustrating the robustness of the controller,

even outside the ‘linear’ region of operation. Additionally, the state θ converges relatively

quickly to zero and does not appear to be affected by the inclusion of the velocity loop.
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Input saturation

As for the position controller presented in Section 5.2.1, saturation of the angular velocity

ω can lead to stability problems and the associated non-convergence to the desired states.

In this case, the problem occurs for large initial offsets from the x-axis, i.e. for large |y|.
This instability results in the vehicle simply turning in a circle. In this case, the magnitude

of the velocity demand is limited to k3 by the control law of Equation 5.88, and hence:

|ωmax| =
k3 tan φmax

L
(5.103)

= 0.1443 (5.104)

These problems can be observed and predicted by analysing Equation 5.86 for the cases

were ω saturates, i.e.:

V̇ = y(̇y) + θθ̇

= k1yv∗ sin(θ) + θω

= k1yv∗ sin(θ) + θsat (ω∗, ωmax) (5.105)

A surface plot of the variation of V̇ for the space defined in y ∈ [−30, 30] and θ ∈ [−π, π]

is shown in Figure 5.33. In this plot, v∗ and ω∗ have been calculated for each point using

Equations 5.88 (assuming ψ = 0) and 5.87, and V̇ is calculated using Equation 5.105. It

can be seen that for many combinations of y and θ, V̇ is positive meaning the system is

unstable and, y �→ 0 and θ �→ 0. In practice however, unless the initial value of the y

state is very large (i.e. |y0| 
 0), the system seems to self-correct. Because this mode

of control is only used once the vehicle has homed to the goal region, the instability is of

little significance to the overall switching control law. Nevertheless, a means of dealing

with the instability is presented.

By examining of Equation 5.105, with some rearranging and a substitution of the

maximum available angular rate, ωmax, it can be determined that the instability arises

under the following conditions:

y >

∣∣∣∣∣
θωmax

v∗k1 sin(θ)

∣∣∣∣∣ (5.106)
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where ωmax =
∣∣∣vmax tan(φmax)

L

∣∣∣, in which for this case, |vmax| = k3 for this stage of control,

and |φmax| = 30◦ as discussed in Section 3.4.

This instability is addressed by testing for the above condition and adjusting the value

of k1 in such a manner as to ensure that the instability condition is avoided. Optimally,

this means heading towards the x- axis in the most direct manner possible, i.e. with an

orientation of ±π
2

depending on which side of the x-axis the vehicle is located. Re-

examining the control law on angular rate:

ω∗ = −
(
k2θ + k1v

∗ sin(θ)

θ
y

)

the vehicle’s heading can be driven to the desired value of ±π
2

by setting:

k1 = k2

π
2
θ

v∗y sin(θ)
(5.107)

In addition, the velocity of the vehicle is set as:

v∗ = −sgn(yθ)k3 (5.108)
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Figure 5.34: Response in Stage 2 of the pose control loop where the angular velocity
(steering angle) is saturated. Note the distance from the x-axis (70 m) means that satura-
tion is of little practical significance. Initial vehicle pose is (x, y, θ) = (−10, 70, π

2
rad)

for both cases.

to ensure that the vehicle heads towards, rather than away from, the axis. Figures 5.8 (a)

and (b) illustrate results for the case with no saturation logic leading to the vehicle simply

driving in a circle around the initial position for certain starting positions, namely |y| 
 0.

Figures 5.8 (c) and (d) illustrate results from the same starting position with saturation

logic which adjusts the value of k1 leading to the vehicle heading directly for the x-axis.

The starting pose for both examples is (x, y, θ) = (−1, 0, π
4

rad) which ensures immediate

saturation of the angular velocity ω. As noted earlier though, for the purposes of this work,

this saturation condition has little significance because it occurs so far from the x-axis.

The homing stage brings the vehicle to a location where the instability is insignificant

and in any case, the sensing used in this work limits the vehicle’s displacement from the

target. Only one case is presented here, the Monte Carlo simulations presented in Section

5.2.2.1, with the full switching control law, will further show that this instability effect is

insignificant.
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5.3.2.3 Stage three control: servo-to-point

On completion of Stage two of control (i.e reaching the x-axis with an orientation of

θ = 0), Lee et al. [1999] proposed the following control laws to servo the vehicle to

x = 0

v∗ = −k3x (5.109)

φ∗ = ω∗ = 0 (5.110)

where k3 > 0. Steering angle should not need to be controlled in this phase as the vehicle

is already on the x-axis. However, in practice, it was found necessary to control the

vehicle’s steering angle because disturbances to the system, usually caused by sensing

noise or error, can lead the vehicle astray. If the steering angle or the angular rate of

the vehicle is not controlled, then there is no means to correct for these disturbances.

Therefore, the control law for the angular rate of the vehicle as developed for the second

stage of control, is used:

ω∗ = −
(
k2θ + k1v

sin(θ)

θ
y

)
(5.111)

where k1, k2 > 0,

Dynamic effects and gain selection

The preceding stages of control bring the vehicle into Stage 3 control for which the system

dynamics are almost trivial. The analysis is presented for completeness. Repeating the

velocity and steering loop equations from Section 5.2.1, the state equations for the steering

and velocity loops are:

v̇ =
1

τv

(v∗ − v)

ρ̇ = ω2
n (ω∗ − ω) (5.112)

ω̇ = ρ − 2ζωnω

where, as in Section 5.2.1, the state equations for the steering loop are considered in the

angular rate form given by combining Equations 5.12, 5.14 and 5.15. Parameters values

are as experimentally derived in Section 3.4.
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Again, linearising the system equations 5.83 about θ = 0 gives:

ẋ = v

ẏ = vθ

θ̇ = ω

(5.113)

Linearising the feedback laws for v∗ and ω∗ (Equations 5.110 and 5.111) about the same

point gives:

v = −k3x (5.114)

ω∗ = − (k2θ + k1vy) (5.115)

where l’Hoptial’s rule has been applied as in Section 5.3.2.2.

Inserting the linearised feedback laws into the state equations (Equations 5.112 and

5.113) leads to:

ẋ = v

ẏ = vθ

θ̇ = ω

ρ̇ = ω2
n (− (k2θ + k1vy) − ω)

ω̇ = ρ − 2ζωnω

v̇ = 1
τv

(−k1x − v)

(5.116)

Again, there is multiplicative coupling between v and θ, which is eliminated using the

same approach as for Section 5.2.1.2. That is, v∗ is set such that v � v∗,

v∗
rl = v + sat

(
v∗ − v

τ2

,
v̇max

τ2

)
(5.117)

where v∗ is set by Equation 5.110.

Again, τ2 = τv and v̇max = τ 2
v . Because the velocity loop dynamics are significantly

faster than the steering loop dynamics, this change in the velocity control law allows us

to now make the assumption that v∗
rl � v. This simplifies the analysis and also further

stabilizes the control. With the above assumption, the velocity loop dynamics can be

ignored. The simulations and experiments will verify the validity of this assumption. The
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closed-loop, linearised system equation then becomes:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

ω̇

ρ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k3 0 0 0 0

0 0 v 0 0

0 0 0 1 0

0 0 0 −2ζωn 1

0 −k1vω2
n −k2ω

2
n −ω2

n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

θ

ω

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.118)

The x dynamics have been made independent of the rest of the system. The gains for the

steering loop are chosen using the same method as for Section 5.3.2.2, for which:

k1v
2 = 0.035 (5.119)

k2 = 0.3 (5.120)

Tuning of the gain for the x loop is trivial, it is selected as:

k3 = 0.1 (5.121)

The simulated response of the third stage of control on the full model of the vehicle

(i.e. including all dynamics and non-linearities as described in Section 3.4), with the above

tuned gains is shown in Figure 5.35. The aim of this stage of control is to stabilize to the

origin, i.e. x = 0, given that prior stages of control have stabilized the vehicle to y � 0 and

θ � 0. In this simulation, the initial offset and orientation errors are modest (initial pose is

(x, y, θ) = (−10, 0, π
36

)) but the controller still manages to stabilize all three states. Note

in the figure at t = 30 sec, the steering demand drops to 0 — this is due to the steering law

being switched off when the vehicle has reached a position within a tolerance distance of

the goal.

Input saturation for this stage of control is not a significant issue.

5.3.2.4 Control supervision

In combination, these control laws stabilize the vehicle to the desired pose from any ini-

tial condition. The design of the control-supervisor is now considered. As for the posi-

tion controller of Section 5.2.1, the switching laws are straightforward but requires the
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Figure 5.35: Response in Stage 3 of the pose control loop. Initial vehicle pose is
(x, y, θ) = (−10, 0, π

36
rad).

provision of a mechanism to push the control through the discontinuities introduced by

switching between controllers — otherwise ‘chattering’ about the switching boundaries

can occur. In addition, due to sensing inaccuracies and the asymptotic nature of these

controllers, x, y, and θ will never reach zero in finite time — thresholds are required to

switch between the controllers and to determine when the vehicle has reached the origin.

The control supervisor operates as described in Algorithm 4. In the algorithm, εy and

εθ are the tolerances on y and θ respectively, ηfinish is the tolerance on the time elapsed

before the goal is considered to be reached, η2 is the tolerance on the time elapsed be-

fore the ControlState variable is changed to ‘Stage 2’, and η3 is the tolerance on

the time elapsed before the ControlState variable is changed to ‘Stage 3’. The vari-

ables goalReachedTimer, stageOneTimer, stageTwoTimer and stageTh-

reeTimer record the time elapsed since detecting the particular state. The default state

of the system is ‘Stage 1’.

Recapping, the control laws for each stage are:

• Stage 1: homing

The laws for this stage are as described in Section 5.2
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Algorithm 4 Control supervision for pose controller.

1: {Initialise the state of the sytem}
2: ControlState = Stage1;GoalReached = FALSE;
EntereredStageTwo = FALSE; DirectionStageTwo = FALSE

3: while (NOTGoalReached) do
4: {First check if the goal has been reached}
5: if (|e| < εe) then
6: if (goalReachedTimer++ > ηfinish) then
7: GoalReached = TRUE
8: v∗ = 0; ω∗ = 0
9: end if

10: {if no, check if Stage 1 is required}
11: else if (e > re) & (NOTEntereredStageTwo) then
12: if (stageOneTimer++ > η1) then
13: ControlState = Stage1; stageTwoTimer = 0;

stageThreeTimer = 0; goalReachedTimer = 0
14: end if
15: {if no, check if Stage 3 is required}
16: else if (|y| < εy) & (|θ| < εθ) then
17: if (stageThreeTimer++ > η3) then
18: ControlState = Stage3; stageOneTimer = 0;

stageTwoTimer = 0; goalReachedTimer = 0
19: end if
20: {if no, Stage 1}
21: else
22: if (stageTwoTimer++ > η2) then
23: ControlState = Stage2; stageOneTimer = 0;

stageThreeTimer = 0; goalReachedTimer = 0
24: end if
25: end if
26: {The rest of the loop implements the appropriate controller}
27: .
28: .
29: end while

• Stage 2: servo-to-line

On first entering this stage, set EnteredStageTwo = TRUE, then set the open-

loop velocity according to:

v∗ =

⎧⎪⎨
⎪⎩

k3 if cos ψinitial ≥ 0

−k3 otherwise
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where k3 = 0.3. Subsequently, if e > re then set v∗ = −v∗.

For the steering demand,

ω∗ = −
(
k2θ + k1

v∗ sin θ

θ

)

where k1v
2 = 0.035 and k2 = 0.1715.

• Stage 3: servo-to-point

v∗ = −k3x

ω∗ = −
(
k2θ + k1

v∗ sin θ

θ

)

where k1v
2 = 0.035, k2 = 0.1715 and k3 = 0.1

Rate-limiting on the velocity, using Equation 5.43, is applied to all the velocity demands

v∗.

5.3.3 Experiments

Simulation results are now presented, illustrating that the switching controller does in-

deed work over the entire workspace. In these experiments, the vehicle is started from

different positions in the workspace, all with a common orientation. The vehicle is then

started from a common position, with different initial orientations. The final simulation

is a Monte Carlo simulation in which the controller is presented with 1000 random initial

positions. In these, and all, simulations, the vehicle kinematics and dynamics are mod-

elled as described in Section 3.4. A single landmark is used from which the IALV strategy

is used to derive the vehicle’s pose relative to the target pose, nominally the origin. By

way of comparison, results from experiments on the real vehicle are then presented.

5.3.3.1 Simulations – covering the state space

In this first experiment, simulation results are obtained for the vehicle servoing to the ori-

gin from starting poses located on a circle of radius 5 m at angular intervals of π
4

radians,

all with an initial vehicle orientation of 0 radians. The simulated vehicle paths are plotted
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in Figures 5.36 and 5.37. Note the uniformity of behaviour for mirrored starting positions.

The next case to analyse is a constant starting position with a varying initial orien-

tation, results from these simulation are shown in Figures 5.38 and 5.39. Again, these

experiments show that the controller is robust to initial conditions, the only requirement

being that the landmarks in the workspace are visible.

Figure 5.40 illustrates results from a Monte Carlo simulation in which pose control

was simulated from 1000 random initial poses in the range x, y ∈ [−12, 12] and θ ∈
(−π, π]. Plotted are the resulting final vehicle positions for each of the random initial

poses, Figure 5.40 (a), the final orientation 5.40 (b), and the time taken to stabilize to the

target position for each simulation, Figure 5.40 (c). All experiments successfully brought

the vehicle to within a tolerance of the goal pose, with the majority being within that

tolerance specified by the controller e < 0.1 and θ < 0.1. Note the difference between

this and the corresponding plot for the position control experiments (Figure 5.17). In these

experiments, the final position points are clustered on two lines at the distance tolerance

for control completion (i.e. at x = ±0.1) — for the position controller, these points

were distributed on a circle around the origin. Also note in this plot that some of the

final positions lie outside the tolerance along the x-axis — this is probably caused by the

rate-limiting on the velocity demand.
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(a) Path generated from initial pose of
(x, y, θ) = (−5, 0, 0).
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(b) Path generated from initial pose of
(x, y, θ) = (−3.5356, 3.5356, 0).
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(c) Path generated from initial pose of
(x, y, θ) = (0, 5, 0).
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(d) Path generated from initial pose of
(x, y, θ) = (3.5356, 3.5356, 0).

Figure 5.36: Effect of changing initial position on pose stabilization algorithm. Vehicle
servoing to pose (x, y, θ) = (0, 0, 0) from the specified starting positions each with an
initial orientation of θ = 0.
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(a) Path generated from initial pose of
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(b) Path generated from initial pose of
(x, y, θ) = (−3.5356, 3.5356, 0).
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(c) Path generated from initial pose of
(x, y, θ) = (0, 5, 0).
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(d) Path generated from initial pose of
(x, y, θ) = (3.5356, 3.5356, 0).

Figure 5.37: Effect of changing initial position on pose stabilization algorithm. Vehicle
servoing to pose (x, y, θ) = (0, 0, 0) from the specified starting positions each with an
initial orientation of θ = 0.
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(a) Path generated from initial pose of
(x, y, θ) = (3, 1, π).
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(b) Path generated from initial pose of
(x, y, θ) = (3, 1,− 3π

4 ).
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(c) Path generated from initial pose of
(x, y, θ) = (3, 1,−π

2 ).
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(d) Path generated from initial pose of
(x, y, θ) = (3, 1, π

4 ).

Figure 5.38: Effect of different starting orientations on pose stabilization. Vehicle servo-
ing to pose (x, y, θ) = (0, 0, 0) from the specified starting poses.
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(a) Path generated from initial pose of
(x, y, θ) = (3, 1, π).
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(b) Path generated from initial pose of
(x, y, θ) = (3, 1,− 3π
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(c) Path generated from initial pose of
(x, y, θ) = (3, 1,−π
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(d) Path generated from initial pose of
(x, y, θ) = (3, 1, π

4 ).

Figure 5.39: Effect of different starting orientations on pose stabilization. Vehicle servo-
ing to pose (x, y, θ) = (0, 0, 0) from the specified starting poses.
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Figure 5.40: Stabilization times from Monte Carlo simulation on position control. In this
simulation, 1000 random initial poses were presented to the pose controller, all simula-
tions brought the vehicle to within the specified tolerance of the goal, e < 0.1.
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5.3.3.2 Experiments on the vehicle

In Section 5.2.1, the validity of the simulation model was demonstrated by comparing

predicted motion with the vision and GPS data. In the experiments in this section, the

motion of the vehicle as determined from the vision which is used for control, is compared

with the predicted motion from the simulations.

The first experiment starts the vehicle with an initial pose of (x, y, θ) = (−3.54, 2.79, 0),

as determined by vision. A simulation was also conducted with the same starting pose.

Figure 5.41 shows the results for the ground-plane motion of the vehicle, along with the

state evolution, for the experiment and the simulation, and the vehicle demands and re-

sponse. As with the position control experiments, there is good correlation between the

simulated and real system. The states evolve as predicted by the simulation, and the ex-

perimental path of the vehicle is very close to that predicted by the simulation. In addition,

the time to stabilize is very similar in the simulated and experimental runs. These results

further validate the model of the vehicle.

However, as in Section 5.2.2.2 for the position control experiments, it is observed that

the system demands and response are similar in general behaviour but there are some

marked differences. These differences can again be accounted for by unmodelled effects

such as stiction and friction of the speed pedal. Furthermore, recall that the pose deter-

mined by the IALV strategy (using vision and a magnetic compass) is subject to error due

to the effects described in Section 5.2.2.2 — like the position control experiments, when

the vehicle gets close to the origin, sensor noise can make the pose estimates rapidly

change sign. In addition, sensor noise can lead to the vehicle entering a phase of control

prematurely or incorrectly — such an effect is evident at t � 43 sec. However, unlike the

position control experiments, systematic sensor errors, such as the dependency on bearing

for landmark range, cancel out.

The next experiment investigates a more difficult manoeuvre, a three-point turn in

which the vehicle’s initial pose is close to the origin but it is facing the wrong way. The

results are illustrated in Figure 5.42 where again the simulations and experimental results
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(b) Evolution of states.
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(c) Demands and response for the experimental
system.
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(d) Demands and response for the simulation.

Figure 5.41: Ground-plane path, state evolution and demands/responses for pose control,
first experiment. Initial pose is (x, y, θ) = (−3.54, 2.79, 0). Goal pose is the origin,
(x, y, θ) = (0, 0, 0).

correlate extremely well. The experimental system took approximately 10 sec longer to

stabilize — this is probably due to factors already discussed including sensing errors. At

t � 50 sec, the experimental system jumps from Stage 3 control to Stage 2. In contrast,

the simulated system does not even enter Stage 3 control. This could explain the dif-
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Figure 5.42: Ground-plane path, state evolution and demands/responses for pose control,
second experiment. Initial pose is (x, y, θ) = (1.37,−0.12, 3.05). Goal pose is the origin,
(x, y, θ) = (0, 0, 0).

ference in stabilization times. In practice, this three-point-turn type manoeuvre can lead

to landmarks ‘disappearing’ from the vehicle’s view — under certain circumstances, the

landmark can disappear for too long and the controller fails as the vision loses the land-

mark. However, given the difficulty of the manoeuvre, the performance of this vision-
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based feedback controller is remarkable.

Further examples of pose control are provided in the supplementary material in Sec-

tion A.1. These videos illustrate several pose stabilization runs in an outdoor environment

for several different initial poses. In these videos, again note the changing lighting condi-

tions and the relative robustness of the vision system.

5.3.4 Summary – Pose stabilization experiments

Again it has been shown that the vehicle modelling is representative of the behaviour of

the system and accurately predicts the motion of the vehicle. In practice, sensing errors

can lead to slightly different decisions being made in the experimental and simulated

systems. However, the overall behaviour is, in general, well described by the modelling.

From the simulations and the experimental results, it can be inferred that the pose

stabilization controller developed here is capable of driving the vehicle to a desired pose

from any initial pose in the workspace. Controller performance is limited only by the

capability of the sensing system.

5.4 Conclusions

In this chapter, controllers were developed enabling a car-like vehicle to stabilize to a

position and a pose using state feedback. Both controllers were based upon the use of

switching logic to sequentially stabilize the vehicle to sub-manifolds of the desired states.

Both controllers were designed with the limitations of real vehicles in mind, namely steer-

ing and velocity loop dynamics, and input saturation.

The validity of these controllers was demonstrated through extensive simulations. The

simulations demonstrate that the controllers are stable over the entire state-space, support-

ing the presented theory. Results from experiments on the vehicle were also presented.

These latter results demonstrate two things:

1. The modelling of the vehicle is representative of the behaviour of the system;
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2. The tasks can be achieved using the IALV strategy with sensing provided by omni-

directional vision and a magnetic compass.

Vision-based feedback pose stabilization for a nonholonomic car-like vehicle with sig-

nificant dynamics in the steering and velocity loops was demonstrated in this chapter,

representing the major contribution of the thesis.



Chapter 6

Conclusions

The principal topic addressed in this thesis is:

Can omnidirectional visual feedback be used as the primary sensor for the

pose stabilization of a nonholonomic, car-like vehicle?

In short, the answer to this question is yes. Within the limits of the sensor, omnidirec-

tional visual feedback strategies can be used to stabilize a car-like vehicle with significant

steering and velocity loop dynamics to a pre-learnt pose, based upon the discrepancies

between the view from an arbitrary location and that seen at the target pose. To cope with

dynamics and input saturation, several different stages of control are required:

• Initially the vehicle should stabilize to the line which has the target orientation and

contains the target point.

• On stabilizing to the line, servo to the target point.

A discrete event supervisor switches between the different stages of control, based upon

the state of the vehicle, with state-machines used to overcome chattering problems, push-

ing the control through the inherent discontinuities. This control strategy overcomes the

dynamics and limitations of ‘real’, car-like systems by choosing subsets of the degrees of

freedom in the problem.

For providing the visual feedback, visual homing strategies were analysed and ex-

tended to allow full pose estimation for the car-like vehicle, based upon feedback from
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an omnidirectional camera and a compass, using the differences between the currently

sensed scene and that at a pre-learnt target pose. These pose estimates were then fed into

the switching controller, allowing the vehicle to stabilize to the pre-learnt pose using om-

nidirectional vision. However, although the control method is stable, when combined with

extremely noisy visual pose estimates, chattering-type problems can appear in which the

vehicle oscillates about a switching boundary. In this case, the presented feedback pose

stabilization method will fail.

6.1 Research questions

Several subproblems to the principal topic of investigation were highlighted in the intro-

duction to this thesis (Chapter 1). These research questions are now re-examined:

1. What are the relative strengths and weaknesses of the visual homing techniques and

how can they be adapted for a car-like vehicle? Most existing pose stabilization

strategies require full vehicle pose estimates and it is usually assumed in the liter-

ature that these are readily available. Visual homing strategies provide a homing

vector which drives the agent towards some pre-learnt location, based upon the dis-

crepancies between the current view and a remembered view of the target location.

This homing vector is a scaled representation of the robot’s position with respect

to the target position, with different homing methods providing varying qualities of

homing vector ‘accuracy’. Chapter 4 compared two prominent bearing only hom-

ing techniques, the Weighted Vector method, and the Average Landmark Vector

method. The superiority of the ALV method for providing a homing vector under

varying landmark configurations was demonstrated and it was highlighted that the

ALV method does not require correspondence between landmarks at the current and

target views. A contribution of this thesis was the introduction of landmark range

information to the ALV method — the Improved Average Landmark Vector method

— which provides the distance and orientation to the target location exactly. When

combined with the compass sense required for homing vector calculation, a full
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vehicle pose estimate, with respect to the target pose, is provided.

2. Can current vision techniques (feature extraction, blob tracking, feature correspon-

dence etc.) be adapted and developed for an omnidirectional camera? A catodi-

optric omnidirectional camera provides a panoramic view of the environment. A

common paradigm in omnidirectional vision is to ‘unwrap’ the view to one more

easily interpreted by humans but this is an unnecessary waste of processing, as the

form of the image is unimportant to the computer interpreting the image. Objects

in omnidirectional images appear warped and change shape with viewpoint much

more dramatically than with conventional images. Colour-based segmentation pro-

vides a means of identifying and localising objects in an image without reference

to object shape. Additional recognition cues can then be introduced such as object

size (the amount of space it consumes in the image). Using the geometry of the

system, and a flat-Earth assumption, object range can readily be estimated, based

on distance from the image centre. More sophisticated means of range estimation,

for example optic flow type techniques, were not possible with the coarse on-board

velocity measurements of this particular experimental system.

3. Can the vehicle’s motion model be used to assist omnidirectional camera feature

tracking? Once localised in the image, object tracking based on vehicle-object rela-

tive motion models is then used to predict future object positions. This can improve

object recognition, eliminating objects falsely detected based on their colour alone,

effectively providing temporal filtering. Further to this, complementary filtering

techniques can be used to combine data from the vehicle-object motion models

based on odometry with the measurements from the vision system, vastly improv-

ing the quality of object range and bearing measurements.

4. Can the vehicle be stabilized to a position with no constraint on its final orienta-

tion, in the spirit of the visual homing literature Yes, using a two-stage switching

control law combined with the sensing strategies developed in previous chapters,
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it is possible to stabilize a car-like vehicle to a position. However, the success of

this process is limited by errors in the sensing induced by incorrect perpendicular

alignment between the camera-mirror assembly and the ground-plane — this leads

to a bearing dependent range estimate which in turn affects the pose estimate. In

contrast, when servoing to a pose, these errors cancel out and pose stabilization is

more precise than position stabilization, despite the increase in complexity of the

controller

5. Which of the pose stabilization techniques can accommodate ‘real world’ vehicle

kinematics, constraints, and dynamics? Pose stabilization methods were tested via

two means: implementation on the CMIT Autonomous Tractor, which was specif-

ically developed through the work of this thesis, and through a detailed simulation

model consisting of the AT’s kinematics, and experimentally determined models of

the dynamics of the steering and velocity loops and the associated non-linearities

such as input saturation. These were used to test several pose stabilization strate-

gies, illustrating that many existing feedback strategies cannot cope with the char-

acteristics of ‘real’ vehicles. Significantly, many failed on saturation of the steering

demand — real car-like vehicles have significant limitations on the available steer-

ing angle. A strategy that does deal with these effects is to split the state-space

into sub-manifolds, sequentially servoing to specifically chosen states in each sub-

manifold. For the car-like vehicle case the strategy is:

• Servo to the line which has the target orientation and contains the desired

point.

• On stabilizing to the line, servo to the desired point.

This strategy can accommodate dynamics of the system and overcomes saturation

of the steering demand. It also allows the use of linear control tools for system

analysis. Servoing to a line has a reduced degree of freedom when compared to

servoing to a pose. Once on the line, acquiring the goal position is almost trivial,
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if good pose estimates are available. Despite the extensive work on improving the

pose estimate, measurements of the vehicle state were still quite noisy. Strategies

to overcome this noise included the use of timers to push through the switching

boundaries which together with a discrete event supervisor, decide the state of the

system based upon the frequency of a particular combination of states at a particular

time.

6.2 Contributions of the thesis

In answering the above questions, the thesis provided a comprehensive background in

mobile robotics, reviewed the literature on pose stabilization and vision-based sensing,

created a suitable test-platform with the associated kinematic and dynamic models of

the platform, and demonstrated pose stabilization in simulation and through extensive

experimentation.

In addressing the main research questions, the following key contributions were made:

• Background material on navigation was presented, highlighting the slow shift

away from complete metric representations of the environment to simpler, more

manageable representations in the form of topological maps. A review of the ex-

isting literature on the navigation problem in general was provided, based upon the

taxonomy presented by Franz and Mallot [2000].

• Reviewed the pose stabilization literature based upon the taxonomy of Kolmanovsky

and McClamroch [1995], highlighting the shortage of ‘real’ experimental results,

particularly for car-like vehicles.

• Reviewed the use of computer vision to solve the problem of both position and

pose stabilization, including a review of the visual homing literature.

• Developed a test platform representative of an industrial vehicle — the CMIT

Autonomous Tractor. The AT is an ideal platform for testing navigation and control

algorithms and has a role for much future land navigation research.
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• Developed accurate models of the AT using the well-known bicycle model for the

vehicle kinematics and experimentally determined models of the vehicle’s response

to control demands, including velocity and steering loop dynamics and non-linear

effects such as input saturation. In terms of testing pose control algorithms, few, if

any, authors use realistic vehicle models.

• Developed a simple, yet robust, pose estimation technique using omnidirectional

computer vision and a compass. The camera, which mimics an insects wide field

of view, was used to track a set of homogeneous, coloured landmarks, from which

the pose of the vehicle could be estimated. This strategy is called the Improved

Average Landmark Vector method, a derivative of a bearing-only strategy, enriched

with range information. It allows the estimation of the vehicle’s pose relative to

some pre-learnt target pose, using the discrepancies between the current view and

the view at target location. This method is free of the the need for landmark cor-

respondence and does not require image unwrapping. Another contribution in this

area was the characterisation of the sensitivity to sensing errors.

• Developed a robust vision system to implement the homing/pose stabilization al-

gorithms. The vision uses a colour-based object segmentation techniques based

upon a pre-taught two-dimensional look-up table of the target object colour. Range

estimation techniques were developed based on the flat-Earth assumption and the

equiangualar mirror optics. A novel tracking method was presented based upon

vehicle-object motion models.

• Developed complementary filtering techniques which combine data from dis-

parate sensing sources, producing higher quality measurements. In this case, ve-

hicle odometry and vehicle-object motion models were combined with the range

and bearing estimates from the the vision system. Also, vehicle odometry and a

kinematic model was combined with a compass sensor.

• Investigated and implemented position stabilization strategies through simula-
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tion and experimentation.

• Investigated and implemented pose stabilization strategies through simulation

and experimentation. A workable pose stabilization technique was implemented

on the AT, with further developments including fixing a stability problem with an

existing discontinuous controller, and providing techniques to reduce control ‘chat-

ter’.

• Demonstrated that pose stabilization is easier than position stabilization with

the sensing arrangement used in this thesis. This is due to the fact that the world

looks different when viewed at the same location with different orientations — it is

near impossible to perfectly align an omnidirectional camera with the ground-plane,

and even if this is achieved, lens / mirror aberrations could still produce distortions.

On stabilizing to a pose, the target location is approached with a similar orientation

to the target view, and hence any distortions in the view are nullified. In contrast,

This is not the case when stabilizing to a position.

6.3 Closing remarks

Although the vision-based pose stabilization technique presented in this thesis was suc-

cessful, it was somewhat limited by the sensing which required the vehicle to travel rel-

atively slowly (still much faster than comparable work). With the ever increasing avail-

ability of computing power, the open-loop strategies for pose stabilization are becoming

more attractive when used in an on-line feedback type manner, more reliably providing for

additional constraints such as obstacle avoidance. One of the reasons these on-line, open-

loop approaches were not used in this work was that all processing was to occur on-board

the AT, a difficult task when also running computer vision for pose estimation. An inter-

esting direction of future research would be to investigate, optimise and implement the

on-line open-loop strategies, perhaps initially using a less computationally burdensome

pose estimation sensor.
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Pose stabilization is a highly local behaviour but a necessity if we are to see au-

tonomous industrial vehicles ‘do’ anything in a workspace. However, it is but one of the

suite of required competencies for performing global tasks. In order to perform global

tasks, autonomous vehicles need to be able to recognise different locations, stored in

some internal representation from which coherent plans of action can be formulated. The

current paradigm is to provide, or have the robot build, complete metric maps. This ap-

proach is limited in scale due to the high computational burdens of maintaining metric

representations of large workspaces — this is particularly true of outdoor mobile robot

systems. It is also wasteful, as much of the workspace is not ‘interesting’ to a mobile

robot. A more parsimonious representation is the topological map which consists of a

series of distinctive places, connected by control instructions, rather than through com-

plete metric mapping. Of course, if required, local metric maps can be integrated into

topological representations. Key to the use of topological maps is the ability to recognise

distinctive places and to traverse the spaces between them. Another key aspect is the hu-

man/robot interface: How do we communicate, in a flexible manner, what we wish the

robot to do?

The investigation of these additional competencies, which would allow for more global

behaviours, provides further research opportunities, especially in the context of topolog-

ical mapping. Vision, and in particular omnidirectional vision, provides a promising av-

enue of research for recognising different locations through matching of colour histogram

representations of pre-learnt distinctive places. Edge following (e.g. a road) is a technique

that could be used to connect such distinctive places. These techniques are well developed

using monocular cameras and range sensors but the use of omnidirectional vision for edge

following, particularly in outdoor environments [Corke et al., 2003], is another promis-

ing avenue of research. The work in this thesis focused on the use of ‘artificial’ colour

landmarks but the idea of using natural landmarks and fusing different visual features in-

cluding edges, colour, and optic flow type measurements is also a rich source of future

work. However, an ‘image’ is not restricted to computer vision and could be acquired

from, or fused with, other sources such as a scanning laser or radar.



6.3 Closing remarks 273

The methods and techniques developed in this thesis are equally applicable to other

robotic platforms. Of particular interest would be stabilizing a flying and/or submersible

vehicle to a specific target pose based upon a pre-learnt view of the target location using

principles similar to those used in this thesis. These vehicles are also nonholonomic

systems, with additional degrees of freedom and sources of disturbances. An additional

difficulty is that flying and swimming vehicles are not driftless1 systems, as for the car-

like vehicle investigated in this thesis.

1On a flat plane, with no control inputs a car-like vehicle remains in equilibrium. This is not the case for
a flying vehicle which, in general, will fall to the ground if no control inputs are provided.
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Appendix A

Supplementary Material

A.1 Video Material

The attached CD-ROM contains video footage of the Autonomous Tractor. The CD-ROM

is organized as detailed in Table A.1.

Directory and Title Brief Description

chapter3/first remote run.mov The AT’s first run under remote control
chapter3/first remote run short.mov A shorter version of the above video

chapter4/lm tracking sequence.mov A short sequence showing tracking of
a set of witches hats

chapter5/position example 1.mov A position stablization run (example 1)
chapter5/position example 2.mov A position stablization run (example 2)
chapter5/pose example 1.mov A pose stablization run (example 1)
chapter5/pose example 2.mov A pose stablization run (example 2)
chapter5/early pose stabilization run.mov A pose stabilization run from early

in the thesis work

Table A.1: Table of contents for the supplementary material on the CD-ROM.
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