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ABSTRACT 

This research has developed several models and methodologies with the aim of 

improving the accuracy and applicability of reliability predictions for complex 

repairable systems. 

A repairable system is usually defined as one that will be repaired to recover its 

functions after each failure. Physical assets such as machines, buildings, vehicles are 

often repairable. Optimal maintenance strategies require the prediction of the 

reliability of complex repairable systems accurately. Numerous models and methods 

have been developed for predicting system reliability. After an extensive literature 

review, several limitations in the existing research and needs for future research have 

been identified. These include the follows: the need for an effective method to 

predict the reliability of an asset with multiple preventive maintenance intervals 

during its entire life span; the need for considering interactions among failures of 

components in a system; and the need for an effective method for predicting 

reliability with sparse or zero failure data.  

In this research, the Split System Approach (SSA), an Analytical Model for 

Interactive Failures (AMIF), the Extended SSA (ESSA) and the Proportional 

Covariate Model (PCM), were developed by the candidate to meet the needs 

identified previously, in an effective manner. These new methodologies/models 

are expected to rectify the identified limitations of current models and significantly 

improve the accuracy of the reliability prediction of existing models for repairable 

systems. 

The characteristics of the reliability of a system will alter after regular preventive 

maintenance. This alternation makes prediction of the reliability of complex 

repairable systems difficult, especially when the prediction covers a number of 

imperfect preventive maintenance actions over multiple intervals during the asset’s 

lifetime. The SSA uses a new concept to address this issue effectively and splits a 

system into repaired and unrepaired parts virtually. SSA has been used to 

analyse system reliability at the component level and to address different states of a 

repairable system after single or multiple preventive maintenance activities over 

multiple intervals. The results obtained from this investigation demonstrate that 
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SSA has an excellent ability to support the making of optimal asset preventive 

maintenance decisions over its whole life.  

It is noted that SSA, like most existing models, is based on the assumption that 

failures are independent of each other. This assumption is often unrealistic in 

industrial circumstances and may lead to unacceptable prediction errors. To ensure 

the accuracy of reliability prediction, interactive failures were considered. The 

concept of interactive failure presented in this thesis is a new variant of the definition 

of failure. The candidate has made several original contributions such as 

introducing and defining related concepts and terminologies, developing a 

model to analyse interactive failures quantitatively and revealing that 

interactive failure can be either stable or unstable. The research results effectively 

assist in avoiding unstable interactive relationship in machinery during its design 

phase. This research on interactive failures pioneers a new area of reliability 

prediction and enables the estimation of failure probabilities more precisely. 

ESSA was developed through an integration of SSA and AMIF. ESSA is the first 

effective method to address the reliability prediction of systems with interactive 

failures and with multiple preventive maintenance actions over multiple intervals. It 

enhances the capability of SSA and AMIF. 

PCM was developed to further enhance the capability of the above 

methodologies/models. It addresses the issue of reliability prediction using both 

failure data and condition data. The philosophy and procedure of PCM are 

different from existing models such as the Proportional Hazard Model (PHM). 

PCM has been used successfully to investigate the hazard of gearboxes and truck 

engines. The candidate demonstrated that PCM had several unique features: 1) it 

automatically tracks the changing characteristics of the hazard of a system using 

symptom indicators; 2) it estimates the hazard of a system using symptom indicators 

without historical failure data; 3) it reduces the influence of fluctuations in condition 

monitoring data on hazard estimation. 

These newly developed methodologies/models have been verified using 

simulations, industrial case studies and laboratory experiments. 

The research outcomes of this research are expected to enrich the body of 

knowledge in reliability prediction through effectively addressing some limitations of 

existing models and exploring the area of interactive failures.  



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 iv 

 

Table of Contents 

Keywords....................................................................................................................... i 

Abstract ........................................................................................................................ ii 

List of Figures ........................................................................................................... viii 

List of Tables............................................................................................................. xiii 

Notations ................................................................................................................... xiv 

Glossary.......................................................................................................................xx 

Abbreviations.......................................................................................................... xxvi 

Statement of Original Authorship ..........................................................................xxx 

Acknowledgment .................................................................................................... xxxi 

 

Chapter 1 INTRODUCTION ................................................................. 1 

1.1 INTRODUCTION OF RESEARCH..............................................................1 

1.2 OBJECTIVES AND METHODS OF THE RESEARCH..............................2 

1.2.1 Objectives...............................................................................................2 

1.2.2 Research Methods ..................................................................................5 

1.3 OUTCOMES OF THE RESEARCH .............................................................8 

1.3.1 Research Results Achieved ....................................................................8 

1.3.2 Relationship of the Developed Models and Methodologies ................10 

1.4 ORIGINALITY AND INNOVATION........................................................11 

1.5 THE STRUCTURE OF THE THESIS ........................................................15 

Chapter 2 LITERATURE REVIEW.................................................... 18 

2.1 INTRODUCTION........................................................................................18 

2.2 GENERAL REVIEW...................................................................................21 

2.2.1 Frameworks..........................................................................................21 

2.2.2 Reliability Assessment and Analysis ...................................................27 

2.2.3 Maintenance Optimization Policies .....................................................32 

2.2.4 Advanced Tools and Methodologies....................................................37 

2.2.5 Comments and Discussion ...................................................................38 

2.3 SPECIFIC REVIEW – ANALYTICAL MODELS.....................................40 

2.3.1 Basic Principles of Probability.............................................................40 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 v 

2.3.2 Markovian Theory................................................................................42 

2.3.3 Poisson Process ....................................................................................44 

2.3.4 Condition Monitoring Data Based Models ..........................................45 

2.3.5 Bayesian Theory...................................................................................51 

2.3.6 Hybrid Models .....................................................................................52 

2.3.7 Other Models........................................................................................53 

2.3.8 Comments ............................................................................................55 

Chapter 3 RELIABILITY PREDICTION OF SYSTEMS WITH 
PREVENTIVE MAINTENANCE...................................... 58 

3.1 INTRODUCTION .......................................................................................58 

3.2 CONCEPTS OF SSA AND ASSUMPTIONS ............................................63 

3.3 MODELLING..............................................................................................64 

3.3.1 Scenario one: the Same Single Component Repair..............................64 

3.3.2 Scenario two: Single but Different Component Repairs......................72 

3.3.3 Heuristic Approach ..............................................................................74 

3.4 An Example: a System with Weibull Failure Distribution ..........................77 

3.5 Case Study: a Water Supply Pipeline...........................................................82 

3.6 SIMULATIONS...........................................................................................87 

3.7 SUMMARY.................................................................................................89 

Chapter 4 ANALYSIS OF INTERACTIVE FAILURES ...................91 

4.1 INTRODUCTION .......................................................................................91 

4.2 INTERACTIVE FAILURE AND INTERACTIVE HAZARD...................93 

4.3 MATHEMATICAL MODEL FOR INTERACTIVE HAZARD AND 
INTERACTIVE FAILURE .........................................................................97 

4.4 ESTIMATION OF INTERACTIVE COEFFICIENTS.............................101 

4.5 STABLE AND UNSTABLE INTERACTIVE FAILURE........................103 

4.6 MATHEMATICAL MODELS FOR STABLE INTERACTIVE 
FAILURES ................................................................................................106 

4.7 MODEL JUSTIFICATION .......................................................................113 

4.7.1 Special Case 1: Multiple Causes Failure............................................113 

4.7.2 Special Case 2: Independent failure...................................................116 

4.7.3 Special Case 3: Common Cause Failure ............................................116 

4.7.4 Special Case 4: Common Cause Shock .............................................117 

4.8 ANALYSIS OF INTERACTIVE FAILURES OF COMPONENTS ........119 

4.9 PROPERTIES OF INTERACTIVE FAILURES ......................................121 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 vi 

4.10 EFFECTS OF INTERACTIVE FAILURES ON SYSTEMS....................127 

4.11 SUMMARY ...............................................................................................133 

Chapter 5 RELIABILITY PREDICTIONS OF REPAIRABLE 
SYSTEMS WITH INTERACTIVE FAILURES.............. 135 

5.1 INTRODUCTION......................................................................................135 

5.2 METHOD DEVELOPMENT ....................................................................137 

5.2.1 MODIFIED HEURISTIC APPROACH ............................................138 

5.2.2 COMPONENT INTERACTIVE HAZARDS AND FAILURE 
DISTRIBUTION FUNCTIONS .......................................................141 

5.2.3 SYSTEM RELIABILITY ..................................................................146 

5.3 AN EXAMPLE: A MECHANICAL SYSTEM WITH THREE 
INTERACTIVE COMPONENTS .............................................................152 

5.4 SUMMARY ...............................................................................................159 

Chapter 6 HAZARD PREDICTION USING HISTORICAL 
FAILURE DATA AND CONDITION MONITORING 
DATA ................................................................................ 161 

6.1 INTRODUCTION......................................................................................161 

6.2 PREVENTIVE MAINTENANCE LEAD TIME DETERMINATION ....161 

6.2.1 Hazard Functions and Corresponding Reliability Functions .............162 

6.2.2 Comments...........................................................................................168 

6.3 PROPORTIONAL COVARIATE MODEL – DEVELOPMENT.............169 

6.3.1 Concepts .............................................................................................170 

6.3.2 Procedure............................................................................................172 

6.3.3 Comparisons between PCM and PHM...............................................174 

6.3.4 Tracking Changes of the Hazard function..........................................175 

6.3.5 Robustness..........................................................................................178 

6.3.6 Condition Monitoring Data for Updating Hazard Function...............181 

6.3.7 Case Studies – Truck Engines and Spur Gearboxes ..........................182 

6.4 SUMMARY ...............................................................................................191 

Chapter 7 EXPERIMENTS................................................................ 194 

7.1 INTRODUCTION......................................................................................194 

7.2 TEST RIG AND EXPERIMENTAL METHOD.......................................194 

7.3 TEST RESULTS........................................................................................198 

7.4 ANALYSIS OF THE TEST RESULTS ....................................................203 

7.4.1 Interactive Failures.............................................................................206 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 vii  

7.4.2 Hazard of a Newly Repaired Component ..........................................210 

7.4.3 PCM ...................................................................................................212 

7.5 SUMMARY...............................................................................................213 

Chapter 8 CONCLUSIONS ............................................................... 214 

8.1 SPLIT SYSTEM APPROACH (SSA).......................................................215 

8.2 THE ANALYTICAL MODEL FOR INTERACTIVE FAILURES    
(AMIF).......................................................................................................216 

8.3 EXTENDED SPLIT SYSTEM APPROACH (ESSA) ..............................217 

8.4 PROPORTIONAL COVARIATE MODEL (PCM)..................................218 

8.5 GENERAL STATEMENTS ......................................................................219 

Chapter 9 DIRECTIONS FOR FUTURE RESEARCH.................... 220 

9.1 EXTENSION OF SSA...............................................................................220 

9.2 APPLICATION OF SSA FOR PM DECISION MAKING ......................220 

9.3 ENHANCEMENT OF FAULT TREE ANALYSIS..................................221 

9.4 PCM FOR MULTIPLE COVARIATES ...................................................221 

9.5 DEVELOPMENT OF SOFTWARE TOOLS TO ENHANCE THE 
APPLICATION AND TESTING OF THE DEVELOPED MODELS.....222 

  

Appendix A. PUBLICATIONS ...................................................................223 

Appendix B1. The Test Data for Gearbox Tooth Failure...........................226 

Appendix B2. The Derivation of Equation (3-21)........................................227 

Appendix B3. The Mann’s Test for the Weibull Distribution....................231 

Appendix B4. The Proof of Proposition 4-1: The nth state of an 
interactive chain process .......................................................233 

Appendix B5. The Derivation of Equation (4-31)........................................235 

Appendix B6. The Proof of Proposition 5-1: Nonnegative state 
influence matrix......................................................................236 

Appendix B7. The Proof of Proposition 5-2: Diagonal elements in the 
state influence matrix.............................................................240 

BIBLIOGRAPHY ....................................................................................................241 

 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 viii  

List of Figures 

Figure 2-1 An overview of the research on maintenance.................................... 20 

Figure 2-2 Structure of RCM .............................................................................. 22 

Figure 2-3 An overview of TPM.........................................................................22 

Figure 2-4 BCM strategy .................................................................................... 23 

Figure 2-5 Steps to implement ME ..................................................................... 24 

Figure 2-6 Coetzee’s maintenance cycle model.................................................. 24 

Figure 2-7 A life cycle cost profile...................................................................... 33 

Figure 2-8 The calculated hazards of the system ................................................ 49 

Figure 2-9 Trend lines of the hazard curves in Figure 2-8 .................................. 50 

Figure 3-1 Number of failures N(t) as a function of age of a pump system........ 61 

Figure 3-2 Series system ..................................................................................... 65 

Figure 3-3 Changes of the reliability of an imperfectly repaired system............ 66 

Figure 3-4 Parallel system................................................................................... 69 

Figure 3-5 Changes of the failure distribution function of an imperfectly repaired 

system ................................................................................................70 

Figure 3-6 Multi-series system............................................................................ 72 

Figure 3-7 Multi-parallel system......................................................................... 73 

Figure 3-8 An example of complex system......................................................... 74 

Figure 3-9 Weibull probability plot..................................................................... 83 

Figure 3-10 The reliability of a pipeline with PM – Case 1.................................. 85 

Figure 3-11 The reliability of a pipeline with PM – Case 2.................................. 85 

Figure 3-12 The reliability of a pipeline with PM – Case 3.................................. 86 

Figure 3-13 The reliability of a pipeline with PM – Case 4.................................. 86 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 ix 

Figure 3-14. Simulation experimental results 1 - the changes of the failure 

distribution function of a system over the entire life span ................ 87 

Figure 3-15 Simulation experimental results 2 - the changes of the failure 

distribution function of a system over the entire life span ................ 88 

Figure 3-16 Simulation experimental results 3 - the changes of the failure 

distribution function of a system over the entire life span ................ 88 

Figure 4-1 The loss of the Space Shuttle Columbia............................................ 92 

Figure 4-2 The struck position on Columbia ...................................................... 92 

Figure 4-3 The process of failure interaction .................................................... 104 

Figure 4-4 Relationship of IntFs in a system .................................................... 104 

Figure 4-5 Stable and unstable IntF .................................................................. 105 

Figure 4-6 Relationship chart ............................................................................ 120 

Figure 4-7 Interactive failure of Component 1 and different ICs...................... 123 

Figure 4-8 Interactive failure of Component 2 and different θ12 ...................... 124 

Figure 4-9 Interactive failure of Component 3 and different θ12 ...................... 124 

Figure 4-10 Relationship between MTTF and θ12............................................... 125 

Figure 4-11 Relationship between MTTF and θ13............................................... 126 

Figure 4-12 Influence of )(2 tFI on )(1 tF ............................................................ 126 

Figure 4-13 Influence of  )(3 tFI  on )(1 tF .......................................................... 127 

Figure 4-14 A parallel system and its equivalent system.................................... 129 

Figure 4-15 System A ......................................................................................... 129 

Figure 4-16 System B.......................................................................................... 129 

Figure 4-17 Relationship between IntF of System A and θ12 ............................. 130 

Figure 4-18 Relationship between IntF of System B and θ12 ............................. 131 

Figure 4-19 Relationship between IntFs of the systems and θ12 ........................ 131 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 x 

Figure 4-20 Changes of interactive failures of System A with θ13 and time....... 132 

Figure 4-21 Changes of interactive failures of System B with θ13 and time....... 132 

Figure 5-1 Simplified structure diagram of a washing machine ....................... 135 

Figure 5-2 The changes of hazard of unrepaired subsystem and repaired 

dependent component ...................................................................... 142 

Figure 5-3 Simulation result 1 for the IntF of a repairable system ................... 156 

Figure 5-4 Simulation result 2 for the IntF of a repairable system ................... 156 

Figure 5-5 Simulation result 3 for the IntF of a repairable system ................... 157 

Figure 5-6 Simulation result 4 for the IntF of a repairable system ................... 157 

Figure 5-7 Simulation result 5 for the IntF of a repairable system ................... 158 

Figure 5-8 Simulation result 6 for the IntF of a repairable system ................... 158 

Figure 5-9 Comparison between TBTF............................................................. 159 

Figure 6-1 Bath basin failure pattern.................................................................162 

Figure 6-2 Hazard curves (a) and the corresponding reliability curves (b)....... 164 

Figure 6-3 The composite covariate Z(t) (a) and the reliability of the wheel motor 

(b)..................................................................................................... 167 

Figure 6-4 The failure times .............................................................................. 177 

Figure 6-5 Covariate data .................................................................................. 177 

Figure 6-6 The effectiveness of PCM to update the estimated hazard.............. 178 

Figure 6-7 Contaminated covariate data............................................................ 179 

Figure 6-8 Hazard estimated with the contaminated covariate data.................. 180 

Figure 6-9 The changes of Fe particles – Engine 1 ........................................... 183 

Figure 6-10 The changes of Fe particles – Engine 2 ........................................... 183 

Figure 6-11 Weibull probability plot – Engine 1 ................................................ 184 

Figure 6-12 Weibull probability plot – Engine 2 ................................................ 184 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 xi 

Figure 6-13 The original hazard, the conventional and the PCM based prediction

......................................................................................................... 186 

Figure 6-14 Relationship between the increment of crack depth and hazard ..... 188  

Figure 6-15 Weibull fitness check ...................................................................... 189 

 

Figure 6-16 Hazard curves of the test gears -4.47 hours condition monitoring data

......................................................................................................... 189 

Figure 6-17 Hazard curves of the test gears - 5.69 hours condition monitoring data

......................................................................................................... 190 

Figure 6-18 Reliability diagram of the test gears ................................................ 190 

Figure 7-1 Test rig............................................................................................. 195 

Figure 7-2 The aerial view of the test rig .......................................................... 195 

Figure 7-3 Picture of the data acquisition system ............................................. 196 

Figure 7-4. Diagram of the test rig and data acquisition system........................ 196 

Figure 7-5 ENDEVCO 256HX-10 piezoelectric accelerometer ....................... 197 

Figure 7-6 The damaged bearing ...................................................................... 197 

Figure 7-7 The vibration of the faulty bearing under different degrees of angular 

misalignment of the shaft in the positive direction.......................... 199 

Figure 7-8. The vibration of the faulty bearing under different degrees of angular 

misalignment of the shaft in the negative direction......................... 200 

Figure 7-9 The vibration signals in the time domain of the test bearing when two 

healthy bearings were used....................................................... 201-202 

Figure 7-10 The average acceleration amplitude of the faulty bearing under 

different degrees of angular misalignment of the shaft ................... 202 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 xii  

Figure 7-11 The average acceleration amplitude of the healthy right bearing under 

different degrees of angular misalignment of the shaft ................... 203 

Figure 7-12 Comparison between experimental and theoretical results ............. 210 

Figure 7-13 Hazard of the right bearing .............................................................. 211 

Figure 7-14 Failure distribution of the right bearing........................................... 211 

Figure 7-15 The relationship between the hazard h(t) of the shaft and the average 

vibration amplitude Aav .................................................................. 212 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 xiii  

List of Tables 

Table 4-1 Relationship matrix ......................................................................... 120 

Table 6-1 The test gearbox data....................................................................... 187 

Table 7-1 The absolute values of slope | bam| and the initial values of the 

average acceleration amplitude of the faulty bearing...................... 206 

Table B1-1 The original test data for gearbox tooth failure ............................... 226 

Table B3-1 Mann's Test for the Weibull Distribution of the failure times of the 

pipeline ............................................................................................ 232 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 xiv 

 

Notations 

]0[  The null matrix 

a , b ,… Constants 

A , B , … Events or systems 

Aav Average vibration amplitude 

amb  The slope of the fit-line 

kC  A value of baseline covariate function 

][•Det  The determinant of matrix ][•  

)(tf  Failure density function 

)(tF  Failure distribution function 

0F  The predefined control limit of failure probability 

)(tFA  The failure distribution function of System A 

)(tFB  The failure distribution function of System B 

)(tFIi  The independent failure distribution function of Component i  

)(tFs  The general failure distribution function of a system during the entire 

life span 

isF )(τ  The failure distribution function of a system after the ith PM action 

isbF )(τ  The failure distribution function of a subsystem after the ith PM action 

isbiF )(τ  The failure distribution function of Component i  in a subsystem after 

i th PM action 

)(th  Hazard function 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 xv 

)(
~

th  The estimated hazard function of a system 

)(0 th  Baseline hazard rate (function) 

11 )(τH  The Integrated Interactive Hazard (IntH) of Component 1 after the 1st 

PM action 

)(thi  The hazard function of Component i  

)(thIC  The Independent Hazard (IndH) function of a “virtual” Component C 

– a common failure cause 

)(thIi  The IndH function of Component i  

iIsbh )(τ  The IndH function of a subsystem after the ith PM action 

i
e
Isbh )(τ  The equivalent IndH function of a subsystem after ith PM action 

)(thin  The initial estimation of a hazard function 

Bj th
i

)(
r

 The all hazard functions of the influencing components of Component 

i  before an interaction 

)(τsbh
r

 The IntH vector of a subsystem 

1)(τsbH
r

 The IntH vector of a subsystem after the 1st PM action 

)}({ th  Interactive hazard vector 

Bth )}({  The hazard vector before an interaction  

)}({ thI  Independent hazard vector  

)}({ )( th n  The jth state of failure interaction  

][ I  Identity matrix  

ij  The subscripts of the influencing components of Component i  



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 xvi 

kL  The number of times of PM action when Component k  ( mk ≤ ) 

receives its last repair  

m  The number of repaired components 

M  The number of components in a system 

cm  The number of condition monitoring data 

fm  The number of failure data 

nm  The number of new condition monitoring data 

n  The number of PM actions 

p  The failure probability of a component due to the effect of a common 

cause shock 

)(•P  Probability of )(•  

)|( ABP k  The conditional probability that event kB  occurs at the occurrence of 

event A 

)(tR  Reliability function 

0R  Predefined reliability control level 

iR )(1 τ  The reliability functions of repaired Component 1 after the ith PM 

action 

01 )(tRI  The independent reliability function of Component 1 

0)(tRIs  The independent reliability function of an original system 

ikcR )(τ  The cumulative reliability of Component k after the ith PM action 

)(tRs  The reliability of a repairable system 

is tR )(  The reliability of a system after the ith PM action 

nscR )(τ  The cumulative reliability of a system after the nth PM action 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 xvii  

isbR )(τ  The reliability functions of a subsystem after the ith PM action 

i
e
sbR )(τ  The equivalent reliability calculated based on a subsystem after ith PM 

action 

in
iRCP  The initial value of relevant condition parameter for the ith item 

lim
iRCP  The limit value of relevant condition parameter for the ith item 

t  The absolute time scale 

ct  The time when the characteristic of the hazard of a system changes 

it  The ith failure time 

pt  Required minimum operating time 

T  Time period 

1
iT  The time to the first examination of the ith item 

)])(([ ttr θ  The trace of matrix )]([ tθ  

}{ it  A set of historical failure times 

lbhx  The displacement of the test bearing housing from its central position 

ay  The average acceleration amplitude of the test bearing 

0ay  The initial value of the average acceleration amplitude of the test 

bearing 

)(tZ  Covariate function 

)(tZe  Environmental covariates 

)(tZr  Responsive covariates 

)}({ jr tZ  A set of condition monitoring data 

][α  The Sate Influence Matrix (SIM) 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 xviii  

iαr  A partition matrix in the SIM ][α  

ijα  The ith row jth column element of SIM ][α  

e
sb1α  An equivalent state influence coefficient to represent the effect of the 

failure of Component 1 on a subsystem 

β  Shape parameter in the Weibull distribution 

cβ  Common cause factor 

γ Weighting parameter 

it∆  Time Between Two Failures (TBTF) 

)(tε  The difference between two hazard functions 

ambε  The relative estimation error of the slope 

0ayε  The relative estimation error of the initial values of the average 

acceleration amplitude0ay  

η  Scale parameter in the Weibull distribution 

)]([ tθ  Interactive coefficient matrix  

iθ
r

 A partition matrix in the interactive coefficient matrix )]([ tθ  

)(t
iijθ  The Interactive Coefficient (IC) that represents the degree of the 

effect of failure of Componentij  on Component i  

smϑ  The degree of angular misalignment of the shaft in test rig 

λ  Constant failure rate 

eλ  Eigenvalue 

Iiλ  The independent constant failure rate of Component i  

ν  The occurrence rate of a common cause shock 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 xix 

)(tν  Intensity function 

1ξ  The time when the hazard function curve shows the random failure 

phase of its life cycle 

2ξ  The time when the hazard function curve shows the wear-out phase of 

its life cycle 

)])(([ tθρ  The spectral radius of matrix )]([ tθ  

τ  The relative time scale 

)(tiφ  The independent hazard function of Component i  

),( γψ Z  The function of covariates 

))(( tZrΨ  The function of responsive covariates 

||•  The absolute value of (• ) 

 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 xx 

 

Glossary 

Affected component: a component whose failure likelihood increases by the failures 

of other components in a system. 

Average acceleration 

vibration amplitude: 

the mean acceleration amplitude value of a vibration process of 

a system over time.  

Baseline covariate 

function: 

a function that describes the relationship between covariates 

and hazard.  

Baseline hazard 

function: 

a function that represents the hazard without the influence of 

the covariates. 

Cascading failure: multiple sequential failures that are initiated by the failure of 

one component, which leads to sequential failures of other 

components.  

Common cause 

failure: 

failures of different items resulting from the same direct cause, 

occurring within a relatively short time, where these failures 

are not consequences of another (ISO14224). 

Complex system: a system composed of multi-components which can be 

connected with each other in either series or parallel or in a 

complex way.  

Corrective 

maintenance: 

maintenance that is carried out on an item after fault 

recognition to return it to a state in which it can perform the 

required function.  
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Covariate: a parameter that measures the conditions of an asset.  

Cumulative 

reliability: 

the probability of survival of a system over its whole life time 

with consideration of the cumulative effect of the repaired 

components over time.  

Dependent failure: a failure that leads to an increased or a reduced tendency of 

another failure.  

Environmental 

covariate: 

a type of condition parameter whose changes will cause the 

characteristics of the hazard of a system to change.  

Extended split system 

approach: 

the split system approach without using the independent failure 

assumption. 

Failure: termination of the ability of an item to perform a required 

function (ISO/DIS14224). 

Fault tree: a diagram that logically represents the various combinations of 

possible events, both fault and normal, occurring in a system 

that leads to the top event. 

Gradual degraded 

interactive failure: 

a failure due to the interactions among gradually deteriorating 

components. 

Hazard: the probability that a system or a component will fail in the 

next interval (t, t+∆t] under the condition that this system or 

component has survived until time t. 

Immediate 

interactive failure: 

the failure of the influencing component will cause its affected 

components to fail immediately.  

Imperfect repair: a repair that returns the state of a system between "as good as 

new" and "as bad as old". 
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Independent failure: a failure that does not affect or is not affected by another 

failure. 

Interactive failure 

distribution function: 

the failure distribution function of a system or a component if 

its failures are independent.  

Independent hazard 

function: 

the hazard function of a system or a component if its failures 

are independent.  

Interactive hazard 

function: 

the hazard function of a system or a component with failure 

interaction.  

Influencing 

component: 

a component whose failure leads to an increased tendency of 

failures of other components in a system. 

Interactive 

coefficient: 

a parameter that is used to represent the degree of the effect of 

failure of one component on another component. 

Interactive 

coefficient matrix: 

a matrix whose elements are interactive coefficients. 

Interactive failure: mutually dependent failures, that is, the failures of some 

components will affect the failures of other components and 

vice versa. 

Interactive failure 

distribution function: 

the failure distribution function of a system or a component 

with failure interaction.  

Interactive hazard: the increased hazard due to failure interactions.  

Maintenance: the combination of all technical and associated administrative 

actions intended to retain an item or system in, or restore it to, 

a state in which it can perform its required function. 
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Maintenance 

framework: 

a conceptual model or process guideline on how to conduct 

maintenance effectively through proper integration of various 

maintenance models and methodologies.  

Markovian process: a type of stochastic process whose future probability behaviour 

is uniquely determined by its present state and not dependent 

on its previous state.  

Monte Carlo method: numerical analysis method using random simulations. 

Negative dependency 

failure: 

a failure that can prevent other components in a system from 

failing further. 

Poisson point 

process: 

a special type of stochastic process in which the failures are 

independent of each other and the number of failures in each 

time interval follows a Poisson distribution.  

Predictive 

maintenance: 

maintenance that is carried out based on the condition of a 

system. 

Preventive 

maintenance: 

maintenance that is carried out at scheduled and fixed intervals 

based on time or duty.  

Proactive 

maintenance: 

maintenance that aims much more at avoiding or reducing the 

consequences of failure than at preventing the failure 

themselves.  

Reliability: ability of a functional unit to perform a required function under 

stated conditions for a stated period of time (ISO 2382-9). 
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Reliability based 

preventive 

maintenance: 

a preventive maintenance policy in which a control limit of 

reliability is defined in advance. Whenever the reliability of a 

system falls to this predefined control limit, the system is 

maintained.  

Reliability block 

diagram: 

a logic network used to describe the function of a system.  

Reliability function: the probability that a system or a component will function over 

a period of time t. 

Renewal process: a sequence of independent, identically distributed non-negative 

random variables which are not all zero and  with probability 1. 

Repair: an action to recover the function of a failed system. 

Repairable system: a system which will be repaired to recover its functions after 

each failure rather than to be discarded during continuous 

operation.  

Required minimum 

operating time: 

a minimum operating period of time demanded between two 

PM actions due to maintaining production and cost 

effectiveness.  

Responsive 

covariate: 

a type of condition parameter whose changes are caused by the 

changes of the hazard of a system.  

Split system 

approach: 

an approach modelling the reliability of a system after PM 

activities. In this approach repaired and unrepaired components 

are separated within a system virtually.  
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Stable failure 

interaction: 

in the case of considering interactive failures only, the 

interactions among some surviving components increase 

deterioration of these components rather than leading to 

immediate failure of any these components.  

State influence 

matrix: 

a matrix derived from the interactive coefficient matrix. It can 

determine the degree of influence of failure interactions on 

stable interactive failure uniquely. 

Time based 

preventive 

maintenance: 

a preventive maintenance policy in which a system is 

maintained based on scheduled PM times.  

Unstable failure 

interaction: 

In the case of considering interactive failures only, the 

interactions among some surviving components cause at least 

one of them to fail in a very short time. 
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Chapter 1  

INTRODUCTION 

1.1 INTRODUCTION OF RESEARCH 

This thesis presents for improving the accuracy of reliability prediction of complex 

repairable systems. The methodologies/models have been developed specifically for 

practical applications in the industrial environment.  

The majority of assets in industry are repairable systems. The performance of these 

assets can influence the quality of product, the costs of business, the service to the 

customers, and thereby the profit of enterprises directly. Asset management has two 

major objectives: (1) to maintain the availability and quality of assets at a required 

performance level using the lowest possible cost; (2) to use these assets efficiently. 

The activity related to the first objective is asset maintenance management. The 

concerns about asset maintenance management are (1) reliability predictions of assets 

and (2) the optimal maintenance policy for assets. The former lays a critical 

foundation for the latter. Hence, it is essential to make an accurate reliability 

prediction for an asset. Nowadays, Preventive Maintenance (PM) is often conducted 

by companies to reduce unexpected failures and overall costs. A company can 

optimise its maintenance strategy according to the prediction of remaining useful life 

and effectiveness of PM actions. With increasing complexity of machines and 

competition among business, the need to formulate changes in reliability of a 

complex repairable system with PM becomes pressing.  

Currently, the most common techniques used to model the reliability prediction of a 

repairable system are based on stochastic or statistical analysis, including the Markov 

chain (process), the Poisson point process, the Bayesian method, condition based 

models, Monte Carlo simulations and combinations of those models. After an 

extensive literature review, several limitations of existing models have been 
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identified. For example, much of the existing literature focused on analysing the 

Mean Time To Failure (MTTF) or/and expected number of failure times of a 

repairable system. An effective model for explicit prediction of reliability of a 

complex system with imperfect multiple PM actions is still not available. The 

research on the interaction among failures of components in a system and on 

reliability prediction with spares or zero failure data is adequate. This research is 

aimed at developing new models and methodologies to address these limitations in 

an effective manner. 

In this chapter, the objectives of the research program and the research methods will 

be surveyed. The outcomes of the research and the relationship among the developed 

models will be overviewed. The original contributions made by the candidate will 

also be identified. 

1.2 OBJECTIVES AND METHODS OF THE RESEARCH 

1.2.1 Objectives  

The overall research objective in this thesis is to develop new models and 

methodologies for the reliability prediction of a repairable system in order to improve 

the accuracy of prediction using condition monitoring data and historical failure 

information for engineering application. The detailed objectives of the research are as 

follows: 

(1) Development of a new reliability prediction approach for complex 

repairable systems with multiple PM intervals 

The first objective of the research program is to develop a new approach to predict 

the reliability of complex repairable systems with multiple PM actions. This new 

approach extends the current research in two ways: releasing the assumption that 

treats the states of a system after repairs as being “as good as new”, and predicting 

reliability of a complex system with multiple PM actions over multiple intervals. 

Most existing models/methods have only focused on the case of “as good as new” 

after repair [1-5]. Imperfect repairs have not been modelled effectively. Currently 
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most modelling techniques based on statistical analysis applied in maintenance 

cannot accurately estimate the effect of individual repair on the performance of a 

system. These models were often applied to predict the next repair activity or the 

expected failure times over a period [6, 7] rather than explicit prediction of reliability 

of a system after multiple PM actions. The effectiveness of long-term prediction of 

these models is questionable. This research addresses these issues and suggests 

remedies. The reliability prediction of a system with multiple PM intervals over its 

whole life was investigated on the assumption that failures of components are 

independent of each other.  

(2) Development of an analytical reliability prediction model for repairable 

systems with interactive failures  

The second objective of the research program is to remove the assumption that 

failures of components are independent of each other from the reliability prediction 

models. Industrial experiences have shown that there are a number of situations 

where the assumption of independent failures is unrealistic and will lead to 

unacceptable analysis errors although this assumption has been adopted in the most 

of existing models [8]. Percy et al [9] have also indicated that a prediction approach 

is dangerous if interactions between different components in a system are not directly 

considered. To address the dependency among the failures of components, a concept 

of dependent failures was introduced [8, 10]. However, the conventional models of 

dependent failures do not cope at all with interactive failures, which are the failures 

caused by interactions between different components particularly in industry. It 

appears that research on interactive failures has not been addressed in the literature to 

date although the term “failure interaction” has been used by Murthy and Nguyen [11, 

12] and Lewis [13]. The failures described in the literature [11, 12] can fall into the 

classical definition of common cause failure. Lewis analysed some special cases 

using Markovian theory. In this research, an analytical reliability prediction model 

for repairable systems with interactive failures was developed. The proposed 

research therefore significantly advances the knowledge in analytical reliability 

prediction modelling. 
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(3) Development of a failure prediction methodology using both failure data 

and condition monitoring data, especially when historical failure data are 

sparse 

The third objective of the research program is to develop a new model for the 

prediction of the dynamic failure trend of a system with condition monitoring data. 

The model can predict the failure time when historical failure information is not 

adequate for statistical analysis while condition monitoring data is available. These 

condition monitoring data can describe the condition changes of a system. Existing 

researchers have not successfully modelled this case. While condition monitoring 

and diagnosis is playing a more and more important role in maintenance [14], the use 

of condition monitoring data to predict future failure times is still a challenge. 

Currently the most frequently adopted model is the Proportional Hazard Model 

(PHM) [4, 15]. However, this model has several unavoidable disadvantages. For 

example, historical hazards estimated using different covariates are often different. 

Fluctuations of covariates can affect hazard estimation greatly, which makes 

reliability prediction difficult. PHM needs sufficient failure data for parameter 

estimations. In practice, failure data are not always available, and sometimes difficult 

to obtain due to quality improvement and design changes of equipment. 

(4) Verification of models/methodologies  

Another objective of the research is to verify the above models and methodologies 

using appropriate experimental analysis methods. The verification includes designing 

and conducting numerical simulation experiments and laboratory experiments, 

collecting real data from industry, as well as analysing experimental and industrial 

data. The data should include failure time, failure modes, working hours and 

condition of assets, corresponding parameters used for condition monitoring such as 

particles in oil and vibration signal. The configuration and properties of repaired 

assets also need to be identified. 

The above proposal models realistic scenarios and deals with the identified 

limitations in current research. Objective (1) and Objective (2) focus on the 

reliability prediction of a repairable system with multiple PM intervals. Objective (1) 

concentrates on the reliability prediction of repairable systems with independent 
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failures whereas Objective (2) on interactive failures. Objective (3) is about 

improving the reliability prediction of a system using both condition monitoring data 

and historical records, especially for sparse historical failure data.  

1.2.2 Research Methods 

To achieve these objectives, both theoretical modelling and experimental analysis 

were used. The entire research was divided into three stages. In Stage 1, multiple PM 

actions on a complex system were considered. However, the failures among 

components were assumed to be independent. In Stage 2, the model developed in 

Stage 1 was extended to the reliability prediction of a system with interactive failures. 

The models developed in the previous two stages assume adequate available failure 

data. In Stage 3, both condition monitoring data and failure data were used to 

improve the accuracy of prediction, especially when historical failure data were 

sparse. During these three stages of research, simulations, laboratory experiments 

and industrial case studies were conducted to verify the developed models and 

methodologies. More details about the research methods are presented as follows: 

(1) Stage 1 

The research in this stage is related to the first objective of the research program, i.e., 

to develop a new approach to predict the reliability of complex repairable systems 

with multiple PM actions. This approach is used to explicitly predict the reliability of 

a complex system after each PM action and the cumulative reliability of a system. 

To achieve this goal, a Split System Approach (SSA) was developed based on 

Ebeling’s heuristic approach [16] and Reliability Block Diagram (RBD) [8, 17]. The 

basic concept of SSA is to separate repaired components from the unrepaired 

components of a system virtually when modelling the reliability of the system with 

PM. After the theoretical methodology was developed, Monte Carlo simulations and 

case studies, with real life data from industry, were used in its justification.  

(2) Stage 2 

In the first stage of the research, the failures of components were assumed to be 
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independent of each other. As mentioned in Section 1.2.1, the assumption of 

independent failures is not always adequate for modelling the true state of a 

repairable system in practice. In the second stage of the research, the situations where 

the failures of certain components are not independent were investigated and an 

analytical reliability prediction model for repairable systems with interactive failures 

was developed.  

The research methods used to achieve the goals of Stage 2 were as follows: 

At first, the phenomena of interactive failures were comprehensively investigated. 

Considering the complexity of stochastic theory, Taylor’s expansion approach was 

used to develop an Analytical Model for Interactive Failures (AMIF) from aspects of 

engineering application.  

Secondly, a solution of AMIF was derived and the theorems for determining the 

conditions of stability for interactive failures were proposed and proved using the 

matrix theory, the limitation theory and the Principle of Mathematical Induction [18]. 

Thirdly, the properties of interactive failures and the effects of interactive failures on 

the reliability of components and systems without repairs were analysed based on the 

solutions of the model. 

Fourthly, AMIF was combined with the Split System Approach (SSA) to predict the 

reliability of repairable systems with interactive failures and multiple PM actions.  

Finally, the newly developed models and methodologies were verified using Monte 

Carlo simulation, laboratory experiments and case studies. 

(3) Stage 3  

In the third stage of the research, a new model was developed to predict dynamic 

failure trends of a system using condition monitoring data and historical maintenance 

data. This new model improved existing condition based hazard prediction models 

such as PHM.  
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In Stages 1 and 2, historical failure data were assumed to be sufficient for parameter 

estimations. However, in practice, failure data are not always available, and are 

sometimes difficult to obtain. Effective models are needed for this situation in order 

to predict failure time when historical failure information is not adequate for 

statistical analysis, where condition monitoring programs can be made available. 

Condition monitoring data describes the change in the condition of a system. While 

condition monitoring and diagnosis plays an important role in maintenance [14], the 

use of condition monitoring data to predict failure time is still a serious challenge. 

Little research has been done to date. There has been an attempt made to use PHM [4, 

15]. However, as indicated in Section 1.2.1, the disadvantages in PHM affect the 

effectiveness of its application in industry. On the other hand, Al-Najjar [19] 

introduced a mechanistic model to predict the vibration level of rolling element 

bearings based on online vibration signals. This method can be used to improve an 

understanding of the deterioration process of a bearing although it only ensures a 

reasonable level of confidence for prediction over a very short time period. 

The research methods in Stage 3 include a comprehensive investigation of PHM, 

development of a Proportional Covariate Model (PCM), justification of the 

reasonableness of the assumption used for developing PCM and investigation of the 

robustness of PCM in practical applications theoretically and experimentally. The 

advantages of Cox’s PHM [4] and Al-Najjar’s mechanistic model [19] were 

considered in the development of PCM.  

(4) Validation of Methodologies and Models  

The newly developed models/methodologies have been verified using both 

experimental data from numerical simulation and laboratory experiments, as well as 

the real life data from industry. The verification of the newly developed reliability 

models was mainly conducted using simulation experiment and maintenance data 

from industry. However, the data from industry cannot meet all needs of the model 

verification. Laboratory experiments have also been conducted using the mechanical 

test rig and corresponding condition monitoring measurement instruments in the 

School of Engineering Systems. This experimental system was available for the 

experiments on condition monitoring and on failure interactions among components. 
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In addition, some laboratory test failure data and condition monitoring data of 

gearboxes have been collected from the Aeronautical and Maritime Research 

Laboratory (AMRL), Australia and Condition Based Maintenance (CBM) Lab, 

Canada to enhance these evaluations. 

The field data include the maintenance data of truck engines, the maintenance data of 

pipelines and failure data from pump stations. The Corporative Research Centre 

(CRC) on Integrated Engineering Asset Management (CIEAM) has provided partial 

funding to support the experiments and data collection phases for this project. 

1.3 OUTCOMES OF THE RESEARCH  

The research in this thesis explored two new research areas - the research on 

interactive failure and the reliability prediction of a system with zero failure data. 

The research composed mathematical modelling, theoretical analysis and the proof of 

theorems, as well as validation of the developed models using numerical simulation, 

laboratory experiments and life data from industry.  

1.3.1 Research Results Achieved 

The important contributions of the work in this thesis are as follows: 

(1) Development of a Split System Approach (SSA) 

SSA is linked to the first objective of the research program. SSA models the 

reliability of complex systems with multiple PM actions over multiple intervals using 

a new concept that splits a system into repaired and unrepaired two parts within a 

system virtually. It models system reliability at the component level and addresses 

different states of a repairable system after single or multiple PM actions such as “as 

good as new”, “imperfect repair”, “as bad as old” and “better than new”. A heuristic 

approach has been derived for the implementation of SSA. The formulae for special 

scenarios have been also derived. 

(2) Development of an Analytical Model for Interactive Failures (AMIF) 
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AMIF is linked to the second objective of the research program. AMIF is used to 

analyse Interactive Failure (IntF) quantitatively. IntF is caused by the failure 

interactions among components in a system. The research introduced a series of new 

concepts and investigated the properties of IntF. The research indicated that IntF 

mainly depends on interactive relationship of components rather than the topology of 

a system. The Interactive Hazard (IntH) of a system can be calculated by its 

Independent Hazard (IndH) plus some portion of the IntHs of its influencing 

components. The degrees of the failure interactions among components are measured 

by interactive coefficients. IntF can be either stable or unstable. The conditions that 

IntF is stable have been identified.  

(3) Extension of the above two models to the reliability prediction of repairable 

systems with interactive failures – development of Extended SSA (ESSA) 

ESSA is also linked to the second objective of the research program. ESSA integrates 

AMIF with SSA to remove the assumption of independent failures which is adopted 

by SSA. The assumption of independent failures is unrealistic in numerous industrial 

cases and interactive failures need to be considered. When interactive failure exists, 

Interactive Hazards (IntHs) of repaired and unrepaired components after a PM action 

will change. The candidate has derived the formulae to calculate these changeable 

IntHs. An extension of the heuristic approach for SSA has been derived to model the 

reliability of a complex system with or without interactive failures after single or 

multiple PM intervals. 

(4) Development of the Proportional Covariate Model (PCM) 

PCM is linked to the third objective of the research program. PCM was developed to 

use both condition monitoring data (condition indicators) and historical failure data 

for hazard prediction. It models the covariates of a system as the product of baseline 

covariate function and the hazard function of the system. The procedure of PCM and 

the corresponding formulae were developed. The robustness of PCM was also 

addressed. The application of PCM for the hazard estimation of a system with zero 

failure data was demonstrated. 
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(5) Validated the newly developed methodologies and models using Monte Carlo 

simulation and the data collected from industries and laboratories. 

This work included designing and implementing laboratory experiments, as well as 

collecting and handling life data. The statistical analyses conducted in this thesis 

were based on a 95% confidence level. However, for simplicity, when a parameter or 

a multi-dimensional parameter was estimated, the point estimation of the parameter 

[12], rather than a 95% confidence interval for this parameter, was presented. 

1.3.2 Relationship of the Developed Models and Methodologies 

SSA, AMIF, ESSA and PCM have been developed in this research.  

SSA is a basic methodology that models system reliability at the component level 

and addresses different states of a repairable system after single or multiple PM 

intervals. The characteristics of the reliability of a system will alter after repairs. This 

alternation makes it difficult to predict the reliability of complex repairable systems, 

especially when the prediction covers a number of imperfect PM actions over 

multiple intervals. SSA was developed to redress this difficulty effectively. However, 

SSA was developed under the assumption of independent failures. This assumption is 

often unrealistic and may lead to unacceptable prediction errors although it was 

adopted by the most existing reliability prediction models and methods. To ensure 

the accuracy of reliability prediction, Interactive Failures (IntFs) need to be 

considered. AMIF incorporates failure interactions of components into reliability 

prediction models, but it does not consider the effect of repairs. ESSA integrates SSA 

and AMIF to the reliability prediction of systems with PM. SSA, AMIF and ESSA 

all need sufficient historical failure data to estimate the original Independent Failure 

Distribution Function (IndFDF) of a system. PCM improves the accuracy or 

enhances the capability of reliability prediction for these three models. PCM uses 

condition monitoring data to conduct reliability predictions with or without historical 

failure data and thus overcomes difficulties of reliability predictions when historical 

data are sparse or zero. 

These new methodologies/models enhance the capability or improve the accuracy of 
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reliability prediction of complex repairable systems. The methodologies and models 

developed in this thesis can be related based on the assumptions used and their 

applications. 

1.4 ORIGINALITY AND INNOVATION  

The two new approaches and two new models – SSA, AMIF, ESSA and PCM are the 

major contributions of this research. These new approaches/models are expected to 

enhance the capability and improve the accuracy of the reliability prediction of 

existing models for repairable systems significantly. 

SSA was developed to predict the reliability of complex repairable systems, which 

can cover a number of PM actions using a new concept - to split a system into 

repaired and unrepaired parts within a system virtually. SSA provides more realistic 

and accurate prediction of reliability compare with the fixed deterioration rate model 

[20] and Ebeling’s heuristic approach [16]. In SSA, the changes of reliability is 

calculated based on the individual system and repair condition rather than assumed or 

estimated by human’s experience. Therefore, the rate of change is no longer constant.  

Generally, SSA has the following major advantages: 

(1) Ability to explicitly predict the reliability of a repairable system with multiple 

PM intervals over a long term and ability to decide when the system is 

unworthy of further PM from reliability aspects. SSA is more suitable for 

supporting a long term PM decision making of complex repairable systems in 

industry than the renewal process model and the Non Homogeneous Poisson 

Process (NHPP) model.  

(2) Ability to deal with the individual contributions of different parts in a system 

and the influence of system structures on the reliability of a repairable system. 

This ability provides an understanding of PM on a system in more depth.  

(3) Ability to model different states of a system after single or multiple PM 

actions such as “as good as new”, “imperfect repair” and “as bad as old”. 
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(4) No restrictions on the forms of failure distribution. 

The research on SSA has resulted in the publication and submission of the following 

refereed international journal: 

● Sun, Y., Ma, L., and Mathew, J., Reliability prediction of repairable systems for 

single component repair, Journal of Quality in Maintenance Engineering, in press. 

● Sun, Y., Ma, L., Mathew, J., Morris, J. and Zhang, S., A practical model for 

reliability prediction of repairable systems, The Journal of Quality and Reliability 

Engineering International, submitted. 

AMIF was developed to analyse interactive failures quantitatively. The research on 

interactive failures is a new area. Despite an intensive literature review, the candidate 

was not able to find any related research reported to date. The candidate has made the 

following original contributions:  

(1) Introduced and defined related new concepts and terminologies such as 

interactive failure, influencing components, affected components and 

interactive coefficient for the analysis of interactive failure.  

(2) Identified that interactive failure can be either stable or unstable. The 

candidate proposed and proved two theorems to justify stable interactive 

failures. These theorems effectively assist in analysing and avoiding potential 

unstable interactive relationship in machinery during its design phase. The 

research outcomes on stable and unstable interactive failures can benefit to 

designing more maintainable and reliable machines. 

(3) Developed an analytical model for analysing interactive failure. Based on this 

model, the candidate derived a formula to calculate the failure distribution 

functions of systems with stable interactive failures and successfully 

investigated the effects of interactive failures on components and systems. 

The investigation results can be significant to improving risk management of 

assets with interactive failures.  
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The research on interactive failures has resulted in the publications of the following 

refereed international journal and conference papers: 

● Sun, Y., Ma, L., Mathew, J., and Zhang, S., An analytical model for interactive 

failures, Reliability Engineering and System Safety, in press, available on 

ScienceDirect in May 2005. 

● Sun, Y., Ma, L., Mathew, J. and Zhang, S., Experimental research on interactive 

failures, Proceedings of International Conference of Maintenance Societies, 

Sydney, Australia, 25-28 May 2004: p.04073. 

● Sun, Y., Ma, L., and Mathew, J., On stable and unstable interactive failures, 

Proceedings of the 10th Asia-Pacific Vibration Conference, ed. J. Mathew, Gold 

Coast, Australia, 12-14 November 2003: p.664-668.  

● Sun, Y., Ma, L., and Mathew, J., A descriptive model for interactive failures, 

Proceedings of International Conference of Maintenance Societies, Perth, 

Australia, 20-23 May 2003: p.03-078.  

ESSA integrates SSA and AMIF to the reliability prediction of systems. It is used to 

model the reliability of complex system with interactive failures after single or 

multiple PM intervals. The reliability prediction of repairable system with interactive 

failures is also a new research area. Unlike a system with independent failure, when 

IntF exists, the Interactive Hazards (IntHs) of both repaired and unrepaired 

components in a system will change. The candidate has derived the formulae to 

effectively calculate these changeable IntHs for a system after PM and demonstrated 

that ESSA enhanced the capability of SSA and AMIF. 

The research on ESSA has resulted in the publication of the following refereed 

international journal paper: 

● Sun, Y., Ma, L., Mathew, J., and Zhang, S., Determination of preventive 

maintenance lead time using hybrid analysis, International Journal of Plant 

Engineering and Management, 2005. 10(1), p13-18 
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PCM was developed to enhance the capability of SSA, AMIF and ESSA. It addresses 

the issue of reliability prediction using both failure data and condition monitoring 

data. The philosophy and procedure of PCM are different from existing condition-

based models such as PHM. PCM predicts the hazard of a system using the 

covariates caused by the deterioration of a system and is therefore suitable for 

situations where symptoms of a system are monitored. PCM is shown to be more 

effective than existing condition based reliability prediction models when using 

condition monitoring data to predict the reliability of a system without historical 

failure data. It is also more effective than existing condition based reliability 

prediction model when using responsive covariates (symptom indicators) of a system 

to track the changes of hazard of the system. 

The research on PCM has resulted in the publications of the following refereed 

international journal and conference papers: 

● Sun, Y.; Ma, L., Mathew, J., Wang, W.Y., and Zhang, S., Mechanical systems 

hazard estimation using condition monitoring, Mechanical Systems and Signal 

Processing, in press, available on ScienceDirect in December 2004. 

● Sun, Y., Ma, L., Mathew, J. and Zhang, S., Estimation of hazards of mechanical 

systems using on-line vibration data, Proceedings of International Conference on 

Intelligent Maintenance System, Arles, France, 15-17 July 2004: p.S3-B  

● Zhang, S., Mathew, J., Ma, L., and Sun, Y., Best basis based intelligent machine 

fault diagnosis, Mechanical Systems and Signal Processing, 2005. 19: p357-370 

● Sun, Y., Ma, L., and Mathew, J., Alarming limits for preventive maintenance 

using both hazard and reliability functions, Proceedings of the 10th Asia-Pacific 

Vibration Conference, ed. J. Mathew, Gold Coast, Australia, 12-14 November 

2003: p.669-703.  

● Sun, Y., Ma, L., and Mathew, J., Maintenance frameworks: A survey and new 

extension, Proceedings of International Conference of Maintenance Societies, 

Perth, Australia, 20-23 May 2003: p.03-077.  
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The new methodologies and models developed in this research are expected to enrich 

the knowledge of reliability engineering through effectively addressing some 

significant limitations of existing models and exploring the area of interactive 

failures. The research outcomes are of significance to the reliability prediction of 

repairable systems. The new methodologies and models developed in this research 

have been chosen for use in the Intelligent Maintenance Decision Support System for 

the Water Utility Industry and will become one of the unique features of this 

advanced software. The research on the Intelligent Maintenance Decision Support 

System for the Water Utility Industry is funded by the Australian Research Council 

(ARC) and supported by the CRC on Integrated Engineering Asset Management 

(CIEAM). 

Due to the innovative and significant outcomes from this research, the candidate has 

received 2004 Student Award from the Maintenance Engineering Society of 

Australia. This national award is presented annually to only one student throughout 

Australia. 

1.5 THE STRUCTURE OF THE THESIS 

The entire thesis is mainly composed of nine chapters. 

In Chapter 1, as it has been shown, the general information of the research is 

delivered. The topic and the scope of the research program are presented. The 

objectives of the research program and the methods used to achieve the research 

objectives are described. The outcomes of the research and the innovative 

contributions made by the candidate are identified. 

The rest of this thesis is organised as follows:  

In Chapter 2, a literature review is presented. The literature review includes two parts. 

At first, an overall survey on maintenance is carried out to identify possible research 

topics. Then an intensive literature review is conducted to focus on the research topic 

of this thesis.  
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In Chapter 3, the Split System Approach (SSA) is developed. The concept of SSA is 

presented. According to this new concept, different formulae and a heuristic 

approach for reliability prediction of a repairable system with PM are derived based 

on three different scenarios. An example with Monte Carlo simulations and a case 

study are used to demonstrate and verify SSA. 

In Chapter 4, an Analytical Model for Interactive Failure (AMIF) is developed. The 

new concepts and terms related to IntF are defined. An analytical model - AMIF is 

derived to describe interactive failure. Two theorems to identify stable IntF are 

proposed and proved. The methods to calculate the IntFDF of systems with stable 

IntF based on AMIF are presented. Some properties of interactive failures are 

investigated. Four case studies are used to demonstrate and justify AMIF. 

In Chapter 5, an Extended Split System Approach (ESSA) is developed. The ESSA 

integrates SSA with AMIF to predict the reliability of complex systems with 

interactive failures after single or multiple PM intervals. The method to calculate the 

changeable IntH of repaired and unrepaired components is presented. An example is 

used to demonstrate ESSA, and several Monte Carlo simulations are used to verify 

ESSA. 

Chapter 6 focuses on the development of the Proportional Covariate Model (PCM). It 

contains two parts. The strategy of determining PM leading time using hazard 

function and reliability function is investigated in the first part because PCM is 

developed to estimate the hazard of a system rather than the reliability of a system 

directly. The PCM is developed in the second part. The concept and procedure of 

PCM are presented. The corresponding equations to estimate the baseline covariate 

function and hazard function are derived. The robustness of PCM is also addressed. 

Simulation experiments and two case studies are used to demonstrate and verify this 

model. 

Chapter 7 is used to present laboratory experiments. The verification of the newly 

developed methodologies/models is mainly located in the last part of the above each 

chapter, just following the corresponding theoretical derivations and analysis. 

However, laboratory experiments are described in an independent chapter because 
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they involved designing testing systems and were used for different verification 

purposes. 

Chapter 8 presents the conclusions of the thesis while the directions for future 

research are briefly identified in Chapter 9. 

The publications contributed by the candidate are listed in Appendix A.  
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Chapter 2  

LITERATURE REVIEW  

2.1 INTRODUCTION 

Numerous papers on the topic of maintenance engineering have been published. 

However, the history of vigorous studies into maintenance is quite brief. Parkes [21] 

stated that maintenance has been with us longer than operational research - but 

despite this, maintenance has probably achieved less respectability than operational 

research. The earliest publication that the candidate found was published in 1952 

[22]. 

Maintenance can be defined as the combination of all technical and associated 

administrative actions intended to retain an item or system in, or restore it to, a state 

in which it can perform its required function [23]. Commonly maintenance is 

categorized into four strategies: corrective, preventive, predictive and proactive ones 

[24, 25]. 

Corrective Maintenance (CM) strategy is the first generation of maintenance. The 

period of time is about 1940 to 1950. The strategy of corrective maintenance is to fix 

a system when it breaks. 

Preventive Maintenance (PM) strategy is the second generation of maintenance. Its 

origins can be dated back to the 1960’s. The strategy of preventive maintenance 

mainly consists of asset overhauls done at scheduled and fixed intervals based on 

time or duty. The main aims are higher plant availability, longer equipment life and 

lower costs. 

Predictive Maintenance strategy belongs to the third generation of maintenance, 

which started in the mid 1970’s. The aims of maintenance management became 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 19 

higher plant availability and reliability, greater safety, better product quality, longer 

equipment life and greater cost effectiveness. 

Proactive Maintenance strategy aims much more at avoiding or reducing the 

consequences of failure than at preventing the failure themselves.  

Wang [2] provided a survey of existing maintenance models in terms of maintenance 

policies. He classified maintenance policies of deterioration systems in the following 

categories: age replacement policy, random age replacement policy, block 

replacement policy, periodic preventive maintenance policy, failure limit policy, 

sequential preventive maintenance policy, repair cost limit policy, repair time limit 

policy, repair number counting policy, reference time policy, mixed age policy, 

preparedness maintenance policy, group maintenance policy, and opportunistic 

maintenance policy. 

There are other classification schemes. Maintenance is widespread. It appears in 

almost all industries or assets, from steelworks [26] to power plant [27] to nuclear 

power plant [3, 28, 29], from software maintenance [30, 31] to hardware 

maintenance [32], from machines [33] to buildings [34-36], from offshore platform 

to bridges [37, 38], from railways [39, 40] to aircraft [41, 42] and the space shuttle 

[43].  

The maintenance concept was first identified by Gits and Geraerds [44, 45]. It is 

concerned with implementing maintenance, training maintenance staff, integrating 

maintenance with enterprise management [46] and spare parts inventory [47-49]. It is 

also concerned with developing repairing materials and techniques [50, 51].  

This survey will be conducted in terms of the research purpose of maintenance 

science, which can be categorized into three major classes: reliability assessment 

models and methodologies, maintenance optimization policies and maintenance 

frameworks. Maintenance optimization is the objective of maintenance while 

reliability prediction and risk assessment lays a basis for optimal maintenance 

decision making. Maintenance frameworks are concerned with applying these 

models, methodologies and policies effectively. Although there are numerous of 
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publications on maintenance research, they can be classified into one of these three 

categories.  Figure 2-1 shows an overview of the research on maintenance science. 

 

MAINTENANCE SCIENCE 

Frameworks Reliability assessment 
and analysis 

Maintenance 
optimisation 

Reliability-
Centred 
Maintenance  

Analytical 
models 

Other 
techniques Cost based 

Total 
Productive 
Maintenance  

Basic 
principles 
of 
probability 
based 

Others 

Hybrid 
models  

Others  

Risk based 

Condition 
monitoring 
and fault 
diagnosis 

Fault tree 
and root 
cause 
analysis 

Reliability 
Block 
Diagram 

FMEA / 
FMECA 

Poisson 
Process 
based  

Models 
using 
condition 
monitoring 
data 

Bayesian 
Theory 
based  

Markovian 
Theory 
based  

Business-
Centred 
Maintenance 

Maintenance 
Excellence 

Others 

FMEA - Failure Mode and Effect 
Analysis  
FMECA - Failure Modes, Effect 
and Criticality Analysis 

Figure 2-1.  An overview of the research on maintenance 

Monte 
Carlo 
simulation 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 21 

2.2 GENERAL REVIEW  

2.2.1 Frameworks 

A maintenance framework is a conceptual model or process guideline on how to 

conduct maintenance effectively through proper integration of various maintenance 

models and methodologies. This subsection summarizes, classifies, and compares the 

characteristics, general ideas and processes of different maintenance frameworks. 

The first four subsections discuss the most common used frameworks currently, i.e., 

Reliability-Centred Maintenance (RCM), Total Productive Maintenance (TPM), 

Business-Centred Maintenance (BCM) and Maintenance Excellence (ME). The 

subsection 2.2.1.5 provides a general survey of some other maintenance frameworks 

and new maintenance philosophies.  

2.2.1.1 Reliability-Centred Maintenance (RCM) 

The RCM [52-55] philosophy has been developed over a period of thirty years. The 

first industry involved in RCM was the international civil aviation industry [56] with 

MSG3 [25] framework. Moubray and his colleagues’ pioneering work [57] resulted 

in the development of RCM2 for industries other than aviation in 1990.  

The RCM process starts with significant functions and failure modes selection. It 

classifies the consequences of failure into four groups: hidden failure consequence, 

safety and environmental consequence, operational consequence and non-operational 

consequence. Maintenance decisions are made on the basis of these four categories 

so that the operational, environmental and safety, and cost effective objectives can be 

integrated. Figure 2-2 shows the basic structure of RCM [58]. 

2.2.1.2 Total Productive Maintenance (TPM) 

TPM was initially developed in Japan and rose in popularity in the 1990’s [59-61]. It 

is a strategy to maximize equipment effectiveness, to assure the life of equipment, to 

cover all departments and staff, and to improve maintenance through small group 

autonomous activities. Figure 2-3 shows an overview of TPM [61]. 
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Figure 2-3.  An overview of TPM (source: A. Kunio Shirose, TPM for 

Operators, 1992, Cambridge: Productivity Press, p.12) 
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2.2.1.3 Business-Centred Maintenance (BCM) 

BCM was introduced by Kelly [58]. Unlike RCM and TPM, BCM is driven by the 

identification of the business objective, and then translated into maintenance 

objectives. Figure 2-4 shows the thought process of the BCM strategy [58].  

 

2.2.1.4 Maintenance Excellence (ME) 

ME was recently proposed by Campbell and Jardine [62]. In strict terms ME is not a 

new framework for maintenance. However, it does present some new ideas to 

conduct maintenance effectively. Figure 2-5 shows the implementation steps for ME 

[62]. 

At this point, it is worth introducing the holistic approach to the maintenance 

“problem” as proposed by Coetzee [63]. He pointed out that a typical approach 

towards increasing the efficiency of the maintenance function is to implement some 

highly publicised philosophy or maintenance techniques such as RCM, TPM, and 

BCM. Coetzee was of the opinion that these conventional frameworks were not 

effective due to lack of proper integration. The correct method of addressing the need 

for a very effective maintenance function in the organisation is to have a more 

integrated view of the maintenance function. The maintenance management process 
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consists of two cycles. The outer cycle is a descriptive model. This model describes 

the overall managerial planning and measurement process. The inner cycle is a 

descriptive model. This model describes the maintenance plan and the maintenance 

operation itself (Figure 2-6) [63, 64]. 
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RCM, TPM, and CBM are all aimed at the inner cycle of the maintenance cycle and 

will thus not produce the results envisaged. TPM is a philosophy addressing the total 

complexity but it has had limited success in the western world due to a difference of 

managerial outlook. The only solution is to apply a variety of techniques to a small 

part of the organisation instead of applying one technique over the total organisation, 

to touch and to take a cross-section of all the critical parts of the maintenance 

organisation simultaneously.  

Coetzee [63] pointed out that a maintenance policy must consider the operation, the 

procedure, the workforce, hence, a down-top-down requirements’ analysis would be 

more suitable. However, he does not address where the maintenance (management) 

policy comes from. In addition, there feedback from the inner cycle to the outer cycle 

is not apparent in Coetzee’s maintenance framework. 

It is not easy to determine a suitable maintenance strategy for a specific problem. 

Martorell and his colleagues [65] optimized maintenance by comparing effectiveness 

and efficiency in technical specifications and maintenance. Starr [66] identified that 

corrective maintenance (CM) is at best only suited to non-critical areas whereas 

Jardine [67] furthermore indicated that CM may be an appropriate strategy when the 

hazard rate is constant. Al-Najjar and Alsyouf [68] indicated that the most important 

criteria are (i) possibility to model the time to failure, or monitor damage initiation 

and its development and (ii) the cost effectiveness of CM. Preventive maintenance 

(PM) is best suitable for failures with a clear wear-out characteristic. Time-based 

preventive maintenance is performed on a scheduled basis with scheduled intervals, 

which are often based on experience or manufacture’s recommendations [67, 69]. 

Statistics-based preventive maintenance is more advanced [70-72]. Valdez-Flores 

and Feldman [72] reviewed the preventive maintenance models for single-unit 

systems whereas Cho and Parlar [70] for multi-unit systems. Matched and composite 

components which are always renewed together can be treated as a single item with a 

combined distribution [73]. Swanson [74] applied the exploratory factor analysis to 

determine whether RCM, TPM or CBM can explain a specific practice. 

Although RCM, TPM, BCM and ME are currently very common and have found 

wide applications in industry, generally speaking, all of them seem too complex for 
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industrial applications. 

2.2.1.5 Other frameworks 

Some effort has gone into enhancing these common frameworks [29, 55, 75, 76]. 

New philosophies to enrich these frameworks have also been developed in recent 

years as itemised below: 

● A framework for maintenance concept development [77]; 

● An optimal inspection and diagnosis policy for a multi-mode system[78]; 

● Availability Centred Maintenance (ACM) [79]; 

● A synchronous Quality Function Deployment (QFD) over the world wide web 

[80]; 

● A double critical age policies model applied to make age repair policies for the 

machine repair problem of m  identical machines serviced by n  identical 

technicians, mn <  [81]; 

● A method to study scheduling problems involving repair and maintenance rate-

modifying activities with objective functions such as expected make-span, total 

expected completion time, maximum expected lateness, and expected maximum 

lateness, respectively [82]. 

Integration of maintenance is a necessary method to improve maintenance 

frameworks. A variety of automated inspection and maintenance integration systems, 

usually combined with condition monitoring and fault diagnosis or automated 

manufacturing system, have been developed [83-85]. The research on integration of 

maintenance includes: 

● The knowledge based process monitoring system [86-88]; 

● The integration of predictive maintenance in manufacturing systems [33]; 

● The synergy of combined technologies for pipeline evaluation [89]; 
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● Computer Aided Design (CAD)-integrated reliability evaluation and calculation 

for automotive systems [90]; 

● An integrated approach linking the Charles Kepner and Benjamin Tregoe 

methodologies (K-T) [91]; 

● The integration of Total Quality Management (TQM) with Root Cause Analysis 

(RCA) to TPM [92]; 

● The establishment of relationships between implementation of TQM, Just In 

Time (JIT) and TPM and manufacturing performance [93]; 

● The stopping time optimisation in condition monitoring with expert judgements 

involved [94]; 

● The integrated system which can deal with the analysis of deterioration due to 

corrosion, finite element analysis of load, on the repair scheme with a cost 

estimate, condition monitoring and audible warnings [95]. 

2.2.2 Reliability Assessment and Analysis 

In order to reduce maintenance costs and to optimize a maintenance strategy, it is 

necessary to understand reliability and its variations, the consequences of failures, 

the factors affecting maintenance and the relationship between the maintenance tasks 

and production or other performance of assets to be maintained [96]. Reliability is 

the ability of a system to perform a required function under stated conditions for a 

given period of time [8]. It is usually measured by determining the probability that a 

system survives in a time interval (0, t ]. The most direct expression to describe the 

properties of reliabilities of systems is the reliability function )(tR . The reliability 

function is also called as survivor function [4]. Another mathematically equivalent 

way of specifying the reliability of systems is in terms of failure distribution function 

)(tF  or failure density function )(tf . “Failure” in this thesis means that a system or 

a component fails to meet its performance requirement. This “failure will naturally 

lead to a need for maintenance. 
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The models and techniques for reliability assessment and analysis can be classified 

into two categories: The mathematical models and the conceptual models and 

techniques. This subsection summarizes, classifies, and discusses the characteristics, 

advantages and disadvantages of various models, techniques as well as 

methodologies of the conceptual reliability models and techniques; whereas the 

mathematical models for reliability analysis will be presented in Section 2.3. 

2.2.2.1 Condition Monitoring and Fault Diagnosis (CMFD) 

CMFD has been playing an increasing role in maintenance research [14] so that a 

new term - condition based maintenance (CBM) is now used. CBM is currently the 

best preventive maintenance strategy because it enables maintenance decisions to be 

made based on the current status of the equipment, thus avoiding unnecessary 

maintenance and thus facilitating timely maintenance when there is a strong 

indication of impending failure [97].  

Condition monitoring is popular and has a wide range of applications. In techniques, 

CMFD are concerned with vibration detection, lubricants analysis, infra-red scanner, 

ultrasonic-pulse echo technique in data processing, with Fast Fourier Transform 

(FFT), Discrete Wavelet Transform (DWT), demodulation, debris counting, data 

fusion, image processing, etc, and in measurements, with vibration, wearing debris, 

acoustic emission, temperature, strain, torque, power. New methodologies or 

philosophies continue to emerge. For instance, Chanda et al’s [98] wavelet multi-

resolution analysis for location of faults on transmission lines and the knowledge-

based diagnosis used in a case study on rolling bearing of a pump [99]. The US Navy 

is currently developing a new ship structural health monitoring system based on fibre 

optic technology [100]. The determination of the best sensor positions is one of the 

main research goals in the field of CMFD [85, 101]. Roberts, et al [40] demonstrated 

that the distributed method of fault diagnosis can reduce the cost of maintenance 

through a railway junction case study. Image processing techniques were used for 

identifying frequency regions which have a high discriminative power between the 

different classes, or Regions Of Interest (ROI) [102]. Recently it was reported that 

infrared thermograph is an appropriate method to identify the condition of railway 

track ballast [103], and a Ground Penetrating Radar (GPR) can be thought of as a 
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suitable and economical alternative to the other methods [38, 104]. The internal 

condition of a line can be assessed by a combination analysis of its dynamic response 

and temperature and pressure readings [105]. 

It should be noted that cost-effective and reliable damage detection is critical for the 

utilization of monitoring techniques. For example, non-destructive evaluation 

techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use to 

composite materials during standard repair and maintenance cycles. However by 

comparison with the techniques used for metals these are relatively expensive and 

time consuming [106]. 

2.2.2.2 Fault tree and root cause analysis 

Root cause analysis is used to find out causes of failures [25, 107]. The classic 

technique is Fault Tree Analysis (FTA). A related technique is Event Tree Analysis 

(ETA) [108-112]. “A fault tree is a model that graphically and logically represents 

the various combinations of possible events, both fault and normal, occurring in a 

system that leads to the top event.” [111] FTA was introduced at Bell Telephone 

Laboratories in 1961 [113] and was used in the aerospace industry in the early 1960’s. 

It can be used for qualitative analysis, quantitative analysis or both. FTA enables one 

to find the most likely causes of system failure, but it is costly and time consuming. 

This method will also fail to identify some important causes and effects. It is difficult 

to apply Boolean logic to describe failures of items that can be partially successful in 

operation and thereby have effects on the performance of the system. It is also 

difficult to have pertinent failure rate data to conduct quantitative fault tree 

evaluation. Classic FTA describes the effects of failures at lower levels on those at 

upper levels. It does not model the effects of failures at upper levels inversely on 

those at lower levels and the effects among the same levels. Some new applications 

are found in [114, 115]. 

2.2.2.3 Reliability Block Diagram (RBD) 

The method of RBD, also called as Success Diagram Method (SDM), was the first 

method used for analysing system and assessing reliability in the history of reliability 

research [116]. RBD is a logic network used to describe the function of a system. For 
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a system with multiple functions, different RBD might be established. In most cases, 

a fault tree can be converted into a RBD, and vice versa. Generally, fault tree is more 

suitable for root cause analysis and RBD is more suitable for quantitative analysis. 

When used for qualitative analysis, RBD can be used to identify whether a system is 

in a functioning state or in a failed state under a given conditions. The state of a 

system is often described by the structure function of the system. The structure 

function is a binary function. When used for quantitative analysis, RBD can be used 

to calculate exact system reliability at a given time t. Many methodologies have been 

developed to analyse and calculate RBD [8, 116, 117]. RBD is a powerful tool for 

reliability calculations. However, when RBD is used to calculate the reliability of a 

system, the reliability function of each individual component in this system must be 

known and these components are assumed to be independent [8]. 

2.2.2.4 Failure Modes, Effect and Criticality Analysis (FMECA) 

The FMECA is a combination of Failure Mode and Effect Analysis (FMEA) and 

criticality analysis [118, 119]. The basic task of FMEA is to identify and list the 

modes of failures and the consequences [120, 121]. FMEA is very important in the 

application of RCM [25].  

Criticality analysis is generally used to evaluate the severity of harmful effects of a 

failure on the function and operation of a system, on other components, on the 

environment, and more importantly on mankind so that the most suitable 

maintenance policies can be made [53]. Starr [66] defined the term Plant Criticality 

to determine areas which are likely to be cost effective in terms of safety, capital 

value and the value of production. 

The knowledge of historical failure and plant criticality is required before CBM can 

be applied. Three popular techniques are used to assess the criticality in CBM: FTA, 

FMECA and RCM [122]. These three techniques have become popular because they 

can be used to detect a range of failures in a machine by vibration, thermal and 

lubricant analysis [123]. 

El-Haram and Saranga [124, 125] used identification of the Maintenance Significant 
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Items (MSIs) to do similar work. They believed only MSIs would be considered for a 

Relevant Condition Parameter (RCP) based maintenance. 

Another important concept is the Maintenance Tasks Priorities (MTP). A example to 

assign priorities for maintenance can be found in [126]. FMECA can be utilised to 

decide MTP [127]. Gopalakrishnan et al [128] have noticed this problem too. They 

used a Multi-Logit Regression Model (MLRM) [129, 130] to decide MTP. The 

maintenance tasks for the current time-bucket are rescheduled to maximize PM 

effectiveness subject to workforce availability and to yield an adaptive and effective 

PM schedule for each time-bucket. In Gopalakrishnan’s model, the following five 

factors were considered: Cumulative machine utilization; Current machine utilization; 

PM delay; Comparative machine failure rate associated with the PM task, and 

severity of the last repair action. MTP of a task is assumed to be proportional to its 

expected contribution to PM effectiveness.  

Both the Markov analysis [131] and Linear Multivariate Discriminant Analysis 

(LMDA) [130] are also  available for the calculation of the expected contribution to 

PM effectiveness. 

Recently, Hokstad, etc. [132] presented an approach to relate the risk of an activity to 

so-called Risk Influencing Factors (RIFs), in which, the overall picture of the factors 

at all levels can be easily found and quantitatively analysed. 

FMECA can be used to determine the modes of failures and their effects on system 

operation and to discover potential critical failure areas. It is performed using the 

system’s functional tree. It includes three elements: (1) Failure mode analysis: to 

study a system and the working relationship of components under various anticipated 

conditions of operation; (2) Failure effect analysis: to study the potential failure in 

any section of the system; (3) Failure criticality analysis: to study and determine the 

severity of each failure in terms of probable safety hazard, unacceptable deterioration 

in the performance of the system [133]. However, classical FMEA or FMECA is 

difficult to conduct even for relatively straightforward systems. 
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2.2.2.5 Monte Carlo methods 

Monte Carlo methods are based on random simulation. It was said that the earliest 

documented application of Monte Carlo method is that of Comte de Buffon in 1777 

[134]. Monte Carlo methods are possible to be used to solve the reliability prediction 

problems that cannot be solved analytically. With increasing computing speed and 

memory size of computers, Monte Carlo methods have received more attention from 

maintenance researchers. Some applications in reliability and maintenance analysis 

can be found in [17, 135, 136]. However, efficient Monte Carlo algorithms are often 

difficult to develop.  

2.2.3 Maintenance Optimization Policies 

The optimization of maintenance decision-making is defined as an attempt to resolve 

the conflicts of a decision situation in such a way that the variables under the control 

of the decision-maker take their best possible value [20, 62, 137]. This subsection 

reviews maintenance optimization policies in three classes: cost based optimal policy, 

risk based policy and combined optimal policy. 

2.2.3.1 Cost based optimal policy 

Whatever maintenance strategy is chosen, its goal is to minimize overall cost. Cost 

based optimal policy is aimed at reducing the costs related to the maintenance 

activities.  

The calculation of overall cost and benefit of PM is still a big challenge to scientists 

and engineers. The typical techniques include optimal maintenance costs based on 

failure prediction  and life-cycle cost analysis [58, 138]. Figure 2-7 shows an 

example of life cycle cost profile [58].  

Lean Maintenance (LM) is also a popular strategy. It emphasises efficient 

maintenance management in order to reduce waste in maintenance activities [139, 

140]. This policy does not analyse the problems quantitatively. Therefore, it is 

unknown if a LM based policy is optimal or not.  
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Starr [66] formalised a structured approach to the selection of condition based 

maintenance. In his formalised procedure, major factors were taken into account. 

However, he only provided a general direction (or basic rules). He also reviewed a 

method to calculate the production losses due to unexpected failure. This method 

simply uses the value of production at a normal rate to multiply the potential hours of 

downtime. Actually, even though this method is adopted, the time of stoppage for 

repair or replacement should be reduced from the potential time of downtime.  

 

Today more and more attention is paid to the maintenance optimizations when two or 

more factors are taken into account [141-145]. For systems that are not normally in 

continuous operation, the maintenance should be scheduled or planned to be done 

when the system is idle. It is more cost-effective to do the inspection in an 

opportunity (i.e., the system should stop) than the conventional PM, in which the 

system stops for the purpose of inspection [146]. The management of maintenance in 

a large plant involves numerous factors. Sherwin [147] proposed eight important 

rules and assumptions for practical optimal maintenance and presented a formula to 

calculate the age-optimised residual value. The costs of failure and PM of each 

failure mode (or combined PM operation considered as a separate, independent and 

indivisible event) can be estimated according to Glasser and Sherwin [146, 148]. 

 

                                                                                                                     Life 
 
Figure 2-7.  A life cycle cost profile (source: A. Kelly, Maintenance Strategy, 

1997, Oxford: Butterworth-Hernemann, p. 9) 
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Artana and Ishida [20] presented a method for determining the optimum maintenance 

schedule for components in the wear-out phase. The interval between maintenance 

for the components is optimized by minimizing total cost. The total cost consists of 

maintenance cost, operational cost, downtime cost and penalty cost. Nakanishi and 

Nakayasu [149] proposed a new expected total cost concept including initial cost, 

cost of reliability test, annual maintenance cost, penalty cost for designer’s faults and 

losses by structural failure to make reliability design of structural system with cost 

effectiveness during its life cycle. 

Tadashi, et al [150, 151] derived an optimal model for the order quantity and safety 

stock so as to minimize the expected cost per unit time in the steady-state under 

somewhat different restrictive assumptions from the model by Cheung and Hausman 

[150]. A case study shows that Lagrangian relaxation method can be applied to find 

an optimal solution for the net benefit of pipe repair maintenance in water 

distribution networks [152]. Jardine et al [67] applied PHM to optimize PM cost 

based on the change of covariates. 

Delay Time Analysis (DTA) is also an important tool to model maintenance decision 

problems. The delay-time concept was introduced by Christer [153]. “Attention of 

DTA is focused upon the maintenance engineering decisions of what to do, as 

opposed to the logistical decisions of how to do it.” [60] The delay-time concept 

regards failure propagation as a two-stage process. It is assumed that a component 

can be in one of three states: non-defective, defective and failed. The sojourn in the 

defective state is called the delay-time. Wang and Christer [154, 155] presented three 

solution algorithms for an established multi-component inspection system model. 

This model is based upon the delay time concept and used to solve the multiple-

decision problem with a possible large number of decision variables depending upon 

the number of inspections. Earlier papers related to inspection maintenance based on 

the delay-time model are based on either the classical approach or the combined 

classical Bayesian approach, and are mainly concerned with saying something about 

presumed true parameters, like average costs per unit time and failure rates. However, 

often relevant objective data ("hard data") is typically not sufficient in practice (It is 

even true today due to the short renewal period of equipment).  
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Some researchers considered the change of a system after maintenance and 

introduced an imperfect maintenance concept which deals with the economic 

production problems with imperfect production processes under assumption that the 

age of the system is reduced in proportion to the PM level [156-158].  

2.2.3.2 Risk based optimal policy 

Although generally it is a common goal to minimize the costs in industry, in some 

cases more attention may be placed on increasing reliability whenever a failure will 

cause a disaster consequence to the human being or environment. In these cases, a 

criticality based optimal policy should be used. Little research has been conducted 

specifically on this policy. Some related research can be found in [43, 96, 131, 159-

162]. 

2.2.3.3 Combined optimal policy 

The cost related to the maintenance activities should be carefully considered even 

though under criticality based policy. Some combined optimal policies have been 

developed for an overall maintenance optimization through a comprehensive 

consideration of several different factors such as costs, reliability requirements, and 

availability. 

The Relative Condition Parameter (RCP)-based maintenance policy is a combined 

optimal policy. RCP-based maintenance was proposed by Knezevic [163]. El-Haram 

and Saranga [69, 124, 125] have further developed this policy in recent years. The 

model requires that a minimum required level of system reliability must be 

maintained when optimizing maintenance costs. 

RCP-based maintenance does not deal directly with the nature of the failure 

mechanisms like wear and fatigue crack, but instead depends on the sophistication of 

condition monitoring devices to take these factors into account. Under RCP-based 

policy, Maintenance Significant Items (MSIs) must be identified. Only these MSIs 

will be considered for maintenance. The Relevant Condition Predictor (RCP) is a 

key factor in the RCP-based maintenance. RCP is a condition parameter to describe 

and quantify the direct condition of the item at every instant of operating time. If a 
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RCP is not available for a particular MSI, then RCP-based maintenance is not 

applicable to that particular item. Once RCPs are determined for all the MSIs, 

suitable condition monitoring techniques are selected, in order to monitor the 

condition of the item. The same idea was put forward by Starr [66]. In general, RCP 

is directly related to the shape, geometry, weight and other characteristics of the item. 

The basic principle behind this mathematical implementation is the assumption that 

as long as the RCP lays within the prescribed limits inRCP  and limRCP , the item or 

system will function satisfactorily. inRCP  and limRCP  are set by the manufacturers. 

Once RCP exceeds these two limits, a failure occurs. The principle can be 

represented in the following equation: 

r
iiii
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ii RRCPTRCPRCPPTR =<<= ))(()( lim11 .  (2-1) 

where, in
iRCP  is initial value of relevant condition parameter for ith item; lim

iRCP  is 

the limit value of relevant condition parameter for ith item; 1
iT  is the time to the first 

examination of ith item, which is defined as the time up to which the required 

probability of reliable operation is maintained; r
iR  is the minimum required level of 

the item. For a system connected in series, the time to the first inspection should be 

the shortest one in all first inspection time of all items, that is 
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where, 1
sT  is the time to the first examination of the system. 

cr
iRCP  is the critical value of the relevant condition predictor iRCP. If iRCP is 

above cr
iRCP , maintenance tasks should be performed. cr

iRCP  exists objectively, 

while lim
iRCP  is set by people. The difference between cr

iRCP  and lim
iRCP  represents 

the length of time during which the major maintenance preparation activities can be 

conducted. RCP-based maintenance was claimed to be able to reduce the 

maintenance costs because it shortens the duration of maintenance task by the prior 

condition information, and reduces the duration of support task by the proper 
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selection of limRCP . The cost benefits of RCP-based maintenance can be 

summarized in following six characteristics: 

(1) Reduction in maintenance induced failures;  

(2) Reduction in planned / scheduled maintenance;  

(3) Reduction in repair time and costs;  

(4) Elimination of unexpected failures;  

(5) Increase in the realisable operating life of components;  

(6) Increase in the coefficient of life utilisation, which is the ratio of the average 

realisable operating life to its expected operating life. 

Neither El-Haram nor Saranga considered the effects of different MSI on the 

maintenance plan. They failed to match the different numerical value of RCPs with 

different monitoring techniques. The assumptions that production is in continuous 

operation and the cost of lost production and the revenue are directly proportional to 

the length of time are questionable. Comparing RCP-based maintenance policy with 

RCM, it can be identified that this policy actually corresponds to the RCM 

framework.   

Other policies include Jiang and Ji’s [164] multi-attributes model which considered 

four attributes: cost, availability, reliability and lifetime when making an optimal age 

replacement policy, and Stewart’s [165] applications of risk ranking and life-cycle 

cost analysis to assess the reliability of a bridge. Strouvalis, et al [166] applied an 

accelerated Branch-and-Bound algorithm for assignment problems of utility systems 

to find out the appropriate sequence of switching off turbines and boilers for 

preventive maintenance, which contributes to the reliability, availability and 

profitability of the entire system. 

2.2.4 Advanced Tools and Methodologies 

Some maintenance research uses advanced tools and methodologies which have 
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found  wide applications in other fields such as fuzzy logic [167-169], neural 

network [170, 171], the Kalman filter [172], the genetic algorithm [173, 174],  data 

fusion [175],  Monte Carlo [176] or combination of those techniques [177]. The 

application of data fusion techniques in maintenance is attractive, because there is an 

increasing demand for the accuracy of prediction and decision.  

Using computer techniques to enhance maintenance analysis ability is another 

attractive respect of maintenance research. The computer was used to study 

maintenance problems as early as in 1963 [178]. In 1974, the British Steel 

Corporation (BSC) [179] started using computers to manage maintenance. However, 

only in recent decades, have some commercial practical software for maintenance 

become available[180]. Software packages such as EXAKT [67] and RELCODE 

[181] are programmed to determine the failure model and to carry out maintenance 

optimization. Relax (Relax software corporation) and Reliability Workbench 

integrate the performance of reliability prediction, maintainability prediction, 

FMECA, RBD analysis, FTA, ETA and Markov analysis [182]. There are other 

software which is used for management of human competencies [183], or simulating 

the deterioration system using Monte Carlo simulation [176], or enhancing the 

efficient exchange of relevant information [184], or taking advantage of the Internet 

[185].  

2.2.5 Comments and Discussion   

The models and methods mentioned above have found their applications in 

maintenance. However, they have fallen short of finding practical applications 

Dekker [144] conducted a literature survey on the real world applications of current 

models in industries. He found a total of 112 applications of maintenance 

optimization models. Most of them were used between 1985 and 1989 (45 cases). 

Strangely enough, there were only 25 cases found after 1990, and indicates that 

current maintenance optimization models cannot meet the demands of today’s 

industry. 

There is a lack of effective methodology to analyse the relationship between a failure 
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and its root causes quantitatively, especially when reliability information is 

incomplete, e.g., new equipment. 

Improper maintenance activities such as repeatedly deferred inspections or repairs 

result in very costly failure. On the other hand, too often inspections or unnecessary 

monitoring may also cause high cost. One needs to estimate the states of a system 

more accurately. Current maintenance models including PHM, FMECA and FTA 

usually do not specify which items fail. However, the real situation is, more often, 

that a system fails because some and not all items fail. One therefore may not need to 

repair the entire system or all of items in the system. In order to carry out actions 

particular to business goals, one needs to get information which is perception, or 

recognition and localization, of structures. It involves the spatial-temporal form of 

components and their relationships [186, 187].  

It is a challenge to scientists to develop an appropriate model which can take account 

of historical failure records, monitoring data and other available information to 

enhance the accuracy of predictions.  

Historical records are valuable, but they are often incomplete and inaccurate. The 

records normally contain the activities of maintenance rather than the causes of 

failures. They may have erroneous records [25]. On the other hand, condition 

monitoring is more expensive and in many cases the monitoring techniques may not 

be available. Hence new approaches and models are needed to overcome these 

limitations. 

As a result of the above discussion, future research directions are identified as 

follows: 

(1) New methodologies and models need to be developed which can bridge the 

gap between theoretical research and industry applications. Most of reliability 

models have been developed for mathematical purpose or computational 

convenience [144], rather than solutions to real industry problems. Most case 

based research focus on short term solutions and lack vision on whole life 

cycle modelling.   
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(2) A number of topics for complex repairable systems are still in their infancy 

and need further research, such as, investigating dynamic component-system 

relationship, releasing the assumption of “as good as new”, and predicting 

multiple failures of whole life.  

(3) Models dealing with very small set of data or zero failure data need to be 

developed more intensively.  

(4) The accuracy of reliability prediction needs to be improved. Reliability 

prediction of systems and maintenance decisions making should be based on 

comprehensive considerations of current conditions of a system together with 

historical maintenance/failure records and other information. 

(5) Little attention has been paid to integrated spare parts inventory management, 

which is important especially to asset intensive industries.  

(6) The integration of maintenance, monitoring and production is a major issue 

and needs to be addressed. 

2.3 SPECIFIC REVIEW – ANALYTICAL MODELS 

A repairable system is usually defined as one which will be repaired to recover its 

functions after each failure rather than to be discarded during continuous operation 

[188]. A complex system usually means that it is composed of multi-components 

which can be connected with each other in either series or parallel or in a complex 

way. This review is concerned with classifications and characteristics of analytical 

reliability prediction models of repairable systems. Some major limitations in these 

models will be identified. 

2.3.1 Basic Principles of Probability  

Several models for the reliability prediction of a repairable system have been 

developed using the basic principles of probability. The time-dependent maintenance 

model mentioned in [189] is an example. According to this model, a system is always 

replaced at a fixed time T  or failure, whichever happens first [2]. The models based 
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on basic probability principles were developed to determine the most appropriate 

preventive maintaining time T according to the reliability function or failure 

distribution function of the system. The most common distribution function in use is 

the Weibull distribution due to its ability to fit a greater variety of data and life 

characteristics by changing its shape parameter [20, 190]. Normal distribution and 

exponential distribution [191] are two popular models as well. In some early research, 

time-dependent maintenance model often assumed that a unit is replaced at its age T 

or failure, where T is a constant, so it used to be called the age replacement model 

[192]. Later a block replacement model was developed. Under this model, a unit is 

replaced at a fixed prearranged time which is also a constant irrespective of the age 

of the unit, but if the unit fails before the prearranged replacement time, an in-service 

replacement will be made [2, 193]. If the unit is not replaced but maintained, the 

block replacement model becomes the periodic preventive maintenance model. 

Considering the failure rate of a unit generally increases over time and the system 

often cannot become “as good as new” after repair, the constant fixed maintenance 

time T is replaced by a time variable iT , 1−< ii TT , and then the periodic preventive 

maintenance model becomes the sequential preventive model which was introduced 

by Nguyen and Murthy [194]. Some research has been made to extend this model to 

a complex repairable system [8, 81, 193, 195-199]. The time-dependent maintenance 

model was originally developed for the single unit system. Fontenot and Proschan 

[200] developed several imperfect maintenance models. In each of theses models, 

they assumed that the state of a system after a planned replacement is as good as new, 

and the state after an unplanned maintenance have two possibilities: as good as new 

with probability p  and as bad as old with probability p−1 . Gurov and Utkin [199] 

presented a model to predict reliability of repairable systems with periodic 

modifications by arbitrarily distributed times to failure and repair. The application of 

this model in industry is difficult because the model is represented by the integral 

equations. 

The renewal process model is a generalized classical model. It assumes that 

whenever a component fails, it is replaced by a new identical one or repaired to the 

condition of “as good as new” [8]. Mathematically, “a renewal process is defined as a 

sequence of independent, identically distributed (i.i.d.) non-negative random 
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variables X1, X2, …, which with probability 1 are not all zero” [201]. The renewal 

model basically deals with the renewal function that is defined as the expectation of 

the random variable )(tN  (the number of failures during the time interval (0, t] for 

fixed time t).  

The reliability of repairable standby systems attracts much attention [202]. Narmada 

and Jacob [203] studied 1-out-of-2 system whereas Dey and Sarmah [204] 1-out-of-

N and Wang and Ke [205] W-out-of-W+M.  

Due to the inherent difficulty in mathematics, the models were often developed about 

some special cases, i.e., either system with special structure [206-209] or special 

process [210-214] or both [215]. Calabria and Pulcini [210] derived the conditional 

intensity functions introduced by Lawless and Thiagarajah [216] under the 

assumptions of the Power Law-Weibull Renewal (PL-WR) process and the Log 

Linear-Weibull Renewal (LL-WR) process separately. When 1=β  and 1=δ , the 

PL-WR process reduces to the Homogenous Poisson Process (HPP). When 0=β  

and 1=δ , the LL-WR process reduces to HPP. 

Although the research on the classical maintenance model can date back to as early 

as 1958 [2, 217], this model still attracts the attention of researchers [8, 189]. 

Significant effort has been made to improve this model such as extend it to a system 

composed of multiple units and subsystems [8, 81, 193, 195-198]. Models based on 

the basic principles of probability can cover a wider range of situations. However, 

some of these models are too mathematical to interpret and to apply. It is still a 

difficult task to obtain the reliability function for Time Based Preventive 

Maintenance (TBPM) especially when historical data is sparse. Research activities 

on the reliability prediction for Reliability Based Preventive Maintenance (RBPM) 

are scarce.  

2.3.2 Markovian Theory 

In 1907, the Russian mathematician A.A. Markov introduced a special type of 

stochastic process whose future probability behaviour is uniquely determined by its 

present state, that is, with behaviour of non-hereditary or memory-less. The 
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behaviour of a variety of physical systems falls into this category; hence, the Markov 

model plays an important role in the reliability evaluation of engineering systems 

[218]. A Markovian stochastic process with a discrete state space and discrete time 

space is referred to as a Markov chain. If the time (index parameter) space is 

continuous, it is referred as the Markov process.  

The model based on the Markov process assumes that a system has a finite state 

space and a series of possible transitions between these states. The functions, various 

failure modes, standby and various maintenance activities all can be described as 

different states. If the transition between the states can be approximately described 

by a stochastic process with Markov property, the Markov method can be used to 

determine the reliability of the system after several states. Therefore, it is fairly 

common using Markovian theory to model the reliability prediction problem of a 

repairable system [219-227]. 

Pham, et al [228] presented a Markov process based model for predicting the 

reliability of multi-stage degraded systems with partial repairs.  Aven [222] used the 

standard Markov theory to derive an availability formulae for standby systems of 

similar units that are preventively maintained. Tan [229] used the Markov chain to 

study the reliability of 1-out-of-2 systems, and Pham [230] extend to K-out-of-N 

systems. Chen and Trivedi [231] derived a closed-form solution of the underlying 

Markov chain for the minimal and major maintenance model whereas El-Damcese 

[232] tried to solve Markov equation for reliability prediction more effectively. 

Sophie Bloch-Mercier [233] tried to find the degree of the repair of a Markov 

deteriorating system such that the long-run availability was optimal. She dealt with 

corrective rather than preventive maintenance. Wang and Sheu [234] used a Markov 

chain to determine the optimal production maintenance policy with inspection errors, 

which is an improvement to Lee and Park’s method [235]. 

Sometimes an ordinary Markov process cannot describe a repairable system very 

well, and hence a semi-Markov process is chosen to model the reliability of a 

repairable system [236, 237]. A semi-Markov process is an extension of an ordinary 

Markov process with discrete states and continuous time [236]. Papazoglou [237] 

derived several approximate equivalent Markov models to decompose a system of 
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dimensionality MN +  into two smaller problems of dimensionality N  and M . Kim 

[238] used semi-Markov to reliability modelling of a hard real-time system using the 

path-space approach. For considering realistic timeframes and for repairable systems 

in industries, Marquez and Hegueda [1] proposed a model to represent different 

corrective and/or preventive actions that could take place at different moments, 

driving the equipment to different states with different hazard rates by the utilization 

of semi-Markovian probabilistic models. 

Markovian method has often been applied to model repairable systems[224, 233, 239] 

and deteriorating systems [8, 240].  However, it is not easy to find all (sometimes 

they are numerous.) transition probabilities. The state space method is only suitable 

for relative small systems and for the prediction of the next failure [1, 8]. Although 

the Markov model has been used to study problems of a repairable system after 

repair, it is used under very strict assumptions. For example, the system evolves in 

time according to the same Markov process as from the beginning [233, 239] or the 

system has a very special structure with several subsystems in series, each of those 

subsystem consisting of several parallel identical components [241]. In addition, the 

Markov equations are often difficult to solve analytically. Some systems do not 

conform to the Markovian system [242].  

2.3.3 Poisson Process  

The Poisson point process is a kind of Markov process [8]. This model assumes that 

the failures are independent of each other and the number of failures in each time 

interval follows a Poisson distribution [243]. The Homogeneous Poisson Process 

(HPP) model requires stationary increments whereas a Non-Homogeneous Poisson 

Process (NHPP) model [4, 188] does not require these increments. Therefore,  the 

NHPP is more favourable for modelling imperfect repairable systems [244]. The 

NHPP can also be used to study the Rates of OCcurrence Of Failures (ROCOF) 

when they are time dependent, and the times between failures are neither 

independent nor identically distributed [243]. Some researchers [245] argued that 

multi-component repairable systems cannot be modelled by continuous distributions. 

Failures occurring in repairable systems should be considered as a series of discrete 

events which occur randomly in a continuum. These situations behave as stochastic 
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point processes and can be analysed by means of the statistics of event series. The 

log-linear NHPP model and the power law NHPP model are recognized as two 

widely used models for repairable systems. The power law NHPP model is based on 

Weibull distribution. It is given by 

1)( −= βλβ ttv , (2-3) 

where, )(tν  is the intensity function. λ  is the constant failure rate. β  is shape 

parameter and t  is the system’s age. 

One of applications of the power law NHPP was given by Weckman, Shell and 

Marvel [244] to the reliability modelling of repairable systems in the aviation 

industry. Coetzee [246] reviewed the NHPP models in the practical analysis of 

failure data up to 1996 briefly. Guida and Giorgio [247] analysed the reliability of 

accelerated life-test data from a single-item repairable system moulded by a NHPP. 

Pulcini [248] applied the NHPP to model the reliability of a complex repairable 

system with bathtub type failure intensity. Saldanha et al [243] presented a 

application example to the reliability analysis of service water pumps whereas 

Bustamante [249] to a software reliability model.  

The Poisson process based models are suitable for analysing repairable systems with 

multi-failures which are stochastic point processes. However, the existing Poisson 

process based models are only available to the random failure mode but does not 

appear to subscribe increasing hazard rate. The Poisson process based model assumes 

that the failure probability of a system follows a Poisson distribution, the number of 

the failures does not affect the failure probability and the repair does not change the 

reliability of the system [250]. NHPP model assumes that the reliability immediately 

after a repair is exactly the same as reliability just before its corresponding failure. It 

is only suitable for so-called “minimum repair” activities but not general repair. 

2.3.4 Condition Monitoring Data Based Models 

With increasing applications of condition monitoring techniques, maintenance 

personnel naturally wish to improve reliability prediction accuracy using monitoring 
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data. The Proportional Hazard Model (PHM) introduced by Cox [4] is currently the 

most popular condition based model [1, 3-6, 15, 251-254]. Another similar model is 

Proportional Intensities Model (PIM) [188, 250, 255]. PHM is more flexible and 

avoids some of the problems related with PIM, but the latter has a clearer 

mathematical and physical justification [255]. Before the concept of PHM is 

introduced, the terms reliability function and hazard function are defined 

mathematically as follows. 

The reliability function )(tR  is used to decide the distribution of random variable T  

of a homogeneous population of individuals, each having a “failure time”. It is 

defined as the probability that a system (component) will function over a period of 

time t  [16]: 

)()( tTPtR ≥= . (2-4) 
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where )(tf is the failure density function. )(•P  is the probability of )(• . 

On the other hand, the hazard function )(th  is defined as [16]: 
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Considering Equations (2-4) and (2-5), Equation (2-6) becomes 
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PHM is used to estimate the hazard of a system based on historical failure data and 

condition monitoring data [4]. It was developed essentially from Accelerated Life 

Models (ALM) [256]. In principle, PHM is also a model based on statistical analysis 

method. 
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The advantage of PHM is that it includes both the age of a system and its condition 

in the calculation of the hazard of the system at time t . In this model, the hazard at 

time t  of a system is modelled as a product of the baseline hazard function )(0 th  and 

a positive function term ),( γψ Z as follows [4]: 

),()()( 0 γψ Zthth = . (2-8) 

The baseline hazard )(0 th  is the hazard without influence of the covariates. The 

functional term ),( γψ Z  is dependent on the effects of the different factors that affect 

the failure of the system through a row vector consisting of the covariates Z  and a 

column vector γ of the weighting parameters. The Maximum Likelihood Estimation 

(MLE) method is commonly applied to estimate these weighting parameters. 

Makis and Jardine [6, 67, 257] studied the problem of optimal replacement using 

PHM. They defined an optimal replacement rule based on both minimal expected 

average cost per unit time and the PHM of a system, and then used the values of 

covariates of the deterioration system to determine the replacement time. Later, 

Jardine and Banjevic [15] presented an application of this method for optimizing a 

mine haul truck wheel motor. Kobbacy et al [253] also developed a heuristic 

approach to scheduling the next PM interval using the semi-parametric PHM and the 

full condition history of a system. Ansell and Phillips [258] presented a general 

survey of some practical aspects of using PHM to model repairable systems.  

PHM is empirical in nature. Cox [4] summarized seven criteria to assess 

distributional form, these criteria can help the comparison of those existing 

distribution models. In order to start the parameter estimation procedure in modelling, 

at least two histories ending with failure are required, and in addition at least one 

history ending with failure for each covariate of interest. However, the number of 

histories is hardly specified since it strongly depends on how covariate information is 

correlated with failure. This means this technique can only be used in situations 

where such equipment has run some length of time, and has enough failure records. It 

is definitely unsuitable for new equipment. The parameters of a PHM based hazard 

model are estimated according to the historical records. When estimating these 
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parameters, the conditions of current system are not considered. If this PHM based 

model is used to analyse the hazard of current system (even if the same system as 

that when the historical records for modelling were taken), the results would be far 

from accurate because the system may have experienced several different repairs 

since those historical records were taken. Sometimes, regular maintenance activities 

such as changing oil may be investigated when a PHM is constructed, but mainly for 

meeting the requirements of cleaning the historical data to get correct transition path 

[15]. The effects and the influences of such maintenance work have not been 

estimated, and hence this PHM based hazard model is not suitable for predicting or 

optimising these maintenance activities. According to Roberts and Mann [245], 

classical PHM, as a continuous distribution, cannot be applied for the reliability 

prediction of a multi-components repairable system in a long-run period. Kumar and 

Westberg [259] used a linear regression model to find out that the time-invariant 

assumption of the effect of a covariate in PHM is incorrect. Blischke and Murthy [12] 

and Ebeling [16] described PHM as an environmental condition based model, but 

some researchers [257, 260] argued that PHM could be used for both environmental 

(external) covariates and responsive (internal) covariates. 

In condition monitoring and fault diagnosis of a physical asset, often several 

parameters (termed as covariates in reliability theory) that measure the conditions of 

the asset are monitored and analysed. As such, several different PHM based models 

can be formulated by choosing different covariates or combinations of these 

covariates. For example, Lin [261] used six inspection variables for the condition 

monitoring of a single reduction helical gearbox to build PHM based models. Six 

PHM based models are reproduced as follows: 

1388431.0
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1 1031910319

51844.5
)( FGPe

t
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
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RFSeth 113776.0
4 1841840

1
)( = , (2-12) 

RTMeth 8414.22
5 199259
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6 6.149296.14929

32064.9
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
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In the above equations, FGP1, RFM, RFS, RTM and RTS are the names of 

covariates. 

The hazard values of the system calculated to these equations can be significantly 

different. To demonstrate this point of view, part of the data generated through Lin’s 

study [261] was used to conduct a hazard analysis. The original data is reproduced in 

Appendix B1. Figure 2-8 shows the hazard of the system calculated by Equations (2-

9) to (2-14).  

 

Figure 2-8.  The calculated hazards of the system 
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Figure 2-9 shows the trendlines of the hazard curves in Figure 2-8 in form of the 

third order polynomials. From these two figures, it can be seen that significant 

differences among the hazard lines exist. The selection of the most appropriate PHM 

based model is still a challenge. The optimisation of maintenance costs is currently 

most used criterion for the selection [15, 261]. In the candidate’s view, the first 

criterion should be the accuracy of the models to represent and predict the hazards of 

assets rather than optimization of maintenance cost. 

 

In addition, Figure 2-8 indicates clearly that each hazard line fluctuates greatly 

because the original test data were contaminated by an amount of random noise. The 

fluctuations in condition monitoring data have significant influence on PHM. 

New reliability prediction models using condition monitoring data have also been 

developed. Al-Najjar [19] developed a mechanistic model to predict the vibration 

level of rolling element bearings which in turn can be used to assess the conditions of 

these bearings. Barbera, et al [208] presented a classic RBD based model for a two-

unit series system. In this model, a continuous variable ( tiX ) is adopted to describe 

the condition of each unit i  ( i =1, 2) at time t . Condition monitoring data can be 

Figure 2-9.  Trend lines of the hazard curves in Figure 2-8 
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used to predict reliability of a system if the probability of failure is given by the 

exponential distribution and the hazard ( )(Xλ ) is proportional to the condition. 

Faber and Sorensen [262] developed a Bayesian formulation of condition indicators 

for inspection and maintenance planning of concrete structure. These indicators have 

two states: indicating a defect or not indicating a defect. 

2.3.5 Bayesian Theory 

The Bayesian model is based on Bayesian theorem which was introduced by 

Reverend Thomas Bayes in 1763, which can be described as following equation [8]: 

∑
∞

=

=

1

)()|(

)()|(
)|(

i
ii

kk
k

BPBAP

BPBAP
ABP , (2-15) 

where, )|( ABP k  is the conditional probability that event kB  occurs at the 

occurrence of event A. )|( kBAP  and )|( iBAP  are the conditional probabilities that 

event A occurs at the occurrence of event kB  and iB , respectively. )( kBP  and )( iBP  

are the probabilities of event kB  and event iB  occur, respectively. 

The Bayesian model allows using the knowledge of designers, operators and 

maintenance engineers to reduce the uncertainties when modelling the reliability of a 

system. An observed value is used to update the priori (the prior density) of the 

Bayesian model. Significant work has been conducted using this model [7, 263-266]. 

As early as in 1973, Bassin [267] developed a Bayesian block replacement model for 

a Weibull restoration process under the assumption that repair costs are known. 

Mazzuchi and Soyer [193] extended this model to the traditional age replacement 

policy and the block replacement policy with minimal repair under the assumption 

that repair cost is constant and the scale parameter α  and shape parameter β  are 

initially independent. Considering the repair cost for system failures may be random 

and unknown, Shue, et al. [265] developed an adaptive replacement model using 

Bayesian approach under the assumption that the hazard )(tri  of a system is strictly 

increasing, i.e., )()(1 trtr ir ≥+  but )0()0(1 ii rr =+ . Sheu also applied a Bayesian 
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approach on age replacement with minimal repair when the failure density is Weibull 

[268]. 

Percy et al [9, 255, 263] researched the Bayesian approach to enhance preventive 

maintenance strategic decisions. Apeland [269] tried to use the fully subjective, or 

fully Bayesian approach to make maintenance decision when objective data are 

insufficient. However, in Apeland’s model, some assumptions are not realistic: (1) 

Each component has one failure mode; (2) Occurrence of failures and defects related 

to different types of components are independent; (3) All failures are immediately 

detected and the corresponding failure components are replaced immediately; (4) The 

failure components are always replaced by identical new components.  

Nootwijk etc [266] extended a Bayesian model to study the structural deterioration 

problem under the assumption that the amounts of deterioration are exchangeable 

and isotropic. For small amounts of deterioration, the prior density is evaluated 

numerically, and for big amounts the inverted gamma distribution is chosen as a 

good approximation.  

The Bayesian model allows adopting the knowledge of designers, operators and 

maintenance engineers to reduce the uncertainties and using the observed data to 

update the priori. However, the Bayesian model is not suitable to model reliability 

function by itself because the Bayesian method is commonly used to update a prior 

distribution [264]. The prior distribution is difficult to choose. It is complex and 

difficult for long term prediction [263]. Most of the existing Bayesian models need 

failure data to update the priori, which might not be available. 

2.3.6 Hybrid Models 

Naturally, researchers have tried to combine above models, such as combining a 

Bayesian method with Poisson process [264], combining a Bayesian method with the 

Markov process [266], combining a Bayesian method with the Weibull distribution 

[265], combining a Poisson process with PHM [250, 270], combining a Bayesian 

method with the TARMA (Time-dependent Auto-regressive Moving Average) [7], 

combining a Bayesian method with Poisson process and PIM [255].  
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Kawauchi and Rausand [271] proposed a new approach based on two modelling 

methods: Markov modelling and a rule-based method, and Kumar and Westberg [272] 

used PHM and the Total Time on Test (TTT) plot to make maintenance scheduling 

under age replacement policy. The TTT-plots have also been used for condition 

monitoring of rolling element bearings [273]. 

Hassett, et al [274] derived a hybrid reliability availability model combing time 

varying hazard which is characterized by a general polynomial expression and 

Markov chain analysis. Tractable solutions were found for the 1-component 2-state 

and the 2-component 4 state configurations.  

Gue and Love [250] presented an age model which is based on the non-homogeneous 

Poisson assumption but combined with a proportional intensities assumption. This 

model did not regard the reliability of a system as unchangeable but treat the form of 

intensity function and its parameters’ values as unalterable. This model introduces a 

scalar parameter to reflect the improvement of a system after a repair. This scalar 

parameter must be estimated by a maintenance engineer. For complicate system, it is 

too difficult if not impossible to do for an engineer in industry even if he/she is very 

experienced. 

Hybrid models provide a possible direction. However, up to now, a generalized 

hybrid model has not been derived.  Some hybrid models are also very difficult to 

use. 

2.3.7 Other Models 

Some reliability prediction models specific for imperfect repaired repairable systems 

have also been developed. These models often have very restrict and unrealistic 

assumptions. For example, the fixed decreasing rate model simply assumes that a 

system after maintenance is subject to a fixed decrease in the reliability index [20]. 

The proportional reliability deterioration model uses a failure rate deterioration factor 

(<1) multiplying the original reliability function to describe the system state of 

somewhere between as good as new and as bad as old after a repair [241, 275]. The 

failure rate deterioration factor is purely defined by maintenance staff members. On 
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the other hand, Dieulle [276] gave an analytic method for calculating the reliability 

function, its Laplace transform and the Mean Time To Failure (MTTF). His model 

allows consideration of an imperfect restoration and even the case where an 

inspection damages the system. He assumed that restoration time is negligible. Grall, 

et al [277] established an analytical model using both replacement threshold and 

inspection schedule as decision variables for the maintenance problem of a 

condition-based inspection/replacement policy for a stochastically and continuously 

deteriorating single-unit system. They proposed using a multi-level control-limit rule 

to implement the maintenance policy.  

Most existing models or methodologies have been developed on the assumption that 

failures among components are independent. However, industrial experiences have 

shown that the assumption of independent failures has been unrealistic in numerous 

scenarios and has led to unacceptable analysis errors. Therefore, the concept of 

dependent failures was introduced, for example as described in Mosleh [10], 

Hoyland and Rausand [8]. 

The subject of dependent failures has attracted the interest of researchers for decades. 

The international journal, Reliability Engineering & System Safety published a 

special issue on dependent failures in 1991. The most discussed dependent failures 

are: cascading failure, negative dependency failure and common cause failure [8, 

278]. Cascading failure is defined as multiple sequential failures. These failures are 

initiated by the failure of one component, which leads to sequential failures of other 

components. Negative dependency failure is defined as failure that can prevent other 

components in a system from further failing. Common cause failure is defined as 

multiple related events caused by a single common cause. Cascading failure and 

negative dependency failure are often analysed using approaches for independent 

failures such as FTA, RBD and the Markov chain [8]. Greig [279] presented a second 

moment (covariance) method for estimating the reliability of a system with both 

common cause and cascading dependency failures. In his study, a component failure 

changes the system topology, which consequently increases the failure probabilities 

of remaining components. His case study can fall into the classical definitions of 

cascading failures. The majority of existing research on dependent failures focuses 

on common failures [278, 280-284]. Papers in the special journal issue mentioned 
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above mainly concentrated on this type of dependent failure. FMEA and FTA have 

been extended for the analysis of common cause failures [278]. Mosleh [280] 

presented a framework for identification, modelling and quantification of common 

cause failures. Findlay and Harrison [281] identified major common failure modes 

for an aircraft. Murthy and Nguyen studied different operating policies under the 

condition that the failure of a component in a system may induce the failure of all 

other components in the system [11, 12]. Lewis presented a Markovian approach to 

analysing load-sharing systems [13]. Some methods for analysing common cause 

failures quantitatively have been developed, such as the square root model [285], β-

factor model [286] and Binomial Failure Rate (BFR) model [287].  

However, some failures cannot be classified as independent failures nor as a type of 

the above three dependent failures. One such scenario is Sequential Failure Logic 

(SFL) [288]. In this scenario, n -cause failures occur in a sequence of nxxx L,, 21 . A 

system fails, if and only if these n  cause failures occur. The second scenario is the 

failures due to associate variables, i.e., the state variables of a system are dependent 

[8]. These scenarios need further research and lie outside of the scope of this thesis.  

Another such scenario is that failures of some components can interact with each 

other. For example, failure of Component A will cause or accelerate the failure of 

Component B and vice versa. The failure interaction will increase the failure rates 

(hazards) of both components. In some cases, the increase of failure rates of 

components due to failure interaction can be significant and cause disastrous 

consequence. Estimating the failure probability of components subject to failure 

interaction is imperative. A model or technique used to analyse this failure 

probability quantitatively and effectively is still unavailable although the term failure 

interaction has been used in some literature such as [9, 11, 12]. 

2.3.8 Comments 

An intensive literature review has been conducted on the analytical reliability models. 

Some further literature review specific on repairable systems and condition based 

reliability prediction models are presented in the following chapters. The literature 

review indicates that analytical models for reliability were mainly developed based 
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on stochastic process and probability theory. However, analytical reliability models 

were also empirically developed based on experience or experiments, or derived 

from failure mechanism [16]. In existing models, the renewal process and minimal 

repairs are still two basic assumptions [204, 206, 207, 211, 238] although more and 

more attention has been paid on imperfect repairs in recent years [289]. Pham [290] 

reviewed several optimal imperfect maintenance models and indicated future 

research directions on imperfect maintenance. However, he concentrated on 

maintenance activities rather than reliability prediction. 

The literature review indicated that existing models have the following limitations: 

(1) Models to calculate the changes of the reliability of a system after imperfect 

PM actions are inadequate. For example, the imperfect maintenance models 

presented by Fontenot and Proschan [200] assumed that the state of a system 

after a planned replacement is as good as new, and the state after an 

unplanned maintenance have two possibilities only - as good as new with 

probability p  and as bad as old with probability p−1 . 

(2) When analysing the reliability of a repairable system, existing models often 

consider the entire system rather than the individual contributions of different 

components of the system to the reliability of the system [1, 8, 15, 81, 266]. 

(3) Most existing models consider the time to the next failure, MTTF or/and the 

expected number of failures during a given period. Models for explicitly 

predicting the changes of the reliability of an asset covering a series of 

imperfect PM actions need to be developed although Ebeling [16] has 

presented a heuristic approach for such purpose. Ebeling’s approach was 

developed based on the assumption that a system after a PM action becomes 

as good as new. This approach was also presented by Lewis [13]. Under the 

same assumption, Ramakumar [218] modelled the changes of the failure 

density functions of components with periodic preventive maintenance using 

the similar approach.  

(4) The interactions among failures of components in a system have not been 
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modelled adequately. Existing models for dependent failures consider single 

direction effects of failures or some special systems such as a load-sharing 

system. An effective model for analysing the failures due to continuos 

interaction among components is yet to be developed. 

(5) Inadequacy exists for making reliability predictions given sparse or zero 

failure data. Some existing models dealing with sparse failure data have been 

developed based on the Bayesian method [9, 263, 291, 292]. These models 

need failure data to update posterior distribution function without using 

condition data [9, 292]. Yet other models have been developed from the 

failure mechanism of specific assets but these are specific in nature [16, 293]. 

(6) Systematic consideration of the reliability of repairable systems with all the 

above aspects such as multiple imperfect repairs, interactive failures and 

sparse historical failure data is lacking. 

(7) Some models are simply theoretical formulations with no real application 

focus [284]. 
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Chapter 3  

RELIABILITY PREDICTION OF SYSTEMS WITH 

PREVENTIVE MAINTENANCE  

3.1 INTRODUCTION 

Today, Preventive Maintenance (PM) is often conducted in industries to reduce the 

probability of unexpected breakdown of assets during a certain period. An asset can 

be subject to multiple PM actions over its operational life-span. Many companies 

develop their PM strategies at the stage of acquisition of assets. Observation from 

industries has revealed that different PM activities can have different effects on the 

reliability of assets. If PM is conducted at the right time and in the correct way, it can 

improve the reliability characteristics of assets. Otherwise, PM may not have an 

effect on the reliability of assets or even worse - decrease the reliability of assets. The 

majority of physical assets in industries such as machines, buildings and vehicles are 

repairable. Hence, there is a need to investigate the effects of PM on the reliability of 

repairable systems comprehensively. This chapter focuses on developing a reliability 

prediction methodology to quantitatively assess the effectiveness of a PM strategy on 

the reliability improvement of a complex system, and thus support optimal PM 

decision making. A particular concern of the research is to explicitly predict the 

reducing amount of probability of failure of a system over a certain period due to PM, 

compared with the probability of failure without PM. In this thesis, maintenance 

includes repair and replacement. From now on, when “repair” is mentioned, it 

usually indicates maintenance and includes “replacement”. 

A complex system is normally composed of several components. These components 

can have different life cycles - a fact that leads to the result that different components 

may have different failure patterns and distributions at the same time. The conduct of 

PM of a system usually comprises PM on individual components in the system 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 59 

according to the states of their conditions. Accurate estimation of the effects of PM 

of these components on the reliability of systems is essential to the optimal decision 

making of PM strategy. However, a practical methodology or analytical model for 

this issue is still not available. 

As indicated in Chapter 2, The issues associated with repairable systems have 

attracted much attention of researchers [1, 8, 81, 188, 250, 263, 266, 294]. The 

research about repairable systems is focused on two aspects: reliability predictions of 

repairable systems and the optimal maintenance policy for repairable systems. 

Different models have been developed to address the reliability prediction of a 

repairable system with PM. These models have been applied in different scenarios. 

However, the following three major limitations have affected the effectiveness of 

these existing models to the reliability prediction of complex systems with PM. 

The first limitation is that the different states of repairable systems after multiple 

repairs have not been adequately modelled. Two common approaches are to assume 

that a repairable system after repairs becomes “as good as new” [81, 239, 244] or “as 

bad as old” [8]. Some literature assumed that a system after repairs evolves in time 

according to the same Markov process as from the beginning [233, 239]. These 

assumptions are unrealistic in a considerable number of cases. The applications of 

these models are limited. For example, existing NHPP based models [4, 188] assume 

that repairs do not change the reliability of a system [250]. These models are only 

suitable for “minimum repair”. Often a system after a PM action is not as good as 

new, neither as bad as old, which brings out the concept of imperfect repair. 

Imperfect repairs are common in industries. Imperfect repairs include the following 

scenarios (for more details, see [295, 296]). 

The first scenario is that the reliability of a system after a repair does not restore to 

the value of one. This type of imperfect repair occurs when the repaired components 

may not to function as required just after a repair. This type of imperfect repair can 

also occur when only some of components in a system are repaired. If some 

unrepaired components have also failed, the system may not function after a repair 

even though the repaired components may all work perfectly after this repair. 
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The second scenario is that the reliability of a system after a repair restores to the 

value of one, but the system deteriorates faster than before, i.e. the hazard of the 

system after a repair becomes greater. 

The third scenario is a mixture of the above two scenarios. 

To date, effective modelling techniques to deal with the reliability prediction of a 

system with multiple imperfect repairs have yet to be developed [5] although some 

researchers have noticed the influence of imperfect repairs on the reliability of a 

system [1-4, 250].  

Some models consider the influence of imperfect repairs on the reliability of a 

repairable system, but have limited applications due to assumptions or methods used 

in the models. For example, to describe deterioration of reliability of components and 

systems after repairs, Artana [20] multiplied the original reliability index by a 

decrease percentage (<100%). Nguyen and Murthy [194] assumed that the failure 

rate of a system increases with the number of repairs. Monga [275] assumed that the 

reliability of a system decreased proportionally with repair times which was 

represented through a scale parameter called failure rate deterioration factor. Later, 

Monga [241] introduced another time variable parameter to describe the different 

start points of hazard function of a system after different repairs. Gue and Love [250] 

introduced a scalar parameter to reflect the degree of improvement of a system after 

repairs similar to Monga’s approach. Their model was based on the non-

homogeneous Poisson framework with a proportional intensities assumption. This 

model treated the form and parameters of intensity function of a repairable system as 

inalterable. In these models, all parameters or factors employed to describe the 

changes of reliability function of a system after repairs must be estimated by 

maintenance engineers (or users). For complicated systems, accurate estimation of 

these parameters or factors is difficult, if not impossible, even for experienced 

personnel.  

The second limitation is that existing models often treat a repairable system as a 

“black box”, without considering the individual contributions of different 

components to the reliability of this system [8]. These models often take the entire 
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system into account and do not analyse reliability of repairable systems at component 

level. As a result, some important information which can assist in improving the 

accuracy of reliability prediction has been omitted. The following Nelson-Aalen plot 

can be used to illustrate this argument. 

 

The data presented in Figure 3-1 are the times of failure of a pump system over 

nearly 10 years. From this plot, it can be seen that the Rate of OCcurrence Of 

Failures (ROCOF) of the pump system can be approximated as constant. However, 

the determination of a suitable model to analyse these data is very difficult if the 

pump system is treated as a “black box” because some failure properties can only be 

identified at the component level. For example, analysis indicated that the 5th failure 

and the 7th failure were related because they shared the same root cause. In this case, 

the assumption of independence is not valid. In addition, most of the repairs for these 

failures were not minimal repairs and this indicates that the NHPP model is not 

suitable. 

The third limitation is that most existing models have been developed based on 

probability theory and stochastic process as the failure time of an asset is a random 

variable. These models are often very complex [9], rendering difficulties in 
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Figure 3-1.  Number of failures N(t) as a function of age of a pump system 
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engineering applications. These models are normally developed to predict and 

optimise the next repair event [6, 7] or analyse MTTF or/and the expected number of 

failures of an assets during a given period [8, 9] rather than explicit reliability 

changes with multiple PM actions. In contrast, Ebeling [16] presented a heuristic 

method to predict the reliability of an asset with multiple PM intervals. In this 

method, PM time is a deterministic variable. This method can produce an intuitive 

and explicit prediction of reliability and hence is well suited for engineering 

applications. However, in this model, assets are assumed to have PM actions 

periodically and the states of the assets after PM activities are assumed “as good as 

new”. 

In this chapter, a Split System Approach (SSA) is developed to extend Ebeling’s 

method for a long term prediction that covers a number of imperfect PM intervals 

during an asset’s life time, and attempts to overcome the three limitations mentioned 

previously. Two types of PM policies are considered. One is the Time Based 

Preventive Maintenance (TBPM). In this policy, the system is maintained based on 

scheduled PM times. The intervals between two PM actions may or may not be the 

same. The other is the Reliability Based Preventive Maintenance (RBPM). In this 

policy, a control limit of reliability 0R  is defined in advance. Whenever the 

reliability of a system falls to this predefined control limit, the system is maintained. 

This thesis focuses on RBPM. There is limited literature on this type of PM strategy. 

Note that the Ebeling’s method was developed based on TBPM. 

The rest of this chapter is organised as follows. In Section 3.2, the concepts of SSA 

and the assumptions used in the SSA are introduced. Section 3.3 consists of three 

subsections. In Subsection 3.3.1, a basic model to analyse the reliability of the 

repairable system is developed under the condition that always the same single 

component is repaired in all PM actions. Subsection 3.3.2 focuses on the scenario 

that only single but a different component is repaired in each PM action. A heuristic 

approach is presented in Subsection 3.3.3 for analysing more general cases. In 

Sections 3.4 and 3.5, an example and a case study are used to demonstrate the 

applications of the developed models respectively. In Section 3.6, results of 

simulations to verify the developed model are presented. The chapter concludes in 

Section 3.7.  
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3.2 CONCEPTS OF SSA AND ASSUMPTIONS  

The basic concept of the SSA is to separate repaired and unrepaired components 

within a system virtually when modelling the reliability of a system after PM 

activities. This concept enables the analysis of system reliability at the component 

level, and stems from the fact that generally when a complex system has a PM action, 

only some of the components are repaired [194]. 

In the analysis, the following assumptions were made:  

(1) The failure of repaired components is independent of unrepaired components. 

This assumption means that when a component is repaired, the failure 

distribution form of the unrepaired components of a system does not change, 

and the conditions of the unrepaired components do not affect the reliability 

characteristics of repaired components. 

(2) The reliability function of a new repairable system is known. The reliability 

functions of repaired components are also known.  

(3) The topology of a repairable system is known. 

(4) The repair time is negligible.  

(5) The PM time is a deterministic variable. 

The first assumption means that the failures of different components in a system are 

independent. This assumption has been adopted by most existing models. The 

assumption of independent failures will be removed in the models developed in 

Chapters 4 and 5. 

The second assumption is reasonable. Several techniques have been developed to 

determine the original reliability functions if historical data are sufficient. The 

situation where historical failure data are insufficient will be discussed in Chapter 6. 

The third assumption is also reasonable because the configuration of a system is 
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often known. 

The fourth assumption is reasonable when repair time is much shorter than the time 

between two PM actions and has been used previously [8, 221, 292].  

The fifth assumption is sustained because PM times considered in this research are 

either scheduled by maintenance engineers such as in TBPM or dynamically 

determined based on the requirement for reliability such as in RBPM. PM time is 

different from failure time which is a random variable. 

According to the above assumptions, only the reliability functions of repaired 

components change when a PM action is conducted on a system. The PM does not 

change the characteristics of the reliability of the unrepaired components in the 

system. 

3.3 MODELLING 

In this chapter, the SSA is developed based on three scenarios. Firstly, a basic model 

is developed using a simple scenario where always the same single component is 

repaired in all PM activities. Secondly, this basic model is extended to the scenario 

where only a single but different component is repaired in each PM action. Finally, a 

heuristic approach is developed for more general scenarios.  

3.3.1 Scenario one: the Same Single Component Repair  

In this scenario, the original system can be described using two virtual parts: the 

repaired Component 1 and the remainder of the system - often referred to as the 

subsystem. The PM strategy is to repair Component 1 whenever the reliability of the 

system falls to a predefined control limit of reliability 0R . The term ‘control limit of 

reliability’ indicates the required minimum reliability level of a system. Although 

this scenario is mainly used to demonstrate the basic concepts and procedures for 

SSA, the models based on this scenario can be applied in industrial cases. For 

example, a system has a vulnerable Component 1, i.e., this component is more likely 

to fail than the rest of the system. Both series and parallel systems are considered. 
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3.3.1.1 Series system  

A series system is shown in Figure 3-2. The repaired component is connected with 

the subsystem in series, but the subsystem can be any complex system. In Figure 3-2, 

iR )(1 τ  and isbR )(τ  are the reliability functions of the repaired Component 1 and 

subsystem after the ith PM interval, respectively. In this thesis, the second subscript i  

is used to denote “after the ith PM 

action”. Subscript 0=i  stands 

for no PM. Sometimes, for 

simplicity, subscript 0  will be 

omitted if the meaning of no PM 

is clear. Two time coordinates are 

used in the modelling (refer to 

Figure 3-3):  

Absolute time scale t : ∞<≤ t0 . 

Relative time scale τ : it≤≤ τ0   ( ni ,,2,1 K= ). 

Usually, the reliability of a system after a PM action cannot be restored to its original 

state, i.e., not “as good as new”. The most common phenomenon is that the reliability 

of a system after a PM action is lower than its original reliability, leading to an 

imperfect repair. After imperfect repairs, the reliability of a system declines in a 

manner shown in Figure 3-3.  

In Figure 3-3, 0R  is the predefined control limit of the reliability for the system, it∆  

is the interval time between the (i-1)th PM action and the ith PM action ( ni ,,2,1 K= ). 

Parameter it  is the ith PM time and also the start time for a system to run again after 

the ith PM action. Therefore 

τ+∆=∑
=

n

i
itt

1

. (3-1)  

Let isR )(τ  represent the reliability function of the system after the ith PM action. 

1 sub 

iR )(1 τ  isbR )(τ  

 

Figure 3-2. Series system 
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Using reliability theory, the following expression can be obtained: 

isbiis RRR )()()( 1 τττ =        ),,2,1,0( ni K= . (3-2) 

Initially, the reliability function of a system can be expressed as: 

0010 )()()( τττ sbs RRR = . (3-3) 

 

The reliability function of the subsystem can be derived from Equation (3-3): 

01

0
0 )(

)(
)(

τ
ττ

R

R
R s

sb = . (3-4)  

Equation (3-4) implies that 0)( 01 ≠τR . The reliability functions for typical failure 

distributions such as exponential distribution, normal distribution, lognormal 

distribution and Weibull distribution all meet this requirement. 

At time 1t , the reliability of the system falls to the control limit 0R  and Component 1 

is repaired as requested by the PM strategy. After the first PM action, the reliability 

function of Component 1 becomes 11 )(τR , but the reliability function of the 

subsystem remains the same since it is not repaired. Considering the cumulative 

effect of time, the reliability function of the subsystem after the first PM action, 

∆t3… ∆tn ∆t2 ∆t1 

τ  

0t  1t  2t  nt  t  

R0 

Rs(t) 

Rs(t)0 Rs(t)1 

Rs(t)n-1 
Rs(t)n 

Figure 3-3.  Changes of the reliability of an imperfectly repaired system 
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1)(τsbR , is 01)( tRsb ∆+τ . Hence, the reliability of the system after the first PM action 

becomes 

01111 )()()( tRRR sbs ∆+= τττ . (3-5) 

If 01111 )()( tRR ∆+= ττ , then 011 )()( tRR ss ∆+= ττ . This indicates that the system is 

repaired as bad as old. 

If Component 1 is repaired or replaced by an identical one so that 

0111011 )()()( τττ RRtR ≤<∆+ , then Equation (3-5) represents the situation where 

the system is repaired imperfectly because 0101 )()()( τττ sss RRtR <<∆+  in this 

case.  

If the reliability of Component 1 after the repair is better than its original reliability, 

0111 )()( ττ RR ≥ , so that 01 )()( ττ ss RR ≥ , Equation (3-5) then represents the case 

where the state of a system after repairs is improved to be as good as new or even 

better than original new one. As a result, Equation (3-5) can describe all possible 

states of a system after PM (The case that a repair decreases the reliability of a 

system is not considered in this thesis). 

The reliability function of system after the nth PM interval can be derived as:  

0
1

1 )()()( ∑
=

∆+=
n

i
isbnns tRRR τττ . (3-6) 

Substituting Equation (3-4) into Equation (3-6) gives 

0
1

1

1
01

)(

)()(
)(

∑

∑

=

=

∆+

∆+
=

n

i
i

n

i
isn

ns

tR

tRR
R

τ

ττ
τ . (3-7) 

Equation (3-7) can be rewritten using absolute time scale as follows: 
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01

0
1

1

)(

)()(
)(

tR

tRttR
tR

s

n

i
ni

s

∑
=

∆−
=         ( ∑

=

∆≥
n

i
itt

1

 ). (3-8) 

where, )(tRs  is the reliability of the system after the nth PM interval. 

Note that Equation (3-7) and Equation (3-8) both describe the reliability of a system 

which has been preventively maintained for n  times, i.e., these two equations both 

describe the conditional probability of survival of a system with n  PM intervals. 

Neither of these two equations considers the cumulative effect over time of the 

repaired components. To predict the probability of survival of a system over its 

whole life time, these cumulative effects need to be considered, i.e., the probability 

of survival of these repaired components until their individual repair times need to be 

considered [16]. The probability of survival of a system over its whole life time is 

termed as the cumulative reliability of the system. The cumulative reliability function 

of the system with the first PM action is  

10111 )()()( ττ ssc RtRR ∆= , (3-9) 

where, 1)(τscR  is the cumulative reliability of the system after the first PM action. 

011 )( tR ∆  is the probability of survival of Component 1 until 1t . 

Generally, the cumulative reliability of the system with n  PM intervals can be 

expressed as: 

∏
−

=
+∆=

1

0
11 )()()(

n

i
siisc tRtRtR        ( ∑

=

∆≥
n

i
itt

1

 ), (3-10) 

where )(tRsc  is the cumulative reliability of the system with n  PM intervals. 

A low reliability of the unrepaired components of the system, or poorly repaired 

components, or both will cause a low nsR )0( . Obviously, the system should not be 

repaired any more if  
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0

1
01

1
01

)(

)()0(
)0( R

tR

tRR
R

n

i
i

n

i
isn

ns ≤
∆

∆
=

∑

∑

=

= , (3-11) 

i.e., a PM action is unworthy if the reliability of the system after this PM action 

cannot recover to excess the required reliability level. 

3.3.1.2 Parallel system 

In this case, the repaired component is connected with the subsystem in parallel as 

shown in Figure 3-4.  

 
The relationship of reliability functions iR )(1 τ , isbR )(τ  and isR )(τ  is given by 

isbiisbiis RRRRR )()()()()( 11 τττττ −+=     ),,2,1,0( ni K= . (3-12) 

To simplify mathematical operations, let iF )(1 τ , isbF )(τ  and isF )(τ  be 

corresponding failure distribution functions of Component 1, subsystem and the 

system after the ith PM action respectively. According to reliability theory, Equation 

(3-12) becomes 

isbiis FFF )()()( 1 τττ =        ),,2,1,0( ni K= . (3-13) 

Based on the same derivation procedure as in Subsection 3.3.1.1, the following 

1 

sub 

iR )(1 τ  

isbR )(τ  

 

Figure 3-4.  Parallel system 
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results can be obtained (vide Figure 3-5):  

0
1

1

1
01

)(

)()(
)(

∑

∑

=

=

∆+

∆+
=

n

i
i

n

i
isn

ns

tF

tFF
F

τ

ττ
τ , (3-14) 

01

0
1

1

)(

)()(
)(

tF

tFttF
tF

s

n

i
ni

s

∑
=

∆−
=           ( ∑

=

∆≥
n

i
itt

1

). (3-15) 

where, Functions nsF )(τ  and )(tFs  are the failure distribution functions of the 

system after the nth PM interval described in the relative time scale and the absolute 

time scale, respectively. Functions 01 )(τF  and nF )(1 τ  represent the failure 

distribution functions of Component 1 before any PM and after the nth PM interval, 

respectively. Function 0)(tFs  is the failure distribution function of the original 

system.  In Figure 5-5, 0F  is a predefined control limit of the failure probability of a 

system. 

 

Equation (3-15) can be rewritten in the term of reliability function as follows: 

∆t3… ∆tn ∆t2 ∆t1 

Fs(t)0 

Fs(t)n-1 

τ  F0 

Fs(t) 

Fs(t)n 

Figure 3-5. Changes of the failure distribution function of an imperfectly 

repaired system 

Fs(t)1 

0t  1t  2t  nt  t  
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01

0
1

1

)(1

])(1][)(1[
1)(

tR

tRttR
tR

s

n

i
ni

s −

−∆−−
−=

∑
=            ( ∑

=

∆≥
n

i
itt

1

). (3-16) 

Generally, 111 )()( −∆+≤ iii tFF ττ  and 0)(τsbF  increases monotonously with the 

increase of operational time, so 

11 )()()( −− >>∆+ isisiis FFtF τττ          ( ni ,,2,1 K= ). (3-17) 

Equation (3-17) indicates that a system is repaired imperfectly. It is noted that 

Equations (3-14) and (3-15) or (3-16) can represent all different states of a system 

after PM due to the similar reasons mentioned in Subsection 3.3.1.1. 

The cumulative reliability of the system can be derived as follows: 

The cumulative reliability of Component 1 with n  PM intervals is 

∏
−

=
+∆=

1

0
1111 )()()(

n

i
niinc RtRR ττ . (3-18) 

The cumulative reliability of the subsystem is 0
1

)( ∑
=

∆+
n

i
isb tR τ  since it is not repaired 

as assumed by the PM strategy. Hence, the cumulative reliability of the system with 

n  PM intervals is 

])(1][)(1[1)(
1

01 ∑
=

∆+−−−=
n

i
isbncnsc tRRR τττ . (3-19) 

Equation (3-19) can be rewritten using absolute time scale as follows: 

01

0
1

1

1

0
11

)(1

])(1][)()(1[
1)(

tR

tRttRtR

tR
s

n

i
ni

n

i
ii

sc −

−∆−∆−
−=

∑∏
=

−

=
+

     ( ∑
=

∆≥
n

i
itt

1

). (3-20) 

In Equations (3-19) and (3-20), nscR )(τ  and )(tRsc are the cumulative reliability of 
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the system with n  PM intervals. 

3.3.2 Scenario two: Single but Different Component Repairs 

In this scenario, a system has m vulnerable components. The PM strategy is to 

maintain one of them whenever the reliability of the system falls to the predefined 

control limit of reliability. Normally, the PM sequence of these components is 

arranged based on their reliability characteristics to ensure the component with the 

lowest reliability at each PM time to be repaired. These repaired components will be 

connected with the subsystems in different ways because both the repaired 

components and the subsystems will change in each PM action. 

3.3.2.1 Multi-series system 

In this case, all m  repaired components and unrepaired subsystem are connected 

together serially (see Figure 3-6). Components can be numbered according to their 

sequences to receive their first repair in n  PM intervals so that nm ≤  without losing 

any generality. 

The situation is exactly the same as Subsection 3.3.1.1 after the first PM action, but 

is different from Subsection 3.3.1.1 after the second PM action because another 

component instead of Component 1 may be repaired. Therefore, the subsystem 

changes after the ith ( 1>i ) PM interval. 

 

Generally, if m  components are repaired in n  PM intervals and kL  indicates that 

Component k  ( mk ≤ ) receives its last repair in the Lk
th PM action ( nLk ≤ ), then 

1 2 m sub 

isbR )(τ

Figure 3-6. Multi-series system 

iR )(1 τ
 

imR )(τ  iR )(2 τ
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the reliability function of a system after the nth PM interval is given by (refer to 

Appendix B2) 

∏ ∑

∑ ∏ ∑

= =

= = +=

∆+

∆+∆+
=

m

k

n

i
ik

n

i

m

k

n

Li
Likis

ns

tR

tRtR

R k

k

1 1
0

1 1 1
0

)(

)()(

)(
τ

ττ
τ .  (3-21) 

In Equation (3-21), define 0
1

=∆∑
+=

n

Li
i

k

t  when nLk >+1 . The cumulative reliability of 

the system can be calculated using a heuristic approach which is presented in 

Subsection 3.3.3. 

3.3.2.2 Multi-parallel system and complex system 

For a multi-parallel 

system shown in Figure 3-

7, it is straightforward to 

model the system after the 

nth PM interval using the 

same method as described 

in Subsection 3.3.1.2, i.e., 

using failure distribution 

functions instead of 

reliability functions to 

derive the corresponding 

formulae. One only needs 

to replace R  with F  in 

Equation (3-21) in order to model the failure distribution functions of a system after 

the nth PM interval as follows:  

∏ ∑

∑ ∏ ∑

= =

= = +=

∆+

∆+∆+
=

m

k

n

i
ik

n

i

m

k

n

Li
Likis

ns

tF

tFtF

F k

k

1 1
0

1 1 1
0

)(

)()(

)(
τ

ττ
τ  

2 

Sub1 

Figure 3-7.  Multi-parallel system 

1 

m 

iR )(1 τ

iR )(2 τ

imR )(τ

 

isbR )(1 τ  
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However, derivation of the reliability functions of a complex system after the nth PM 

action is difficult because numerous possible conditions need to be considered. 

During n  PM intervals, the repaired components can have either a series relationship 

or a parallel relationship with the subsystem, or, even worse, a relationship which is 

neither in series nor in parallel with the subsystem. Figure 3-8 shows one such 

example. It is impossible to derive a general formula like Equation (3-21) for the 

case. The reliability of a complex system after the nth PM interval can be calculated 

using the following heuristic approach. 

  

3.3.3 Heuristic Approach 

The heuristic approach is described as follows: 

(1) Determine the first PM time 11 tt ∆=  when the reliability of the system first 

falls to the predefined control limit of reliability using the original reliability 

function of the system. 

(2) Assume that the system has M components and 1S  components ( MS ≤≤ 11 ) 

are repaired in the first PM action. The repaired Component 1k  

( 11 ,,2,1 Sk K= ) is assigned a new reliability function 1)(
1

τkR  ( 11 ,,2,1 Sk K= ) 

 

                         subI 

 

                     subII 

2 

Figure 3-8.  An example of complex system 

1 

m 3 

sub 

iR )(1 τ

 

isbR )(2 τ  

isbR )(1 τ  
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based on the requirement of a PM strategy. The cumulative reliability 

functions of these repaired components, 1)(
1

τckR  ( 11 ,,2,1 Sk K= ), are 

101 )()(
11

τkk RtR ∆  ( 11 ,,2,1 Sk K= ). The reliability functions of the rest of the 

components of the system remain the same as before since they are not 

repaired. However, the cumulative effects of time before the first PM action 

need to be considered. Hence, 011 )()(
11

tRR jj ∆+= ττ  

( MSSj ,,2,1 111 K++= ), which are the same as their cumulative reliability 

functions with the first PM action. 

(3) Calculate the reliability function and the cumulative reliability function of the 

system after the first PM action, 1)(τsR  and 1)(τscR , based on the RBD of the 

system using the reliability functions and the cumulative reliability functions 

of its components after the first PM action, respectively. 

(4) Determine the second PM time 2t  using the reliability function of the system 

after the first PM action, 1)(τsR . 

(5) Assume 2S  components are repaired in the second PM action. The repaired 

Component 2k  is assigned a new reliability function 2)(
2

τkR  ( 2k represents 

all components repaired in the second PM action) based on the requirement of 

PM strategy. The cumulative reliability functions of these components 

2)(
2

τckR  ( 2k represents all components repaired in the second PM action) 

now need to be calculated based on two scenarios: if components have also 

been repaired in the first PM action, their cumulative reliability functions are 

2

1

0
1 )()(

2121
τk

i
iik RtR∏

=
+∆ . Subcript 21k  represents all components that are 

repaired in the first and second PM action. The cumulative reliability 

functions for those components which are repaired in the second PM action 

only are 20

2

1

)()(
2222

τk
i

ik RtR ∑
=

∆ . Subscript 2221 kk ≠  and 22221 Skk =+ . The 

reliability functions of the rest of the components of the system remain the 

same as before this PM action since they are not repaired. However, the 
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cumulative effects of time on unrepaired components can now be different 

since some of these components may be repaired in the first PM action. Just 

like the repaired components, the reliability functions and the cumulative 

reliability functions of these unrepaired components also need to be 

calculated based on two scenarios. For components which are never repaired, 

their reliability functions 2)(
21

τjR  and cumulative reliability functions 

2)(
21

τcjR  both are 0

2

1

)(
21 ∑

=

∆+
i

ij tR τ . Subscript 21j  represents all components 

which are never been repaired. For components which have been repaired in 

the first PM action, their reliability functions 2)(
22

τjR  and cumulative 

reliability functions 2)(
22

τcjR  are 12 )(
22

tRj ∆+τ  and 1201 )()(
2222

tRtR jj ∆+∆ τ . 

Subscript 2122 jj ≠  and 22221 SMjj −=+ . 

(6) Calculate the reliability function and the cumulative reliability function of the 

system after the second PM action, 2)(τsR  and 2)(τscR , based on the RBD of 

the system using the reliability functions and the cumulative reliability 

functions of its components after the second PM action, respectively. 

(7) Continue the above procedure until the nth PM action. 

If only one component is repaired in each PM action, the above heuristic approach 

can often be described using the following recurrence formula: 

1211 )()()()( −− ∆++∆+= ii
e
sbikii

e
sbis tRRtRR ττττ       ),...,2,1( ni = , (3-22) 

where, subscript mk ,,2,1 K=  indicates repaired components in the ith PM action. 

11 )( −∆+ ii
e
sb tR τ  and 12 )( −∆+ ii

e
sb tR τ  are the equivalent reliability functions that are 

calculated based on the subsystem. For example, in the case shown in Figure 3-8,  

1111 )()( −− ∆+=∆+ iisbii
e
sb tRtR ττ  

and 
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))(1()()( 111212 −−− ∆+−∆+=∆+ iisbiisbii
e
sb tRtRtR τττ .  

These equivalent reliability functions can vary when different component is repaired.  

For more generalised scenarios - two or more components are repaired in each PM 

action, the following techniques can be used to simplify calculations.  

Case 1: Repaired components can be combined to form a new subsystem, and the 

new subsystem has a series relationship with original subsystem. This scenario can 

be treated to be the same as that in Subsection 3.3.1.1, and hence the model in 

Subsection 3.3.1.1 can be applied. 

Case 2: Repaired components can be combined to form a new subsystem, and the 

new subsystem has a parallel relationship with the original subsystem. This scenario 

can be treated to be the same as that in Subsection 3.3.1.2, and hence the model in 

Subsection 3.3.1.2 can be applied. 

The SSA is developed to support PM decision making for a repairable system over 

its lifetime. This capability is demonstrated by the following example and case study. 

3.4 An Example: a System with Weibull Failure Distribution 

A repairable complex mechanical system is the same as described in Subsection 

3.3.1.1. The PM strategy is to replace Component 1 with an identical new one 

whenever the reliability of the system falls to 0R  - a predefined control limit of 

reliability. The reliability functions of the original system and Component 1 are 

Weibull. They are given by 









−= 2

0 )(exp)(
s

sR
η
ττ  (3-25) 

and  
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







−= 2

1
01 )(exp)(

η
ττR , (3-26) 

where, sη and 1η  are the characteristic life of the system and Component 1 [16] 

respectively. Parameter η  in the Weibull distribution is also termed as a scale 

parameter.  

When the system receives its first PM action, 001)( RtRs = . The first PM time 

11 tt ∆=  is given by 

011 ln Rtt s −=∆= η              ( 01 0 >> R ).  (3-27) 

Using Equation (3-7), gives 
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The reliability of the system just after the first PM action is 

)1(
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2
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)0( η
ηs

RRs
−= . (3-29) 

The reliability of the system after the PM increases but is not restored to 1 (the 

perfect reliability level of the system) since 01
2
1

2

>>
η
ηs , that is, the system has an 

imperfect repair. 

Using Equation (3-7) gives the reliability function of the repairable system after the 
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nth PM interval, nsR )(τ :  
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If the absolute time scale is applied, Equation (3-30) can be rewritten as: 
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The interval between the (n-1)th PM action and the nth PM action is given by equation 
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















 ∆+∆+∆+∆−
−=

∑
−

=
−

22
1

222
2

1
1

22
1

0

)())((
exp

s

ns

n

i
inns tttt

R
ηη

ηηη
 (3-32) 

∑
∑ −

=

−

= ∆




















∆−−+−

=∆
1

1
2
1

2
1

1
0

24
1

22
1

42
1

2 )/(ln
n

i
i

n

i
issss

n t

tR

t
η

ηηηηηηη
. (3-33) 

The relationship 1−∆<∆ nn tt  can be proved as follows: 

When the reliability of the system reaches 0R  after the (n-2)th PM action, the time 

interval 1−∆ nt  can be determined by 
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A combination of Equations (3-32) and (3-34) gives 
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From Equation (3-35), it can be found that 1−∆<∆ nn tt  since 
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In case Component 1 ceases to be produced, how many spare parts of Component 1 

should be kept for the life span of the system? One answer can be found using the 

following criterion. The interval time between two PM actions must be longer than 

required minimum operating time pt , that is 

pn tt ≥∆ . (3-36) 

Substituting Equation (3-33) into Equation (3-36), gives 
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The maximum number of Component 1 to be stored for PM can be estimated through 

finding the maximum n  from Equation (3-37). The expected life of this repairable 

system can also be estimated from Equation (3-37). However, Equation (3-37) must 

be calculated recurrently and numerically. Some examples using Monte Carlo 

Simulation (MCS) are presented in Section 3.6. The simulations were conducted 
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using Matlab software, and was based on the common knowledge of Monte Carlo 

simulation which considered the properties of Weibull distribution and series systems, 

and used the Boolean Algorithms and the empirical cumulative distribution function 

(CDF) [12]. For more details, please refer to [16] p.90-91, [297] p.400-439 and [298] 

p.148-150. 

To evaluate the effectiveness of the above PM strategy on the reliability of the 

system over its life span, the cumulative reliability of the system should be calculated. 

Using Equation (3-10) gives the cumulative reliability of the system with n  PM 

intervals as follows: 
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Rewrite Equation (3-38) as: 
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Hence, 0)()( tRtR ssc > , i.e., in this case, PM reduces the probability of unexpected 

breakdown of the system. 

To investigate the effectiveness of PM further, assume that Component 1 has a 

constant random failure rate, i.e. 

)exp()(1 τλτ iiR −=          ( ni ,,2,1,0 K= ) (3-39) 

where, iλ  is the failure rate of Component 1 after the nth PM action.  
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Using Equations (3-8) and (3-10) gives the cumulative reliability of the system with 

nPM intervals: 
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Equation (3-40) indicates that if 01 λλ =−i  ( ni ,,2,1 K= ), 0)()( tRtR ssc = , i.e., PM in 

this case has no effect even though the entire system presents a wear-out 

characteristic.  

3.5 Case Study: a Water Supply Pipeline 

The SSA was applied to a water supply pipeline which was made from PVC 

consisting of 10 segments. The length of each pipe was 6 m. The pipeline was 

installed on 1 June 1991. A corrective maintenance policy was in force, that is, 

whenever a pipe failed, it was replaced. During the observed period, the placed pipes 

where not found to have failed again. (The raw data cannot be presented due to the 

need for confidentiality.) After a comprehensive investigation, the following 

assumptions were made in the analysis: 

(1) The analysed pipes have an independent, identical failure distribution. 

(2) The failed pipes were replaced by identical new pipes. 

(3) Repair time is ignored. 

(4) All failed pipes started operating at the same time. 

(5) All pipes operated under the same conditions. 

The scenario in this case study is the same as described in Subsection 3.3.2.1.  

3.5.1.1 Failure distribution characteristics of the pipeline 

Figure 3-9 shows the assessment of failure distribution of the pipeline. It can be seen 

that the failure times of the pipeline have a Weibull distribution. 
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Further analysis using the Mann’s Test for the Weibull Distribution indicated that the 

Weibull hypothesis for the failure time of the pipeline can be accepted at the level of 

significance 0.05. The Mann’s Test is presented in Appendix B3. 

The failure distribution of the failure times of the pipeline was obtained using MLE 

as follows: 

])
3.3573

(exp[)( 5923.5
0

ττ −=sR . (3-41) 

 

The failure distribution function of each pipe was derived from Equation (3-41) since 

the pipeline was a series system comprised of 10 identical pipes:  

0)(τiR ])
7.5393

(exp[ 5923.5τ−=               ( 10,,2,1 K=i ). (3-42) 

Failure history indicated that this pipeline has failed frequently after 3000 days under 

the current corrective maintenance policy. Since the pipes were operating in the wear 

out stage, a proper PM strategy can be used to improve the overall reliability of the 

pipeline. SSA was used to investigate the effect of different PM strategies on the 
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Figure 3-9.  Weibull probability plot 
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reliability of the pipeline. The results are demonstrated in the following subsection.  

3.5.1.2 Comparisons between different PM strategies 

Both TBPM and RBPM policies were considered. When TBPM policy is applied, 

pipes are replaced sequentially with an identical new one based on scheduled PM 

times. The intervals between two PM actions may or may not be the same. When 

RBPM is applied, a reliability control limit 0R  is defined in advance. Whenever the 

reliability of the pipeline reaches this predefined control limit, the pipe which has the 

lowest reliability is replaced with an identical new one. 

Figures 3-10 and 3-11 show the reliability prediction of the pipeline. In these figures, 

the dashed line and the thick continuous line indicate the probability of the pipeline 

without a failure based on TBPM and RBPM, respectively. The crossed line is the 

reliability of the pipeline without PM.  

In Figure 3-10 (Case1), the predefined control limit of reliability for RBPM is 0.9. 

The PM interval times for TBPM are unequal. The first PM action is planned at the 

time of 600 days and then PM is to be conducted every 200 days. From this figure, it 

can be seen that both TBPM and RTBM improve the cumulative reliability of the 

pipeline significantly but TBPM is more effective. The cumulative reliability of the 

pipeline with TBPM is maintained above 0.9 at the time of 4500 days whereas the 

reliability of the pipeline without PM at the same time will be lower than 0.4. Note 

that the cumulative reliability of the pipeline with TBPM in this case is much higher 

than with RBPM but the number of PM times with TBPM is also more than that with 

RBTM. The former (19 times) nearly doubles the latter (10 times). 

Figure 3-11 shows another PM strategy (Case 2). In this strategy, the predefined 

control limit of reliability for RBPM is still 0.9. However, the first PM time for 

TBPM changes to 1000 days and the sequential PM intervals also increase to 360 

days. Both PM strategies require the same number of PM times (10 times) within 

4500 days. The cumulative reliability with TBPM is higher than that with RBPM 

between 2500 days and 3400 days. After this period, RBPM is more effective. The 

TBPM was ineffective in the given scenario because several PM actions were 
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conducted after the system reliability had fallen to a very low level. 

 

 

Comparisons can be made not only between different PM policies, but also among 

different strategies which are developed based on the same PM policy. Look at the 
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Figure 3-11.  The reliability of a pipeline with PM – Case 2 
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Figure 3-10.  The reliability of a pipeline with PM – Case 1 
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cumulative reliability curves with TBPM in Figures 3-11, 3-12 and 3-13. It can be 

found that different combination of PM times significantly affects the cumulative 

reliability of the pipeline. All three TBPM strategies require the same number of PM 

times (10 times), but generate very different cumulative reliability of the pipeline 

over 4500 days. The TBPM strategy (Case 3) shown in Figure 3-12 has the highest 

cumulative reliability whereas the TBPM strategy (Case 4) shown in Figure 3-13 

generates the lowest cumulative reliability which is 12% lower than the former. 
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Figure 3-13.  The reliability of a pipeline with PM – Case 4 
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Figure 3-12.  The reliability of a pipeline with PM – Case 3 
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Figures 3-10 to 3-13 demonstrate that the SSA can effectively assist in optimal PM 

decision making through long term reliability prediction. 

3.6 SIMULATIONS 

The SSA was also validated by a number of Monte Carlo Simulation (MCS) 

experiments. Figures 3-14 to 3-16 show the results of the simulations for RBPM. 

Cumulative reliability was not presented in these figures for simplification. From 

these figures, it can be concluded that SSA identified the same number of PM times 

as that demonstrated by the Monte Carlo simulations. The characteristics of the 

reliability of the system and the PM times predicted by SSA are very close to the 

results of the MCS experiments. Therefore, SSA has a commendable accuracy of 

prediction. In Figure 3-16, reliability was also predicted based the fix deterioration 

rate model for comparison. The deterioration rate was 0.02 which was determined 

based on the initial reliability of the system after the first PM action. From this figure, 

it can be seen that the results based on the fix deterioration rate depart from the MCS 

results significantly. 
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Figure 3-14.  Simulation experimental results 1 - the changes of the reliability 

of a system over the entire life span 
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Figure 3-16.  Simulation experimental results 3 - the changes of the reliability 

of a system over the entire life span 
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Figure 3-15.  Simulation experimental results 2 - the changes of the 

reliability of a system over the entire life span 
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3.7 SUMMARY 

SSA performs more closely to the real world when compared with Ebeling’s method 

[16] and the fixed deterioration rate model [20]. SSA extended Ebeling method 

through considering imperfect repairs. In SSA, the changes of reliability are 

calculated based on individual system and repair condition rather than assumed or 

estimated by human experience. Therefore, the rate of change may not be constant.  

Compared with existing models, the new model developed in this chapter has the 

following advantages: 

(1) Ability to explicitly predict the reliability of a repairable system with multiple 

PM actions over multiple PM intervals and to decide when the system has 

deteriorated to a point where it is unworthy of further PM from the reliability 

view of point. Most of the existing models are applied to predict the next PM 

time, MTTF or/and the expected number of failures. SSA is hence more 

suitable for supporting long term PM decision making of complex repairable 

systems in industry.  

(2) Ability to deal with the individual contributions of different parts in a system 

and the influence of system structures on the reliability of a repairable system. 

This ability provides an understanding of PM of a system in more depth.  

(3) Ability to model different states of a system after PM such as “as good as 

new”, “imperfect repair”, “improvement repair” (i.e., better than new) and “as 

bad as old”. 

(4) No restrictions on the forms of failure distribution. 

The outcomes of the research in this chapter present three important concepts for 

maintenance decision making.  

(1) A PM action for a complex system is often imperfect because normally only 

some of components are repaired when PM is conducted on a complex 

system. 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 90 

(2) An optimal maintenance strategy should consider both the entire system and 

individual components of a system. For example, in a series repairable system 

shown in Figure 3-2, maintaining the subsystem to increase its reliability 

should be considered when the reliability of the subsystem is less than that of 

Component 1. 

(3) The effectiveness of PM is often related to the failure characteristics of 

repaired components rather than that of a system. If the repaired components 

have constant failure rates, a PM action, which is to replace these components 

with new identical ones, has no effect even though the entire system adopts a 

wear-out characteristic.  

The formulae and methods in this chapter have been developed based on RBPM. 

Extensions of these results to TBPM are straightforward. 

In this chapter, the failures of repaired components are assumed to be independent of 

unrepaired components. This implies that the analysed repairable system has no 

failure interactions. If the failure interactions between repaired components and 

unrepaired subsystems are considered, the results would be different. The reliability 

prediction of systems with failure interaction will be studied in the following 

chapters.  
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Chapter 4  

ANALYSIS OF INTERACTIVE FAILURES 

4.1 INTRODUCTION 

As presented in Chapter 2 and Chapter 3, numerous models and methodologies have 

been developed to describe and predict failures. These models or methodologies have 

been mainly developed on the assumption that failures are independent. As indicated 

in Chapter 3, SSA was also developed based on this assumption. However, industrial 

experiences have shown that the assumption of independent failures has been 

unrealistic in numerous scenarios and has led to unacceptable errors in reliability 

analysis. To ensure the accuracy of reliability prediction, the dependency of failures 

among components needs to be considered.  

Currently the most discussed dependent failures include cascading failure, negative 

dependency failure and common cause failure [8, 278]. Cascading failure is defined 

as multiple sequential failures. These failures are initiated by the failure of one 

component, which leads to sequential failures of other components. Negative 

dependency failure is defined as failure that can prevent other components in a 

system from failing further. Common cause failure is defined as multiple related 

events caused by a single common cause. This cause can be the failure of a physical 

component or an event such as a fire. The latter is often described as the failure of a 

“virtual” component. Whenever the term “component”, is mentioned in this chapter, 

it usually includes both physical component and virtual component. Cascading 

failure, negative dependency failure and common cause failure are classified into 

conventional dependent failures. A common feature of these conventional dependent 

failures is that failure effect is one directional only, i.e., the failures of some 

components can affect failures of other components but the latter have no effect on 

the former. Several models and methodologies have been developed to analyse these 

conventional dependent failures. However, these models and methodologies cannot 
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be effectively used to analyse the failures due to failure interactions among 

components.  

Failure interaction is common in mechanical engineering and civil engineering. The 

loss of the Space Shuttle Columbia is such an example. On February 1, 2003, the 

Space Shuttle Columbia disintegrated on its return to Earth. Seven crew members on 

board lost their lives (Figure 4-1). The investigation revealed that this disaster was 

initiated by a large piece of foam which had separated from the external fuel tank. 

This piece of foam struck Columbia on the underside of the left wing and caused a 

breach in the thermal protection system on the leading edge of the left wing (Figure 

4-2). The breach finally resulted in the burning of the Shuttle including the fuel tank. 

The failure of Columbia was an interactive failure. The initial failure was not severe, 

but the consequence of the failure interaction was disastrous. If the foam had not 

separated or the separated foam did not cause a breach in the thermal protection 

system, the tragedy of Columbia would have not happened.  

  

Estimating the failure probability of components subject to failure interaction is 

imperative. As indicated in Chapter 2, a model or technique used to analyse this 

failure probability quantitatively and effectively is still unavailable.  

 

Figure 4-1. The loss of the Space 

Shuttle Columbia (Source: 

http://www.evergreen.edu/library/gov

docs/hotopics/columbia/ ) 

 

Figure 4-2. The impact of the 

foam on Columbia (Source: 

http://www.cbsnews.com/stories/2003

/07/10/tech/main562542.shtml ) 

halla
This figure is not available online.  Please consult the hardcopy thesis available from the QUT Library

halla
This figure is not available online.  Please consult the hardcopy thesis available from the QUT Library
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In this chapter, a model is developed to analyse interactive failure distribution for a 

system quantitatively. Several case studies are used to justify the newly developed 

model. The properties of interactive failures are also analysed. 

The rest of this chapter is organised as follows. In Section 4.2, the concepts and 

definitions of interactive failure and interactive hazard are introduced. In Section 4.3, 

an analytical model for IntF is derived. In Section 4.4, the determination of 

interactive coefficients is discussed briefly. In Section 4.5, the stability of IntF is 

analysed. In Section 4.6, mathematical models and some conditions for existence of 

stable IntF are presented. Case studies are presented in Section 4.7. In Section 4.8, a 

methodology to calculate the IntF of components is developed. The properties of IntF 

are investigated in Section 4.9 and the effects of IntF on systems are analysed in 

Section 4.10. This is followed by conclusions in Section 4.11. 

4.2 INTERACTIVE FAILURE AND INTERACTIVE HAZARD 

Definition 4-1: Interactive failure is defined as mutually dependent failures, that is, 

the failures of some components will affect the failures of other components and vice 

versa. 

Note that the term “components” usually includes subsystems unless specified. This 

thesis considers positive dependency between failures only. 

The simplest case is when only two failures interact. In the case of a gearbox, defects 

in a bearing will cause it to vibrate. The deterioration of the subsystem that includes 

related shaft and several gears can accelerate due to the excessive vibration caused 

by the bearing. Vice versa, a deteriorated subsystem can lead to faster deterioration 

of the bearings. 

The effect of the failure of a component on other components has two consequences: 

(1) Failure of one component (influencing component) causes other components 

(affected components) to fail immediately. 
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(2) Failure of the influencing component increases the deterioration of affected 

components instead of causing them to fail immediately. 

As a result, these two consequences increase the likelihood of failures of the affected 

components and accelerate their failure rates.  

A component can be either the influencing component or the affected component or 

both. In the above example, the bearing and the subsystem are both influencing 

components and affected components.  

Interactive failures can be classified into two categories: 

(1) Immediate Interactive Failures. The failure of the influencing component will 

cause its affected components to fail immediately. The conditions of the two 

components before failure are independent. 

(2) Gradual Degradation Interactive Failures. The conditions of two components 

before failure are dependent. A component deteriorates with time, that is, the 

failure rate of a component increases with time. The increase of deterioration 

of this component can result in an increase in deterioration of its affected 

components. As a result, the failure rate of the “victims” increase, and the 

system reaches the first state of failure interaction. The increase of 

deterioration of the “victims” can also increase the failure rate of this 

component - the original cause, and the system reaches the second state of 

failure interaction. This interaction can lead to a chain interaction process. As 

a result of this chain reaction, the two involved components may either 

achieve a new level of working status or eventually fail. 

The second category of interactive failures often occurs in mechanical systems and is 

the focus of this thesis. 
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The failure of a component without being affected by the failures of other 

components is termed as independent failure of the component. Correspondingly, the 

failure probability of this component in this case is termed as its independent failure 

probability. The failure probability of a component will be different from its 

independent failure probability if it is affected by the failures of other components.  

The failure likelihood of components with failure interactions will increase. The 

increased likelihood of failures due to the interactions of components can be 

considered as the consequences of the increased failure rates due to the same cause. 

Failure rate is often termed as hazard in reliability theory. For mathematical 

simplicity in analysing interactive failures of a system, the changes of hazards will be 

estimated and then the failure distribution functions of the system will be calculated. 

Definition 4-2: The increased hazard due to failure interactions is defined as 

Interactive Hazard (IntH). 

Failure probability is represented using failure distribution function. The relationship 

between the failure distribution function and hazard is [8]: 

])(exp[1)(
0
∫−−=
t

dtthtF , (4-1) 

where, )(tF  is the failure distribution function and )(th  is the hazard function. 

Therefore, the failure distribution function of a component can be calculated using 

Equation (4-1) if its hazard can be estimated.  

The failure distribution function and hazard are termed as independent failure 

distribution function and Independent Hazard (IndH) if the failures are independent. 

The failure probability and hazard of a component with failure interaction are 

described using the interactive failure distribution function and interactive hazard 

function. In this thesis, )(tFIi  and )(thIi  denote the independent failure distribution 

function and the independent hazard function of Component i  respectively; )(tFi  

and )(thi  denote the interactive failure distribution function and the interactive 
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hazard of Component i  respectively.  

Independent hazard is either a constant or a function of time, i.e., 





=
failuresothert

failuresrandom
th

i

i
Ii )(

)(
φ
λ

     ( Mi ,,2,1 K= ),   (4-2) 

where, M is the number of components in a system. 

However, from the Definitions 4-1 and 4-2, it can be seen that the interactive hazard 

of a component is a function of both its own independent hazard and the hazards of 

its influencing components. In the case of a system consisting of two components 

that have interactive failures, the hazards of these two components should be 

expressed as: 

],)(),([)( 2111 tththth BIϕ= , (4-3) 

]),(,)([)( 2122 tththth IBϕ= , (4-4) 

where, )(1 th  and  )(2 th are the interactive hazards of Component 1 and Component 2 

respectively. The functions Bth )(1  and Bth )(2  are the hazards of Component 1 and 

Component 2 before an interaction occurs, while )(1 thI  and )(2 thI  are the 

independent hazards of Component 1 and Component 2 respectively.  

To generalise the model involving M  components, the interactive hazards of M  

components in a system can be expressed as follows: 

],)(),([)(
1111 tththth BjI

r
ϕ= , 

],)(),([)(
2222 tththth BjI

r
ϕ= , 

                 M  
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],)(),([)( tththth BjIiii i

r
ϕ= ,  (4-5) 

                 M  

],)(),([)( tththth BjIMMM M

r
ϕ= . 

where )(thi and )(thIi , Mi ,,2,1 K= , are the interactive hazards and the 

independent hazard of Component i  respectively. Bj th
i

)(
r

 stands for the all hazards 

of the influencing components of Component i  before an interaction, Mi ,,2,1 K= . 

Subscript ij  represents the influencing components of Component i , Mi ,,2,1 K= . 

For example, assume that the failure of Component 2 is affected by the failures of 

Component 1, Component 3 and Component 5. Then 5,3,12 =j  and the second 

equation in Equation (4-5) now becomes 

],)(,)(,)(),([)( 531222 tththththth BBBIϕ= . (4-6) 

Equation (4-5) contains M  coupled equations because the failure of a component is 

affected by the failures of its influencing components. On the other hand, the failure 

of this component can also affect the failures of its affected components. 

4.3 MATHEMATICAL MODEL FOR INTERACTIVE HAZARD AND 

INTERACTIVE FAILURE 

Different approaches can be used to build a mathematical model to describe the 

relationship given by Equation (4-5): 

(1) Hypothetical method. This approach requires mature knowledge of 

maintenance engineers and a model developed using this approach is often 

arbitrary.  

(2) Failure mechanism based method. This approach needs to understand the 

failure and failure interaction mechanism of assets very well and the model is 

often very specific. 
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(3) Probability theory and stochastic process based method. This approach can be 

used to develop a generic model but it is mathematically complex. 

(4) Taylor’s expansion approach. This approach can be used to derive a generic 

mathematical model which is more suitable for engineering applications. The 

approach has been applied to develop a model for the change of the core melt 

frequency, which is a function of the component unavailability, structure 

failure probabilities and initiating event frequencies [299]. Taylor’s expansion 

has also been used to obtain an approximate mathematical expression for a 

random variable which is a function of several mutually independent random 

variables [293]. Jiang et al [300] used the Taylor expansion of a reliability 

function to estimate its parameters.  

In this chapter, the Taylor’s expansion approach is used to derive a mathematical 

model for interactive failures as follows: 

Interactive hazard )(thi  in Equation (4-5) can be expressed by the Taylor’s 

expansion: 

],)(),([)( tththth BjIiii i

r
ϕ=  

        = +
∂
∂

+
∂
∂

+ === ∑∑ BkBjth
kj kj

i
Bjth

j j

i
thi thth

hh
th

h iiBij

ii ii

iBij

i i

Bij
)()(|

2
)(|| 0)(

,

2

0)(0)(

ϕϕϕ  

          Bj
j

th
j

i th
h i

i

Bij

i

)(|
2

2
0)(2

2

∑ =∂
∂ ϕ

+higher order terms. (4-7) 

(Subscripts ij  and ik  represent the influencing components of Component i ) 

To stress the effect of the hazards of Component ij , Bj th
i

)(  (Subscript ij  represents 

the influencing components of Component i ) on the hazard of Component i , )(thi  

( Mi ,,2,1 K= ), Equation (4-7) can be rewritten as: 
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)(thi = 

Bjth
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Bkth

k kj

i
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i
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th

hhh iBij

i

iBij
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Bij
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)(|
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)(|
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0)(0)( ==== ∂
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+
∂
∂
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∂
∂

+ ∑∑
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           BjBj ththbydividedtermsorderhigher
ii

)(])( ×+ . (4-8) 

(Subscript ij  and ik  represent the influencing components of Component i ) 

The Component i  is not influenced by its influencing components when Bj th
i

)( =0 

(Subscript ij  represents the influencing components of Component i ). In this case, 

the hazard of Component i  is equal to its independent hazard. Therefore, the first 

term on the right side of Equation (4-8) represents the independent hazard of 

Component i , i.e. 

)(| 0)( thIithi Bij
==ϕ , (4-9) 

(Subscript ij  represents the influencing components of Component i ) 

and 0| 0)( ≥=Bij
thiϕ  according to the properties of hazard. 

Therefore, the rest of the terms in Equation (4-8) show the effects of failures of the 

influencing components on the failure of Component i . 

Let 

...)(|
2

)(|
2

|)( 0)(2

2

0)(

2

0)( +
∂

∂
+

∂
∂

+
∂
∂

= === ∑ Bjth
j

i
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i
th

j

i
ij th

h
th

hhh
t

iBij

i

iBij

i ii

Bij

i

i

ϕϕϕθ . (4-10) 

(Subscripts ij  and ik  represent the influencing components of Component i ) 

Substituting Equations (4-9) and (4-10) into Equation (4-8), gives:  
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∑ =+=
i

ii
j

BjijIii Mithtthth ,,2,1,)()()()( Kθ  (4-11) 

(Subscript ij  represents the influencing components of Component i )  

where the parameter )(t
iijθ  is the Interactive Coefficient (IC) that represents the 

degree of the effect of failure of Componentij  on Component i . 

Equation (4-11) depicts that the interactive hazard of a component is equal to its 

independent hazard plus some portion of the hazards of its influencing components. 

This analytical model has been justified by four special case studies in Section 4.7 

and experiments presented in Chapter 7. From Equation (4-11), the following result 

can be derived in a straightforward manner. 

If Component S has the first category of failure interaction with other components, 

then 

BSS thth )()( ≥ , (4-12) 

)()( thth ISBS = . (4-13) 

If Component S has the second category of failure interaction with other components, 

then 

)()()( ththth ISBSS ≥≥ . (4-14) 

Let 0)( =tijθ  if the failure of Component j  does not affect the failure of Component 

i , then the subscript i  of ij  can be removed and Equation (4-11) can be written in a 

matrix form: 

})()]{([)}({)}({ BI thtthth θ+= , (4-15) 

where )}({ th  is a 1×M  vector representing the interactive hazards and })({ Bth  is 
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the 1×M  hazard vector before an interaction. )}({ thI  is the 1×M  independent 

hazard vector and )]([ tθ  is an interactive coefficient matrix. 

The interactive coefficient matrix )]([ tθ  has the following properties: 

(1) It is a non-negative real matrix, i.e., 0)( ≥tijθ ( Mji ,,2,1, K= ).  If 0)( =tijθ , 

then the failure of  Component j  has no effect on the failure of Component i . 

If the failure of Component j  will cause Component i  to fail immediately, 

then 1)( =tijθ . 

(2) Its trace is zero, i.e., 0)])(([ ≡ttr θ . This signifies that a component does not 

have failure interaction with itself. 

(3) In most large complex systems, the interactive coefficient matrix is sparse as 

a single component usually has direct interactions with only a few other 

components in a system.  

According to the relationship between failure distribution function and hazard, i.e., 

Equation (4-1), the interactive failure distribution functions of the components are 

given by: 

)}])()()([exp(1{)}({
10

dtthtthtF
M

j
Bjij

t

Iii ∑∫
=

+−−= θ      ( Mi ,,2,1 K= ). (4-16) 

where, )(tFi  is the interactive failure distribution function of Component i .  

4.4 ESTIMATION OF INTERACTIVE COEFFICIENTS 

Interactive Coefficient (IC) is a key parameter in estimating IntF. The determination 

of IC is not the focus of this thesis. However, selected demonstrations of determining 

ICs are presented as follows: 

(1) ICs can be obtained using probability theory. 
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Consider a system with M Components 1, 2, …, M , each of which has an 

independent hazard )(thIi  ( Mi ,,2,1 K= ). The conditions of these components 

before failure are independent of each other. Failure of any one of these will cause 

the rest of the components to fail immediately. This case demonstrates an interactive 

failure with the first category of failure interaction.  

Let iA  represent the situation where Component i  is fully operational at time t  

unaffected by any other component or common cause for Mi ,,2,1 K= . Then the 

independent reliability of Component i  at time t , )(tRIi  is the probability that 

Component i  remains fully operational at time t  unaffected by other components or 

common cause, i.e., )()( iIi APtR =  ( Mi ,,2,1 K= ). Based on Equation (4-1) and the 

relationship between reliability function and failure distribution function, 

)(1)( tFtR −= , it can be stated that: 

])(exp[)()(
0
∫−==
t

IiiIi dtthAPtR         ( Mi ,,2,1 K= ). (4-17) 

The probability that Component i  remains operational at time t , )(tRi  

( Mi ,,2,1 K= ), in this case is  

)()( 21 Mi AAAPtR IKII=          ( Mi ,,2,1 K= ). (4-18) 

Since events 1A , 2A , …, 3A are independent of each other,  

∏
=

=
M

i
iM APAAAP

1
21 )()( IKII . (4-19) 

Using Equations (4-17) and (4-19) for Equation (4-18), gives 

])(exp[)(
0 1

dtthtR
t M

i
Iii ∫∑

=

−=         ( Mi ,,2,1 K= ). (4-20) 
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Equation (4-20) indicates that the interactive hazard of Component i , )(thi , is 

∑
=

=
M

i
Iii thth

1

)()(              ( Mi ,,2,1 K= ). (4-21) 

Considering Equation (4-13) and comparing Equation (4-21) with Equation (4-15), 

ICs of this system can be obtained as follows: 

1)( =tijθ          ( Mji ,,2,1, K= ) and ( ji ≠ ). (4-22) 

Probability theory enables interactive hazards and ICs to be calculated accurately. 

However, this approach is often inapplicable due to its mathematical complexity. In 

this case, ICs can be determined using the following engineering approaches so that 

interactive hazards can still be analysed quantitatively. The ability to determine ICs 

in a pragmatic manner is a major advantage of the newly developed model for IntF. 

(2) ICs can be estimated according to the experiences of designers, manufacturers 

and maintenance staff. 

(3) ICs can be calculated based on failure mechanism or/and dynamics. For 

example, when a bearing has some defects, the related shaft will vibrate. This 

vibration will increase the failure probability of the shaft. The relationship 

between the defects of bearing and the failure of the shaft can be determined 

using dynamics and fatigue failure theory. The IC can then be calculated. 

(4) ICs can be determined based on laboratory experiments. An example to 

determine IC through laboratory experiments is presented in Chapter 7. 

4.5 STABLE AND UNSTABLE INTERACTIVE FAILURE 

As indicated in Section 4.2, for a system that is composed of M components, some of 

the components (L) ( ML ≤ ) can be defined as influencing components or affected 

components or both in reference to their failure relationships. Deterioration in one or 

more of the influencing components in a system can interact with or cause 
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deterioration of the affected components. As a result, the failure probabilities of the 

affected components may increase. The interaction between components can lead to 

a chain interaction process, as shown in Figure 4-3. The superscript 

),,2,1()( nii K=  in Figure 4-3 stands for “the ith state of failure interaction”. The 

chain interaction process may involve two or more components (see Figure 4-4). 

 

 

If some components in a system are both influencing components and affected 
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components, the failure of a component can result in an increase in deterioration of 

the other components. The failure of the “victims” can also increase the failure 

process of this component which is the original cause. This is called chain reaction of 

interactive failures which can continue in this manner. As a result of this chain 

reaction, the system may either achieve a new level of working status or eventually 

fail. The former is called stable interactive failure and the later, unstable interactive 

failure.  

A stable interaction process occurs when the increment in the hazard due to failure 

interactions is reducing and finally converges to zero, i.e.,  

0|))()(|(lim )1()(

0
=− −

>∞→
ththSup nn

tn
. (4-23) 

In this case, the hazard of a component remains stable at a new deterioration level as 

shown in Figure 4-5. In this diagram, )(th  is a hazard function, )()0( th is the initial 

hazard function before interaction 

and )()( th n  is a new hazard 

function after the stable interactions 

of the components occur. On the 

other hand, an unstable interaction 

process occurs when the hazard 

increases dramatically and the 

component is very likely to fail 

immediately. An example of an 

unstable interaction process is a rotating system which consists of a long flexible 

shaft and a wheel. The wheel is mounted in the middle of the shaft. The failure 

modes of this rotating system are unbalanced wheel and bent shaft. These two 

failures are interactive failures. An unbalanced rotating wheel causes the shaft to 

bend, and the bent shaft causes eccentricity which increases the unbalance and 

consequently increases the shaft bend. This chain interaction will continue until the 

shaft fatigues or breaks down. This failure is unstable IntF. Predictive maintenance 

can be carried out for stable IntFs, but not usually for unstable IntFs as the hazard 

increases dramatically. 

Interactions 

Figure 4-5.  Stable and unstable IntF 

h(t) 

h(n)(t) 

h(0)(t) 

unstable 
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Definition 4-3: In the case of considering interactive failures only, if interactions 

among some surviving components cause at least one of them to fail, these 

interactions are defined as unstable interactions. Otherwise, stable interactions result. 

According to Definition 4-3, interactions which cause a cascading failure do not 

belong to unstable interaction because in this type of failure, the latter failure is 

caused by the former failure. Due to the same reason, interactions in the common 

cause failure are not unstable interactions if the common cause event is a failure. 

However, if a common cause event is not a failure, then the interactions that result in 

a common cause failure can be classified as unstable interaction. 

Definition 4-4: The interactive failure is unstable if it is caused by unstable 

interactions. Similarly, the interactive failure is stable if it is caused by stable 

interactions. 

In the case of Definition 4-3, if any component deteriorates, then at least one of the 

components in the system will fail very soon due to the unstable interactions among 

these components. On the other hand, stable interactions increase the hazard of the 

components. This failure process will take much longer compared with unstable 

interaction. 

Unstable IntF indicates that the interactive hazard, and thus integrated interactive 

hazard, increases to an infinite value instantaneously due to the interactions among 

the components. 

4.6 MATHEMATICAL MODELS FOR STABLE INTERACTIVE 

FAILURES 

In Section 4.5, the physical phenomenon of stable and unstable interactive failures in 

a system has been explained. In this section, mathematical models will be formulated 

for stable interactive failures and some conditions under which the stable interactive 

failures exist will also be identified.  

In the following derivation, the following assumptions are used.  



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 107 

(1) At least one element in the interactive coefficient matrix of a system is not 

zero. Note that there is no failure interaction in this system if all elements in 

the interactive coefficient matrix are zero.  

(2) The effects of different components on a component are independent.  

(3) A failure interaction occurs so quickly that the increase of time during the 

interaction can be ignored when the effects of failure interactions on the 

interactive hazards are considered solely.  

(4) The changes of interactive coefficients during the failure interaction are also 

ignored. This indicates that interactive coefficients are either constants or 

changes very slowly compared with the changes of the hazard functions.  

(5) Components and systems are not repaired. The reliability prediction of 

systems with PM and IntF will be investigated in the next chapter. 

At the time t ( 0≥t ), the independent hazards of the components in a system are 

)}({ thI , where { }•  stands for a 1×M  vector. At this moment, the hazards of some 

components increase marginally due to their own deterioration or an external event 

or both. The changes of hazards result in an increase of interactive hazards because 

of the interactions among the components. The changes of independent hazards of 

the components can be ignored while failure interaction is being analysed since the 

time for failure interaction is usually much shorter than the time for natural 

deterioration of components. An interaction process can be represented by a series of 

discrete states and the changes of interactive hazards during this interaction process 

can be treated as state by state (refer to Figure 4-3). According to Equation (4-15), 

the first state of the interactive hazards can be expressed as: 

)}()]{([)}({)}({ )1( thtthth II θ+= . (4-24) 

where )}({ )1( th  represents the 1×M  interactive hazard vector at the first state of the 

failure interactions. It is straightforward to prove that )}({)}({ )1( thth I>  when at least 

one element in )]([ tθ  is not zero. Hence the failure interactions among the 
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components will occur again and the interactive failures of the system progress to the 

second state. The expression for the interactive hazards at the second state is given 

below: 

)}()]{([)}({)}({ )1()2( thtthth I θ+= . (4-25) 

where )}({ )2( th  is the 1×M  interactive hazard vector at the second state of the 

failure interactions.  

The failure interactions among the components will continue because 

)}({)}({ )1()2( thth > when at least one element in )]([ tθ is not zero. Therefore, the 

interactive failures of the system will progress to the third state which can be 

described by an equation similar to Equation (4-25). Continuing the above process, 

the nth state of the failure interactions is given by  

)}()]{([)}({)}({ )1()( thtthth n
I

n −+= θ .  (4-26) 

It can also be proved that )}({)}({ )1()( thth nn −> . 

For stable IntF, the increased hazard will converge to a limit. According to Equation 

(4-23), the following condition holds, 

)}({)}({lim )( thth n

n
=

∞→
.   (4-27) 

The interactive coefficients can be used to identify whether an IntF is stable or not. If 

at least one pair of interactive coefficients ( )(tijθ  and )(tjiθ ) in a system are equal to 

or greater than one, then the system has unstable IntF, i.e., whenever interaction 

occurs, the interacted components will fail very quickly. The above derivation is also 

correct if an interaction has finite states. 

The following theorems for justifying the conditions for stable IntF can be proved: 
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Theorem 4-1: An IntF is stable, i.e., Limit (4-27) exists, if the interactive coefficient 

matrix meets the following conditions: 

(1)    1)(max
1

,...,1
<∑

==

M

j
ij

Mi
tθ   

         or  (4-28) 

        1)(max
1

,...,1
<∑

==

M

i
ij

Mj
tθ  

and 

(2)    0)])([]([ ≠− tIDet θ , (4-29) 

where, ][ I  is a MM ×  identity matrix, and )(•Det  stands for determinant operation. 

Theorem 4-1 can be proved based on the following proposition and lemmas. 

Proposition 4-1: For an interaction chain process described by Equation (4-26), the 

nth state of the interactive chain process is given by 

)}(){)]([]([)}({
1

)( thtIth I

n

s

sn ∑
=

+= θ . (4-30) 

The proof of Proposition 4-1 is given in Appendix B4. 

If 0)])([]([ ≠− tIDet θ , the sum of ))]([]([
1
∑

=

+
n

s

stI θ  can be expressed as 

))]([]([)])([]([))]([]([ 11

1

+−

=

−−=+∑ n
n

s

s tItItI θθθ , (4-31)  

where, 1)])([]([ −− tI θ  is the inverse matrix of the matrix )]([][ tI θ− . The derivation 

of Equation (4-31) is presented in Appendix B5. 
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Lemma 4-1: If the interactive coefficient matrix )]([ tθ  meets the conditions: 

1)(max
1

,...,1
<∑

==

M

j
ij

Mi
tθ   

or  (4-32) 

1)(max
1

,...,1
<∑

==

M

i
ij

Mj
tθ  

then 

]0[)]([lim 1 =+

∞→

n

n
tθ , (4-33) 

where, [0] is the null matrix. 

Lemma 4-1 is proved as follows. 

According to Lutkepohl [301], for a real MM ×  matrix 0)]([ ≥tθ , the following 

results for the spectral radius of the matrix have been obtained: 

∑
==

≤
M

j
ij

Mi
tt

1
,...,1

)(max)])(([ θθρ , (4-34) 

and 

∑
==

≤
M

i
ij

Mj
tt

1
,...,1

)(max)])(([ θθρ , (4-35) 

where, )])(([ tθρ is the spectral radius of )]([ tθ  which is defined as 

)]}([|:max{|)])(([ tofeigenvalueanist ee θλλθρ ≡ . (4-36) 

Substituting Equation (4-32) into Equation (4-34) or (4-35), gives 
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1)])(([ <tθρ . (4-37) 

In line with the properties of matrices, the result that 1)])(([ <tθρ  indicates that 

matrix nt)]([θ  is convergent to a null matrix [301], i.e., Equation (4-33) holds. 

Theorem 4-1 is proved below: 

Proof 

The hazards of the components at the nth state of interactions at time t  can be 

rewritten as follows based on Proposition 4-1 and Equation (4-31): 

)}(){)]([]([)])([]([)}({ 11)( thtItIth I
nn +− −−= θθ . (4-38) 

Under conditions (4-28) and (4-29), )}({ )( th n  will converge to a stable hazard vector 

with the increase of states n  based on Lemma 4-1, i.e., in this case, the IntF is stable. 

The new stable IntH is given by 

)}(]{[)}({ thth Iα= , (4-39) 

where,  

1)])([]([][ −−= tI θα  (4-40) 

is defined as the State Influence Matrix (SIM). The SIM can determine the influence 

degree of failure interactions on stable IntH uniquely. The elements in SIM are often 

functions of time. However, for simplicity, expression α  instead of )(tα  is used in 

this thesis. 

The conditions (4-28) and (4-29) are only sufficient conditions for stable IntF and 

this can be best demonstrated using the following case study: 

Consider a special interactive coefficient matrix )]([ tθ  of the form: 
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







=

0

0
)]([

21

12

θ
θ

θ t . (4-41) 

Then, ][)]([ 2112
2 It θθθ = ,  









=

0

0
)]([

21

12
2112

3

θ
θ

θθθ t .  

            M  























=
−

.
0

0
)(

][)(

)]([

21

122

1

2112

2
2112

oddbeingn

evenbeingnI

t
n

n

n

θ
θ

θθ

θθ
θ . (4-42) 

Obviously, only 12112 <θθ  is required for the existence of Limit (4-33).  

Theorem 4-2: An IntF is stable, i.e., Limit (4-27) exists, if the interactive coefficient 

matrix )]([ tθ  is triangular. 

Proof. 

According to the properties of eigenvalues [301], when the interactive coefficient 

matrix )]([ tθ  is triangular, 0)])(([ =tθρ  since all the diagonal elements of )]([ tθ  are 

zero (the second property of the interactive coefficient matrix). Hence Limit (4-27) 

exists in this condition based on the property of spectral radii mentioned above. 

An upper triangle interactive coefficient matrix indicates the case that the failure of 

Component M can affect all other components in a system but is not affected by any 

of them. Component M-1 can affect all other components in a system except 

Component M but is affected by the failure of Component M only. … The failure of 

Component 1 is affected by the failures of all other components but has no effect on 

any other component in the system. The case where the interactive coefficient matrix 
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is a lower triangle matrix is the opposite of the above case. 

Theorem 4-2 also gives sufficient conditions for stable IntF. In practice, the 

identification of a stable IntF would be much more straightforward for a specific 

system. 

In accordance with Equation (4-39) and the relationship between failure distribution 

function and hazard (Equation (4-1)), the Interactive Failure Distribution Functions 

(IntFDFs) of the components in a system are given by  

]})(exp[1{)}({
0 1

dtthtF
t M

j
Ijiji ∫∑

=

−−= α        ( Mi ,,2,1 K= ), (4-43) 

where, ijα  is the ith row jth column element in the SIM ][α . Equation (4-43) shows 

that the likelihoods of failures for components with failure interactions have 

increased because 1≥iiα  and at least one 0>ijα  ( ji ≠ ), if the interactive 

coefficients )(tijθ  ( Mji ,,2,1, K= ) are not all zero (refer to Appendices B6 and B7). 

The characteristics of the interactive failure distribution of an affected component 

can be different from that of its original independent failure distribution. 

Equations (4-15), (4-39), (4-40) and (4-43) are integrated as an Analytical Model for 

Interactive Failures (AMIF). 

4.7 MODEL JUSTIFICATION 

In this section, AMIF will be justified through the consideration of the following four 

special case studies. More sophisticated verifications through simulation experiments 

will be presented in Section 4.8. Laboratory experiments undertaken to verify the 

model will be presented in Chapter 7. 

4.7.1 Special Case 1: Multiple Causes Failure 

A system is composed of M  components. It is assumed that only one component 

(Component 1) is affected by its influencing Component j ( 1,,3,2 Lj K= , ML ≤1 ). 

The failure of Component 1 does not affect other components. Component 
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j ( Mj ,,3,2 K= ) in the system have no failure interaction with each other. In this 

case, the interaction will stop at the first state of interaction so that the IntHs of all 

components at n  states of interactions among components are the same as their IntHs 

at the first state of interaction. The interactive failure matrix in this case is 









=

21 00

0
)]([ rr

r
θθ t , (4-44) 

where, θ
r

 is a )1(1 −× M  vector with 1L  non-zero elements and 11 LM −−  null 

elements; 10
r

 is a 1)1( ×−M  null vector; and 20
r

is a )1()1( −×− MM  null matrix. 

Therefore, according to Equation (4-15), the IntHs of the components at the first state 

of the interaction is 

)}({
0

1
)}({

1

)1( th
I

th I







= rr

r
θ

, (4-45) 

where, I
r

is a )1()1( −×− MM unit matrix. 

It is straightforward to know the inverse matrix 1)])([]([ −− tI θ  is 








I
rr

r

10

1 θ
, and  

)2(]0[
00

0
)]([

21

≥=







= nallfort

n

n rr

r
θθ . (4-46) 

Substituting Equation (4-46) into Equation (4-30) and using Equation (4-39), one can 

conclude that the all states of interaction in this case are the same as the first state, 

which is described by Equation (4-45). This result is exactly the same as expected.  

Specially, if Component 1 is assumed to fail immediately if any its influencing 

components fail and the conditions of all components before failure are independent, 

then according to the first property of IC, the 1L  non-zero elements in vector θ
r

 in 

Equation (4-44) all equal one. Using Equations (4-39), (4-40), (4-33) and (4-43), the 
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reliability functions of the components can be obtained as follows 













=−

=−
=

∫

∫∑
=

Midtth

idtth

tR t

Ii

t L

j
Ij

i

,,3,2])(exp[

1])(exp[

)(

0

0 1

1

K

, (4-47) 

where, )(thIi  is the IndH of Component i  ( Mi ,,3,2,1 K= ). 

Equation (4-47) can be justified using probability theory. Let iA  represent the 

situation where Component i  is fully operational at time t  unaffected by all other 

components or common cause for Mi ,,3,2,1 K= . Then the independent reliability 

of Component i  at time t , )(tRIi  is the probability that Component i  remains fully 

operational at time t  unaffected by other components or common cause, i.e., 

)()( iIi APtR =  ( Mi ,,3,2,1 K= ). Based on Equation (4-1) and the relationship 

between reliability function and failure distribution function, )(1)( tFtR −= , it can 

be stated that: 

])(exp[)()(
0
∫−==
t

IiiIi dtthAPtR       ( Mi ,,3,2,1 K= ). (4-48) 

The reliability of all components except for Component 1 is the same as their 

independent reliability since their failures are not affected by other components, i.e. 

])(exp[)()(
0
∫−==
t

Iiii dtthAPtR       ( Mi ,,3,2 K= ). (4-49) 

The probability that Component 1 remains operational at time t , )(1 tR , in this case is  

)()(
1

1
1 I

L

j
jAPtR

=

= . (4-50) 

Since events 1A , 2A , …, and 
1LA are independent of each other,  
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∏
==

=
11

11

)()(
L

j
j

L

j
j APAP I . (4-51) 

Substituting Equations (4-48) and (4-51) into Equation (4-50), gives 

])(exp[)(
0 1

1

1

tdthtR
t L

j
Ij∫∑

=

−= . (4-52) 

Integrating Equation (4-52) with Equation (4-49), gives Equation (4-47). 

4.7.2 Special Case 2: Independent failure 

When the failures of the components in a system are independent of each other, all 

interactive coefficients equal zero. 

0)( =tijθ     ( Mji ,,2,1, K= ). (4-53) 

Substituting Equation (4-53) into Equation (4-15) gives 

)}({)}({ thth Iii =     ( Mi ...,,2,1= ).  (4-54) 

Equation (4-54) shows that the interactive hazard of Component i  is determined by 

its own independent hazard as expected.  

4.7.3 Special Case 3: Common Cause Failure 

Component K  has an independent hazard )(thIK  and its failure is independent of the 

conditions of other components. It is assumed that whenever Component K  fails, 

Component 1, Component 2…, and Component N in a system all fail at the same 

time and the failures of Component 1, Component 2…, and Component N do not 

have interactive relationship. This is defined as a special case of common cause 

failure, which was studied by Fleming [286] while developing the β-factor model. In 

this case, Component K  is the influencing component of Component 1, Component 

2…, and ComponentN . The interactive coefficient )(tijθ  is given by 
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

 ==

=
.0

,..,.,2,11
)(

others

KjNi
tijθ .  (4-55) 

Substituting Equations (4-13) and (4-55) into Equation (4-11) gives the interactive 

hazards of the components in the system as follows: 





=
=+

=
Kith

Nithth
th

IK

IKIi
i )(

...,,2,1)()(
)( . (4-56) 

Equation (4-56) indicates that the interactive hazard of Component i  ( Ni ,,2,1 K= ) 

is greater than its own independent hazard because 0)( >thIK . If IiIi th λ=)(  

( Ni ,,2,1 L= ) and λβcIK th =)( , where cβ  is the “common cause factor”, Equation 

(4-56) gives exactly the same result as that obtained using the generalised β-factor 

model [8]. In particular, when IIi th λ=)(  ( Ni ,,2,1 L= ), Equation (4-56) gives 

exactly the same result as stated by Fleming [286]. 

4.7.4 Special Case 4: Common Cause Shock 

A system is composed of n  identical components with the same independent hazard 

rate Iλ . The failure time of each component is independent of each other. A common 

cause shock occurs with an occurrence rate ν . The failure probability of each 

individual component due to the effect of a common cause shock is p . Shocks and 

the independent failures of individual components occur independently of each other. 

This case was investigated by Vesely [287] in 1977 while developing the Binomial 

Failure Rate (BFR) model. According to his research, the total hazard of one 

component is equal to  

νλλ pI += . (4-57) 

Equation (4-57) can also be derived from Equation (4-15). Let )(thi  denote the total 

hazard of each component and )(thIi  denote the independent hazard of each 

component, then, 
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λ=)(thi    )...,,2,1( ni = , (4-58) 

IIi th λ=)(    )...,,2,1( ni = . (4-59) 

Let )(1 thn+  denote the occurrence rate of the common cause shock and let the 

interactive coefficient denote the failure probability of each individual component 

due to effect of a common cause shock, then 

ν=+ )(1 thn . (4-60) 

and  

[ ]























=

0000

000

000

000

)(

L

L

MLM

L

L

p

p

p

tθ . (4-61) 

The interactive coefficient matrix [ ])(tθ in this case is an upper triangle matrix 

with 10 ≤≤ p . In accordance with Theorem 4-2, the IntF in this case is stable. The 

SIM is 

[ ]























=

1000

100

010

001

L

L

MLM

L

L

p

p

p

α . (4-62) 

Substituting Equations (4-58), (4-59), (4-60) and (4-62) into Equation (4-39), gives 

Equation (4-57).  

In this section, four special interactive failure cases have been studied using AMIF 

developed in this chapter. The results justified AMIF comparing with exiting models 

or methods that have been proved in their specific applications.  
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4.8 ANALYSIS OF INTERACTIVE FAILURES OF COMPONENTS 

To calculate IntF using Equation (4-43) for an engineering system, the interactive 

relationship among components in the system must be identified. This interactive 

relationship can be expressed using a relationship chart [302]. Then IC can be 

determined and furthermore the interactive coefficient matrix can be constructed. 

After the interactive coefficient matrix has been obtained, the interactive failure 

distribution functions of these components can be calculated if their independent 

failure distribution functions are known. The procedures of calculating and analysing 

IntF of components are best explained through an example as follows: 

A system consists of three components with every Interactive Coefficient (IC) having 

a value less than one. The independent failure distribution function of these three 

components is assumed exponential and is given by 

)}exp(1{)}({ ttF iIi λ−−=    ( 3,2,1=i ). (4-63) 

Therefore, their independent hazards are 

iIi th λ=)(        ( 3,2,1=i ).  (4-64) 

Figure 4-6 is the relationship chart of these three components. In this diagram an oval 

represents a component. An arrow line represents an interactive relationship. An 

arrow line starts from Oval i  ( 3,2,1=i ) and points to Oval j  ( 3,2,1=j ) if the 

failure of Component i  has an effect on the failure of Componentj . Figure 4-6 

indicates that there is interactive relationship between Component 1 and Component 

2, and between Component 1 and Component 3. However, there is no interactive 

relationship between Component 2 and Component 3. 

Based on the relationship chart, the interaction relationship matrix can be developed 

(Table 4-1). ICs are assumed to be time independent. In Table 4-1, ijθ  is an IC 

representing the effective degree of the failure of Component j  on Component i  

( 3,2,1, =ji ). That 1=ijθ  means that the failure of Component j  has full effect on 
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Component i . That 0=ijθ  indicates that the failure of Component j  does not affect 

Component i  directly. 

 

                   Table 4-1  
                                    Relationship matrix 

Components 1 2 3 

1 0 θ12 θ13 

2 θ21 0 0 

3 θ31 0 0 

 

Consistent with the relationship table, the interactive coefficient matrix of the system 

is as follows: 






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







=
00

00

0

)]([
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θ t .  (4-65) 
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Using the Gauss-Jordan reduction method, gives 
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. (4-67) 
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2 

Figure 4-6.  Relationship chart 
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The interactive hazard functions of the components for stable IntF can be calculated 

by substituting Equations (4-66) and (4-67) into Equation (4-39): 


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
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. (4-68) 

In the above analysis, the following inequity is implied:  

01 31132112 >−− θθθθ . (4-69) 

The sufficient condition for Inequity (4-69) is 

2

1
},3,2,1,:max{ <≠= jijiijθ .  (4-70) 

According to the relationship between hazard and the failure distribution function, 

the interactive failure distribution functions of these three components are given by 


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++−

−=
31132112

3132121
1 1

)(
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tF  (4-71) 
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31132112

3211323113121
2 1

))1((
exp1)(
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tF  (4-72) 


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



−−
−++−

−=
31132112

3211223112131
3 1

))1((
exp1)(

θθθθ
λθθλθθλθ t

tF  (4-73) 

4.9 PROPERTIES OF INTERACTIVE FAILURES 

This section focuses on further investigation of the effects of IntF on components. 

The effects of IntF on systems will be investigated in the next section.  

From Equations (4-72) and (4-73), it can be seen that the failures of Component 2 
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and Component 3 do interact through Component 1, although these two components 

do not have direct interaction. This phenomenon demonstrates an important property 

of failure interaction relationship - transmissibility.  

To investigate the other properties of IntF, simulations were conducted using the 

example presented in the above section. Figures 4-7 to 4-9 show the changes of IntFs 

of the components with interactive coefficients.  

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

IndF
θ12=0
θ12=0.2
θ12=0.4
θ12=0.6
θ12=0.8

 

F
ai

lu
re

 D
is

tr
ib

ut
io

n 
fu

nc
tio

n 
,F

1(
t)

 

04.021 =θ  
04.013 =θ  
0833.031 =θ  

Time, t (104 h) 

(a) Effects of IC θ12 on the IntF of Component 1 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

IndF
θ13=0
θ13=0.2
θ13=0.4
θ13=0.6
θ13=0.8

 
Time, t (104 h) 

(b) Effects of IC θ13 on the IntF of Component 1 

04.012 =θ  
04.021 =θ  
0833.031 =θ

 

F
ai

lu
re

 D
is

tr
ib

ut
io

n 
fu

nc
tio

n,
 F

1(
t)

 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 123 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

IndF
θ31=0
θ31=0.2
θ31=0.4
θ31=0.6
θ31=0.8

 
Time, t (104 h) 

05.012 =θ  
04.021 =θ  
04.013 =θ

 

(d) Effects of IC θ31 on the IntF of Component 1 

)/1(102.1 4
1 h−×=λ      )/1(102 4

2 h−×=λ        )/1(103 4
3 h−×=λ   

 

Figure 4-7.  Interactive failure of Component 1 versus ICs 
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Figure 4-7 indicates that the failure likelihood of Component 1 increases with ICs, 

but different IC has different degree of influence. This characteristic can be applied 

to other two components. Furthermore, comparing Figure 4-7 (a) with Figures 4-8 

and 4-9, one can find that interactive coefficients have different effects on different 
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Figure 4-9.  Interactive failure of Component 3 versus IC θ12 
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Figure 4-8.  Interactive failure of Component 2 versus IC θ12  
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components. In this example, the interactive coefficient 12θ  has much greater effect 

on Component 1 than on the other two components.  

Figures 4-10 and 4-11 demonstrate the impact of changing values of 12θ  and 13θ  on 

the Mean Time To Failure (MTTF) of the components. From these two figures, it can 

be found that the failure interaction between the components will shorten the MTTF 

of the components. With the increase of 12θ  or 13θ , the MTTF of Component 1 

decreases sharply whereas the MTTF of the other two components is not very 

sensitive to 12θ  and 13θ  because Component 1 was affected by 12θ  and 13θ  directly.  

Figures 4-12 and 4-13 present the influence of the IndF of Component 2 and 

Component 3 on the IntF of Component 1 respectively. From these two figures, it 

can be seen that the independent failure distribution of Component 2, )(2 tFI , has 

much greater influence on the IntF of Component 1 than the independent failure 

distribution of Component 3, )(3 tFI , because 12θ  is greater than 13θ . The failure of 

Component 2 has almost full effect on Component 1 because 12θ  is close to 1 (0.8). 

On the other hand, the failure of Component 3 has little influence on the failure of 

Component 1 because the value of 13θ  is very small (0.008).  
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Figure 4-10.  Relationship between MTTF and IC θ12 
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Figure 4-11.  Relationship between MTTF and IC θ13 
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4.10 EFFECTS OF INTERACTIVE FAILURES ON SYSTEMS 

As indicated in Section 4.2, interactive failures can be classified into two categories: 

immediate interactive failure and gradual degradation interactive failure.  

When an immediate interactive failure occurs, the failure of a component is not only 

related to its own deterioration but also completely dependent on the failure of its 

influencing components. The affected components either fail simultaneously such as 

common cause failure or the failure of an influencing component will lead in the 

failure of its affected component immediately such as cascading failure. The 

conditions of the influencing components before failure do not affect the failure 

probability of the affected components. For example, a water supply system consists 

of a generator and several pumps in a pump station. The generator supplies power for 

these pumps. A generator is regarded as failed if it is not capable of generating 

electricity at the same frequency and in a steady state manner. On the other hand, the 

influence of an unstable power supply of the generator could be ignored. Then when 
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Figure 4-13.  Influence of the IndF of Component 3, )(3 tFI  on the 

IntF of Component 1, )(1 tF  

FI3(t) Time, t  (104 h) 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 128 

the generator fails, all these pumps will fail to work immediately. However, the 

condition of the generator before failure usually does not affect the failure of these 

pumps. 

When a gradual degradation interactive failure occurs, the failure interaction among 

components increases the failure likelihood of the affected components only. The 

failures of the components are independent. For example, a faulty bearing (Bearing 1) 

will accelerate the failure rate of another bearing (Bearing 2) on the same shaft. 

However, when Bearing 1 fails, Bearing 2 may not fail, and vice versa. 

Different techniques are required to analyse the reliabilities of systems with different 

categories of IntFs. To calculate the reliability of a system with the first category of 

IntF, the original RBD of this system should be modified. For example, a parallel 

system shown in Figure 4-14 (a) is composed of two components: Component 1 with 

an IndH of )(1 thI  and Component 2 with an IndH of )(2 thI . The failures of these 

two components are “positive dependent”. The failure of Component 1 will cause 

Component 2 to fail immediately and vice versa. When the reliability of this parallel 

system is calculated, the system should be converted to a series system shown in 

Figure 4-14 (b). If these two components are affected by a common failure cause 

with an IndH of )(thIC , the original parallel system should be converted into a 

complex system in which a “virtual” Component C representing the common cause is 

connected with the original system in series (see Figure 4-14 (c)). 

For the reliability of a system with the first category of IntF, the reliability functions 

of the components in this system do not need to change because failure dependency 

is considered through changing the RBD of the system. In this case, the reliability 

functions of the components used to calculate the reliability function of the system 

are still their original independent reliability functions. 

However, when analysing the reliability of a system with the second category of IntF, 

one should not change the RBD of this system, but needs to use the interactive 

reliability functions or the interactive failure distribution functions of the components 

of the system in the analysis. This thesis focuses on the second category of IntFs as 

mentioned in Section 4.2. 
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To demonstrate the effects of the second category of IntF on systems, two different 

systems consisting of the three components that were described in Section 4.8, 

System A and System B, are considered. In System A, these three components 

connect with each other in series as shown in Figure 4-15 and in System B, they 

connect in a combined way as shown in Figure 4-16. 
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The failure distribution function of System A is 

)](1)][(1)][(1[1)( 321 tFtFtFtFA −−−−= .  (4-74) 

The failure distribution function of System B is 

)]()(1)][(1[1)( 321 tFtFtFtFB −−−= . (4-75) 

Figure 4-17 to Figure 4-21 demonstrate the changes of the cumulative interactive 

failure distributions of these two systems with IC. In Figures 4-17, 4-18 and 4-19, 

)/1(102.1 4
1 h−×=λ , )/1(102 4

2 h−×=λ  and )/1(103 4
3 h−×=λ . 

From Figure 4-17 to Figure 4-19, it can be seen that effects of IC are different if the 

topologies of systems are different. In this example, failure probabilities of both 

systems increase with 12θ , but 12θ  has greater influence on the IntF of System A than 

the IntF of System B. Figures 4-20 and 4-21 present the same properties. The reason 

is that the failure probabilities of Components 2 and 3 made a larger contribution to 

the system failure probability in a series system than in a parallel system. 
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Figure 4-17.  Relationship between IntF of System A, FA(t) and IC θ12  
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Figure 4-19.  IntFs of the systems, FA(t) and FB(t), versus IC θ12  
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Figure 4-18.  Relationship between IntF of System B, FB(t) and IC θ12  
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Figure 4-21.  Changes of IntF of System B, FB(t) with IC θ13 and time t 
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Figure 4-20.  Changes of IntF of System A, FA(t) with IC θ13 and time t 
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4.11 SUMMARY 

The concept of interactive failure presented in this chapter is a new variant of the 

definition of dependent failure. Interactive failure provides a measure of accelerated 

failures due to the failure interactions among different components. In this chapter, 

an analytical model to describe interactive failure has been developed. 

The proposed model can be applied in system failure probability prediction when 

interactive failures exist. According to the model, the interactive hazard of a 

component is estimated by its independent hazard plus a portion of the hazards of its 

influencing components. When the hazards of the influencing components of a 

component increase, the hazard of this component accelerates. The failure interaction 

between the components in a system will increase the failure likelihood of the system. 

Interactive failures should be considered when analysing failures of assets, or 

otherwise, the probability of failure may be underestimated.  

The degree of failure interaction between components is measured by the Interactive 

Coefficient (IC), which is equal to or greater than zero for positive dependent failures. 

A greater IC means that the failure of an influencing component has greater effect on 

the failure of its affected component. An important approach to reducing interactive 

failures of a system is to reduce its IC. However, interactive coefficients have 

different effects on different components and different system topologies. Their 

effects on the interactive failures of a component reach a peak when this component 

is operating at the midpoint in its life. Different ICs have different sensitivities which 

can also vary with different system topologies. 

Interactive failure can be either stable or unstable. One should attempt to reduce 

stable interactions and avoid unstable interactions between the components in a 

system when designing new machines. 

When the interactive failure probabilities of the influencing components of an 

affected component are not all zero, the interactive failure probability of this affected 

component will be not zero even though its independent failure probability is zero 

(refer to Equation (4-71) to Equation (4-73)). Therefore, for a repairable system, 
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when a failed component is replaced by an identical new one, its initial hazard will 

become higher than its original reliability due to the effects of its unrepaired 

influencing components. This matter has been researched. The methodology and the 

results are presented in the next chapter. 
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Chapter 5  

RELIABILITY PREDICTIONS OF REPAIRABLE 

SYSTEMS WITH INTERACTIVE FAILURES 

5.1 INTRODUCTION 

In Chapter 3, the Split System Approach (SSA) was developed to deal with the 

reliability prediction of complex repairable systems with multiple PM intervals. In 

this model the failures of components in a system were assumed to be independent 

from each other. This assumption has been commonly used in existing reliability 

prediction models and can meet the requirements of the accuracy of prediction in 

some industrial scenarios. However, as indicated in Chapter 4, there are also 

numerous scenarios in industry where the assumption of independent failures is not 

applicable and Interactive Failure 

(IntF) must be considered. 

IntF occurs commonly in mechanical 

systems. When repairing a system 

with failure interactions, one needs to 

consider IntF; or otherwise the repair 

may not be complete. This 

characteristic is best demonstrated 

with an example. A washing machine 

was subjected to rotary unbalance and 

was found to vibrate significantly 

during its spin cycle. The machine 

was disassembled and inspected to 

determine the root cause. The lower 

bearing (see Figure 5-1) was found to 

Upper 
bearing 

Drum 

Shaft 

Lower 
bearing 

Figure 5-1.  Simplified structure 

diagram of a washing machine 
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have been damaged. The balls inside the bearing had worn out severely. The 

clearance between the inner race and outer race became excessive that the shaft 

experienced eccentricity. The technician suspected that the upper bearing might have 

also been damaged, but he could not find a suitable tool to tear down the drum. As a 

result, only the lower bearing was replaced. The machine was assembled and 

operated smoothly for a short time. However, after three washing cycles the vibration 

became excessive. The washing machine was disassembled again. An inspection 

revealed that the new bearing inserted recently was damaged. On this occasion, the 

technician found a suitable tool to completely disassemble the machine. The 

inspection confirmed that his previous suspicion was correct - the upper bearing was 

severely damaged. The machine operated normally after both the upper and lower 

bearings were replaced. 

In this case, the two bearings had failure interactions with the shaft. When only the 

lower bearing was replaced, the damaged upper bearing still caused the shaft to 

vibrate. This vibration in turn accelerated the failure of the new lower bearing. This 

accelerated failure is an interactive failure.  

The above case is relatively commonplace in engineering maintenance. In order to 

maintain a system effectively and efficiently, interactive failures in a system need to 

be considered. Understanding the characteristics of interactive failures in a system 

with repairs is desired for optimal maintenance of a repairable complex system.  

In Chapter 4, an analytic model, AMIF, to calculate IntF was developed. However, in 

that chapter, the effects of repairs on the reliability prediction of systems were not 

considered. The research on the reliability predictions of repairable systems with IntF 

is still in its infancy. Despite an exhaustive literature review, the candidate was 

unable to find related research reports to date. 

In this chapter, an approach for reliability predictions of repairable systems with IntF 

is developed. This approach will consolidate both SSA and AMIF, and hence is 

termed as the Extended Split System Approach (ESSA). The term “component” 

includes subsystem and the term “repair” includes “replace or replacement” unless 

specified consistent with nomenclature in Chapters 3 and 4. Stable IntF is the focus 
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of the study in this chapter.  

The rest of this chapter is organised as follows. In Section 5.2, the methodology for 

ESSA is developed. In Section 5.3, the newly developed method is validated using an 

example and several simulation experiments. Section 5.4 presents the conclusions. 

5.2 METHOD DEVELOPMENT 

The reliability of a system is expected to increase after a repair because the hazard of 

this system is reduced [303]. This characteristics has also been observed in 

experiments conducted by the candidate (refer to Chapter 7). Repairs can improve 

the reliability of a system in two aspects: reducing the Interactive Hazard (IntH) of 

unrepaired components and increasing the reliability of repaired components. The 

improvement of reliability of a system after repairs is analysed below.  

Consistent with Chapter 3, this chapter investigates the reliability prediction of assets 

with specified RBPM strategies only. Hence all assumptions made for SSA, expect 

the second one – that of independent failures, have been applied to the development 

of ESSA. Interactive failures among components in a system are considered in this 

chapter which focused on gradual degradation interactive failures. As analysed in 

Subsection 4.10, Chapter 4, this type of interactive failure accelerates the hazard of 

affected components but does not change the RBD of a system. This property enables 

the reliability prediction of repairable systems with IntF to be analysed in the 

following two steps: 

Step 1. Calculate the changeable IntH and Interactive Failure Distribution 

Functions (IntFDF) of repaired and unrepaired components using AMIF. 

Step 2. Consider the logic position of repaired components in the RBD of the 

repairable system, and then calculate new interactive reliability function or 

IntFDF of the system after a PM action and over multiple PM intervals 

using SSA.  

The detailed discussions on these two steps are presented in the following 
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subsections. In the following analysis, interactive reliability function and interactive 

failure distribution function will be simplified as reliability function and Failure 

Distribution Function (FDF). 

5.2.1 MODIFIED HEURISTIC APPROACH 

Since this chapter considers the second category of IntF only and this type of IntF 

does not change the RBD of a system, a heuristic approach similar to that used in 

Chapter 3 can be developed to calculate the reliability of a system with IntF over 

multiple PM intervals. Considering that the hazards of repaired and unrepaired 

components of the system after a PM action are different from their own independent 

hazards, the heuristic approach in Chapter 3 is modified as follows: 

(1) Determine the first PM time 11 tt ∆=  when the reliability of the system first 

falls to the predefined control limit of reliability using the original reliability 

function of the system. 

(2) Assign the repaired Component 1k  ( 11 ,,2,1 Sk K= ) a new independent 

reliability function 1)(
1

τIkR  ( 11 ,,2,1 Sk K= ) based on the requirement of a 

PM strategy (Assume that the system has M components, and 1S  components 

( MS ≤≤ 11 ) are repaired in the first PM action). Calculate the reliability 

functions of these components, after the first PM action, 1)(
1

τkR  

( 11 ,,2,1 Sk K= ), using Equation (4-43). The cumulative reliability functions 

of these repaired components, 1)(
1

τckR  ( 11 ,,2,1 Sk K= ), are 101 )()(
11

τkk RtR ∆  

( 11 ,,2,1 Sk K= ). The independent reliability functions of the rest of the 

components of the system remain the same since they are not repaired. 

However, the cumulative effects of time before the first PM action need to be 

considered. Hence, 011 )()(
11

tRR IjIj ∆+= ττ  ( MSSj ,,2,1 111 K++= ). 

Unlike independent reliability functions, the reliability functions of the 

unrepaired components after the first PM action, 1)(
1

τjR  

( MSSj ,,2,1 111 K++= ) are different from those before this PM action and 
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need to be calculated using Equation (4-43) based on 1)(
1

τIkR  and 1)(
1

τIjR . 

The cumulative reliability functions of these unrepaired components with the 

first PM action, 1)(
1

τcjR  need to be calculated using the following equation: 

])()(exp[)(
1

1

1

1

11 1

0

01 ∫∫
+

−−=
t

t

j

t

jcj dtthdtthR
τ

τ  

             
11

1101

)(

)()(

1

11

tR

tRtR

j

jj

∆
∆+∆

=
τ

          ( MSSj ,,2,1 111 K++= ), (5-1) 

where, 0)0(
1j

R  is assumed to be one for MSSj ,,2,1 111 K++=  and 11 tt ∆=  is the 

first PM time. Functions 0)(
1

th j  and 1)(
1

th j  ( MSSj ,,2,1 111 K++= ) are the IntH 

of the unrepaired components before and after the first PM action in terms of the 

absolute time scale, respectively. 

(3) Calculate the reliability function and the cumulative reliability function of the 

system after the first PM action, 1)(τsR  and 1)(τscR , based on the RBD of the 

system using the reliability functions and the cumulative reliability functions 

of its components after the first PM action, respectively. 

(4) Determine the second PM time 2t  using the reliability function of the system 

after the first PM action, 1)(τsR . 

(5) Assume 2S  components are repaired in the second PM action. Reassign the 

repaired Component 2k  a new independent reliability function 2)(
2

τIkR  based 

on the requirement of PM strategy (2k  represents all components repaired in 

the second PM action). Calculate the reliability function of these components 

after the second PM action, 2)(
2

τkR  ( 2k  represents all components repaired 

in the second PM action), using Equation (4-43). The cumulative reliability 

functions of these components 2)(
2

τckR  ( 2k  represents all components 

repaired in the second PM action) now need to be calculated based on two 
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scenarios: if components have also been repaired in the first PM action, their 

cumulative reliability functions are 2

1

0
1 )()(

2121
τk

i
iik RtR∏

=
+∆ . Subscript 21k  

represents all components that are repaired in the first and second PM action. 

The cumulative reliability functions for those components which are repaired 

in the second PM action only are 
11

21

2

1
01

)(

)()()(

22

222222

tR

RtRtR

k

k
i

ikk

∆

∆∆ ∑
=

τ
. Subscript 

2122 kk ≠  and 22221 Skk =+ . The independent reliability functions of the rest 

of the components of the system remain the same as before this PM action 

since they are not repaired. However, the cumulative effects of time on 

unrepaired components can now be different. For components which are 

never repaired, their independent reliability functions 2)(
21

τIjR  are 

0

2

1

)(
21 ∑

=

∆+
i

iIj tR τ . Subscript 21j  represents all components which have never 

been repaired. For components which have been repaired in the first PM 

action, their independent reliability functions 2)(
22

τIjR  are 12 )(
22

tRIj ∆+τ . 

Subscript 2122 jj ≠  and 22221 SMjj −=+ .Then the reliability functions of 

these unrepaired components can be calculated using Equation (4-43). The 

cumulative reliability functions of the unrepaired components over two PM 

intervals, 2)(
2

τcjR , are 
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 (5-2) 

(6) Calculate the reliability function and the cumulative reliability function of the 
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system after the second PM action, 2)(τsR  and 2)(τscR , based on the RBD of 

the system using the reliability functions and the cumulative reliability 

functions of its components after the second PM action, respectively. 

(7) Continue the above procedure until the nth PM action. 

5.2.2 COMPONENT INTERACTIVE HAZARDS AND FAILURE 

DISTRIBUTION FUNCTIONS 

This subsection focuses on developing a method for calculating the Failure 

Distribution Functions (FDF) of the components in a system with IntF after a PM 

action. Apart from the assumptions mentioned at the beginning of this chapter, the 

following additional assumptions are made in this subsection: 

(1) The system has its first PM action. The case of a system with multiple PM 

actions will be analysed in the next subsection. 

(2) The system is composed of M components and Component 1 is repaired in 

the first PM action.  

(3) The interactive coefficients are constant and independent of repairs.  

In the case of repairable systems with IntF, the initial time for calculating the IntH of 

newly repaired components can be different from that for remaining unrepaired 

components after a PM action (see Figure 5-2). 

As in Chapter 3, parameter t  in this chapter represents the absolute time scale and τ  

represents the relative time scale. Parameter nt  is the nth failure time measured in the 

absolute time scale. The initial time to calculate the IndH of the unrepaired 

components after the first PM action is 1t  and the initial time to calculate the IndH of 

the newly repaired component after the first PM action is zero. 
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According to the analysis in Section 4.5 of Chapter 4, the stable IntH of a system is 

given by Equation (4-39): 

)}(]{[)}({ τατ Ihh = .  

where, )}({ τh  is the stable IntHs of a system after failure interaction. It is an 1×M  

vector. )}({ τIh  is an 1×M  independent hazard vector of all components due to their 

own deteriorations. ][α  is the State Influence Matrix (SIM) which is given by 

Equation (4-40):  

1)])([]([][ −−= tI θα .   

where, ][ I  is an MM ×  unit matrix. )]([ tθ  is the Interactive Coefficient (IC) matrix 

of the system. 

Define all unrepaired components as a subsystem. Equation (4-39) can be rewritten 

using the partition matrix as follows: 
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Figure 5-2.  The changes of hazard of unrepaired components 

and repaired component 



Reliability Prediction of Complex Repairable Systems: an engineering approach 
__________________________________________________________________________________ 

 143 

where, )(1 τh  is the IntH of Component 1. Vector )(τsbh
r

 is the 1)1( ×−M  IntH 

vector of the subsystem. Parameter 11α  is the first row first column element of SIM 

][α ; while 2αr , 3αr  and 4αr  are the )1(1 −× M , 1)1( ×−M  and )1()1( −×− MM  

partition matrix in SIM ][α , respectively. Function )(1 τIh  is the IndH of Component 

1, and )(τIsbh
r

 is a 1)1( ×−M  vector which represents the IndH of the subsystem. 

Let 01 )(τIh  and 0)(τIsbh
r

 denote the IndH of Component 1 and the subsystem before 

the first PM action respectively.  

When the first PM action is conducted, 11 tt ∆==τ . Hence, just before the first PM 

action, the IndHs of Component 1 and the subsystem are 011 )( thI ∆  and 01)( thIsb ∆ , 

respectively. Let 11 )(τIh  be the IndH of Component 1 after the first PM action, then 

just after the first PM action, the IndH of Component 1 is 11 )0(Ih . Generally 

01111 )()0(0 thh II ∆≤≤ .  (5-4) 

If 01111 )()( thh II ∆+= ττ , the state of the system after the first PM action is “as bad 

as old”. 

The IndH of the subsystem just after the first PM action is the same as just before 

this PM action because it has not been repaired, i.e., 

011 )()( thh IsbIsb ∆+= ττ , (5-5) 

where, 0)(τIsbh  and 1)(τIsbh  are the IndHs of the subsystem before and after the first 

PM action respectively. 

The IntHs of all components in the system after the first PM action are given by 









∆+







=









01

11

43

211

1

11

)(

)(

)(

)(

th

h

h

h

Isb

I

sb τ
τ

αα
αα

τ
τ

rrr

r

r ,  (5-6) 
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where, 11 )(τIh  is the IndH of Component 1 after the first PM action. 0)(τIsbh
r

 are the 

IndHs of the subsystem before the first PM action; while 11 )(τh  and 1)(τsbh
r

 are the 

IntHs of Component 1 and the subsystem after the first PM action respectively.  

If IntF is stable and the reliability of Component 1 just after the first PM action has 

not degraded since just before this PM action, the following inequities can be 

obtained: 

11012111111011 )0()()0()0()( IIsbI hthhhth ≥∆+=≥
rvαα , (5-7) 

010141131 )()()0()0( ththhh IsubIsbIsb ∆≤∆+=
rrvrr

αα .  (5-8) 

The above inequities can be proved using the following two propositions and a 

theorem. 

Proposition 5-1: All elements in SIM ][α  are nonnegative when 10 <≤ ijθ . 

The proof of Proposition 5-1 is presented in Appendix B6. 

Proposition 5-2: All diagonal elements in SIM ][α  are greater than or equal to one. 

The proof of Proposition 5-2 is presented in Appendix B7. 

Theorem 5-1: Interactive functions )(1 τh  and )(τsbh
r

 change monotonously with the 

change of )(1 τIh . 

The proof of Theorem 5-1 is straightforward using Equation (5-3) and Proposition 5-

1. 

Inequity (5-7) is proved as follows: 

According to Proposition 5-1, 02 ≥αr . According to Proposition 5-2, 111 ≥α . Hence, 

the following inequity holds because all elements in 01)( thIsb ∆
r

 are nonnegative: 
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11012111111 )0()()0()0( IIsbI hthhh ≥∆+=
rvαα .  (5-9) 

If the condition of Component 1 just after the first PM action has not worsened since 

just before this PM action, i.e., 01111 )()0( thh II ∆≤ , the following inequity holds 

because of Equation (5-6) and Theorem 5-1: 

11011 )0()( hth ≥ . (5-10) 

Inequity (5-7) is obtained by a combination of Inequity (5-9) and Inequity (5-10). 

Inequity (5-8) can be proved using a similar approach. 

Inequity (5-9) indicates that the Interactive Hazard (IntH) of Component 1 can be 

higher than its original independent hazard due to the effect of the unrepaired 

subsystem. The inequity symbol in Inequity (5-9) becomes the equality symbol if and 

only if 2αr  is a null vector. A null vector 2αr  means that the failures of components in 

subsystem do not affect the failure of Component 1. If 2αr  is a null vector, element 

11α  is equal to one (see Appendix B6). Inequity (5-8) indicates that the IntHs of the 

components in the subsystem, and hence the subsystem, have been reduced after the 

first PM action. The inequity symbol in Equation (5-8) becomes equality symbol if 

and only if 3αr  is a null vector. A null vector 3αr  means that the failure of Component 

1 does not influence the failure of components in the subsystem. 

The Integrated Interactive Hazards (IntIHs) of Component 1 and the components in 

the subsystem between the first PM action and the second PM action can be obtained 

using Equation (5-6), as well as the relationship between hazard and integrated 

hazard: 

ττατατ
τ

dthhH IsbI ])()([)(
0

012111111 ∫ +∆+=
rr

,  (5-11) 

∫ +∆+=
τ

ττατατ
0

0141131 ])()([)( dthhH IsbIsb

rrrr
.  (5-12) 
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The FDFs of Component 1 and the components in the subsystem after the first PM 

action are 

])(exp[1)( 1111 ττ HF −−=  (5-13) 

and 

]})(exp[1{})({ 11 ττ sbisbi HF −−=     ( Mi K,3,2= ), (5-14) 

where, 11 )(τF  and 1)(τsbiF  are the FDFs of Component 1 and Component i  in the 

subsystem after the first PM action, respectively; 1)(τsbiH  is the ith element in the 

vector 1)(τsbH
r

. 

5.2.3 SYSTEM RELIABILITY 

Generally, the reliability of a system needs to be calculated based on the above 

modified heuristic approach by means of a computer. However, in some special 

scenarios, closed analytical formulae for predicting the reliability of a system after 

the nth PM action can be obtained. Two such scenarios are analysed as follows. 

5.2.3.1 The same single component in a series system is repaired in all PM 

actions 

The system for this scenario has been shown in Figure 3-1. Based on Equation (3-2), 

the original reliability function of the system before PM can be expressed as: 

0010 )()()( τττ sbs RRR = , (5-15) 

where, 0)(τsR , 01 )(τR  and 0)(τsbR  are the original reliability functions of the entire 

system, Component 1 and the subsystem in this system, respectively.  

For the following analysis, a general equation to describe the relationship between 

integrated hazard and reliability is needed. According to the definition of hazard, the 

relationship between hazard and reliability is given by [8] 
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)(ln)( tR
dt

d
th −= . (5-16) 

Equation (5-16) leads to the following equation: 

∫−=
t

dtthRtR
0

])(exp[)0()( , (5-17) 

where, )0(R  is the initial reliability value. When 1)0( =R , Equation (5-17) reduces 

to Equation (4-1). 

The original reliability functions of Component 1 and the subsystem can then be 

expressed using Equation (5-17) as follows: 

])(exp[)0()( 010101 ττ HRR −= , (5-18) 

])(exp[)0()( 000 ττ sbsbsb HRR −= , (5-19) 

where, 01 )0(R  and 0)0(sbR  are the initial reliability values of Component 1 and the 

subsystem before PM, respectively. In most cases, 01 )0(R  and 0)0(sbR  are both equal 

to one. In this thesis, they are always assumed as one. 01 )(τH  is the IntIH of 

Component 1 before PM. It is given by 

ττατατ
τ

dhhH IsbI ])()([)( 020111

0

01

rr
+= ∫ . (5-20) 

0)(τsbH  is the IntIH of the subsystem before PM and given by 

∫ +=
τ

τττατ
0

00110 ])()([)( dhhH e
IsbI

e
sbsb , (5-21) 

where, e
sb1α  is an equivalent state influence coefficient to represent the effect of the 

failure of Component 1 on the subsystem. Function 0)(τe
Isbh  is the equivalent IndH of 
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the subsystem. The calculation of e
sb1α  and 0)(τe

Isbh  is dependent on the RBD of a 

system. When a subsystem is a series system,  

∏
=

=
M

i
isb RR

2
00 )()( ττ  

               ])(exp[
2 0

0∏ ∫
=

−=
M

i
i dh

τ

ττ . (5-22) 

Then the equivalent state influence coefficient e
sb1α  is given by 

∑
=

=
M

i
i

e
sb

2
11 αα , (5-23) 

where, 1iα  is the ith row first column element in SIM ][α .  

The equivalent IndH of the subsystem is given by 

∑∑
= =

=
M

i

M

j
Ijij

e
Isb hh

2 2
00 )()( τατ , (5-24) 

where, ijα  is the ith row jth column element in SIM ][α . Function 0)(τIjh  is the IndH 

of Component j before PM. In the real world, the calculation of e
sb1α  and 0)(τe

Isbh  

will be more straightforward because Component 1 usually interacts with a few 

components in the subsystem. 

Substituting Equations (5-18) to (5-21) into Equation (5-15) and considering the 

condition that 01 )0(R  and 0)0(sbR  are both equal to one, give 

∫ +++−=
τ

τττατατατ
0

00110201110 ]])()()()([exp[)( dhhhhR e
IsbI

e
sbIsbIs

rr
. (5-25) 

At time 1t , the system has its first PM action and Component 1 is repaired. After the 
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first PM action, the reliability of the system becomes 

1111 )()()( τττ sbs RRR = , (5-26) 

where, 1)(τsR , 11 )(τR  and 1)(τsbR  are the reliability functions of the entire system, 

Component 1 and the subsystem after the first PM action, respectively. 

])(exp[)0()( 111111 ττ HRR −= . (5-27) 

11 )(τH  is the IntIH of Component 1 after the first PM action. It is given by 

∫∫
+∆

∆

+=
ττ

τταττατ
1

1

02

0

111111 )()()(
t

t

IsbI dhdhH
rr

. (5-28) 

For a repairable system without failure interaction, the characteristics of the hazard 

of the subsystem are assumed to be unchangeable just before and just after a PM 

action. In contrast, when failures of a repairable system have interactions, the 

characteristics of the hazard of the unrepaired subsystem just after a repair can be 

different from that just before this repair as analysed previously. These differences 

are not ignorable in the calculation of the reliability of the system. The reliability of 

the subsystem after the first PM action needs to be calculated using its new IntH as 

follows: 

])(exp[)0()( 111 ττ sbsbsb HRR −= , (5-29) 

where, 1)0(sbR  is the initial reliability value of the subsystem, which is equal to its 

reliability value just before the first PM action: 

]])()([exp[)0(
1

0

00111 ∫
∆

+−=
t

e
IsbI

e
sbsb dhhR τττα . (5-30) 

1)(τsbH  is the IntIH of the subsystem after the first PM action. It is given by 
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∫ ∫
+∆

∆

+=
τ τ

ττττατ
0

01111

1

1

)()()( dhdhH
t

t

e
IsbI

e
sbsb . (5-31) 

Rewrite Equation (5-31) as follows: 

 

∫ ∫
+∆

∆

+=
τ τ

ττττατ
0

01111

1

1

)()()( dhdhH
t

t

e
IsbI

e
sbsb ∫∫

+∆

∆

+∆

∆

−+
ττ

τταττα
1

1

1

1

011011 )()(
t

t

I
e
sb

t

t

I
e
sb dhdh . 

 (5-32) 

Substituting Equations (5-30) and (5-32) into Equation (5-29), gives 

])()(exp[)()( 01111

0

1011

1

1

ττατταττ
ττ

dhdhtRR I

t

t

e
sbI

e
sbsbsb ∫∫

+∆

∆

+−∆+= . (5-33) 

Since only the constant interactive coefficients are considered in this chapter, 

Equation (5-33) can be rewritten as 

]])()([exp[)()( 01111

0

1011 ττταττ
τ

dthhtRR II
e
sbsbsb ∆+−−∆+= ∫ . (5-34) 

Equation (5-34) indicates that the characteristics of the reliability of the subsystem 

after the first PM action changes unless e
sb1α  is zero (the condition of Component 1 

does not affect the condition of the subsystem) or 01111 )()( thh II ∆+= ττ  (the repair 

does not change the state of Component 1). If 01111 )()( thh II ∆+< ττ  (the repaired 

Component 1 is better than old one), the reliability of the subsystem after the first 

PM action is improved. If 01111 )()( thh II ∆+> ττ  (the repaired Component 1 is worse 

than the old one), the reliability of the subsystem after the first PM action decreases. 

These inferences are also correct when the system has the ith PM action 

( ni ,,3,2 K= ). 
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Substituting Equations (5-27), (5-28) and (5-33) into Equation (5-26), the reliability 

of a system after the first PM interval is given by 

11111

0

011111
011

01
1 )()()([exp[)0(

)(

)(
)( ταατα

τ
ττ

τ

I
e
sbI

e
sb

s
s hthR

tR

tR
R +−∆+

∆+
∆+

= ∫  

                                         ]])( 012 ττα dthIsb ∆+−
rr

.  (5-35) 

The reliability function of the system after the nth PM interval can be obtained by 

continuing the above derivation procedure: 

nI
e
sb

n

i
iI

e
sbnn

i
i

n

i
is

ns hthR
tR

tR
R )()()([exp[)0(

)(

)(
)( 1111

0

0
1

111

0
1

1

0
1 ταατα

τ

τ
τ

τ

+−∆+
∆+

∆+
= ∫ ∑

∑

∑

=

=

=  

                                               ]])( 0
1

2 ττα dth
n

i
iIsb ∑

=

∆+−
rr

, (5-36) 

where, nsR )(τ  is the reliability function of a repairable system with failure 

interactions after the nth PM interval. nR )0(1  is the initial reliability value of 

Component 1 after the nth PM action. Function nIh )(1 τ  is the IndH of Component 1 

after the nth PM interval. 

Comparing Equation (5-36) with Equation (3-9), one can find that the reliability 

prediction of repairable systems with IntF is much more complicated.  

5.2.3.2 The same single component in a parallel system is repaired in all PM 

actions 

The system for this scenario has been shown in Figure 3-3. The same as in Chapter 3, 

failure distribution function will be used for derivation in this subsection. 

After the first PM action, the reliability of Component 1 is the same as Equation (5-

27), but the reliability of the subsystem is different from Equation (5-34). 
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]])()([exp[
)(1

)()(
)( 11
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0111
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01101
1 τττα

τ
τττ

τ

dhth
tR

tRtR
R II

e
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s
sb −∆+

∆+−
∆+−∆+

= ∫ . (5-37) 

Note that 
01

010

)(1

)()(

τ
ττ

R

RRs

−
−

 is the reliability of the subsystem before PM. Hence, the 

conclusions for Equation (5-34) are also correct for Equation (5-37).  

Generally, the failure distribution function of a system with IntF after the nth PM 

interval is 
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                  ]]])()([exp[)0(1[
0

0
1

21111 ττατα
τ

dthhR
n

i
iIsbnIn ∫ ∑

=

∆++−−
rr

. (5-38) 

where, nsF )(τ is the failure distribution function of a repairable system with IntF 

after the nth PM interval.  

5.3 AN EXAMPLE: A MECHANICAL SYSTEM WITH THREE 

INTERACTIVE COMPONENTS 

A complex repairable mechanical system with IntF is composed of three items. The 

RBD of the system is shown in Figure 4-15. Item 1 is a single component 

(Component 1), but both Item 2 and Item 3 can be either a single component or an 

assembly consisting of several components. The predefined control limit of 

reliability is 0R  (1> 0R >0). Component 1 is assumed to be replaced by an identical 

new one in each PM action. The independent reliability functions of the original 

system and Component 1 are  

)exp()( 0 ttR sIs λ−=   (5-39) 
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and  

)exp()( 101 ttRI λ−= . (5-40) 

The subsystem is composed of Item 2 and Item 3. According to reliability theory, its 

reliability function is 

ttR sIsb )exp()( 10 λλ −= , (5-41) 

where, 0)(tRIsb  is the reliability function of the subsystem without failure 

interactions. 

The interactive coefficient matrix of the system is 

















=

333231

232221

131211

)]([

θθθ
θθθ
θθθ

θ t .  (5-42) 

The corresponding SIM is 

















=

333231

232221

131211

)]([

ααα
ααα
ααα

α t .  (5-43) 

Along with Equation (4-39), the stable IntIHs of the items before any PM are 

)3,2,1()( 110 =+= iH sbsbiii τλατλατ , (5-44) 

where, sbλ  is the hazard of the subsystem and can be calculated by Equation (5-41). 

Parameter sbiα  is the state influence coefficient that represents the effect of the 

failure of the subsystem on the failure of Item )3,2,1(, =ii . It is given by 

)3,2,1(
32

3322 =
+
+

= iii
sbi λλ

λαλαα . (5-45) 
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The FDF of the system before PM is 

∑ ∑
= =

−−−=
3

1

3

1
110 )exp(1)(

i i
sbisbis tttF αλλα . (5-46) 

The first PM interval can be calculated using Equation (5-46):  

∑
=

+

−
=∆

3

1
11

0
1

)(

ln

i
sbsbii

R
t

λαλα
. (5-47) 

Only Component 1 is repaired in the first PM action. The IntIHs of these three items 

after the first PM action are 

)3,2,1()()( 1111 =∆++= itH sbsbiii τλατλατ .  (5-48) 

Hence, according to Equations (4-39), (4-40) and (4-43), the FDF of the system after 

the first PM interval is 

∑ ∑ ∑
= = =

∆−−−−=
3

1

3

1

3

1
1111 )exp(1)(

i i i
sbisbsbisbis tF αλατλλαττ . (5-49) 

Generally, the FDF of the system after the nth PM interval is 

∑ ∑ ∑∑
= = ==

∆−−−−=
3

1

3

1

3

11
11 ))(exp(1)(

i i i
sbi

n

i
isbsbisbins tF αλατλλαττ  (5-50) 

The nth PM interval can be calculated by 

∑

∑ ∑
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= =
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1
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1

1
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1
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i i
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n

tR
t

λαλα

λα
. (5-51) 

Figures (5-3) to (5-7) present the results of Monte Carlo Simulation (MCS) 

experiments and corresponding theoretical calculation using SSA and ESSA. In these 
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simulations, the interactive coefficient matrix is 


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
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=

00
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1

00
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1
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1
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1
0

)]([ tθ . (5-52) 

Therefore, the corresponding SIM is 




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
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






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
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=
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499

249

1

249

25
996

1

498

499

498

25
249

5

249

10

249

250

)]([ tα . (5-53) 

From Figure 5-3 to Figure 5-7, it can clearly be seen that failure interactions 

shortened the interval between two PM actions of a repairable system. In some cases, 

failure interaction can reduce the available number of PM actions of a system (see 

Figures 5-4, 5-6 and 5-9). Figure 5-9 was drawn based on the simulation result 2 

(Figure 5-4). The required minimum operating time had a great influence on the 

available number of PM actions (refer to Figure 5-3 and Figure 5-6). The required 

minimum operating time is the demanded minimal operating period of time between 

two PM actions due to maintaining production and cost effectiveness. A system will 

no longer be maintained if the demanded PM interval to maintain the reliability of 

this system above a required level is shorter than the required minimum operating 

time. The available number of PM actions of the system decreased quickly with the 

increase of the required minimum operating time. Figure 5-8 shows that the 

interactive failure distribution function of a system is identical to its independent 

failure distribution function if its interactive coefficient matrix is a null matrix. This 

result justifies the result shown in Subsection 4.7.2 of Chapter 4.  
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Figure 5-3.  Simulation result 1 for the IntF of a repairable system 
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Figure 5-4.  Simulation result 2 for the IntF of a repairable system 
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Figure 5-6.  Simulation result 4 for the IntF of a repairable system 
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Figure 5-5.  Simulation result 3 for the IntF of a repairable system 
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Figure 5-8.  Simulation result 6 of the IntF of a repairable system 
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Figure 5-7.  Simulation result 5 of the IntF of a repairable system 
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5.4 SUMMARY 

In the case of a repairable system with interactive failures, the initial time to calculate 

the IndHs of components after a repair is different from that of the remaining 

unrepaired components after this repair. Repair can improve the reliability of a 

system in two aspects: decreasing IntH of the unrepaired components and increasing 

the reliability of repaired components.  

The calculation of the FDF of a system with IntF under multiple PM intervals 

includes two steps: firstly, the changeable IntHs of repaired and unrepaired 

components are calculated using AMIF and then the new interactive reliability 

function or FDF of the system with multiple PM actions is calculated using SSA. The 

simulation experiments have shown that ESSA presented in this chapter is accurate. 

Failure interactions will shorten the time between two PM actions if the PM strategy 

is based on the reliability of a system. Interactive failure can reduce the available 

number of PM actions of a system. When conducting PM, one needs to consider the 

failure interactions between influencing components and affected components. An 

affected component in a system should be maintained with its influencing 
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Figure 5-9.  Comparison between the time between two PM actions of 

the system with interactive failures and independent failure 
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components simultaneously, or otherwise, the deteriorated unrepaired influencing 

components will accelerate the failure of the repaired components.  
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Chapter 6  

HAZARD PREDICTION USING HISTORICAL FAILURE 

DATA AND CONDITION MONITORING DATA 

6.1 INTRODUCTION 

The Extended Split System Approach (ESSA) can be used for predicting the 

reliability of repairable systems with Preventive Maintenance (PM) and interactive 

failures. To use this approach for prediction, the independent reliability functions of 

repaired components and the original system before PM should be known. These 

reliability functions can be estimated by existing techniques or models if historical 

failure data are sufficient. However, historical failure data are very difficult to obtain. 

The challenge is to conduct a reliability prediction when historical data are sparse or 

even zero. On the other hand, condition monitoring data is often available. A 

Proportional Covariate Model (PCM) which combines failure and condition 

monitoring data for hazard prediction is developed in this chapter. In addition, the 

strategy of determining PM lead time using the hazard function and the reliability 

function was also studied because PCM was developed to estimate the hazard of a 

system. 

The rest of this chapter is organised in the following manner. In Section 6.2, the 

method of determining PM lead time is investigated. PCM is developed in Section 

6.3, and conclusions are presented in Section 6.4.  

6.2 PREVENTIVE MAINTENANCE LEAD TIME DETERMINATION  

As mentioned in Chapter 3, this thesis aims to support optimal PM decisions. The 

objective of PM is to maintain an asset that would perform at a required reliability 

level and avoid catastrophic failures using the lowest possible cost. To achieve this 
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objective, PM must be conducted at the right time. PM lead time is often determined 

from the aspect of reliability of a system as demonstrated in the previous chapters. 

One alternative measurement of reliability is hazard. The hazard function is also 

often used to predict when PM should be carried out [15, 25, 136, 303]. The hazard 

function measures the failure rate in a system and is concerned with the probability 

that a system will fail in the next interval ],( tt ∆  if this system still survives at time t. 

The hazard function is related to the reliability function. There is a need to 

investigate the relationship of determining PM lead time between using the hazard 

function and the reliability function before developing PCM because PCM is 

developed to estimate and present the hazard of a system. In the candidate’s view the 

PM time predicted based on the hazard function needs to be cross-referenced against 

the reliability function when the failure pattern of a system is composed of several 

different failure distributions. This section illustrates this argument through some 

case studies.  

6.2.1 Hazard Functions and Corresponding Reliability Functions 

General relationship of hazard function and reliability function is well established. In 

this section, an explicit expression for hazard functions and corresponding reliability 

functions are presented in order to illustrate the candidate’s argument more 

effectively. 

Research and industrial experiences have shown that failure rate or hazard has some 

common patterns [25]. The bath basin pattern shown in Figure 6-1 is chosen as an 

example. 

The bathtub failure pattern 

is a typical failure pattern of 

a mechanical system. It 

consists of three phases. 

Phase I represents infant 

mortality, i.e., the 

probability of failure 

declines with age. Phase II represents random failure, i.e., the probability of failure is 

I III h(t) 

t ξ1 ξ2 

II  

Figure 6-1.  Hazard: bathtub curve 
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constant. Phase III represents wear-out, i.e., the probability of failure increases with 

age. The hazard function of the bath basin failure pattern is given by Equation (6-1) 

which indicates that in both Phase I and III, the system exhibits Weibull failure 

distributions with shape parameters 11 <β  and 22 >β  respectively. On the other 

hand, this system has, in Phase II, an exponential failure distribution with a constant 

failure rate 1
1111
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The reliability function corresponding to Equation (6-1) is: 
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Hazard functions and reliability functions can be derived from each other. However, 

a system that has a low hazard cannot guarantee that it has high reliability. This 

argument can be illustrated using the following examples.  

6.2.1.1 Example 1: Two machines 

The following scenarios of two machines are considered 

Machine 1: years25.11 =η , year12 =η , 5.01 =β  32 =β , years5.11 =ξ  and 

years42 =ξ  

Machine 2: years25.11 =η , year12 =η , 8.01 =β  32 =β , year5.01 =ξ  and 

years8.82 =ξ  
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Substituting the above parameters into Equations (6-1) and (6-2) respectively, the 

changes of both the hazard and the corresponding reliability can be demonstrated in 

Figure 6-2 (a) and (b).  

 

Figure 6-2 shows that both the hazard and the reliability of Machine 1 are higher than 

Machine 2 between 4.5 years and 5.63 years. If the critical limit for the hazard is set 

to be 1.638, then when the hazard of Machine 1 reaches this level, the hazard of 

Machine 2 is only 0.769. The hazard of Machine 2 lies below the alarm limit. 

However, the reliability of Machine 1 at that point is 0.62, whereas the reliability of 

Machine 2 is 0.024, much lower than that of Machine 1. This indicates that in some 

cases reducing the hazard does not guarantee an increase in reliability.  

Figure 6-2.  Hazard curves (a) and the corresponding reliability curves (b) 
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Currently, two major methods are used to predict PM time based on hazard functions. 

The first method establishes a hazard alarm limit in advance. The time when a hazard 

of an asset reaches this alarm limit is regarded as the time for PM [15]. The second 

method takes the time when the hazard function curve shows the wear-out phase of 

its life cycle as the PM time [25]. According to the above analysis, it is shown from 

the first method that using a predefined alarm limit to predict PM time based on the 

hazard function can be misleading in some cases. 

If the second method to predict PM time using the hazard function is employed, i.e., 

ξ2 of about 8.8 years is chosen as an alarm time for PM, it can be found that the 

reliability of Machine 2 is lower than 0.01 at time ξ2.  In this situation, choosing time 

ξ2 as the PM time is certainly inappropriate because the probability of the system 

failure well before the alarm time is very high.  

6.2.1.2 Example 2: Wheel motors 

The above analysis method can also be used to study cases where the failure 

distributions of systems are non-Weibull. For example, in the case given by Jardine 

[15], the hazard function was derived based on PHM using historical oil monitoring 

and maintenance data of mine haul truck wheel motors. It was: 

)(
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= , (6-3) 

where, )(tZ  is the composite covariate which is composed of significant covariates 

(here they are the values of different particles in oil) and their associated weights. For 

application convenience, the hazard control limit was converted into a composite 

covariate control limit curve shown in Figure 6-3. If the following covariate function 

)(tZ  is used to simulate the monitored composite covariate of a wheel motor, i.e., 
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then the hazard function of this wheel motor is given by 
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According to Equation (6-2), the reliability function of this wheel motor can be 

obtained. It is given by 
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Figure 6-3 shows the changes of the composite covariate Z(t) and the reliability of 

the wheel motor (the first wheel motor).  

From Figure 6-3 (a), it can be seen that the composite covariate )(tZ  had exceeded 

its control limit (1.21996) in the inspection at working age t =11384 hours. This 

wheel motor was recommended to be replaced immediately. Figure 6-3 (b) indicates 

that the reliability of this wheel motor at that moment (t =11384 hours) is 0.84. In 

addition, it can also be seen from Figure 6-3 that the reliability of the wheel motor 

fell under 0.91 (0.909) when its composite covariate started to increase at the age of 

10000 hours. 

Furthermore, in order to make a comparison, the composite covariate of another 

wheel motor is assumed to be represented by the solid-line in Figure 6-3 (a). This 

wheel motor is denoted as the second wheel motor in order to distinguish it from the 

wheel motor mentioned above (the first wheel motor). It can be found from Figure 6-

3 (b) that the reliability of the second wheel motor is much lower than the first 

between 8000 hours and 12000 hours. According to the control limit curve, both 

wheel motors are recommended to be replaced at the same working age (11384 

hours). However, the reliability of the second wheel motor is 0.74 at that moment, 
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much lower than the reliability of the first at the same time (0.84). The solid-line in 

Figure 6-3 (b) demonstrates that the reliability of the second wheel motor has fallen 

under 0.84 at working age=10000 hours (0.817). Therefore, if the reliability of the 

second wheel motor is to be maintained above 0.84, it should be replaced before 

10000 hours, 1384 hours earlier than the replacement time suggested by the 

composite covariate limit curve.  

 

6.2.1.3 Example 3: Mechanical test rig 

A system often has different hazard functions under different operation conditions. 

An example is shown in Figure 7-13 which was obtained using a bearing test rig. The 

test rig and the experiments will be presented in Chapter 7. Figure 7-13 is reproduced 
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here for convenience. The failure distribution function of the test bearing 

corresponding to this figure is shown in Figure 7-14 in Chapter 7. 

From Figure 7-13, it can be seen that a common hazard alarm limit cannot be 

predefined for the test bearing under two different conditions. The initial hazard of 

the bearing under the first condition was higher than the hazard at 1600 hours of the 

bearing under the second condition. Figure 7-14 indicates that at 1600 hours, the 

failure probability of the bearing under the second condition was almost 100%. In 

this case, only the reliability function can be used to determine the time for 

conducting PM. For example, if the predefined reliability limit is 50%, then the PM 

time for the bearing under the first condition was 350 hours (20.16 million 

revolutions) whereas for the bearing under the second condition was 900 hours 

(50.84 million revolutions). 

 

6.2.2 Comments  

Using the hazard function to support PM decision making is not suitable for those 

failure patterns, in which the failure characteristics of an asset at different stages are 

represented using several different failure distributions. The resulting PM decisions 

based on the hazard may not be an accurate reflection of the reliability of assets. The 

predicted PM time based on the hazard function should therefore be cross referenced 
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against its corresponding reliability functions. However, the investigation of hazards 

is still very useful because the reliability functions of systems or components can be 

derived from their corresponding hazard functions.  

6.3 PROPORTIONAL COVARIATE MODEL – DEVELOPMENT 

A Proportional Covariates Model (PCM) used to predict the hazard of a system using 

condition data is developed in this section.  

Condition data are often termed as covariates in reliability engineering. Covariates 

can be classified into two categories:  

(1) Environmental covariates )(tZe . The changes of these covariates will cause 

the characteristics of the hazard of a system to change. In the case study of 

the motor presented by Ebeling [16], the load placed on the motor was an 

environmental covariate. 

(2) Responsive covariates )(tZr . The changes of these covariates are caused by 

the changes of the hazard of a system. Most of condition monitoring data 

belong to responsive covariates and are symptoms that reflect the 

deterioration of a system. 

This distinction between environmental and responsive covariates is similar to the 

distinction made for external and internal covariates as discussed, for example, in 

[260]. Distinguishing environmental covariates from responsive covariates 

sometimes can be critical to an accurate prediction of the hazard of an asset. This 

argument can be best demonstrated by the following example: 

An oil analysis is often conducted to assess the condition of an engine. Assume that 

the initial oil entering the engine is clean and all debris coming from the engine 

enters the oil. Then the metal debris in the oil out of the engine can be used to 

indicate the wear condition of the engine. For example, a total of X µg metal debris 

in the oil indicates that this engine has been worn out X µg. In this case, this metal 

debris is the responsive covariate. If this contaminated oil is not filtered and enters 
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the engine again, this X µg metal debris becomes an environmental covariate because 

it will generally accelerate the wear of the engine. However, this contaminated oil 

normally will not cause exactly X µg metal wear from the engine. Hence, to 

accurately predict the hazard of a system using a covariate, one needs to know not 

only the value of this covariate, but also the role of this covariate – whether it is an 

environmental covariate or a responsive covariate. PCM focuses on using responsive 

covariates for hazard prediction. 

It is noted that the Proportional Hazard Model (PHM) also predicts the hazard of a 

system using historical failure data and condition monitoring data. PHM has been 

used in various applications [4, 15, 16, 258, 259]. Ebeling [16] presented two case 

studies. One of these was to analyse the effect of the load placed on a motor on the 

design life of this motor for a particular reliability level.  

The parameters of PHM are normally estimated using the Maximum Likelihood 

Estimation (MLE) method. PHM needs sufficient failure data to estimate the baseline 

hazard function h0(t) and the weight parameters for each covariate. This shortcoming 

limits the effectiveness of PHM significantly when historical failure data is 

insufficient. In addition, the accuracy of prediction of PHM can be affected by the 

fluctuations of covariates greatly. PHM does not reflect the human’s general 

understanding of condition monitoring when it is used to model the relationship 

between the responsive covariates and the hazard of a system. A general 

understanding of PHM is that a system has a baseline hazard when the covariates of 

the system are zero. When the covariates change, the hazard of the system changes 

correspondently. However, the relationship between responsive covariates and 

hazard is that the responsive covariates of a system change with the change of its 

hazard. 

The PCM is developed to address these limitations of PHM for the applications in 

reliability engineering. 

6.3.1 Concepts  

PCM uses the same assumption as that used in PHM and assumes that covariates of a 
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system, or a function of these covariates, are proportional to the hazard of the system 

– an assumption that has been supported by empirical evidence [4] and has also been 

validated by experiments conducted by the candidate (see Chapter 7). 

A common understanding of mechanical systems integrity is that increased 

deterioration more often than not increases the likelihood of failure [176, 177]. 

Accurate condition monitoring data (covariates) of a system should reflect the degree 

of the deterioration of the system [304, 305]. Therefore it is reasonable to assume 

that a covariate of a mechanical system is a continuous and monotonous function of 

the failure rate (hazard) of the system. The mathematical relationship between these 

covariates and system hazard can be modelled in different ways, such as a linear 

function. As a result, the assumption that covariates or their transformed variables, of 

a system are proportional to the hazard of the system is justified. 

This same assumption has been used by Cox [306] while developing PHM. Over last 

30 years, PHM has found numerous applications using realistic cases and data. In 

particular, this assumption has been used to study mechanical systems [16, 67, 258, 

307]. Barbera et al [208] developed a condition based maintenance model for 

repairing equipment based on the same assumption that the hazard of equipment is a 

linear function of the condition of the equipment. Heyns and Smit [305] 

demonstrated that the measurement of the natural frequency shift of a fan had a linear 

relationship with the damage level of the fan throughout his experiments. 

In PCM, ))(( tZrΨ , a function of multiple covariates, is expressed as follows:  

)()())(( thtCtZr =Ψ , (6-7) 

where, )(tZr  is the covariate function which is usually time dependent; )(tC  is the 

baseline covariate function which is also usually time dependent and )(th  is the 

hazard function of a system. Considering the flexibility of Weibull distribution, 

hazard function )(th  is assumed to have the form of Weibull model in this thesis. 

The formulation of the function of covariates ))(( tZrΨ  plays an important role in 

improving the accuracy of hazard estimation when using multiple covariates. Due to 
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the limit of candidature, this thesis only investigates the simplest scenario where only 

one covariate is utilised, and the formulation of the covariate is given by 

)())(( tZtZ rr =Ψ . (6-8) 

The PCM for the simplest case is obtained by substituting Equation (6-8) into 

Equation (6-7): 

)()()( thtCtZr = . (6-9) 

In PCM, the hazard is the explanatory variable and the covariate is the response 

variable. The procedure to estimate the hazard function of a system in PCM is 

different from that in PHM although they have similar function form. 

6.3.2 Procedure  

The procedure of PCM used in this study is outlined as follows: 

(1) Identify failure distribution of a system using its historical failure data {it } 

( i =1, 2, …, fm ),  where fm  is the number of failure data. 

(2) Estimate the initial hazard function )(thin  of the system using the Maximum 

Likelihood Estimation (MLE) method. The techniques of estimating a hazard 

function using historical failure data can be found in most books on reliability, 

for example, in [12]. 

(3) Analyse the co-relationship between the covariates and the hazard of this 

system. A covariate should not be used for updating the estimation of hazard 

if that covariate has a poor relationship with the hazard of a system; or 

otherwise, updating the estimation of hazard using this covariate will be 

inaccurate. Correlation analysis is a mature technique and can be found in 

commercial software such as Matlab. 

(4) Estimate the baseline covariate function. From the initial hazard function and 
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historical covariate data, a set of discrete values for baseline covariate 

function can be generated: 

),,3,2,1(
)(

)(
c

kin

kr
k mk

th

tZ
C K== . (6-10) 

where cm  is the number of condition monitoring data. 

Then the baseline covariate function can be obtained using the discrete data set 

{ kk tC , } ),3,2,1( cmk K=  and regression techniques. The recommended functions 

to represent the baseline covariate functions include the following models: 

(a) the polynomial models of various orders, 

L+++= 2
210)( tataatC , (6-11) 

(b) the multiplicative model, 

battC =)(  (6-12) 

and (c) the exponential model 

btaetC =)( , (6-13) 

where, parameters 0a , 1a , 2a , a , and b  are to be identified. 

If these nonlinear models can be assumed to be intrinsically linear, standard linear 

regression procedures can be used to estimate these models, or otherwise nonlinear 

regression procedures are needed. The required regression techniques can be found in 

the reference [308]. 

(5) Update the hazard function of the system using new condition monitoring 

data { )( jr tZ } ( j =1, 2, …, nm ). Parameter nm  is the number of new 

condition monitoring data. 
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As the hazard function )(th  is assumed to have the form of Weibull model, 

1)( −= β
βη

β
tth , then the estimated hazard function of the system )(

~
th  can be 

obtained using the regression techniques and based on the discrete updated hazard 

data set { ii th ,
~

} ),,2,1,,,2,1( ncccc mmmmmi +++= KK . Note that in some 

cases, only the latest condition monitoring data instead of whole condition 

monitoring data will be used to update the hazard estimation. 

(6) Update both )(tC  and )(
~

th  using the above steps (1) to (5), if new failure 

datum is obtained. 

(7) Calculate the updated reliability function of the system using the updated 

hazard function. 

(8) Predict the reliability of the system using the updated reliability function and 

make preventive maintenance decisions. 

In the above procedure, steps (1) to (4) are used to estimate the baseline covariate 

function. These four steps are not applicable if failure data is zero. However, the 

baseline covariate function can still be estimated under certain conditions (see 

Subsection 6.3.7). 

6.3.3 Comparisons between PCM and PHM 

PCM differs from PHM as its principles and methodology are quite different.  

In PHM, a baseline hazard rate )(0 th  is used to describe the relationship between 

covariates and hazard, whereas in PCM, a baseline covariate function )(tC  is 

employed to describe the relationship between covariates and hazard. The baseline 

hazard rate )(0 th  is the hazard rate without influence of covariates. It is covariate 
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independent. The baseline covariate function )(tC  represents the rate of change of 

covariates when the hazard changes. It is covariate dependent. In PHM, covariate 

with zero value indicates that the hazard of a system change based on its baseline 

hazard; whereas in PCM, covariate with zero value indicates that the hazard of a 

system is zero. 

In PCM, the hazard function of a system estimated based on different historical 

covariate data are consistent, whereas in PHM, the estimated hazard function may 

change in form when a different covariate is used. This phenomenon can be obtained 

because different covariates can have different influences on the hazard of a system. 

6.3.4 Tracking Changes of the Hazard function 

Most statistical models use historical failure data only. These models predicted 

hazard or reliability using the tendency method, i.e., according to the trend of the 

hazard function derived from historical conditions of a system. These models can 

lead to unacceptable errors if the conditions of the system change significantly. To 

improve the prediction accuracy, on-line condition monitoring data should be used in 

the prediction models because these data can reflect the latest conditions of a system. 

PCM predicts hazard using both on-line condition monitoring data and historical data 

including failure data and condition monitoring data. PCM based hazard estimation 

can automatically track real changes in the hazard function which can change due to 

alterations in the operating conditions of a system. This capability of PCM is proved 

as follows.  

In practice, the conditions of a system often change and when a change occurs, the 

hazard characteristics of the system will change too. Several researchers including 

Jiang and Murthy [309] have revealed and modelled this change of the hazard 

characteristics through the investigations of historical failure data of systems. In this 

case, the overall hazard of the system is often represented using multiple sectional 

distributions rather than a single distribution [309]. On the other hand, PHM 

indicates that the hazard characteristics of the system can continuously change with 

the change of environmental conditions. Suppose the hazard function of a system 

changes at time ct . Let 
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)()()( 11 thtCtZ =  (6-15) 

be the PCM based model of the system derived from historical data. After ct , the 

hazard function of the system changes to )(2 th . The hazard function )(2 th  can then 

be expressed as: 

)()()( 12 tthth ε+= , (6-16) 

where, function )(tε  represents the difference between )(2 th  and )(1 th .  

Let )(2 tZ  be the covariate after ct . If it is assumed that the relationship between the 

covariate and the hazard of the system remains the same, the new covariate can be 

described by the following equation: 

)()()( 22 thtCtZ =  

           )()()()( 1 ttCthtC ε+= . (6-17) 

In PCM, the new covariate is used to update the estimated hazard: 

)(

)(
)(

~ 2

tC

tZ
th = , (6-18) 

Substituting )(2 tZ  with Equation (6-17), gives 

)()()(
~

1 tthth ε+= . (6-19) 

Equation (6-19) indicates that the updated hazard function according to PCM is equal 

to the new hazard function )(2 th , which is different from the original hazard function 

)(1 th  due to the change in the operating conditions of the system.  

In order to justify the above analysis, a series of simulations were conducted. The 

simulation results are presented in Figures 6-4 to 6-6. Figures 6-4 and 6-5 describe 
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the random failure data of a system and the normalised covariate data respectively. 

Figure 6-6 displays the estimation results when different numbers of on-line 

condition monitoring data 

were used to update the 

estimated hazard function. 

Figure 6-6 clearly indicates 

that the updated hazard 

estimation automatically 

tracked real changes in the 

hazard function of a 

system. From the figure, it 

can be seen that the initial 

hazard predicted using 

PCM is exactly equal to 

the initial hazard 

calculated from the failure 

times. The reason is that 

the baseline covariate 

function is estimated based 

on this initial hazard 

function and the 

corresponding historical 

responsive covariate data. 

In PCM, the hazard of a 

system is an explanatory 

variable and its change is independent of the responsive covariates of the system, but 

the changes of these responsive covariates are dependent on the change of the hazard. 

From Figure 6-6, it can also been seen that the time for the estimated hazard 

converging to its real hazard became longer when more covariate data were used to 

update the estimated hazard function. This phenomenon will be analysed in 

Subsection 6.3.6. 

Figure 6-4.  The failure times 
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6.3.5 Robustness  

In Subsection 6.3.4, all covariate data used to update the estimated hazard function 

were clean and not contaminated by noise – a very unlikely scenario in the real world. 

To evaluate the efficiency and robustness of PCM, another series of simulations were 

conducted. In these simulations, different kinds of corrupted covariate data were used 

to update the estimated hazard function. The results of the simulations indicated that 

PCM was robust provided that the corrupting noise had a zero mean value. Some 
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Figure 6-6.  The effectiveness of PCM to update the estimated hazard h(t) 
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results are shown in Figures 6-7 and 6-8. In these figures, the initial hazard function 

was estimated using 150 historical failure data. 

Figure 6-7 shows normalised covariate data which were contaminated by Gaussian 

random noise. The mean value of the noise was zero and the standard deviation was 

0.5. Figure 6-8 shows the simulation results using contaminated covariate data to 

update the estimated hazard function. 

 

Comparing Figure 6-8 with Figure 6-6, one can find that PCM was robust and can 

reduce the effects of covariate fluctuations on hazard estimation. Figure 6-8 shows 

that the influence of corrupting noise decreased with the increasing number of 

covariate data used for updating the hazard function. The reason - for random noise 

with zero mean value, the more data used, the less the effects of noise on the 

estimation results.  

At the beginning stage of the prediction, the prediction accuracy of PCM may be 

lower than tendency method if the hazard function of a system changed only 

marginally and the covariate data were contaminated by noise (refer to Figure 6-8). 

The length of this undesirable period depended on the severity of contamination and 

the data number of the covariate used for updating the estimated hazard function. In 

fact, the above problem encountered when PCM is used, also exists in other models 

Figure 6-7. Contaminated covariate data 
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that predict reliability or hazard using condition monitoring data such as PHM. The 

reason for this phenomenon was that contaminated condition monitoring data caused 

estimation errors. When only a minimal set of condition monitoring data were used 

to estimate the hazard, the effect of the noise contained by the data could not be 

removed even though this noise had a zero mean value. On the other hand, in a short 

period at the beginning of the prediction, the hazard did not change much so that the 

trend of the historical hazard function did not depart much from the real hazard. In 

this case, the tendency method had higher prediction accuracy.  

 

 

 

 

        Figure 6-8. Hazard estimated with the contaminated covariate data 
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One approach to improve the accuracy at the beginning of prediction is to forecast 

hazard using both PCM and the tendency method, because in reality one cannot 

predict whether the hazard function of a system does change. Another approach is to 

increase the frequency of the acquisition of on-line condition data. This approach can 

shorten the length of the undesirable period where the estimated hazard is severely 

affected by the noise level in condition monitoring data. 

6.3.6 Condition Monitoring Data for Updating Hazard Funct ion 

From the analysis in Subsection 6.3.5, one can draw the following conclusion. To 

reduce the effects of the corrupting noise on the estimated hazard function, the 

number of covariate data for updating the hazard function should be as large as 

possible. However, if looking back at Figure 6-6, one can find an interesting 

phenomenon: the more covariate data used to update the estimated hazard function, 

the slower the convergence of this estimated hazard function to the real hazard 

function. This phenomenon can be explained as follows: 

After the operating conditions of a system change at time ct , the covariate data 

collected before ct  become inaccurate data because the new data does reflect the new 

conditions of the system. If the old data is used to update the hazard, the estimated 

hazard function will deviate from the real hazard function. The estimated hazard 

function will be equal to the real one only after all these “inaccurate” data have been 

replaced by the new data collected after ct . The more data used to update the hazard 

function, the longer time is needed to replace the “inaccurate” data because under a 

given frequency of data acquisition, collection of more data takes a longer period of 

time. One should therefore use fewer covariate data to update the estimated hazard 

function if a quick response of the estimated hazard function to the real hazard 

function is desired. 

The number of covariate data used for updating the hazard function should be 

determined based on specific cases. Generally speaking, the less the covariate is 

corrupted by noise, the fewer the number of covariate data should be used, and vice 

versa. If the hazard characteristics of a system change marginally, the number of 
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covariate data can be larger. In the candidate’s study, five to ten data sets were used. 

When the characteristics of the hazard of a system change, one should avoid using all 

covariate data for updating the hazard function because the “inaccurate” data will 

never be replaced and the tracking process will take longer to settle (refer to Figure 

6-6 (d) and Figure 6-8 (d)). If both quick tracking process and high prediction 

accuracy are required in this situation, one needs to increase the frequency of data 

acquisition – collecting more data within the same or even shorter period of time. 

However, this approach often means an increase of cost. 

6.3.7 Case Studies – Truck Engines and Spur Gearboxes 

6.3.7.1 Case study 1: Truck engines 

The field data used in this case study were obtained from the maintenance history 

and the oil analysis report of selected engines from some haul trucks commonly used 

in mining industry. In the case study, the overall hazard of the truck engines was 

analysed using PCM. 

The condition monitoring covariates presented in the report included the 

measurements for seven types of metal wear debris in the unit of parts per million 

(ppm) and the measurements for three types of non-metal materials in percentage of 

allowable volume. Correlation analysis indicated that the increment of Iron (Fe) 

debris was sensitive to the changes of the hazards of the engines. The increment of 

Fe particles was hence used as a covariate in this case study. Figure 6-9 and Figure 6-

10 show the changes of the increment of Fe particles from two engines (Engine 1 and 

Engine 2). The failure data of these two engines collected over time used in this case 

study. The state of the engines after repairs was assumed to be as good as new. To 

verify the effectiveness of PCM, the historical data (failure data and the measurement 

of Fe particles) of Engine 1 were used to estimate the initial hazard function and the 

baseline covariate function. Based on this estimated baseline covariate function, the 

prediction on the hazard of Engine 2 is conducted using PCM. The predicted hazard 

was compared to the real hazard function obtained using the full original failure data 

of Engine 2 as well as the prediction using a conventional approach. The 

conventional approach to predicting the hazard of Engine 2 used the estimated hazard 
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function of Engine 1 since they were the same type of engines. 

 

In this case study, the failure times of the engines were assumed to be Weibull 

distributed as shown in Figure 6-11 and Figure 6-12. 
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Figure 6-10.  The changes of Fe particles – Engine 2 
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Figure 6-9.  The changes of Fe particles – Engine 1 
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The initial hazard function was obtained using the first group of historical failure 

data. 
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Figure 6-11.  Weibull probability plot - Engine 1 
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Figure 6-12.  Weibull probability plot - Engine 2 
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where, )(thin  is the estimated hazard function for Engine 1. 

In Step (4) of the procedure for PCM (see Section 6.3.2), three models were 

recommended for representing the baseline covariate functions. In this case study, 

the multiplicative model (Equation (6-12)) was chosen. Using the measurement of Fe 

particles of Engine 1 and the estimated initial hazard function (6-20), the baseline 

covariate function was obtained based on Step (4) of the procedure: 

0827.0713.49)( −= ttC . (6-21) 

Assume that the above baseline covariate function is also suitable for representing 

the relationship between the covariate (the measurement of Fe particles) and the 

hazard of Engine 2. Therefore the hazard function for Engine 2, )(the , can be 

obtained based on Step (5) of the procedure for PCM and it was given by  

0623.0)
34.867

(
34.867

0623.1
)(

t
the = , (6-22) 

The full historical measurement of Fe particles of Engines 2 were used for estimating 

this hazard function because the characteristic of hazard of Engine 2 did not change 

(refer to Figure 6-12). 

Figure 6-13 shows the comparison prediction results of using PCM and the 

conventional approach, i.e., to predict the hazard of Engine 2 using the hazard 

function estimated from the historical failure data of Engine 1 (Equation (6-17)). 

From this figure, it can be seen that the hazard of Engines 2 is lower than that of 

Engines 1. This difference was caused by different working conditions and can be 

well explained by PHM. Figure 6-13 indicates that PCM based prediction is more 

closely matched to the original hazard line than the conventional approach based 

prediction. The hazard function estimated using PCM certainly more accurately 

reflects the true hazard than using the conventional approach within the observation 

period (about 10000 hours). 
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6.3.7.2 Case study 2: Spur Gearbox 

Estimation of the baseline covariate function )(tC  is a critical procedure in PCM. 

The baseline covariate function of a system can be estimated by the following 

approaches: 

(1) The baseline covariate function )(tC  is typically estimated based on 

historical failure data and covariates, which was demonstrated in Case study 1. 

(2) In case of sparse or even zero historical data, the baseline covariate function 

)(tC  can also be determined using other information such as accelerated life 

test data. Hence PCM can be used to estimate hazard functions of systems in 

this case.  

To demonstrate this, a case study was conducted using acceleration life test data on a 

single stage spur gearbox. Table 6-1 shows the experimental data for operating hours, 

increments of the crack depth of the test gear and the kurtosis of the residual signal.  
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A residual signal is obtained from the signal average by filtering out gear meshing 

harmonics (i.e, using a multi band-stop filter). It represents random transmission 

errors for healthy gears. For faulty gears, the transmission errors will include a 

sudden change (eg. a spike) which becomes non-Gaussian. Kurtosis is a good 

measure of non-Gaussianity (eg. spikiness) in a signal. Tooth cracking and tooth 

pitting type of faults can be distinguished using the residual signal methods [310].  

In this experiment, each test gear was 10 mm wide and had 27 teeth. Its rated load 

was 24.5 kW at a shaft speed of 2400 rpm, but the gears were overloaded during the 

tests to “accelerate” the onset of failure. In addition, each gear was initially spark-

eroded with a semi-circle notch of 1 mm radius at the root fillet of a tooth, across the 

middle of the tooth width. When the increment of crack depth of the test gear reached 

3.16, the gear box did not operate normally any more. 

The vibration of the test gearbox was continuously monitored and recorded. The 

kurtosis of the residual signal of gear meshing vibration signal was trended and used 

as a local fault indicator for gear fault diagnosis. In this paper, these test data were 

used to estimate the trend of the hazard of the test gears, and the hazard functions of 

the gears. In this case study, the covariate was selected as the kurtosis of the residual 

signal (the second row in Table 1). Previous research [310, 311] has revealed that the 

kurtosis of the residual signal has a good co-relationship with the crack of the test 

gear. The baseline covariate function was estimated using the following two 

assumptions: 

(1) The hazard rate of the test gear is proportional to its crack depth after 

initiation – a reasonable assumption because a gear with a deeper crack is 

Table 6-1. The test gearbox data 

Operating hours 0.0917 3.3383 3.7536 4.6383 5.5064 5.6864 

Kurtosis of the residual 

signal 
2.2933 2.6934 3.6728 3.5146 3.2240 4.7228 

Increments of crack 

depth (mm) 
0 1.57 1.73 2.11 2.81 3.16 
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likely to breakdown earlier. The assumption was further supported by 

correlation analysis between the increments of the crack depth of the test gear 

and its failure rate (see Figure 6-14). 

(2) The failure rate of the test gear follows the Weibull distribution (see Figure 6-

15). This assumption holds because the test gearbox is a typical mechanical 

system and the test was conducted to simulate the wear-out stage (crack 

propagation). This assumption has been supported by Mann’s test for the 

Weibull distribution. The Mann’s test statistic M was obtained to be 0.881 

which was less than the critical value )6,6,05.0(F . Hence, the hypothesis 

that the failure times are Weibull was accepted at the level of significance 

0.05. 

Using the above two assumptions and Equation (6-15), the baseline covariate 

function )(tC  and the hazard function )(th  were estimated. The multiplicative 

model (Equation (6-12)) was used to construct the baseline covariate function. In this 

case, the baseline covariate function )(tC  contained the unknown proportional scale 

which represents the relationship between the hazard rate of the test gear and the 

increments of its crack depth. Figures 6-16 and 6-17 show the results of the PCM 

based hazard estimation using 4.47 hours and 5.69 hours online condition monitoring 

data respectively. 

 
Figure 6-14.  Relationship between the increment of crack depth and hazard 
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Figure 6-15.  Weibull fitness check 
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Figure 6-16.  Hazard curves of the test gears: 4.47 hours condition monitoring data  
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The estimated hazard function was 

5591.20403.0)( tth = . (6-23) 

Figure 6-18 presents a reliability probability distribution of the test gear based on the 

hazard estimation shown in Figure 6-17. The figure reveals that the reliability of the 

test gear would be lower than 1% after five and half hours of overloaded operating 

time. In reality, this low reliability indicated that test gear would certainly operate 

abnormally after five and half hours of overloaded operating time. The test results 

confirmed the estimation. 
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Figure 6-18.  Reliability diagram of the test gears 
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Figure 6-17.  Hazard curves of the test gears: 5.69 hours condition monitoring data  
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The hazard estimation based on PCM is relatively accurate. Figures 6-16 and 6-17 

indicate that the hazard estimation using PCM has the same trend with the original 

hazard rate. The prediction accuracy increased when more on-line condition 

monitoring data were used for hazard estimation. The departure between the 

estimated hazard line and the original hazard line was caused by the departure of the 

real data from the above two assumptions used to estimate the baseline covariate 

function. A correlation analysis (Figure 6-14) indicates that the hazard rate of the test 

gear can be treated as proportional to the increments in crack depth during most of 

the test period but not at the start of the test because of the initial spark-eroded notch. 

From the Weibull fitness analysis (Figure 6-15), it can be seen that the failure data is 

not strictly Weibull distributed although the goodness of fit is reasonable.  

6.4 SUMMARY 

PCM presents a new approach to predict failure of a system or a component using 

both condition monitoring data and historical failure data. Compared with PHM, 

PCM has the following advantages:  

(1) In PHM, the baseline hazard function is dependent on historical failure data 

whereas in PCM, the baseline covariate function can be estimated with even 

zero failure history. The reason is that the baseline covariate function can be 

estimated empirically or from accelerated life tests. Hence, PCM can be used 

to estimate hazard functions of systems in the case of sparse or even zero 

historical data.  

(2) The time for scheduling preventive maintenance can be predicted by PCM, 

whereas PHM is unable to do so. PHM only triggers an alarm when the 

hazard of a system has reached a predefined level because it needs covariate 

data to calculate the hazard values of the system.  

(3) The fluctuations in condition monitoring data have much less influence on 

PCM than on PHM. In PCM, a set of points of a covariate is used to update 

the estimation of a hazard function at any time, whereas in PHM only single 

datum of a covariate is used to estimate a single hazard value at each time. 
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Under the condition that the hazard of a mechanical component or system is 

proportional to the deterioration of the component or system, the hazard functions of 

this component or system can be estimated through a combination of PCM and 

accelerated life tests. In principle, the reliability function of a mechanical system can 

be estimated by a single accelerated life test when PCM is used. Therefore, the 

number of accelerated life tests for estimating the reliability of a mechanical system 

can be significantly reduced by a combination of PCM and accelerated life tests. 

In PCM, the hazard function of a system can be updated using on-line condition 

monitoring data so that the latest changes of the characteristics of the hazard of this 

system can be determined. PCM based hazard estimation can automatically track real 

changes in the hazard function which can change due to alterations in the operating 

conditions of a system, even when condition monitoring data are contaminated by 

noise (see Figures 6-6 and 6-8). PCM is robust as long as the corrupting noise has a 

zero mean value.  

The number of covariate data for updating the hazard function will affect the 

accuracy of estimation and the time taken for the estimated hazard to track the real 

hazard because collecting more data takes a longer period of time under a given 

frequency of data acquisition. If the covariate is not contaminated by noise, less 

covariate data, e.g. one or two, are used to update the estimated hazard function in 

order to ensure a prompt response of the estimated hazard function to the real hazard 

function. If the covariate of the system is contaminated by zero mean value noise, 

full covariate data should be used to reduce the effect of the noise on the estimation 

of the hazard provided that the hazard characteristics of a system do not change. If 

the hazard characteristics of a system change and the covariates of the system are 

also corrupted by noise, the number of covariate data used for updating the hazard 

function is mainly dependent on the severity of noise and the requirement for the 

tracking time needed for estimating the real hazard. Generally speaking, low noise 

level and requirement for faster tracking process requires fewer data when updating 

the estimated hazard. In the case of the simulations as well as the case study 

presented in Section 6.3.7, seven to ten data produced the best result. When the 

hazard characteristics of a system changes, one should avoid using all covariate data 

for updating the hazard function because the tracking process could be extended 
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(refer to Figures 6-6 (d) and 6-8 (d)). If noise level is high and a faster tracking 

process is required, one needs to increase the frequency of data acquisition so that 

more data can be collected in a shorter period. 

The accuracy of the baseline covariate function is crucial to ensure the accuracy of 

the updated hazard estimation. A correlation analysis between covariates and the 

hazard of a system should be conducted to determine which covariate can be used in 

PCM. Needless to say a covariate with good correlation with the hazard of a system 

should be used as otherwise it will produce poor estimation result. 
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Chapter 7  

EXPERIMENTS 

7.1 INTRODUCTION 

The validation of the newly developed methodologies and models was conducted 

using (a) simulation, (b) laboratory data and (c) field data. Both (a) and (c) were 

presented earlier. The experiments were conducted with the following objectives: 

(1) To validate the Analytical Model for Interactive Failures (AMIF) and 

demonstrate the estimation of interactive coefficients. 

(2) To verify the results described by the Extended Split System Approach 

(ESSA) 

(3) To validate the Proportional Covariate Model (PCM). 

The rest of the chapter is organised as follows. In Section 7.2, the test rig and 

experimental method are described. The test results are presented in Section 7.3 and 

followed the analysis of the test results in Section 7.4. The conclusions are presented 

in Section 7.5. 

7.2 TEST RIG AND EXPERIMENTAL METHOD 

The experimental investigation focussed on using a fault demonstration test rig 

where a shaft with a wheel was supported by two ball bearings (left bearing and right 

bearing). The shaft was driven by a motor through a pair of flexible couplings. 

Failure was categorised as misalignment created by moving the left bearing housing 

in two opposite directions (forward and back). The movement of the bearing housing 

was controlled by a screw. A second failure mode was the failure of the bearing. The 

test rig is shown in Figure 7-1 and Figure 7-2. 
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To address Objective 1 and Objective 2 of the experiments, the effects of the 

misalignment of the shaft (failure mode 1) on the fatigue failure of the right bearing 

(failure mode 2) were analysed in the experiments because the shaft and the bearings 

had direct interactions with each other. Misalignment is a fault, which can be utilised 

to assess the failure of the shaft when the level of unacceptable misalignment is  

predetermined. When the shaft rotated, the misaligned shaft caused the bearing to 
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vibrate. The overall vibration level of acceleration of the right bearing was used to 

indicate its fatigue failure rate. All this information was collected by a data 

acquisition system shown in Figure 7-3 and Figure 7-4. 

 

 

In Figure 7-4, number 1 was an ENDEVCO 256HX-10 piezoelectric accelerometer 

(Figure 7-5). The type of the right and left bearings was deep groove ball bearing 

6204. Figure 7-6 shows a damaged bearing which was used in the experiments. 
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Figure 7-4.  Diagram of the test rig and data acquisition system 
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During the experiments, an accelerometer was mounted on the right bearing housing 

to detect the vibration signal of the bearing. The speed of the shaft was 960 rpm. The 

operation load was 0.89 kW. The left bearing was in healthy condition, and both 

healthy and faulty bearings were used for the right bearing. The faulty bearing was 

damaged with a notch cut on the inner surface of the outer race (Figure 7-6). The 

notch extended throughout the cross section of the outer race with a configuration of 

width × depth =1.8 mm × 0.385 mm respectively. In each test, 20,000 samples of 

data were collected. The sampling frequency of data acquisition was 10 kHz. 

The experimental procedure consisted of assessing the vibration against the 

misalignment in two opposite directions – forward (positive) and back (negative) 

(see Figure 7-2) to investigate if the test results were sensitive to the direction of the 

misalignment of the shaft. A faulty right bearing was used in the experiment initially. 

The faulty bearing was subsequently replaced by a healthy one to simulate the 

scenario where a system was repaired. The tests based on the scenario where the 

shaft was supported by a pair of healthy bearings were also used for achieving 

Objective 3 of the experiments. 

Figure 7-6.  The damaged 

bearing 

Figure 7-5.  ENDEVCO 256HX-

10 piezoelectric accelerometer 
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7.3 TEST RESULTS 

During the experiments, the degree of angular misalignment of the shaft was less 

than 0.01rad. For this small degree, the ratio lbhx /380 can be used to present the 

degree of angular misalignment of the shaft smϑ , i.e., 380/lbhsm x=ϑ  because  

380
)

380
( lbhlbh xx

arctg ≈ . (7-1) 

where, lbhx  is the displacement of the left bearing housing from its central position 

and 380 mm is the distance between the two bearings (see Figure 7-2).  

Figures 7-7, 7-8 and 7-9 show the part of the test results. Figures 7-7 and 7-8 display 

the vibration signals (overall vibration level) in the time domain of the faulty bearing 

when the shaft had different degrees of angular misalignment in the forward (positive) 

direction and back (negative) direction respectively.  
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Figure 7-7.  The vibration of the faulty bearing under different degrees of 

misalignment of the shaft in the positive direction 
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Figure 7-8.  The vibration of the faulty bearing under different degrees 

of misalignment of the shaft in the negative direction 
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The experiments were also used to analyse the effect of unrepaired subsystem on the 

repaired component when the subsystem and the component had failure interaction. 

To do so, the bearing on the right end of the shaft was replaced using a healthy 

bearing and the experiment was repeated under different degrees of angular 

misalignment of the shaft. Figure 7-9 shows one set of the test results. It displays the 

vibration signals in the time domain of the test bearings when the shaft was exposed 

to different degrees of angular misalignment. 
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Figure 7-10 depicts the changes of the average acceleration amplitude of the faulty 

bearing with different degrees of angular misalignment of the shaft. 

 

  

Figure 7-10.  The average acceleration amplitude of the faulty bearing under 

different degrees of angular misalignment of the shaft [(a) in the positive direction; 

(b) in the negative direction] 
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Figure 7-9.  The vibration signals in the time domain of the test bearing when two 

healthy bearings were used (continued) 
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The average amplitude of acceleration of a bearing is the mean acceleration 

amplitude value of a vibration process of the bearing over time. Figure 7-11 depicts 

the relationship between the average vibration amplitude of the test bearing and the 

overall angular misalignment of the shaft under the condition that the both bearings 

were healthy. 

 

7.4 ANALYSIS OF THE TEST RESULTS 

The laboratory experiments were conducted using a mechanical system. The failures 

of mechanical components generally have the following features: 

(1) A mechanical component has several failure modes. The failure of a 

mechanical component with a specific failure mode is usually defined as its 

inability to perform its predefined function satisfactorily due to this failure 

occurring. However, the demarcation line between failure and non-failure is 

often unclear. Unlike normal failures in electrical components, the failure of a 

mechanical component usually occurs more gradually rather than a step 

change.  

Figure 7-11.  The average acceleration amplitude of the healthy right 

bearing under different degrees of angular misalignment of the shaft 
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(2) When a mechanical component fails, it can continue to operate often resulting 

in this failed component affecting other components in due course.  

(3) The failure of a mechanical component usually will not cause its related 

mechanical components to fail immediately but can accelerate their hazards. 

(4) Failure interactions among components in a mechanical system are common. 

For example, in a mechanical system such as the test rig shown in Figure 7-1, 

a deteriorated bearing will result in the drift of a shaft supported by this 

bearing and the misalignment of the shaft will also increase the deterioration 

of the bearing. 

The more deteriorated a mechanical component becomes, the more likely it will fail. 

The assumption that the hazard of a mechanical component is proportional to the 

degree of its deterioration is justified. Experiments have supported this assumption 

(see Figure 6-14 in Chapter 6). From Figure 6-14, it can be seen that the hazard of 

the test gear can be treated as proportional to its increment of crack depth. Another 

example is a model for predicting the failure rate (hazard) of ball bearings presented 

by Ebeling [16]. This model indicates that the hazard of a bearing is proportional to 

the percentage of water present in its oil lubricant if this percentage is less than 0.2%.  

From Figures 7-10 and 7-11, it can be seen that the average acceleration amplitude of 

the test bearing increases with the increasing degree of angular misalignment of the 

shaft. This fact indicates that the increased hazard of the shaft (i.e. misalignment) 

could result in an increase in the hazard of the bearing because the larger vibration 

amplitude leads to accelerated onset of fatigue failure in a mechanical system [312]. 

Furthermore, from Figures 7-10 and 7-11, it can be inferred that a linear relationship 

exists between the degree of angular misalignment of the shaft and the vibration 

acceleration of the test bearings. The line of best fit in these two figures is described 

by: 

smamaa byy ϑ+= 0 , (7-2) 

where, ay  is the average acceleration amplitude of the test bearing and 0ay is the 
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initial value of the average acceleration amplitude of the test bearing. Variable smϑ  is 

the degree of angular misalignment of the shaft. Parameter amb  is the slope of the fit-

line. 

In reality, ay , 0ay  and smϑ  are usually time dependent. In this case, Equation (7-2) 

should be rewritten as 

)()()( 0 tbtyty smamaa ϑ+= . (7-3) 

In Section 7.2, the candidate indicated the vibration signals of the test bearings were 

collected against the misalignment of the shaft in two opposite directions (Figure 7-2) 

to check if the test results were sensitive to the direction of the misalignment. From 

Figure 7-10 and Table 7-1, it can be seen that the test results were not sensitive to the 

direction of the misalignment of the shaft, i.e., when testing in two opposite 

misalignment directions, the relationship between the failure rate of the shaft and the 

failure rate of the bearing was almost the same. 

The analysis of the tests which were conducted when the right bearing was replaced 

using a healthy bearing also confirmed the above findings (refer to Figures 7-9 and 7-

11): (1) the angular misalignment of the shaft increased the vibration of the test 

bearing; (2) the relationship between the angular degree of misalignment of the shaft 

and the average acceleration amplitude of the bearing was approximately linear and 

(3) this relationship was not sensitive to the direction of the misalignment of the shaft. 

Each test was repeated five times to ensure the repeatability of the experiments and 

the accuracy of the experimental analysis. Table 7-1 presents the absolute values of 

slope | amb | and the initial values of the average acceleration amplitude of the faulty 

bearing, 0ay . Let 
ambε stand for the relative estimation error of the slope and 

0ayε  for 

the relative estimation error of the initial values of the average acceleration 

amplitude 0ay . When the average value 461.135=amavb ×10-3 ms-2rad-1 and 

01.60 =avay ×10-4 ms-2, %99.5≤
ambε  and %23.6

0
≤

ayε . Given that these values lie 

below 10%, the tests were considered to be relatively accurate and consistent.  
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Table 7-1 

The absolute values of slope | bam| and the initial values of 

the average acceleration amplitude of the faulty bearing 

| amb | (10-3 ms-2rad-1) 0ay  (10-4 ms-2) 
Test No. 

P N P N 

1 134.064 135.926 5.733 6.248 

2 135.926 143.374 5.660 6.125 

3 130.806 137.323 5.770 6.272 

4 129.875 137.788 6.014 6.272 

5 136.392 131.271 5.709 6.395 

Average 135.461 6.010 

Note: P – Positive direction of misalignment;  

N – Negative direction of misalignment (see Figure 7-2) 

 

In the following subsections, the test results presented in Section 7.3 and the above 

analysis results will be used to justify the new models developed in the previous 

chapters. 

7.4.1 Interactive Failures 

A mathematical model for IntF (Equation (4-11)) was derived in Chapter 4and the 

theoretical model was validated by select case studies. In this subsection, the 

particular model will be validated by the experiments described above. These test 

results will also used to estimate the interactive coefficient 12θ , where 12θ  represents 

the degree of the effect of the misaligned shaft on the fatigue failure of the bearing on 

the right end of the shaft.  

The following assumptions were used in the interpretation of the test results in the 

above section. 
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(1) The deterioration of the shaft and the bearings during the experiments are 

neglected because the experimental time was short compared to the life cycle 

of the mechanical components. 

(2) It is understandable that the shaft will fail to function (rotate) properly when 

its angular misalignment reaches a threshold. Hence, the failure of the shaft 

with failure mode 1 was defined as that occurring when the shaft operated 

abnormally due to the angular misalignment. The greater the angular 

misalignment, the more likely the shaft operated abnormally. Therefore, for 

the failure mode 1, the assumption that the hazard of the shaft is proportional 

to its degree of angular misalignment is justified. As mentioned previously, 

the assumption that the hazards of mechanical components are proportional to 

their degrees of deterioration has been supported by other research (refer to 

Wang [311] and Ebeling [16]). Let )(1 th  represent the hazard of the shaft 

with failure mode 1, based on this assumption, 

)()( 11 tbth smϑ= ,  (7-4) 

where 1b  is a coefficient. 

(3) The failure of the test bearing with failure mode 2 was defined as that 

occurring when the bearing could not perform its predefined functionality due 

to fatigue occurring inside the bearing. The hazard of the test bearing is 

assumed to be proportional to the average acceleration amplitude of the 

bearing if the fatigue failure of the bearing is considered solely because the 

stress of the bearing is proportional to its acceleration and the fatigue hazard 

is proportional to the stress [312]. Let )(2 th  and )(2 thI  represent the 

interactive hazard and the independent hazard of the bearing respectively. 

Based on this assumption, 

)()( 22 tybth a= ,  (7-5) 

and 
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)()( 022 tybth aI = ,  (7-6) 

where 2b  is a coefficient. 

The Equations (7-4), (7-5) and (7-6) can also be derived using PHM. 

Substituting the Equations (7-4), (7-5) and (7-6) into Equation (7-3), gives: 

)()()( 1
1

2
22 th

b

bb
thth am

I += ,  (7-7) 

Let 
1

2
12 b

bb am=θ  (7-8) 

be the interactive coefficient that represents the effective degree of the failure of the 

shaft affecting the failure of the test bearing, then Equation (7-7) can be rewritten as 

)()()( 11222 ththth I θ+= . (7-9) 

Equation (7-9) justifies that the analytical model given by Equation (4-11) can 

represent the interactive failure relationship between the test bearing and the shaft 

provided the hazard of a mechanical component is proportional to its degree of 

deterioration. In a real world application, to reduce the effect of testing errors, the 

average 1b , avb1 , the average 2b , avb2  and the average amb , amavb  should be used to 

calculate 12θ  in Equations (7-7) and (7-8). 

Substituting Equation (7-9) into Equation (4-16), gives 

∫ ∫−−−=
t t

I dtthdtthtF
0 0

21222 ])()(exp[1)( θ , (7-10) 

where, )(2 tF  is the interactive failure distribution function of the test bearing. 

According to Equation (4-1) and the relationship between the reliability function 
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)(tR  and the failure distribution function )(tF , Equation (7-10) can be rewritten as: 

∫−−=
t

I dtthtRtF
0

21222 ])(exp[)(1)( θ  (7-11) 

where, )(2 tRI  is the independent reliability function of the bearing. 

Equation (7-11) indicates that the failure probability of the test bearing affected by 

the misaligned shaft can be predicted provided the independent reliability function of 

the bearing and the reliability function of the shaft are known. In this case, interactive 

coefficient 12θ  can be calculated using Equation (7-7). At first, the independent 

hazard of the bearing and the hazard of the shaft can be estimated using Equation (4-

1). The average 1b , avb1  and the average 2b , avb2  can then be calculated using 

Equation (7-4) and Equation (7-6) respectively. 

For simplification, assume that the independent hazard of the faulty bearing is 6×10-3 

h-1 and the hazard of the shaft is 7×10-3 h-1 with a displacement of 0.5 mm of the left 

bearing housing. The coefficients avb1  and avb2  are then 5.319 11hrad −−  and 9.983 

121 hsm −−  respectively and 12θ  is 0.254. Equation (7-11) becomes 

∫−−=
t

I dtthtRtF
0

222 ])(254.0exp[)(1)( . (7-12) 

Note that the coefficients avb1  and avb2  can vary because they depend on the 

reliability values of the test bearing and the shaft.  

Figure 7-12 shows the comparison between the experimental result and theoretical 

result using Equation (7-9) and demonstrates the accuracy of the equation.  
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7.4.2 Hazard of a Newly Repaired Component 

In the development of ESSM, the result from this model indicated that the hazard of 

a new component used in a deteriorated system would be higher than its original 

hazard if IntF existed. This result has been demonstrated by the experiment when the 

faulty bearing was replaced by a healthy bearing. 

From Figure 7-9, it can be seen that the acceleration amplitude of the healthy bearing 

on the right end of the shaft increased with the increasing degree of angular 

misalignment of the shaft. This result indicates that the new bearing was likely to 

suffer accelerated wear/damage if a shaft became misaligned and if the misalignment 

of the shaft was not corrected. 

To demonstrate the effect of the misaligned shaft on the failure distribution of the 

right bearing quantitatively, assume that the degree of angular misalignment of the 

shaft remained constant during an operation and the independent reliability function 

of the healthy bearing was obtained from [313] as: 


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Figure 7-12.  Comparison between experimental and theoretical results  
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The hazard of the bearing on the right end of the shaft shown in Figure 7-13 was 

determined under two conditions: angular misalignment of the shaft at 1.316×10-3 rad 

and a well aligned shaft. From the figure, it can be seen that the hazard of the bearing 

under the first condition was higher than the hazard of the bearing under the second 

condition, i.e., a misaligned shaft increased the hazard of a new bearing on the shaft. 

Figure 7-14 shows the failure distribution of the test bearing corresponding to Figure 

7-13. 
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Figure 7-14 indicates that at 900 hours, the failure probability of the bearing under 

the condition of shaft misalignment was almost 90% whereas the failure probability 

of the bearing when the shaft was aligned at the same time was just about 50%. 

7.4.3 PCM 

PCM was developed based on the assumption that covariates of a system are 

proportional to the hazard of the system. The reasonableness of this assumption has 

been justified using some existing research results in Chapter 6. In this subsection, 

the reasonableness of the assumption will be verified using the laboratory 

experimental results. As a special case, a baseline covariate function is also estimated. 

According to the test, the average acceleration amplitude of the vibration of the test 

bearing was sensitive to the change of the angular misalignment of the shaft (see 

Figure 7-7 to Figure 7-11). Therefore, the average acceleration amplitude of the 

vibration of the test bearing was used as a covariate to indicate the degrees of angular 

misalignment. This covariate was measured and calculated against the different 

degrees of angular misalignment of the shaft. The result shown in Figure 7-15 was 

obtained under the conditions mentioned in Subsection 7.4.1 and using two healthy 

bearings. 

 

Figure 7-15.  The relationship between the hazard h(t) of the shaft and the 

average vibration amplitude Aav 
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Figure 7-15 clearly indicates that the covariate, i.e., the average vibration amplitude 

Aav, was proportional to the hazard of the shaft. In this experiment, the baseline 

function, )(tC  can be treated as time-independent. 

4101052.1)( −×=tC  (ms-3) . (7-14) 

However, in many scenarios, the baseline functions are time-dependent. In these 

scenarios, the )()( thtC −  plot will be a curve instead of a straight-line. 

7.5 SUMMARY 

A series of laboratory experiments were conducted for validating the newly 

developed methodologies and models. Through these experiments, the following 

results have been justified: 

Equation (4-11) can be used to describe the interactive failures in a mechanical 

system. The interactive hazard of a component can be calculated by its independent 

hazard plus a portion of the interactive hazard of its influencing components.  

The hazard of a new component used in a deteriorated system will be higher than its 

original hazard if this new component has failure interaction with other unrepaired 

components in the system. The failure likelihood of a component increases when its 

influencing components deteriorate. 

The degree of the failure interaction between two components can be measured by 

the interactive coefficient. A greater interactive coefficient means that the failure of a 

component has a greater effect on the failure of its affected component. This 

experimental study has also provided evidence that the interactive coefficient can be 

determined through experimentation. 

The assumption used to develop PCM is reasonable. The covariates of a system, or a 

function of these covariates, can be assumed to be proportional to the hazard of the 

system. This proportional relationship can be represented by a baseline covariate 

function. The baseline covariate function can be either time independent or time-

dependent.
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Chapter 8  

CONCLUSIONS 

This research has developed practical models and methodologies to improve the 

accuracy of reliability predictions of repairable systems for engineering applications. 

After an extensive literature review, the candidate identified the following limitations 

in existing reliability prediction models: 

(1) The different states of repairable systems after multiple repairs were generally 

inadequately modelled. A common approach is to assume that a repairable 

system after repairs becomes “as good as new” or “as bad as old”.  

(2) Interactive failures have not been modelled previously. Existing models or 

methodologies have been mainly developed on the assumption of independent 

failures or unidirectional dependent failures such as common cause failure.  

(3) Existing models have not adequately dealt with the reliability prediction of a 

system using responsive covariates (symptom indicators), especially when 

historical failure data are sparse or null.  

In this thesis, the candidate endeavoured to overcome these limitations and 

developed the following new methodologies/models: 

(1) The split system approach. 

(2) The analytical model for interactive failures. 

(3) The extended split system approach. 

(4) The proportional covariate model. 
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The detailed conclusions of each of these methodologies /models are presented in the 

following four sections. 

8.1 SPLIT SYSTEM APPROACH (SSA)  

The prediction of the reliability of complex repairable systems with multiple PM 

actions over multiple intervals is difficult because the characteristics of the reliability 

of a system will alter after each PM. SSA uses a new concept to resolve this 

difficulty effectively by splitting a system into repaired and unrepaired parts virtually 

when modelling the reliability of a system with multiple PM actions. SSA possesses 

the following advanced characteristics: 

(1) SSA explicitly predicts the reliability of a repairable system with multiple PM 

actions over multiple intervals and predicts when the system is unworthy of 

further PM. Most existing reliability models consider the time to the next 

failure, MTTF or/and the expected number of failures during a given period. 

(2) SSA effectively models all possible states of a system after PM such as “as 

good as new”, “imperfect repair”, “improvement repair” (better than new) 

and “as bad as old”. Existing models generally describe imperfect repairs 

based on the assumption of a fixed deterioration rate of reliability. 

(3) SSA considers the individual contributions of different maintained parts in a 

system and the influence of different system structures on the reliability of a 

repairable system. This consideration assists in understanding the effects of 

PM on a system in more depth. Existing models often take the entire system 

into account. 

(4) SSA does not dependent on the restrictions on the forms of failure 

distribution. 

The candidate has derived formulae for reliability prediction of systems for the 

following scenarios: 

(1) The same component is repaired in all PM activities;  
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(2) A single but different component is repaired in each PM action.  

For the scenario where multiple components are repaired in one PM action, the 

candidate has developed a heuristic approach to predict the reliability of the system. 

SSA was shown to be effective in supporting preventive maintenance decision 

making for a repairable system over its whole life. It can be used to estimate: 

(1) The expected life of a repairable system with multiple PM actions.  

(2) The available number of PM actions on the system. 

(3) The spare parts requirement.  

SSA has been effectively used to compare the effectiveness of different PM 

strategies and assists in making optimal PM decisions. 

8.2 THE ANALYTICAL MODEL FOR INTERACTIVE FAILURES (AMIF )  

AMIF overcomes the assumption of independent failures and analyses interactive 

failures of systems without PM or repair. 

Existing models or methodologies for the reliability prediction have been mainly 

developed on the assumption that failures are independent. However, numerous 

industrial experiences have shown that this assumption is unrealistic and has led to 

unacceptable errors in failure risk assessment. To ensure the accuracy of reliability 

prediction, dependent failures need to be considered. Interactive failure is a new 

category of dependent failure, and is caused by failure interaction among the 

components in a system.  

The research on interactive failures is in its infancy, and the candidate has made the 

following original contributions:  

(1) Introduced new concepts such as interactive failure, influencing components, 

affected components and interactive coefficient for analysis of interactive 
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failure.  

(2) Identified that interactive failure can be either stable or unstable. The 

candidate proposed and proved two theorems to justify stable interactive 

failures. These theorems effectively assist in analysing and avoiding potential 

unstable interactive relationship in machinery during its design phase. The 

research outcomes on stable and unstable interactive failures can benefit the 

design of more maintainable and reliable machines. 

(3) Developed a model to analyse interactive failure quantitatively, suitable for 

engineering application. The candidate derived a formula to calculate the 

stable interactive failure distribution functions of systems and successfully 

investigated the effects of interactive failures on components and systems 

using this new model. The results contribute to improving risk management 

of assets with interactive failures. 

8.3 EXTENDED SPLIT SYSTEM APPROACH (ESSA) 

ESSA is an integration of SSA and AMIF, and extends the latter by considering both 

interactive failures and multiple PM actions over multiple intervals. The reliability 

prediction of complex reparable systems with interactive failures and multiple PM 

actions is also a new research area and the candidate has made the following original 

contributions: 

(1) Identified that when the failures of the repaired and unrepaired components in 

a system have interactions, the hazards of these components after a repair will 

change. This finding, if taken into account, improves the performance of 

maintenance on repairable systems with interactive failures. 

(2) Developed an effective method to analyze the changed hazards of repaired 

and unrepaired components in a system after a PM action. The candidate also 

derived the formulae for calculating the interactive hazards of a system after 

each PM based on this method. 
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(3) Extended the heuristic approach for SSA to explicitly predict the reliability of 

systems with interactive failures and multiple PM actions over multiple 

intervals. 

ESSA enhances the capability of SSA and AMIF and provides an effective tool for 

optimal PM decision making in more general scenarios. 

8.4 PROPORTIONAL COVARIATE MODEL (PCM)  

PCM presents a new approach to predicting the hazard of a system with a 

combination of historical failure data and condition monitoring data (covariates). It 

uses the same assumption as used in PHM, but the philosophy and procedure of PCM 

is different from that of PHM. 

The research in this thesis has demonstrated the following characteristics of PCM: 

(1) PCM automatically tracks the changes of hazard through using responsive 

covariates.  

(2) PCM has much more accurate prediction results than using the conventional 

approach or tendency method when the characteristics of the hazard of a 

system alter.  

(3) Compared to PHM, PCM has a greater ability to reduce the influence of noise 

which contaminates covariate data.  

(4) PCM is robust even though covariate data can be corrupted by random noise 

provided the noise has a zero mean value. 

(5) PCM is effective in predicting the hazard of a system based on condition 

monitoring data even though historical failure datum is zero. PHM does not 

have such ability. 
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8.5 GENERAL STATEMENTS 

The methodologies and models developed in this thesis can be related to each other 

and applied to predict the reliability of components and systems with multiple PM 

actions and interactive failures effectively. 

The newly developed methodologies and models have been justified through four 

approaches: 

(1) Theoretical proof.  

(2) Simulations. 

(3) Case studies using field data. 

(4) Experiments. 

The outcomes of this research are significant to the body of knowledge in reliability 

engineering. 

In total, 15 papers have been published or submitted by the candidate: 

● Six in refereed international journals: two published, three in press, and one 

submitted. 

● Nine in refereed international conferences. 

In recognition of the significance of this research, the candidate received the 2004 

Student Award from the Maintenance Engineering Society of Australia. This national 

award is presented to only one student throughout Australia each year. 
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Chapter 9  

DIRECTIONS FOR FUTURE RESEARCH 

While the candidate has successfully developed four new methodologies/models for 

predicting reliability of complex repairable systems, this final section of the thesis 

presents a brief on potential future research directions.  

9.1 EXTENSION OF SSA  

The candidate developed SSA based on the scenario that PM time is a deterministic 

variable, and that repair time is negligible. This approach was extended to the 

reliability prediction of systems with multiple PM actions and interactive failures. 

SSA can be further extended to predict the reliability of a system in the following 

scenarios: 

● A system with multiple random failures and PM actions. Unlike planned PM time, 

failure time is a random variable. 

● A system with multiple failures and repairs. In this case, repair time is a random 

variable and cannot be ignored. 

● A system with multiple repairs and immediate interactive failures. In this case, 

the changes of RBD of the system due to interactive failures need to be 

considered. 

9.2 APPLICATION OF SSA FOR PM DECISION MAKING  

The candidate demonstrated the application of SSA to support PM decision making 

for a repairable system during its lifetime in Chapter 3. This case focused on PM 

decision making based on reliability prediction. In reality, to make an optimal PM 

decision, one also needs to consider other factors such as: 
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● Business objectives. 

● Maintenance cost. 

● Resource constraints. 

● Consequences of failures. 

● Performance of maintenance personnel. 

Further work can lead to an integration of SSA and decision making models, taking 

into account some, if not all the above factors. 

9.3 ENHANCEMENT OF FAULT TREE ANALYSIS 

FTA is a useful technique in analysing the relationship between a failure event and 

its root causes. However, FTA cannot be used to analyse interactive failures. In a 

fault tree, only the failures at a lower level can affect the failures at a higher level. A 

failure cannot affect the failures at a level lower. The failures at the same level do not 

interact with each other. Therefore the fault tree cannot be used to describe 

interactive failures. To address this issue, a technique that integrates AMIF as 

developed in this thesis with the conventional FTA technique needs to be developed. 

9.4 PCM FOR MULTIPLE COVARIATES  

The candidate developed PCM based on a single covariate. PCM can be enhanced 

through using multiple covariates by: 

● Identifying significant covariates. 

● Constructing proper functions of covariates based on data fusion techniques, 

correlation analysis and maximum likelihood estimation. 

● Determining different weight/parameter for individual covariates. 

The modified Weibull distribution models presented by Murthy and Jiang [314] can 

be applied in PCM to improve the goodness-of-fit of the model to historical failure 



Yong Sun, PhD Dissertation at the Queensland University of Technology 
__________________________________________________________________________________ 

 222 

data. 

9.5 DEVELOPMENT OF SOFTWARE TOOLS TO ENHANCE THE 

APPLICATION AND TESTING OF THE DEVELOPED MODELS 

The candidate has demonstrated that the models developed in this thesis can be 

beneficial to industries. However, application of these models to industrial problems 

could be difficult for personnel without sufficient mathematical expertise. 

Appropriate software tools can be developed to assist in implementing these models. 
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Appendix B1 

The Test Data for Gearbox Tooth Failure 

Table B1-1. The original test data for gearbox tooth failure 

Working Age FGP1o RFMo RFSo RTMo RTSo 

(Source: D. Lin, Optimizing a condition based maintenance program with gearbox 

tooth failure, CBM Lab, University of Toronto, 2003) 

hoshiko
Rectangle

hoshiko
Rectangle

halla
This table is not available online.  Please consult the hardcopy thesis available from the QUT Library
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Appendix B2 

Derivation of Equation (3-21) 

For convenience, let the subsystem not contain any repaired components (m ) in n  

PM intervals, i.e., the reliability of the subsystem is 

∏
=

=
m

k
k

s
sb

R

R
R

1
0

0
0

)(

)(
)(

τ

ττ  (B2-1) 

After the first PM action, the reliability of the system is 
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After the second PM action, either Component 2 or Component 1 can be repaired. If 

Component 1 is repaired again, the reliability of the system after the second PM 

action is 
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If Component 2 is repaired, the reliability function of the system after the second PM 

action is 
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Generally, if m  components are repaired in n  PM actions and Lk  indicates that the 

component k  ( mk ≤ ) receives its last repair at the Lkth PM action ( nLk ≤ ), and if 

one defines 

0
1

=∆∑
+=

n

Lki
it  when nLk >+ 1 , (B2-6) 

then the following reliability function for a system after the nth PM actions can be 

proven using the Principle of Mathematical Induction [18].  
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Proof. 

When 1=n , 1=k  and 1=Lk  according to the numbering method defined in 

Chapter 3. Equation (B2-7) reduces to Equation (B2-3) because 0
1

11

=∆∑
+=i

it  based on 

Equation (B2-6). Therefore, Equation (B2-7) is true when 1=n . 

Suppose Equation (B2-7) is true when qn = , i.e. 
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Then one needs to prove that Equation (B2-7) is true when 1+= qn . 

There are two possibilities. 

(1) A previously repaired Component c ( mc ≤ ) is repaired again. In this case, 

∏ ∑

∑ ∏ ∑

= =
+

=
≠
= +=

+++

+

∆+∆+

∆+∆+∆+∆+

=
m

k

q

i
qik

q

i

m

ck
k

q

Lki
Lkqikqisqc

qs

ttR

ttRttRR

R

1 1
01

1 1 1
1011

1

)(

)()()(

)(

τ

τττ

τ . (B2-9) 

where, 1)( +qcR τ  is the reliability function of Component c  after the system has been 

preventively maintained for 1+q  times. Write 1)( +qcR τ  as: 
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where 1+= qLc . 

Substituting Equation (B2-10) into Equation (B2-9), gives 
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Equation (B2-11) indicates that Equation (B2-7) is true when 1+= qn , if a 

previously repaired Component c  ( mc ≤ ) is repaired again. 

(2) A new Component d  is repaired. In this condition, the total repaired 

components represented in Equation (B2-8) are increased by 1, and md =  

since Component d  is the last repaired component.  
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where, 1)( +qmR τ  is the reliability function of Component d  after the system has been 

preventively maintained for 1+q  times. Write 1)( +qmR τ  as: 
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+ ∆+= ττ ,  (B2-13) 

where 1+= qLm . 

Substituting Equation (B2-13) into Equation (B2-12), one has the same result as 

Equation (B2-11), i.e., Equation (B2-7) is true when 1+= qn , if a new component is 

repaired. 

A combination of the conclusions of (1) and (2) proves that Equation (B2-7) is true.  
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Appendix B3 

The Mann’s Test for the Weibull Distribution of the 

Pipeline Failure Data 

The Mann’s Test [16] for the Weibull Distribution was applied as follows. The 

hypotheses are 

0H : The failure times are Weibull. 

1H : The failure times are not Weibull. 

The test statistic is 
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where, 1k  and 2k  are the integer portion of the number 
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where, n  is the test number. 

If α  stands for the level of significance of the test and )2,2,( 12 kkFM α≤ , then 0H  

is accepted. )(•F  is the F -distribution function. 

The test that the failure times of the pipeline are Weibull distributed is shown in 

Table B3-1. 
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Table B3-1.  Mann's Test for the Weibull Distribution of the failure times of the 

pipeline 

i  iM  ii tt lnln 1 −+  Numerator Denominator 

1 1.124371 0.11232312 4.9328954 4.251268767 

2 0.537753 0.242214656 

3 0.364689 0.07505569 

4 0.280963 0.086169006 

5 0.231918 0.029682544 

6 0.200101 0.083584063 

7 0.178189 0.020482027 

8 0.16259 0.093096055 

 

9=r  

41 =k  

4
2

19
2 =−=k

 

05.0=α  

10=n  

44.3)4,4,05.0( =F  

)4,4,05.0(1603.1 FM <=  

The hypothesis 0H is accepted. 
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Appendix B4 

The Proof of Proposition 4-1 

Proposition 4-1:  For an interaction chain process described by Equation (4-26), the 

nth state of the interactive chain process is given by 
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+= θ . (4-30) 

Proof. 

This proposition is proved using the Principle of Mathematical Induction [18] as 

follows.  

When 2=n , substituting Equation (4-24) into Equation (4-25), gives 
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Proposition 4-1 is true. 

Assume that when kn = , Proposition 4-1 is true, i.e.,  
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Then when 1+= kn , the following equation can be obtained using Equation (4-26): 
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I
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Substituting Equation (B4-2) into Equation (B4-3), gives 
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Therefore, Proposition 4-1 is true. 
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Appendix B5 

The Derivation of Equation (4-31) 

Let 

∑
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Then 
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The following equation can be obtained from Equation (B5-2): 
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Substituting Equation (B5-4) into Equation (B5-3) and rearranging the result, gives 

1)]([][])])[([]([ +−=− ntIStI θθ . (B5-5) 

Left-multiplying the inverse matrix 1)])([]([ −− tI θ  to the both sides of Equation (B5-

5) if the determinant 0)])([]([ ≠− tIDet θ , the following expression can be obtained: 

))]([]([)])([]([][ 11 +− −−= ntItIS θθ . (B5-6) 
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Appendix B6 

The Proof of Proposition 5-1 

Proposition 5-1: All elements in the State Influence Matrix ][α  are nonnegative 

when 10 <≤ ijθ . 

Proof 

Proposition 5-1 is proved using the Principle of Mathematical Induction [18] as 

follows. 

According to Chapter 4, SIM ][α is the inverse matrix of )])([]([ tI θ− : 

1)])([]([][ −−= tI θα , (B6-1) 

where, 
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θθ

θθ
θθ

θ . (B6-2) 

M  is the number of components in a system. Matrix (B6-2) has the following 

properties: 

(1) All diagonal elements are equal to 1. 

(2) All non-diagonal elements are either negative or zero because 

1)(0 <≤ tijθ     ( jiMji ≠= ;,...,2,1, ). (B6-3) 

When 2=M ,  
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The proposition is true because 0)])]([]det[([ >− tI θ . 

Suppose that the proposition is true when KM = , i.e., 

),,2,1,(0 Kjiij K=≥α . (B6-5) 

When 1+= KM , rewrite matrix ][α  in the form of partition matrix: 
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In Equation (B6-5) and Equation (B6-6), the variable t  is omitted for simplicity. 

From now on, variable t  will not be written in expressions. 

In Equation (B6-6), 

















=

KKK

K

αα
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MOM

L
r

1

111

11 , (B6-7) 

T
KKKK },,,{ 1121112 +++= αααα K

r
,  (B6-8) 

},,,{ 1121121 KKKK +++= αααα K
r

.  (B6-9) 

Rewrite the matrix ])[]([ θ−I  into the same sized partition matrix. Let ][][][ θν −= I , 

then 
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where,  
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T
KKKK },,,{ 1121112 +++ −−−= θθθν K

r
, (B6-12) 

},,,{ 1121121 KKKK +++ −−−= θθθν K
r

. (B6-13) 

The following equation can be obtained by using the equation ][]][[ I=να  and 

matrix multiplying rules: 

}0{121211 =+ ανα rrr
, (B6-14) 

where, { }0  is a K×1 null vector. 

From Equation (B6-14), one can obtain the following equations: 

),,2,1(01
1

1 KiiK

K

s
sKis K==+− +

=
+∑ αθα .  (B6-15) 

The first term in Equation (B6-15) is equal to or less than zero because of Equations 

(B6-3) and (B6-5). Therefore, 

),,2,1(01 KiiK K=≥+α . (B6-16) 

On the other hand,  
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][]][[ I=αν . (B6-17) 

Then the following result can be gained by using the same inference as mentioned 

above: 

),,2,1(01
1

1 KjjK

K

s
sjsK K==+− +

=
+∑ ααθ . (B6-18) 

From Equation (B6-18), one has 

),,2,1(01 KjjK K=≥+α . (B6-19) 

Furthermore, from 

1
1

1111 =−∑
=

++++

K

s
sKsKKK αθα , (B6-20) 

the following conclusion can be drawn: 

111 ≥++ KKα . (B6-21) 

A combination of Inequities (B6-16), (B6-19) and (B6-21) gives 

0≥ijα    )1,,2,1,( += Kji K . (B6-22) 

That is, when 1+= KM , the Proposition 5-1 is also true. 
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Appendix B7 

The Proof of Proposition 5-2 

Proposition 5-2: All diagonal elements in the State Influence Matrix ][α  are greater 

than or equal to one. 

Proof 

According to Equation (B6-17),  

1
1

=−∑
≠
=

M

is
s

siisii αθα . (B7-1) 

The second term on the left side of Equation (B7-1) is not negative according to the 

properties of Interactive Coefficient (IC) and Proposition 5-1. Therefore,  

),,2,1(1 Miii L=≥α . (B7-2) 

The inequity symbol becomes equal symbol if all 
is

θ =0 ( Ms ,,2,1 K= ). 

Propositions 5-1 and 5-2 have explicit physical meanings. Proposition 5-1 indicates 

that components in a system are subject to stable IntF. Proposition 5-2 indicates that 

the IntHs of the affected components in a system are greater than their Independent 

Hazards (IndHs) due to failure interactions. The failure likelihoods of these affected 

components also increase. The IntH of a component will be equal to its IndH if the 

failures of other components do not affect it. 
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