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ABSTRACT

This research has developed several models ancbdutigies with the aim of
improving the accuracy and applicability of reliétpi predictions for complex
repairable systems.

A repairable system is usually defined as one \hihtoe repaired to recover its
functions after each failure. Physical assets sischmachines, buildings, vehicles are
often repairable. Optimal maintenance strategieguire the prediction of the
reliability of complex repairable systems accurat®lumerous models and methods
have been developed for predicting system religbiAfter an extensive literature
review, several limitations in the existing reséaand needs for future research have
been identified. These include the follows: the chéer an effective method to
predict the reliability of an asset with multipleepentive maintenance intervals
during its entire life span; the need for considgrinteractions among failures of
components in a system; and the need for an eféeatiethod for predicting
reliability with sparse or zero failure data.

In this research, the Split System Approach (SSAgRn Analytical Model for
Interactive Failures (AMIF), the Extended SSA (ESSA and the Proportional
Covariate Model (PCM), were developed by the candate to meet the needs
identified previously, in an effective manner.These new methodologies/models
are expected to rectify the identified limitatiooScurrent models and significantly
improve the accuracy of the reliability predictioh existing models for repairable
systems.

The characteristics of the reliability of a systest alter after regular preventive
maintenance. This alternation makes prediction leé teliability of complex
repairable systems difficult, especially when thedgction covers a number of
imperfect preventive maintenance actions over mileltintervals during the asset’s
lifetime. The SSA uses a new concept to address this issuedfvely and splits a
system into repaired and unrepaired parts virtually SSA has been usetb
analyse system reliability at the component leviel o address different states of a
repairable system after single or multiple prewantmaintenance activities over

multiple intervals.The results obtained from this investigation demortsate that
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SSA has an excellent ability to support the makingf optimal asset preventive
maintenance decisions over its whole life.

It is noted that SSA, like most existing modelsb#&sed on the assumption that
failures are independent of each other. This assamps often unrealistic in
industrial circumstances and may lead to unaccepatediction errors. To ensure
the accuracy of reliability prediction, interactiviailures were considered. The
concept of interactive failure presented in thissik is a new variant of the definition
of failure. The candidate has made several original contributioes such as
introducing and defining related concepts and ternrmologies, developing a
model to analyse interactive failures quantitative) and revealing that
interactive failure can be either stable or unstal®. The research results effectively
assist in avoiding unstable interactive relatiopsim machinery during its design
phase. This research on interactive failures pienee new area of reliability
prediction and enables the estimation of failu@bpbilities more precisely.

ESSA was developed through an integration of SSRAEVIF. ESSA is the first
effective method to address the reliability pradictof systems with interactive
failures and with multiple preventive maintenancéamns over multiple intervals. It
enhances the capability of SSA and AMIF.

PCM was developed to further enhance the capabitity the above
methodologies/models. It addresses the issue @bily prediction using both
failure data and condition datdhe philosophy and procedure of PCM are
different from existing models such as the Proportinal Hazard Model (PHM).
PCM has been used successfully to investigate #lzartl of gearboxes and truck
engines. The candidate demonstrated that PCM haetadeunique features: 1) it
automatically tracks the changing characteristitshe hazard of a system using
symptom indicators; 2) it estimates the hazard fsiem using symptom indicators
without historical failure data; 3) it reduces th#iluence of fluctuations in condition
monitoring data on hazard estimation.

These newly developed methodologies/models have meeerified using
simulations, industrial case studies and laboratorgxperiments.

The research outcomes of this research are expéctexhrich the body of
knowledge in reliability prediction through effeaiy addressing some limitations of

existing models and exploring the area of intevactailures.
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Affected component:

Average acceleration

vibration amplitude:

Baseline covariate

function:

Baseline hazard

function:

Cascading failure:

Common cause

failure:

Complex system:

Corrective

maintenance:

Glossary

a component whose failure likelihood increaseshayfailures

of other components in a system.

the mean acceleration amplitude value of a vibnapimcess of

a system over time.

a function that describes the relationship betweevariates

and hazard.

a function that represents the hazard without tHieeénce of

the covariates.

multiple sequential failures that are initiated thye failure of
one component, which leads to sequential failurestber

components.

failures of different items resulting from the sadieect cause,
occurring within a relatively short time, where $kefailures

are not consequences of another (1S014224).

a system composed of multi-components which can be
connected with each other in either series or [gral in a

complex way.

maintenance that is carried out on an item afteultfa
recognition to return it to a state in which it caarform the

required function.
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Covariate:

Cumulative

reliability:

Dependent failure:

Environmental

covariate;

Extended split system

approach:

Failure:

Fault tree:

Gradual degraded

interactive failure:

Hazard:

Immediate

interactive failure:

Imperfect repair:

a parameter that measures the conditions of ah asse

the probability of survival of a system over itsald life time
with consideration of the cumulative effect of thepaired

components over time.

a failure that leads to an increased or a reduerdency of

another failure.

a type of condition parameter whose changes wiliseathe

characteristics of the hazard of a system to change

the split system approach without using the inddpanfailure

assumption.

termination of the ability of an item to performraquired
function (ISO/D1S14224).

a diagram that logically represents the varioushioations of
possible events, both fault and normal, occurrimg isystem

that leads to the top event.

a failure due to the interactions among graduadiiedorating

components.

the probability that a system or a component vall in the
next interval (t, tAt] under the condition that this system or

component has survived until time t.

the failure of the influencing component will cauteaffected

components to fail immediately.

a repair that returns the state of a system betieemgood as

new" and "as bad as old".
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Independent failure:

Interactive failure

distribution function:

Independent hazard

function:

Interactive hazard

function:

Influencing

component:

Interactive

coefficient:

Interactive

coefficient matrix:

Interactive failure:

Interactive failure

distribution function:

Interactive hazard:

Maintenance:

a failure that does not affect or is not affected dnother

failure.

the failure distribution function of a system oc@mponent if

its failures are independent.

the hazard function of a system or a componertsifailures

are independent.

the hazard function of a system or a component Veilure

interaction.

a component whose failure leads to an increasetkt®my of

failures of other components in a system.

a parameter that is used to represent the degride @fffect of

failure of one component on another component.

a matrix whose elements are interactive coeffisient

mutually dependent failures, that is, the failurafls some
components will affect the failures of other comgois and

vice versa.

the failure distribution function of a system orcamponent

with failure interaction.

the increased hazard due to failure interactions.

the combination of all technical and associated intnative
actions intended to retain an item or system immestore it to,

a state in which it can perform its required fuowcti
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Maintenance

framework:

Markovian process:

Monte Carlo method:

Negative dependency

failure:

Poisson point

process:

Predictive

maintenance:

Preventive

maintenance:

Proactive

maintenance:

Reliability:

a conceptual model or process guideline on howotodact
maintenance effectively through proper integratodrnvarious

maintenance models and methodologies.

a type of stochastic process whose future prolalhiéhaviour
is uniquely determined by its present state anddegpendent

on its previous state.

numerical analysis method using random simulations.

a failure that can prevent other components insdesy from

failing further.

a special type of stochastic process in which #ikires are
independent of each other and the number of falimeeach

time interval follows a Poisson distribution.

maintenance that is carried out based on the donddf a

system.

maintenance that is carried out at scheduled xed fintervals

based on time or duty.

maintenance that aims much more at avoiding oraieduhe
consequences of failure than at preventing theurail

themselves.

ability of a functional unit to perform a requiréghction under
stated conditions for a stated period of time (E382-9).
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Reliability based
preventive

maintenance:

Reliability block

diagram:

Reliability function:

Renewal process:

Repair:

Repairable system:

Required minimum

operating time:

Responsive

covariate:

Split system

approach:

a preventive maintenance policy in which a contioiit of
reliability is defined in advance. Whenever theafality of a
system falls to this predefined control limit, tlsgstem is

maintained.

a logic network used to describe the function system.

the probability that a system or a component witidtion over

a period of time t.

a sequence of independent, identically distributex-negative
random variables which are not all zero and wrthbpbility 1.

an action to recover the function of a failed syste

a system which will be repaired to recover its tiors after
each failure rather than to be discarded duringticoous
operation.

a minimum operating period of time demanded betwiem
PM actions due

effectiveness.

a type of condition parameter whose changes argedaoy the

changes of the hazard of a system.

an approach modelling the reliability of a systefreraPM
activities. In this approach repaired and unrepac@mponents
are separated within a system virtually.

XXV
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Stable failure

interaction:

State influence

matrix:

Time based
preventive

maintenance:

Unstable failure

interaction:

in the case of considering interactive failures ypnthe

interactions among some surviving components iserea

deterioration of these components rather than igado

immediate failure of any these components.

a matrix derived from the interactive coefficienatmx. It can
determine the degree of influence of failure int@oms on

stable interactive failure uniquely.
a preventive maintenance policy in which a systesn

maintained based on scheduled PM times.

In the case of considering interactive failures ypnthe
interactions among some surviving components catigeast

one of them to fail in a very short time.
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DTA

DWT

ETA

ESSA

FFT

FMEA

FMECA

FTA

GPR

HPP

ii.d.

IC

IndFDF

IndH

IntF

IntFDF

IntH

IntIH

Delay Time Analysis

Discrete Wavelet Transform

Event Tree Analysis

Extended Split System Approach

Fast Fourier Transform

Failure Mode and Effect Analysis

Failure Modes, Effect and Criticality Analgsi

Fault Tree Analysis

Ground Penetrating Radar

Homogeneous Poisson Process

independent, identical distribution

Interactive Coefficient

Independent Failure Distribution Function

Independent Hazard

Interactive Failure

Interactive Failure Distribution Function

Interactive Hazard

Integrated Interactive Hazard
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JIT Just In Time

LM Lean Maintenance

LMDA Linear Multivariate Discriminant Analysis
MCS Monte Carlo Simulation

ME Maintenance Excellence

MLE Maximum Likelihood Estimation

MSI Maintenance Significant Item

MTP Maintenance Tasks Priorities

MTTF Mean Time To Failure

NHPP Non-Homogeneous Poisson Process
PCM Proportional Covariate Model

PHM Proportional Hazard Model

PIM Proportional Intensities Model

PM Preventive Maintenance

QFD Quality Function Deployment

RBD Reliability Block Diagram

RBPM Reliability Based Preventive Maintenance
RCM Reliability-Centred Maintenance
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RCP

RCP

RIF

ROCOF

ROI

SDM

SFL

SIM

SSA

TBPM

TBTF

TPM

TQM

TTT

Relevant Condition Predictor

Relevant Condition Parameter

Risk Influencing Factors

Rates of OCcurrence Of Failures

Regions Of Interest

Success Diagram Method

Sequential Failure Logic

State Influence Matrix

Split System Approach

Time Based Preventive Maintenance
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION OF RESEARCH

This thesis presents for improving the accuracyetiibility prediction of complex
repairable systems. The methodologies/models hega Heveloped specifically for

practical applications in the industrial environrmen

The majority of assets in industry are repairalyigtesms. The performance of these
assets can influence the quality of product, thetscof business, the service to the
customers, and thereby the profit of enterprisesctly. Asset management has two
major objectives: (1) to maintain the availabilépd quality of assets at a required
performance level using the lowest possible c&tidq use these assets efficiently.
The activity related to the first objective is @sssaintenance management. The
concerns about asset maintenance management aesiglijity predictions of assets
and (2) the optimal maintenance policy for ass@ise former lays a critical
foundation for the latter. Hence, it is essential nhake an accurate reliability
prediction for an asset. Nowadays, Preventive Maiamce (PM) is often conducted
by companies to reduce unexpected failures andabbveosts. A company can
optimise its maintenance strategy according tgtieeliction of remaining useful life
and effectiveness of PM actions. With increasingngiexity of machines and
competition among business, the need to formuld@nges in reliability of a
complex repairable system with PM becomes pressing.

Currently, the most common techniques used to mibeteliability prediction of a
repairable system are based on stochastic ortstatianalysis, including the Markov
chain (process), the Poisson point process, thee®ay method, condition based
models, Monte Carlo simulations and combinationstlajse models. After an

extensive literature review, several limitations existing models have been
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identified. For example, much of the existing kterre focused on analysing the
Mean Time To Failure (MTTF) or/and expected numbérfailure times of a
repairable system. An effective model for explipitediction of reliability of a
complex system with imperfect multiple PM actiorss still not available. The
research on the interaction among failures of campts in a system and on
reliability prediction with spares or zero failudata is adequate. This research is
aimed at developing new models and methodologiesdtivess these limitations in

an effective manner.

In this chapter, the objectives of the researclyamm and the research methods will
be surveyed. The outcomes of the research anel@nship among the developed
models will be overviewed. The original contributsomade by the candidate will

also be identified.

1.2 OBJECTIVES AND METHODS OF THE RESEARCH

1.2.1 Objectives

The overall research objective in this thesis is develop new models and
methodologies for the reliability prediction of gpairable system in order to improve
the accuracy of prediction using condition monitgridata and historical failure
information for engineering application. The detdibbjectives of the research are as

follows:

(1) Development of a new reliability prediction approat for complex
repairable systems with multiple PM intervals

The first objective of the research program is evadop a new approach to predict
the reliability of complex repairable systems withultiple PM actions. This new
approach extends the current research in two waysasing the assumption that
treats the states of a system after repairs ag asrgood as new”, and predicting
reliability of a complex system with multiple PM tams over multiple intervals.
Most existing models/methods have only focusedhendase of “as good as new”

after repair [1-5]. Imperfect repairs have not beeodelled effectively. Currently
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most modelling techniques based on statistical yarglapplied in maintenance
cannot accurately estimate the effect of individiegair on the performance of a
system. These models were often applied to predectnext repair activity or the
expected failure times over a period [6, 7] ratihan explicit prediction of reliability

of a system after multiple PM actions. The effemtigss of long-term prediction of
these models is questionable. This research addrabgse issues and suggests
remedies. The reliability prediction of a systemhwinultiple PM intervals over its
whole life was investigated on the assumption tadures of components are

independent of each other.

(2) Development of an analytical reliability prediction model for repairable

systems with interactive failures

The second objective of the research program isetoove the assumption that
failures of components are independent of eachr dtbe the reliability prediction
models. Industrial experiences have shown thatetleee a number of situations
where the assumption of independent failures isealigtic and will lead to
unacceptable analysis errors although this assompias been adopted in the most
of existing models [8]. Percy et al [9] have aladicated that a prediction approach
is dangerous if interactions between different congmts in a system are not directly
considered. To address the dependency among theefaof components, a concept
of dependent failures was introduced [8, 10]. Hosvethe conventional models of
dependent failures do not cope at all with intevactailures, which are the failures
caused by interactions between different componeatsicularly in industry. It
appears that research on interactive failures babeen addressed in the literature to
date although the term “failure interaction” hagtesed by Murthy and Nguyen [11,
12] and Lewis [13]. The failures described in therature [11, 12] can fall into the
classical definition of common cause failure. Lewsisalysed some special cases
using Markovian theory. In this research, an aieytreliability prediction model
for repairable systems with interactive failuresswdeveloped. The proposed
research therefore significantly advances the keadgé in analytical reliability

prediction modelling.
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(3) Development of a failure prediction methodology usig both failure data
and condition monitoring data, especially when higirical failure data are

sparse

The third objective of the research program is évedop a new model for the
prediction of the dynamic failure trend of a systesth condition monitoring data.

The model can predict the failure time when hisa@rifailure information is not

adequate for statistical analysis while conditioonitoring data is available. These
condition monitoring data can describe the conditthanges of a system. Existing
researchers have not successfully modelled this. dathile condition monitoring

and diagnosis is playing a more and more importetin maintenance [14], the use
of condition monitoring data to predict future tai times is still a challenge.
Currently the most frequently adopted model is Breportional Hazard Model

(PHM) [4, 15]. However, this model has several widable disadvantages. For
example, historical hazards estimated using diffec®variates are often different.
Fluctuations of covariates can affect hazard esiimagreatly, which makes

reliability prediction difficult. PHM needs suffient failure data for parameter
estimations. In practice, failure data are not gsvavailable, and sometimes difficult
to obtain due to quality improvement and desigmgesa of equipment.

(4) Verification of models/methodologies

Another objective of the research is to verify #imve models and methodologies
using appropriate experimental analysis methods.vEhification includes designing

and conducting numerical simulation experiments daloloratory experiments,

collecting real data from industry, as well as gsialg experimental and industrial

data. The data should include failure time, failum®des, working hours and

condition of assets, corresponding parameters fsgetbndition monitoring such as

particles in oil and vibration signal. The configtion and properties of repaired
assets also need to be identified.

The above proposal models realistic scenarios asalsdwith the identified
limitations in current research. Objective (1) a@djective (2) focus on the
reliability prediction of a repairable system wittultiple PM intervals. Objective (1)
concentrates on the reliability prediction of rephle systems with independent

4
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failures whereas Objective (2) on interactive fieeki Objective (3) is about
improving the reliability prediction of a systeming both condition monitoring data

and historical records, especially for sparse hisbfailure data.

1.2.2 Research Methods

To achieve these objectives, both theoretical niiodebnd experimental analysis
were used. The entire research was divided ineethtages. In Stage 1, multiple PM
actions on a complex system were considered. Hawethe failures among

components were assumed to be independent. In Stahe model developed in

Stage 1 was extended to the reliability predicoba system with interactive failures.
The models developed in the previous two stagasmasadequate available failure
data. In Stage 3, both condition monitoring data &mlure data were used to
improve the accuracy of prediction, especially whestorical failure data were

sparse. During these three stages of researchasioms, laboratory experiments
and industrial case studies were conducted to ywehé developed models and

methodologies. More details about the researchaudsthre presented as follows:

(1) Stagel

The research in this stage is related to thediogtctive of the research program, i.e.,
to develop a new approach to predict the religbtit complex repairable systems
with multiple PM actions. This approach is use@xplicitly predict the reliability of

a complex system after each PM action and the ataalreliability of a system.

To achieve this goal, a Split System Approach (S8Maf developed based on
Ebeling’s heuristic approach [16] and Reliabilitioek Diagram (RBD) [8, 17]. The
basic concept of SSA is to separate repaired coemsnfrom the unrepaired
components of a system virtually when modelling tbigability of the system with
PM. After the theoretical methodology was develqgpddnte Carlo simulations and

case studies, with real life data from industryrewesed in its justification.

(2) Stage 2
In the first stage of the research, the failurec@ihponents were assumed to be

5
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independent of each other. As mentioned in Secfichl, the assumption of

independent failures is not always adequate for eiiod the true state of a

repairable system in practice. In the second sttfee research, the situations where
the failures of certain components are not indepenhdvere investigated and an
analytical reliability prediction model for repdnia systems with interactive failures
was developed.

The research methods used to achieve the goatagé 2 were as follows:

At first, the phenomena of interactive failures ve@omprehensively investigated.
Considering the complexity of stochastic theoryyl®ds expansion approach was
used to develop an Analytical Model for Interactieslures (AMIF) from aspects of

engineering application.

Secondly, a solution of AMIF was derived and theottems for determining the
conditions of stability for interactive failures weeproposed and proved using the
matrix theory, the limitation theory and the Prpleiof Mathematical Induction [18].

Thirdly, the properties of interactive failures ahe effects of interactive failures on
the reliability of components and systems with@jairs were analysed based on the

solutions of the model.

Fourthly, AMIF was combined with the Split Systerppgkoach (SSA) to predict the
reliability of repairable systems with interactifgglures and multiple PM actions.

Finally, the newly developed models and methodeegvere verified using Monte

Carlo simulation, laboratory experiments and caséiess.

(3) Stage 3

In the third stage of the research, a new model adea®loped to predict dynamic
failure trends of a system using condition monitgrdata and historical maintenance
data. This new model improved existing conditiosdzh hazard prediction models
such as PHM.



Reliability Prediction of Complex Repairable Systemsan engineering approach

In Stages 1 and 2, historical failure data wererassl to be sufficient for parameter
estimations. However, in practice, failure data ao¢ always available, and are
sometimes difficult to obtain. Effective models aeeded for this situation in order
to predict failure time when historical failure dmfmation is not adequate for
statistical analysis, where condition monitoringpgnams can be made available.
Condition monitoring data describes the changdéndondition of a system. While
condition monitoring and diagnosis plays an impartale in maintenance [14], the
use of condition monitoring data to predict failunme is still a serious challenge.
Little research has been done to date. There resdeattempt made to use PHM [4,
15]. However, as indicated in Section 1.2.1, theadvantages in PHM affect the
effectiveness of its application in industry. Ore tother hand, Al-Najjar [19]
introduced a mechanistic model to predict the vibralevel of rolling element
bearings based on online vibration signals. Thishot can be used to improve an
understanding of the deterioration process of aitgaalthough it only ensures a

reasonable level of confidence for prediction aveery short time period.

The research methods in Stage 3 include a compseteemvestigation of PHM,
development of a Proportional Covariate Model (PCNUstification of the
reasonableness of the assumption used for devglé@M and investigation of the
robustness of PCM in practical applications thecally and experimentally. The
advantages of Cox’s PHM [4] and Al-Najjar's meclsiici model [19] were

considered in the development of PCM.

(4) Validation of Methodologies and Models

The newly developed models/methodologies have beenfied using both

experimental data from numerical simulation andtalory experiments, as well as
the real life data from industry. The verificatioh the newly developed reliability

models was mainly conducted using simulation expent and maintenance data
from industry. However, the data from industry aainmeet all needs of the model
verification. Laboratory experiments have also beemducted using the mechanical
test rig and corresponding condition monitoring sweament instruments in the
School of Engineering Systems. This experimentatesy was available for the

experiments on condition monitoring and on failumeeractions among components.
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In addition, some laboratory test failure data amhdition monitoring data of
gearboxes have been collected from the Aeronautcel Maritime Research
Laboratory (AMRL), Australia and Condition Based iktanance (CBM) Lab,

Canada to enhance these evaluations.

The field data include the maintenance data oktergines, the maintenance data of
pipelines and failure data from pump stations. Twporative Research Centre
(CRC) on Integrated Engineering Asset ManagemelEA®!) has provided partial

funding to support the experiments and data catleqihases for this project.

1.3 OUTCOMES OF THE RESEARCH

The research in this thesis explored two new rebeareas - the research on
interactive failure and the reliability predictiai a system with zero failure data.
The research composed mathematical modelling, ¢tieal analysis and the proof of
theorems, as well as validation of the developedetsousing numerical simulation,

laboratory experiments and life data from industry.

1.3.1 Research Results Achieved

The important contributions of the work in this sfeeare as follows:

(1) Development of a Split System Approach (SSA)

SSA is linked to the first objective of the resdmnorogram. SSA models the
reliability of complex systems with multiple PM awmts over multiple intervals using
a new concept that splits a system into repairetl lammepaired two parts within a
system virtually. It models system reliability &etcomponent level and addresses
different states of a repairable system after simglmultiple PM actions such as “as
good as new”, “imperfect repair”, “as bad as oldddbetter than new”. A heuristic
approach has been derived for the implementatidBSHA. The formulae for special

scenarios have been also derived.

(2) Development of an Analytical Model for Interactikailures (AMIF)
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AMIF is linked to the second objective of the rasbaprogram. AMIF is used to
analyse Interactive Failure (IntF) quantitativelpntF is caused by the failure
interactions among components in a system. Thareséntroduced a series of new
concepts and investigated the properties of Intie Tesearch indicated that IntF
mainly depends on interactive relationship of comgotds rather than the topology of
a system. The Interactive Hazard (IntH) of a systesm be calculated by its
Independent Hazard (IndH) plus some portion of theéHs of its influencing
components. The degrees of the failure interactawnsng components are measured
by interactive coefficients. IntF can be eithetbtdaor unstable. The conditions that
IntF is stable have been identified.

(3) Extension of the above two models to the reliabtitediction of repairable

systems with interactive failures — developmerExtended SSA (ESSA)

ESSA is also linked to the second objective ofrdsearch program. ESSA integrates
AMIF with SSA to remove the assumption of indeperidailures which is adopted
by SSA. The assumption of independent failuresrealistic in numerous industrial
cases and interactive failures need to be consld&hen interactive failure exists,
Interactive Hazards (IntHs) of repaired and unnegghcomponents after a PM action
will change. The candidate has derived the formttaealculate these changeable
IntHs. An extension of the heuristic approach f8A%has been derived to model the
reliability of a complex system with or without @mtactive failures after single or

multiple PM intervals.

4) Development of the Proportional Covariate ModelBC

PCM is linked to the third objective of the reséaprogram. PCM was developed to
use both condition monitoring data (condition iradars) and historical failure data
for hazard prediction. It models the covariates afystem as the product of baseline
covariate function and the hazard function of ty&tem. The procedure of PCM and
the corresponding formulae were developed. The stoless of PCM was also
addressed. The application of PCM for the hazatichason of a system with zero

failure data was demonstrated.
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(5) Validated the newly developed methodologies andeaisodsing Monte Carlo

simulation and the data collected from industried boratories.

This work included designing and implementing latory experiments, as well as
collecting and handling life data. The statistiemlalyses conducted in this thesis
were based on a 95% confidence level. Howevessifoplicity, when a parameter or
a multi-dimensional parameter was estimated, thiet gstimation of the parameter

[12], rather than a 95% confidence interval fostbarameter, was presented.

1.3.2 Relationship of the Developed Models and Methodoldogs

SSA, AMIF, ESSA and PCM have been developed inrgssarch.

SSA is a basic methodology that models systemhiétiaat the component level
and addresses different states of a repairablemysifter single or multiple PM
intervals. The characteristics of the reliabilifyaosystem will alter after repairs. This
alternation makes it difficult to predict the rdliity of complex repairable systems,
especially when the prediction covers a number noperfect PM actions over
multiple intervals. SSA was developed to redressdtificulty effectively. However,
SSA was developed under the assumption of indeperfaiures. This assumption is
often unrealistic and may lead to unacceptable igiied errors although it was
adopted by the most existing reliability predictiorodels and methods. To ensure
the accuracy of reliability prediction, Interactiv@ailures (IntFs) need to be
considered. AMIF incorporates failure interactiomis components into reliability
prediction models, but it does not consider theafbf repairs. ESSA integrates SSA
and AMIF to the reliability prediction of systemstiwPM. SSA, AMIF and ESSA
all need sufficient historical failure data to esie the original Independent Failure
Distribution Function (IndFDF) of a system. PCM impes the accuracy or
enhances the capability of reliability predictioor these three models. PCM uses
condition monitoring data to conduct reliabilityepliictions with or without historical
failure data and thus overcomes difficulties ofatelity predictions when historical

data are sparse or zero.

These new methodologies/models enhance the capaiilimprove the accuracy of

10
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reliability prediction of complex repairable sys®nThe methodologies and models
developed in this thesis can be related based eragisumptions used and their

applications.

1.4 ORIGINALITY AND INNOVATION

The two new approaches and two new models — SSAFAESSA and PCM are the
major contributions of this research. These new@gghes/models are expected to
enhance the capability and improve the accuracyhef reliability prediction of

existing models for repairable systems significantl

SSA was developed to predict the reliability of gdex repairable systems, which
can cover a number of PM actions using a new cdncep split a system into
repaired and unrepaired parts within a system alisiuSSA provides more realistic
and accurate prediction of reliability compare whle fixed deterioration rate model
[20] and Ebeling’s heuristic approach [16]. In SSRAe changes of reliability is
calculated based on the individual system and repaidition rather than assumed or

estimated by human’s experience. Therefore, tleeafathange is no longer constant.

Generally, SSA has the following major advantages:

(1)  Ability to explicitly predict the reliability of aepairable system with multiple
PM intervals over a long term and ability to dectben the system is
unworthy of further PM from reliability aspects. A% more suitable for
supporting a long term PM decision making of complepairable systems in
industry than the renewal process model and the Mmmogeneous Poisson
Process (NHPP) model.

(2)  Ability to deal with the individual contributiond different parts in a system
and the influence of system structures on thebidilia of a repairable system.

This ability provides an understanding of PM orystem in more depth.

(3)  Ability to model different states of a system afsngle or multiple PM
actions such as “as good as new”, “imperfect réaid “as bad as old”.

11
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4) No restrictions on the forms of failure distributio

The research on SSA has resulted in the publicatmshsubmission of the following

refereed international journal:

e Sun, Y., Ma, L., and Mathew, J., Reliability preto of repairable systems for

single component repair, Journal of Quality in Mamance Engineering, in press.

e Sun, Y., Ma, L., Mathew, J., Morris, J. and Zhasg, A practical model for
reliability prediction of repairable systems, Thoeithal of Quality and Reliability

Engineering International, submitted.

AMIF was developed to analyse interactive failugegntitatively. The research on
interactive failures is a new area. Despite amgite literature review, the candidate
was not able to find any related research repdaaeidte. The candidate has made the

following original contributions:

(1) Introduced and defined related new concepts anchinetogies such as
interactive failure, influencing components, aféatt components and

interactive coefficient for the analysis of interae failure.

(2) Identified that interactive failure can be eithgalde or unstable. The
candidate proposed and proved two theorems tofyjustable interactive
failures. These theorems effectively assist inysiat) and avoiding potential
unstable interactive relationship in machinery dgrits design phase. The
research outcomes on stable and unstable integafetilures can benefit to

designing more maintainable and reliable machines.

(3) Developed an analytical model for analysing intevacfailure. Based on this
model, the candidate derived a formula to calcuthee failure distribution
functions of systems with stable interactive falirand successfully
investigated the effects of interactive failures @aamponents and systems.
The investigation results can be significant toriowing risk management of

assets with interactive failures.

12
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The research on interactive failures has resultethe publications of the following
refereed international journal and conference aper

e Sun, Y., Ma, L., Mathew, J., and Zhang, S., An el model for interactive
failures, Reliability Engineering and System Safeity press, available on

ScienceDirect in May 2005.

e Sun, Y., Ma, L., Mathew, J. and Zhang, S., Expenitakresearch on interactive
failures, Proceedings of International ConferendeMaintenance Societies,
Sydney, Australia, 25-28 May 2004: p.04073.

e Sun, Y., Ma, L., and Mathew, J., On stable and abist interactive failures,
Proceedings of the f0Asia-Pacific Vibration Conference, ed. J. Math&uld
Coast, Australia, 12-14 November 2003: p.664-668.

e Sun, Y., Ma, L., and Mathew, J., A descriptive mlofite interactive failures,
Proceedings of International Conference of Maimeea Societies, Perth,
Australia, 20-23 May 2003: p.03-078.

ESSA integrates SSA and AMIF to the reliability gicgion of systems. It is used to
model the reliability of complex system with intetime failures after single or
multiple PM intervals. The reliability predictiorf cepairable system with interactive
failures is also a new research area. Unlike aemystith independent failure, when
IntF exists, the Interactive Hazards (IntHs) of thatpaired and unrepaired
components in a system will change. The candidate derived the formulae to
effectively calculate these changeable IntHs feystem after PM and demonstrated
that ESSA enhanced the capability of SSA and AMIF.

The research on ESSA has resulted in the publicatiothe following refereed

international journal paper:

e Sun, Y., Ma, L., Mathew, J., and Zhang, S., Detaation of preventive
maintenance lead time using hybrid analysis, latéonal Journal of Plant
Engineering and Management, 2005. 10(1), p13-18
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PCM was developed to enhance the capability of 38MF and ESSA. It addresses
the issue of reliability prediction using both tag data and condition monitoring
data. The philosophy and procedure of PCM are rdiffefrom existing condition-
based models such as PHM. PCM predicts the hazhrd system using the
covariates caused by the deterioration of a systeoh is therefore suitable for
situations where symptoms of a system are monitd?P&M is shown to be more
effective than existing condition based reliabilipyediction models when using
condition monitoring data to predict the relialyiliof a system without historical
failure data. It is also more effective than exigticondition based reliability
prediction model when using responsive covariaggsptom indicators) of a system

to track the changes of hazard of the system.

The research on PCM has resulted in the publicatminthe following refereed

international journal and conference papers:

e Sun, Y.; Ma, L., Mathew, J., Wang, W.Y., and ZhaBg, Mechanical systems
hazard estimation using condition monitoring, Metbal Systems and Signal

Processing, in press, available on ScienceDireDeicember 2004.

e Sun, Y., Ma, L., Mathew, J. and Zhang, S., Estioratf hazards of mechanical
systems using on-line vibration data, Proceedirigaternational Conference on

Intelligent Maintenance System, Arles, France, I5ly 2004: p.S3-B

e Zhang, S., Mathew, J., Ma, L., and Sun, Y., Besidhased intelligent machine
fault diagnosis, Mechanical Systems and Signaldasing, 2005. 19: p357-370

e Sun, Y., Ma, L., and Mathew, J., Alarming limitsr fpreventive maintenance
using both hazard and reliability functions, Pratigs of the 1 Asia-Pacific
Vibration Conference, ed. J. Mathew, Gold CoaststAalia, 12-14 November
2003: p.669-703.

e Sun, Y., Ma, L., and Mathew, J., Maintenance framds. A survey and new
extension, Proceedings of International Confereoicd/laintenance Societies,
Perth, Australia, 20-23 May 2003: p.03-077.

14



Reliability Prediction of Complex Repairable Systemsan engineering approach

The new methodologies and models developed inélssarch are expected to enrich
the knowledge of reliability engineering throughfeetively addressing some
significant limitations of existing models and exphg the area of interactive
failures. The research outcomes are of significancthe reliability prediction of
repairable systems. The new methodologies and matiieloped in this research
have been chosen for use in the Intelligent Masntee Decision Support System for
the Water Utility Industry and will become one dfet unique features of this
advanced software. The research on the Intellijgmnhtenance Decision Support
System for the Water Utility Industry is funded the Australian Research Council
(ARC) and supported by the CRC on Integrated Emging Asset Management
(CIEAM).

Due to the innovative and significant outcomes fithis research, the candidate has
received 2004 Student Award from the Maintenanceigering Society of
Australia. This national award is presented anguallonly one student throughout

Australia.

1.5 THE STRUCTURE OF THE THESIS

The entire thesis is mainly composed of nine chiapte

In Chapter 1, as it has been shown, the generarnmation of the research is

delivered. The topic and the scope of the research programpegsented. The
objectives of the research program and the metligdsl to achieve the research
objectives are described. The outcomes of the m&seand the innovative

contributions made by the candidate are identified.

The rest of this thesis is organised as follows:

In Chapter 2, a literature review is presenfiuk literature review includes two parts.

At first, an overall survey on maintenance is @rout to identify possible research
topics. Then an intensive literature review is agrtdd to focus on the research topic
of this thesis.
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In Chapter 3, the Split System Approach (SSA) setleped.The concept of SSA is
presented. According to this new concept, differémimulae and a heuristic

approach for reliability prediction of a repairalsiestem with PM are derived based
on three different scenarios. An example with Mo@talo simulations and a case

study are used to demonstrate and verify SSA.

In Chapter 4, an Analytical Model for Interactivaildre (AMIF) is developedThe

new concepts and terms related to IntF are defiAadanalytical model - AMIF is
derived to describe interactive failure. Two theoseto identify stable IntF are
proposed and proved. The methods to calculatertiDF of systems with stable
IntF based on AMIF are presented. Some propertfesmteractive failures are

investigated. Four case studies are used to deratasind justify AMIF.

In Chapter 5, an Extended Split System Approacl5@&3s developedThe ESSA

integrates SSA with AMIF to predict the reliabilitgf complex systems with
interactive failures after single or multiple PMearvals. The method to calculate the
changeable IntH of repaired and unrepaired comgsrisipresented. An example is
used to demonstrate ESSA, and several Monte Camlolations are used to verify
ESSA.

Chapter 6 focuses on the development of the PriopattCovariate Model (PCM)t

contains two parts. The strategy of determining Rdding time using hazard

function and reliability function is investigated the first part because PCM is
developed to estimate the hazard of a system rétherthe reliability of a system

directly. The PCM is developed in the second péine concept and procedure of
PCM are presented. The corresponding equationstimae the baseline covariate
function and hazard function are derived. The roiess of PCM is also addressed.
Simulation experiments and two case studies arg tossdemonstrate and verify this

model.

Chapter 7 is used to present laboratory experimdits verification of the newly

developed methodologies/models is mainly locatetthénlast part of the above each
chapter, just following the corresponding theomdtiderivations and analysis.

However, laboratory experiments are described inndependent chapter because
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they involved designing testing systems and wered usr different verification
purposes.

Chapter 8 presents the conclusions of the thesife vihe directions for future

research are briefly identified in Chapter 9.

The publications contributed by the candidate isted in Appendix A.
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Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTION

Numerous papers on the topic of maintenance engmge&ave been published.
However, the history of vigorous studies into man@nce is quite brief. Parkes [21]
stated that maintenance has been with us longer diparational research - but
despite this, maintenance has probably achievedrésgpectability than operational
research. The earliest publication that the candideund was published in 1952
[22].

Maintenance can be defined as the combination loteghnical and associated
administrative actions intended to retain an itansystem in, or restore it to, a state
in which it can perform its required function [23Lommonly maintenance is
categorized into four strategies: corrective, pnéive, predictive and proactive ones
[24, 25].

Corrective Maintenance (CM) strategy is the firehgration of maintenance. The
period of time is about 1940 to 1950. The strat@ggorrective maintenance is to fix

a system when it breaks.

Preventive Maintenance (PM) strategy is the segmmeration of maintenance. Its
origins can be dated back to the 1960’s. The gfyatdf preventive maintenance
mainly consists of asset overhauls done at schedute fixed intervals based on
time or duty. The main aims are higher plant adlity, longer equipment life and

lower costs.

Predictive Maintenance strategy belongs to thedtigieneration of maintenance,

which started in the mid 1970’s. The aims of maiatece management became
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higher plant availability and reliability, greateafety, better product quality, longer
equipment life and greater cost effectiveness.

Proactive Maintenance strategy aims much more aideng or reducing the

consequences of failure than at preventing tharathemselves.

Wang [2] provided a survey of existing maintenamaalels in terms of maintenance
policies. He classified maintenance policies otdetation systems in the following
categories: age replacement policy, random ageacepient policy, block
replacement policy, periodic preventive maintenapodicy, failure limit policy,

sequential preventive maintenance policy, repast dimit policy, repair time limit

policy, repair number counting policy, referencmei policy, mixed age policy,
preparedness maintenance policy, group maintengatiey, and opportunistic

maintenance policy.

There are other classification schemes. Maintenasiogidespread. It appears in
almost all industries or assets, from steelworld [2 power plant [27] to nuclear
power plant [3, 28, 29], from software maintenan@®, 31] to hardware
maintenance [32], from machines [33] to buildin§4-B6], from offshore platform
to bridges [37, 38], from railways [39, 40] to aaft [41, 42] and the space shuttle
[43].

The maintenance concept was first identified bysG@ihd Geraerds [44, 45]. It is
concerned with implementing maintenance, trainirgntenance staff, integrating
maintenance with enterprise management [46] anc g@ats inventory [47-49]. It is

also concerned with developing repairing mateaald techniques [50, 51].

This survey will be conducted in terms of the reskeapurpose of maintenance
science, which can be categorized into three melgsses: reliability assessment
models and methodologies, maintenance optimizagiolicies and maintenance
frameworks. Maintenance optimization is the objextiof maintenance while
reliability prediction and risk assessment lays asi$ for optimal maintenance
decision making. Maintenance frameworks are comzkrwith applying these

models, methodologies and policies effectively.haligh there are numerous of
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publications on maintenance research, they cardssifted into one of these three

categories. Figure 2-1 shows an overview of tBeasch on maintenance science.

MAINTENANCE SCIENCE

Figure 2-1. An overview of the research on mainteance
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2.2 GENERAL REVIEW

221 Frameworks

A maintenance framework is a conceptual model ocgss guideline on how to
conduct maintenance effectively through propergrdagon of various maintenance
models and methodologies. This subsection sumnsamtassifies, and compares the
characteristics, general ideas and processes faraht maintenance frameworks.
The first four subsections discuss the most comosad frameworks currently, i.e.,
Reliability-Centred Maintenance (RCM), Total Protive Maintenance (TPM),

Business-Centred Maintenance (BCM) and MaintenaBgeellence (ME). The

subsection 2.2.1.5 provides a general survey oesotfmer maintenance frameworks

and new maintenance philosophies.

2.2.1.1 Reliability-Centred Maintenance (RCM)

The RCM [52-55] philosophy has been developed avperiod of thirty years. The
first industry involved in RCM was the internatidravil aviation industry [56] with
MSG3 [25] framework. Moubray and his colleaguesingering work [57] resulted
in the development of RCM2 for industries othemtlaiation in 1990.

The RCM process starts with significant functiomsl dailure modes selection. It

classifies the consequences of failure into fowugs: hidden failure consequence,
safety and environmental consequence, operatiamsletjuence and non-operational
consequence. Maintenance decisions are made drmaslie of these four categories
so that the operational, environmental and sa#atg,cost effective objectives can be

integrated. Figure 2-2 shows the basic structuiR@ [58].

2.2.1.2 Total Productive Maintenance (TPM)

TPM was initially developed in Japan and rose ipydarity in the 1990’s [59-61]. It
is a strategy to maximize equipment effectivenesgassure the life of equipment, to
cover all departments and staff, and to improventeaance through small group
autonomous activities. Figure 2-3 shows an ovenagéPM [61].
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A

- Analyse and define systems in the terms of maimena

A 4

A

Identify maintenance significant items (MSI's)

A 4

A

Analysis Identify significant failure modes

A 4
Select maintenance tasks and techniques

Feed
back

\4
Schedule maintenance activities

A

Implementatio

A 4
_L Implement, collect and analyse in-service data

Figure 2-2. Structure of RCM (modified from: A. Kelly, Maintenance
Strategy, 1997, Oxford: Butterworth-Hernemann, p. 220

This figure is not available online.
Please consult the hardcopy thesis
available from the QUT Librarv

Figure 2-3. An overview of TPM (source: A. Kunio &irose, TPM for

Operators, 1992, Cambridge: Productivity Press, p24)
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2.2.1.3 Business-Centred Maintenance (BCM)

BCM was introduced by Kelly [58]. Unlike RCM and WP BCM is driven by the
identification of the business objective, and thianslated into maintenance

objectives. Figure 2-4 shows the thought processeoBCM strategy [58].

A

Identify corporate and production objectives

A 4

Identify reliability requirements and make :
maintenance plans Maintenance
control
system
A 4

. . . A
Forecast budget and identify available resources

A 4
Evaluate and adjust administrative structure

Figure 2-4. BCM strategy (modified from: A. Kelly, Maintenance
Strategy, 1997, Oxford: Butterworth-Hernemann, p. B)

2.2.1.4 Maintenance Excellence (ME)

ME was recently proposed by Campbell and Jardi@g [6 strict terms ME is not a
new framework for maintenance. However, it doessg@mé some new ideas to
conduct maintenance effectively. Figure 2-5 shdvesitnplementation steps for ME
[62].

At this point, it is worth introducing the holistiapproach to the maintenance
“problem” as proposed by Coetzee [63]. He pointedl that a typical approach
towards increasing the efficiency of the maintemafunction is to implement some
highly publicised philosophy or maintenance techeisuch as RCM, TPM, and
BCM. Coetzee was of the opinion that these conwaati frameworks were not
effective due to lack of proper integration. Thereot method of addressing the need
for a very effective maintenance function in theamisation is to have a more

integrated view of the maintenance function. Thenteaance management process
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consists of two cycles. The outer cycle is a desge model. This model describes
the overall managerial planning and measurementegsd The inner cycle is a
descriptive model. This model describes the maarea plan and the maintenance
operation itself (Figure 2-6) [63, 64].

This figure is not available online.
Please consult the hardcopy thesis
available from the QUT Library

Figure 2-5. Steps to implement ME (source: J.D. Gapbell and A.K.S. Jardine,
Maintenance Excellence, 2001, New York: Marcel Deldt, p.369 )

This figure is not available online.
Please consult the hardcopy thesis
available from the QUT Library

Figure 2-6. Coetzee’s maintenance cycle model (soe: J.L. Coetzee A halistic
approach to the maintenance " problem" . J. Quality in Maint. Eng., 1999. 5(3): p.
276-280)
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RCM, TPM, and CBM are all aimed at the inner cyai¢he maintenance cycle and
will thus not produce the results envisaged. TP philosophy addressing the total
complexity but it has had limited success in thetemn world due to a difference of
managerial outlook. The only solution is to applyaaiety of techniques to a small
part of the organisation instead of applying orobtéque over the total organisation,
to touch and to take a cross-section of all théicati parts of the maintenance

organisation simultaneously.

Coetzee [63] pointed out that a maintenance patiagt consider the operation, the
procedure, the workforce, hence, a down-top-dowguirements’ analysis would be
more suitable. However, he does not address wherenaintenance (management)
policy comes from. In addition, there feedback fritr@ inner cycle to the outer cycle

is not apparent in Coetzee’s maintenance framework.

It is not easy to determine a suitable maintenataegy for a specific problem.
Martorell and his colleagues [65] optimized maiatece by comparing effectiveness
and efficiency in technical specifications and nmance. Starr [66] identified that
corrective maintenance (CM) is at best only suitechon-critical areas whereas
Jardine [67] furthermore indicated that CM may heappropriate strategy when the
hazard rate is constant. Al-Najjar and Alsyouf [@8]icated that the most important
criteria are (i) possibility to model the time taillire, or monitor damage initiation
and its development and (ii) the cost effectiver&#fs€M. Preventive maintenance
(PM) is best suitable for failures with a clear weat characteristic. Time-based
preventive maintenance is performed on a schedwdsis with scheduled intervals,
which are often based on experience or manufastuecommendations [67, 69].
Statistics-based preventive maintenance is moraradd [70-72]. Valdez-Flores
and Feldman [72] reviewed the preventive mainteeammodels for single-unit
systems whereas Cho and Parlar [70] for multi-systems. Matched and composite
components which are always renewed together caredied as a single item with a
combined distribution [73]. Swanson [74] applie@ #xploratory factor analysis to

determine whether RCM, TPM or CBM can explain ac#ffepractice.

Although RCM, TPM, BCM and ME are currently verynsmon and have found
wide applications in industry, generally speakialy,of them seem too complex for
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industrial applications.

2.2.15 Other frameworks

Some effort has gone into enhancing these commameiworks [29, 55, 75, 76].
New philosophies to enrich these frameworks hage dken developed in recent

years as itemised below:

e A framework for maintenance concept developmen, [77

e An optimal inspection and diagnosis policy for altimmnode system[78];

e Availability Centred Maintenance (ACM) [79];

e A synchronous Quality Function Deployment (QFD) rotlee world wide web
[80];

e A double critical age policies model applied to malge repair policies for the
machine repair problem ofm identical machines serviced by identical

techniciansh <m [81];

e A method to study scheduling problems involvingaie@nd maintenance rate-
modifying activities with objective functions suels expected make-span, total
expected completion time, maximum expected latersesd expected maximum

lateness, respectively [82].

Integration of maintenance is a necessary methodintprove maintenance
frameworks. A variety of automated inspection araintenance integration systems,
usually combined with condition monitoring and tawdliagnosis or automated
manufacturing system, have been developed [83981.research on integration of

maintenance includes:

e The knowledge based process monitoring system §§6-8

e The integration of predictive maintenance in maoufang systems [33];

e The synergy of combined technologies for pipelinal@ation [89];
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e Computer Aided Design (CAD)-integrated reliabilgyaluation and calculation

for automotive systems [90];

e An integrated approach linking the Charles Kepnad @&enjamin Tregoe
methodologies (K-T) [91];

e The integration of Total Quality Management (TQM}hwRoot Cause Analysis
(RCA) to TPM [92];

e The establishment of relationships between impléatem of TQM, Just In
Time (JIT) and TPM and manufacturing performancy;[9

e The stopping time optimisation in condition monimgr with expert judgements
involved [94];

e The integrated system which can deal with the amalgf deterioration due to
corrosion, finite element analysis of load, on tlepair scheme with a cost

estimate, condition monitoring and audible warnifgig.

2.2.2 Reliability Assessment and Analysis

In order to reduce maintenance costs and to ogirmiznaintenance strategy, it is
necessary to understand reliability and its varej the consequences of failures,
the factors affecting maintenance and the relatignisetween the maintenance tasks
and production or other performance of assets tmmamtained [96]. Reliability is
the ability of a system to perform a required fiumttunder stated conditions for a
given period of time [8]. It is usually measureddstermining the probability that a
system survives in a time interval {J, The most direct expression to describe the

properties of reliabilities of systems is the reilidy function R(t). The reliability
function is also called as survivor function [4]Jn@&her mathematically equivalent
way of specifying the reliability of systems istarms of failure distribution function
F(t) or failure density functionf (t). “Failure” in this thesis means that a system or
a component fails to meet its performance requirgniehis “failure will naturally

lead to a need for maintenance.
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The models and techniques for reliability assessraad analysis can be classified
into two categories: The mathematical models arel ¢bnceptual models and
techniques. This subsection summarizes, classdies,discusses the characteristics,
advantages and disadvantages of various modeld)nitees as well as
methodologies of the conceptual reliability modalsd techniques; whereas the
mathematical models for reliability analysis wié bresented in Section 2.3.

2.2.2.1 Condition Monitoring and Fault Diagnosis (CMFD)

CMFD has been playing an increasing role in maemer research [14] so that a
new term - condition based maintenance (CBM) is mged. CBM is currently the

best preventive maintenance strategy because htemnmaintenance decisions to be
made based on the current status of the equipntlens, avoiding unnecessary
maintenance and thus facilitating timely maintemanghen there is a strong

indication of impending failure [97].

Condition monitoring is popular and has a wide engapplications. In techniques,
CMFD are concerned with vibration detection, luants analysis, infra-red scanner,
ultrasonic-pulse echo technique in data processwith Fast Fourier Transform
(FFT), Discrete Wavelet Transform (DWT), demodulati debris counting, data
fusion, image processing, etc, and in measuremerits,vibration, wearing debris,
acoustic emission, temperature, strain, torque, gpovNew methodologies or
philosophies continue to emerge. For instance, @Ghast al's [98] wavelet multi-
resolution analysis for location of faults on tramssion lines and the knowledge-
based diagnosis used in a case study on rollingrigeaf a pump [99]. The US Navy
is currently developing a new ship structural Heatbnitoring system based on fibre
optic technology [100]. The determination of thestbgensor positions is one of the
main research goals in the field of CMFD [85, 1(R¢berts, et al [40] demonstrated
that the distributed method of fault diagnosis caduce the cost of maintenance
through a railway junction case study. Image prsiogstechniques were used for
identifying frequency regions which have a highcdiminative power between the
different classes, or Regions Of Interest (ROI)2L0Recently it was reported that
infrared thermograph is an appropriate method émtify the condition of railway
track ballast [103], and a Ground Penetrating R4G#R) can be thought of as a
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suitable and economical alternative to the othethous [38, 104]. The internal
condition of a line can be assessed by a combmatialysis of its dynamic response

and temperature and pressure readings [105].

It should be noted that cost-effective and reliatdenage detection is critical for the
utilization of monitoring techniques. For examplepn-destructive evaluation
techniques (e.g. ultrasound, radiography, infrainedging) are available for use to
composite materials during standard repair and t@aamce cycles. However by
comparison with the techniques used for metalsetlze relatively expensive and

time consuming [106].

2.2.2.2 Faulttree and root cause analysis

Root cause analysis is used to find out causesibfrés [25, 107]. The classic

technique is Fault Tree Analysis (FTA). A relatedhnique is Event Tree Analysis
(ETA) [108-112]. “A fault tree is a model that gtagally and logically represents

the various combinations of possible events, batlitfand normal, occurring in a

system that leads to the top event.” [111] FTA wasoduced at Bell Telephone

Laboratories in 1961 [113] and was used in thesgerce industry in the early 1960'’s.
It can be used for qualitative analysis, quantieainalysis or both. FTA enables one
to find the most likely causes of system failuret i is costly and time consuming.

This method will also fail to identify some impantacauses and effects. It is difficult
to apply Boolean logic to describe failures of itethat can be partially successful in
operation and thereby have effects on the perfocmaf the system. It is also

difficult to have pertinent failure rate data tondoct quantitative fault tree

evaluation. Classic FTA describes the effects d@ifas at lower levels on those at
upper levels. It does not model the effects ofufais at upper levels inversely on
those at lower levels and the effects among theedaxels. Some new applications
are found in [114, 115].

2.2.2.3 Reliability Block Diagram (RBD)

The method of RBD, also called as Success Diagrathdd (SDM), was the first
method used for analysing system and assessiaditi}i in the history of reliability

research [116]. RBD is a logic network used to dbsdhe function of a system. For
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a system with multiple functions, different RBD rhighe established. In most cases,
a fault tree can be converted into a RBD, and versa. Generally, fault tree is more
suitable for root cause analysis and RBD is mortalske for quantitative analysis.
When used for qualitative analysis, RBD can be useadentify whether a system is
in a functioning state or in a failed state undegivzen conditions. The state of a
system is often described by the structure functbrthe system. The structure
function is a binary function. When used for quiative analysis, RBD can be used
to calculate exact system reliability at a givendit. Many methodologies have been
developed to analyse and calculate RBD [8, 116].1RBD is a powerful tool for
reliability calculations. However, when RBD is usedcalculate the reliability of a
system, the reliability function of each individu@mponent in this system must be

known and these components are assumed to be mikpd8].

2.2.2.4 Failure Modes, Effect and Criticality Analysis (FMECA)

The FMECA is a combination of Failure Mode and Effé&nalysis (FMEA) and
criticality analysis [118, 119]. The basic task FMIEA is to identify and list the
modes of failures and the consequences [120, EMEA is very important in the
application of RCM [25].

Criticality analysis is generally used to evalutite severity of harmful effects of a
failure on the function and operation of a system, other components, on the
environment, and more importantly on mankind sot tilae most suitable

maintenance policies can be made [53]. Starr [@8ihdd the term Plant Criticality

to determine areas which are likely to be costctiffe in terms of safety, capital
value and the value of production.

The knowledge of historical failure and plant catity is required before CBM can
be applied. Three popular techniques are usedssaghe criticality in CBM: FTA,
FMECA and RCM [122]. These three techniques haweine popular because they
can be used to detect a range of failures in a meadby vibration, thermal and

lubricant analysis [123].

El-Haram and Saranga [124, 125] used identificatibthe Maintenance Significant
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Items (MSIs) to do similar work. They believed oMy1s would be considered for a
Relevant Condition Parameter (RCP) based maintenanc

Another important concept is the Maintenance Td&karities (MTP). A example to
assign priorities for maintenance can be foundl26]. FMECA can be utilised to
decide MTP [127]. Gopalakrishnan et al [128] hawediaed this problem too. They
used a Multi-Logit Regression Model (MLRM) [129, Q|3to decide MTP. The
maintenance tasks for the current time-bucket assheduled to maximize PM
effectiveness subject to workforce availability andyield an adaptive and effective
PM schedule for each time-bucket. In Gopalakristsxamodel, the following five
factors were considered: Cumulative machine utibra Current machine utilization;
PM delay; Comparative machine failure rate assediawith the PM task, and
severity of the last repair action. MTP of a taskassumed to be proportional to its

expected contribution to PM effectiveness.

Both the Markov analysis [131] and Linear Multivag Discriminant Analysis
(LMDA) [130] are also available for the calculatiof the expected contribution to

PM effectiveness.

Recently, Hokstad, etc. [132] presented an apprtaoklate the risk of an activity to
so-called Risk Influencing Factors (RIFs), in white overall picture of the factors
at all levels can be easily found and quantitayiwlalysed.

FMECA can be used to determine the modes of falarel their effects on system
operation and to discover potential critical fa@uareas. It is performed using the
system’s functional tree. It includes three elemefl) Failure mode analysis: to
study a system and the working relationship of comegmts under various anticipated
conditions of operation; (2) Failure effect anadydio study the potential failure in

any section of the system; (3) Failure criticaltyalysis: to study and determine the
severity of each failure in terms of probable safetzard, unacceptable deterioration
in the performance of the system [133]. Howeveassical FMEA or FMECA is

difficult to conduct even for relatively straightfeard systems.
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2.2.25 Monte Carlo methods

Monte Carlo methods are based on random simulatiomas said that the earliest
documented application of Monte Carlo method i$ tiaComte de Buffon in 1777
[134]. Monte Carlo methods are possible to be tigesblve the reliability prediction
problems that cannot be solved analytically. Withréasing computing speed and
memory size of computers, Monte Carlo methods megeived more attention from
maintenance researchers. Some applications irbildllaand maintenance analysis
can be found in [17, 135, 136]. However, efficitddnte Carlo algorithms are often

difficult to develop.

2.2.3 Maintenance Optimization Policies

The optimization of maintenance decision-makingaéned as an attempt to resolve
the conflicts of a decision situation in such a \lagt the variables under the control
of the decision-maker take their best possible evdRl0, 62, 137]. This subsection

reviews maintenance optimization policies in thekesses: cost based optimal policy,

risk based policy and combined optimal policy.

2.2.3.1 Cost based optimal policy

Whatever maintenance strategy is chosen, its got minimize overall cost. Cost
based optimal policy is aimed at reducing the costated to the maintenance

activities.

The calculation of overall cost and benefit of Pveiill a big challenge to scientists
and engineers. The typical techniques include adtimaintenance costs based on
failure prediction and life-cycle cost analysis8[5138]. Figure 2-7 shows an

example of life cycle cost profile [58].

Lean Maintenance (LM) is also a popular strategly.emphasises efficient
maintenance management in order to reduce wasteaintenance activities [139,
140]. This policy does not analyse the problemsnttsively. Therefore, it is
unknown if a LM based policy is optimal or not.
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Starr [66] formalised a structured approach to sleéection of condition based
maintenance. In his formalised procedure, majotofacwere taken into account.
However, he only provided a general direction (asib rules). He also reviewed a
method to calculate the production losses due txpected failure. This method
simply uses the value of production at a norma tatmultiply the potential hours of
downtime. Actually, even though this method is d@ddpthe time of stoppage for

repair or replacement should be reduced from thenpial time of downtime.

This figure is not available online.
Please consult the hardcopy thesis
available from the OUT Librarv

Figure 2-7. A life cycle cost profile (source: AKelly, Maintenance Strategy,

1997, Oxford: Butterworth-Hernemann, p. 9)

Today more and more attention is paid to the maartee optimizations when two or
more factors are taken into account [141-145]. $y@tems that are not normally in
continuous operation, the maintenance should bedsittd or planned to be done
when the system is idle. It is more cost-effectiee do the inspection in an
opportunity (i.e., the system should stop) than ¢beventional PM, in which the
system stops for the purpose of inspection [146¢ hanagement of maintenance in
a large plant involves numerous factors. Sherwii7]lproposed eight important
rules and assumptions for practical optimal maiabee and presented a formula to
calculate the age-optimised residual value. Thescos failure and PM of each
failure mode (or combined PM operation considere@ &eparate, independent and

indivisible event) can be estimated according tas&ér and Sherwin [146, 148].
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Artana and Ishida [20] presented a method for deteng the optimum maintenance
schedule for components in the wear-out phase.ifteeval between maintenance
for the components is optimized by minimizing tatakt. The total cost consists of
maintenance cost, operational cost, downtime codtpenalty cost. Nakanishi and
Nakayasu [149] proposed a new expected total awstept including initial cost,

cost of reliability test, annual maintenance cpenalty cost for designer’s faults and
losses by structural failure to make reliabilitysdg of structural system with cost

effectiveness during its life cycle.

Tadashi, et al [150, 151] derived an optimal mddelthe order quantity and safety
stock so as to minimize the expected cost per timg in the steady-state under
somewhat different restrictive assumptions fromrnieel by Cheung and Hausman
[150]. A case study shows that Lagrangian relaxati@thod can be applied to find
an optimal solution for the net benefit of pipe agpmaintenance in water
distribution networks [152]. Jardine et al [67] apg PHM to optimize PM cost

based on the change of covariates.

Delay Time Analysis (DTA) is also an important téolmodel maintenance decision
problems. The delay-time concept was introducecChyister [153]. “Attention of
DTA is focused upon the maintenance engineeringsies of what to do, as
opposed to the logistical decisions of how to do [80] The delay-time concept
regards failure propagation as a two-stage prodess.assumed that a component
can be in one of three states: non-defective, tleéeand failed. The sojourn in the
defective state is called the delay-time. Wang @hdster [154, 155] presented three
solution algorithms for an established multi-comganinspection system model.
This model is based upon the delay time conceptusad to solve the multiple-
decision problem with a possible large number @ligien variables depending upon
the number of inspections. Earlier papers relatedgpection maintenance based on
the delay-time model are based on either the calssipproach or the combined
classical Bayesian approach, and are mainly coedewith saying something about
presumed true parameters, like average costs fidime and failure rates. However,
often relevant objective data ("hard data") is ¢gfly not sufficient in practice (It is
even true today due to the short renewal periashafpment).
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Some researchers considered the change of a syatean maintenance and
introduced an imperfect maintenance concept whiellsd with the economic
production problems with imperfect production preses under assumption that the

age of the system is reduced in proportion to tidd¥el [156-158].

2.2.3.2 Risk based optimal policy

Although generally it is a common goal to minimie costs in industry, in some
cases more attention may be placed on increasiiadpitity whenever a failure will
cause a disaster consequence to the human bemgvivonment. In these cases, a
criticality based optimal policy should be useditleiresearch has been conducted
specifically on this policy. Some related researah be found in [43, 96, 131, 159-
162].

2.2.3.3 Combined optimal policy

The cost related to the maintenance activities Ishba carefully considered even
though under criticality based policy. Some comdbimptimal policies have been
developed for an overall maintenance optimizatibmough a comprehensive
consideration of several different factors suclt@sts, reliability requirements, and

availability.

The Relative Condition Parameter (RCP)-based maamiee policy is a combined
optimal policy. RCP-based maintenance was propbgeatinezevic [163]. EI-Haram
and Saranga [69, 124, 125] have further developedplicy in recent years. The
model requires that a minimum required level ofteys reliability must be

maintained when optimizing maintenance costs.

RCP-based maintenance does not deal directly with rtature of the failure
mechanisms like wear and fatigue crack, but instegmEnds on the sophistication of
condition monitoring devices to take these faciate account. Under RCP-based
policy, Maintenance Significant Items (MSIs) must identified. Only these MSIs
will be considered for maintenance. The Relevamdiamn Predictor RCP) is a
key factor in the RCP-based maintenariREP is a condition parameter to describe

and quantify the direct condition of the item aemlvinstant of operating time. If a
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RCP is not available for a particular MSI, then RCRB4x maintenance is not
applicable to that particular item. Oné&CPs are determined for all the MSiIs,
suitable condition monitoring techniques are selgctin order to monitor the

condition of the item. The same idea was put fodAar Starr [66]. In generaRCP

is directly related to the shape, geometry, weggitt other characteristics of the item.
The basic principle behind this mathematical im@atation is the assumption that

as long as th&RCP lays within the prescribed limitRCP" and RCP™, the item or

system will function satisfactorilyRCP" and RCP™ are set by the manufacturers.
Once RCP exceeds these two limits, a failure occurs. Thengijple can be

represented in the following equation:
R(T?) = P(RCR" < RCR(T) <RCF™) =R'. (2-1)

where, RCP" is initial value of relevant condition parameter " item; RCP™ is

the limit value of relevant condition parameter ifBiitem; T* is the time to the first

examination of § item, which is defined as the time up to which teguired

probability of reliable operation is maintaineld; is the minimum required level of

the item. For a system connected in series, the tonthe first inspection should be

the shortest one in all first inspection time dfil@ms, that is

T, = min (T, (2-2)

i=12,..n

where, T. is the time to the first examination of the system

RCF" is the critical value of the relevant conditionegictor RCP. If RCP is

above RCP”", maintenance tasks should be performR@P" exists objectively,

while RCP™ is set by people. The difference betwdR@P" and RCP™ represents

the length of time during which the major maintecepreparation activities can be
conducted. RCP-based maintenance was claimed toaldbe to reduce the
maintenance costs because it shortens the dumttioraintenance task by the prior

condition information, and reduces the durationsapport task by the proper
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selection of RCP™ . The cost benefits of RCP-based maintenance can be

summarized in following six characteristics:

(1) Reduction in maintenance induced failures;

(2) Reduction in planned / scheduled maintenance;
(3) Reduction in repair time and costs;

4) Elimination of unexpected failures;

(5) Increase in the realisable operating life of congis;

(6) Increase in the coefficient of life utilisation, igh is the ratio of the average

realisable operating life to its expected operalifieg

Neither El-Haram nor Saranga considered the effe€tslifferent MSI on the

maintenance plan. They failed to match the differarmerical value of RCPs with
different monitoring techniques. The assumptiorat roduction is in continuous
operation and the cost of lost production and #wemue are directly proportional to
the length of time are questionable. Comparing R@sed maintenance policy with
RCM, it can be identified that this policy actuallyorresponds to the RCM

framework.

Other policies include Jiang and Ji's [164] multHautes model which considered
four attributes: cost, availability, reliability drifetime when making an optimal age
replacement policy, and Stewart’s [165] applicadiani risk ranking and life-cycle

cost analysis to assess the reliability of a bridgfeouvalis, et al [166] applied an
accelerated Branch-and-Bound algorithm for assignimpeblems of utility systems

to find out the appropriate sequence of switchirf torbines and boilers for

preventive maintenance, which contributes to th&abiity, availability and

profitability of the entire system.

2.2.4 Advanced Tools and Methodologies

Some maintenance research uses advanced tools eihddologies which have
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found wide applications in other fields such agzfu logic [167-169], neural
network [170, 171], the Kalman filter [172], thenggic algorithm [173, 174], data
fusion [175], Monte Carlo [176] or combination tifose techniques [177]. The
application of data fusion techniques in mainteeasattractive, because there is an

increasing demand for the accuracy of predictiah @ecision.

Using computer techniques to enhance maintenanedysis ability is another
attractive respect of maintenance research. Thepoten was used to study
maintenance problems as early as in 1963 [178].1974, the British Steel
Corporation (BSC) [179] started using computermtmnage maintenance. However,
only in recent decades, have some commercial pedactbftware for maintenance
become available[180]. Software packages such a&KHX[67] and RELCODE
[181] are programmed to determine the failure mauohel to carry out maintenance
optimization. Relax (Relax software corporation)daiiReliability Workbench
integrate the performance of reliability predictiomaintainability prediction,
FMECA, RBD analysis, FTA, ETA and Markov analysis8R]. There are other
software which is used for management of human evemgies [183], or simulating
the deterioration system using Monte Carlo simafat[176], or enhancing the
efficient exchange of relevant information [184j,taking advantage of the Internet
[185].

2.25 Comments and Discussion

The models and methods mentioned above have fohed applications in

maintenance. However, they have fallen short afifig practical applications

Dekker [144] conducted a literature survey on & kworld applications of current
models in industries. He found a total of 112 aggilons of maintenance
optimization models. Most of them were used betw&@85 and 1989 (45 cases).
Strangely enough, there were only 25 cases foutet 4D90, and indicates that
current maintenance optimization models cannot niket demands of today’s

industry.

There is a lack of effective methodology to analyserelationship between a failure
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and its root causes quantitatively, especially whefability information is

incomplete, e.g., new equipment.

Improper maintenance activities such as repeatdefgrred inspections or repairs
result in very costly failure. On the other harah bften inspections or unnecessary
monitoring may also cause high cost. One needstimate the states of a system
more accurately. Current maintenance models inetudtHM, FMECA and FTA
usually do not specify which items fail. Howevdrgtreal situation is, more often,
that a system fails because some and not all ifain©ne therefore may not need to
repair the entire system or all of items in thetesys In order to carry out actions
particular to business goals, one needs to getnrton which is perception, or
recognition and localization, of structures. Itohxes the spatial-temporal form of

components and their relationships [186, 187].

It is a challenge to scientists to develop an gppate model which can take account
of historical failure records, monitoring data aather available information to

enhance the accuracy of predictions.

Historical records are valuable, but they are oftemomplete and inaccurate. The
records normally contain the activities of maintece rather than the causes of
failures. They may have erroneous records [25]. tha other hand, condition
monitoring is more expensive and in many casesribitoring techniques may not
be available. Hence new approaches and models e@ded to overcome these

limitations.

As a result of the above discussion, future res$edaicections are identified as

follows:

(1) New methodologies and models need to be develogechvean bridge the
gap between theoretical research and industrycgijgns. Most of reliability
models have been developed for mathematical purposeomputational
convenience [144], rather than solutions to redlgtry problems. Most case
based research focus on short term solutions akdvigion on whole life

cycle modelling.
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(2) A number of topics for complex repairable systemes still in their infancy
and need further research, such as, investigagingrdic component-system
relationship, releasing the assumption of “as gasdchew”, and predicting

multiple failures of whole life.

(3) Models dealing with very small set of data or z&aiure data need to be

developed more intensively.

(4) The accuracy of reliability prediction needs to imeproved. Reliability
prediction of systems and maintenance decisionsngahould be based on
comprehensive considerations of current condit@res system together with
historical maintenance/failure records and othfarmation.

(5) Little attention has been paid to integrated spairés inventory management,

which is important especially to asset intensivdustries.

(6)  The integration of maintenance, monitoring and pobidn is a major issue
and needs to be addressed.

2.3 SPECIFIC REVIEW — ANALYTICAL MODELS

A repairable system is usually defined as one whkdhbe repaired to recover its
functions after each failure rather than to be atded during continuous operation
[188]. A complex system usually means that it isnposed of multi-components
which can be connected with each other in eithees®r parallel or in a complex
way. This review is concerned with classificatiarsd characteristics of analytical
reliability prediction models of repairable systerSB®me major limitations in these

models will be identified.

2.3.1 Basic Principles of Probability

Several models for the reliability prediction of rapairable system have been
developed using the basic principles of probabilitge time-dependent maintenance
model mentioned in [189] is an example. Accordimghis model, a system is always
replaced at a fixed tim& or failure, whichever happens first [2]. The madieased
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on basic probability principles were developed &tedmine the most appropriate
preventive maintaining time T according to the akillity function or failure
distribution function of the system. The most comnadstribution function in use is
the Weibull distribution due to its ability to fa greater variety of data and life
characteristics by changing its shape parameter120]. Normal distribution and
exponential distribution [191] are two popular misdes well. In some early research,
time-dependent maintenance model often assumea tinait is replaced at its age T
or failure, where T is a constant, so it used tacéiked the age replacement model
[192]. Later a block replacement model was devalopinder this model, a unit is
replaced at a fixed prearranged time which is alsonstant irrespective of the age
of the unit, but if the unit fails before the pnearged replacement time, an in-service
replacement will be made [2, 193]. If the unit ist meplaced but maintained, the
block replacement model becomes the periodic ptexemmaintenance model.
Considering the failure rate of a unit generallgreases over time and the system
often cannot become “as good as new” after refiaér,constant fixed maintenance

time T is replaced by a time variable, T. <T._,, and then the periodic preventive

maintenance model becomes the sequential prevemtdgel which was introduced
by Nguyen and Murthy [194]. Some research has beste to extend this model to
a complex repairable system [8, 81, 193, 195-1B89¢ time-dependent maintenance
model was originally developed for the single wystem. Fontenot and Proschan
[200] developed several imperfect maintenance nsodal each of theses models,
they assumed that the state of a system aftemagdareplacement is as good as new,
and the state after an unplanned maintenance havedssibilities: as good as new

with probability p and as bad as old with probability p. Gurov and Utkin [199]

presented a model to predict reliability of replhlea systems with periodic
modifications by arbitrarily distributed times taillire and repair. The application of
this model in industry is difficult because the rabds represented by the integral

equations.

The renewal process model is a generalized cldssncalel. It assumes that
whenever a component fails, it is replaced by a mmtical one or repaired to the
condition of “as good as new” [8]. Mathematicallg,renewal process is defined as a

sequence of independent, identically distributed.d() non-negative random
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variables X, X», ..., which with probability 1 are not all zero” [2D The renewal
model basically deals with the renewal functiort ikadefined as the expectation of

the random variabl@& (t) (the number of failures during the time interv@) {] for

fixed time t).

The reliability of repairable standby systems atganuch attention [202]. Narmada
and Jacob [203] studied 1-out-of-2 system whereas dhd Sarmah [204] 1-out-of-
N and Wang and Ke [205] W-out-of-W+M.

Due to the inherent difficulty in mathematics, thedels were often developed about
some special cases, i.e., either system with dpstiacture [206-209] or special
process [210-214] or both [215]. Calabria and Puwlf@210] derived the conditional
intensity functions introduced by Lawless and Thiagph [216] under the
assumptions of the Power Law-Weibull Renewal (PL)WHRocess and the Log
Linear-Weibull Renewal (LL-WR) process separatayhen =1 andd =1, the

PL-WR process reduces to the Homogenous PoissaesydHPP). Whe =0
andd =1, the LL-WR process reduces to HPP.

Although the research on the classical maintenamagel can date back to as early
as 1958 [2, 217], this model still attracts theemtion of researchers [8, 189].
Significant effort has been made to improve thigledsuch as extend it to a system
composed of multiple units and subsystems [8, 8B, 195-198]. Models based on
the basic principles of probability can cover a avidange of situations. However,
some of these models are too mathematical to irtegnd to apply. It is still a
difficult task to obtain the reliability functionof Time Based Preventive
Maintenance (TBPM) especially when historical distaparse. Research activities
on the reliability prediction for Reliability Basd@reventive Maintenance (RBPM)

are scarce.

2.3.2 Markovian Theory

In 1907, the Russian mathematician A.A. Markov adtrced a special type of
stochastic process whose future probability behavi® uniquely determined by its

present state, that is, with behaviour of non-héed or memory-less. The
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behaviour of a variety of physical systems falk® ithis category; hence, the Markov
model plays an important role in the reliabilityaévation of engineering systems
[218]. A Markovian stochastic process with a diserstate space and discrete time
space is referred to as a Markov chain. If the tifimelex parameter) space is

continuous, it is referred as the Markov process.

The model based on the Markov process assumesthgstem has a finite state
space and a series of possible transitions betiimse states. The functions, various
failure modes, standby and various maintenanceites all can be described as
different states. If the transition between thdestacan be approximately described
by a stochastic process with Markov property, therkdv method can be used to
determine the reliability of the system after saVestates. Therefore, it is fairly

common using Markovian theory to model the relipiprediction problem of a

repairable system [219-227].

Pham, et al [228] presented a Markov process basedel for predicting the
reliability of multi-stage degraded systems withitigh repairs. Aven [222] used the
standard Markov theory to derive an availabilitynfiolae for standby systems of
similar units that are preventively maintained. TaR9] used the Markov chain to
study the reliability of 1-out-of-2 systems, andaRh[230] extend to K-out-of-N
systems. Chen and Trivedi [231] derived a closedifgolution of the underlying
Markov chain for the minimal and major maintenanmcedel whereas El-Damcese
[232] tried to solve Markov equation for reliabjlifprediction more effectively.
Sophie Bloch-Mercier [233] tried to find the degrek the repair of a Markov
deteriorating system such that the long-run avditglwas optimal. She dealt with
corrective rather than preventive maintenance. WaanthSheu [234] used a Markov
chain to determine the optimal productiaintenance policy with inspection errors,

which is an improvement to Lee and Park’s meth@b[2

Sometimes an ordinary Markov process cannot desailbepairable system very
well, and hence a semi-Markov process is chosemadel the reliability of a

repairable system [236, 237]. A semi-Markov prodesan extension of an ordinary
Markov process with discrete states and continuous [236]. Papazoglou [237]

derived several approximate equivalent Markov medel decompose a system of
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dimensionalityN + M into two smaller problems of dimensionality and M . Kim
[238] used semi-Markov to reliability modelling afhard real-time system using the
path-space approach. For considering realisticftanges and for repairable systems
in industries, Marquez and Hegueda [1] proposedoaemto represent different
corrective and/or preventive actions that couldetgitace at different moments,
driving the equipment to different states with éifint hazard rates by the utilization
of semi-Markovian probabilistic models.

Markovian method has often been applied to modsirable systems[224, 233, 239]
and deteriorating systems [8, 240]. However, ihd$ easy to find all (sometimes
they are numerous.) transition probabilities. Ttaesspace method is only suitable
for relative small systems and for the predictiérthe next failure [1, 8]. Although
the Markov model has been used to study problema odpairable system after
repair, it is used under very strict assumptiores. €&xample, the system evolves in
time according to the same Markov process as fl@rbeginning [233, 239] or the
system has a very special structure with sevetadygmiems in series, each of those
subsystem consisting of several parallel identcahponents [241]. In addition, the
Markov equations are often difficult to solve armlglly. Some systems do not

conform to the Markovian system [242].

2.3.3 Poisson Process

The Poisson point process is a kind of Markov psed8]. This model assumes that
the failures are independent of each other anchtimber of failures in each time
interval follows a Poisson distribution [243]. Th#omogeneous Poisson Process
(HPP) model requires stationary increments whese&®n-Homogeneous Poisson
Process (NHPP) model [4, 188] does not requireethesrements. Therefore, the
NHPP is more favourable for modelling imperfect aiegble systems [244]. The
NHPP can also be used to study the Rates of OCmar®f Failures (ROCOF)
when they are time dependent, and the times betwadures are neither
independent nor identically distributed [243]. Sonesearchers [245] argued that
multi-component repairable systems cannot be medidl} continuous distributions.
Failures occurring in repairable systems shoulddresidered as a series of discrete

events which occur randomly in a continuum. Thesesons behave as stochastic
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point processes and can be analysed by means statistics of event series. The
log-linear NHPP model and the power law NHPP maalel recognized as two
widely used models for repairable systems. The pdawe NHPP model is based on

Weibull distribution. It is given by

v(t) = ABtAT, (2-3)

where, v(t) is the intensity functionA is the constant failure rategs is shape

parameter and is the system’s age.

One of applications of the power law NHPP was gibgnWeckman, Shell and
Marvel [244] to the reliability modelling of repaiole systems in the aviation
industry. Coetzee [246] reviewed the NHPP modelghm practical analysis of
failure data up to 1996 briefly. Guida and Gior{@d7] analysed the reliability of
accelerated life-test data from a single-item negidé system moulded by a NHPP.
Pulcini [248] applied the NHPP to model the religgpiof a complex repairable
system with bathtub type failure intensity. Saldanét al [243] presented a
application example to the reliability analysis sérvice water pumps whereas

Bustamante [249] to a software reliability model.

The Poisson process based models are suitabl@adbrsang repairable systems with
multi-failures which are stochastic point procesddéswever, the existing Poisson
process based models are only available to theorarfdilure mode but does not
appear to subscribe increasing hazard rate. Thes&oprocess based model assumes
that the failure probability of a system follows$?aisson distribution, the number of
the failures does not affect the failure probapitind the repair does not change the
reliability of the system [250]. NHPP model assurties the reliability immediately
after a repair is exactly the same as reliabilisst pefore its corresponding failure. It

is only suitable for so-called “minimum repair” mties but not general repair.
2.3.4 Condition Monitoring Data Based Models

With increasing applications of condition monitagyintechniques, maintenance

personnel naturally wish to improve reliability gretion accuracy using monitoring
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data. The Proportional Hazard Model (PHM) introditgy Cox [4] is currently the
most popular condition based model [1, 3-6, 15,-254]. Another similar model is
Proportional Intensities Model (PIM) [188, 250, 25BHM is more flexible and
avoids some of the problems related with PIM, b tatter has a clearer
mathematical and physical justification [255]. Befothe concept of PHM is
introduced, the terms reliability function and hakafunction are defined

mathematically as follows.

The reliability functionR(t) is used to decide the distribution of random Jded

of a homogeneous population of individuals, eachingaa “failure time”. It is
defined as the probability that a system (compgneiit function over a period of
time t [16]:

R(t) = P(T =t). (2-4)
R(t) = j f (t)dt, (2-5)

where f (1) is the failure density functiorP(e) is the probability of(e) .
On the other hand, the hazard functhu) is defined as [16]:

PE<T<t+At|t=T)

)= m, o (2-6)
Considering Equations (2-4) and (2-5), Equatio®)®ecomes
h(t) =~ (2-7)

R(t)

PHM is used to estimate the hazard of a systemdbasénistorical failure data and
condition monitoring data [4]. It was developederdmlly from Accelerated Life
Models (ALM) [256]. In principle, PHM is also a meldbased on statistical analysis
method.
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The advantage of PHM is that it includes both the af a system and its condition
in the calculation of the hazard of the systemimét. In this model, the hazard at

time t of a system is modelled as a product of the basdlazard functiom,(t @and

a positive function tern(Z, y) as follows [4]:

h(t) =h, (¢ (Z,y). (2-8)

The baseline hazard (t i the hazard without influence of the covariat€se

functional termy/(Z, y) is dependent on the effects of the different fisctbat affect
the failure of the system through a row vector esiitgy of the covariateZ and a
column vectory of the weighting parameters. The Maximum Likeliddestimation

(MLE) method is commonly applied to estimate thesgyhting parameters.

Makis and Jardine [6, 67, 257] studied the probltEnoptimal replacement using
PHM. They defined an optimal replacement rule bamedoth minimal expected

average cost per unit time and the PHM of a systamd, then used the values of
covariates of the deterioration system to deternthree replacement time. Later,
Jardine and Banjevic [15] presented an applicatibthis method for optimizing a

mine haul truck wheel motor. Kobbacy et al [253%acaldeveloped a heuristic
approach to scheduling the next PM interval usirggemi-parametric PHM and the
full condition history of a system. Ansell and Hip# [258] presented a general
survey of some practical aspects of using PHM tdehcepairable systems.

PHM is empirical in nature. Cox [4] summarized severiteria to assess

distributional form, these criteria can help themgparison of those existing

distribution models. In order to start the paramestimation procedure in modelling,
at least two histories ending with failure are iiegg, and in addition at least one
history ending with failure for each covariate oferest. However, the number of
histories is hardly specified since it strongly €leg)s on how covariate information is
correlated with failure. This means this techniguaa only be used in situations
where such equipment has run some length of timethas enough failure records. It
is definitely unsuitable for new equipment. Thegmaeters of a PHM based hazard

model are estimated according to the historicabngx. When estimating these
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parameters, the conditions of current system atewoasidered. If this PHM based
model is used to analyse the hazard of currenesygeven if the same system as
that when the historical records for modelling weaken), the results would be far
from accurate because the system may have expedieseveral different repairs
since those historical records were taken. Somstimegular maintenance activities
such as changing oil may be investigated when a FHdnstructed, but mainly for
meeting the requirements of cleaning the histoiedh to get correct transition path
[15]. The effects and the influences of such maatee work have not been
estimated, and hence this PHM based hazard modei isuitable for predicting or
optimising these maintenance activities. AccordingRoberts and Mann [245],
classical PHM, as a continuous distribution, canbetapplied for the reliability
prediction of a multi-components repairable systera long-run period. Kumar and
Westberg [259] used a linear regression modelrid 6ut that the time-invariant
assumption of the effect of a covariate in PHVhsorrect. Blischke and Murthy [12]
and Ebeling [16] described PHM as an environmeotaldition based model, but
some researchers [257, 260] argued that PHM caaildsked for both environmental

(external) covariates and responsive (internalpoates.

In condition monitoring and fault diagnosis of aypital asset, often several
parameters (termed as covariates in reliabilitptethat measure the conditions of
the asset are monitored and analysed. As suchraselrfferent PHM based models
can be formulated by choosing different covariates combinations of these
covariates. For example, Lin [261] used six insjp@cvariables for the condition
monitoring of a single reduction helical gearboxbigild PHM based models. Six

PHM based models are reproduced as follows:

h (t) - 551844( t )45184460.388431:GP1 (2_9)
! 10319 (10319 ’

h2 (t) - 2 7;-21‘:e1.17955FGP1—5.34302RFM ’ (2_10)

h(l) = 4.49062( t f"‘mez_emm (2-11)
3 561606 | 561606 ’
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1
h t - e0.113776RFS, 2_12
+ () 184184 (2-12)
h (t) :Le2284l4RTM (2_13)
> 19925¢ ’
h (t) - 932064[ t j8.32064e(39.3561RTS (2_14)
e 149296\ 149296 '

In the above equations, FGP1l, RFM, RFS, RTM and RI& the names of

covariates.

The hazard values of the system calculated to thgsations can be significantly
different. To demonstrate this point of view, paifrthe data generated through Lin’s
study [261] was used to conduct a hazard analyhis.original data is reproduced in
Appendix B1. Figure 2-8 shows the hazard of theéesyscalculated by Equations (2-
9) to (2-14).
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Figure 2-8. The calculated hazards of the system
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Figure 2-9 shows the trendlines of the hazard cumeFigure 2-8 in form of the
third order polynomials. From these two figurescén be seen that significant
differences among the hazard lines exist. The sefeof the most appropriate PHM
based model is still a challenge. The optimisatbmaintenance costs is currently
most used criterion for the selection [15, 261].tihe candidate’s view, the first
criterion should be the accuracy of the modelsfesent and predict the hazards of

assets rather than optimization of maintenance cost
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Figure 2-9. Trend lines of the hazard curves in fgure 2-8

In addition, Figure 2-8 indicates clearly that edwward line fluctuates greatly
because the original test data were contaminatexthlamount of random noise. The

fluctuations in condition monitoring data have sigant influence on PHM.

New reliability prediction models using conditionontoring data have also been
developed. Al-Najjar [19] developed a mechanistiodel to predict the vibration
level of rolling element bearings which in turn daused to assess the conditions of
these bearings. Barbera, et al [208] presentedssicl RBD based model for a two-

unit series system. In this model, a continuousabse (X, ) is adopted to describe

the condition of each unit (i =1, 2) at timet. Condition monitoring data can be
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used to predict reliability of a system if the pabbity of failure is given by the
exponential distribution and the hazard(¥K)) is proportional to the condition.
Faber and Sorensen [262] developed a Bayesian Fatiow of condition indicators
for inspection and maintenance planning of concsttecture. These indicators have

two states: indicating a defect or not indicatindeéect.

2.3.5 Bayesian Theory

The Bayesian model is based on Bayesian theorenchwivias introduced by

Reverend Thomas Bayes in 1763, which can be destab following equation [8]:

P(Bk |A) - OOP(Al Bk)P(Bk) ,

> P(AIB)P(B)

(2-15)

where, P(B, | A) is the conditional probability that ever®, occurs at the
occurrence of event AP(A|B, andP(A|B, )are the conditional probabilities that
event A occurs at the occurrence of evBptandB, , respectively.P(B, )and P(B, )

are the probabilities of evel, and eventB, occur, respectively.

The Bayesian model allows using the knowledge ofigieers, operators and
maintenance engineers to reduce the uncertainhes wodelling the reliability of a
system. An observed value is used to update thaidthe prior density) of the
Bayesian model. Significant work has been conduasalg this model [7, 263-266].
As early as in 1973, Bassin [267] developed a Bapdslock replacement model for
a Weibull restoration process under the assumptam repair costs are known.
Mazzuchi and Soyer [193] extended this model totthditional age replacement
policy and the block replacement policy with mininn@pair under the assumption

that repair cost is constant and the scale parametnd shape parametgr are

initially independent. Considering the repair clastsystem failures may be random
and unknown, Shue, et al. [265] developed an adap@placement model using

Bayesian approach under the assumption that therdhagt ) of a system is strictly

increasing, i.e.r.,(t)=r( )butr,(@©)=r (0). Sheu also applied a Bayesian
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approach on age replacement with minimal repaimvthe failure density is Weibull
[268].

Percy et al [9, 255, 263] researched the Bayegmmoach to enhance preventive
maintenance strategic decisions. Apeland [269H ttee use the fully subjective, or
fully Bayesian approach to make maintenance dectisiben objective data are
insufficient. However, in Apeland’s model, some wsptions are not realistic: (1)
Each component has one failure mode; (2) Occurrehtalures and defects related
to different types of components are independ&)jt;All failures are immediately

detected and the corresponding failure componeatseplaced immediately; (4) The
failure components are always replaced by identieal components.

Nootwijk etc [266] extended a Bayesian model talgtthe structural deterioration
problem under the assumption that the amounts tarideation are exchangeable
and isotropic. For small amounts of deterioratitime prior density is evaluated
numerically, and for big amounts the inverted ganuhsribution is chosen as a

good approximation.

The Bayesian model allows adopting the knowledgededigners, operators and
maintenance engineers to reduce the uncertaintidsuaing the observed data to
update the priori. However, the Bayesian modelas suitable to model reliability

function by itself because the Bayesian methodimmonly used to update a prior
distribution [264]. The prior distribution is diffult to choose. It is complex and
difficult for long term prediction [263]. Most ohé existing Bayesian models need

failure data to update the priori, which might betavailable.

2.3.6 Hybrid Models

Naturally, researchers have tried to combine abhweeels, such as combining a
Bayesian method with Poisson process [264], combiai Bayesian method with the
Markov process [266], combining a Bayesian methat whe Weibull distribution
[265], combining a Poisson process with PHM [2500]2 combining a Bayesian
method with the TARMA (Time-dependent Auto-regreesMoving Average) [7],
combining a Bayesian method with Poisson procedd?d [255].
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Kawauchi and Rausand [271] proposed a new apprbashd on two modelling

methods: Markov modelling and a rule-based methnd,Kumar and Westberg [272]
used PHM and the Total Time on Test (TTT) plot taken maintenance scheduling
under age replacement policy. The TTT-plots haw® dleen used for condition

monitoring of rolling element bearings [273].

Hassett, et al [274] derived a hybrid reliabilityadability model combing time
varying hazard which is characterized by a geneainomial expression and
Markov chain analysis. Tractable solutions werentbéor the 1-component 2-state

and the 2-component 4 state configurations.

Gue and Love [250] presented an age model whibhssed on the non-homogeneous
Poisson assumption but combined with a proportiam&nsities assumption. This
model did not regard the reliability of a systermuashangeable but treat the form of
intensity function and its parameters’ values asltenable. This model introduces a
scalar parameter to reflect the improvement of stesy after a repair. This scalar
parameter must be estimated by a maintenance emgka& complicate system, it is
too difficult if not impossible to do for an enggrein industry even if he/she is very

experienced.

Hybrid models provide a possible direction. Howevap to now, a generalized
hybrid model has not been derived. Some hybrideisodre also very difficult to

use.

2.3.7 Other Models

Some reliability prediction models specific for ierfect repaired repairable systems
have also been developed. These models often hewyergstrict and unrealistic
assumptions. For example, the fixed decreasing metdel simply assumes that a
system after maintenance is subject to a fixededse in the reliability index [20].
The proportional reliability deterioration modelessa failure rate deterioration factor
(<1) multiplying the original reliability functiorto describe the system state of
somewhere between as good as new and as bad afeold repair [241, 275]. The

failure rate deterioration factor is purely defingg maintenance staff members. On
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the other hand, Dieulle [276] gave an analytic mdtfor calculating the reliability
function, its Laplace transform and the Mean Tinte Failure (MTTF). His model
allows consideration of an imperfect restoratiord agven the case where an
inspection damages the system. He assumed thatatish time is negligible. Grall,
et al [277] established an analytical model usimghbreplacement threshold and
inspection schedule as decision variables for theint@nance problem of a
condition-based inspection/replacement policy f@t@hastically and continuously
deteriorating single-unit system. They proposedgisi multi-level control-limit rule

to implement the maintenance policy.

Most existing models or methodologies have beerldeed on the assumption that
failures among components are independent. Howa@weustrial experiences have
shown that the assumption of independent failuessbeen unrealistic in numerous
scenarios and has led to unacceptable analysisseffberefore, the concept of
dependent failures was introduced, for example aescribed in Mosleh [10],
Hoyland and Rausand [8].

The subject of dependent failures has attractethteeest of researchers for decades.
The international journal, Reliability Engineerirfy System Safety published a
special issue on dependent failures in 1991. Thst miscussed dependent failures
are: cascading failure, negative dependency faidume@ common cause failure [8,
278]. Cascading failure is defined as multiple sedial failures. These failures are
initiated by the failure of one component, whichds to sequential failures of other
components. Negative dependency failure is defasethilure that can prevent other
components in a system from further failing. Comnoawise failure is defined as
multiple related events caused by a single comnarse Cascading failure and
negative dependency failure are often analysedguapproaches for independent
failures such as FTA, RBD and the Markov chain (&eig [279] presented a second
moment (covariance) method for estimating the béltg of a system with both
common cause and cascading dependency failuréss Btudy, a component failure
changes the system topology, which consequenthgases the failure probabilities
of remaining components. His case study can fatl the classical definitions of
cascading failures. The majority of existing reshaon dependent failures focuses

on common failures [278, 280-284]. Papers in thecisp journal issue mentioned
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above mainly concentrated on this type of depentiehire. FMEA and FTA have
been extended for the analysis of common causerésil[278]. Mosleh [280]
presented a framework for identification, modelliaigd quantification of common
cause failures. Findlay and Harrison [281] ideadfimajor common failure modes
for an aircraft. Murthy and Nguyen studied diffeéreperating policies under the
condition that the failure of a component in a sgstmay induce the failure of all
other components in the system [11, 12]. Lewis gt a Markovian approach to
analysing load-sharing systems [13]. Some methodsamalysing common cause
failures quantitatively have been developed, sictha square root model [288},
factor model [286] and Binomial Failure Rate (BFR)del [287].

However, some failures cannot be classified aspeddent failures nor as a type of
the above three dependent failures. One such socesaBequential Failure Logic

(SFL) [288]. In this scenaria) -cause failures occur in a sequencexgik,,--- X, . A

system fails, if and only if these cause failures occur. The second scenario is the
failures due to associate variables, i.e., theestatiables of a system are dependent

[8]. These scenarios need further research amditede of the scope of this thesis.

Another such scenario is that failures of some awepts can interact with each
other. For example, failure of Component A will sawr accelerate the failure of
Component B and vice versa. The failure interactalh increase the failure rates
(hazards) of both components. In some cases, tbease of failure rates of
components due to failure interaction can be dicpgnit and cause disastrous
consequence. Estimating the failure probabilitycomponents subject to failure
interaction is imperative. A model or technique dus® analyse this failure

probability quantitatively and effectively is stilhavailable although the term failure

interaction has been used in some literature ssi¢®,d 1, 12].

2.3.8 Comments

An intensive literature review has been conductethe analytical reliability models.
Some further literature review specific on repdeadystems and condition based
reliability prediction models are presented in tbowing chapters. The literature

review indicates that analytical models for religpiwere mainly developed based
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on stochastic process and probability theory. Haneanalytical reliability models

were also empirically developed based on experiemcexperiments, or derived

from failure mechanism [16]. In existing modelse ttenewal process and minimal

repairs are still two basic assumptions [204, ZI,, 211, 238] although more and

more attention has been paid on imperfect repairedent years [289]. Pham [290]

reviewed several optimal imperfect maintenance nsodend indicated future

research directions on imperfect maintenance. Hewewe concentrated on

maintenance activities rather than reliability pcédn.

The literature review indicated that existing madehve the following limitations:

(1)

(2)

3)

(4)

Models to calculate the changes of the reliabiitya system after imperfect
PM actions are inadequate. For example, the imgenfaintenance models
presented by Fontenot and Proschan [200] assuraédhth state of a system
after a planned replacement is as good as new,tladstate after an
unplanned maintenance have two possibilities onls -good as new with

probability p and as bad as old with probability p.

When analysing the reliability of a repairable syst existing models often
consider the entire system rather than the indalidontributions of different
components of the system to the reliability of slgetem [1, 8, 15, 81, 266].

Most existing models consider the time to the riaktire, MTTF or/and the
expected number of failures during a given peribthdels for explicitly
predicting the changes of the reliability of aneassovering a series of
imperfect PM actions need to be developed althokdeling [16] has
presented a heuristic approach for such purposelirigts approach was
developed based on the assumption that a systemaaRM action becomes
as good as new. This approach was also presentedving [13]. Under the
same assumption, Ramakumar [218] modelled the esand the failure
density functions of components with periodic praixe maintenance using

the similar approach.

The interactions among failures of components system have not been
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(5)

(6)

(7)

modelled adequately. Existing models for depend@hires consider single
direction effects of failures or some special systesuch as a load-sharing
system. An effective model for analysing the fakirdue to continuos

interaction among components is yet to be developed

Inadequacy exists for making reliability predicogiven sparse or zero
failure data. Some existing models dealing withrspdailure data have been
developed based on the Bayesian method [9, 263, 222]. These models
need failure data to update posterior distributfanction without using

condition data [9, 292]. Yet other models have bdemeloped from the

failure mechanism of specific assets but thesespeeific in nature [16, 293].

Systematic consideration of the reliability of rephle systems with all the
above aspects such as multiple imperfect repaitgractive failures and

sparse historical failure data is lacking.

Some models are simply theoretical formulationshwib real application
focus [284].
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Chapter 3
RELIABILITY PREDICTION OF SYSTEMS WITH

PREVENTIVE MAINTENANCE

3.1 INTRODUCTION

Today, Preventive Maintenance (PM) is often coneldigh industries to reduce the
probability of unexpected breakdown of assets duarcertain period. An asset can
be subject to multiple PM actions over its operadiolife-span. Many companies
develop their PM strategies at the stage of adtpnsof assets. Observation from
industries has revealed that different PM actisittan have different effects on the
reliability of assets. If PM is conducted at thghtitime and in the correct way, it can
improve the reliability characteristics of assefgherwise, PM may not have an
effect on the reliability of assets or even worskeerease the reliability of assets. The
majority of physical assets in industries such ashimes, buildings and vehicles are
repairable. Hence, there is a need to investigetfects of PM on the reliability of
repairable systems comprehensively. This chaptarsies on developing a reliability
prediction methodology to quantitatively assessetfiectiveness of a PM strategy on
the reliability improvement of a complex systemdathus support optimal PM
decision making. A particular concern of the reskas to explicitly predict the
reducing amount of probability of failure of a st over a certain period due to PM,
compared with the probability of failure without PNMh this thesis, maintenance
includes repair and replacement. From now on, whepair’ is mentioned, it

usually indicates maintenance and includes “rephace”.

A complex system is normally composed of severatimmnents. These components
can have different life cycles - a fact that letalthe result that different components
may have different failure patterns and distribogi@t the same time. The conduct of

PM of a system usually comprises PM on individuamponents in the system
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according to the states of their conditions. Actauestimation of the effects of PM
of these components on the reliability of systemessential to the optimal decision
making of PM strategy. However, a practical methogy or analytical model for

this issue is still not available.

As indicated in Chapter 2, The issues associatdtl vapairable systems have
attracted much attention of researchers [1, 8,18B, 250, 263, 266, 294]. The
research about repairable systems is focused oadpects: reliability predictions of
repairable systems and the optimal maintenancecypdbr repairable systems.
Different models have been developed to addressrah&bility prediction of a

repairable system with PM. These models have bpphed in different scenarios.
However, the following three major limitations haaffected the effectiveness of

these existing models to the reliability predict@frcomplex systems with PM.

The first limitation is that the different statet repairable systems after multiple
repairs have not been adequately modelled. Two comepproaches are to assume
that a repairable system after repairs becomegdad as new” [81, 239, 244] or “as
bad as old” [8]. Some literature assumed that tesysfter repairs evolves in time
according to the same Markov process as from tlggnbmg [233, 239]. These
assumptions are unrealistic in a considerable nurobeases. The applications of
these models are limited. For example, existing RWBsed models [4, 188] assume
that repairs do not change the reliability of ateys[250]. These models are only
suitable for “minimum repair”. Often a system aftePM action is not as good as
new, neither as bad as old, which brings out thecept of imperfect repair.
Imperfect repairs are common in industries. Impxrfepairs include the following

scenarios (for more details, see [295, 296])).

The first scenario is that the reliability of a ®m after a repair does not restore to
the value of one. This type of imperfect repairwwscwvhen the repaired components
may not to function as required just after a repHnis type of imperfect repair can
also occur when only some of components in a syshaeenrepaired. If some
unrepaired components have also failed, the systegnnot function after a repair

even though the repaired components may all worlepiy after this repair.
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The second scenario is that the reliability of ateyn after a repair restores to the
value of one, but the system deteriorates fasin thefore, i.e. the hazard of the

system after a repair becomes greater.

The third scenario is a mixture of the above twenseios.

To date, effective modelling techniques to deahwfite reliability prediction of a

system with multiple imperfect repairs have yebedeveloped [5] although some
researchers have noticed the influence of impenfegairs on the reliability of a

system [1-4, 250].

Some models consider the influence of imperfectirspon the reliability of a
repairable system, but have limited applications stluassumptions or methods used
in the models. For example, to describe deterimmatil reliability of components and
systems after repairs, Artana [20] multiplied thegioal reliability index by a
decrease percentage (<100%). Nguyen and Murthy] [ASdumed that the failure
rate of a system increases with the number of repionga [275] assumed that the
reliability of a system decreased proportionallythwirepair times which was
represented through a scale parameter called daiate deterioration factor. Later,
Monga [241] introduced another time variable par@méo describe the different
start points of hazard function of a system aftéfeent repairs. Gue and Love [250]
introduced a scalar parameter to reflect the degrémprovement of a system after
repairs similar to Monga’s approach. Their modelswiaased on the non-
homogeneous Poisson framework with a proportionanisities assumption. This
model treated the form and parameters of intemgitgtion of a repairable system as
inalterable. In these models, all parameters otofacemployed to describe the
changes of reliability function of a system aft@pairs must be estimated by
maintenance engineers (or users). For complicatetéms, accurate estimation of
these parameters or factors is difficult, if notpwssible, even for experienced

personnel.

The second limitation is that existing models oftezat a repairable system as a
“black box”, without considering the individual doibutions of different

components to the reliability of this system [8heBe models often take the entire
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system into account and do not analyse relialolityepairable systems at component
level. As a result, some important information whican assist in improving the
accuracy of reliability prediction has been omitt€te following Nelson-Aalen plot

can be used to illustrate this argument.
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Figure 3-1. Number of failuresN(t) as a function of age of a pump system

The data presented in Figure 3-1 are the timesibiré of a pump system over
nearly 10 years. From this plot, it can be seen tha Rate of OCcurrence Of
Failures (ROCOF) of the pump system can be appmtedhas constant. However,
the determination of a suitable model to analyssehdata is very difficult if the
pump system is treated as a “black box” because daiture properties can only be
identified at the component level. For example ysis indicated that the"Sfailure

and the 7 failure were related because they shared the samteause. In this case,
the assumption of independence is not valid. Inteshgd most of the repairs for these
failures were not minimal repairs and this indisateat the NHPP model is not

suitable.

The third limitation is that most existing modelave been developed based on
probability theory and stochastic process as theréatime of an asset is a random
variable. These models are often very complex [@hdering difficulties in

61



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

engineering applications. These models are normddlyeloped to predict and
optimise the next repair event [6, 7] or analyseT¥Tor/and the expected number of
failures of an assets during a given period [8,r&her than explicit reliability
changes with multiple PM actions. In contrast, kigel[16] presented a heuristic
method to predict the reliability of an asset withultiple PM intervals. In this
method, PM time is a deterministic variable. Thisthhed can produce an intuitive
and explicit prediction of reliability and hence wgell suited for engineering
applications. However, in this model, assets areurasd to have PM actions
periodically and the states of the assets aftera@tWities are assumed “as good as

new-.

In this chapter, a Split System Approach (SSA) evaloped to extend Ebeling’'s
method for a long term prediction that covers a benof imperfect PM intervals
during an asset’s life time, and attempts to ov@edhe three limitations mentioned
previously. Two types of PM policies are consider@nhe is the Time Based
Preventive Maintenance (TBPM). In this policy, thestem is maintained based on
scheduled PM times. The intervals between two Pibae may or may not be the
same. The other is the Reliability Based Prevenita@ntenance (RBPM). In this

policy, a control limit of reliability R, is defined in advance. Whenever the

reliability of a system falls to this predefinedntml limit, the system is maintained.
This thesis focuses on RBPM. There is limited &itare on this type of PM strategy.
Note that the Ebeling’s method was developed basetBPM.

The rest of this chapter is organised as followmsSéction 3.2, the concepts of SSA
and the assumptions used in the SSA are introdu®ection 3.3 consists of three
subsections. In Subsection 3.3.1, a basic modantyse the reliability of the

repairable system is developed under the conditi@t always the same single
component is repaired in all PM actions. Subsec8#dh?2 focuses on the scenario
that only single but a different component is regaiin each PM action. A heuristic
approach is presented in Subsection 3.3.3 for amgymore general cases. In
Sections 3.4 and 3.5, an example and a case stedysad to demonstrate the
applications of the developed models respectivéty.Section 3.6, results of

simulations to verify the developed model are pness: The chapter concludes in
Section 3.7.
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3.2 CONCEPTS OF SSA AND ASSUMPTIONS

The basic concept of the SSA is to separate repanel unrepaired components
within a system virtually when modelling the relidlp of a system after PM
activities. This concept enables the analysis stesy reliability at the component
level, and stems from the fact that generally wh@omplex system has a PM action,
only some of the components are repaired [194].

In the analysis, the following assumptions were enad

(1)  The failure of repaired components is independénncepaired components.
This assumption means that when a component isireelpathe failure
distribution form of the unrepaired components afyatem does not change,
and the conditions of the unrepaired componentaadaffect the reliability

characteristics of repaired components.

(2)  The reliability function of a new repairable systerknown. The reliability

functions of repaired components are also known.

(3)  The topology of a repairable system is known.

(4)  The repair time is negligible.

(5) The PM time is a deterministic variable.

The first assumption means that the failures dedkiht components in a system are
independent. This assumption has been adopted Ist masting models. The
assumption of independent failures will be remowedhe models developed in
Chapters 4 and 5.

The second assumption is reasonable. Several tpedmihave been developed to
determine the original reliability functions if bisical data are sufficient. The

situation where historical failure data are instiét will be discussed in Chapter 6.

The third assumption is also reasonable becausedhfiguration of a system is
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often known.

The fourth assumption is reasonable when repag tsrmuch shorter than the time
between two PM actions and has been used previ{®isi21, 292].

The fifth assumption is sustained because PM tiooesidered in this research are
either scheduled by maintenance engineers suchn aBPM or dynamically
determined based on the requirement for reliabgditgh as in RBPM. PM time is

different from failure time which is a random vdoia

According to the above assumptions, only the rditgbfunctions of repaired
components change when a PM action is conducteal system. The PM does not
change the characteristics of the reliability oé thnrepaired components in the

system.

3.3 MODELLING

In this chapter, the SSA is developed based o theenarios. Firstly, a basic model
Is developed using a simple scenario where alwhgssame single component is
repaired in all PM activities. Secondly, this basiodel is extended to the scenario
where only a single but different component is negohin each PM action. Finally, a

heuristic approach is developed for more genei&aos.

3.3.1 Scenario one: the Same Single Component Repair

In this scenario, the original system can be dbedriusing two virtual parts: the
repaired Component 1 and the remainder of the mysteften referred to as the
subsystem. The PM strategy is to repair Componeavitenever the reliability of the

system falls to a predefined control limit of réligty R,. The term ‘control limit of

reliability’ indicates the required minimum relidibi level of a systemAlthough

this scenario is mainly used to demonstrate théc k@mcepts and procedures for
SSA, the models based on this scenario can beedppii industrial cases. For
example, a system has a vulnerable Component. 1thie component is more likely

to fail than the rest of the system. Both seriab @arallel systems are considered.
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3.3.1.1 Seriessystem

A series system is shown in Figure 3-2. The repao@mponent is connected with
the subsystem in series, but the subsystem canybeomplex system. In Figure 3-2,

R (7), and R, (7), are the reliability functions of the repaired Campnt 1 and

subsystem after th& PM interval, respectively. In this thesis, the@st subscript
is used to denote “after th® PM

action”. Subscripti =0 stands
for no PM. Sometimes, for

R/ (7); Ra(7);
simplicity, subscript 0 will be

omitted if the meaning of no PM B I |

A 4

sub ——»

Is clear. Two time coordinates are
used in the modelling (refer to Figure 3-2. Series system
Figure 3-3):

Absolute time scal¢: 0<t<oo.
Relative time scale : o<r<t; (i=12,...,n).

Usually, the reliability of a system after a PM antcannot be restored to its original
state, i.e., not “as good as new”. The most compt@nomenon is that the reliability
of a system after a PM action is lower than its iogg reliability, leading to an

imperfect repair. After imperfect repairs, the abllity of a system declines in a

manner shown in Figure 3-3.

In Figure 3-3,R, is the predefined control limit of the reliabilifgr the systemAt,
is the interval time between the (i"PM action and thé"iPM action { = 1,2....,n).
Parametet, is the " PM time and also the start time for a system toagain after

the " PM action. Therefore
t=> At +7. (3-1)
i1

Let R,(7), represent the reliability function of the systefteathe " PM action.
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Using reliability theory, the following expressican be obtained:

R(7) =R(M):R,(®);  (1=012..,n). (3-2)

Initially, the reliability function of a system cdie expressed as:

R.(7)o = R(7), Ry, (7). (3-3)
R 4§
R(t)o Ry(D):
Re(O)n1
\ R(t)n
R 7 \ \‘\i
Aty Aty Ats... Aty N
t, t, t, t, t

Figure 3-3. Changes of the reliability of an impeiectly repaired system

The reliability function of the subsystem can beida from Equation (3-3):

Ruls = 1o ) 3-4)

Equation (3-4) implies thaR (1), # .0The reliability functions for typical failure

distributions such as exponential distribution, mak distribution, lognormal

distribution and Weibull distribution all meet thisquirement.

At time t,, the reliability of the system falls to the contiimit R, and Component 1
is repaired as requested by the PM strategy. Alfierfirst PM action, the reliability
function of Component 1 becomdg(r),, but the reliability function of the

subsystem remains the same since it is not repa@edsidering the cumulative
effect of time, the reliability function of the saystem after the first PM action,
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Ry (7)., Is Ry (7 +At,),. Hence, the reliability of the system after thstfPM action

becomes
Rs(r)l = Rl(r)l Rsb(l' + Atl)O : (3'5)

If R(7), =R (r+At),, thenR,(7), = R,(7 +At,),. This indicates that the system is

repaired as bad as old.

If Component 1 is repaired or replaced by an idahtione so that

R (T +At), <R(7), < R(7),, then Equation (3-5) represents the situation @her
the system is repaired imperfectly becal&é¢r +At,), < R,(7), < R,(7), in this

case.

If the reliability of Component 1 after the reparbetter than its original reliability,
R (1), 2 R(7),, so thatR (7), 2 R,(7),, Equation (3-5) then represents the case

where the state of a system after repairs is imgfde be as good as new or even
better than original new one. As a result, Equafi®®) can describe all possible
states of a system after PM (The case that a relesireases the reliability of a

system is not considered in this thesis).

The reliability function of system after th& #M interval can be derived as:
Rs(r)n = Ri(T)n Rsb(r+zAti)0' (3'6)
i=1

Substituting Equation (3-4) into Equation (3-6)e&gv

R(D),R(T+ D),

R(7), = (3-7)

R(T+YAL),

Equation (3-7) can be rewritten using absolute teede as follows:
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R(t- > At),R. (),

RO=—2 =) (3-8)

where, R (t ) is the reliability of the system after th8 RM interval.

Note that Equation (3-7) and Equation (3-8) botkcdibe the reliability of a system
which has been preventively maintained fotimes, i.e., these two equations both
describe the conditional probability of survival afsystem withn PM intervals.
Neither of these two equations considers the cumaleeffect over time of the
repaired components. To predict the probabilitysofvival of a system over its
whole life time, these cumulative effects need ¢ocbnsidered, i.e., the probability
of survival of these repaired components untilrthdividual repair times need to be
considered [16]. The probability of survival of ystem over its whole life time is
termed as the cumulative reliability of the systdime cumulative reliability function

of the system with the first PM action is
RSC(T)l = Rl(Atl)O Rs(r)ll (3'9)

where, R (7), is the cumulative reliability of the system aftbe first PM action.

R (At,), is the probability of survival of Component 1 uirtfi.

Generally, the cumulative reliability of the systemith n PM intervals can be

expressed as:
RO=[JRELIRO (220 ) (3-10)

where R, (t ) is the cumulative reliability of the system withPM intervals.

A low reliability of the unrepaired components detsystem, or poorly repaired

components, or both will cause a Id¥/(0),. Obviously, the system should not be

repaired any more if

68



Reliability Prediction of Complex Repairable Systemsan engineering approach

R 0),R.(3A),
R (0), = — = <R, (3-11)
R(A),

i.e., a PM action is unworthy if the reliability ¢fie system after this PM action

cannot recover to excess the required reliabiivel.

3.3.1.2 Paralle system

In this case, the repaired component is connectddtire subsystem in parallel as

shown in Figure 3-4.

R.(7),

\ 4

sub

\ 4

R (7);

Figure 3-4. Parallel system
The relationship of reliability functior® (7),, R,,(7), and R,(7), is given by

R.(7); = R(7), + Ry(7); —R(1);Ry(7); (1=012...,n). (3-12)

To simplify mathematical operations, leF,(7), , F.(r), and F,(7), be

corresponding failure distribution functions of Qooment 1, subsystem and the
system after thé"iPM action respectively. According to reliabilityetory, Equation
(3-12) becomes

F(0), =F(0);Fy(n);  (=012...,n). (3-13)

Based on the same derivation procedure as in Sitse®.3.1.1, the following

69



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

results can be obtained (vide Figure 3-5):

R0, R0+ 00),

F(7), = . : (3-14)
F(r+ ZAti)o
Rt - 0),F. (0, :
FO=—2 5 tzAt). (3-15)

where, FunctionsF(7), and F(t) are the failure distribution functions of the

system after the"hPM interval described in the relative time scaie ¢he absolute

time scale, respectively. Function,(7), and F,(7r), represent the failure

distribution functions of Component 1 before any BM after the A PM interval,

respectively. FunctiorF(t), is the failure distribution function of the origih
system. In Figure 5-55, is a predefined control limit of the failure prdiiléy of a

system.

AR | —
= N
: E Fs(t) n-1 Fs(t) n

Ats... Aty

t, t, t, t t

n

Figure 3-5. Changes of the failure distribution furction of an imperfectly

repaired system

Equation (3-15) can be rewritten in the term oifatality function as follows:
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L-R(t-> At), JI1-R,(1),]

R.(t) =1- 2 RO ¢ > imi ). (3-16)

Generally, F (1), < F (T +At),, and F,(7), increases monotonously with the

increase of operational time, so
F (T +A), > F(7), > F(1)i4 (=12...,n). (3-17)

Equation (3-17) indicates that a system is repaimperfectly. It is noted that
Equations (3-14) and (3-15) or (3-16) can represdindifferent states of a system

after PM due to the similar reasons mentioned ips8ation 3.3.1.1.
The cumulative reliability of the system can beivkt as follows:

The cumulative reliability of Component 1 with PM intervals is

R (1), = |‘0| R.(Ot,,), R(D), - (3-18)

The cumulative reliability of the subsystemRg, (7 + ZA‘[i)O since it is not repaired
i=1

as assumed by the PM strategy. Hence, the cunailedliability of the system with

n PM intervals is
Ru(D), =1-[= Ry (1), JI1- Ry (7 + Y. 2], (3-19)

Equation (3-19) can be rewritten using absolute tatale as follows:

- |‘J R.(At,) R (t- > At), 1R, (0),] n
R.(t) =1-—= - Rl(ti)zl (t= 2 AL). (3-20)

In Equations (3-19) and (3-20R..(7), and R, (t )are the cumulative reliability of
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the system witm PM intervals.
3.3.2 Scenario two: Single but Different Component Repas

In this scenario, a system hasvulnerable components. The PM strategy is to
maintain one of them whenever the reliability oé thystem falls to the predefined
control limit of reliability. Normally, the PM segmce of these components is
arranged based on their reliability characteristcensure the component with the
lowest reliability at each PM time to be repairétdese repaired components will be
connected with the subsystems in different waysabse both the repaired
components and the subsystems will change in elsicaddon.

3.3.21 Multi-series system

In this case, alin repaired components and unrepaired subsystem cameected
together serially (see Figure 3-6). Componentskmmumbered according to their
sequences to receive their first repaimilPM intervals so thah < n without losing

any generality.

The situation is exactly the same as Subsectiod.3.&fter the first PM action, but
is different from Subsection 3.3.1.1 after the sec®M action because another
component instead of Component 1 may be repairbérefore, the subsystem

changes after th&i(i >1) PM interval.

R(), R(7), Ra(M)i  Ru(2)

—» 1 [ 2 o m sub —»

Figure 3-6. Multi-series system

Generally, ifm components are repaired mmPM intervals and., indicates that

Componentk (k <m) receives its last repair in thg"LPM action (, <n), then
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the reliability function of a system after th& PM interval is given by (refer to
Appendix B2)

Rs(r+ZAt )OH R.(T + Zn:Ati)Lk
R.(7), = e (3-21)
D Rk(T+ZAti)O

In Equation (3-21), defineZAti = @WhenL, +1>n. The cumulative reliability of

=L, +1
the system can be calculated using a heuristicoagpr which is presented in
Subsection 3.3.3.

3.3.2.2 Multi-parallel system and complex system

For a  multi-parallel

system shown in Figure 3- 1 R.(7);
7, it is straightforward to -
model the system after the |2 R,(7);
" PM interval using the ’
same method as described > >
in Subsection 3.3.1.2, i.e., > m
using failure distribution R (7);
functions  instead  of > Subl
R (7),

reliability functions to
derive the corresponding Figure 3-7. Multi-parallel system
formulae. One only needs

to replaceR with F in

Equation (3-21) in order to model the failure dizition functions of a system after

the d"PM interval as follows:

Fs(r+Zn:Ati)olj F (r+ Zn:Ati)Lk

i=L +1

TR+ Y A),

FS(T)FI =
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However, derivation of the reliability functions afcomplex system after th& RM

action is difficult because numerous possible ciioak need to be considered.

During n PM intervals, the repaired components can hahered series relationship
or a parallel relationship with the subsystem,emen worse, a relationship which is
neither in series nor in parallel with the subsystd-igure 3-8 shows one such
example. It is impossible to derive a general fdamike Equation (3-21) for the

case. The reliability of a complex system after nfiePM interval can be calculated

using the following heuristic approach.

Ry (7);
L 3 —> — m : >
P
sub >
E _________________________________ I
Ly 1 L 2 —» wsm —p amn . P
1
| E
R (1),
Ra2 (1)

Figure 3-8. An example of complex system

3.3.3 Heuristic Approach
The heuristic approach is described as follows:

(1) Determine the first PM timg = At; when the reliability of the system first

falls to the predefined control limit of reliabyliusing the original reliability

function of the system.

(2)  Assume that the system hscomponents an&, componentsi< S <M )
are repaired in the first PM action. The repaire@mPonent k,

(k, =12...,5) is assigned a new reliability functid, (7), (k, =12,...,S))
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3)

(4)

(5)

based on the requirement of a PM strategy. The &tive reliability

functions of these repaired componeng, (7), (k, =12...,S ), are
R, (At) R (1), (k; =12,...,S)). The reliability functions of the rest of the

components of the system remain the same as bsioce they are not
repaired. However, the cumulative effects of tinedobe the first PM action

need to be considered. Hence, R, (1), =R, (7 +At)),

(j; =S +1S +2...,M), which are the same as their cumulative religbili

functions with the first PM action.

Calculate the reliability function and the cumutatreliability function of the
system after the first PM actioR (7), and R..(7),, based on the RBD of the

system using the reliability functions and the cilative reliability functions

of its components after the first PM action, respety.

Determine the second PM timg using the reliability function of the system

after the first PM actionR (7), .

AssumeS, components are repaired in the second PM actiba.répaired
Componentk, is assigned a new reliability functidR_(7), (k,represents

all components repaired in the second PM actiosgth@n the requirement of
PM strategy. The cumulative reliability functiond these components

R.c(7), (k,represents all components repaired in the secondaftdn)

now need to be calculated based on two scenafiegemponents have also
been repaired in the first PM action, their cumutateliability functions are

1
URkﬂ(Atiﬂ)iRkn(r)z. Subcript k,, represents all components that are

repaired in the first and second PM action. The wative reliability
functions for those components which are repairethe second PM action

2
only areR, (ZAti JoR., (1), . Subscriptk,, #k,, andk, +k,, =S,. The
i=1

reliability functions of the rest of the componenfsthe system remain the

same as before this PM action since they are mmdined. However, the
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cumulative effects of time on unrepaired compone&ats now be different
since some of these components may be repairdeeifirst PM action. Just
like the repaired components, the reliability fuoets and the cumulative
reliability functions of these unrepaired composerdlso need to be
calculated based on two scenarios. For compondmthvare never repaired,
their reliability functionsR; (7), and cumulative reliability functions

2

R, (1), both areRjn(r+ZAti)o. Subscriptj,, represents all components
i=1

which are never been repaired. For components wiaele been repaired in

the first PM action, their reliability function®; (r), and cumulative
reliability functionsR, .(7), areR, (7 +At,), andR; (At)R; (7 +At,),.

Subscriptj,, # j,, and j,, + j,, =M =S,.

(6)  Calculate the reliability function and the cumulatreliability function of the
system after the second PM actid®(7r), and R.(7),, based on the RBD of

the system using the reliability functions and themulative reliability

functions of its components after the second PNbactespectively.
(7)  Continue the above procedure until tffeRM action.

If only one component is repaired in each PM acttbe above heuristic approach
can often be described using the following recuresiormula:

R(7); = R (T +At),, + R (1) R, (T +At) (i=12,..,n), (3-22)

where, subscripk = 1,2, ..., m indicates repaired components in thePiM action.
R, (T +At)., and RS, (7 +At),_, are the equivalent reliability functions that are

calculated based on the subsystem. For exampiee icase shown in Figure 3-8,
R (7 +A4), = Ry (T +At),,

and
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R:bz(r +Ati )i—l = Rsbz(T +Ati )i—l(l_ Rsm(r + Ati )i—l) .
These equivalent reliability functions can vary witifferent component is repaired.

For more generalised scenarios - two or more comisnare repaired in each PM

action, the following techniques can be used tgBfyncalculations.

Case 1. Repaired components can be combined to donew subsystem, and the
new subsystem has a series relationship with @iguobsystem. This scenario can
be treated to be the same as that in Subsectiofi. B.3and hence the model in
Subsection 3.3.1.1 can be applied.

Case 2. Repaired components can be combined to donew subsystem, and the
new subsystem has a parallel relationship withotiiginal subsystem. This scenario
can be treated to be the same as that in Subs&8ah?2, and hence the model in
Subsection 3.3.1.2 can be applied.

The SSA is developed to support PM decision makinga repairable system over
its lifetime. This capability is demonstrated b flollowing example and case study.
3.4 An Example: a System with Weibull Failure Distribution

A repairable complex mechanical system is the samelescribed in Subsection
3.3.1.1. The PM strategy is to replace Componentith an identical new one

whenever the reliability of the system falls Ry - a predefined control limit of

reliability. The reliability functions of the origal system and Component 1 are

Weibull. They are given by
T
R.(7), = eXI{- (,7—)2} (3-25)

and
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R(1), = ex;{— (OL)Z} , (3-26)

where,n,and 77, are the characteristic life of the system and GCammept 1 [16]

respectively. Parametey in the Weibull distribution is also termed as alec

parameter.

When the system receives its first PM actidqft,), = R,. The first PM time

t, =At, is given by

t =4, =n-InR, (>R, > 0. (3-27)

Using Equation (3-7), gives

ex;{— (T)z}ex;{— (T A )2}

1 ,75

R.(@). = ——
eX[{_(T-'-,?S =1In RO )2]

m

_ exp{— (7 =T +15[~INRy )’ +/7§r2}_ (3:28)

nine
The reliability of the system just after the fiP¥l action is

2
n
Ts)

.

R.(0), =R (3-29)

The reliability of the system after the PM increadmit is not restored to 1 (the

2
perfect reliability level of the system) siribe”—sz>0, that is, the system has an
1

imperfect repair.

Using Equation (3-7) gives the reliability functiof the repairable system after the
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n" PM interval, R (), :

(7 —nZ)(T +> At)2 +nir?
R(7), =expg - ,7;;712 . (3-30)
1%7s

If the absolute time scale is applied, EquatioB@3-can be rewritten as:

(77 =020 +n2(E =Y A )? :
R,(t) =exp - 2 B t > ZAti ). (3-31)

The interval between the (n*LJPM action and the"hPM action is given by equation

R(At),, =R, ie.,

n-2
(78 —nZ)(Dt, + At + D AL)? +nl(At,)?
Ry =exp - e (3-32)
nin:

n-1
ne=m +\//7;‘ =N~ NRIQ_AL) |
ENE) oY (3-33)
i=1

At =
n?

The relationshipAt, < At,_, can be proved as follows:

When the reliability of the system reach@s after the (n-2J PM action, the time

interval At,_, can be determined by
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n-2
(72 =n2)(Dt, , + > A +n2(At,,)°
i=1

R, =exg - (3-34)
nine
A combination of Equations (3-32) and (3-34) gives
2 2 C 2 = 2
(mw%QWJ%ZMq
R +(At,)? = (At,,)°. (3-35)

s

From Equation (3-35), it can be found thaiAt, <At._, since

o2 =) oy -y

2

15

>0.

In case Component 1 ceases to be produced, how spang parts of Component 1
should be kept for the life span of the system? @maver can be found using the
following criterion. The interval time between tvRM actions must be longer than
required minimum operating timg , that is

At >t . (3-36)

n=—-=sp

Substituting Equation (3-33) into Equation (3-3fiyes

n-1
n:=n; +\//7;‘ —mn: —me R I AL |
p = Z;Ati >t,. (3-37)

The maximum number of Component 1 to be store@Plrcan be estimated through
finding the maximumn from Equation (3-37). The expected life of thipawable

system can also be estimated from Equation (33@)ever, Equation (3-37) must
be calculated recurrently and numerically. Somengtas using Monte Carlo

Simulation (MCS) are presented in Section 3.6. $imeulations were conducted
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using Matlab software, and was based on the comknowledge of Monte Carlo
simulation which considered the properties of Wiibtistribution and series systems,
and used the Boolean Algorithms and the empiricatdative distribution function
(CDF) [12]. For more details, please refer to [26]0-91, [297] p.400-439 and [298]
p.148-150.

To evaluate the effectiveness of the above PMegyabn the reliability of the
system over its life span, the cumulative relidpitif the system should be calculated.
Using Equation (3-10) gives the cumulative relidpilof the system withn PM

intervals as follows:
n Atl 2 n

R, (t) =exg - > () }Rs(t) t>> A). (3-38)
=t Th =

Rewrite Equation (3-38) as:

Zth:Ati —(Zn:Ati)z —Zn:(Ati)z
R..(t) = exp —= i=1,72 = R.(t)o

The function2t At - (D_At)? =) (At)® >0 becausd > Y At andAt, > Q

i=1 i=1 i=1 i=1

Hence,R,.(t) > R(t),, i.e., in this case, PM reduces the probabilityunéxpected

breakdown of the system.

To investigate the effectiveness of PM further,uass that Component 1 has a

constant random failure rate, i.e.
R (7)., =expCAT) i=012...,n) (3-39)

where, /. is the failure rate of Component 1 after tHeRM action.
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Using Equations (3-8) and (3-10) gives the cumwuateliability of the system with

nPM intervals:
R.(0) = expl. ( ~ A )AL exply ~A)(E- Y AOIR (M, (4> D At).  (3-40)

Equation (3-40) indicates that £_, = A, (i =12,...,n), R.(t) = R(t),, i.e., PM in
this case has no effect even though the entireesyspresents a wear-out
characteristic.

3.5 Case Study: a Water Supply Pipeline

The SSA was applied to a water supply pipeline Wwhieas made from PVC
consisting of 10 segments. The length of each pipe 6 m. The pipeline was
installed on 1 June 1991. A corrective maintenapokcy was in force, that is,
whenever a pipe failed, it was replaced. Duringdhserved period, the placed pipes
where not found to have failed again. (The raw dat@not be presented due to the
need for confidentiality.)After a comprehensive investigation, the following

assumptions were made in the analysis:

(1)  The analysed pipes have an independent, idenéitatd distribution.
(2) The failed pipes were replaced by identical nevegip

(3) Repair time is ignored.

(4)  Allfailed pipes started operating at the same time

(5)  All pipes operated under the same conditions.

The scenario in this case study is the same asilbeden Subsection 3.3.2.1.

3.5.1.1 Failuredistribution characteristics of the pipeline

Figure 3-9 shows the assessment of failure digtabwof the pipeline. It can be seen

that the failure times of the pipeline have a Weidistribution.

82



Reliability Prediction of Complex Repairable Systemsan engineering approach

Further analysis using the Mann’s Test for the WkiDistribution indicated that the
Weibull hypothesis for the failure time of the dipe can be accepted at the level of

significance 0.05. The Mann’s Test is presentefigpendix B3.

The failure distribution of the failure times ofetlpipeline was obtained using MLE

as follows:

R.(7), = exp[—(ﬁ) 55923 (3-41)

Weibull probability plot

0.96
0.90

0.75

0.50

0.25

Probability

0.10

0.05

Figure 3-9. Weibull probability plot

The failure distribution function of each pipe wiesived from Equation (3-41) since

the pipeline was a series system comprised of d@Xichl pipes:

R (1), = expl-(gz )" (=12...10). (3-42)

Failure history indicated that this pipeline haitefhfrequently after 3000 days under
the current corrective maintenance policy. Sineeptipes were operating in the wear
out stage, a proper PM strategy can be used tairaphe overall reliability of the

pipeline. SSA was used to investigate the effectiierent PM strategies on the
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reliability of the pipeline. The results are dentoaid in the following subsection.

3.5.1.2 Comparisons between different PM strategies

Both TBPM and RBPM policies were considered. Wh@&PW policy is applied,
pipes are replaced sequentially with an identieak rone based on scheduled PM
times. The intervals between two PM actions maynay not be the same. When

RBPM is applied, a reliability control limiR, is defined in advance. Whenever the

reliability of the pipeline reaches this predefiramhtrol limit, the pipe which has the
lowest reliability is replaced with an identicabnene.

Figures 3-10 and 3-11 show the reliability predictof the pipeline. In these figures,
the dashed line and the thick continuous line ia@iche probability of the pipeline
without a failure based on TBPM and RBPM, respetyivThe crossed line is the
reliability of the pipeline without PM.

In Figure 3-10 (Casel), the predefined controltliofireliability for RBPM is 0.9.
The PM interval times for TBPM are unequal. ThetflPM action is planned at the
time of 600 days and then PM is to be conductedye2@0 days. From this figure, it
can be seen that both TBPM and RTBM improve theutative reliability of the
pipeline significantly but TBPM is more effectivEhe cumulative reliability of the
pipeline with TBPM is maintained above 0.9 at tmet of 4500 days whereas the
reliability of the pipeline without PM at the sartime will be lower than 0.4. Note
that the cumulative reliability of the pipeline WwiTBPM in this case is much higher
than with RBPM but the number of PM times with TBRValso more than that with
RBTM. The former (19 times) nearly doubles theda(fLO times).

Figure 3-11 shows another PM strategy (Case 2}him strategy, the predefined
control limit of reliability for RBPM is still 0.9.However, the first PM time for
TBPM changes to 1000 days and the sequential Pétvials also increase to 360
days. Both PM strategies require the same numbé&hbftimes (10 times) within
4500 days. The cumulative reliability with TBPM hggher than that with RBPM
between 2500 days and 3400 days. After this peRBFM is more effective. The
TBPM was ineffective in the given scenario becassgeral PM actions were
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conducted after the system reliability had fallemtvery low level.

Reliability of the pipeline (Number of segments=10)
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Figure 3-10. The reliability of a pipeline with PM— Case 1
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Figure 3-11. The reliability of a pipeline with PM— Case 2

Comparisons can be made not only between diffdPdhtpolicies, but also among

different strategies which are developed basechersame PM policy. Look at the
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cumulative reliability curves with TBPM in Figurés1l, 3-12 and 3-13. It can be

found that different combination of PM times sigeaintly affects the cumulative
reliability of the pipeline. All three TBPM stratieg require the same number of PM
times (10 times), but generate very different cuative reliability of the pipeline
over 4500 days. The TBPM strategy (Case 3) showkigare 3-12 has the highest
cumulative reliability whereas the TBPM strategya$¢€ 4) shown in Figure 3-13

generates the lowest cumulative reliability whisi2% lower than the former.
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Figure 3-12. The reliability of a pipeline with PM— Case 3
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Figure 3-13. The reliability of a pipeline with PM— Case 4
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Figures 3-10 to 3-13 demonstrate that the SSA Hawctvely assist in optimal PM
decision making through long term reliability pretibn.

3.6 SIMULATIONS

The SSA was also validated by a number of MonteloC&imulation (MCS)
experiments. Figures 3-14 to 3-16 show the resfltthe simulations for RBPM.
Cumulative reliability was not presented in themggures for simplification. From
these figures, it can be concluded that SSA identithe same number of PM times
as that demonstrated by the Monte Carlo simulatidiie characteristics of the
reliability of the system and the PM times predictsy SSA are very close to the
results of the MCS experiments. Therefore, SSA @a®mmendable accuracy of
prediction. In Figure 3-16, reliability was alsoedicted based the fix deterioration
rate model for comparison. The deterioration rates W.02 which was determined
based on the initial reliability of the system afiee first PM action. From this figure,
it can be seen that the results based on the fetrideation rate depart from the MCS
results significantly.

Reliability with imperfect repairs (Tests=200 tines)
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Figure 3-14. Simulation experimental results 1 -ite changes of the reliability

of a system over the entire life span
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Figure 3-15. Simulation experimental results 2 -hte changes of the

reliability of a system over the entire life span
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Figure 3-16. Simulation experimental results 3 -hte changes of the reliability
of a system over the entire life span
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3.7 SUMMARY

SSA performs more closely to the real world whempared with Ebeling’s method
[16] and the fixed deterioration rate model [205AS extended Ebeling method
through considering imperfect repairs. In SSA, fttleanges of reliability are
calculated based on individual system and repaidition rather than assumed or
estimated by human experience. Therefore, theofatkange may not be constant.

Compared with existing models, the new model degedoin this chapter has the

following advantages:

(1)  Ability to explicitly predict the reliability of aepairable system with multiple
PM actions over multiple PM intervals and to decideen the system has
deteriorated to a point where it is unworthy oftfier PM from the reliability
view of point. Most of the existing models are agghlto predict the next PM
time, MTTF or/and the expected number of failur8&A is hence more
suitable for supporting long term PM decision mgkaf complex repairable

systems in industry.

(2)  Ability to deal with the individual contributiond different parts in a system
and the influence of system structures on theliitya of a repairable system.
This ability provides an understanding of PM ofyatem in more depth.

(3)  Ability to model different states of a system affévl such as “as good as

new”, “imperfect repair”, “improvement repair” (i,ebetter than new) and “as

bad as old”.

(4)  No restrictions on the forms of failure distributio

The outcomes of the research in this chapter prabege important concepts for

maintenance decision making.

(1) A PM action for a complex system is often imperfeetause normally only
some of components are repaired when PM is conduate a complex
system.
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(2)  An optimal maintenance strategy should consideh ltlho¢ entire system and
individual components of a system. For exampl@, geries repairable system
shown in Figure 3-2, maintaining the subsystemnitraase its reliability
should be considered when the reliability of thbsyistem is less than that of

Component 1.

(3) The effectiveness of PM is often related to thdufai characteristics of
repaired components rather than that of a systethe Irepaired components
have constant failure rates, a PM action, whidb ieplace these components
with new identical ones, has no effect even thaihghentire system adopts a

wear-out characteristic.

The formulae and methods in this chapter have lieseloped based on RBPM.

Extensions of these results to TBPM are straigivdod.

In this chapter, the failures of repaired composeme assumed to be independent of
unrepaired components. This implies that the aedly®pairable system has no
failure interactions. If the failure interaction®ttveen repaired components and
unrepaired subsystems are considered, the resoitklbe different. The reliability
prediction of systems with failure interaction wille studied in the following
chapters.
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Chapter 4

ANALYSIS OF INTERACTIVE FAILURES

4.1 INTRODUCTION

As presented in Chapter 2 and Chapter 3, numeradeisand methodologies have
been developed to describe and predict failurees@imodels or methodologies have
been mainly developed on the assumption that &slare independent. As indicated
in Chapter 3, SSA was also developed based oms$lismption. However, industrial
experiences have shown that the assumption of et failures has been
unrealistic in numerous scenarios and has led axaeeptable errors in reliability
analysis. To ensure the accuracy of reliabilitydprgon, the dependency of failures

among components needs to be considered.

Currently the most discussed dependent failuresidieccascading failure, negative
dependency failure and common cause failure [8]. Z7&8scading failure is defined
as multiple sequential failures. These failures iargeated by the failure of one
component, which leads to sequential failures dieptcomponents. Negative
dependency failure is defined as failure that ceevgnt other components in a
system from failing further. Common cause failusediefined as multiple related
events caused by a single common cause. This cansee the failure of a physical
component or an event such as a fire. The latteftés described as the failure of a
“virtual” component. Whenever the term “componem”mentioned in this chapter,
it usually includes both physical component andueir component. Cascading
failure, negative dependency failure and commorsedailure are classified into
conventional dependent failures. A common featdit@se conventional dependent
failures is that failure effect is one directionahly, i.e., the failures of some
components can affect failures of other componbuatshe latter have no effect on
the former. Several models and methodologies haea developed to analyse these

conventional dependent failures. However, theseetsodnd methodologies cannot
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be effectively used to analyse the failures duefdiure interactions among

components.

Failure interaction is common in mechanical engimgeand civil engineering. The

loss of the Space Shuttle Columbia is such an ebkan@n February 1, 2003, the
Space Shuttle Columbia disintegrated on its retorBarth. Seven crew members on
board lost their lives (Figure 4-1). The investigatrevealed that this disaster was
initiated by a large piece of foam which had sefgaldrom the external fuel tank.

This piece of foam struck Columbia on the undersifiehe left wing and caused a
breach in the thermal protection system on theihgaddge of the left wing (Figure

4-2). The breach finally resulted in the burningheé Shuttle including the fuel tank.

The failure of Columbia was an interactive failufée initial failure was not severe,

but the consequence of the failure interaction digastrous. If the foam had not
separated or the separated foam did not causeamlbie the thermal protection

system, the tragedy of Columbia would have not bapg.

This figure is not available online. This figure is not available online.
Please consult the hardcopy thesis Please consult the hardcopy thesis
available from the QUT Library available from the OUT Librarv
Figure 4-1. The loss of the Space Figure 4-2. The impact of the
Shuttle Columbia (Source: foam on Columbia (Source:
http://www.evergreen.edul/library/gov http://www.cbsnews.com/stories/2003
docs/hotopics/columbig/ /07/10/tech/main562542.sht )

Estimating the failure probability of componentsbjget to failure interaction is
imperative. As indicated in Chapter 2, a model exhhique used to analyse this

failure probability quantitatively and effectiveily still unavailable.
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In this chapter, a model is developed to analyseractive failure distribution for a
system quantitatively. Several case studies ard tesgustify the newly developed

model. The properties of interactive failures ds® @analysed.

The rest of this chapter is organised as follomsSéction 4.2, the concepts and
definitions of interactive failure and interactikazard are introduced. In Section 4.3,
an analytical model for IntF is derived. In SectidM, the determination of

interactive coefficients is discussed briefly. lac8on 4.5, the stability of IntF is

analysed. In Section 4.6, mathematical models anmiesconditions for existence of
stable IntF are presented. Case studies are pedsenSection 4.7. In Section 4.8, a
methodology to calculate the IntF of componenteiseloped. The properties of IntF
are investigated in Section 4.9 and the effecténtf¥ on systems are analysed in

Section 4.10. This is followed by conclusions it 4.11.

4.2 INTERACTIVE FAILURE AND INTERACTIVE HAZARD

Definition 4-1: Interactive failure is defined as mutually deparid@ilures, that is,
the failures of some components will affect théutas of other components and vice

versa.

Note that the term “components” usually includelsyistems unless specified. This
thesis considers positive dependency between éailonly.

The simplest case is when only two failures intercthe case of a gearbox, defects
in a bearing will cause it to vibrate. The detatmn of the subsystem that includes
related shaft and several gears can acceleratéodine excessive vibration caused
by the bearing. Vice versa, a deteriorated subsystn lead to faster deterioration

of the bearings.

The effect of the failure of a component on ott@nponents has two consequences:

(1)  Failure of one component (influencing component)ses other components

(affected components) to fail immediately.
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(2)  Failure of the influencing component increasesdbterioration of affected

components instead of causing them to fail immedtiiat

As a result, these two consequences increasekgiddiod of failures of the affected
components and accelerate their failure rates.

A component can be either the influencing compowernhe affected component or
both. In the above example, the bearing and theystdém are both influencing
components and affected components.

Interactive failures can be classified into twoecgtries:

(1) Immediate Interactive Failures. The failure of thituencing component will
cause its affected components to fail immediatéhe conditions of the two

components before failure are independent.

(2)  Gradual Degradation Interactive Failures. The cooal of two components
before failure are dependent. A component detadasraith time, that is, the
failure rate of a component increases with timee Ttrease of deterioration
of this component can result in an increase inrdetgion of its affected
components. As a result, the failure rate of theetims” increase, and the
system reaches the first state of failure inteoactiThe increase of
deterioration of the “victims” can also increasee tfailure rate of this
component - the original cause, and the systemhesathe second state of
failure interaction. This interaction can lead tohain interaction process. As
a result of this chain reaction, the two involveoimponents may either

achieve a new level of working status or eventuiaily

The second category of interactive failures oftecuns in mechanical systems and is
the focus of this thesis.
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The failure of a component without being affected the failures of other
components is termed as independent failure ofdingponent. Correspondingly, the
failure probability of this component in this casdermed as its independent failure
probability. The failure probability of a componentll be different from its

independent failure probability if it is affectey the failures of other components.

The failure likelihood of components with failurateractions will increase. The
increased likelihood of failures due to the intéiats of components can be
considered as the consequences of the increaderk feates due to the same cause.
Failure rate is often termed as hazard in religbitheory. For mathematical
simplicity in analysing interactive failures of ysgem, the changes of hazards will be

estimated and then the failure distribution funtsiof the system will be calculated.

Definition 4-2: The increased hazard due to failure interactiocndefined as

Interactive Hazard (IntH).

Failure probability is represented using failurstdbution function. The relationship

between the failure distribution function and hazar[8]:
t

F(t) =1-exp[-[ h(t)dt], (4-1)
0

where, F (1) is the failure distribution function artu(t) is the hazard function.

Therefore, the failure distribution function of angponent can be calculated using
Equation (4-1) if its hazard can be estimated.

The failure distribution function and hazard arented as independent failure
distribution function and Independent Hazard (Indf-he failures are independent.
The failure probability and hazard of a componernthwailure interaction are

described using the interactive failure distribatiiunction and interactive hazard
function. In this thesisF, (t @ndh, (t )denote the independent failure distribution

function and the independent hazard function of gamenti respectively;F (t )

and h,(t ) denote the interactive failure distribution fulcti and the interactive
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hazard of Componeritrespectively.

Independent hazard is either a constant or a fuamati time, i.e.,

{/]i random failures
h, (t) = (i=12...M), (4-2)

@ (t) other failures

where, M is the number of components in a system.

However, from the Definitions 4-1 and 4-2, it candeen that the interactive hazard
of a component is a function of both its own indegent hazard and the hazards of
its influencing components. In the case of a systemsisting of two components
that have interactive failures, the hazards of éheso components should be

expressed as:
h (t) = g.[h,; (1), h, (V) g1, (4-3)
h,(t) = @,[h (1), h,(t),1], (4-4)

where, h,(t) and h,(t) are the interactive hazards of Component 1 and ©aeg 2
respectively. The functionk,(t); andh,(t); are the hazards of Component 1 and

Component 2 before an interaction occurs, wHilg(t) and h,,(t) are the

independent hazards of Component 1 and Compon@&sp2ctively.

To generalise the model involvingl components, the interactive hazardshf

components in a system can be expressed as follows:

h (t) = ¢,[h,, (1), h,

I

(O)s, 11,

h,(t) = @,[h,, (1), h

J2

(0s, 11,
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h () = 4,[h; (). h, ©)s, ], (4-5)

hy (1) = @y [hy (1), ﬁjM e, t].

where h(t)and h,(t), i=12...,M , are the interactive hazards and the

independent hazard of Componebrr'espectively.ﬁji (t); stands for the all hazards
of the influencing components of Componeriiefore an interaction,= 12,...,M .
Subscriptj, represents the influencing components of Component 1,2,...,M .

For example, assume that the failure of Componestdtfected by the failures of
Component 1, Component 3 and Component 5. Then1 35 and the second

equation in Equation (4-5) now becomes
hz(t) = ¢2[hl2(t)’hl(t)B’ h3(t)B’h5(t)B’t] : (4'6)

Equation (4-5) contain® coupled equations because the failure of a compase
affected by the failures of its influencing compotse On the other hand, the failure

of this component can also affect the failuresoaifected components.

4.3 MATHEMATICAL MODEL FOR INTERACTIVE HAZARD AND
INTERACTIVE FAILURE

Different approaches can be used to build a mattiemhanodel to describe the

relationship given by Equation (4-5):

(1) Hypothetical method. This approach requires matlkrewledge of
maintenance engineers and a model developed usim@pproach is often

arbitrary.

(2)  Failure mechanism based method. This approach needsderstand the
failure and failure interaction mechanism of assety well and the model is

often very specific.
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(3) Probability theory and stochastic process basetadeilhis approach can be
used to develop a generic model but it is mathexalticomplex.

(4)  Taylor's expansion approach. This approach candeel to derive a generic
mathematical model which is more suitable for eagiing applications. The
approach has been applied to develop a model éochtnge of the core melt
frequency, which is a function of the componentuaiability, structure
failure probabilities and initiating event frequersc[299]. Taylor’s expansion
has also been used to obtain an approximate maticamexpression for a
random variable which is a function of several nalljuindependent random
variables [293]. Jiang et al [300] used the Tagmpansion of a reliability

function to estimate its parameters.

In this chapter, the Taylor's expansion approachised to derive a mathematical

model for interactive failures as follows:

Interactive hazardh (t )in Equation (4-5) can be expressed by the Taylor's

expansion:

h (t) = g,[h (©).h; (t)s, t]

B 00t 2 o 0+ X2 b ©ah 0, +
=Pi I t)s=0 h, =0 '1j; (Ug h, =0 N\l LB
i () - ahji ® i o 26hji hki 0} j
2’ 2 :
> = b, =0} (1) +higher order terms. (4-7)

20h’

i
(Subscriptsj;, andk; represent the influencing components of Compongnt

To stress the effect of the hazards of Comporjenh; (t), (Subscriptj; represents
the influencing components of Componéhton the hazard of Componeinth, (t)

(i=12,...,M), Equation (4-7) can be rewritten as:
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hi (t) =

| 62¢i h 62¢i h
¢i |hii (t)g=0 Z[ |hh (t)g=0 Zzah—,,hk, |hii (t)g=0 ' k; (t)B +th2i |hii (t)g=0 "j; (t)B

+ higher order termsdivided by h; (t)g] xh; (t)s . (4-8)
(Subscriptj, andk; represent the influencing components of Compongnt

The Component is not influenced by its influencing componentsewit, (t),=0

(Subscriptj; represents the influencing components of Componerh this case,

the hazard of Componentis equal to its independent hazard. Therefore fitkse
term on the right side of Equation (4-8) represeahts independent hazard of

Component , i.e.

P, |hji (1)s=0 — h; (1), (4-9)

(Subscriptj;, represents the influencing components of Component

andg, |, «,,-,= 0 according to the properties of hazard.

Therefore, the rest of the terms in Equation (4f&)w the effects of failures of the

influencing components on the failure of Component

Let

¢. 0°g, 0°g,
|h (=0 +;W|h“ wa=0 Nk () +Thi|h“ we=0 N Vg +....  (4-10)

g, () =

(Subscriptsj, andk; represent the influencing components of Compongnt

Substituting Equations (4-9) and (4-10) into Equa{i4-8), gives:
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h(t) =h, () +Z€”i Mh, Ve, 1=12,...,M (4-11)

(Subscriptj; represents the influencing components of Component

where the parameté (t) is the Interactive Coefficient (IC) that represetibe

degree of the effect of failure of Compongnon Component.

Equation (4-11) depicts that the interactive hazairdh component is equal to its
independent hazard plus some portion of the hazards influencing components.
This analytical model has been justified by fouespl case studies in Section 4.7
and experiments presented in Chapter 7. From Equédi-11), the following result

can be derived in a straightforward manner.

If Component S has the first category of failureefaction with other components,

then
he (t) = hy(t) s, (4-12)
hs (t) B — h|s (t) . (4'13)

If Component S has the second category of failoteraction with other components,

then
hs (t) 2 hs (t)B 2 hIS (t) . (4'14)

Let g, (t) =0 if the failure of Componenf does not affect the failure of Component

i, then the subscriptof j, can be removed and Equation (4-11) can be written

matrix form:

{h®} ={h, (O} +[6OK (D)}, (4-15)

where{h(t)} is a M x1 vector representing the interactive hazards {dfg;} is
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the M x1 hazard vector before an interactidm, (t)} is the M x1 independent

hazard vector anff(t)] is an interactive coefficient matrix.
The interactive coefficient matrip@(t)] has the following properties:

(1)  Itis a non-negative real matrix, i.€,(t)=0(i,j=12...,M). If g,(t) =0,
then the failure of Component has no effect on the failure of Componént
If the failure of Componenj will cause Componeritto fail immediately,

theng, (t) =1.

(2) Its trace is zero, i.etf([6(t)]) =0. This signifies that a component does not

have failure interaction with itself.

(3) In most large complex systems, the interactive fameht matrix is sparse as
a single component usually has direct interactiomithr only a few other

components in a system.

According to the relationship between failure dimttion function and hazard, i.e.,
Equation (4-1), the interactive failure distributidunctions of the components are
given by:

t M

{FR®O}={1- exp(-f[hn ©+>.6,Oh;01d0)}  (=12...,M). (4-16)
0 j=1

where, F, (t )is the interactive failure distribution functioh@omponent .

4.4 ESTIMATION OF INTERACTIVE COEFFICIENTS

Interactive Coefficient (IC) is a key parameterestimating IntF. The determination
of IC is not the focus of this thesis. Howevergstdd demonstrations of determining

ICs are presented as follows:
(1) ICs can be obtained using probability theory.
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Consider a system wittM Components 1, 2, ...M , each of which has an

independent hazarti; (t (i =212...,M ). The conditions of these components

before failure are independent of each other. Faitf any one of these will cause
the rest of the components to fail immediately.sT¢tase demonstrates an interactive

failure with the first category of failure interaan.

Let A represent the situation where Componems fully operational at time
unaffected by any other component or common caose=f12,...,M . Then the
independent reliability of Componemtat timet, R, (t) is the probability that

Component remains fully operational at timeunaffected by other components or
common cause, i.eR; (t) =P(A (i =12...,M). Based on Equation (4-1) and the

relationship between reliability function and fadu distribution function,
R(t) =1-F(t), it can be stated that:

R,(t) =P(A) =expF-[h,()d]  (=12...,M). (4-17)

The probability that Component remains operational at time , R (t)

(i=212...,M),in this case is

Rt =P(ANAN...NA,) (=12...,M). (4-18)
Since eventA , A,, ..., A;are independent of each other,
P(AlﬂAzﬂ...ﬂAM):ﬁP(A). (4-19)

Using Equations (4-17) and (4-19) for Equation 8;Dives

R(t) = exp[—ji h, (t)dt] i=12...,M). (4-20)

oi=l
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Equation (4-20) indicates that the interactive hdizd Component, h (t), is

h (t) :ih,i () (=12..M). (4-21)

Considering Equation (4-13) and comparing Equa{®i21) with Equation (4-15),

ICs of this system can be obtained as follows:
g, (t)=1 (,j=212...,M)and (i #j). (4-22)

Probability theory enables interactive hazards P&l to be calculated accurately.
However, this approach is often inapplicable dudganathematical complexity. In
this case, ICs can be determined using the follgwa@ingineering approaches so that
interactive hazards can still be analysed quanigiyt The ability to determine ICs

in a pragmatic manner is a major advantage of ¢hdyndeveloped model for IntF.

(2) ICs can be estimated according to the experierfogssigners, manufacturers

and maintenance staff.

(3) ICs can be calculated based on failure mechaniganardynamics. For
example, when a bearing has some defects, thedesaaft will vibrate. This
vibration will increase the failure probability dfie shaft. The relationship
between the defects of bearing and the failurdefshaft can be determined

using dynamics and fatigue failure theory. The &0 then be calculated.

4) ICs can be determined based on laboratory expetiméin example to

determine IC through laboratory experiments is¢mésd in Chapter 7.

4.5 STABLE AND UNSTABLE INTERACTIVE FAILURE

As indicated in Section 4.2, for a system thabisiposed oM components, some of
the componentsL] (L <M ) can be defined as influencing components or tdtec
components or both in reference to their failutatr@enships. Deterioration in one or

more of the influencing components in a system aamract with or cause
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deterioration of the affected components. As altethe failure probabilities of the
affected components may increase. The interaciivwden components can lead to
a chain interaction process, as shown in Figure. 4¥3e superscript

(i) (i=12...,n) in Figure 4-3 stands for “th& istate of failure interaction”. The

chain interaction process may involve two or mareponents (see Figure 4-4).

A

h(t)

h™(t)

hi™ (1) ) -0""::"<>

s
wnt®
ue
nen®

h(t)
h® (1)

v

1 n-1 n
State of failure

Figure 4-3. The process of failure interaction

Failure

ececcece distribution

function of
a systen

Figure 4-4. Relationship of IntFs in a system

If some components in a system are both influendomponents and affected
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components, the failure of a component can reaudtni increase in deterioration of
the other components. The failure of the “victintgin also increase the failure
process of this component which is the originalsea his is called chain reaction of
interactive failures which can continue in this man As a result of this chain
reaction, the system may either achieve a new lefvelorking status or eventually
fail. The former is called stable interactive faduand the later, unstable interactive

failure.

A stable interaction process occurs when the inergrn the hazard due to failure

interactions is reducing and finally convergesedwmzi.e.,

lim (Sup| h™ (t) -h™ 2 (t)])=0. (4-23)
N=0 50

In this case, the hazard of a component remaifrestd a new deterioration level as
shown in Figure 4-5. In this diagram(t) is a hazard functioh©(t i$ the initial

hazard function before interaction

and h™(t) is a new hazard he 4 unstable
function after the stable interactions }‘/
h(n)(t)
of the components occur. On the
) ] '\stable
other hand, an unstable interaction

v

process occurs when the hazard ht)
increases dramatically and the Interactions
component is very likely to fail Figure 4-5. Stable and unstable IntF
immediately. An example of an

unstable interaction process is a rotating systdmntiwconsists of a long flexible
shaft and a wheel. The wheel is mounted in the laidd the shaft. The failure
modes of this rotating system are unbalanced whadl bent shaft. These two
failures are interactive failures. An unbalancethting wheel causes the shaft to
bend, and the bent shaft causes eccentricity whicheases the unbalance and
consequently increases the shaft bend. This chéenaiction will continue until the
shaft fatigues or breaks down. This failure is abk IntF. Predictive maintenance
can be carried out for stable IntFs, but not ugulai unstable IntFs as the hazard

increases dramatically.
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Definition 4-3: In the case of considering interactive failuregypif interactions
among some surviving components cause at leastobnthem to fail, these

interactions are defined as unstable interactiOtiserwise, stable interactions result.

According to Definition 4-3, interactions which s@ua cascading failure do not
belong to unstable interaction because in this typéailure, the latter failure is

caused by the former failure. Due to the same reasteractions in the common
cause failure are not unstable interactions if thexmon cause event is a failure.
However, if a common cause event is not a failtiven the interactions that result in

a common cause failure can be classified as umshatelraction.

Definition 4-4: The interactive failure is unstable if it is cadsby unstable
interactions. Similarly, the interactive failure &fable if it is caused by stable

interactions.

In the case of Definition 4-3, if any componentatirates, then at least one of the
components in the system will fail very soon duéhi unstable interactions among
these components. On the other hand, stable ititmaancrease the hazard of the
components. This failure process will take muchgemcompared with unstable

interaction.

Unstable IntF indicates that the interactive hazamt thus integrated interactive
hazard, increases to an infinite value instantasigadue to the interactions among

the components.
4.6 MATHEMATICAL MODELS FOR STABLE [INTERACTIVE
FAILURES

In Section 4.5, the physical phenomenon of staiteumstable interactive failures in
a system has been explained. In this section, mmattieal models will be formulated
for stable interactive failures and some conditiander which the stable interactive

failures exist will also be identified.

In the following derivation, the following assumpmtis are used.
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(1) At least one element in the interactive coefficiardtrix of a system is not
zero. Note that there is no failure interactiorthis system if all elements in

the interactive coefficient matrix are zero.
(2)  The effects of different components on a compoaenindependent.

(3) A failure interaction occurs so quickly that thenmase of time during the
interaction can be ignored when the effects ofufailinteractions on the

interactive hazards are considered solely.

(4)  The changes of interactive coefficients during fditure interaction are also
ignored. This indicates that interactive coeffitgerare either constants or
changes very slowly compared with the changeseoh#zard functions.

(5) Components and systems are not repaired. The it#jiaprediction of

systems with PM and IntF will be investigated i tiext chapter.

At the timet(t=0), the independent hazards of the components iysters are
{h, (1)}, where{s} stands for aV x1 vector. At this moment, the hazards of some
components increase marginally due to their owerd&ation or an external event
or both. The changes of hazards result in an isered interactive hazards because
of the interactions among the components. The awif independent hazards of
the components can be ignored while failure intéwads being analysed since the
time for failure interaction is usually much shortdhan the time for natural
deterioration of components. An interaction process be represented by a series of
discrete states and the changes of interactiverésziuring this interaction process
can be treated as state by state (refer to Figike According to Equation (4-15),

the first state of the interactive hazards canXpeessed as:
{h®®} ={h O} +[6OIh, O} - (4-24)

where{h® (t )} represents th& x1 interactive hazard vector at the first state ef th
failure interactions. It is straightforward to peothat{h® (t)} >{h, (t )} when at least

one element in[@(t)] is not zero. Hence the failure interactions amdhg
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components will occur again and the interactivkifas of the system progress to the
second state. The expression for the interactizarda at the second state is given

below:
{h®@®)} ={h O} +[BON NP (1)} . (4-25)

where{h®(t )} is the M x1 interactive hazard vector at the second statehef t

failure interactions.

The failure interactions among the components widbntinue because
{h@ (1)} >{h® (1)} when at least one element [ifi(t)] is not zero. Therefore, the

interactive failures of the system will progressthe third state which can be
described by an equation similar to Equation (4-Z%ntinuing the above process,

the " state of the failure interactions is given by
{h™ @} ={h )} +[6OK " (1)} . (4-26)
It can also be proved tHa™ (t)} >{h" ™t .)}

For stable IntF, the increased hazard will conveoge limit. According to Equation

(4-23), the following condition holds,
lim{h®™(t)} ={h(1)}. (4-27)

The interactive coefficients can be used to idgmntifiether an IntF is stable or not. If

at least one pair of interactive coefficieng (t) and g, (t)) in a system are equal to

or greater than one, then the system has unstatffe ile., whenever interaction
occurs, the interacted components will fail verycily. The above derivation is also

correct if an interaction has finite states.

The following theorems for justifying the condit®for stable IntF can be proved:
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Theorem 4-1: An IntF is stable, i.e., Limit (4-27) exists, He interactive coefficient

matrix meets the following conditions:

@ maxy6 <1

1...)

or (4-28)

M

max > 6 (t) <1

Ik i=1
and
(2) Det([1]-[6M)]) #0, (4-29)
where,[1] isaM x M identity matrix, andDet(s) stands for determinant operation.

Theorem 4-1 can be proved based on the followinggsition and lemmas.

Proposition 4-1. For an interaction chain process described by tmu#4-26), the

n" state of the interactive chain process is given by

{h®} =[]+ 2 [601)h ©)} - (4-30)
s=1

The proof of Proposition 4-1 is given in Appendi#.B

If Det([I]-[6(1)]) #0, the sum of([I] + Zn:[e(t)]s) can be expressed as

s=1

([17+ i[e(t)]s) =([11-16mn " ([11-[6m1™). (4-31)

where([I]1-[6(t)]) " is the inverse matrix of the matrix] —[8(t)]. The derivation

of Equation (4-31) is presented in Appendix B5.
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Lemma 4-1: If the interactive coefficient matripg(t)] meets the conditions:

M
max JZHU. t) <1

i=1,...) =

or (4-32)

i=1...)
then

”ﬂmmmzm, (4-33)

where, [0] is the null matrix.
Lemma 4-1 is proved as follows.

According to Lutkepohl [301], for a re@l x M matrix [6(t)] =2 0, the following

results for the spectral radius of the matrix hibgen obtained:

p6M) < max> 6, (1), (4-34)
and
6] <= max 3 6;(1), (4-35)

where, p([6(1)]) is the spectral radius ¢&(t)] which is defined as

p([6(1)]) = max{| A, |: A, is aneigenvaluef [E(t)]} . (4-36)

Substituting Equation (4-32) into Equation (4-34)4-35), gives
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p([6(M)]) <1. (4-37)

In line with the properties of matrices, the reghiat p([6(t)]) <1 indicates that

matrix [(t)]" is convergent to a null matrix [301], i.e., Eqoati(4-33) holds.

Theorem 4-1 is proved below:
Proof

The hazards of the components at tfestate of interactions at timecan be

rewritten as follows based on Proposition 4-1 aqddgion (4-31):

{h™ @} = [11-[60N) " ([11-[6O1"){h, (O} - (4-38)

Under conditions (4-28) and (4-29»™(t  Will converge to a stable hazard vector

with the increase of statesbased on Lemma 4-1, i.e., in this case, the k#tdble.

The new stable IntH is given by

{h®)} =[al{h (1)}, (4-39)
where,
[a]=(I11-[6®OD ™ (4-40)

is defined as the State Influence Matrix (SIM). T3I& can determine the influence
degree of failure interactions on stable IntH ueiguThe elements in SIM are often

functions of time. However, for simplicity, expréss a instead o&r(t) is used in

this thesis.

The conditions (4-28) and (4-29) are only suffitieonditions for stable IntF and

this can be best demonstrated using the followasg study:

Consider a special interactive coefficient maféit)] of the form:
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6,
COR I (@-41)

Then, [6(t)]? = 6,,6,,[1 ],

3 _ O 612
[60)] ‘6’126’21{921 O]

(leﬁzl)g[l ] n beingeven
[6]" = . (4-42)

n-1

=0 @
(6,6,,) 2 [0 (ﬂ n beingodd.
21

Obviously, onlyé,,6,, <1 is required for the existence of Limit (4-33).

Theorem 4-2: An IntF is stable, i.e., Limit (4-27) exists, Hé interactive coefficient

matrix [£(t)] is triangular.

Proof.

According to the properties of eigenvalues [301hew the interactive coefficient
matrix [6(t)] is triangular,p([€(t)]) =0 since all the diagonal elements[é(t)] are
zero (the second property of the interactive coeffit matrix). Hence Limit (4-27)

exists in this condition based on the propertypafcsral radii mentioned above.

An upper triangle interactive coefficient matrixdinates the case that the failure of
ComponentM can affect all other components in a system bobtsaffected by any
of them. ComponenM-1 can affect all other components in a system mxce
ComponentM but is affected by the failure of Compon&htonly. ... The failure of
Component 1 is affected by the failures of all ott@mponents but has no effect on

any other component in the system. The case whermteractive coefficient matrix

112



Reliability Prediction of Complex Repairable Systemsan engineering approach

is a lower triangle matrix is the opposite of thewee case.

Theorem 4-2 also gives sufficient conditions foabd¢ IntF. In practice, the
identification of a stable IntF would be much mateaightforward for a specific

system.

In accordance with Equation (4-39) and the relatigm between failure distribution
function and hazard (Equation (4-1)), the Interactrailure Distribution Functions

(IntFDFs) of the components in a system are giwen b

(F O} ={-expE[ Y ah, O (=12...M), (4-43)

0 ij=L

where, q; is the " row " column element in the SINt]. Equation (4-43) shows
that the likelihoods of failures for components twitailure interactions have
increased becausg, > dnd at least onar; >0 (i#j), if the interactive
coefficientsg, (t) (i, =12...,M ) are not all zero (refer to Appendices B6 and B7).
The characteristics of the interactive failure misittion of an affected component
can be different from that of its original indepentifailure distribution.

Equations (4-15), (4-39), (4-40) and (4-43) aregnated as an Analytical Model for
Interactive Failures (AMIF).

4.7 MODEL JUSTIFICATION

In this section, AMIF will be justified through tlensideration of the following four
special case studies. More sophisticated veriboatthrough simulation experiments
will be presented in Section 4.8. Laboratory expents undertaken to verify the

model will be presented in Chapter 7.

4.7.1 Special Case 1: Multiple Causes Failure

A system is composed &fl components. It is assumed that only one component
(Component 1) is affected by its influencing Comganj (j = 2,3,..., L, L <M).
The failure of Component 1 does not affect othemponents. Component
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j(j=23...,M)in the system have no failure interaction witlcreather. In this

case, the interaction will stop at the first statenteraction so that the IntHs of all
components ah states of interactions among components are the sa their IntHs

at the first state of interaction. The interacti@éure matrix in this case is

_|o @ i
[9(0]—[6 6] (4-44)

1 2

where, 8 is a1x(M -1) vector with L, non-zero elements antl —1-L, null

elementsQ, is a(M —1) x1 null vector; andd, is a (M —1)x (M —1) null matrix.

Therefore, according to Equation (4-15), the Intifithe components at the first state

of the interaction is

momr=| H T o, (4-45)
0, I

where, I is a(M —1)x (M —1) unit matrix.

It is straightforward to know the inverse mat(pt] - [&(t)]) ™ is{g q and

|

Nl

0

5 } =[0] (forall n>2). (4-46)

[6(D)]" =[

ol
)

Substituting Equation (4-46) into Equation (4-3@Yaising Equation (4-39), one can
conclude that the all states of interaction in tase are the same as the first state,
which is described by Equation (4-45). This remutixactly the same as expected.

Specially, if Component 1 is assumed to fail imragely if any its influencing

components fail and the conditions of all composdigfore failure are independent,
then according to the first property of IC, thenon-zero elements in vecté in

Equation (4-44) all equal one. Using Equations $4-84-40), (4-33) and (4-43), the
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reliability functions of the components can be oi#d as follows

exp[—j'ih” (t)dt] i=1
R(t) = o= , (4-47)
exp[—j h, (t)dt] i=23...,M

where, h; (t )is the IndH of Component(i =1 2,3,..., M ).

Equation (4-47) can be justified using probabilttyeory. Let A represent the

situation where Componeitis fully operational at timé unaffected by all other

components or common cause forl, 2,3,..., M . Then the independent reliability
of Componeni at timet, R, (t) is the probability that Componentremains fully
operational at timet unaffected by other components or common cause, i.
R,(t)=P(A) (i=223...,M ). Based on Equation (4-1) and the relationship
between reliability function and failure distriboi function,R(t) =1-F(t), it can

be stated that:
R, (t) =P(A) = exp[—_t[ h, (t)dt] (i=1423...,M). (4-48)

The reliability of all components except for Compah 1 is the same as their
independent reliability since their failures are affected by other components, i.e.

R(t)=P(A) = exp[—j h(@®dt] (=23...,M). (4-49)

The probability that Component 1 remains operatiahimet, R (t), in this case is

L

R®=P(A). (4-50)
j=1

Since eventsA, A, ..., and A are independent of each other,
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L L

P(NA)= |‘| P(A). (4-51)
j=1 j=

Substituting Equations (4-48) and (4-51) into Eaqraf4-50), gives

R.(®) = expl-[ D h, (t)et]. (4-52)

0j=1
Integrating Equation (4-52) with Equation (4-49yes Equation (4-47).
4.7.2 Special Case 2: Independent failure

When the failures of the components in a systeniratependent of each other, all

interactive coefficients equal zero.

6,t)=0 (i,j=12..,M). (4-53)
Substituting Equation (4-53) into Equation (4-18)e3

{h®)}={h,®)} (@(=12..,M). (4-54)

Equation (4-54) shows that the interactive hazdr@amponent is determined by

its own independent hazard as expected.
4.7.3 Special Case 3: Common Cause Failure

ComponentK has an independent hazdig (t) and its failure is independent of the
conditions of other components. It is assumed Wanever ComponerK fails,
Component 1, Component 2..., and Compongnh a system all fail at the same
time and the failures of Component 1, Component 2nd ComponenN do not
have interactive relationship. This is defined aspacial case of common cause
failure, which was studied by Fleming [286] whilevéloping the3-factor model. In
this case, Componemt is the influencing component of Component 1, Congo

2..., and Componem . The interactive coefficied; (t) is given by
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1 i=1 2..,N, j=K
8. (1) = ) 4-55
i {0 others ( )

Substituting Equations (4-13) and (4-55) into Egquat(4-11) gives the interactive
hazards of the components in the system as follows:

h(t) = {h” ®+h, @t i=12..N | (4-56)

hy (t) I =K

Equation (4-56) indicates that the interactive hdz# Component (i =12,...,N)

is greater than its own independent hazard becdédg)>0 . If h,(t)=A,
(i=12---,N) andh, (t) = B.A, whereg, is the “common cause factor”, Equation
(4-56) gives exactly the same result as that obthumsing the generalisgdfactor
model [8]. In particular, wheh, (t)=A, (i=1212---,N), Equation (4-56) gives

exactly the same result as stated by Fleming [286].
4.7.4 Special Case 4: Common Cause Shock

A system is composed of identical components with the same independerdardaz
rate A, . The failure time of each component is independéetich other. A common

cause shock occurs with an occurrence tateThe failure probability of each

individual component due to the effect of a commeanse shock i® . Shocks and

the independent failures of individual componertsuo independently of each other.
This case was investigated by Vesely [287] in 1@hfle developing the Binomial
Failure Rate (BFR) model. According to his researitte total hazard of one

component is equal to
A=A +pv. (4-57)

Equation (4-57) can also be derived from Equatibig). Leth (t ) denote the total
hazard of each component amgd(t dgnote the independent hazard of each

component, then,
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h)=A (=12..n), (4-58)

h@)=A (@(=12..n). (4-59)

Let h,,,(t) denote the occurrence rate of the common causekshod let the

interactive coefficient denote the failure probdpibf each individual component

due to effect of a common cause shock, then

h ., t)=v. (4-60)
and
[0 0 - 0 p]
00 - 0p
[6)] =] 2 (4-61)
00 - 0 p
00 - 0 0]

The interactive coefficient matri{ﬂ(t)] in this case is an upper triangle matrix

withO< p<1. In accordance with Theorem 4-2, the IntF in tase is stable. The

SIM is
1 0 0 p]
0 . 0 p
[a]=|: L. (4-62)
OO0 -1 p
00 -0 1

Substituting Equations (4-58), (4-59), (4-60) adebR) into Equation (4-39), gives
Equation (4-57).

In this section, four special interactive failurases have been studied using AMIF
developed in this chapter. The results justifiedIKMomparing with exiting models

or methods that have been proved in their speagications.
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4.8 ANALYSIS OF INTERACTIVE FAILURES OF COMPONENTS

To calculate IntF using Equation (4-43) for an eegring system, the interactive
relationship among components in the system mustéetified. This interactive

relationship can be expressed using a relationshgrt [302]. Then IC can be
determined and furthermore the interactive coedficimatrix can be constructed.
After the interactive coefficient matrix has beebtained, the interactive failure
distribution functions of these components can akeutated if their independent
failure distribution functions are known. The prdaees of calculating and analysing

IntF of components are best explained through amele as follows:

A system consists of three components with evemsréctive Coefficient (IC) having
a value less than one. The independent failureilglision function of these three

components is assumed exponential and is given by

{F, ()} ={1-exp(=At)} (i=1 23). (4-63)
Therefore, their independent hazards are

h, (t) = A (i=123). (4-64)

Figure 4-6 is the relationship chart of these tlo@®ponents. In this diagram an oval
represents a component. An arrow line representstanactive relationship. An

arrow line starts from Oval (i =1, 2,3) and points to Ovaj (j =1, 2,3) if the
failure of Component has an effect on the failure of CompongntFigure 4-6

indicates that there is interactive relationshipMeen Component 1 and Component
2, and between Component 1 and Component 3. Howéwere is no interactive

relationship between Component 2 and Component 3.

Based on the relationship chart, the interactidaticmship matrix can be developed

(Table 4-1). ICs are assumed to be time independentable 4-1,6, is an IC
representing the effective degree of the failureCoimponentj on Component

(i,] =1 2,3). Thatg, =1 means that the failure of Compongnhas full effect on
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Componeni . Thatg; =0 indicates that the failure of Componenidoes not affect

Componeni directly.

Table 4-1
Relationship rimix
Components 1 2 3
1 0 012 013
2 021 0 0
: : , 3 031 0 0
Figure 4-6. Relationship chart

Consistent with the relationship table, the intevaccoefficient matrix of the system

is as follows:
0 612 013
[H(t)]: 921 0 0. (4'65)
6, 0 O
Hence,
1 _912 _913 N
[al=(1]-[6®) " =|-6,, 1 o | . (4-66)
-6, 0 1

Using the Gauss-Jordan reduction method, gives

-1

1 -6, -6 1 1 &, 6
-6, 1 0 = 6, 1-6.0, 6.6, |. (4-67)
o, 0 1| TGl g4 1-6,0
31 31 12%31 1221
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The interactive hazard functions of the componémtstable IntF can be calculated
by substituting Equations (4-66) and (4-67) inta&tpn (4-39):

h, (t) ) 16, 6, ](h

h,(t) s = 0, 1-66, 656, |\h,1);. (4-68)
1-6,,6,,— 6,6 g 6.0 -0.8 h

hy (t) 31 b 176,60, || h5(1)

In the above analysis, the following inequity isirad:
1-6,,0,, = 6,56, > 0. (4-69)

The sufficient condition for Inequity (4-69) is

max{@, 1i,j =123 i#j}<—. (4-70)

NG

According to the relationship between hazard amdf#lure distribution function,

the interactive failure distribution functions befse three components are given by

F,(t) =1-exg — (1)'1 ; 6;2)'2_;91;"3)? (4-71)
1221 7 V13V
F,(t) =1-ex — (G, + (1-6,560,)4, + 6,,6,,45)t (4-72)
? 1-6,,0,, - 6,,6;,
F.(t) =1-ex — (G4, +6,,0:,4, + 01— 6,,0,)A:)t (4-73)
: 1-6,,0,, - 6,,0;,

4.9 PROPERTIES OF INTERACTIVE FAILURES

This section focuses on further investigation &f #ifects of IntF on components.
The effects of IntF on systems will be investigatethe next section.

From Equations (4-72) and (4-73), it can be sean tie failures of Component 2
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and Component 3 do interact through Componenttioadh these two components
do not have direct interaction. This phenomenonatestrates an important property

of failure interaction relationship - transmissityil

To investigate the other properties of IntF, sirtiales were conducted using the
example presented in the above section. Figureso4® show the changes of IntFs
of the components with interactive coefficients.

= 09 I{'/r’/‘/{x*xxgaﬁﬁuﬂ 6.=

L 08 X s =004
e (}VXX a® /./-/./././‘/

Wl 6,, =0.0833

s 07 x 31

1= & 545 // ——IndF

S 06 AT —=—012=0

g //f,a'// - x- 012=0.4

2 04 X ——012=0.6

= Jxa // ——012=0.8

a 03 #/x?/

3] A

5 02k

5 o

L 0.1 17

O T T T 1
0 0.5 1 15 2
Time, t (10° h)
(a) Effects of IC 8, on the IntF of Component 1
6,,= 004

T 6,, = 004
<

2 6., = 0.0833
Q ——IndF

3 —=—013=0

5 —- 913=0.2

= - x- 913=0.4
= ——013=0.6
2 —+—013=0.8

g
3
T

LL

0 : : : |

0 0.5 1 1.5 2
Time, t (10° h)

(b) Effects of IC 8,3 on the IntF of Component 1
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Failure Distribution function, Fi(t)

Failure Distribution function, F(t)

6,, =008
0.9 P
0.8 .X%/o/;/./‘ 6, = 004
07 | 6,, = 00833
——IndF
0.6 1 —=—821=0
05 —A- 021=0.2
- x- 821=0.4
0.4 1 ——021=0.6
——021=0.8
0.3 //
0.2
0.1
0 T T T 1
0 0.5 1 15 2
Time, t (10° h)
(c) Effects of IC#,, on the IntF of Component 1
l -
6,,= 005
0.9 o
0.8 M/ 6, =004
0.7 - 6, =004
——IndF
0.6 - —=—031=0
—A- 031=0.2

0.5
x--931=0.4
0.4 1 ——031=0.6
—e—031=0.8
0.3 //
0.2

0.1

0 T T T )
0 0.5 1 15 2

Time, t (10" h)

(d) Effects of IC 83, on the IntF of Component 1

A, =12x10% @Wh) A, =2x10" (1/h) A, =3x107* (1/h)

Figure 4-7. Interactive failure of Component 1 vesus ICs
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Figure 4-8. Interactive failure of Component 2 vesus IC 8,
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Figure 4-9. Interactive failure of Component 3 vesus IC 6,

6,,= 004
6,,= 004

6, = 00833

6, = 004
6,,= 004

6,, = 00833

Figure 4-7 indicates that the failure likelihood @mponent 1 increases with ICs,

but different IC has different degree of influen@is characteristic can be applied

to other two components. Furthermore, comparingiféigt-7 (a) with Figures 4-8

and 4-9, one can find that interactive coefficiedmise different effects on different
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components. In this example, the interactive cokeffit ,, has much greater effect

on Component 1 than on the other two components.

Figures 4-10 and 4-11 demonstrate the impact ofigihg values o#,, and g,, on

the Mean Time To Failure (MTTF) of the componeft® m these two figures, it can
be found that the failure interaction between thmpgonents will shorten the MTTF
of the components. With the increase &f or 6,,, the MTTF of Component 1
decreases sharply whereas the MTTF of the other d@raponents is not very

sensitive tod,, and 8, because Component 1 was affecteddgyandd,, directly.

Figures 4-12 and 4-13 present the influence of ItidF of Component 2 and
Component 3 on the IntF of Component 1 respectiietgm these two figures, it
can be seen that the independent failure distobutif Component 2F,(t), has

much greater influence on the IntF of Componenhdntthe independent failure

distribution of Component 3 ,(t ,)becausd,, is greater thaw,,. The failure of

Component 2 has almost full effect on Componenedabses,, is close to 1 (0.8).
On the other hand, the failure of Component 3 ke Influence on the failure of

Component 1 because the valuedpfis very small (0.008).

MTTF 0.9

6,,= 004
(10* h) 0.8
X
071"+ 6, = 004
0.6 1 T ——Component 1 -IndF 6, =0.0833
N —&— Component 2 -IndF
S —— = — —#— Component 3 -IndF
0.4 1 e ” - % 'Component 1 -IntF
I —# - Component 2 -IntF
0.3 1 T halin haEEEEE N —e- - Component 3 -IntF

0 0.2 0.4 0.6 0.8 1

A =12x10* @/h) A, =2x10™ (1/h) A, =3x107* (1/h)

Figure 4-10. Relationship between MTTF and |,
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MTTF 0.9
- - - . 6, =004
(10* h) 0.8 5
0.7 “‘ 6,,= 004
0.6 —&—Component 1 -IndF 631 =00833
05 g S Comeentz ot
0.4 . = % ‘Component 1 -IntF
’ o - —X -Component 2 -IntF
0.3 ] - == = = —a — - Component 3 -IntF
Tt x
0.2
0.1
0 ; ; ; ; ‘
0 0.2 0.4 0.6 0.8 1
IC, 013
A =12x10" @/h)y A, =2x10" (1/h) A, =3x107* (1/h)
Figure 4-11. Relationship between MTTF and |13
6,=08
Fa() 6,, =0.008
0.8 . 8,=004
06T . 6,,=00833
04 JotTT . Fu=05
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0.
2 |
1

Time, t (10* h)

‘ 0.2 ' Fia(t)
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Figure 4-12. Influence of the IndF of Component 2F,,(t) on

the IntF of Component 1 F, (t)
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6,=08
6,, = 0.008
R0 6,, = 004

6, = 0.0833

F,(t) =05

Time, t (10° h)

A, =12x10™ (1/h)

Figure 4-13. Influence of the IndF of Component 3F,,(t) on the

IntF of Component 1, F, (t)

4.10 EFFECTS OF INTERACTIVE FAILURES ON SYSTEMS

As indicated in Section 4.2, interactive failures de classified into two categories:
immediate interactive failure and gradual degrandfainteractive failure.

When an immediate interactive failure occurs, tikife of a component is not only
related to its own deterioration but also completpendent on the failure of its
influencing components. The affected componentseeitail simultaneously such as
common cause failure or the failure of an influegccomponent will lead in the
failure of its affected component immediately suab cascading failure. The
conditions of the influencing components befordufai do not affect the failure
probability of the affected components. For examalevater supply system consists
of a generator and several pumps in a pump stakioe generator supplies power for
these pumps. A generator is regarded as failed i not capable of generating
electricity at the same frequency and in a stegalg snanner. On the other hand, the

influence of an unstable power supply of the gewereould be ignored. Then when
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the generator fails, all these pumps will fail t@rk immediately. However, the
condition of the generator before failure usualbesl not affect the failure of these

pumps.

When a gradual degradation interactive failure ogctihe failure interaction among
components increases the failure likelihood of @iffected components only. The
failures of the components are independent. Fample a faulty bearing (Bearing 1)
will accelerate the failure rate of another bear(Bgaring 2) on the same shaft.

However, when Bearing 1 fails, Bearing 2 may ndt énd vice versa.

Different techniques are required to analyse thalities of systems with different
categories of IntFs. To calculate the reliabilifyaosystem with the first category of
IntF, the original RBD of this system should be nfied. For example, a parallel
system shown in Figure 4-14 (a) is composed ofdarmponents: Component 1 with

an IndH ofh,,(t) and Component 2 with an IndH bf,(t). The failures of these

two components are “positive dependent”. The failaf Component 1 will cause
Component 2 to fail immediately and vice versa. Wttee reliability of this parallel

system is calculated, the system should be comvéae series system shown in
Figure 4-14 (b). If these two components are adi@dly a common failure cause

with an IndH ofh(t ), the original parallel system should be converied a

complex system in which a “virtual” Component Cnesgenting the common cause is

connected with the original system in series (3garE 4-14 (c)).

For the reliability of a system with the first cgbey of IntF, the reliability functions
of the components in this system do not need togddecause failure dependency
is considered through changing the RBD of the sysia this case, the reliability
functions of the components used to calculate éfiakility function of the system

are still their original independent reliabilityrfctions.

However, when analysing the reliability of a systeith the second category of IntF,
one should not change the RBD of this system, leeida to use the interactive
reliability functions or the interactive failurestiiibution functions of the components
of the system in the analysis. This thesis focusethe second category of IntFs as

mentioned in Section 4.2.
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hl 1(t)

2

hl 2 (t)

(a) Original parallel system

hll(t)
ha()  hi() L e
1 2 —— ] L
2
hIZ(t)
(b) Equivalent system 1 (c) Equivalent system 2

Figure 4-14. A parallel system and its equivalergystem

To demonstrate the effects of the second categolytle on systems, two different
systems consisting of the three components thae wiescribed in Section 4.8,
System A and System B, are considered. In Systenthédse three components
connect with each other in series as shown in Eigul5 and in System B, they

connect in a combined way as shown in Figure 4-16.

2
2 1 3 |1
3
Figure 4-15. System A Figure 4-16. System B
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The failure distribution function of System A is

Fa() =1-[1- R OI1-FOI1-F(1)]. (4-74)

The failure distribution function of System B is

Fo () =1-[1-F(OI[1-F,(O)F;0)]. (4-75)

Figure 4-17 to Figure 4-21 demonstrate the chamfdbe cumulative interactive
failure distributions of these two systems with 16.Figures 4-17, 4-18 and 4-19,
A, =12x10* @/h), A, =2x10™ (1/h) and A, =3x10™ (1/h).

From Figure 4-17 to Figure 4-19, it can be seendfacts of IC are different if the
topologies of systems are different. In this exangailure probabilities of both
systems increase with,, but 8,, has greater influence on the IntF of System A than
the IntF of System B. Figures 4-20 and 4-21 preentsame properties. The reason
is that the failure probabilities of Componentsri2l 8 made a larger contribution to

the system failure probability in a series systhantin a parallel system.

1 -
FA(t) =

0o A 6,, = 004
08 —#7 6,,= 004
0.71 ,é/ 6, =00833
0.6 ¢ ——IndF
05 | —+-012=0

N - x- 12=0.4
04k —e—912=0.8
03 1
0.2
0.1

0 ; ; ; ‘

0 05 1 15 2
Time, t (10* h)

Figure 4-17. Relationship between IntF of System A A(t) and IC 61,
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Figure 4-18. Relationship between IntF of System,B(t) and IC 6,
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Figure 4-19. IntFs of the systemd;A(t) and Fg(t), versus 1C6;,

131

6,,= 004
6,,= 004

6,, = 00833



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

6,,= 004
Fa) 6,, = 004
08 6,, =0.0833
06
04
02
0.l

15

08
06

. 04
Time, t

(10* h) 00 IC, 013

A, =12x10% (/h) A, =2x107 (1/h) A, =3x107* (1/h)

Figure 4-20. Changes of IntF of System A A(t) with IC 83 and timet
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Figure 4-21. Changes of IntF of System B5g(t) with IC #,3and timet
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4.11 SUMMARY

The concept of interactive failure presented irs tthapter is a new variant of the
definition of dependent failure. Interactive faduprovides a measure of accelerated
failures due to the failure interactions amongetght components. In this chapter,

an analytical model to describe interactive failoas been developed.

The proposed model can be applied in system fajwobability prediction when

interactive failures exist. According to the modébe interactive hazard of a
component is estimated by its independent hazarsl glportion of the hazards of its
influencing components. When the hazards of thé&enting components of a
component increase, the hazard of this componeelerates. The failure interaction
between the components in a system will increasédifure likelihood of the system.
Interactive failures should be considered when yanad failures of assets, or

otherwise, the probability of failure may be undireated.

The degree of failure interaction between compmenimeasured by the Interactive
Coefficient (IC), which is equal to or greater trmaro for positive dependent failures.
A greater IC means that the failure of an influeagccomponent has greater effect on
the failure of its affected component. An importapproach to reducing interactive
failures of a system is to reduce its IC. Howeveteractive coefficients have
different effects on different components and défe system topologies. Their
effects on the interactive failures of a comporreiach a peak when this component
Is operating at the midpoint in its life. Differel@s have different sensitivities which

can also vary with different system topologies.

Interactive failure can be either stable or ungtal®ne should attempt to reduce
stable interactions and avoid unstable interactibesveen the components in a

system when designing new machines.

When the interactive failure probabilities of thefliencing components of an
affected component are not all zero, the interadaure probability of this affected
component will be not zero even though its indepemndailure probability is zero

(refer to Equation (4-71) to Equation (4-73)). Tdfere, for a repairable system,
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when a failed component is replaced by an identiead one, its initial hazard will
become higher than its original reliability due tloe effects of its unrepaired
influencing components. This matter has been rekedr The methodology and the

results are presented in the next chapter.
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Chapter 5
RELIABILITY PREDICTIONS OF REPAIRABLE

SYSTEMS WITH INTERACTIVE FAILURES

5.1 INTRODUCTION

In Chapter 3, the Split System Approach (SSA) wasetbped to deal with the
reliability prediction of complex repairable systemwith multiple PM intervals. In
this model the failures of components in a systeenevassumed to be independent
from each other. This assumption has been commasdg in existing reliability
prediction models and can meet the requirementhefaccuracy of prediction in
some industrial scenarios. However, as indicatedChapter 4, there are also
numerous scenarios in industry where the assumpfiendependent failures is not
applicable and Interactive Failure

(IntF) must be considered.

IntF occurs commonly in mechanical

Upper
systems. When repairing a system bearing
with failure interactions, one needs to K
consider IntF; or otherwise the repair \\
may not be complete. This Drum
characteristic is best demonstrated
with an example. A washing machine Shaft
was subjected to rotary unbalance and
was found to vibrate significantly Lower
during its spin cycle. The machine bearing

was disassembled and inspected t0 Figure 5-1. Simplified structure
determine the root cause. The lower diagram of a washing machine

bearing (see Figure 5-1) was found to
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have been damaged. The balls inside the bearingwwd out severely. The

clearance between the inner race and outer racammeexcessive that the shaft
experienced eccentricity. The technician suspetttatthe upper bearing might have
also been damaged, but he could not find a suitableto tear down the drum. As a
result, only the lower bearing was replaced. Thechhme was assembled and
operated smoothly for a short time. However, dfieze washing cycles the vibration
became excessive. The washing machine was disagsemgpain. An inspection

revealed that the new bearing inserted recently deamsaged. On this occasion, the
technician found a suitable tool to completely di&ganble the machine. The
inspection confirmed that his previous suspiciors warrect - the upper bearing was
severely damaged. The machine operated normally hfith the upper and lower

bearings were replaced.

In this case, the two bearings had failure intéoast with the shaft. When only the
lower bearing was replaced, the damaged upperngeatill caused the shaft to
vibrate. This vibration in turn accelerated thduia of the new lower bearing. This

accelerated failure is an interactive failure.

The above case is relatively commonplace in engimgenaintenance. In order to
maintain a system effectively and efficiently, iatetive failures in a system need to
be considered. Understanding the characteristiaatefactive failures in a system

with repairs is desired for optimal maintenanca oépairable complex system.

In Chapter 4, an analytic model, AMIF, to calculatd= was developed. However, in
that chapter, the effects of repairs on the rdligbprediction of systems were not
considered. The research on the reliability presist of repairable systems with IntF
is still in its infancy. Despite an exhaustive rigtire review, the candidate was

unable to find related research reports to date.

In this chapter, an approach for reliability preidios of repairable systems with IntF
is developed. This approach will consolidate bo®ASand AMIF, and hence is
termed as the Extended Split System Approach (ES$Ag¢ term “component”

includes subsystem and the term “repair” includeplace or replacement” unless

specified consistent with nomenclature in ChapBend 4. Stable IntF is the focus
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of the study in this chapter.

The rest of this chapter is organised as followmsSéction 5.2, the methodology for
ESSA is developed. In Section 5.3, the newly dgpadiomethod is validated using an

example and several simulation experiments. Seétibmpresents the conclusions.

5.2 METHOD DEVELOPMENT

The reliability of a system is expected to increaffer a repair because the hazard of
this system is reduced [303]. This characteristies also been observed in
experiments conducted by the candidate (refer tap@hn 7). Repairs can improve
the reliability of a system in two aspects: redgcthe Interactive Hazard (IntH) of
unrepaired components and increasing the reliphilitrepaired components. The

improvement of reliability of a system after regas analysed below.

Consistent with Chapter 3, this chapter investig#te reliability prediction of assets
with specified RBPM strategies only. Hence all agstions made for SSA, expect
the second one — that of independent failures, baea& applied to the development
of ESSA. Interactive failures among components Bystem are considered in this
chapter which focused on gradual degradation iotieea failures. As analysed in
Subsection 4.10, Chapter 4, this type of interacfailure accelerates the hazard of
affected components but does not change the REBDsg$tem. This property enables
the reliability prediction of repairable systemstiwintF to be analysed in the

following two steps:

Step 1. Calculate the changeable IntH and Interactive Failiistribution

Functions (IntFDF) of repaired and unrepaired congmts using AMIF.

Step 2. Consider the logic position of repaired componentshe RBD of the
repairable system, and then calculate new inteacgliability function or
IntFDF of the system after a PM action and overtiplel PM intervals
using SSA.

The detailed discussions on these two steps areemiexl in the following
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subsections. In the following analysis, interactigBability function and interactive
failure distribution function will be simplified ageliability function and Failure
Distribution Function (FDF).

521 MODIFIED HEURISTIC APPROACH

Since this chapter considers the second categohgtéfonly and this type of IntF

does not change the RBD of a system, a heurispecoaph similar to that used in
Chapter 3 can be developed to calculate the rétialof a system with IntF over

multiple PM intervals. Considering that the hazaalsrepaired and unrepaired
components of the system after a PM action arerdifft from their own independent
hazards, the heuristic approach in Chapter 3 isfradds follows:

(1) Determine the first PM timg = At, when the reliability of the system first

falls to the predefined control limit of reliabylitusing the original reliability

function of the system.

(2)  Assign the repaired ComponeRt (k, =12...,S) a new independent
reliability function R, (7), (k, =12,...,S) based on the requirement of a
PM strategy (Assume that the system Magsomponents, an&, components
(1S <M ) are repaired in the first PM action). Calcultte reliability
functions of these components, after the first PMtioa, R (7),
(k;, =12,...,S), using Equation (4-43). The cumulative relialilftinctions
of these repaired componeng. (7), (k, =12,...,S)), are R _(At,),R (1),
(k,=122...,S). The independent reliability functions of the tref the

components of the system remain the same since dheynot repaired.
However, the cumulative effects of time before fire PM action need to be

considered. Hence,R; (7), =R, (r+At), ( ;=S +1S+2...,.M ).

Unlike independent reliability functions, the rdlity functions of the

unrepaired components after the first PM  actionR, (7),

(J, =5 +1S +2,...,M) are different from those before this PM action an

138



Reliability Prediction of Complex Repairable Systemsan engineering approach

need to be calculated using Equation (4-43) base®o(7), and R; (7),.

The cumulative reliability functions of these uragpd components with the

first PM action, R, .(7), need to be calculated using the following equation

T+t

lec (1), = eXp[_T hjl (t)odt - I hjl (t),dt]

_ R, (AR, (T +AL),
R, (L),

(,=5+1S +2...,M), (5-1)

where,R; (0), is assumed to be one for =5 +1, S +2, ..., M andt, =At, is the
first PM time. Functions, (t), andh; (t), (j; =S +1 S +2,...,M) are the IntH

of the unrepaired components before and after itke PM action in terms of the

absolute time scale, respectively.

(3) Calculate the reliability function and the cumutlatreliability function of the

system after the first PM actioR (7), and R,.(7),, based on the RBD of the

system using the reliability functions and the clative reliability functions

of its components after the first PM action, respety.

(4)  Determine the second PM timg using the reliability function of the system

after the first PM actionR,(7), .

(5) AssumeS, components are repaired in the second PM actieas$tgn the
repaired Componerk, a new independent reliability functidr, (r), based
on the requirement of PM strategly, (represents all components repaired in

the second PM action). Calculate the reliabilitpdiion of these components

after the second PM actioR,_(7), (k, represents all components repaired

in the second PM action), using Equation (4-43)e Thmulative reliability

functions of these componen® (7), (k, represents all components

repaired in the second PM action) now need to beulzded based on two
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scenarios: if components have also been repairéteifirst PM action, their

1
cumulative reliability functions arﬂ R, (At,,)i R (7), . Subscriptky

represents all components that are repaired ifirgteand second PM action.

The cumulative reliability functions for those cooments which are repaired

2
R, (At)oR,, (AL, R, (1),
in the second PM action only are =L . Subscript

R, (At),

k,, Z k,, andk,, +k,, =S,. The independent reliability functions of the rest

of the components of the system remain the sanieefase this PM action

since they are not repaired. However, the cumwdasifects of time on

unrepaired components can now be different. Forpomants which are

never repaired, their independent reliability fuoes R; (7), are
2

R,j21(r+ZAti)o. Subscriptj,, represents all components which have never
i=1

been repaired. For components which have beenreep@ the first PM

action, their independent reliability functior®;, (r), are R; (7 +At,),.

Subscriptj,, # j,, and j,, + j,, =M =S, .Then the reliability functions of

these unrepaired components can be calculated &jogtion (4-43). The

cumulative reliability functions of the unrepairedmponents over two PM

intervals, R, .(7),, are

T+,

t, t,
Rie(7), =expl=[ hy (1)odt= [y (),dt= [h, (),dt]
0 ty t;

2 2
R, ()R, O At), R, (T+D At),
— i=1 i=1

2 (j2=82+1.82+2,...,|\/|).
RJZ (Atl)l Rj2 (z Ati )z
i=1

(5-2)

(6) Calculate the reliability function and the cumulatreliability function of the
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system after the second PM actid®(7), and R, (7),, based on the RBD of

the system using the reliability functions and ttemulative reliability

functions of its components after the second PNbactespectively.
(7)  Continue the above procedure until tHeRM action.

5.2.2 COMPONENT INTERACTIVE HAZARDS AND FAILURE
DISTRIBUTION FUNCTIONS

This subsection focuses on developing a method clculating the Failure
Distribution Functions (FDF) of the components isystem with IntF after a PM
action. Apart from the assumptions mentioned athibginning of this chapter, the

following additional assumptions are made in thiss®ction:

(1) The system has its first PM action. The case ofstesn with multiple PM
actions will be analysed in the next subsection.

(2)  The system is composed of M components and Compdnenrepaired in
the first PM action.

(3)  The interactive coefficients are constant and iedelent of repairs.

In the case of repairable systems with IntF, thigirtime for calculating the IntH of
newly repaired components can be different front floa remaining unrepaired

components after a PM action (see Figure 5-2).

As in Chapter 3, parameterin this chapter represents the absolute time soade
represents the relative time scale. Parantetées the ' failure time measured in the
absolute time scale. The initial time to calculdbee IndH of the unrepaired
components after the first PM actiontjsand the initial time to calculate the IndH of

the newly repaired component after the first PMaaicis zero.
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A
h(t) — — IntH of unrepaired components
............. IndH of unrepaired components
IntH of repaired component
------ IndH of repaired component

v

Figure 5-2. The changes of hazard of unrepaired agponents

and repaired component

According to the analysis in Section 4.5 of Chagtethe stable IntH of a system is

given by Equation (4-39):
{h(0)} =[al{h (1)} .

where {h(7)} is the stable IntHs of a system after failure ratéon. It is anM x1
vector.{h, (7)} is anM x1 independent hazard vector of all components duleeio
own deteriorations[a] is the State Influence Matrix (SIM) which is givday

Equation (4-40):
[al=(11-[6®) ™.

where,[1] is anM x M unit matrix.[6(t)] is the Interactive Coefficient (IC) matrix

of the system.

Define all unrepaired components as a subsystenmatien (4-39) can be rewritten

using the partition matrix as follows:

h(r)| [an @, |[h.()
{ﬁsb(r)}{ﬁs ﬁj{ﬁsb(r)}' (5-3)
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where, h(7) is the IntH of Component 1. Vectd?sb(r) is the (M -1) x1 IntH
vector of the subsystem. Parametgy is the first row first column element of SIM
[a]; while a,, a, and d, are thelx(M -1), (M -1)x1 and (M -1) x(M -1)
partition matrix in SIM[a], respectively. Functio,,(7) is the IndH of Component

1, andﬁlsb(r) is a(M —1) x1 vector which represents the IndH of the subsystem.

Let h,(7), and ﬁ,sb(r)o denote the IndH of Component 1 and the subsystford

the first PM action respectively.

When the first PM action is conductendst, = At,. Hence, just before the first PM
action, the IndHs of Component 1 and the subsystes,, (At,), and h, (At,),,
respectively. Leth,(7), be the IndH of Component 1 after the first PM @ctithen

just after the first PM action, the IndH of Compaoné is h,, (0),. Generally
O< hll(o)l = hll(Atl)O' (5'4)

If h,(r), =h, (7T +At),, the state of the system after the first PM actsotas bad

as old”.

The IndH of the subsystem just after the first P&fian is the same as just before
this PM action because it has not been repaired, i.

hlsb(r)l = hlsb(r + At1)0 ’ (5'5)

where, h (1), andh (7), are the IndHs of the subsystem before and afeefitt

PM action respectively.

The IntHs of all components in the system afterfits¢ PM action are given by

h(7), _|u @, h,(7),
{ﬁsb(f)l}{c?g, Erj{ﬁ,sb(ﬁml)o}’ (5-6)
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where, h,,(7), is the IndH of Component 1 after the first PM antih, (1), are the

IndHs of the subsystem before the first PM actiwhile h,(7), and h, (1), are the

IntHs of Component 1 and the subsystem after tkePM action respectively.

If IntF is stable and the reliability of Componenjust after the first PM action has

not degraded since just before this PM action, ftiowing inequities can be

obtained:
h(t,)o 2 h (0), = ay;h,; (0), +ﬁZHlsb(At1)O >h,;(0),, (5-7)
hy, 0); = @by (0); + @, N, (BL,) < Py (A1), (5-8)

The above inequities can be proved using the faigwwo propositions and a

theorem.

Proposition 5-1: All elements in SIM[a] are nonnegative whebi< 6, <1.

The proof of Proposition 5-1 is presented in Appeib.

Proposition 5-2: All diagonal elements in SINla] are greater than or equal to one
The proof of Proposition 5-2 is presented in AppeY.

Theorem 5-1: Interactive functions,(r) andh,,(r) change monotonously with the

change ofh (7).

The proof of Theorem 5-1 is straightforward usirguétion (5-3) and Proposition 5-
1.

Inequity (5-7) is proved as follows:

According to Proposition 5-17, = 0. According to Proposition 5-27,, 2 1. Hence,

the following inequity holds because alll elementi;la,;b(Atl)O are nonnegative:
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h (0), =ay;h,; (0), + ﬁzﬁlsb(Atl)O =h,;(0);. (5-9)

If the condition of Component 1 just after thetfiPM action has not worsened since

just before this PM action, i.eh,,(0), < h,,(At,),, the following inequity holds

because of Equation (5-6) and Theorem 5-1:
h (t,)o 2 h (0),. (5-10)

Inequity (5-7) is obtained by a combination of logyg (5-9) and Inequity (5-10).

Inequity (5-8) can be proved using a similar apphoa

Inequity (5-9) indicates that the Interactive Hakz&éntH) of Component 1 can be
higher than its original independent hazard duethi effect of the unrepaired
subsystem. The inequity symbol in Inequity (5-93draes the equality symbol if and

only if &, is a null vector. A null vectod, means that the failures of components in
subsystem do not affect the failure of Component &, is a null vector, element
a,, is equal to one (see Appendix B6). Inequity (S8licates that the IntHs of the

components in the subsystem, and hence the subsysé&e been reduced after the
first PM action. The inequity symbol in Equationg&pbecomes equality symbol if

and only ifa, is a null vector. A null vecto&, means that the failure of Component

1 does not influence the failure of componenthiengubsystem.

The Integrated Interactive Hazards (IntIHs) of Comgnt 1 and the components in
the subsystem between the first PM action andeghersl PM action can be obtained
using Equation (5-6), as well as the relationshgiwleen hazard and integrated

hazard:
H, (1), = [[auh, (1), + @ 0, (At +7),]d7 (5-11)
0
H (1) = [[dshy; (1), +8,hg, (8t +1) ]dT . (5-12)
0
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The FDFs of Component 1 and the components inubsystem after the first PM

action are

F(7), =1-exp[-H,(7),] (5-13)
and

{Fai(7)} ={1-expFHy, (1), ]} (1=23...M), (5-14)

where, F (1), and F,(7), are the FDFs of Component 1 and Componeint the

subsystem after the first PM action, respectivély; (), is the I element in the

vector H (1), .

5.2.3 SYSTEM RELIABILITY

Generally, the reliability of a system needs todadculated based on the above
modified heuristic approach by means of a computEwever, in some special
scenarios, closed analytical formulae for predgctine reliability of a system after

the A" PM action can be obtained. Two such scenarioarsatysed as follows.

5.2.3.1 The same single component in a series system is repaired in all PM

actions

The system for this scenario has been shown inr&igtl. Based on Equation (3-2),

the original reliability function of the system be¢ PM can be expressed as:
R(7)o = Ri(7)o Ry (7)o, (5-15)

where, R (7),, R (1), and R, (7), are the original reliability functions of the amti

system, Component 1 and the subsystem in thismyséspectively.

For the following analysis, a general equation ¢satlibe the relationship between
integrated hazard and reliability is needed. Acowrdo the definition of hazard, the
relationship between hazard and reliability is gty [8]
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h(t) = —%m R(t). (5-16)

Equation (5-16) leads to the following equation:
t
R(t) = R(0) exp[- j h(t)dt], (5-17)
0
where, R(0) is the initial reliability value. WheriR(0) =1, Equation (5-17) reduces

to Equation (4-1).

The original reliability functions of Component hdathe subsystem can then be

expressed using Equation (5-17) as follows:
Ri(r)o = Ri(o)o exp[_Hl(T)o] ) (5-18)
Rip(7)o = Ry (0)o €XPIH o, (7),] (5-19)

where, R, (0), and R, (0), are the initial reliability values of Componentafhd the
subsystem before PM, respectively. In most caBgl), and R, (0), are both equal
to one. In this thesis, they are always assumednas H,(7), is the IntlH of

Component 1 before PM. It is given by
H, (7)o = [[a:h, (1), + 8,0, (1)o]dT (5-20)
0

H,(7), is the IntIH of the subsystem before PM and givgn

T

Hop(0)o = [[agsh, (1) + i, (1)ld7 (5-21)

0

where,a g, is an equivalent state influence coefficient tpresent the effect of the

failure of Component 1 on the subsystem. Funchy(r), is the equivalent IndH of
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the subsystem. The calculation @f, andh;, (7), is dependent on the RBD of a

system. When a subsystem is a series system,

&wn=ﬂamo

M T
= |‘J exp[- j h(r),dr] . (5-22)
1= 0
Then the equivalent state influence coefficiend} is given by

M
Ogq = Zail ' (5-23)
i=2

where, a, is the 1" row first column element in SINI] .

The equivalent IndH of the subsystem is given by

hes(D)o =33 @, h, (D) (5-24)

i=2 j=2

where, a; is the ' row j" column element in SIMa] . Functionh (1), is the IndH

of Component j before PM. In the real world, thdcaktion of oS, andh, (7),

will be more straightforward because Component dallg interacts with a few

components in the subsystem.

Substituting Equations (5-18) to (5-21) into Eqoati(5-15) and considering the
condition thatR, (0), and R, (0), are both equal to one, give

RS(T)O = eXp[_Jr.[allhll(r)O + ﬁZHISb(T)O + asemhll(r)o + hlesb(r)o]dr] ' (5-25)

At time t;, the system has its first PM action and Compodestrepaired. After the

148



Reliability Prediction of Complex Repairable Systemsan engineering approach

first PM action, the reliability of the system beues

R, (1), = R(7),R(7),, (5-26)

where, R,(7),, R (7), and R, (7), are the reliability functions of the entire system

Component 1 and the subsystem after the first RMgaespectively.
R, (1), = R (0), exp[-H,(7),]. (5-27)
H,(7), is the IntIH of Component 1 after the first PMiant It is given by

T At +7 ~
H, (1), = [ayh, (1),dr + [d,h,(1),d7. (5-28)
0

Ay

For a repairable system without failure interactithre characteristics of the hazard
of the subsystem are assumed to be unchangeablbgimse and just after a PM
action. In contrast, when failures of a repairablstem have interactions, the
characteristics of the hazard of the unrepairedystbm just after a repair can be
different from that just before this repair as gsall previously. These differences
are not ignorable in the calculation of the relipiof the system. The reliability of

the subsystem after the first PM action needs todbeulated using its new IntH as

follows:
Ry (7); = Ry, (0), exp[-H 4, (7).], (5-29)

where, R, (0), is the initial reliability value of the subsystemhich is equal to its

reliability value just before the first PM action:

Ay

Ry (0); = expl- [[ag;h, (1), + iy (7)]d7] (5-30)

H (7), is the IntIH of the subsystem after the first Pdfi@n. It is given by
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Ay +T
j he,(7),dr. (5-31)

A

H (), = [agsh; (1), d7 +
0

Rewrite Equation (5-31) as follows:

Aty +71 Aty +1 Oty +T

J.hlib(r)odr-'- Iagmhll(r)odr_ J.asemhu(r)odr'

Aty A A

H (1), = [agyh, (7),d7 +
0

(5-32)
Substituting Equations (5-30) and (5-32) into Eaqura(5-29), gives
T At +7
Rp(7): = Ry (7 +Aty), eXp[_.[ gqhy (1), d7T + J-a:mhu(r)odr] . (5-33)
0 Aty

Since only the constant interactive coefficiente aonsidered in this chapter,

Equation (5-33) can be rewritten as
Ry(7); = Ry(T +At,)g expE[ agy[hy, (1), =y (7 + At ) ]d7]. (5-34)
0

Equation (5-34) indicates that the characterisbicthe reliability of the subsystem
after the first PM action changes unlexy is zero (the condition of Component 1
does not affect the condition of the subsystem,ofr), = h,,(7 + At,), (the repair
does not change the state of Component 1,(f), <h,, (7 +At,), (the repaired

Component 1 is better than old one), the religbiit the subsystem after the first

PM action is improved. Ih,,(7), > h,(7 + At,), (the repaired Component 1 is worse

than the old one), the reliability of the subsystiter the first PM action decreases.

These inferences are also correct when the systam the T PM action
(i=23...,n).
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Substituting Equations (5-27), (5-28) and (5-33p iRquation (5-26), the reliability
of a system after the first PM interval is given by

_ R(z+t), fla® _ :
R = ), Ol (r+ 8o = (@ + aihy(0),

—@,h, (T +At,),]d7]. (5-35)

The reliability function of the system after th® BM interval can be obtained by

continuing the above derivation procedure:

R+ L), : n
R(7), = i:l R 0), eXp[J.[asmhll(T +2Ati )o = (a1 +a gy, (1),
R(+3A0), °

~d,hy, (T + Y At ),]dr], (5-36)
i=1
where, R, (7), is the reliability function of a repairable systemth failure
interactions after the "h PM interval. R (0), is the initial reliability value of
Component 1 after thé"nPM action. Functiorh,,(7), is the IndH of Component 1

after the ' PM interval.

Comparing Equation (5-36) with Equation (3-9), aren find that the reliability
prediction of repairable systems with IntF is muaatre complicated.

5.2.3.2 The same single component in a parallel system is repaired in all PM
actions

The system for this scenario has been shown inr€&igt8. The same as in Chapter 3,
failure distribution function will be used for deaition in this subsection.

After the first PM action, the reliability of Compent 1 is the same as Equation (5-
27), but the reliability of the subsystem is diffiet from Equation (5-34).
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_ R({@+AL), ~R(T+AL), [ e _ )
Ra( == rra, O Flha(r+At), ~hu(@)Jdr]. - (5-37)

Note thatRS(lr)OR:(R;(T)O is the reliability of the subsystem before PM. Eenthe

conclusions for Equation (5-34) are also correcEgquation (5-37).

Generally, the failure distribution function of gsgem with IntF after the"hPM

interval is
Fl(r+zn:Ati)O—Fs(r+Zn:Ati)o . .
Fy(1), =1~ AT —expl[ag,[h, (7 + YA ), ~hy(7),]d7]]
R(T+)A), °
LR 0), €XPE[[@ua(1), + Gl (r+ 30 ),Ja]. (5-39)

where, F,(7),is the failure distribution function of a repairabtystem with IntF

after the A PM interval.

53 AN EXAMPLE: A MECHANICAL SYSTEM WITH THREE
INTERACTIVE COMPONENTS

A complex repairable mechanical system with IntEamposed of three items. The
RBD of the system is shown in Figure 4-15. Itemsla single component
(Component 1), but both Item 2 and Item 3 can beeeia single component or an
assembly consisting of several components. The efireti control limit of
reliability is R, (1>R,>0). Component 1 is assumed to be replaced by emticdl
new one in each PM action. The independent reiigklinctions of the original

system and Component 1 are

Rs (1), =expCAgt) (5-39)
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and
R, (1), =expCAL). (5-40)

The subsystem is composed of Item 2 and Item 3o/oag to reliability theory, its
reliability function is

R (D)o = €XpWA; — AL, (5-41)

where, R (t), is the reliability function of the subsystem witho failure

interactions.

The interactive coefficient matrix of the system is

6, 6, 6,
(O] =|6,, 6, 6,]. (5-42)
Gy 05, 0O

The corresponding SIM is

a, a4, d;
[a®)]=|ay a,, ayl. (5-43)
a3 di g

Along with Equation (4-39), the stable IntIHs oétitems before any PM are
H (1), = AT +a,A,r (1=123), (5-44)

where, A, is the hazard of the subsystem and can be catculat Equation (5-41).

Parametera,; is the state influence coefficient that represeahts effect of the

failure of the subsystem on the failure of IténG =1, 2, 3) . It is given by

— a,A, + 0k,

a...
shi Az +/]3

(i=123). (5-45)
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The FDF of the system before PM is

3 3
Fs (t)o =1- eXp(—tZ ail/‘l - tAsbz asbi) : (5'46)
i=1

i=1

The first PM interval can be calculated using Epura(5-46):

a=— R . (5-47)
Z (@A +agdg,)

i=1

Only Component 1 is repaired in the first PM acti®he IntIHs of these three items

after the first PM action are
H (1), = a AT +a A, (T+4L) (=12 3). (5-48)

Hence, according to Equations (4-39), (4-40) and3} the FDF of the system after
the first PM interval is

3 3 3

Fs (T)l =1- eXp(—Tz ai1A1 - TAstasbi - At1Asbzasbi) ' (5'49)
i=1 i=1 i=1

Generally, the FDF of the system after tfferM interval is
3 3 n 3

Fs (T)n = 1_ eXp(—Tz ail/il - T/‘sbz asbi - Asb(z At| )Z asbi) (5'50)
i=1 i=1 i=1 i=1

The " PM interval can be calculated by

n-1 3
—InR, - (zAti )zasbi/]sb
At - i=1 i=1 ]

n

. (5-51)
Z (@A +agdg)

i=1

Figures (5-3) to (5-7) present the results of Mo&arlo Simulation (MCS)

experiments and corresponding theoretical calaraising SSA and ESSA. In these
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simulations, the interactive coefficient matrix is

o + 1
, 2550
6M]=|— 0 0. 5-52
[6M1=1 5, (5-52)
R
10 |

Therefore, the corresponding SIM is

(250 10 5 |

249 249 249

25 499 1
at)] = . 5-53
[a(t)] 498 498 996 ( )
25 1 499

1249 249 498

From Figure 5-3 to Figure 5-7, it can clearly beersdhat failure interactions
shortened the interval between two PM actions refpairable system. In some cases,
failure interaction can reduce the available nunifePM actions of a system (see
Figures 5-4, 5-6 and 5-9). Figure 5-9 was drawretdasn the simulation result 2
(Figure 5-4). The required minimum operating timedha great influence on the
available number of PM actions (refer to Figure &l Figure 5-6). The required
minimum operating time is the demanded minimal apeg period of time between
two PM actions due to maintaining production anst@ifectiveness. A system will
no longer be maintained if the demanded PM intetwahaintain the reliability of
this system above a required level is shorter thanrequired minimum operating
time. The available number of PM actions of theteysdecreased quickly with the
increase of the required minimum operating timegufé 5-8 shows that the
interactive failure distribution function of a sgst is identical to its independent
failure distribution function if its interactive efficient matrix is a null matrix. This

result justifies the result shown in Subsection2tof Chapter 4.

155



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

Imperfect repairs (tests=300 times)

0.12 T T T ‘ ‘ ‘
Minimum required operating time=720 hours
R0=0.9 MTTF1=24000 hours MTTFs=17500 hours
~ 01 B
frg
L /4
2 0.08 f f .
Q 2
= 2, 2
>2< K
o 0.06F %% R
= A ]
2
7 i i
= 0.04 s
) i
5 s b IndF -SSA
8002 27 failure time -MCS |
—IntF -MCS
—~ IntF -ESSA
O L1 | 11

| | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time, t (h)

Figure 5-3. Simulation result 1 for the IntF of arepairable system
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Figure 5-4. Simulation result 2 for the IntF of arepairable system
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Imperfect repairs (tests=1000 times)
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Figure 5-5. Simulation result 3 for the IntF of arepairable system
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Figure 5-6. Simulation result 4 for the IntF of arepairable system
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Imperfect repairs (tests=1000 times)
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Figure 5-7. Simulation result 5 of the IntF of a epairable system
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Figure 5-8. Simulation result 6 of the IntF of a epairable system
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Figure 5-9. Comparison between the time between oaPM actions of

the system with interactive failures and independetrfailure

5.4 SUMMARY

In the case of a repairable system with interadtieares, the initial time to calculate
the IndHs of components after a repair is differéom that of the remaining
unrepaired components after this repair. Repair iogorove the reliability of a
system in two aspects: decreasing IntH of the wreg@ components and increasing
the reliability of repaired components.

The calculation of the FDF of a system with IntFden multiple PM intervals
includes two steps: firstly, the changeable IntHs repaired and unrepaired
components are calculated using AMIF and then tee mteractive reliability
function or FDF of the system with multiple PM acts is calculated using SSA. The

simulation experiments have shown that ESSA presentthis chapter is accurate.

Failure interactions will shorten the time betwée&o PM actions if the PM strategy
is based on the reliability of a system. Interaetfailure can reduce the available
number of PM actions of a system. When conductikg &he needs to consider the
failure interactions between influencing componesmtsl affected components. An

affected component in a system should be maintaingth its influencing
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components simultaneously, or otherwise, the dwted unrepaired influencing
components will accelerate the failure of the regghtomponents.

160



Reliability Prediction of Complex Repairable Systemsan engineering approach

Chapter 6
HAZARD PREDICTION USING HISTORICAL FAILURE

DATA AND CONDITION MONITORING DATA

6.1 INTRODUCTION

The Extended Split System Approach (ESSA) can bed usr predicting the
reliability of repairable systems with Preventiveaibtenance (PM) and interactive
failures. To use this approach for prediction, itleiependent reliability functions of
repaired components and the original system befdeshould be known. These
reliability functions can be estimated by existieghniques or models if historical
failure data are sufficient. However, historicdldfee data are very difficult to obtain.
The challenge is to conduct a reliability predintiwhen historical data are sparse or
even zero. On the other hand, condition monitoridtada is often available. A
Proportional Covariate Model (PCM) which combineailure and condition
monitoring data for hazard prediction is developedhis chapter. In addition, the
strategy of determining PM lead time using the hdZanction and the reliability
function was also studied because PCM was develapedtimate the hazard of a

system.

The rest of this chapter is organised in the foilgvmanner. In Section 6.2, the
method of determining PM lead time is investigate@M is developed in Section

6.3, and conclusions are presented in Section 6.4.

6.2 PREVENTIVE MAINTENANCE LEAD TIME DETERMINATION

As mentioned in Chapter 3, this thesis aims to sttppptimal PM decisions. The
objective of PM is to maintain an asset that wauddform at a required reliability

level and avoid catastrophic failures using thedsipossible cost. To achieve this
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objective, PM must be conducted at the right tiRM. lead time is often determined
from the aspect of reliability of a system as dest@ted in the previous chapters.
One alternative measurement of reliability is hdzarhe hazard function is also
often used to predict when PM should be carried[Dait 25, 136, 303]. The hazard
function measures the failure rate in a systemismbncerned with the probability

that a system will fail in the next intervél, At] if this system still survives at tinte

The hazard function is related to the reliabiliynétion. There is a need to
investigate the relationship of determining PM |¢ile between using the hazard
function and the reliability function before deveilog PCM because PCM is
developed to estimate and present the hazardystars. In the candidate’s view the
PM time predicted based on the hazard function sig@the cross-referenced against
the reliability function when the failure patterh a system is composed of several
different failure distributions. This section illugtes this argument through some

case studies.
6.2.1 Hazard Functions and Corresponding Reliability Fundions

General relationship of hazard function and religbiunction is well established. In
this section, an explicit expression for hazardcfioms and corresponding reliability
functions are presented in order to illustrate tendidate’s argument more

effectively.

Research and industrial experiences have showrfdihate rate or hazard has some
common patterns [25]. The bath basin pattern shiowfigure 6-1 is chosen as an

example.

The bathtub failure pattern
is a typical failure pattern of

P P ht) 4 1 I i
a mechanical system. It

consists of three phases.

v

& & t
Figure 6-1. Hazard: bathtub curve

Phase | represents infant
mortality, ie., the
probability of failure

declines with age. Phase Il represents randonréaiiie., the probability of failure is
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constant. Phase Ill represents wear-out, i.e.pthbability of failure increases with
age. The hazard function of the bath basin faipatern is given by Equation (6-1)
which indicates that in both Phase | and lll, tlystem exhibits Weibull failure
distributions with shape parametefs< add £, > 2respectively. On the other

hand, this system has, in Phase I, an expondatlale distribution with a constant

failure rated = (B,/n,)(&,1n7,)"™.

&(L)ﬂrl O<t<é 0<p <1 p,>0
M T
h(t) = ﬁ(i)ﬂf1 §st<4, (6-1)
'
&(é)ﬂrl +&[(t__£2)]ﬁz—1 t=¢&, B,>1 n,>0.
,71 ,71 ,72 ,72

The reliability function corresponding to Equati@@i1l) is:

xpl(_ )" ] 0st<g 0<f <1 1,>0
R() = exp[—ﬁl(‘cl)ﬂfl(t—fﬁ;l)] £ <t<, (6-2)
expi- 2t (At (t-g + 1) -[L42)8) 3¢, g,>1 p,>0.
,71 ,71 ﬁl ,72

Hazard functions and reliability functions can teided from each other. However,
a system that has a low hazard cannot guarantéetthas high reliability. This

argument can be illustrated using the followingregbes.

6.2.1.1 Example 1: Two machines

The following scenarios of two machines are corrside

Machine 1.7, =125years, n,=1year, 3, =05 p,=3, & =15years and

¢, =4 years

Machine 2:n, =125years, n,=1year, 5, =08 p,=3, é =05year and

¢, =88 years
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Substituting the above parameters into Equatiors) (&nd (6-2) respectively, the

changes of both the hazard and the correspondiiadpifity can be demonstrated in
Figure 6-2 (a) and (b).

Hazard ,h(t) (ye:?)

|

/

12

) Machine 1 -
I
61
44 h
4.5\ 5/.63 Machine 2 ¥
1.638 2 \ / f
0.769 \ 4
04 /C 7 , ,
2 4 6 8 & 10
Time, t (years)
(a) Hazard
1
0.9 -
081 Machine 1
0.7 1
0.62 —g5—
=< os \
o
Z 044 \‘\ \
2 o3
g \ \
< | Machine
01 ?\\
0.024 —5 ‘ : x
2 4 4736 8 10 12
' Time, t (years)
(b) Reliability

Figure 6-2. Hazard curves (a) and the correspondmreliability curves (b)

Figure 6-2 shows that both the hazard and thebitiaof Machine 1 are higher than

Machine 2 between 4.5 years and 5.63 years. Ittitieal limit for the hazard is set

to be 1.638, then when the hazard of Machine lhe=athis level, the hazard of

Machine 2 is only 0.769. The hazard of Machine &% Ibelow the alarm limit.

However, the reliability of Machine 1 at that poiat0.62, whereas the reliability of

Machine 2 is 0.024, much lower than that of MacHin& his indicates that in some

cases reducing the hazard does not guaranteeraasedn reliability.
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Currently, two major methods are used to predicttPhd based on hazard functions.
The first method establishes a hazard alarm lim&dvance. The time when a hazard
of an asset reaches this alarm limit is regardeith@sime for PM [15]. The second
method takes the time when the hazard functionecshows the wear-out phase of
its life cycle as the PM time [25]. According teethbove analysis, it is shown from
the first method that using a predefined alarmtlimipredict PM time based on the

hazard function can be misleading in some cases.

If the second method to predict PM time using theand function is employed, i.e.,
& of about 8.8 years is chosen as an alarm timdé°My it can be found that the
reliability of Machine 2 is lower than 0.01 at tiie In this situation, choosing time
& as the PM time is certainly inappropriate becathgeprobability of the system

failure well before the alarm time is very high.

6.2.1.2 Example 2: Wheel motors

The above analysis method can also be used to stadgs where the failure
distributions of systems are non-Weibull. For exemm the case given by Jardine
[15], the hazard function was derived based on RkMg historical oil monitoring

and maintenance data of mine haul truck wheel motbwas:

1.891
h(t) = &O(# e?® (6-3)
23360\ 23360

where, Z(t) is the composite covariate which is composed giiicant covariates

(here they are the values of different particlesiipand their associated weights. For
application convenience, the hazard control lim#gswconverted into a composite
covariate control limit curve shown in Figure 6H3the following covariate function

Z(t) is used to simulate the monitored composite cat@iof a wheel motor, i.e.,

0.1 0<t<10" hours

Z(t)= 01+ 1 (t2%% 10" t>10" hours’
1.48745<10"

(6-4)

then the hazard function of this wheel motor iegiby
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2891 ot 1891501 0<t<10* hours

h(t) = 23360 2336¢

2891 t 1891 Ol+;( 2891 1011564)] t >10* hours

23360 2336¢ T 1.48745¢10"
(6-5)

According to Equation (6-2), the reliability funati of this wheel motor can be

obtained. It is given by

014 2891
et

expF———— 0<t<10* hours
t) = :
expi- e [ 1564 14874510 (exp £ ) - e2.463527)]}
233602 @246%527 “1.48745x 101

t >10* hours

Figure 6-3 shows the changes of the composite @ieat(t) and the reliability of

the wheel motor (the first wheel motor).

From Figure 6-3 (a), it can be seen that the cotgasvariateZ(t) had exceeded

its control limit (1.21996) in the inspection at slking aget=11384 hours. This
wheel motor was recommended to be replaced imnedgidtigure 6-3 (b) indicates
that the reliability of this wheel motor at that ment (=11384 hours) is 0.84. In
addition, it can also be seen from Figure 6-3 thatreliability of the wheel motor
fell under 0.91 (0.909) when its composite covarstarted to increase at the age of
10000 hours.

Furthermore, in order to make a comparison, thepomite covariate of another
wheel motor is assumed to be represented by the-Isw in Figure 6-3 (a). This
wheel motor is denoted as the second wheel motorder to distinguish it from the
wheel motor mentioned above (the first wheel motban be found from Figure 6-
3 (b) that the reliability of the second wheel nrot® much lower than the first
between 8000 hours and 12000 hours. According @octintrol limit curve, both
wheel motors are recommended to be replaced asdahee working age (11384
hours). However, the reliability of the second wheetor is 0.74 at that moment,
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much lower than the reliability of the first at tkame time (0.84). The solid-line in
Figure 6-3 (b) demonstrates that the reliabilitytted second wheel motor has fallen
under 0.84 at working age=10000 hours (0.817). dfoee, if the reliability of the
second wheel motor is to be maintained above 0t8hould be replaced before
10000 hours, 1384 hours earlier than the replacertiere suggested by the
composite covariate limit curve.

N 45
) o
T 4 /
g 35
o 3 Control limit
'g o5 curve
g.
s 7
1.21996 157 The second wheel motor —
085 '} 3 ~—_
o1 05 . Th.e fir:c,t W.heel.moior N . 11384
: 0 7 7 7 7 7
0 2000 4000 6000 8000 10000 (2000 14000 16000

Worki ,t(h
(a) The composite covariate(t) orking age. t ()

1.2

0.90¢
1 0.8¢

0.8 T— The second@ The first whee
motor
0.817 _ 0.74 \
0.6 — \\
0.4
0.2 \

0

Reliability, R(t)

0 2000 4000 6000 8000 10000 12000 14000 16000

Working age, t (h)
(b) The reliability of the wheel motor

Figure 6-3. The composite covariat&(t) (a) and the reliability of the
wheel motors (b
6.2.1.3 Example 3: Mechanical test rig

A system often has different hazard functions urdifferent operation conditions.
An example is shown in Figure 7-13 which was oladinsing a bearing test rig. The

test rig and the experiments will be presentedhag@er 7. Figure 7-13 is reproduced
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here for convenience. The failure distribution fume of the test bearing
corresponding to this figure is shown in Figure47ui Chapter 7.

From Figure 7-13, it can be seen that a commonrtdaakarm limit cannot be
predefined for the test bearing under two differeoniditions. The initial hazard of
the bearing under the first condition was highamntkthe hazard at 1600 hours of the
bearing under the second condition. Figure 7-14catds that at 1600 hours, the
failure probability of the bearing under the secawmthdition was almost 100%. In
this case, only the reliability function can be dis® determine the time for
conducting PM. For example, if the predefined f@ligy limit is 50%, then the PM
time for the bearing under the first condition waS0 hours (20.16 million
revolutions) whereas for the bearing under the mgooondition was 900 hours

(50.84 million revolutions).
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Figure 7-13. Hazard of the right bearing

6.2.2 Comments

Using the hazard function to support PM decisiorkinguis not suitable for those
failure patterns, in which the failure charactécsof an asset at different stages are
represented using several different failure distidns. The resulting PM decisions
based on the hazard may not be an accurate refieztithe reliability of assets. The

predicted PM time based on the hazard function Ishiherefore be cross referenced
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against its corresponding reliability functions.w&ver, the investigation of hazards
is still very useful because the reliability furmets of systems or components can be

derived from their corresponding hazard functions.

6.3 PROPORTIONAL COVARIATE MODEL — DEVELOPMENT

A Proportional Covariates Model (PCM) used to pecethe hazard of a system using
condition data is developed in this section.

Condition data are often termed as covariates linhiéty engineering. Covariates

can be classified into two categories:

(1) Environmental covariateZ,(t .)The changes of these covariates will cause

the characteristics of the hazard of a system &mgé. In the case study of
the motor presented by Ebeling [16], the load placa the motor was an

environmental covariate.

(2) Responsive covariates, (t . Yhe changes of these covariates are caused by

the changes of the hazard of a system. Most of itondmonitoring data
belong to responsive covariates and are symptona thflect the

deterioration of a system.

This distinction between environmental and respansiovariates is similar to the
distinction made for external and internal covasads discussed, for example, in
[260]. Distinguishing environmental covariates fromesponsive covariates
sometimes can be critical to an accurate prediatibthe hazard of an asset. This

argument can be best demonstrated by the folloexagnple:

An oil analysis is often conducted to assess tmeliton of an engine. Assume that
the initial oil entering the engine is clean and ddbris coming from the engine
enters the oil. Then the metal debris in the oil olithe engine can be used to
indicate the wear condition of the engine. For eplamna total of Xug metal debris

in the oil indicates that this engine has been warnX pg. In this case, this metal
debris is the responsive covariate. If this contet@d oil is not filtered and enters
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the engine again, this Xg metal debris becomes an environmental covaratause

it will generally accelerate the wear of the engiHewever, this contaminated oil

normally will not cause exactly Xig metal wear from the engine. Hence, to
accurately predict the hazard of a system usingvareate, one needs to know not
only the value of this covariate, but also the rail¢his covariate — whether it is an

environmental covariate or a responsive covarR@M focuses on using responsive

covariates for hazard prediction.

It is noted that the Proportional Hazard Model (PHA%B0 predicts the hazard of a
system using historical failure data and conditioanitoring data. PHM has been
used in various applications [4, 15, 16, 258, 28%¥eling [16] presented two case
studies. One of these was to analyse the effettteofoad placed on a motor on the

design life of this motor for a particular reliatyllevel.

The parameters of PHM are normally estimated usiveg Maximum Likelihood
Estimation (MLE) method. PHM needs sufficient faduata to estimate the baseline
hazard functiorhg(t) and the weight parameters for each covariates hortcoming
limits the effectiveness of PHM significantly whemstorical failure data is
insufficient. In addition, the accuracy of predictiof PHM can be affected by the
fluctuations of covariates greatly. PHM does noflect the human’'s general
understanding of condition monitoring when it isedsto model the relationship
between the responsive covariates and the hazardh ¢fystem. A general
understanding of PHM is that a system has a baskkzard when the covariates of
the system are zero. When the covariates changdyahkard of the system changes
correspondently. However, the relationship betweesponsive covariates and
hazard is that the responsive covariates of a systeange with the change of its

hazard.

The PCM is developed to address these limitatidnBHiM for the applications in

reliability engineering.

6.3.1 Concepts

PCM uses the same assumption as that used in PdMssumes that covariates of a
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system, or a function of these covariates, aregtmmal to the hazard of the system
— an assumption that has been supported by emmnaence [4] and has also been
validated by experiments conducted by the candi@zte Chapter 7).

A common understanding of mechanical systems iityfegs that increased

deterioration more often than not increases thelihkod of failure [176, 177].

Accurate condition monitoring data (covariatespaystem should reflect the degree
of the deterioration of the system [304, 305]. Efiere it is reasonable to assume
that a covariate of a mechanical system is a cootis and monotonous function of
the failure rate (hazard) of the system. The mattiea relationship between these
covariates and system hazard can be modelled ferehit ways, such as a linear
function. As a result, the assumption that covasalr their transformed variables, of

a system are proportional to the hazard of theegy$s justified.

This same assumption has been used by Cox [306} @eveloping PHM. Over last

30 years, PHM has found numerous applications usagistic cases and data. In
particular, this assumption has been used to stuelshanical systems [16, 67, 258,
307]. Barbera et al [208] developed a conditionedasnaintenance model for
repairing equipment based on the same assump@brihih hazard of equipment is a
linear function of the condition of the equipmertieyns and Smit [305]

demonstrated that the measurement of the nateéncy shift of a fan had a linear

relationship with the damage level of the fan tigtoout his experiments.

In PCM, W(Z, (t)), a function of multiple covariates, is expressedodiows:

W(Z, (1) =CHh(), (6-7)

where,Z, (t) is the covariate function which is usually timepdedent;C(t) is the
baseline covariate function which is also usuaifget dependent ant(t) is the

hazard function of a system. Considering the fléigypbof Weibull distribution,

hazard functiorh(t) is assumed to have the form of Weibull model ia thesis.

The formulation of the function of covariatd4Z (t pPlays an important role in
improving the accuracy of hazard estimation whengusultiple covariates. Due to
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the limit of candidature, this thesis only inveates the simplest scenario where only
one covariate is utilised, and the formulationhe tovariate is given by

W(Z (1) =2Z@). (6-8)

The PCM for the simplest case is obtained by suiisty Equation (6-8) into
Equation (6-7):

Z, (t) = C(t)h(t). (6-9)

In PCM, the hazard is the explanatory variable #rel covariate is the response
variable. The procedure to estimate the hazardtimmf a system in PCM is

different from that in PHM although they have samifunction form.

6.3.2 Procedure

The procedure of PCM used in this study is outliasdollows:

(1) Identify failure distribution of a system using Mtsstorical failure data §}

(i=1, 2, ...,m,), wherem, is the number of failure data.

(2) Estimate the initial hazard functidm, (t of the system using the Maximum

Likelihood Estimation (MLE) method. The techniquesestimating a hazard
function using historical failure data can be foumanost books on reliability,
for example, in [12].

(3) Analyse the co-relationship between the covariated the hazard of this
system. A covariate should not be used for upddatiegestimation of hazard
if that covariate has a poor relationship with thezard of a system; or
otherwise, updating the estimation of hazard ugimg covariate will be
inaccurate. Correlation analysis is a mature tepimiand can be found in

commercial software such as Matlab.

4) Estimate the baseline covariate function. Fromititeal hazard function and
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historical covariate data, a set of discrete valtms baseline covariate
function can be generated:

(k=123....m). (6-10)

wherem, is the number of condition monitoring data.

Then the baseline covariate function can be obdaimgng the discrete data set

{C.t.} (k=1 2 3...m) and regression techniques. The recommended fumsctio

to represent the baseline covariate functions dechhe following models:

(a) the polynomial models of various orders,

C(t)=a, +at+at?+---, (6-11)

(b) the multiplicative model,

C(t) = at® (6-12)

and (c) the exponential model

C(t) = ae™, (6-13)

where, parameters,, a,, a,, a, andb are to be identified.

If these nonlinear models can be assumed to bimsitally linear, standard linear

regression procedures can be used to estimate thadels, or otherwise nonlinear
regression procedures are needed. The requiregssegn techniques can be found in
the reference [308].

(5) Update the hazard function of the system using nemdition monitoring

data {Z (t;)} (j=1, 2, ..., m,). Parametem, is the number of new
condition monitoring data.
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i=4L2...m,m+lm+2..m+m). (6-14)

As the hazard functioh(t) is assumed to have the form of Weibull model,

B

h(t)=—ﬁt5'1, then the estimated hazard function of the sysﬁa(rlr) can be

obtained using the regression techniques and basdte discrete updated hazard

data set fh,t; } (i=22...m,m+1lm+2..,m +m). Note that in some

cases, only the latest condition monitoring datatead of whole condition

monitoring data will be used to update the hazatuoation.

(6) Update bothC(t) and ﬁ(t) using the above steps (1) to (5), if new failure

datum is obtained.

(7)  Calculate the updated reliability function of thgstem using the updated

hazard function.

(8) Predict the reliability of the system using the atedl reliability function and

make preventive maintenance decisions.

In the above procedure, steps (1) to (4) are usegktimate the baseline covariate
function. These four steps are not applicable iiufa data is zero. However, the
baseline covariate function can still be estimatedier certain conditions (see
Subsection 6.3.7).

6.3.3 Comparisons between PCM and PHM
PCM differs from PHM as its principles and methadpl are quite different.

In PHM, a baseline hazard ratg(t is)used to describe the relationship between
covariates and hazard, whereas in PCM, a baseliwariate functionC(t) is

employed to describe the relationship between cates and hazard. The baseline

hazard ratéhy(t )s the hazard rate without influence of covarialéss covariate
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independent. The baseline covariate functft) represents the rate of change of

covariates when the hazard changes. It is covadependent. In PHM, covariate
with zero value indicates that the hazard of aesgsthange based on its baseline
hazard; whereas in PCM, covariate with zero vahgicates that the hazard of a

system is zero.

In PCM, the hazard function of a system estimatadetl on different historical
covariate data are consistent, whereas in PHMgthienated hazard function may
change in form when a different covariate is ugdds phenomenon can be obtained

because different covariates can have differehientces on the hazard of a system.

6.3.4 Tracking Changes of the Hazard function

Most statistical models use historical failure dataly. These models predicted
hazard or reliability using the tendency method,, iaccording to the trend of the
hazard function derived from historical conditionisa system. These models can
lead to unacceptable errors if the conditions ef shistem change significantly. To
improve the prediction accuracy, on-line conditinanitoring data should be used in
the prediction models because these data cantréfletatest conditions of a system.
PCM predicts hazard using both on-line conditiomitaring data and historical data
including failure data and condition monitoring @aPCM based hazard estimation
can automatically track real changes in the hakardtion which can change due to
alterations in the operating conditions of a systéms capability of PCM is proved

as follows.

In practice, the conditions of a system often cleaagd when a change occurs, the
hazard characteristics of the system will change 8everal researchers including
Jiang and Murthy [309] have revealed and modelldd thange of the hazard
characteristics through the investigations of histd failure data of systems. In this
case, the overall hazard of the system is ofteresgmted using multiple sectional
distributions rather than a single distribution $80On the other hand, PHM
indicates that the hazard characteristics of ttstesy can continuously change with
the change of environmental conditions. Supposehtrard function of a system

changes at time, . Let
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Z,(t) =C(O)h, (1 (6-15)

be the PCM based model of the system derived fristorical data. Aftett,, the

hazard function of the system changed\t) . The hazard functioi,(t) can then

be expressed as:
h, () = hy(t) + (1), (6-16)
where, functions(t) represents the difference betweeiit andh,(t ).

Let Z,(t) be the covariate aftag. If it is assumed that the relationship between th

covariate and the hazard of the system remainsahee, the new covariate can be

described by the following equation:
Z,(t) = C(t)h,(t)
= C(t)h, (t) + C(t)e(t). (6-17)

In PCM, the new covariate is used to update thenattd hazard:

ht) = ZCZ((tt)) , (6-18)

SubstitutingZ, (t )with Equation (6-17), gives
h(t) = h,(t) +£(t) . (6-19)

Equation (6-19) indicates that the updated haaandtfon according to PCM is equal
to the new hazard functioln, (t , Which is different from the original hazard fuioct

h,(t) due to the change in the operating conditionfi@fstystem.

In order to justify the above analysis, a seriesiofulations were conducted. The
simulation results are presented in Figures 6-8-6 Figures 6-4 and 6-5 describe
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the random failure data of a system and the nosedlcovariate data respectively.
Figure 6-6 displays the estimation results wherfedtht numbers of on-line
condition monitoring data
were used to update the

estimated hazard function.

@
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@
o
o

o

Figure 6-6 clearly indicates °

;'32.5— o o0 ° OO
that the updated hazard % of o o . o
estimation  automatically éls ’ ) - ’
tracked real changes in the T T © 0T
hazard function of a I I
system. From the figure, it o 1 T;;?t numbj? L =

can be seen that the initial
hazard predicted using Figure 6-4. The failure times
PCM is exactly equal to

the initial hazard o

calculated from the failure
times. The reason is that
the baseline covariate
function is estimated based

on this initial hazard

Normalised covariate Z(t)

function and the

corresponding  historical

Time, t (10°h)

responsive covariate data.
In PCM, the hazard of a

system is an explanatory

Figure 6-5. Covariate data

variable and its change is independent of the respe covariates of the system, but
the changes of these responsive covariates aradiemeon the change of the hazard.
From Figure 6-6, it can also been seen that the tior the estimated hazard
converging to its real hazard became longer whereroovariate data were used to
update the estimated hazard function. This phenomewill be analysed in
Subsection 6.3.6.
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Figure 6-6. The effectiveness of PCM to update thestimated hazard h(t)

6.3.5 Robustness

In Subsection 6.3.4, all covariate data used tatgpthe estimated hazard function
were clean and not contaminated by noise — a vdraly scenario in the real world.
To evaluate the efficiency and robustness of PQiiteer series of simulations were
conducted. In these simulations, different kindsafupted covariate data were used
to update the estimated hazard function. The stdilthe simulations indicated that

PCM was robust provided that the corrupting noiad b zero mean value. Some
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results are shown in Figures 6-7 and 6-8. In tligsges, the initial hazard function
was estimated using 150 historical failure data.

Figure 6-7 shows normalised covariate data whicleveentaminated by Gaussian
random noise. The mean value of the noise wasa®iahe standard deviation was
0.5. Figure 6-8 shows the simulation results usingtaminated covariate data to
update the estimated hazard function.

Normalised covariate Z(t)

0 1 2 3
Time, t (1C° h)

Figure 6-7. Contaminated covariate data

Comparing Figure 6-8 with Figure 6-6, one can fihdt PCM was robust and can
reduce the effects of covariate fluctuations onahdizstimation. Figure 6-8 shows
that the influence of corrupting noise decreaseth whe increasing number of
covariate data used for updating the hazard funclitie reason - for random noise
with zero mean value, the more data used, the tlesseffects of noise on the
estimation results.

At the beginning stage of the prediction, the p®dn accuracy of PCM may be
lower than tendency method if the hazard functidnaosystem changed only
marginally and the covariate data were contaminbtedoise (refer to Figure 6-8).
The length of this undesirable period dependecherseverity of contamination and
the data number of the covariate used for upddhirgestimated hazard function. In

fact, the above problem encountered when PCM id,use0 exists in other models
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that predict reliability or hazard using conditioronitoring data such as PHM. The
reason for this phenomenon was that contaminateditten monitoring data caused
estimation errors. When only a minimal set of ctindi monitoring data were used
to estimate the hazard, the effect of the noisdatoed by the data could not be
removed even though this noise had a zero meae v@lu the other hand, in a short
period at the beginning of the prediction, the ndzid not change much so that the
trend of the historical hazard function did not @epnuch from the real hazard. In

this case, the tendency method had higher predieticuracy.
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Figure 6-8. Hazard estimated with the containated covariate data
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One approach to improve the accuracy at the bewgnof prediction is to forecast
hazard using both PCM and the tendency method,useca reality one cannot
predict whether the hazard function of a systensdi®nge. Another approach is to
increase the frequency of the acquisition of oe-londition data. This approach can
shorten the length of the undesirable period whieeeestimated hazard is severely
affected by the noise level in condition monitorotega.

6.3.6 Condition Monitoring Data for Updating Hazard Function

From the analysis in Subsection 6.3.5, one can dn@nfollowing conclusion. To

reduce the effects of the corrupting noise on temated hazard function, the
number of covariate data for updating the hazartttian should be as large as
possible. However, if looking back at Figure 6-@jeocan find an interesting
phenomenon: the more covariate data used to uplgatestimated hazard function,
the slower the convergence of this estimated hahamdtion to the real hazard
function. This phenomenon can be explained asvislio

After the operating conditions of a system changéinae t., the covariate data
collected beford, become inaccurate data because the new dataefteesd the new

conditions of the system. If the old data is usedipdate the hazard, the estimated
hazard function will deviate from the real hazawhdtion. The estimated hazard
function will be equal to the real one only aftérthese “inaccurate” data have been

replaced by the new data collected afterThe more data used to update the hazard

function, the longer time is needed to replace“ihaccurate” data because under a
given frequency of data acquisition, collectionnadre data takes a longer period of
time. One should therefore use fewer covariate ttatgpdate the estimated hazard
function if a quick response of the estimated hdzanction to the real hazard
function is desired.

The number of covariate data used for updating haeard function should be
determined based on specific cases. Generally sugathe less the covariate is
corrupted by noise, the fewer the number of cotamata should be used, and vice
versa. If the hazard characteristics of a systeangé& marginally, the number of
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covariate data can be larger. In the candidate@ystfive to ten data sets were used.
When the characteristics of the hazard of a systeange, one should avoid using all
covariate data for updating the hazard functionabse the “inaccurate” data will
never be replaced and the tracking process wi# takger to settle (refer to Figure
6-6 (d) and Figure 6-8 (d)). If both quick trackipgocess and high prediction
accuracy are required in this situation, one ndedscrease the frequency of data
acquisition — collecting more data within the saoneeven shorter period of time.

However, this approach often means an increasestf ¢

6.3.7 Case Studies — Truck Engines and Spur Gearboxes

6.3.7.1 Casestudy 1: Truck engines

The field data used in this case study were obdafn@m the maintenance history
and the oil analysis report of selected engines fsome haul trucks commonly used
in mining industry. In the case study, the ovehalkard of the truck engines was
analysed using PCM.

The condition monitoring covariates presented ire treport included the
measurements for seven types of metal wear dabttisel unit of parts per million
(ppm) and the measurements for three types of netalrmaterials in percentage of
allowable volume. Correlation analysis indicatedttithe increment of Iron (Fe)
debris was sensitive to the changes of the hazdrt®e engines. The increment of
Fe particles was hence used as a covariate igdbes study. Figure 6-9 and Figure 6-
10 show the changes of the increment of Fe pastictan two engines (Engine 1 and
Engine 2). The failure data of these two engindleci®d over time used in this case
study. The state of the engines after repairs wasmed to be as good as new. To
verify the effectiveness of PCM, the historicalalétilure data and the measurement
of Fe particles) of Engine 1 were used to estintfagenitial hazard function and the
baseline covariate function. Based on this estichageseline covariate function, the
prediction on the hazard of Engine 2 is conductadgiPCM. The predicted hazard
was compared to the real hazard function obtairsgaguhe full original failure data
of Engine 2 as well as the prediction using a cativeal approach. The

conventional approach to predicting the hazardrafiie 2 used the estimated hazard
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function of Engine 1 since they were the same tfngines.

0.1+ 4
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Figure 6-9. The changes of Fe particles — Engine 1
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Figure 6-10. The changes of Fe particles — Engi2e

In this case study, the failure times of the engjimeere assumed to be Weibull

distributed as shown in Figure 6-11 and Figure 6-12
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Weibull Probability Plot
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where, h (t )is the estimated hazard function for Engine 1.
In Step (4) of the procedure for PCM (see Sectio®2§, three models were
recommended for representing the baseline covafietetions. In this case study,
the multiplicative model (Equation (6-12)) was oliwsUsing the measurement of Fe
particles of Engine 1 and the estimated initialamdzfunction (6-20), the baseline

covariate function was obtained based on Stepf(djeoprocedure:
C(t) =49.7137°%, (6-21)

Assume that the above baseline covariate funcgoalso suitable for representing
the relationship between the covariate (the measeme of Fe particles) and the

hazard of Engine 2. Therefore the hazard function Engine 2,h,(t ) can be

obtained based on Step (5) of the procedure for RE#it was given by

_ 10623, t 00623

(

he (t) - - —
867.34 867.34

: (6-22)

The full historical measurement of Fe particle€ngines 2 were used for estimating
this hazard function because the characteristitaghird of Engine 2 did not change
(refer to Figure 6-12).

Figure 6-13 shows the comparison prediction resoftsusing PCM and the

conventional approach, i.e., to predict the hazafrdEngine 2 using the hazard
function estimated from the historical failure datbEngine 1 (Equation (6-17)).

From this figure, it can be seen that the hazar&mgjines 2 is lower than that of
Engines 1. This difference was caused by differeotking conditions and can be
well explained by PHM. Figure 6-13 indicates th&MpP based prediction is more

closely matched to the original hazard line thaa tlonventional approach based
prediction. The hazard function estimated using PCGaftainly more accurately

reflects the true hazard than using the conventiapproach within the observation
period (about 10000 hours).
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Fiaure 6-13. The oriainal hazard. the conventional and the PCM hsed predictitn

6.3.7.2 Case study 2: Spur Gearbox

Estimation of the baseline covariate functiG(t) is a critical procedure in PCM.

The baseline covariate function of a system canest@mated by the following
approaches:

(1) The baseline covariate functio@(t) is typically estimated based on

historical failure data and covariates, which wamsdnstrated in Case study 1.

(2) In case of sparse or even zero historical datab#éiseline covariate function
C(t) can also be determined using other informatiorh ascaccelerated life

test data. Hence PCM can be used to estimate harartions of systems in
this case.

To demonstrate this, a case study was conductad asceleration life test data on a
single stage spur gearbox. Table 6-1 shows theriexpetal data for operating hours,

increments of the crack depth of the test geartla@durtosis of the residual signal.
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Table 6-1. The test gearbox data

Operating hours 0.0917 3.3383 3.7536 4.6383 5.5064 5.6864
Kurtosis of the residual

. 2.2933 2.6934 3.6728 3.5146 3.2240 4.7229
signal

Increments of crack

0 1.57 1.73 211 2.81 3.1¢
depth (mm)

A residual signal is obtained from the signal ageray filtering out gear meshing
harmonics (i.e, using a multi band-stop filter).réfpresents random transmission
errors for healthy gears. For faulty gears, thexgmsission errors will include a
sudden change (eg. a spike) which becomes non-faaudsurtosis is a good
measure of non-Gaussianity (eg. spikiness) in aasigrooth cracking and tooth

pitting type of faults can be distinguished usihg tesidual signal methods [310].

In this experiment, each test gear was 10 mm wdkhad 27 teeth. Its rated load

was 24.5 kW at a shaft speed of 2400 rpm, but daesgwere overloaded during the
tests to “accelerate” the onset of failure. In &ddi each gear was initially spark-

eroded with a semi-circle notch of 1 mm radiushatroot fillet of a tooth, across the

middle of the tooth width. When the increment a&ak depth of the test gear reached
3.16, the gear box did not operate normally anyemor

The vibration of the test gearbox was continuousignitored and recorded. The
kurtosis of the residual signal of gear meshingatibn signal was trended and used
as a local fault indicator for gear fault diagnosrsthis paper, these test data were
used to estimate the trend of the hazard of thegess's, and the hazard functions of
the gears. In this case study, the covariate wastsd as the kurtosis of the residual
signal (the second row in Table Previous research [310, 311] has revealed that the
kurtosis of the residual signal has a good co-4aelahip with the crack of the test
gear. The baseline covariate function was estimatstg the following two

assumptions:

(1) The hazard rate of the test gear is proportionaltdocrack depth after

initiation — a reasonable assumption because awiara deeper crack is
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likely to breakdown earlier. The assumption wasther supported by
correlation analysis between the increments otthek depth of the test gear

and its failure rate (see Figure 6-14).

(2)  The failure rate of the test gear follows the Wéildistribution (see Figure 6-
15). This assumption holds because the test geasbaxypical mechanical
system and the test was conducted to simulate #er-out stage (crack
propagation). This assumption has been supportetdmyn’s test for the
Weibull distribution. The Mann’s test statistic Mas obtained to be 0.881
which was less than the critical valie(005,6,6). Hence, the hypothesis
that the failure times are Weibull was acceptedhatlevel of significance
0.05.

Using the above two assumptions and Equation (6-flt® baseline covariate

function C(t) and the hazard functioh(t) were estimated. The multiplicative

model (Equation (6-12)) was used to construct teeline covariate function. In this

case, the baseline covariate functioft) contained the unknown proportional scale

which represents the relationship between the dawte of the test gear and the
increments of its crack depth. Figures 6-16 and &liow the results of the PCM
based hazard estimation using 4.47 hours and ®6& lonline condition monitoring

data respectively.
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Figure 6-14. Relationship between the increment afrack depth and hazard
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Hazard function

== original
Ar | ==t4= estimated

Hazard, h(t) (h™)

o
3]
T

Time, t (h)

Figure 6-16. Hazard curves of the test gears: 4.4iburs condition monitoring data
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Figure 6-17. Hazard curves of the test gears: 5.6®urs condition monitoring data

The estimated hazard function was

h(t) = 0.0403>>>", (6-23)
Figure 6-18 presents a reliability probability distition of the test gear based on the
hazard estimation shown in Figure 6-17. The figeneeals that the reliability of the
test gear would be lower than 1% after five and haurs of overloaded operating
time. In reality, this low reliability indicated &h test gear would certainly operate

abnormally after five and half hours of overloadgzkrating time. The test results
confirmed the estimation.

i

Reliability, R(t)
© © o ©o o © o ©°o
S~ N B

o
[

(=]

o
=

2 g a 5 6
Time, t (h)

Figure 6-18. Reliability diagram of the test gears
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The hazard estimation based on PCM is relativebuieade. Figures 6-16 and 6-17
indicate that the hazard estimation using PCM hassame trend with the original
hazard rate. The prediction accuracy increased wimeme on-line condition
monitoring data were used for hazard estimatione Teparture between the
estimated hazard line and the original hazardwae caused by the departure of the
real data from the above two assumptions used ttmae the baseline covariate
function. A correlation analysis (Figure 6-14) icalies that the hazard rate of the test
gear can be treated as proportional to the incresriancrack depth during most of
the test period but not at the start of the tesabse of the initial spark-eroded notch.
From the Weibull fitness analysis (Figure 6-15xah be seen that the failure data is

not strictly Weibull distributed although the goeds of fit is reasonable.

6.4 SUMMARY

PCM presents a new approach to predict failure sysiem or a component using
both condition monitoring data and historical fefudata. Compared with PHM,

PCM has the following advantages:

(1) In PHM, the baseline hazard function is dependanhistorical failure data
whereas in PCM, the baseline covariate functiontmaestimated with even
zero failure history. The reason is that the basetiovariate function can be
estimated empirically or from accelerated life $estence, PCM can be used
to estimate hazard functions of systems in the odssparse or even zero

historical data.

(2)  The time for scheduling preventive maintenance lvarpredicted by PCM,
whereas PHM is unable to do so. PHM only triggenrsatarm when the
hazard of a system has reached a predefined lecaluse it needs covariate

data to calculate the hazard values of the system.

(3) The fluctuations in condition monitoring data haweich less influence on
PCM than on PHM. In PCM, a set of points of a c@ataris used to update
the estimation of a hazard function at any timeesghs in PHM only single

datum of a covariate is used to estimate a singgardu value at each time.
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Under the condition that the hazard of a mechancmahponent or system is
proportional to the deterioration of the componamsystem, the hazard functions of
this component or system can be estimated througbnabination of PCM and

accelerated life tests. In principle, the religpifunction of a mechanical system can
be estimated by a single accelerated life test WR€M is used. Therefore, the
number of accelerated life tests for estimatingréimbility of a mechanical system

can be significantly reduced by a combination oMP&hd accelerated life tests.

In PCM, the hazard function of a system can be tgodasing on-line condition
monitoring data so that the latest changes of liagacteristics of the hazard of this
system can be determined. PCM based hazard estmetn automatically track real
changes in the hazard function which can changetaadterations in the operating
conditions of a system, even when condition moimgpidata are contaminated by
noise (see Figures 6-6 and 6-8). PCM is robusbag &s the corrupting noise has a

zero mean value.

The number of covariate data for updating the hhZanction will affect the
accuracy of estimation and the time taken for thter@ated hazard to track the real
hazard because collecting more data takes a lopgeod of time under a given
frequency of data acquisition. If the covariaten® contaminated by noise, less
covariate data, e.g. one or two, are used to uptatestimated hazard function in
order to ensure a prompt response of the estinfeteard function to the real hazard
function. If the covariate of the system is contaaed by zero mean value noise,
full covariate data should be used to reduce tfecebf the noise on the estimation
of the hazard provided that the hazard charadsisf a system do not change. If
the hazard characteristics of a system change l@ddvariates of the system are
also corrupted by noise, the number of covariata daed for updating the hazard
function is mainly dependent on the severity ofseoand the requirement for the
tracking time needed for estimating the real haz&eherally speaking, low noise
level and requirement for faster tracking procespiires fewer data when updating
the estimated hazard. In the case of the simukatias well as the case study
presented in Section 6.3.7, seven to ten data pesdthe best result. When the
hazard characteristics of a system changes, onddshwoid using all covariate data

for updating the hazard function because the trackirocess could be extended
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(refer to Figures 6-6 (d) and 6-8 (d)). If noisedkis high and a faster tracking
process is required, one needs to increase thadney of data acquisition so that

more data can be collected in a shorter period.

The accuracy of the baseline covariate functioarigial to ensure the accuracy of
the updated hazard estimation. A correlation amalipstween covariates and the
hazard of a system should be conducted to deterwtineh covariate can be used in
PCM. Needless to say a covariate with good coraglatith the hazard of a system

should be used as otherwise it will produce potimedion result.
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Chapter 7

EXPERIMENTS

7.1 INTRODUCTION

The validation of the newly developed methodologa@sl models was conducted
using (a) simulation, (b) laboratory data and (e)jdf data. Both (a) and (c) were

presented earlier. The experiments were conducitbctive following objectives:

(1) To validate the Analytical Model for Interactive ikk@es (AMIF) and
demonstrate the estimation of interactive coeffitse

(2) To verify the results described by the ExtendeditSpystem Approach
(ESSA)

(3) To validate the Proportional Covariate Model (PCM).

The rest of the chapter is organised as followsSéction 7.2, the test rig and
experimental method are described. The test reardtpresented in Section 7.3 and
followed the analysis of the test results in Secliod. The conclusions are presented

in Section 7.5.

7.2 TEST RIG AND EXPERIMENTAL METHOD

The experimental investigation focussed on usinfpdt demonstration test rig
where a shaft with a wheel was supported by twbderings (left bearing and right
bearing). The shaft was driven by a motor througpaa of flexible couplings.

Failure was categorised as misalignment createahdying the left bearing housing
in two opposite directions (forward and back). Thevement of the bearing housing
was controlled by a screw. A second failure mods thia failure of the bearing. The

test rig is shown in Figure 7-1 and Figure 7-2.
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Figure 7-1. Testrig
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Figure 7-2. The aerial view of the test rig

To address Objective 1 and Objective 2 of the erpaits, the effects of the
misalignment of the shaft (failure mode 1) on taegue failure of the right bearing
(failure mode 2) were analysed in the experimertsabse the shaft and the bearings
had direct interactions with each other. Misalignirie a fault, which can be utilised
to assess the failure of the shaft when the levalnacceptable misalignment is

predetermined. When the shaft rotated, the misatigshaft caused the bearing to
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vibrate. The overall vibration level of acceleratiof the right bearing was used to
indicate its fatigue failure rate. All this infort@n was collected by a data

acquisition system shown in Figure 7-3 and Figude 7

Figure 7-3. Picture of the data acquisition system

PCB 482A20
ICP signal
conditioner

Left Right
bearing i

Laptop with DaqEZ Daqp-308 KROHN-
Pro Data Data HITE 3202

L < < _
Acquisition collector Filter
Application

Figure 7-4. Diagram of the test rig and data acqusition system

In Figure 7-4, number 1 was an ENDEVCO 256HX-1p@&ectric accelerometer
(Figure 7-5). The type of the right and left begarwas deep groove ball bearing
6204. Figure 7-6 shows a damaged bearing whichuaeg in the experiments.
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Figure 7-5. ENDEVCO 256HX- Figure 7-6. The damaged

10 piezoelectric accelerometer bearing

During the experiments, an accelerometer was mdurtethe right bearing housing
to detect the vibration signal of the bearing. $peed of the shaft was 960 rpm. The
operation load was 0.89 kW. The left bearing waealthy condition, and both
healthy and faulty bearings were used for the riggdring. The faulty bearing was
damaged with a notch cut on the inner surface efaiter race (Figure 7-6). The
notch extended throughout the cross section obtiter race with a configuration of
width x depth =1.8 mnx0.385 mm respectively. In each test, 20,000 sampies

data were collected. The sampling frequency of datpuisition was 10 kHz.

The experimental procedure consisted of assesdieg vibration against the
misalignment in two opposite directions — forwapbgitive) and back (negative)
(see Figure 7-2) to investigate if the test reswise sensitive to the direction of the
misalignment of the shaft. A faulty right bearingswsed in the experiment initially.
The faulty bearing was subsequently replaced byedthy one to simulate the
scenario where a system was repaired. The tesesl s the scenario where the
shaft was supported by a pair of healthy bearingsevalso used for achieving

Objective 3 of the experiments.
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7.3 TEST RESULTS

During the experiments, the degree of angular mgisalent of the shaft was less

than 0.01rad. For this small degree, the rafjp/380 can be used to present the

degree of angular misalignment of the shaft, i.e., 7, = X,,, / 380because

X X

arctg(—2h) = ~bh 7-1
g(38 380 (7-1)

where, X, is the displacement of the left bearing housimagrfiits central position

and 380 mm is the distance between the two beafssgsFigure 7-2).

Figures 7-7, 7-8 and 7-9 show the part of theresilts. Figures 7-7 and 7-8 display
the vibration signals (overall vibration level)time time domain of the faulty bearing
when the shaft had different degrees of angulaalmgisment in the forward (positive)

direction and back (negative) direction respecyivel
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Figure 7-7. The vibration of the faulty bearing urder different degrees of

misalignment of the shaft in the positive direction
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Figure 7-8. The vibration of the faulty bearing urder different degrees

of misalignment of the shaft in the negative diredbn
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The experiments were also used to analyse theteffemrepaired subsystem on the
repaired component when the subsystem and the cwnpbad failure interaction.
To do so, the bearing on the right end of the shaf$ replaced using a healthy
bearing and the experiment was repeated underreliffedegrees of angular
misalignment of the shaft. Figure 7-9 shows oneotéte test results. It displays the
vibration signals in the time domain of the tesariegs when the shaft was exposed

to different degrees of angular misalignment.

X=0 mm (ntest 1)
15 Ibh .
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10k ]
_15 1 1 1 1 1 1 1
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Figure 7-9. The vibration signals in the time domia of the test bearing when two

healthy bearings were used
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Figure 7-9. The vibration signals in the time domia of the test bearing when two
healthy bearings were used (continued)

Figure 7-10 depicts the changes of the averagdeaatien amplitude of the faulty
bearing with different degrees of angular misaligntof the shaft.
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Figure 7-10. The average acceleration amplitude difie faulty bearing under

different degrees of angular misalignment of the &t [(a) in the positive direction;
(b) in the negative direction]
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The average amplitude of acceleration of a bearmghe mean acceleration
amplitude value of a vibration process of the bepover time. Figure 7-11 depicts
the relationship between the average vibration angd of the test bearing and the

overall angular misalignment of the shaft underdbedition that the both bearings
were healthy.

16

14+

1.2+

08F

06+

0.4%

Average acceleration Aav (18 ms?)

— test data
- fitline
02 1 L L L 1
0 1 2 3 4 5 ]
Misalignment (10° rad)

Figure 7-11. The average acceleration amplitude dfie healthy right

bearing under different degrees of angular misaligment of the shaft

7.4 ANALYSIS OF THE TEST RESULTS

The laboratory experiments were conducted usingehanical system. The failures

of mechanical components generally have the foligweatures:

(1) A mechanical component has several failure moddwe Tailure of a
mechanical component with a specific failure masl@sually defined as its
inability to perform its predefined function saéistorily due to this failure
occurring. However, the demarcation line betweelura and non-failure is
often unclear. Unlike normal failures in electricaimponents, the failure of a

mechanical component usually occurs more graduatiier than a step
change.

203



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

(2)  When a mechanical component fails, it can contiougperate often resulting
in this failed component affecting other componémtsue course.

(3) The failure of a mechanical component usually widit cause its related

mechanical components to fail immediately but cegekerate their hazards.

(4) Failure interactions among components in a mechhsistem are common.
For example, in a mechanical system such as theigeshown in Figure 7-1,
a deteriorated bearing will result in the drift afshaft supported by this
bearing and the misalignment of the shaft will alscrease the deterioration

of the bearing.

The more deteriorated a mechanical component bexdime more likely it will fail.
The assumption that the hazard of a mechanical coew is proportional to the
degree of its deterioration is justified. Experinsehave supported this assumption
(see Figure 6-14 in Chapter 6). From Figure 6-i4an be seen that the hazard of
the test gear can be treated as proportional tmétement of crack depth. Another
example is a model for predicting the failure rétazard) of ball bearings presented
by Ebeling [16]. This model indicates that the hdzaf a bearing is proportional to

the percentage of water present in its oil lubrichtinis percentage is less than 0.2%.

From Figures 7-10 and 7-11, it can be seen thaabeage acceleration amplitude of
the test bearing increases with the increasingedegf angular misalignment of the
shaft. This fact indicates that the increased lthpédrthe shaft (i.e. misalignment)

could result in an increase in the hazard of theribg because the larger vibration
amplitude leads to accelerated onset of fatiguar&in a mechanical system [312].
Furthermore, from Figures 7-10 and 7-11, it camniierred that a linear relationship
exists between the degree of angular misalignmérnhe shaft and the vibration

acceleration of the test bearings. The line of biest these two figures is described

by:

ya = yaO +b, 2 (7_2)

am~ sm’

where, y, is the average acceleration amplitude of the bestring andy,,is the
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initial value of the average acceleration amplitofiéhe test bearing. Variabl, , is
the degree of angular misalignment of the shaftamaterb,, is the slope of the fit-

line.

In reality, y,, vy,, andJd,, are usually time dependent. In this case, Equdiied)

should be rewritten as
Ya(t) = Yoo (1) + b, 70 (1) . (7-3)

In Section 7.2, the candidate indicated the vibrasignals of the test bearings were
collected against the misalignment of the shafiva opposite directions (Figure 7-2)
to check if the test results were sensitive todinection of the misalignment. From
Figure 7-10 and Table 7-1, it can be seen thatetsteresults were not sensitive to the
direction of the misalignment of the shaft, i.e.hem testing in two opposite
misalignment directions, the relationship betwdenftilure rate of the shaft and the

failure rate of the bearing was almost the same.

The analysis of the tests which were conducted whermright bearing was replaced
using a healthy bearing also confirmed the abawdirigs (refer to Figures 7-9 and 7-
11): (1) the angular misalignment of the shaft éased the vibration of the test
bearing; (2) the relationship between the angutgiree of misalignment of the shaft
and the average acceleration amplitude of the hgavas approximately linear and

(3) this relationship was not sensitive to the cim of the misalignment of the shaft.

Each test was repeated five times to ensure theatability of the experiments and
the accuracy of the experimental analysis. Tablepresents the absolute values of

slope p,,,| andthe initial values of the average acceleration #omge of the faulty
bearing,y,,. Let &, stand for the relative estimation error of the slamde, for
the relative estimation error of the initial value$ the average acceleration
amplitude y,, . When the average valub, =135 4610° ms“ad’ and

Yaon = 601x10% ms?, &, <59% ande, < 623%. Given that these values lie

below 10%, the tests were considered to be relgtaecurate and consistent.
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Table 7-1
The absolute values of slopeb,»| and the initial values of

the average acceleration amplitude of the faulty kaing

|b,. | (10° ms*rad®) Yo (10*ms?
Test No.

P N P N

1 134.064| 135.926 5.733 6.248

2 135.926| 143.374 5.660 6.125

3 130.806| 137.323 5.770 6.272

4 129.875| 137.788 6.014 6.272

5 136.392| 131.271 5.709 6.395

Average 135.461 6.010

Note: P — Positive direction of misalignment;

N — Negative direction of misalignment (see FigtHR)

In the following subsections, the test results @nésd in Section 7.3 and the above
analysis results will be used to justify the newdels developed in the previous

chapters.

7.4.1 Interactive Failures

A mathematical model for IntF (Equation (4-11)) waexived in Chapter 4and the
theoretical model was validated by select caseiedudn this subsection, the
particular model will be validated by the experinsedescribed above. These test
results will also used to estimate the interactivefficient8,,, whereg,, represents
the degree of the effect of the misaligned shafthenfatigue failure of the bearing on
the right end of the shatft.

The following assumptions were used in the intggiren of the test results in the

above section.
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(1)

(2)

The deterioration of the shaft and the bearingsnduthe experiments are
neglected because the experimental time was sbompared to the life cycle

of the mechanical components.

It is understandable that the shaft will fail tonétion (rotate) properly when
its angular misalignment reaches a threshold. Hetheefailure of the shaft
with failure mode 1 was defined as that occurringew the shaft operated
abnormally due to the angular misalignment. Theaigre the angular
misalignment, the more likely the shaft operatedaaimally. Therefore, for
the failure mode 1, the assumption that the haahtde shaft is proportional
to its degree of angular misalignment is justifidd. mentioned previously,
the assumption that the hazards of mechanical coemnis are proportional to
their degrees of deterioration has been supponyeother research (refer to

Wang [311] and Ebeling [16]). Ldi (t represent the hazard of the shaft

with failure mode 1, based on this assumption,

hy(t) = b, (1) , (7-4)

whereb, is a coefficient.

3)

The failure of the test bearing with failure modewas defined as that
occurring when the bearing could not perform iesdafined functionality due
to fatigue occurring inside the bearing. The hazairdhe test bearing is
assumed to be proportional to the average acceleraimplitude of the
bearing if the fatigue failure of the bearing imxsmlered solely because the
stress of the bearing is proportional to its acegilen and the fatigue hazard
is proportional to the stress [312]. Lé&t(t and h,,(t) represent the

interactive hazard and the independent hazard efbdaring respectively.
Based on this assumption,

h,(t) =b,y, (1) , (7-5)

and
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h,(t) =b,y, (1), (7-6)

whereb, is a coefficient.

The Equations (7-4), (7-5) and (7-6) can also besdé using PHM.

Substituting the Equations (7-4), (7-5) and (78 iEquation (7-3), gives:

h,(t) =h,,(t) + l:am h,(t), (7-7)
o bam

Let 6, = 2 7-8

e b, (7-8)

be the interactive coefficient that representsetfiective degree of the failure of the

shaft affecting the failure of the test bearingrtiequation (7-7) can be rewritten as

h,(t) = h,,(t) + &,h,(1). (7-9)

Equation (7-9) justifies that the analytical modgVven by Equation (4-11) can
represent the interactive failure relationship lesw the test bearing and the shaft
provided the hazard of a mechanical component apgtional to its degree of

deterioration. In a real world application, to reduhe effect of testing errors, the

averageb,, b_,, the averagd,, b,,, and the averagh,,, b, should be used to
calculated,, in Equations (7-7) and (7-8).
Substituting Equation (7-9) into Equation (4-16ye3
t t
F,(t) =1-exp[-[h,,(t)dt - [ 6,h,()dt], (7-10)
0 0

where, F,(t )is the interactive failure distribution functiohtbe test bearing.

According to Equation (4-1) and the relationshigwsen the reliability function
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R(t) and the failure distribution functioR (t) , Equation (7-10) can be rewritten as:
t

F,(t) =1~ R, (t) exp[-6., [ h, (t)d] (7-11)
0

where, R ,(t) is the independent reliability function of the beg.

Equation (7-11) indicates that the failure prohgbibf the test bearing affected by
the misaligned shaft can be predicted providedritiependent reliability function of
the bearing and the reliability function of the flame known. In this case, interactive
coefficient 8, can be calculated using Equation (7-7). At fitkte independent
hazard of the bearing and the hazard of the shafbe estimated using Equation (4-

1). The averagd, , b, and the averagé,, b,,, can then be calculated using

av

Equation (7-4) and Equation (7-6) respectively.

For simplification, assume that the independenafthof the faulty bearing is 6x£0
h™ and the hazard of the shaft is 7%10" with a displacement of 0.5 mm of the left

bearing housing. The coefficienks,, andb,,, are then 5.319ad*h™ and 9.983

2av

m™s’h™ respectively andJ,, is 0.254. Equation (7-11) becomes
t

F,(t1) =1~ R, (t) exp[-0.254[ h, (t)d] . (7-12)
0

Note that the coefficientd,,, and b

2av

can vary because they depend on the

reliability values of the test bearing and the shaf

Figure 7-12 shows the comparison between the arpetal result and theoretical

result using Equation (7-9) and demonstrates tharacy of the equation.
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Figure 7-12. Comparison between experimental andhéoretical results

7.4.2 Hazard of a Newly Repaired Component

In the development of ESSM, the result from thiddelandicated that the hazard of
a new component used in a deteriorated system waldigher than its original
hazard if IntF existed. This result has been detnatesl by the experiment when the

faulty bearing was replaced by a healthy bearing.

From Figure 7-9, it can be seen that the acceteramplitude of the healthy bearing
on the right end of the shaft increased with thereasing degree of angular
misalignment of the shaft. This result indicateat tthe new bearing was likely to
suffer accelerated wear/damage if a shaft becamsalignned and if the misalignment

of the shaft was not corrected.

To demonstrate the effect of the misaligned shafthee failure distribution of the
right bearing quantitatively, assume that the degreangular misalignment of the
shaft remained constant during an operation andntfependent reliability function

of the healthy bearing was obtained from [313] as:
t 141
R(t) =exp -| —— : 7-13
® ;{ (1128j ] (7-13)
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The hazard of the bearing on the right end of theftsshown in Figure 7-13 was
determined under two conditions: angular misaligninaé the shaft at 1.316xF0ad
and a well aligned shaft. From the figure, it carsben that the hazard of the bearing
under the first condition was higher than the hazdrthe bearing under the second
condition, i.e., a misaligned shaft increased theand of a new bearing on the shaft.
Figure 7-14 shows the failure distribution of tlesttbearing corresponding to Figure
7-13.

w
a1
]

|

N
a1
I

~ Aligned shaft

o

y=)

2

=

% 2 L/ Shaft angular

S misalignment of &

2 157 1.316x10rad

5 cem

- 054 -~

a '

CING 0 T T T 1

0 500 1000 1500 2000

Time, t (h)

Figure 7-13. Hazard of the right bearing
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Figure 7-14. Failure distribution of the right beaing
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Figure 7-14 indicates that at 900 hours, the failprobability of the bearing under
the condition of shaft misalignment was almost 99#ereas the failure probability

of the bearing when the shaft was aligned at theedame was just about 50%.

7.4.3 PCM

PCM was developed based on the assumption thatriate& of a system are
proportional to the hazard of the system. The nealsieness of this assumption has
been justified using some existing research resultShapter 6. In this subsection,
the reasonableness of the assumption will be wedrifusing the laboratory

experimental results. As a special case, a basabvariate function is also estimated.

According to the test, the average accelerationlitudp of the vibration of the test
bearing was sensitive to the change of the angulaalignment of the shaft (see
Figure 7-7 to Figure 7-11). Therefore, the averageeleration amplitude of the
vibration of the test bearing was used as a caeartaindicate the degrees of angular
misalignment. This covariate was measured and leadal against the different
degrees of angular misalignment of the shaft. Esalt shown in Figure 7-15 was

obtained under the conditions mentioned in Subsecti4.1 and using two healthy
bearings.

Trendline

0 T T T T T 1
0 0.005 0.01 0.015 0.02 0.025 0.03

Hazard, h(t) (h™)

Figure 7-15. The relationship between the hazarll(t) of the shaft and the
average vibration amplitude Aav
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Figure 7-15 clearly indicates that the covariat, ithe average vibration amplitude
Aav, was proportional to the hazard of the shafttHis experiment, the baseline

function, C(t) can be treated as time-independent.

C(t) =1.1052x10™* (ms?). (7-14)

However, in many scenarios, the baseline functiares time-dependent. In these

scenarios, the€(t) — h(t) plot will be a curve instead of a straight-line.

7.5 SUMMARY

A series of laboratory experiments were conducted Validating the newly
developed methodologies and models. Through theperienents, the following

results have been justified:

Equation (4-11) can be used to describe the inigeadailures in a mechanical
system. The interactive hazard of a component eacalculated by its independent
hazard plus a portion of the interactive hazariisahfluencing components.

The hazard of a new component used in a detertbsatstem will be higher than its
original hazard if this new component has failureeraction with other unrepaired
components in the system. The failure likelihoochafomponent increases when its

influencing components deteriorate.

The degree of the failure interaction between twmgonents can be measured by
the interactive coefficient. A greater interactoaefficient means that the failure of a
component has a greater effect on the failure ®faffected component. This
experimental study has also provided evidenceth®interactive coefficient can be

determined through experimentation.

The assumption used to develop PCM is reasonahkecdvariates of a system, or a
function of these covariates, can be assumed fardggortional to the hazard of the
system. This proportional relationship can be repnéed by a baseline covariate
function. The baseline covariate function can kbeeitime independent or time-

dependent.
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Chapter 8

CONCLUSIONS

This research has developed practical models artiosh@ogies to improve the
accuracy of reliability predictions of repairablestems for engineering applications.

After an extensive literature review, the candiddemtified the following limitations

in existing reliability prediction models:

(1) The different states of repairable systems aftdtiphel repairs were generally
inadequately modelled. A common approach is torassthat a repairable
system after repairs becomes “as good as new’sob&d as old”.

(2) Interactive failures have not been modelled preslijuExisting models or
methodologies have been mainly developed on thengdson of independent

failures or unidirectional dependent failures sastcommon cause failure.

(3)  Existing models have not adequately dealt withredbility prediction of a
system using responsive covariates (symptom inalisgt especially when

historical failure data are sparse or null.

In this thesis, the candidate endeavoured to owecdhese limitations and
developed the following new methodologies/models:

(1)  The split system approach.
(2)  The analytical model for interactive failures.
(3) The extended split system approach.

(4)  The proportional covariate model.
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The detailed conclusions of each of these methgieddmodels are presented in the

following four sections.

8.1 SPLIT SYSTEM APPROACH (SSA)

The prediction of the reliability of complex repate systems with multiple PM
actions over multiple intervals is difficult becauke characteristics of the reliability
of a system will alter after each PM. SSA uses @& mencept to resolve this
difficulty effectively by splitting a system int@paired and unrepaired parts virtually
when modelling the reliability of a system with rplle PM actions. SSA possesses

the following advanced characteristics:

(1)  SSA explicitly predicts the reliability of a repable system with multiple PM
actions over multiple intervals and predicts whiea $ystem is unworthy of
further PM. Most existing reliability models considthe time to the next

failure, MTTF or/and the expected number of faitudairing a given period.

(2)  SSA effectively models all possible states of aeysafter PM such as “as
good as new”, “imperfect repair”, “improvement rapgbetter than new)
and “as bad as old”. Existing models generally dbescimperfect repairs

based on the assumption of a fixed deterioratimaareliability.

(3)  SSA considers the individual contributions of diffiet maintained parts in a
system and the influence of different system stmas on the reliability of a
repairable system. This consideration assists aderstanding the effects of
PM on a system in more depth. Existing models ofédse the entire system

into account.

(4) SSA does not dependent on the restrictions on trensf of failure

distribution.

The candidate has derived formulae for reliabiliyediction of systems for the

following scenarios:

(1) The same component is repaired in all PM activities

215



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

(2)  Asingle but different component is repaired infeB& action.

For the scenario where multiple components areinegban one PM action, the

candidate has developed a heuristic approach thgptée reliability of the system.

SSA was shown to be effective in supporting preventmaintenance decision

making for a repairable system over its whole lifean be used to estimate:

(1) The expected life of a repairable system with rptétPM actions.

(2)  The available number of PM actions on the system.

(3) The spare parts requirement.

SSA has been effectively used to compare the eftewtss of different PM

strategies and assists in making optimal PM deaussio

8.2 THE ANALYTICAL MODEL FOR INTERACTIVE FAILURES (AMIF )

AMIF overcomes the assumption of independent faduand analyses interactive

failures of systems without PM or repair.

Existing models or methodologies for the reliapilgrediction have been mainly
developed on the assumption that failures are ewggnt. However, numerous
industrial experiences have shown that this assompg unrealistic and has led to
unacceptable errors in failure risk assessmenteriBure the accuracy of reliability
prediction, dependent failures need to be consildrgeractive failure is a new
category of dependent failure, and is caused blréiinteraction among the

components in a system.

The research on interactive failures is in itsmafg and the candidate has made the

following original contributions:

(1) Introduced new concepts such as interactive faiimfeiencing components,

affected components and interactive coefficient doalysis of interactive
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(2)

3)

failure.

Identified that interactive failure can be eithdalde or unstable. The
candidate proposed and proved two theorems tofyjustable interactive

failures. These theorems effectively assist inysiag and avoiding potential
unstable interactive relationship in machinery dgrits design phase. The
research outcomes on stable and unstable intesafetiures can benefit the

design of more maintainable and reliable machines.

Developed a model to analyse interactive failuranatively, suitable for
engineering application. The candidate derived ran@iba to calculate the
stable interactive failure distribution function$ systems and successfully
investigated the effects of interactive failures @dmponents and systems
using this new model. The results contribute tormemg risk management

of assets with interactive failures.

8.3 EXTENDED SPLIT SYSTEM APPROACH (ESSA)

ESSA is an integration of SSA and AMIF, and extetidslatter by considering both

interactive failures and multiple PM actions oveultiple intervals. The reliability

prediction of complex reparable systems with irtgve failures and multiple PM

actions is also a new research area and the caadida made the following original

contributions:

(1)

(2)

Identified that when the failures of the repaired anrepaired components in
a system have interactions, the hazards of thesp@aeents after a repair will
change. This finding, if taken into account, impeevthe performance of
maintenance on repairable systems with interactiveares.

Developed an effective method to analyze the chéigeards of repaired

and unrepaired components in a system after a Riehad he candidate also

derived the formulae for calculating the interagthvazards of a system after
each PM based on this method.
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3)

Extended the heuristic approach for SSA to exphi@tedict the reliability of
systems with interactive failures and multiple PMti@ens over multiple

intervals.

ESSA enhances the capability of SSA and AMIF araViges an effective tool for

optimal PM decision making in more general scersario

8.4 PROPORTIONAL COVARIATE MODEL (PCM)

PCM presents a new approach to predicting the Hapéra system with a

combination of historical failure data and conditimonitoring data (covariates). It

uses the same assumption as used in PHM, but tosqphy and procedure of PCM
is different from that of PHM.

The research in this thesis has demonstrated Hog/fog characteristics of PCM:

(1)

(2)

3)

(4)

()

PCM automatically tracks the changes of hazardutiinousing responsive

covariates.

PCM has much more accurate prediction results tisamg the conventional
approach or tendency method when the charactarisfiche hazard of a

system alter.

Compared to PHM, PCM has a greater ability to redhe influence of noise

which contaminates covariate data.

PCM is robust even though covariate data can beigtd by random noise

provided the noise has a zero mean value.

PCM is effective in predicting the hazard of a eystbased on condition
monitoring data even though historical failure datis zero. PHM does not
have such ability.
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8.5 GENERAL STATEMENTS

The methodologies and models developed in thissless be related to each other
and applied to predict the reliability of comporeand systems with multiple PM

actions and interactive failures effectively.

The newly developed methodologies and models haea hustified through four

approaches:

(1)  Theoretical proof.

(2) Simulations.

(3) Case studies using field data.
4) Experiments.

The outcomes of this research are significant éobtbdy of knowledge in reliability

engineering.

In total, 15 papers have been published or subaiyethe candidate:

e Six in refereed international journals: two pubdidh three in press, and one

submitted.
e Nine in refereed international conferences.

In recognition of the significance of this researttte candidate received the 2004
Student Award from the Maintenance Engineering &gadf Australia. This national
award is presented to only one student throughaogtrAlia each year.
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Chapter 9

DIRECTIONS FOR FUTURE RESEARCH

While the candidate has successfully developed fiew methodologies/models for
predicting reliability of complex repairable systgnthis final section of the thesis
presents a brief on potential future research tioes.

9.1 EXTENSION OF SSA

The candidate developed SSA based on the scehatié®M time is a deterministic
variable, and that repair time is negligible. Tlagproach was extended to the
reliability prediction of systems with multiple Pllctions and interactive failures.
SSA can be further extended to predict the religbdf a system in the following

scenarios:

e A system with multiple random failures and PM aesioUnlike planned PM time,

failure time is a random variable.

e A system with multiple failures and repairs. Instisase, repair time is a random
variable and cannot be ignored.

e A system with multiple repairs and immediate intéikee failures. In this case,
the changes of RBD of the system due to interactaibires need to be

considered.

9.2 APPLICATION OF SSA FOR PM DECISION MAKING

The candidate demonstrated the application of SSgupport PM decision making
for a repairable system during its lifetime in Cteap3. This case focused on PM
decision making based on reliability prediction.réality, to make an optimal PM

decision, one also needs to consider other fastarls as:
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e Business objectives.
e Maintenance cost.
e Resource constraints.

e Consequences of failures.

Performance of maintenance personnel.

Further work can lead to an integration of SSA dadision making models, taking
into account some, if not all the above factors.

9.3 ENHANCEMENT OF FAULT TREE ANALYSIS

FTA is a useful technique in analysing the relatlop between a failure event and
its root causes. However, FTA cannot be used tdysmanteractive failures. In a
fault tree, only the failures at a lower level adfect the failures at a higher level. A
failure cannot affect the failures at a level lowEne failures at the same level do not
interact with each other. Therefore the fault tesnnot be used to describe
interactive failures. To address this issue, areple that integrates AMIF as

developed in this thesis with the conventional R€ghnique needs to be developed.

9.4 PCM FOR MULTIPLE COVARIATES

The candidate developed PCM based on a single iet&aPCM can be enhanced
through using multiple covariates by:

e Identifying significant covariates.

e Constructing proper functions of covariates basaddata fusion techniques,

correlation analysis and maximum likelihood estiorat

e Determining different weight/parameter for indivadicovariates.

The modified Weibull distribution models presentgdMurthy and Jiang [314] can
be applied in PCM to improve the goodness-of-fitted model to historical failure
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data.

9.5 DEVELOPMENT OF SOFTWARE TOOLS TO ENHANCE THE
APPLICATION AND TESTING OF THE DEVELOPED MODELS

The candidate has demonstrated that the modeldopedkin this thesis can be
beneficial to industries. However, application lné$e models to industrial problems
could be difficult for personnel without sufficientnathematical expertise.

Appropriate software tools can be developed tesassimplementing these models.
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Appendix A

Publications

1. Refereed International Journals

(1)

(2)

3)

(4)

(5)

(6)

Sun, Y., Ma, L., Mathew, J., Wang, W.Y., and Zhai®), Mechanical
systems hazard estimation using condition monigpriMechanical Systems

and Signal Processing, in press, available on 8el@inect in December 2004.

Sun, Y.; Ma, L., Mathew, J., and Zhang, S., An wiehl model for
interactive failures, Reliability Engineering ang/sg&m Safety, in press,

available on ScienceDirect in May 2005

Sun, Y., Ma, L., Mathew, J., and Zhang, S., Detaation of preventive
maintenance lead time using hybrid analysis, I@gonal Journal of Plant
Engineering and Management, 2005. 10(1), p.13-18

Zhang, S., Mathew, J., Ma, L., and Sun, Y., Bestidbdased intelligent
machine fault diagnosis, Mechanical Systems ana&bi§rocessing, 2005.
19: p357-370

Sun, Y., Ma, L., Mathew, J., Morris, J. and Zha8g, A practical model for
reliability prediction of repairable systems, Theuthal of Quality and

Reliability Engineering International, submitted.

Sun, Y., Ma, L., and Mathew, J., Reliability prada of repairable systems
for single component repair, Journal of QualityMaintenance Engineering,

in press.

223



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

2. Refereed International Conferences

(7) Sun, Y., Ma, L., Mathew, J. and Zhang, S., A Methlody for Analysing
Interactive Failures of Components, Proceedingshef 11" Asia-Pacific

Vibration Conference, Langkawi, Malaysia, 23-25 Hober 2005: in press.

(8) Sun, Y., Ma, L., Mathew, J. and Zhang, S., Estioratof hazards of
mechanical systems using on-line vibration datac@edings of International
Conference on Intelligent Maintenance System, Arlesnce, 15-17 July
2004: p.S3-B

(9) Zhang, S., Mathew, J., Ma, L., Sun, Y., and Math&w,Statistic condition
monitoring based on Vibration Signals, A FusiorHairmonics, Ed. By N.S.
Vyas, et al, published by Sunil Sachdev, New Ddimilia, 6-9 December,
2004: p.1238-1243.

(10) Sun, Y., Ma, L., Mathew, J. and Zhang, S., Expentak research on
interactive failures, Proceedings of InternatioGahference of Maintenance
Societies, Sydney, Australia, 25-28 May 2004: pA0

(1) Sun, Y., Ma, L., and Mathew, J., On stable andabilstinteractive failures,
Proceedings of the T0Asia-Pacific Vibration Conference, ed. J. Mathew,
Gold Coast, Australia, 12-14 November 2003: p.668-6

(12) Sun, Y., Ma, L., and Mathew, J., Alarming limits foreventive maintenance
using both hazard and reliability functions, Pratirgs of the 18 Asia-
Pacific Vibration Conference, ed. J. Mathew, Golda&t, Australia, 12-14
November 2003: p.669-703.

(13) Sun, Y., Ma, L., and Mathew, J., Maintenance frams. A survey and new
extension, Proceedings of International Conferariddaintenance Societies,
Perth, Australia, 20-23 May 2003: p.03-077.

224



Reliability Prediction of Complex Repairable Systemsan engineering approach

(14) Sun, Y., Ma, L., and Mathew, J., A descriptive nmdde interactive failures,
Proceedings of International Conference of MaimeeaSocieties, Perth,
Australia, 20-23 May 2003: p.03-078.
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Appendix B1

The Test Data for Gearbox Tooth Failure

Table B1-1. The original test data for gearbox todt failure

This table is not available online.
Please consult the hardcopy thesis
available from the QUT Library

(Source: D. Lin, Optimizing a condition based mainénance program with gearbox
tooth failure, CBM Lab, University of Toronto, 2003)
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Appendix B2

Derivation of Equation (3-21)

For convenience, let the subsystem not containrepgired componentsr() in n

PM intervals, i.e., the reliability of the subsystes

Ry,(7), = R, (B2-1)

m

l:l R (7)o

After the first PM action, the reliability of thgstem is

R.(7), = [‘! Ry (7 +Bt,)Ry (T + At )R (1), (B2-2)
That is

_R@,R(T+AY), _
R(7), = R(+A0), (B2-3)

After the second PM action, either Component 2 @m@onent 1 can be repaired. If
Component 1 is repaired again, the reliability loé tsystem after the second PM

action is

R0, = [ R+ 28R+ 4)R (@),

R(1),R(T +>_At),
= = (B2-4)

R(r+Y41),

If Component 2 is repaired, the reliability functiof the system after the second PM

action is

227



Yong Sun, PhD Dissertation at the Queensland Univsity of Technology

R, = RO ZANR+ T AR +A),R (1),

_R(1),R (T +At,),R (T +At, +At,), (82-5)
T R(T+AL +AL) R, (T +AL +AL),

Generally, ifm components are repaired iIPM actions and_k indicates that the
componentk (k <m) receives its last repair at the'LIPM action (Lk < n), and if

one defines

D At =0 whenLk+1>n, (B2-6)

i=Lk+1

then the following reliability function for a systeafter the i PM actions can be

proven using the Principle of Mathematical Inductja8].

Rs(r+ZAt )oﬂ R+ Y At),
i=Lk+1 ] (82_7)

DRk(”ZAt )o

R.(7), =

Proof.

When n=1, k=1 and Lk = 1 according to the numbering method defined in

1
Chapter 3. Equation (B2-7) reduces to Equation $BEecauseZAti =0 based on

i=1+1

Equation (B2-6). Therefore, Equation (B2-7) is trueenn =1.

Suppose Equation (B2-7) is true wher q, i.e.

Rs(r+zAt )on R+ YA,
i=Lk+1 ] (82'8)

u RK(T+ZAt )o

R(1), =
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Then one needs to prove that Equation (B2-7) swhenn=q+1.

There are two possibilities.

(1) A previously repaired Componen{ c < m) is repaired again. In this case,

RO R+ 20 + 8t o[ R+ Y + 1),

i=Lk+1

_ e . (B2-9)
ﬂ Rk (T + zAt| + Atq+1)0

Rs (T) g+l =

where, R (7)., is the reliability function of Componemnt after the system has been

preventively maintained fog +1 times. WriteR, (7)., as:

RC(T)q+1 = Rc(r + qZ:ﬂAti)u:’ (82'10)

i=Lc+1l
whereLc=q+1.

Substituting Equation (B2-10) into Equation (B2-§ixes

R+ [JR G+ ), oo
i=1 = i=Lk+1 . BZ'll

Rs (T) g+l =

q+l

|ij(r+;Ati)o

Equation (B2-11) indicates that Equation (B2-7)tise whenn=q+1, if a

previously repaired Componeant(c <m) is repaired again.

(2) A new Componentd is repaired. In this condition, the total repaired
components represented in Equation (B2-8) are asec by 1, andl =m

since Componend is the last repaired component.
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R0 R(T+ 341 +A,), H R(T+ 34t +Bt,),,
R(7)qu = e . (B2-12)
Rulr + 20005 [ R+ 26 + At

where, R (7)., is the reliability function of Component after the system has been

preventively maintained foq +1 times. WriteR (7) ,,, as:

g+l

Rm(r)q+l = Rm(T+ ZAti)Lm’ (82'13)

i=Lm+1

whereLm=q+1.
Substituting Equation (B2-13) into Equation (B2-18phe has the same result as
Equation (B2-11), i.e., Equation (B2-7) is true whe=q+1, if a new component is

repaired.

A combination of the conclusions of (1) and (2)ya® that Equation (B2-7) is true.
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Appendix B3

The Mann'’s Test for the Weibull Distribution of the

Pipeline Failure Data
The Mann’s Test [16] for the Weibull Distributionaw applied as follows. The
hypotheses are
H,: The failure times are Weibull.
H,: The failure times are not Weibull.

The test statistic is

r-1
K, Z[h’] . —Int]/M]
M = i=|k<11+1 (B3-1)
kzZ[ln ta—Int1/M;]
i=1

where,k;, andk, are the integer portion of the numb;erandr—_l. Numberr is

failure times.

M, =In[-In(- r: *+0

5 i-05 . . _
el TIn-n@-———0) =121 (B3-2)

where,n is the test number.

If a stands for the level of significance of the tesd & < F(a,2k,,2k, ), thenH,

is acceptedF (¢) is the F -distribution function.

The test that the failure times of the pipeline Weibull distributed is shown in
Table B3-1.
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Table B3-1. Mann's Test for the Weibull Distribution of the failure times of the

pipeline
i M, Int,, —Int, Numerator Denominator
1 1.124371] 0.11232312 4.9328954 4.251268767
2 0.537753 0.242214656 9
r =
3 0.364689 0.07505569 | k, =4
K = 9-1_
4 0.280963 0.086169006| ™2 =5~ =4
5 0.231918 0.029682544 a =005
n=10
6 0.200101 0.083584063| F (005,4,4) = 344
M =1.1603< F (005,4,4)
7 0.178189 0.020482027
3 0.16259 0.093096055The hypothesid is accepted.
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Appendix B4

The Proof of Proposition 4-1

Proposition 4-1: For an interaction chain process described byaiou (4-26), the
n" state of the interactive chain process is given by

{h @ =11+ Zn:[ﬁ(t)]s){hl (0} (4-30)

s=1
Proof.

This proposition is proved using the Principle oatllematical Induction [18] as

follows.

When n =2, substituting Equation (4-24) into Equation (4-2%yes

{h® @} =[11{h, (O} +[8OK h, (0} +[6WO1(h, (1)}

=([11+ 2 [601°)h, (1)} (B4-1)

s=1
Proposition 4-1 is true.

Assume that whem =k, Proposition 4-1 is true, i.e.,

{h@) =11+ 2 [601)h ()} - (B4-2)

s=1

Then whenn =k + 1the following equation can be obtained using Egoug4-26):

{h“ POy =[1{h, (0} +[6OK ™ (©)} - (B4-3)

Substituting Equation (B4-2) into Equation (B4-ives
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{h“ POy = (1+[6011]+ [9(t)]Z[9(t)]s){hl (0}

=11+ i[é’(t)]s){hl (0} (B4-4)

Therefore, Proposition 4-1 is true.
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Appendix B5

The Derivation of Equation (4-31)

Let

[S1=011+ Y1607 (B5-1)
Then

[S1-11] = Y 160)°. (B5-2)

s=1

The following equation can be obtained from Equa(iB5-2):

[S1-[11 = (6011 + 3 [60)F). (85-3)
Note that
S 601 = 1601 - 101" (B5-4)

Substituting Equation (B5-4) into Equation (B5-8daearranging the result, gives

[11-remnrsi =[11-rem. (B5-5)

Left-multiplying the inverse matrix[I]-[&(t)]) ™ to the both sides of Equation (B5-

5) if the determinanDet([I] —[8(1)]) # O, the following expression can be obtained:

[S]=(1T-[6®D " ([11-[6MO1™). (B5-6)
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Appendix B6

The Proof of Proposition 5-1

Proposition 5-1: All elements in the State Influence Matifi®#] are nonnegative

when0< g, <1.

Proof

Proposition 5-1 is proved using the Principle oftMamatical Induction [18] as

follows.

According to Chapter 4, SINkr]is the inverse matrix off I ] —=[8(1)]) :

[a]=(1]-[6®D ™, (B6-1)
where,
1 —0,(t) - =Gy (1)
-6 1 R
@-towp=| "0t @) (66-2)
_HMl(t) _Hmz(t) 1

M is the number of components in a system. Matrig-2B has the following

properties:
(1)  All diagonal elements are equal to 1.

(2)  All non-diagonal elements are either negative oo because
0<g, (<1 (i,j=12...,M;i#]). (B6-3)
WhenM =2,
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i o -6,
[a]=([1]-[6t)]) [ om 1 }
= L { ' elz(t)] (B6-4)
det[([11-[6@ON] | 6(1) 1

The proposition is true becaudet[([I ] -[&(1)])] > 0.
Suppose that the proposition is true whédn= K , i.e.,
a; 20 (i,j=12,...,K). (B6-5)

When M =K +1, rewrite matrix[a] in the form of partition matrix:

a, o ay Qi
: - : : a a
[a] — — |: ﬁll 12 j| . (B6_6)
K1 T Ak Ak 0y Oyaka
a1 0 Oxax Okiaka

In Equation (B6-5) and Equation (B6-6), the vanrablis omitted for simplicity.

From now on, variablé will not be written in expressions.

In Equation (B6-6),

all alK
a,=| i . (B6-7)
aKl aKK
6712 :{alK+l’a2K+1""’aKK+1}T ’ (86_8)
6721 :{aK+ll’aK+12""’aK+lK} . (86-9)

Rewrite the matrix[I] —[6]) into the same sized partition matrix. ef =[1]-[6],

then
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1 -0, —On
-6, 1 e =6, v, V.
[V] = : 21 ) :2K+1 - |:_)11 12} ’ (B6-10)
: . : ”
G b 1
where,
1 6, G
-6 1 ... =60
P I (B6-11)
G~ bk 1
Vio ={=Ow1r = Orciar--0 ™ ‘9KK+1}T ' (B6-12)
I721 :{_9K+11’ - 9K+12’ ceen T €K+1K} . (B6-13)

The following equation can be obtained by using #wgiation[a][v] =[I] and

matrix multiplying rules:
ayv,, +a,, ={0}, (B6-14)
where,{0} is a1x K null vector.

From Equation (B6-14), one can obtain the followaggations:

K
30Oy + A =0 ((=12...,K). (B6-15)
s=1

The first term in Equation (B6-15) is equal to esd than zero because of Equations

(B6-3) and (B6-5). Therefore,
a,,,20 (i=12...,K). (B6-16)
On the other hand,
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[vila] =[I]. (B6-17)

Then the following result can be gained by using shme inference as mentioned

above:

K
_ZHKHsasj +aK+1j =0 (J = 1,2,,K) . (86'18)

s=1
From Equation (B6-18), one has

Oy, 20 (j=12,..,K). (B6-19)

Furthermore, from

K
Ak ~ z O 11sQ 1 =1, (B6-20)

s=1
the following conclusion can be drawn:
Ak 21 (B6'21)
A combination of Inequities (B6-16), (B6-19) andb(B1) gives

a; 20 (i,j=12...,K+1). (B6-22)

That is, whenM = K +1, the Proposition 5-1 is also true.
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Appendix B7

The Proof of Proposition 5-2

Proposition 5-2: All diagonal elements in the State Influence Mafrr] are greater

than or equal to one.
Proof

According to Equation (B6-17),

is™ si

M
a; - G.a, =1. (B7-1)
=1

S#i

The second term on the left side of Equation (B¥sIjot negative according to the

properties of Interactive Coefficient (IC) and Posftion 5-1. Therefore,
a. =21 (i=12--, M). (B7-2)
The inequity symbol becomes equal symbol ifak0 (s=1,2,...,M ).

Propositions 5-1 and 5-2 have explicit physical niegs. Proposition 5-1 indicates
that components in a system are subject to stabife Proposition 5-2 indicates that
the IntHs of the affected components in a systeengagater than their Independent
Hazards (IndHs) due to failure interactions. Theufe likelihoods of these affected
components also increase. The IntH of a componéhbg equal to its IndH if the

failures of other components do not affect it.
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