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Abstract
D

ysfunction in the central nervous system of the neonate is often �rst identi�edthrough seizures. The di�culty in detecting clinical seizures, which involves theobservation of physical manifestations characteristic to newborn seizure, has placedgreater emphasis on the detection of newborn electroencephalographic (EEG) seizure.The high incidence of newborn seizure has resulted in considerable mortality andmorbidity rates in the neonate. Accurate and rapid diagnosis of neonatal seizure isessential for proper treatment and therapy. This has impelled researchers to investigatepossible methods for the automatic detection of newborn EEG seizure. This thesis isfocused on the development of algorithms for the automatic detection of newborn EEGseizure using adaptive time�frequency signal processing.The assessment of newborn EEG seizure detection algorithms requires large datasetsof nonseizure and seizure EEG which are not always readily available and often hard toacquire. This has led to the proposition of realistic models of newborn EEG which canbe used to create large datasets for the evaluation and comparison of newborn EEGseizure detection algorithms. In this thesis, we develop two simulation methods whichproduce synthetic newborn EEG background and seizure. The simulation methods usenonlinear and time-frequency signal processing techniques to allow for the demonstratednonlinear and nonstationary characteristics of the newborn EEG.Atomic decomposition techniques incorporating redundant time-frequency dictio-naries are exciting new signal processing methods which deliver adaptive signal repre-sentations or approximations. In this thesis we have investigated two prominent atomicdecomposition techniques, matching pursuit and basis pursuit, for their possible usein an automatic seizure detection algorithm. In our investigation, it was shown thatmatching pursuit generally provided the sparsest (i.e. most compact) approximationfor various real and synthetic signals over a wide range of signal approximation levels.For this reason, we chose MP as our preferred atomic decomposition technique for thisthesis.A new measure, referred to as structural complexity, which quanti�es the level orii



Abstract iiidegree of correlation between signal structures and the decomposition dictionary wasproposed. Using the change in structural complexity, a generic method of detectingchanges in signal structure was proposed. This detection methodology was then appliedto the newborn EEG for the detection of state transition (i.e. nonseizure to seizurestate) in the EEG signal. To optimize the seizure detection process, we developed atime�frequency dictionary that is coherent with the newborn EEG seizure state basedon the time�frequency analysis of the newborn EEG seizure. It was shown that usingthe new coherent time�frequency dictionary and the change in structural complexity, wecan detect the transition from nonseizure to seizure states in synthetic and real newbornEEG.Repetitive spiking in the EEG is a classic feature of newborn EEG seizure. There-fore, the automatic detection of spikes can be fundamental in the detection of newbornEEG seizure. The capacity of two adaptive time-frequency signal processing techniquesto detect spikes was investigated. It was shown that a relationship between the EEGepoch length and the number of repetitive spikes governs the ability of both match-ing pursuit and adaptive spectrogram in detecting repetitive spikes. However, it wasdemonstrated that the law was less restrictive for the adaptive spectrogram and it wasshown to outperform matching pursuit in detecting repetitive spikes.The method of adapting the window length associated with the adaptive spectro-gram used in this thesis was the maximum correlation criterion. It was observed thatfor the time instants where signal spikes occurred, the optimal window lengths selectedby the maximum correlation criterion were small. Therefore, spike detection directlyfrom the adaptive window optimization method was demonstrated and also shown tooutperform matching pursuit.An automatic newborn EEG seizure detection algorithm was proposed based on thedetection of repetitive spikes using the adaptive window optimization method. Thealgorithm shows excellent performance with real EEG data. A comparison of the pro-posed algorithm with four well documented newborn EEG seizure detection algorithmsis provided. The results of the comparison show that the proposed algorithm has signif-icantly better performance than the existing algorithms (i.e. Our proposed algorithmachieved a good detection rate (GDR) of 94% and false detection rate (FDR) of 2.3%compared with the leading algorithm which only produced a GDR of 62% and FDR of16%).In summary, the novel contribution of this thesis to the �elds of time-frequency signalprocessing and biomedical engineering is the successful development and application ofsophisticated algorithms based on adaptive time-frequency signal processing techniquesto the solution of automatic newborn EEG seizure detection.
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Preface
I

t has been a winding path to this thesis' end, and one which has explored someof the diverse areas in which signal processing is applicable. I was introduced tothe fundamentals of signal processing and its possible applications in the aerospaceindustry throughout my undergraduate degree. I further developed my signal process-ing skills during my honours year, taking on a project with Prof. Boashash in mobilecommunications. This project was my conception to the �eld of time�frequency signalprocessing and its powerful ability in representing nonstationary signals often encoun-tered in real applications. On �nishing my undergraduate degree, I continued workingas a research assistant in the signal processing research centre, analysing the newbornEEG signal using time�frequency signal analysis techniques. This work inspired mycontinued research in this area and helped de�ne the topic of this thesis.A signi�cant aspect of the newborn EEG signal, in particular the newborn seizureEEG, is its nonstationarity. This implies that time�frequency techniques are highlysuitable for the analysis and processing of the newborn EEG. However, there are a mul-titude of techniques for providing joint time�frequency representation. Therefore, how isa speci�c technique decided upon? The answer is �Assessment of available techniques.�Throughout this thesis, I have enjoyed investigating many time�frequency signalprocessing techniques. It has also been quite interesting to see how fundamental time�frequency techniques can be presented in a number of ways, depending on the authorsideas on these topics. Understanding the links between various time�frequency tech-niques and the bene�ts of particular techniques over others in certain applications hashelped immensely in the completion of this thesis.A number of detection algorithms, with application to newborn EEG seizure, aredeveloped in this thesis. Mostly, they are derived using multiple time�frequency tech-niques to bene�t from their particular advantages.It is my hope that the results of this research will be a benchmark for others tocompare newly proposed newborn EEG seizure detection algorithms against and moti-vate further research in this area. Hopefully, it will also emphasize the advantages ofxvi



Preface xviibroadening one's signal processing skills. Luke RankineBrisbane, AustraliaApril 2005





Chapter 1Introduction
B

iomedical signals are key tools used by physicians for monitoring the health ofpatients. They originate from various biological systems which include; the diges-tive, musculoskeletal, respiratory, circulatory and nervous systems [2]. These signals arerecorded in various forms, such as pressure, temperature or electric potential [3]. Thereare numerous reasons for recording biomedical signals such as diagnosis, monitoring ofhealth, research, therapy and prognosis [2]. All of which aim to improve the overalllevel of health care for the community.Bioelectrical signals, which are speci�c types of biomedical signals, are obtained byelectrodes that record the variations in electrical potential generated by a physiologi-cal system. Bioelectric potentials result from large groups of neural or muscular cellsproducing an electric �eld which propagates through various tissues in the body [3].Electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG)and electromyogram (EMG) are a few bioelectric signals which are used regularly inthe clinic. The EEG is used to monitor neural activity, EOG to record eye movement,ECG to assess heart functioning and EMG to measure muscular activity. There arecopious amounts of information regarding the health of a biological system attainablefrom bioelectric signals. However, information relating to particular pathologies is notalways clear from the raw bioelectric recording. This is where the �eld of biomedicalsignal processing can assist.Biomedical signal processing involves the manipulation, or transformation, of biomed-ical signals to enhance the relevant information in the recorded signals for accurate di-agnosis and prognosis. Another facet of biomedical signal processing, particularly dueto the emergence of digital signal processing and powerful digital computers, is the abil-ity for automatic detection and classi�cation of pathological events. This is currentlya major area of research as it has the potential to provide many health and economic1



2 Motivation of Researchbene�ts to the community.1.1 Motivation of ResearchSeizures are the result of excessive, synchronized electrical discharges from a collectionof neurons. They are caused by a number of brain abnormalities and are expressedthrough physical manifestations and particular EEG characteristics.In the newborn, seizures are the most frequent and sometimes only clinical sign ofcentral nervous system (CNS) pathologies [4]. Seizure events in the newborn are ofgreat concern for physicians because of the possible cause of the brain disorder as wellas the e�ects they may have on the developing brain. Some major causes of neonatalseizures include; energy failure (e.g. hypoxic�ischaemic encephalopathy), metabolic dis-turbances (e.g. hypoglycemia, hypocalcaemia), cerebrovascular lesions (e.g. intracranialhemorrhage), and infections (e.g. bacterial meningitis, herpes, syphilis and rubella) [5].The highest incidence of seizure occurs during the neonatal period. This is due tothe immature brain having particular features that make it more susceptible to seizuregeneration. These factors include enhanced cellular excitation, enhanced synaptic ex-citation and enhanced propagation of an epileptic discharge [4]. The incidence rate ofseizure in newborns is in the range of 0.15% to 0.55% [4]. It was found that the incidenceof seizure is correlated with the birth weight of the neonate. The incidence rate for verylow birth weight neonates (i.e. less than 1,500g) was found to be 10 times greater thanthe average incidence rate [6, 7]. High risk newborns (i.e. those with energy failure,metabolic disturbances, cerebrovascular lesions or infections) have an incidence rate of25%.There are two signs of newborn seizure; clinical and electrical. Clinical seizures arerecognized by certain physical manifestations while electrical seizures are identi�ed byparticular abnormal patterns (i.e. ictal patterns) that are observed in the EEG. Theseseizure signs may occur simultaneously or separately. EEG seizure without clinicalmanifestations is called subclinical.Clinical seizures are characterized by sucking, chewing, tongue protrusions, twitch-ing, drooling, ocular �xation, foaming at the mouth, rowing or swimming movementsof arms and pedaling or bicycling movements of the legs [4, 8]. However, some of thesecharacteristics are also normal behaviour in newborns. Therefore, recognition of thesecharacteristics as seizure attributes often depends on both the skill of the observer,which may be parents, family or medical sta�, and length of time that the newborn isbeing observed. Physical manifestations of newborn seizure are also often very subtle, ofshort duration and infrequent, making detection of newborn seizure extremely di�cult.



Introduction 3The recognition of electrical seizure activity is also more di�cult in the newbornthan in older children and adults where the electrographic seizure is easily recognizableagainst the low amplitude background. Neonatal seizures may be covert and their elec-trographic manifestations erratic and fragmented. Its patterns are also highly variable,with complex and varied frequency content and morphology [8]. Neonatal seizures areprogressive in nature with the buildup of rhythmic activity at various frequencies. An-other factor that makes detection of EEG seizure di�cult in the newborn is the factthat normal babies have a large variety of peculiar electrographic manifestations whichcan mimic real seizures [9]. Therefore, much care is needing in discerning seizure fromnonseizure activity. Because of these di�culties, overdiagnosis of seizure has been arecent occurrence [9].Identi�cation of seizures is extremely important for evaluating the long term outcomeof sick neonates. Since the advent of the neonatal intensive care unit (NICU), mortalityand morbidity rates have declined. However, newborn seizures are still signi�cantlyrelated to mortality. Mortality rates associated with newborns su�ering seizure rangebetween 21% and 55% [10, 11, 12]. The morbidity statistics of newborns who haveexperienced seizure events are also poor. Rates of severe handicaps such as spasticity,mental retardation, cerebral palsy, language delay and sensory de�cits are between 38%and 56% of those who survive [10, 13].There are a number of bene�ts in using the EEG to identify seizure activity in thenewborn. Often neonates, especially premature neonates, are paralyzed for arti�cialrespiration. In this case, clinical manifestations are subdued, leaving the EEG as theonly method of assessing the CNS [9]. The EEG also can provide unique informationfor diagnosis and therapy of seizures [8].The complexity of EEG recordings usually requires a neurologist to identify seizureevents. However, due to the often infrequent nature of neonatal EEG seizure, lengthyrecording sessions are required to capture EEG seizure events. The review process is anarduous and time consuming task. Therefore, an accurate automatic seizure detectionmethod is highly desirable as it removes the need for a neurologist to review an entireEEG recording.Continual excessive discharge of neurons that occurs during seizure may cause per-manent brain damage [14]. Therefore, the early detection of newborn seizure is vitalin minimizing the brain injury [1]. In full term neonates with hypoxic-ischaemic en-cephalopathy, for example, it may be possible to reduce delayed neural death or pro-grammed cell death [15]. The duration of the window for therapeutic intervention isconsidered to be 2�6 hours after birth asphyxia. The treatment, however, may haveserious side e�ects which means early and accurate detection of seizures is important.



4 Existing Newborn EEG Seizure Detection TechniquesTherefore, online automatic detection of neonatal seizures may play a pivotal role inpreventing or reducing brain damage.1.2 Existing Newborn EEG Seizure Detection TechniquesA number of methods for seizure detection have previously been proposed using a va-riety of signal processing techniques. These techniques can be divided into two broadclasses, namely; stationary and nonstationary. However, it has been shown that thenewborn EEG signal is highly variable and nonstationary. Therefore, the assumption ofstationarity implied by using stationary signal processing techniques is inaccurate andleads to suboptimal detection algorithms [16].In this section, we provide a review of the most widely cited automatic EEG seizuredetection algorithms for the newborn. The techniques reviewed are classi�ed into eitherstationary or nonstationary techniques.1.2.1 Stationary TechniquesThe term stationary was originally de�ned in statistics to describe a particular type ofrandom process [17]. Generally speaking, a random process is said to be stationary if allof its statistical properties do not change with time [18]. All other random processes arereferred to as non-stationary. However, for a deterministic signal, which is characterizedby the ability to predict future values from past values, the term stationary refers tothose signals whose power spectra are independent of time.The autocorrelation function is a time domain analysis tool. It is a useful methodof assessing the similarity of a signal with itself over varying time shifts and hence,periodicity in the signal. The autocorrelation function of a deterministic signal, x(t), isgiven by
Rxx(τ) =

∫
∞

−∞

x(t)x(t + τ)dt (1.1)It can be seen that the autocorrelation function is a function of the variable τ only, whichrepresents a time shift of the signal x. This indicates that the autocorrelation functioncannot accurately represent the time�varying information contained in nonstationarysignals.A seizure detection algorithm, developed by Liu et al. [19], incorporated the auto-correlation function to assess the periodicity of the signal as the algorithm assumes thatthe EEG seizure is a periodic signal. The details of the algorithm are as follows.In this method, each EEG channel was segmented into epochs of 30 seconds. The



Introduction 5epochs were further subdivided into 5 windows, as shown in Figure 1.1, and 5 autocor-relation functions were obtained. For periodic behaviour, peaks of the autocorrelationfunction are separated by the same time di�erence. Therefore the ratio of the time dif-ferences between peaks of the autocorrelation function were used as the distinguishingfeature for this algorithm.
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Figure 1.1: Liu's method of windowing epochs for autocorrelations to be calculated.Liu assumed that the newborn EEG is stationary over a 6 second epoch. However,it has been shown that the EEG can have major variations in frequency content forperiods less than 6 seconds [20]. Therefore, the assumption of local stationarity and aperiodic seizure signal are not always satis�ed. This means that accurate detection ofseizure cannot always be achieved.Spectral estimation is one of the key analysis tools used in all facets of appliedsignal processing. The frequency content is commonly used as a feature of EEG to helpin classi�cation, diagnosis and interpretation. The Fourier transform (FT) is a linearintegral transform that provides a frequency domain representation. The FT of a signal
x(t) is given as

F{x(t)} = X(f) =

∫
∞

−∞

x(t)e−j2πftdt (1.2)



6 Existing Newborn EEG Seizure Detection Techniques
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Figure 1.2: Two epochs, one nonseizure and one seizure, are shown here to have signif-icant di�erences in the frequency domain.where F{·} is called the FT operator and ej2πft is the FT kernel. To obtain a powerspectrum, S(f), we take the square magnitude of (1.2). An alternative method ofobtaining the power spectrum is through the Wiener-Khintchine theorem [18, 21]. Thistheorem states that the power spectrum of a stationary signal can be attained throughthe FT of its autocorrelation function (1.1).In [22], a method for automatic seizure detection using the power spectrum waspresented. Spectral analysis was used to �nd rhythmic discharges at various frequencies.In this method the FT was applied to a sliding window of 10 seconds. Features such asdominant frequency, width of dominant frequency and power ratio between dominantfrequency bands were extracted from an epoch. These features were then compared tothe same features of 2 previous epochs, which were approximately 60 seconds behind.Therefore, this method attempts to discriminate between seizure and nonseizure usingthe di�erences exhibited in the frequency domain. An example of this is shown infrequency domain representations in Figure 1.2, of a nonseizure epoch and a seizureepoch.Problems with this method result from the assumption of stationarity. Firstly, dueto the nonstationary nature of the newborn EEG signal, signi�cant di�erences in thespectrum of two epochs spaced 60 seconds apart may result even when seizure is notoccurring [20, 23]. Therefore, this may lead to false seizure detections. Also, frequencycontent within the 10 second analysis epoch, which is assumed to be stationary, canbe highly time-varying [20]. Therefore, only suboptimal features can be extracted fromthe frequency domain analysis of a 10 second newborn EEG epoch.In [1], a model�based approach for seizure detection was proposed. For this detectionscheme, a model of newborn EEG, which included both background and seizure, was
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(Seizure input)Figure 1.3: Schematic of newborn EEG model proposed by Roessgen et al. [1].proposed. The model architecture is shown in Figure 1.3, and is an extension to themodel proposed by Lopes Da Silva et al. [24]. In the model, Z(t) is used to modelthe seizure generating signal, and is chosen as a random repetitive waveform. Thebackground generating signal, P (t), is assumed to be stationary, zero mean, whiteGaussian noise.The full EEG model in Figure 1.3 consists of 11 model parameters. To detect seizureevents in real newborn EEG, the model parameters are �rstly estimated from the realEEG using Whittle's approximation. If the estimated model parameters for the realEEG are close to the seizure model parameters, then a seizure detection is scored.This method had limited success due to the extremely complex system it is trying tomodel. Assumptions in the model such as generating the background using stationarywhite Gaussian noise are incorrect as it has been shown that the EEG is nonstationaryand non-Gaussian [20, 25]. Another drawback of this model�based approach, as statedin [26], is that the model parameters may never converge accurately when estimatingfor real EEG signals. It was also shown that the autocorrelation�based technique of Liuet al. [19] and the power spectrum�based technique of Gotman et al. [22] both gavebetter performance than the model�based parametric approach [26].A method for detecting seizure in infants using a singular spectrum analysis (SSA)approach was presented in [27]. The motivations for using an SSA approach was itsgood performance with quasi-periodic signals and the robustness to noise of the singularvalue decomposition (SVD) process used in the SSA method.This method begins with a preprocessing stage which attempts to whiten the back-ground signal prior to SSA. A nonlinear function [27] is used to Gaussianize the databefore a whitening �lter, derived from the inverse of an ARMA model of the newbornEEG background, is used to whiten the background. This process, however, does not



8 Existing Newborn EEG Seizure Detection Techniquesa�ect the rhythmical characteristics of the newborn EEG seizure. Therefore, seizuredetection can be made by detecting the period for which the signal is not Gaussianwhite noise.After the whitening preprocessing step, the signal is converted into a trajectorymatrix so that the signal part and noise part can be separated. The signal space isrelated to the n0 largest singular values in the SVD of the trajectory matrix. The number
n0 is determined using the Rissanen's minimum description length (MDL) method [28].If the value is n0 = 1, the signal is pure white noise, and if n0 > 1 a nonstochasticcomponent exists. The SSA�based newborn EEG seizure detection algorithm is shownin Figure 1.4.The SSA approach has a major �aw in that it uses a time-invariant model of thenewborn EEG for the whitening preprocessing stage. The newborn EEG is a dynamicnonstationary signal. Therefore, the whitening process may not correctly whiten sec-tions of the background, leading to false alarms.1.2.2 Nonstationary TechniquesDue to the time�varying frequency content of the EEG signal, signal processing tech-niques capable of handling nonstationarity in the signal are the best techniques to beused for automatic seizure detection. Joint time-frequency representations (TFRs) canbe used to track the frequency content as it evolves over time. Therefore, a number ofrecent seizure detection algorithms have incorporated time-frequency signal processing(TFSP) techniques. In this section, we brie�y introduce the various TFSP techniquesthat have been used for the detection of EEG seizure in newborns. A thorough reviewof TFSP will be presented in chapter 3.Quadratic time-frequency distributions (QTFDs) are a class of methods for obtain-ing a TFR and have been used in the development of seizure detection algorithms. Thegeneral form of a QTFD is given as the convolution of the Wigner-Ville distributionwith a time-frequency �lter and may be expressed as:

Ez(t, f) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

g(ν, τ)z(u +
τ
2
)z∗(u − τ

2
)ej2π(νt−νu−fτ)dudνdτ (1.3)where g(ν, τ) is the Doppler-lag kernel which uniquely de�nes the QTFD [29].In [16, 20], the authors characterized seizure patterns in the TF domain using aQTFD. A TF template for seizure was created using observations from their TF analysis.A 2D cross�correlation process in the TF domain, using the seizure template and theTFD of EEG epochs, was then used to identify seizure events.A limitation of this technique is that a large number of TF seizure templates are
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10 Existing Newborn EEG Seizure Detection Techniquesneeded for accurate seizure detection. This then leads to excessive computation timesbecause of the 2D correlation process.In [30, 31], a method of detecting spikes in the EEG signal using QTFDs was de�ned.It was shown that the high frequency area of the TF domain could be used to detectspikes and that the distribution of time intervals between successive spikes di�eredbetween seizure and nonseizure epochs. The distribution of time intervals betweensuccessive spikes were then characterized using a histogram of successive spike intervals(HSSI). A number of HSSI which represented di�erent seizure classes were formed. Anautomatic seizure detection algorithm, which compared the HSSI of an EEG epoch tothe de�ned HSSI seizure templates using the Jensen function [32] for similarity, wasproposed.In [33], a method of seizure detection based on the SVD of the TFR using a QTFDwas proposed. It was shown that the �rst and second, left and right singular vectorsof the TFR di�ered between seizure and nonseizure epochs. It was suggested that thesingular vectors characterized the low frequency signature of newborn EEG seizure. Atwo-layer feed forward neural network was used to classify the EEG data into seizureand nonseizure.The SVD-based method was combined with the HSSI-based method to provide aseizure detection algorithm which could detect both the high frequency and low fre-quency signatures of newborn EEG seizure. However, both methods require trainingfor the template design (i.e. HSSI and singular vectors). This requires a large databaseof seizures, but these templates were designed using only a small data set. Also, bothtechniques use QTFDs for TFR but it was shown in [34] that a single QTFD cannotsimultaneously show spike activity and long duration slow frequency activity optimally.For this, an adaptive TFR such as the adaptive spectrogram (ASPEC), de�ned inChapter 6, is needed.Wavelet transform (WT) is another nonstationary signal processing technique thathas become popular for analyzing transient signals. In [35], features such as the meanand variance of particular coe�cients from the WT were chosen as possible features fordistinguishing between seizure and nonseizure EEG signals. From these list of features,an optimal subset of features was derived using the mutual information evaluation func-tion [36]. The optimal discriminating features were fed to an arti�cial neural networkclassi�er for automatic seizure detection. A limitation of this algorithm, however, isthat the arti�cial neural network was only trained using the EEG from one baby. Thistraining set is not adequate as EEG patterns vary signi�cantly within patients andbetween patients. Therefore, the algorithm would need to be reassessed using a largerdatabase.



Introduction 11Analysis of adult EEG using an adaptive time-frequency (TF) method known asmatching pursuit [37] has been undertaken in [38, 39, 40, 41, 42]. This method has manybene�ts such that it can provide high resolution TFRs without crossterms [40, 37], it canprovide information about the nonlinearities associated with a signal [39], and providea TF parameterization of the signal [42]. This technique has recently been incorporatedinto an algorithm for seizure detection in the adult [43]. Matching pursuit, however,has not previously been used in the analysis of newborn EEG or for the developmentof automatic newborn EEG seizure detection algorithm.1.3 Scope, Aims and ObjectivesThe scope of the thesis includes the analysis of newborn EEG using appropriate nonlin-ear and nonstationary techniques to determine the signi�cant characteristics of variousEEG states. It also includes the development of automatic seizure detection algorithmsbased on appropriate adaptive time-frequency signal processing techniques. These al-gorithms should outperform other well documented automatic seizure detection algo-rithms, but are not required to run online.The speci�c aim of this thesis, therefore, is to develop a superior automatic new-born EEG seizure detection algorithm which may be used to aid in better monitoringand treatment of sick neonates. This aim can be achieved by specifying the followingobjectives:1. To provide a realistic newborn EEG simulation algorithm based on the nonlinearand nonstationary characteristics of the real EEG signal. (Chapter 4)2. To investigate the use of atomic decomposition techniques, such as matching pur-suit and basis pursuit, in analyzing nonstationary signals. (Chapter 5)3. To extract EEG seizure features from the newborn EEG using matching pursuitdecomposition, and develop an automatic seizure detection methodology based onthese features. (Chapter 5)4. To develop a method of spike detection using adaptive TF techniques and imple-ment the method in an automatic seizure detection algorithm. (Chapter 6)5. To assess the performance of the proposed newborn EEG seizure detection al-gorithms using synthetic and real EEG data and compare with previous, welldocumented, newborn EEG seizure detection algorithms. (Chapter 6)



12 Thesis Contributions1.4 Thesis ContributionsThe work presented in this thesis contain a number of original contributions to the �eldof biomedical signal processing. The contributions are:1. We provided a new method for simulating newborn EEG data using both nonlinearand nonstationary analysis and synthesis techniques [23, 44, 45]. (see Chapter 4,sections 4.2, 4.3 and 4.4)2. Basis pursuit was proposed as an atomic decomposition technique which pro-vides the sparsest signal representation. In many signal processing applications,however, only an adequate signal approximation is needed. We have shown thatbasis pursuit does not always provide a sparser signal approximation than match-ing pursuit. Indeed, we have shown that matching pursuit generally provides asparser signal approximation than basis pursuit for various levels of approximation[46, 47]. (see Chapter 5, section 5.2)3. We introduced a new signal complexity measure, referred to as �structural com-plexity�, which is a measure of the coherency between the dictionary used forsignal decomposition and signal structures. This measure has been used as a ba-sis for detecting changes in signal structure, such as newborn EEG [47, 48, 49, 50].(see Chapter 5, section 5.3)4. We developed a new TF dictionary that is coherent with the TF structures foundin newborn EEG seizure. Using this dictionary and the structural complexitymeasure, we were able to detect the transition from non�seizure to seizure states[50]. (see Chapter 5, section 5.4)5. We have shown that the signal length is pivotal for detecting periodic and repet-itive spikes when using matching pursuit [51, 52]. Without allowing for this re-lationship, the performance of detecting repetitive spikes becomes poor. (seeChapter 6, section 6.4)6. We have shown that the adaption algorithm for ASPEC, which optimizes thewindow length at each time instant, can be used for detecting spikes. It was alsodemonstrated that this method of spike detection outperformed matching pursuitin detecting repetitive spikes [34, 53]. (see Chapter 6, sections 6.3 and 6.4)7. We developed a new automatic seizure detection algorithm based on the detectionof seizure spikes using the optimal window scale method [53]. (see Chapter 6,section 6.5)



Introduction 131.5 Organization of ThesisThis thesis is structured as follows:Chapter 1 describes the motivation for this research and reviews some previoustechniques and methods used for detection of newborn EEG seizure. It also detailsthe objectives and major contributions of this research and outlines an overview of thethesis.Chapter 2 provides an introduction to the EEG signal. This chapter describes manycharacteristics of the EEG signal from both clinical (i.e. medical) and signal processingperspectives.Chapter 3 provides a detailed review of current TFR methods. This includes linearand quadratic time-frequency distributions, time-scale transforms, and relevant atomicdecomposition techniques. The ability of TFR methods to relay the time�varying in-formation associated with nonstationary signals is demonstrated.Chapter 4 proposes a new method of simulating the newborn EEG signal. Thesimulation of background EEG begins with the fractal dimension (FD) analysis of realnewborn EEG background. It is assumed that the FD estimate is a random variable andan estimate of the distribution is given. Using FD theory and the estimated distribution,a background EEG simulator is derived. (Answers Objective 1)The proposed method for newborn EEG seizure simulation is based the time-frequencysignal synthesis (TFSS) of simulated seizure TFRs. Comparison in the time, frequencyand TF domain between real and simulated signals show the validity of the simulationmethods. (Answers Objective 1)Chapter 5 compares the sparsity of matching pursuit and basis pursuit signal ap-proximations. It is determined that matching pursuit generally provides a sparser signalapproximation. For this reason, matching pursuit is the preferred atomic decompositiontechnique to be used in this thesis. (Answers Objective 2)A new signal complexity measure, referred to as structural complexity, obtained usingmatching pursuit is de�ned. A generic method for detecting changes in signal structureis proposed based on a change in the structural complexity. This methodology fordetecting changes in signal structure is then applied to newborn EEG. To optimize theuse of SC for the newborn EEG case, we create a TF dictionary that is coherent withthe newborn EEG seizure structures. (Answers Objective 3)Chapter 6 reviews a number of spike detection algorithms. The ability of TFSPtechniques to detect repetitive spikes is investigated. It is demonstrated that epochlength is pivotal in the ability of MP to detect the individual spikes of a repetitively
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Chapter 2
Newborn EEG SignalCharacteristics
2.1 Introduction
R

ichard Caton's discovery in the late 19th century, that �feeble currents of varyingdirection pass through the multiplier when electrodes are placed on two points ofthe external surface, or one electrode on the grey matter and one on the surface of thescull� of rabbits and other animals is believed to be the beginning of the EEG [54].However, it wasn't until 1929 that Hans Berger �rst demonstrated electrical activity inthe human brain [54, 55].The EEG has many uses as a diagnostic and prognostic tool. Primarily, the EEGis used in the assessment of the CNS and diagnosis of neurological diseases [56]. TheEEG is extremely useful in the management of epileptic patients. Other uses of theEEG include localization of abnormal brain structures [57], investigation of patientswith neurological and psychiatric disorders [58] and the monitoring of patients withmetabolic disorders [59]. The EEG is also used for studying sleep disorders and forevaluating states of consciousness [59, 60].In this chapter we review the characteristics of the newborn EEG signal. In section2.2 we summarize the neurophysiological mechanisms responsible for the newborn EEGsignal. The methods of recording the EEG signal are presented in section 2.3. Thecharacteristics of the newborn EEG signal associated with the normal and abnormalbackground EEG state, along with the characteristics of the seizure state, are thenpresented in section 2.4. 16



Newborn EEG Signal Characteristics 172.2 EEG NeurophysiologyThe basic mechanism of the CNS is the neuron (nerve cell). CNS functioning resultsfrom the depolarization and hyperpolarization of the neuron membrane, which is causedby ion �ux across the membrane. The depolarization of membranes causes an actionpotential generation. This releases neurotransmitters from presynaptic regions to ei-ther excitatory or inhibitory postsynaptic receptors resulting in excitatory postsynapticpotentials or inhibitory postsynaptic potentials respectively [4, 61]. Figure 2.1 shows adiagram of a CNS neuron and displays a zoomed picture of the synapse, demonstratingthe presynaptic and postsynaptic regions. Figure 2.2 illustrates the neurotransmitterprocess, with the density of ions, shown by the number of '+' and '-' signs, indicatingthe polarization. In normal brain functioning there is an equilibrium between excita-tory and inhibitory processes [4], and, as a consequence, neurons �re randomly andasynchronously.2.3 Recording MethodsSigni�cant di�erences exist in the EEG recorded from the scalp and the cerebral cortex1.The cortical EEG, also referred to as the electrocorticogram (ECoG), is a measure ofneural activity in the neighbourhood of the electrode whereas the scalp EEG is anaverage of the diverse activities of many small regions of the cortical surface in proximityto the scalp electrode [64]. The amplitude of the scalp EEG is generally much smallerthan the ECoG unless a signi�cant area of the cortical region under the scalp electrodeis synchronized. This then results in comparable amplitudes between the scalp andcortical EEG.Di�erences in frequency content exist between the scalp EEG and ECoG. Observa-tions have revealed that the ECoG contained more power in higher frequencies than thescalp EEG due to the higher frequencies tendency to be spatially coherent over smallcortical surface areas and the scull acting as a low pass �lter [65, 66]. Also, the ECoGis generally una�ected by artifacts resulting from eye movements and muscle contrac-tions, unlike the scalp EEG [67]. However, the invasive nature of the ECoG restricts itsclinical use, leaving the scalp EEG as the primary method of analyzing the CNS of thenewborn.1The brain has three major parts, the cerebrum, cerebellum and brain stem. The cerebrum consistsof two hemispheres and the cerebral cortex, which is the extensive outer layer of gray matter. Thecerebral cortex is responsible for higher brain functions such as mathematical abilities, voluntary musclemovement, reasoning, and perception [62, 63]. A detailed description of human brain anatomy is givenin [64].
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Figure 2.2: The ionic current �ows around the synapse (shown in Figure 2.1) throughthe neuronal membrane and along the membrane, demonstrated by the arrows.Most recordings of scalp EEG involve the placement of electrodes over the headaccording to the International 10-20 standard. Twenty one electrode sites are de�nedunder the 10-20 standard [68] and they are determined by four standard positions on the



Newborn EEG Signal Characteristics 19head: the nasion, inion, and left and right preauricular points [59]. The 10-20 standardof electrode placement is shown in Figure 2.3 where odd numbers refer to the left sideand even numbers refer to the right side.

A − Earlobe O − OccipitalF − FrontalC − Central
T− TemporalP − Parietal p − Prefrontal z − MidlineFigure 2.3: International 10-20 standard of electrode placement.The EEG is a voltage measurement, which infers that a potential di�erence isrecorded. The montage is the method by which the potential di�erence between elec-trode sites are selected as EEG channels. Two montages recommended by the AmericanEEG society are bipolar and referential (monopolar) montages [68]. In bipolar mon-tage, an EEG channel is obtained by measuring the potential di�erence between twoadjacent electrode sites. This method of recording removes common electrical activ-ity between the two electrode sites such as unwanted artefacts, but may exclude someimportant EEG information localized around either of the recording sites. In the refer-ential method, a common reference electrode to all EEG channels is used. Usually, it isplaced away from the scalp on either the chin, nose or ear to minimize the possibility ofincluding potentials from the brain [62]. This method of recording provides a localized



20 Characteristics of Newborn EEGrepresentation of electrical activity but may be hindered by its susceptibility to noiseand artefact.2.4 Characteristics of Newborn EEG2.4.1 BackgroundThe EEG signal is a complex waveform that, in the �rst instance, appears to be someform of noisy signal. For epileptic patients, the EEG can be divided into a backgroundstate (i.e. when seizure is not occurring) and a seizure state. The background EEGactivity is characterized by patterns that are relatively stable, and is generally withoutmajor temporal changes in frequency and voltage [69, 9].The frequency content of the background EEG has no clear upper and lower bound-aries. However, current EEG measuring equipment generally concentrate on capturingthe clinically relevant range of between 0.1Hz to 100Hz [70]. This frequency range isdivided into a number of bands. These bands, designated by Greek letters, are de�nedas:
• Delta (δ) 0.1�3.5Hz
• Theta (θ) 4�7.5Hz
• Alpha (α) 8�13Hz
• Beta (β) 13�30Hz
• Gamma (γ) above 30HzDelta activity is the predominant range in infants and is normal during deep sleepstages in the adult. It is considered abnormal in the EEG of awake adults. Thetaactivity, if focal or lateralized, with excessive amplitude is an indicator of possiblelocalized cerebral pathology in the adult patient. However, it is often seen in normalchildren. The Alpha rhythm is best seen when the adult patient is resting with closedeyes and is the classical EEG correlate of wakefulness [59, 70]. The Beta and Gammaactivities are just regarded as a fast variant of the alpha activity (i.e. higher frequency).The EEG characteristics di�er considerably from the adult and older child to thenewborn, particularly in frequency content. In the adult and older child, the predomi-nant frequency range is between 8-30Hz (Alpha and Beta activity). Frequencies between0.3-7Hz and above 30Hz are sparsely represented [70]. The newborn EEG has most ofits power in the low frequency range of between 0.4-7.5Hz [71, 72]. Also, the varia-tions in newborn EEG are more rapid, the stages of sleep-wake cycle are unstable, thereaction to opening eyes is missing, an interhemispheric asymmetry is observable and



Newborn EEG Signal Characteristics 21certain adult features of EEG are missing (e.g. spindles and K-complexes)2 [73]. Theamplitude of EEG in the adult is most commonly between 10�50µV [70]. This range isalso common to the newborn EEG [73]. Observations show that the maximum ampli-tudes of various EEG rhythms, from the de�ned frequency bands, tend to be inverselyrelated to their frequency [62].A comparison between 2 seconds of background EEG of the adult and newborn isshown in Figures 2.4 (a) and (b) respectively. From these plots, it is clear that the adultEEG has much more high frequency activity than the newborn. The amplitudes of theEEGs are comparable in magnitude.
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Figure 2.4: The background EEG signals of the (a) Adult and (b) Newborn.2.4.2 Abnormal Background PatternsAbnormalities occurring in the EEG signal can be speci�cally associated with someunderlying pathology. Therefore, these types of abnormalities are labeled as speci�cabnormalities. The abnormalities which are not related to any pathology are labeled as2Spindles are rhythmic waves at approximately 14Hz occurring during sleep stages. K-complexesare transient complex waveforms consisting of slow waves associated with sharp components [62].



22 Characteristics of Newborn EEGnonspeci�c abnormalities. The majority of abnormalities in the EEG are nonspeci�c.Speci�c and nonspeci�c EEG abnormalities can been classi�ed into three groups [74]:(a) Distortion or disappearance of normal patterns(b) Appearance or increase of abnormal patterns(c) Disappearance of all patternsAbnormalities can be further classi�ed in terms of the spatial coverage and period ofpersistence. The term paroxysmal has been given to abnormalities that are characterizedby an abrupt onset and termination and is signi�cantly di�erent to the backgroundactivity in frequency and amplitude [59]. Usually, speci�c EEG abnormalities occurparoxysmally [74].A number of abnormal EEG patterns are common to the adult and newborn. Twosuch patterns are the spike and sharp wave patterns. A spike is de�ned as �a transient,clearly distinguishable from the background activity, with a pointed peak at conventionalpaper speed and a duration from 20 to under 70msec. Main component is generallynegative to other areas. Amplitude is variable� [62, 75]. This broad de�nition is dueto the large variations between spikes within an individual, and between individuals,making more precise de�nition di�cult.Similar to the spike pattern, a generalized de�nition of a sharp wave is given as�a transient, clearly distinguishable from background activity, with pointed peak at con-ventional paper speeds and duration of between 70-200msec. The main component isgenerally negative to other areas� [62, 75]. Another di�erence between spikes and sharpwaves, not mentioned in the de�nition above, is that the starting phase of the sharpwave has a similar duration as a spike, but the �nishing phase is longer. This is shownin Figures 2.5 (a) and (b), which show a spike and sharp wave respectively.Isoelectric pattern, which can be referred to as electrocerebral inactivity pattern, isan abnormal pattern characterized by extremely low voltage patterns. The majorityof patients exhibiting this EEG abnormality generally die, (e.g. An isoelectric EEGpattern occurs at the moment of cardiac arrest [76]). Otherwise these type of patternsindicate a poor prognosis for the patient, as those who survive are left with severeneurological sequelae [59].Burst�Suppression pattern is characterized by a burst of high voltage lasting ap-proximately 1-10 seconds followed by periods of quiescence or inactivity (i.e. isoelectricpatterns) lasting 2-10 seconds [9, 59].Runs of rapid spikes is an abnormal pattern that is particular to only adult andolder children EEG. This abnormal pattern consists of bursts of spikes occurring at



Newborn EEG Signal Characteristics 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−30

−20

−10

0

10

20

Time (sec)

A
m

pl
itu

de

 (a)  EEG Spike

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−100

−50

0

50

Time (sec)

A
m

pl
itu

de

 (b)  EEG Sharp Wave

Figure 2.5: Two abnormal paroxysmal EEG events: (a) Spike and (b) Sharp wave.rates between 10 to 25/sec. Various forms of Spike wave complex, which are classi�edaccording to the rate they occur, are also speci�c to the adult and older child patients.For example, the classic 3/sec spike wave complex is almost never seen before the ageof 4 [75].2.4.3 Normal Paroxysmal Patterns in NewbornsThe assessment of paroxysmal patterns occurring in the newborn EEG is much morecomplicated than for the adult and older child. This is due to some paroxysmal patternsbeing normal variants for newborns at speci�c conceptional ages (CA)3 [9].Delta brushes, also called spindle-shaped bursts, refer to patterns containing spin-dles of varying frequencies and voltages along with a delta wave. They are highlyrepresentative of prematurity, and mostly disappear at term [9].Fast transients are spikes and sharp waves, described previously. These patterns,which are nearly always abnormal patterns in the adult and older child, may be normalontogenetic events in the newborn. For example, spikes in the frontal region may benormal for newborns between 35 weeks on to 40 weeks CA. Also, sharp transients3Conceptional age refers to the time in weeks since conception.



24 Characteristics of Newborn EEGconsisting of 3-8 sharp, rhythmic waves with high voltages in the temporal region arecommon to newborns aged between 30 and 32 weeks CA [9].Slow transient patterns consist of short runs of rhythmic delta waves with highamplitude. The delta waves are approximately between 0.5-1Hz for ages 29-31 weeksCA and appear as 1-2Hz delta waves from 37-40 weeks CA [9].2.4.4 Ictal EEGIctal or seizure patterns in the EEG are the most signi�cant EEG abnormalities.Seizures are abnormal reactions of the brain and are the result of a number of diseasessuch as, but not limited to, measles encephalitis, tuberculous meningitis, neurosyphilis,Rickettsia disease and herpes simplex encephalitis [77]. Seizures may also be a result ofcraniocerebral trauma or brain damage.The neurophysiological mechanism for seizure generation is the imbalance betweenexcitatory and inhibitory processes [4], as described in section 2.2 and shown in Figure2.2. This results in an excessive synchronous discharge of neurons within the CNS [4, 14].The continuance and propagation of seizure requires the recruitment of a critical massof neurons within the region of onset and functionally intact pathways between neurons.The ictal patterns in the newborn are highly variable, with complex and varied mor-phology and cover a variety of frequencies [8]. However, in broad terms, ictal patternsin the newborn are generally characterized by periods of rhythmic spiking or repetitivesharp waves [22]. An example of newborn EEG seizure activity is shown in Figure 2.6,clearly indicating the repetitive spiking characteristic.The newborn EEG seizure event is generally characterized by a gradual, progressivebuild up of ictal activity. The EEG seizures in newborns are generally focal4 andspread across the brain in various ways [9]. However, newborn seizures which havehighly rhythmical spiking are often multifocal with slow migration of the spike activityfrom one area to another [77].The minimum duration of ictal patterns in the newborn EEG used to de�ne a seizureevent is a highly debated topic among neurologists. Some require that a seizure eventdisplay ictal patterns for no less than 10 seconds. However, others require a durationof at least 20 seconds [9]. Evidence from a recent study has shown that even shorterdurations than 10 seconds are clinically signi�cant and provide prognostic value [78].In a study of 487 neonatal electrographic seizures, the average seizure duration was 137seconds, with a range of between 10 seconds to 46 minutes. An important result of thisstudy was that 97% of all seizure events were less than 9 minutes [79].4Localized to a particular area of the brain.
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TimeFigure 2.6: Repetitive, rhythmical spiking, characteristic of newborn EEG seizure.The newborn EEG has been shown to be a nonstationary signal, particularly theictal patterns. Therefore, representation of the rhythmic seizure patterns in the fre-quency domain, as shown in Figure 2.7, does not clearly illustrate any of the importanttime�varying information. Due to this, time�frequency signal analysis (TFSA) has re-cently been applied to the newborn EEG. Many signi�cant time�varying patterns, suchas piecewise linear components, were found to exist in the EEG seizure. This is demon-strated in Figure 2.8, which starts o� with a single increasing linear component. Thesame component then begins to decrease for approximately 3 seconds before the signalbecomes a multicomponent signal with constant frequency. This clearly emphasizes thesuperiority of TFSA in analyzing nonstationary signals.2.5 SummaryThis chapter provided an overview of the EEG signal. The neurophysiological mech-anism of EEG generation involves the generation of inhibitory and excitatory post-synaptic potentials. Recordings of the EEG can be obtained through electrodes placedon the scalp or directly on the cerebral cortex. The recording of newborn EEG, how-ever, is always through scalp electrodes because of the fragility of the brain during the
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Figure 2.7: Frequency domain representation of the signal in Figure 2.6.
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Figure 2.8: TF domain representation of the signal in Figure 2.6.



Newborn EEG Signal Characteristics 27neonatal period.The newborn EEG activity is concentrated in the 0.4-7.5Hz frequency band. Parox-ysmal patterns that are abnormal in the adult EEG are sometimes normal ontogeneticevents in the newborn. Ictal patterns in the EEG are the most notable EEG abnormal-ity. The ictal pattern is a result of the excessive synchronous discharge of neurons andis a primary indicator of CNS dysfunction. TFSA clearly demonstrates the importanttime�varying information in the nonstationary EEG signal and is superior to both thetime domain representation (i.e. raw time series) and frequency domain representation.



Chapter 3An Overview of Time�FrequencySignal Representations
3.1 Introduction
T

raditionally, signal analysis has been done in either the time domain or frequencydomain. These representations can provide adequate information about station-ary signals. However, most real life signals are nonstationary, exhibiting time�varyingspectra. For nonstationary signals, neither the time domain nor frequency domain rep-resentations can clearly illustrate all relevant signal information [80].Time�frequency signal analysis (TFSA) involves analyzing signals in a joint TFdomain. From a TFR, important information about the instantaneous frequency (IF)content of a signal can be extracted. This gives the signal analyst the ability to observehow frequency content of a signal is changing over time.Joint TFR can be obtained through a number of techniques. In this chapter, wepresent an overview of various TFRs that are relevant to this thesis. In section 3.2,we demonstrate the need for joint TFR of nonstationary signals. Linear TF transformsare reviewed in section 3.3, followed by an introduction to quadratic time�frequencydistributions (QTFDs) in section 3.4. Finally, in section 3.5, we outline various methodsof atomic decomposition and how they can be used to provide joint TFR.3.2 The Need for Joint Time�Frequency RepresentationThe recording of real life signals involves the measurement of a parameter, which wecan generalize with the term amplitude, as it changes in time. Hence, this signal repre-sentation is often referred to as the time domain representation. Signal analysis almost28



An Overview of Time�Frequency Signal Representations 29always begins with this type of representation, yet only minimal information about thesignal can be easily extracted.One of the most frequently used methods of signal analysis is through the transfor-mation of the time domain signal into the frequency domain. The frequency domainrepresentation provides information regarding the energy and phase of particular fre-quency components in the signal. The FT is the most widely used method to obtain thefrequency domain representation. The FT of a signal, x(t), given in (1.2), is repeatedhere for convenience
X(f) = F{x(t)} =

∫
∞

−∞

x(t)e−j2πftdt (3.1)The magnitude of the frequency content, called the magnitude spectrum, is the mostcommon, and often useful, method of frequency analysis. The magnitude spectrum isobtained by taking the absolute value of the FT (i.e. |X(f)|).Although the FT is a powerful tool and often used in many signal processing appli-cations, it su�ers from the inability to exhibit all relevant signal information for manynonstationary signals. Instead, the FT provides an average of frequency content overthe signal period without providing any temporal information.To show the limitation of the FT in the analysis of nonstationary signals, we considerthe case of two linear frequency modulated (LFM) signals, given in Figure 3.1(a). Figure3.1(b) shows that, on average, over the entire signal length, both signals contain thesame magnitude spectrum1. Figure 3.1(b) also shows that the magnitude spectrum doesnot provide any temporal information about the frequency content of the nonstationarysignals in Figure 3.1(a). However, by analyzing these signals in the TF domain, wecan clearly see how the frequency content varies in the signal. This is demonstrated inFigures 3.2(a) and (b), which are the TFR of signal 1 and signal 2 respectively. TheWigner�Ville distribution, which will be discussed in section 3.4, was used to providethe TFR in this example.The plots in Figures 3.2(a) and (b), clearly show how the frequency content of thesignal varies with time, illustrating the di�erences between the two LFMs. The TFRsalso provide all information available from the time domain and frequency domain rep-resentations, such as signal duration and frequencies, contained in the signal. Therefore,from this example, the powerful nature of TFR in the analysis of nonstationary signalsis clearly demonstrated.1It should be noted that the discriminating information for these signals is contained in the phaseof the frequency components, which has been discarded in obtaining the magnitude spectrum.
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(b)Figure 3.1: (a) The time domain representation and (b) frequency domain representa-tion of two di�erent LFMs.
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(b)Figure 3.2: The TFR of (a) signal 1 and (b) signal 2. A clear distinction between thetwo signals is apparent from their TFRs.3.3 Linear Time-Frequency TransformsLinear TF transforms are achieved by using the inner product2 concept to correlatethe signal with a collection of waveforms (atoms) that are highly concentrated in timeand frequency [81]. Unlike the FT, which correlates the signal with complex sinusoidalfunctions that spread the entire time domain, these concentrated TF atoms can indicate2The inner product of two functions f(t) and g(t) is given by 〈f, g〉 =
∫

∞

−∞
f(t)g∗(t)dt. The `2 normof a function f is given by 〈f, f〉 = ||f ||2 =

∫
∞

−∞
f(t)f∗(t)dt.



An Overview of Time�Frequency Signal Representations 31how much signal energy is located in a particular TF region of the TF domain. Thisthen provides the ability to analyze the frequency content as it evolves over time [17].The general linear TF transform of a signal, x(t), is given by
T{x(t)} = Ex(t, f) =

∫
∞

−∞

x(τ)φ∗t,f (τ)dτ (3.2)where T{·} is a linear TF operator, Ex(t, f) is the TFR and φt,f (τ) is a TF atomconcentrated around time t and frequency f3.The short�time Fourier transform (STFT) is an example of a linear TFR that hasfound wide application in di�erent areas of science and engineering. For the STFT, theTF atoms in (3.2) are
φt,f (τ) = w(τ − t)ej2πfτ (3.3)where the function w(τ) is generally a real even function with relatively short duration.It is often referred to as a window function [17]. Therefore, the STFT is expressed as

STFT (t, f) =

∫
∞

−∞

x(τ)w(τ − t)e−j2πfτdτ (3.4)The wavelet transform (WT) is another method which can be used to obtain aTFR. It was proposed as a method of analyzing signals with structures of di�ering timedurations by correlating the signal with TF atoms that have varying time supports [81].The atoms are created by scaling and translating a function φ(τ) which is referred toas the mother wavelet. The WT is given as
WT (t, s) =

∫
∞

−∞

x(τ)
1
√
s
φ∗

(
τ − t

s

)
dτ (3.5)which, in essence, is a time-scale representation. A TFR can be obtained from the WTas a result of the relationship between scale and frequency. That is, if f0 is the centerfrequency of φ(τ), then all center frequencies for the time-scaled atoms can be given as

f = f0/s [17, 81]. Therefore, the TFR using the WT is given by
Ex(t, f) = WT (t, s)|

s=
f0
f

(3.6)For both the WT and the STFT, time and frequency resolution is restricted by theresolution of the TF atoms used in the transform [81]. This TF resolution is boundedby the Heisenberg uncertainty principle3The symbol ′∗′ in (3.2) represents the complex conjugate.



32 Quadratic Time-Frequency Distributions
4t4f ≥

1

4π
(3.7)where 4t and 4f are the e�ective duration and e�ective bandwidth of the TF atomsrespectively [21]. It can be seen from (3.7) that the uncertainty principle puts a lowerlimit on the spread or concentration of a function in time and frequency.3.4 Quadratic Time-Frequency DistributionsQTFDs are commonly used methods for obtaining joint TFR. A QTFD is a special formof bilinear transform [82, 83]. The most basic QTFD is the Wigner-Ville distribution(WVD). All other QTFDs can be obtained by a TF averaging or smoothing of the WVD[81, 29].The WVD of a signal, x(t), is de�ned using its analytic associate z(t). The analyticassociate of x(t) is obtained using the Hilbert transform, shown as [84, 21]

H{x(t)} = XH(κ) =
1

π

∮
∞

−∞

x(t)

t− κ
dt, (3.8)such that z(t) = x(t) + jH{x(t)}. The instantaneous autocorrelation function (IAF) of

z(t) is then de�ned as
Kz(t, τ) = z(t+

τ
2
)z∗(t− τ

2
) (3.9)and the WVD is expressed as

Wz(t, f) = F
τ→f

{Kz(t, τ)} =

∫
∞

−∞

z(t+
τ
2
)z∗(t− τ

2
)e−j2πfτdτ (3.10)As a TFR, the WVD has a number of remarkable properties. For this reason, theWVD is the most widely studied QTFD. Some of the important properties include4:

• Realness: Wz(t, f) is always real
• Time-shift invariance: A time shift in the signal causes the same shift in the WVDsuch that

z(t− t0) →Wz(t− t0, f) (3.11)
• Frequency-shift invariance: Frequency modulation of a signal causes the samefrequency shift in the WVD as the modulating frequency. That is

z(t)ej2πf0t → Wz(t, f − f0) (3.12)4A detailed description of properties can be found in [29].
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• Time marginal: Integrating the WVD with respect to f gives the instantaneouspower

|z(t)|2 =

∫
∞

−∞

Wz(t, f)df (3.13)
• Frequency marginal: Integrating the WVD with respect to t gives the energyspectrum

|Z(f)|2 =

∫
∞

−∞

Wz(t, f)dt (3.14)
• IF: The �rst moment of the WVD with respect to f is the IF

∫
∞

−∞
fWz(t, f)df∫

∞

−∞
Wz(t, f)df

=
1

2π

d{arg z(t)}

dt
(3.15)3.4.1 Crossterm Interference of the WVDAmong all of the QTFDs, the WVD also provides the highest TF resolution for LFMmonocomponent signals (see Figure 3.2) and provides a positive two dimensional Gaus-sian for a Gaussian signal. However, despite these desirable properties, the applicationof the WVD is limited by the interference terms occurring as a result of the bilineartransformation. These interferences or crossterms occur in the case of nonlinear FMmonocomponent signals and multicomponent signals [29].The crossterms resulting from WVD of a nonlinear FM monocomponent signal canbe explained as follows. Consider a �nite duration signal with a time�varying amplitudesuch that

z(t) = a(t)ejθ(t) (3.16)where a(t) is real. Therefore, the IAF (see (3.9)) can be written as
Kz(t, τ) = Ka(t, τ)e

jψ(t,τ) (3.17)where
Ka(t, τ) = a(t+

τ
2
)a(t− τ

2
) (3.18)

ψ(t, τ) = θ(t+ τ
2
) − θ(t− τ

2
) (3.19)If the phase function θ(t) is quadratic, relating to a linear IF function fi(t)5, then thecentral �nite di�erence approximation in (3.19) is exact and gives ψ(t, τ) =

dθ
dt
τ =5The IF, fi(t), is de�ned as the derivative of the phase such that fi(t) = 1

2π

dθ(t)
dt

.
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2πfi(t)τ , which leads to [21]

Kz(t, τ) = Ka(t, τ)e
j2πfi(t)τ (3.20)Therefore, Kz(t, τ), when considered as a function of τ only, has a constant frequencyequal to fi(t). This process is referred as dechirping [21]. When the signal has anonlinear IF function, the central �nite di�erence approximation is not exact and theIAF is not dechirped, resulting in the formation of crossterms called inner artefacts [29].Crossterms resulting from multi-component signals can be explained as follows. Con-sider a multicomponent analytic signal

z(t) = z1(t) + z2(t) (3.21)The IAF for z(t) can then be shown to be [29]
Kz(t, τ) = Kz1(t, τ) +Kz2(t, τ) +Kz1z2(t, τ) +Kz2z1(t, τ) (3.22)where Kz1z2(t, τ) and Kz2z1(t, τ) are the instantaneous cross-correlation functions be-tween the two components. Taking the FT of (3.22), with respect to τ , we obtain theWVD of the multicomponent signal, such that
Wz(t, f) = Wz1(t, f) +Wz2(t, f) + 2Re{Wz1z2(t, f)} (3.23)It can be seen in (3.23), that the WVD of the multicomponent signal is the sum of theWVD of each component plus some interference term which is related to the cross-WVDof the two components [29]. These crossterms are referred to as outer artefacts.Figures 3.3(a) and 3.3(b) show the WVD of a nonlinear FM signal and a multicom-ponent signal respectively, along with their associated IFs for individual components.From these TFR plots, it is clear that the information regarding the IFs is masked byunwanted cross-terms, reducing the e�ectiveness of the TFR.3.4.2 Suppression of CrosstermsAll QTFDs can be formulated by smoothing the WVD with a time�lag kernel, G(t, τ).By correctly designing G(t, τ), we can de�ne QTFDs that attenuate the cross-termsassociated with the WVD. QTFDs which have the cross�terms attenuated in comparisonto the desired terms are often called reduced interference distributions (RIDs) [29]. Thegeneral form of QTFDs, including all RIDs, which are de�ned by the time�lag kernel,is shown as
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(a) Nonlinear FM Monocomponent
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(b) MulticomponentFigure 3.3: The TFR and corresponding IF of (a) a nonlinear FM monocomponentsignal and (b) a multicomponent signal made up of two LFMs components.
Ez(t, f) =

∫
∞

−∞

∫
∞

−∞

G(t− u, τ)z(u +
τ
2
)z∗(u− τ

2
)e−j2πfτdudτ (3.24)The spectrogram, de�ned as the square magnitude of the STFT (i.e. |STFT (t, f)|2)is another important QTFD. However, it can also be obtained from (3.24) by using thetime�lag kernel

Gspec(t, τ) = w(t+
τ
2
)w(t− τ

2
) (3.25)where w(τ) is the window function used in the STFT. The spectrogram can be thoughtof as a RID with almost no interference terms. However, this interference reductionalso results in poor TF resolution [29]. Therefore other RIDs attempt to provide the



36 Atomic Decomposition Techniques with Time-Frequency Dictionariesresolution of the WVD with the crossterm reduction of the spectrogram. Table 3.1shows the time�lag kernels, G(t, τ) of some QTFDs. It can be seen from Table 3.1that the Choi-Williams (CW) [85], B [86] and Modi�ed B (MB) [87] distributions havetunable parameters (i.e. σ for CW and β for B and MB). The parameters can bechanged for various signals to improve the TFR obtained by these distributions.Distribution Kernel G(t, τ)Wigner-Ville δ(t)Choi-Williams √

πσ

|τ |
e−π

2σt2/τ2B |τ |β cosh
−2β tModi�ed B cosh

−2β t∫
∞

−∞
cosh

−2β tdtTable 3.1: QTFDs and their associated time-lag kernelsFigure 3.4 shows the WVD, spectrogram, B-distribution and CW for a multicom-ponent signal made up of two LFM signals. It can be seen that the WVD gives highresolution for the LFM components but is corrupted by a number of interference terms.However, the spectrogram does not display any interference terms but has low resolu-tion for the signal components. For both the B-distribution and the CW, we can seethat they provide high resolution and minimal crossterm interference.3.5 Atomic Decomposition Techniques with Time-FrequencyDictionariesIn reviewing atomic decomposition techniques as methods for TFSA, there is terminol-ogy particular to these methods which must �rst be addressed. The term atom, whichwas previously referred to in section 3.3, is used to describe an elementary waveform,
φγ(t), which is used for signal representation. A collection of atoms used for signal rep-resentation is called the dictionary, represented as Φ = {φγ}γ∈Γ. The dictionary atomsare generally obtained through transformations of a fundamental waveform φ(t). Thetransformations are indicated by �γ�, which can be a single or multi-index parameter.Therefore, Γ represents the entire set of parameters used to create Φ.Time�frequency atom generally refers to those atoms which are highly concentratedin time and frequency. However, we also use this term to describe atoms which havespeci�c TF characteristics (i.e. LFM atoms, hyperbolic FM atoms etc.).If Φ spans the Hilbert space, H , the dictionary is said to be complete [37]. For a�nite dimension signal space, the dictionary may have more atoms than are needed to
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(b) Spectrogram
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(d) Choi-WilliamsFigure 3.4: The TFR of a multicomponent signal using (a) Wigner-Ville distribution,(b) Spectrogram, (c) B�distribution and (d) Choi�Williams distribution.span the space. This is a redundant dictionary6. Orthogonal bases, such as the Fourierbasis and orthogonal wavelet bases, can be thought of as dictionaries which have theminimum number of atoms needed to span the �nite Hilbert space (i.e. the minimumnumber of atoms to make the dictionary complete).Traditional analysis techniques involving orthogonal bases provide a unique rep-resentation. However, these analysis techniques are limited in the information theyprovide. For example, the Fourier basis provides poor representations of signals withstructures well localized in time, and WTs give poor frequency resolution for signalswith narrow high frequency support [37]. Therefore, it would be desirable to have a6It should be noted that a redundant dictionary is complete, but due to its redundancy it is oftenreferred to as overcomplete [88].



38 Atomic Decomposition Techniques with Time-Frequency Dictionariesdictionary with TF atoms capable of representing all types of signal structures withhigh resolution. This is possible with redundant TF dictionaries. However, because ofthis redundancy, there are many possible signal representations, (i.e. unlike the uniquerepresentation from an orthonormal basis). Therefore, a method of choosing atoms thatare best adapted to signal structures is required [37].Atomic decomposition techniques are methods for selecting atoms φγ from a redun-dant dictionary, Φ = {φγ}γ∈Γ, to provide a signal representation, (or approximation),as a linear superposition of the selected atoms. A representation of signal, x, can begiven using atoms from Φ as
x =

∑
γ∈Γ

αγφγ (3.26)where αγ is the coe�cient associated with φγ . An approximation of x using m atomscan also be given by
x̂ =

m−1∑
i=0

αγiφγi (3.27)The signal left over from the approximation, Rmx = x − x̂, is often referred to as theresidual. The method of selecting the atoms for signal representation or approximationconstitutes an atomic decomposition technique. A number of atomic decompositiontechniques are available, including: best orthogonal basis, method of frames, matchingpursuit (MP) and basis pursuit (BP) [89, 90, 37, 88].For certain redundant dictionaries, such as the cosine packet (CP) and waveletpacket (WP) dictionaries, it is possible to have subcollections of atoms which form or-thogonal bases. Using these dictionaries, the best orthogonal basis algorithm �nds theorthogonal basis whose corresponding coe�cients have the minimum entropy [88]. How-ever, by choosing a single basis, the representation still cannot provide high resolutionfor signals with structures that have highly varying TF supports.Method of frames picks out the representation, given in (3.26), whose coe�cientshave the minimum `2 norm; expressed as [88]
min ||α||2 subject to x =

∑
γ∈Γ

αγφγ (3.28)However, there are two major problems with this atomic decomposition technique. First,its representation is generally not very sparse7, which is a desirable characteristic for7A sparse representation is de�ned as one with the minimum number of signi�cant atoms [88].Sparse representations will be discussed in detail in chapter 5.



An Overview of Time�Frequency Signal Representations 39atomic decomposition techniques. Second, examples have shown that method of framesgives poor resolution in its representations for a variety of signals [88].MP is currently �nding application in a multitude of engineering areas. MP is aniterative algorithm that selects the atom which best represents (i.e. correlates with)the signal residue at each iteration. That is, the atom selected at each iteration is theone for which the projection of the residual, using the inner product, is largest. Theobjective function for each iteration of MP is given by
γi = arg{sup

γ∈Γ

〈Rix, φγ〉} (3.29)Using (3.29) at each iteration, the MP decomposition of a signal, x, approximating with
m atoms, is given as

x =

m−1∑
i=0

〈Rix, φγi〉φγi +Rmx (3.30)where the inner product, 〈Rix, φγi〉, is taken as the coe�cient value associated with theatom φγi. It should also be clearly noted that at i = 0 we have R0x = x.Each atom in Φ is generally normalized such that
||φγ(t)||2 = 1; ∀γ (3.31)The normalization of the dictionary removes any magnitude bias in the projection of theresidual vector onto the dictionary vectors. A thorough description of the MP algorithmis provided in [37].BP is a recently proposed atomic decomposition technique [88]. It was introducedas an alternative to previous decomposition techniques in an attempt to provide thesparsest representation and with the ability to resolve signal structures that are close intime and frequency. BP decomposition is an optimization method which tries to solvethe following problem:

min ||α||1 subject to x =

∑
γ∈Γ

αγφγ (3.32)This optimization problem can be expressed in terms of a linear programming problemof standard form. Any available linear programming technique can be used to solvethe BP optimization problem. The simplex method and interior point method wereproposed in [88]. Finding a solution to the linear programming problem as applied toBP criteria is equivalent to �nding the basis with the minimum `1 norm of coe�cients



40 Atomic Decomposition Techniques with Time-Frequency Dictionariessuch that
x =

N−1∑
i=0

αγiφγi (3.33)where N is the length of the discrete signal x. For the BP representations, the selectedatoms are linearly independent, but are not necessarily orthogonal.The simplex method initially chooses N atoms from the dictionary as the �rst guessof the optimal basis. The next step is to swap the atoms from this basis with otheratoms from the dictionary so as to improve the objective function (i. e. minimum `1norm of coe�cients). Using the simplex method there is always a swap that can improvethe objective function until the optimal solution is found. This can be thought of asjumping from one vertex to another on the boundary of the simplex until the optimalsolution is found. The interior point method begins by choosing a point inside thesimplex. The �rst vector of coe�cients α(0), which gives the initial point inside thesimplex, also provides the initial overcomplete representation Φα(0)
= f . The interiorpoint method iteratively modi�es the coe�cients in a way that moves the point in thesimplex toward the outer vertex which is the optimal solution. The iterations continueuntil there are ≤ N atoms which are signi�cantly non-zero [88].3.5.1 Time�Frequency Representation from Atomic DecompositionsJoint TFR of a signal can be derived from the TF atoms selected in the atomic decom-position. The TFR is obtained by the summation of the estimated TF contribution ofeach of the selected atoms such that

Ex(t, f) =

∑
γ∈ΓAD

|αγ |
2Eφγ (t, f) (3.34)where ΓAD is the set of atom parameters relating to the atoms chosen in the decompo-sition to represent the signal.There are various methods of estimating the TF contribution of each TF atom. Twosuch methods include:1. The WVD of TF atoms, (see (3.10)).2. Heisenberg boxes [37, 81].A Heisenberg box is formed by evaluating the spread of the atom in time and frequencyand assigning a rectangle to cover that area of the TF domain. This is shown in Figure
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Figure 3.5: Heisenberg boxes of two TF atoms.3.5 with two TF atoms8 localized around di�erent time and frequency positions andwith di�erent bandwidths and durations.A TF dictionary that is regularly used is the Gabor TF dictionary. This dictionaryconsists of dilated, s, translated, u, and modulated, ξ, Gaussian windows φ(t), suchthat the dictionary atoms are expressed as
φγ(t) =

1
√
s
φ

(
t− u

s

)
ej2πξt (3.35)where γ = [s, u, ξ] and Γ = R

+ × R
2. The WVD distribution is highly suitable forestimating the TF contribution of the Gabor atoms. This is because the WVD of aGaussian signal is a positive 2D Gaussian centered at the time and frequency positionof the translation and modulation parameters and shaped by the scale parameter. Usingthe time and frequency shift invariance properties of the WVD, the Gabor TF atomhas a WVD [37]

Wφγ(t, f) = Wφ

(
t− u

s
, s(f − ξ)

) (3.36)8Note that the windows in Figure 3.5 only indicate the durations, bandwidths and time and frequencycenters of the atoms, not the actual atom functions.



42 SummaryThe Gaussian window, which is usually chosen, and its corresponding WVD are [17, 37]
φ(t) = 2

1/4e−πt
2
−→Wφ(t, f) = 2e−2π(t2+f2

) (3.37)where Wφ(t, f) is the WVD of the Gaussian window φ(t).Other TF Dictionaries that are regularly used for decomposition by MP and BPinclude the CP and WP dictionaries [37, 81, 88]. WP and CP dictionaries generally useHeisenberg boxes to estimate the TF contribution of atoms. Figure 3.6(a) and 3.6(b)show the TFR of the multicomponent signal shown in Figure 3.4, using MP and BPrespectively. The Gabor dictionary has been used with MP and the CP dictionaryhas been used with BP. It can be seen that the Gabor dictionary using the WVD toestimate atom contribution provides a more aesthetic TFR than the CP dictionary usingHeisenberg boxes. This is due to the smooth 2D Gaussian nature of the WVD of theGabor atom. However, from both representations it is obvious that no crossterms exist.The crossterm free representation is simply explained by the formulation of theTFR. By adding, individually, the TF contribution of the selected atoms, the crosstermsbetween the selected atoms is neglected and therefore not added into the representation.This can be explained with a simple example. Consider a signal with a decompositionwhich contains two Gabor atoms. If we use the WVD to estimate the TF contributions,using (3.34), the TFR would be
Ex(t, f) =

1∑
i=0

|αγi|
2 WVDφγi

(t, f) (3.38)It can be seen that the TFR in (3.38) does not include WVDφγ0φγ1(t, f), which is theinterference term produced in the traditional WVD (see (3.23)).Another bene�t of using atomic decomposition is that the signal decompositionalso provides a TF parameterization of the signal [42]. That is, TF parameters such asdilation, translation and modulation associated with the selected TF atoms also provideinformation about signal characteristics. Also, for noisy signals, approximations usingatomic decomposition techniques can lead to lower signal to noise ratios (SNR) in theTF plane [37, 88].3.6 SummaryThe analysis and processing of nonstationary signals requires techniques that can showthe time�varying spectrum characteristic of these signals. This chapter has demon-strated that TFSA is appropriate for the analysis of nonstationary signals. However,
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(b) Basis PursuitFigure 3.6: TFRs of a multicomponent signal using (a) MP with a Gabor dictionaryand (b) BP with a CP dictionary.there are many di�erent techniques for obtaining a TFR.Linear TF transforms were introduced as a method of TFSA. Although they arewidely used, these methods are restricted because of the limited TF resolution attainablein their TFR. A review of QTFDs was given, beginning with the WVD. Despite thedesirable properties of the WVD, it was shown that its representation was not suitablefor nonlinear FM signals and multicomponent signals due to the crossterms producedby the bilinear transform. The spectrogram was explained and shown to be related tothe WVD. Although it was not severely a�ected by crossterms, it was shown that thelower TF resolution of signal components was attained from the spectrogram. It wasthen demonstrated that smoothing of the WVD, to provide RIDs, could produce muchmore comprehendible TFRs. Finally, we presented an overview of atomic decompositiontechniques and illustrated their ability to provide a joint TFR. We also demonstratedhow atomic decomposition can be used as methods of TF parameterization.



Chapter 4Newborn EEG Simulation
4.1 Introduction
T

he newborn EEG is a highly complex signal, which has been shown to exhibitnonstationarities as well nonlinearities [20, 91]. Therefore, di�erent signal process-ing techniques such as TFSA techniques (for nonstationarity) and nonlinear techniques(for nonlinear and chaotic behaviour), are required for analysis of these various charac-teristics.Nonlinear behaviour is a signi�cant characteristic of the newborn EEG background[27, 91], which has also been shown to exhibit nonstationarities [19, 20]. The promi-nent characteristic of the newborn EEG seizure is its nonstationarity [20]. Therefore,in developing a method for newborn EEG simulation, the nonlinear nonstationary be-haviour of the newborn EEG background and prominent nonstationary behaviour ofthe newborn EEG seizure must be carefully considered.In this chapter, we develop a method for simulating newborn EEG background anda method for simulating newborn EEG seizure, which can be combined to provide amethod of artefact free, newborn EEG simulation. In section 4.2, we provide an intro-duction to nonlinear time series analysis and review fractional dimension as a nonlinearmeasure. It is then demonstrated in section 4.3, that the background newborn EEGexhibits nonlinear characteristics and we analyze real newborn EEG background usingfractal dimension (FD). Using the results from the FD analysis and fractal theory, wepropose a method of simulating newborn background EEG. In section 4.4, we proposea method of simulating newborn EEG seizure using the TF characteristics of real new-born EEG seizure. This method incorporates a time�frequency signal synthesis (TFSS)process which transforms the simulated newborn EEG seizure TFR into a newbornEEG seizure time domain signal. 44



Newborn EEG Simulation 454.2 Nonlinear Analysis TechniquesLinear models for signal analysis are suitable as an initial approximation in most engi-neering applications. However, linear equations can only lead to exponential growth/decayor periodically oscillating solutions [92, 93]. All other irregular behaviours of a linearsystem are considered as a result of randomness in the signal. Chaos theory, however,demonstrates that irregular outputs of a system are not only a result of irregular inputto a system, but can also be obtained through nonlinear systems with deterministicequations [93]. In this section, we give a brief overview of nonlinear signal analysistechniques.The phase space reconstruction of discrete time series is the focal tool used in non-linear analysis. The phase space is created using various lag samples of the time seriesto form a d�dimensional multivariate space such that for a discrete signal x(n), thed�dimensional vectors are [92]
y(n) = [x(n), x(n + T ), x(n + 2T ), . . . , x(n + (d − 1)T )] (4.1)where T is the time lag interval for the state space in samples. This process is referredto as phase space reconstruction by method of delays [93]. The dimension, d, is calledthe embedding dimension of the phase space. A typical phase portrait with embeddingdimension two and time lag of one sample for the nonlinear Hénon map, described by

x(n) = 1.4 − x2
(n − 1) + 0.3x(n − 2) (4.2)is given in Figure 4.1. This time series is not periodic, but instead chaotic [93]. Therandom nature of the chaotic signal becomes structured in the phase portrait.A number of nonlinear signal measures can be calculated from the phase spacereconstruction of a time series. These measures are methods of quantifying the nonlinearproperties of the signal in the hope of enhancing the knowledge of the underlying system[93]. One such measure is fractional dimension of a time series.4.2.1 Fractal DimensionFractal signals with fractional dimension are typical of chaotic systems [93]. Correlationdimension is one of several methods used to quantify self�similarity associated withfractal signals. It is de�ned by the correlation sum, C(ε), for a collection of points ynin a vector space, (i.e. the phase space). The correlation sum is the fraction of pointsthat are closer than a de�ned distance ε according to a particular norm and is given as
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Figure 4.1: The phase portrait of a Hénon map time series.
C(ε) =

2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(ε − ||yi − yj ||) (4.3)where Θ is the Heaviside step function
Θ(x) =

{
1 : x > 0

0 : x ≤ 0
(4.4)and N is the number of vectors. In essence, the double sum of the Heaviside functionin (4.3) counts the pairs of (yi,yj) whose distance are less than ε. The correlationdimension is then given as the power law relating ε to C(ε) such that

D =
d ln C(ε)

d ln ε
(4.5)The use of the correlation dimension, however, is limited to stationary signals as itsu�ers considerably from nonstationarities in the signal [93].Previous to the development of these nonlinear techniques based on the phase space



Newborn EEG Simulation 47reconstruction, the power spectrum was used as the dominant means of analyzing ir-regular time series. When a signal spectrum, S(f), exhibits a power law such that
S(f) ∝ |f |−γ (4.6)the power law exponent, γ, can be used as a measure of irregularity or complexity. Toobtain the power law, an ensemble average of power spectra over a long time periodhas been used, assuming that the signal is statistically stationary [94]. This method ofanalysis is therefore, inappropriate for nonstationary signals such as the newborn EEG.There is a relationship between a signal with a spectral power law of |f |−γ and thetheoretical FD of the signal. It can be shown that the FD of a signal with a spectrum
S(f) =

c

|f |γ
(4.7)where c is a constant, will have a FD of [95]

D =
5 − γ

2
(4.8)If the FD can be accurately estimated over short periods, it may be used to tracknonstationarities in the signal1. It could also provide much better time resolution ofsignal complexity than the power law exponent γ.In [96], a comparison between FD estimators was performed. The comparison foundthat the Higuchi method provided the most accurate results for estimating the FD.Therefore, in our analysis of the newborn EEG we have only used the Higuchi method[94] for FD estimation.Higuchi FD EstimationConsider a discrete time series x(n) of length N . From this time series we can construct

k new time series, xm
k , for each value m such that

xm
k =

[
x(m), x(m + k), x(m + 2k), . . . , x

(
m +

⌊
N − m

k

⌋
· k

)] (4.9)where m and k are integers that indicate the initial time and time interval respectively.The function buc gives the integer part of u. The length of the constructed time seriesin (4.9) is de�ned as1A time�varying FD relates to a time�varying power spectrum, or nonstantionary signal.



48 Newborn EEG Background Simulation
Lm(k) =

b(N−m)/kc∑
i=1

|x(m + ik) − x(m + (i − 1)k)| ×
N − 1⌊

N−m
k

⌋
· k

(4.10)The term (N − 1)/b(N −m)/kc · k is a normalization factor for the curve length of thesubset time series.The length of the signal for the time interval k, < L(k) >, is then de�ned as theaverage value over k sets of Lm(k) such that
< L(k) >=

∑k
m=1

Lm(k)

k
(4.11)If < L(k) >∝ k−D, then the signal will have dimension D. For Higuchi's method,the FD can be found from a linear least squares �t of the curve, log(< L(k) >) versus

log(k). This technique gives stable indices and time scale from a small number of data[94], giving it the ability to track nonstationarities in a signal.4.3 Newborn EEG Background SimulationPower spectrum analysis has been a major tool in the analysis of the newborn EEG.However, as demonstrated previously in chapter 3, it cannot display all relevant infor-mation from nonstationary signals, nor can it give accurate information regarding thenonlinearities of nonlinear, nonstationary signals. However on inspection of the new-born EEG background power spectra, we can see that it follows some form of powerlaw. This is demonstrated in Figure 4.2(a) and 4.2(b), which gives the power spectraof two background EEG epochs.The fact that the newborn EEG background exhibits some form of power law inthe power spectrum infers that it may be fractal in nature. Along with its demon-strated nonstationarity, this suggests that FD estimation using the Higuchi method isappropriate for analysis of the newborn EEG background.4.3.1 Fractal Dimension Analysis of the Background EEGThe EEG data used in this analysis was acquired at the Royal Womens Hospital, Bris-bane, Australia, using the MEDELEC2 system3. Electrodes were placed on the scalpaccording to the 10�20 international standard of electrode placement and twenty EEGchannels were obtained using bipolar montage. Signals were bandpass �ltered with cut-o� frequencies at 0.5Hz and 30Hz, with a sampling frequency of 64Hz. The recordings2MEDELEC is a product of oxford instruments (see www.oxford-instruments.com)3A detailed description of the EEG data acquisition is given in Appendix A.
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(b) Epoch 2Figure 4.2: The power spectrum of two newborn EEG background epochs, demonstrat-ing the power law associated with the spectrum.from three newborns were used in this analysis and were marked as seizure free periodsby a neurologist.As a result of the bandpass �ltering, the lowest signi�cant frequency in the recordednewborn EEG is 0.5Hz. For a fractal signal to be considered stationary it must be atleast twice as long as the period of the lowest signi�cant frequency component [93]. Itwas shown that the newborn EEG can be signi�cantly nonstationary for periods as lowas 6 seconds [20]. Therefore, using this information, we decided to segment the EEGrecordings into epochs of 256 samples (i.e. 4 seconds) which �ts the requirements of aquasi�stationary period for the newborn EEG background.A total of 5000 epochs from three newborns were assessed using the Higuchi methodof FD. The FD estimates appeared to be random with an estimate of the probabilitydensity function (pdf) shown in Figure 4.3.The Lilliefors and Jarque-Bera tests for goodness�of��t to a normal distributionwere applied to the FD estimates. Both tests indicate that the FD estimates werenot normally distributed at the 5% signi�cance level. Therefore, we assumed that thedistribution was a Beta distribution. Using the beta�t function in Matlab, we estimatedthe parameters α and β for the Beta distribution, along with there 95% con�denceintervals to be
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Figure 4.3: An estimate of the pdf for the FD of real newborn EEG background.
α = 7.3471

{
7.5620

7.1323
β = 7.1321

{
7.3770

6.8873
(4.12)The relatively small con�dence intervals indicate the likeness of the estimated Betadistribution to the dataset. The distribution has a mean of 1.51 and a standard deviationof 0.125, which can both be derived from α and β. The theoretical pdf for the de�nedBeta distribution4 of the FD estimates is also shown in Figure 4.3.4The Beta distribution is a two parameter (i.e. α and β) distribution which has a �nite density if

α, β ≥ 1, and the integral is �nite if α, β > 0.The density function for the Beta distribution is expressedas [97]
ρ(θ) =

Γ(α + β)

Γ(α)Γ(β)
θ

α−1(1 − θ)β−1

θ ∈ [0, 1]where
E(θ) =

α

α + β
, var(θ) =

αβ

(α + β)2(α + β + 1)
(4.13)



Newborn EEG Simulation 514.3.2 Background Simulation AlgorithmThe simulation of the newborn EEG background is based on the formation of signalswhich have similar fractal and time�varying characteristics as the real newborn EEGbackground. To create the desired fractal signals with known FD, we start with a powerspectrum Sw(f) representative of a white sequence, such that
Sw(f) = r2 (4.14)where r is a positive constant. We then multiply the power spectrum in (4.14) bythe power law sequence that relates to the desired theoretical FD to give the powerspectrum of the fractal signal,

SF (f) =
r2

|f |γ
= XF (f)X∗

F (f) (4.15)where
XF (f) =

r

|f |γ/2
ejθ(f) (4.16)is the FT of the fractal signal, xF (t). The mapping from SF (f) → XF (f) is not uniquebecause the phase information θ(f) has been discarded in power spectrum. Therefore,in generating our desired fractal signals we have chosen θ(f) to be a realization ofstationary random process Θ(f), with uniform distribution on the interval [0, 2π). Thehypothesis of a uniform distribution was tested using the Kolmogorov-Smirnov test on�ve hundred newborn EEG background epochs and could not be rejected at the 5%signi�cance level.The FT of a real signal gives a function with Hermitian symmetry5. This meansthat for the realization of the random process, θ(f), we only need the frequency variable

f to be positive (i.e. f ∈ R
+), as this will also provide us with the negative frequencyvalues of θ(f). Once θ(f) has been obtained, we can obtain the fractal signal by takingthe inverse FT of (4.16), such that

xF (t) =

∫
∞

−∞

XF (f)ej2πftdf (4.17)Insigni�cant power in frequencies less than 0.5Hz, is generally removed from theEEG by highpass or bandpass �ltering [71, 98]. Therefore, to simulate EEG data, ournext step was to highpass �lter the fractal signal. To investigate the e�ect of �lteringon the synthetic fractal signal, we plotted the FD estimate of the non��ltered signalversus the FD estimate of the �ltered signal in Figure 4.4.5A function, g(t), is Hermitian if g(t) = g∗(−t).
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FD Estimate of Non−Filtered SignalFigure 4.4: FD estimate of the non��ltered signal versus the FD estimate of the �lteredsignal.The plot in Figure 4.4 shows that the FD estimate of the �ltered signal is approxi-mately equal to the FD estimate of the non��ltered signal from 1.2 to 1.8, for which alarge proportion of the real EEG is estimated (see Figure 4.3).To simulate the newborn background EEG, we chose to create synthetic epochs oflength 256 samples, which is the same length used in the analysis of the real newbornEEG background. The theoretical FD of each epoch was randomly chosen accordingto the Beta distribution with parameters α = 7.35 and β = 7.13, as was explained insection 4.3.1. The epochs were then highpass �ltered with cuto� frequency randomlyselected according to a uniform distribution on the interval [0.4, 0.6]Hz to vary the peakfrequency. The synthetic epochs were then concatenated to form the synthetic signal.The synthesized signals are therefore nonstationary as a result of the epochs havingvarying FD and peak frequencies.Figures 4.5(a) and 4.5(b), show an epoch of the simulated newborn EEG and realnewborn EEG, in the time and frequency domains respectively. It is clear from Figure4.5(b) that both the simulated and real EEG have similar spectral power laws. It shouldalso be noted that the simulated signal in Figure 4.5(a) is free of artefacts, as are all
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(c) TF DomainFigure 4.5: Similarities between the simulated and real EEG in the (a) time domain,(b) frequency domain, and (c) TF domain.the simulated newborn EEG background using this technique. This is desirable for theinitial evaluation of some detection algorithms.



54 Newborn EEG Seizure SimulationA comparison between the real and simulated EEG in the TF domain, using theB�distribution [21], is shown in Figure 4.5(c). These plots show the nonstationarity ofthe real and simulated EEG. Figure 4.5(c) also shows that neither the real or simulatedEEG have any clear pattern in the TF domain. Instead they both exhibit random�uctuations in the IF content which is a known characteristic of the newborn EEGbackground [16].Evaluating newborn EEG simulation algorithms is a di�cult task. However, thismethod of simulation allows for both the nonlinear and nonstationary characteristics ofthe newborn EEG background where previous methods of newborn EEG backgroundsimulation, such as [1, 27], make the invalid assumption of stationarity.
4.4 Newborn EEG Seizure SimulationA prominent characteristic of newborn EEG seizure is its nonstationarity. The TFpatterns of the nonstationary newborn EEG seizure have been extensively studied andclassi�ed in [16, 20, 99]. This indicates that the simulated newborn EEG seizure shouldsomehow incorporate the general TF characteristics found in the newborn EEG seizure.Two models for newborn EEG seizure simulation have previously been proposed.The �rst technique developed by Roessgen in [1] is based on some physiological pa-rameters of the brain and utilizes a stationary sawtooth waveform. This technique wasrecently extended by Boashash and Mesbah in [16] to incorporate a single LFM signal.Celka and Colditz have also developed a piecewise LFM model of seizure based on aWeiner �lter with sawtooth inputs and nonlinear gain [27].The Roessgen model lacks the incorporation of nonstationarity, while Boashash'sand Mesbah's addition only handles single LFM behaviour, not the piecewise LFMoften seen in seizure. The method proposed by Celka and Colditz lacks time�dependentsignal shape and time�dependent harmonic magnitude variation. It is also unable tosimulate the sharp repetitive spikes often associated with newborn EEG seizure.Our proposed method of newborn EEG seizure simulation makes use of the piece-wise LFM patterns outlined in [16, 20, 99], as well as the results from our own TFinvestigation. Using these de�ned patterns, we generate various TF templates of new-born EEG seizure. The TF templates are then mapped to the time domain using themodi�ed short�time Fourier transform (MSTFT) magnitude method [100]. We refer tothis operation as time�frequency signal synthesis (TFSS).



Newborn EEG Simulation 554.4.1 Seizure Simulation AlgorithmInitially, the desired seizure length is determined. The parameters for the seizure arechosen from their speci�c sampling distribution, which were based on our TF analysisof newborn EEG seizure. These parameters include the number of LFM pieces inthe IF law, the slope of the LFM pieces, the seizure start frequency, the envelope ofeach harmonic component (relative amplitude and frequency), the SNR and seizure tobackground ratio (SBR). The parameter range and parameter sampling distribution arespeci�ed in Table 4.1. Note, as the beta distribution ranges from 0 to 1, the range value isused to correctly scale the sampling distribution. We have chosen the beta distributionbecause the distribution can be skewed and shaped using the chosen parameters, tomatch the observations from our TF analysis6.Table 4.1: Parameter ranges and distributionparameter range distributionLFM slope (Hz/sec): {a} -0.07:0.07 Beta(2,4)LFM pieces: {N} 1:4 Beta(3,3)LFM envelope amplitude -0.25:0.25 Beta(1,1)SNR (dB) 10:20 Beta(1,1)SBR (dB) 10:15 Beta(1,1)seizure start frequency (Hz) 0.5:3.5 Beta(2,4)The initial IF law of the fundamental component is generated from the selectedparameters according to,
f(t) =

N∑
i=1

aiti + ci, (4.18)where,
ti =




0 for t < ti
lo
,

t for ti
lo
≤ t ≤ ti

hi
,

0 for t > ti
hi

,

(4.19)where fi(t) is the IF law, ai is the slope of the ith LFM piece, ci is a constant to correctlyalign the pieces of the IF law, N is the number of pieces in the piecewise LFM and ti
loand ti

hi
are uniform random variables ranging across the epoch with ti

hi
conditioned on

ti
lo
such that ti

hi
> ti

lo
(see Figure 4.7).The TF image is initially constructed, using the IF law, with a number of harmonics.The magnitude of each harmonic component, including the fundamental component,is multiplied by a speci�c, oscillating, random amplitude envelope that is estimated6A special case of the Beta distribution is Beta(1,1), which is the uniform distribution.



56 Newborn EEG Seizure Simulationusing cubic spline interpolation (fenvelope(t) << f(t)). The TF image is smoothed,along the frequency axis, using a one�dimensional Hamming window that is scaledaccording to the seizure length. The two�dimensional, TF image is then synthesized intoa one�dimensional, time domain signal using the MSTFT magnitude method assuminga sampling frequency of 10Hz. The seizure simulation protocol is outlined in Figure 4.6.The MSTFT magnitude method uses an iterative technique developed by Gri�n andLim, [100], to estimate the discrete time domain signal x[n]. The di�erence between
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Newborn EEG Simulation 57the desired STFT and the update STFT is minimized in this procedure. The updateequation is as follows,
xi+1[n] =

∑
∞

m=−∞
w[n − m]

∫
0.5

−0.5
X̂i[n, f)ej2πfm df∑

∞

m=−∞
w2[n − m]

(4.20)where,
X̂i[n, f) = |Y [n, f)|

Xi[n, f)

|Xi[n, f)|
, (4.21)

Y [n, f) is the desired STFT, Xi[n, f) is the ith update STFT, xi[n] is the ith updatesynthesized signal, w[n − m] is the STFT window, n is discrete time, f is continuousfrequency and m is the discrete time lag. The signal is synthesized with an initial x[n]of white Gaussian noise. In this case, the stopping criterion of the MSTFT magnitudemethod is the iteration number (imax = 200). Further details on the convergence of thealgorithm can be found in [100].This method of signal synthesis was chosen over other available techniques as thesignal synthesis is performed on a much simpler image than other techniques, whichrequire the incorporation of crossterms in the original image. Also, the MSTFT mag-nitude method does not require any knowledge of the synthesized signal's initial phase.An example of the TF template and its associated TF seizure image are shown inFigures 4.7(a) and 4.7(b) respectively. The one�dimensional simulated seizure signalusing the TF image in Figure 4.7(b) is shown in Figure 4.8(a). It can be seen that thesimulated EEG signal exhibits similar characteristics, in the time domain, to the realseizure signal in Figure 4.8(b).For a more quantitative analysis, speci�c segments of real EEG seizure were analyzedwith the intention of extracting an approximation to the piecewise LFM law and thecomponent envelope. These values were fed into the seizure simulation algorithm andthe TF images were then correlated to assess the similarity between simulated and realseizure. The results of this experiment, conducted on �ve seizure epochs, are shown inTable 4.2.Table 4.2: The results of the seizure simulation technique, µ = 0.8, σ2
= 0.03.trial correlation1 0.8612 0.9203 0.9434 0.4865 0.789
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(b) Simulated TF imageFigure 4.7: The seizure synthesis procedure beginning with the (a) generated IF lawand its harmonics then (b) the formation of the TF image
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time (secs)(a) synthesized seizure 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (secs)(b) real seizureFigure 4.8: Comparison between the (a) synthesized seizure and (b) real seizure signalsAn example of the TF output of the experiment is shown in Figure 4.9. The synthe-sized seizure is plotted above the real seizure in Figure 4.10. The general shape of thesimulated TF image conforms to the seizure epoch with a correlation coe�cient of 0.94.In the time domain the signal has the general characteristics required of a simulatedsignal, [16, 27], notably, nonstationary frequency content, moderate �spiky� behaviour,asymmetric oscillation and envelope amplitude variation.The simulated EEG provides the essential signal structures seen in EEG seizure,
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2 4 6 8 10 12 14 16 18 20 22

si
m

ul
at

ed

2 4 6 8 10 12 14 16 18 20 22

time (secs)

re
al

Figure 4.10: Time domain comparison of real and simulated seizure.particularly in the TF domain, as outlined in [16]. This is shown in the high two�dimensional correlation coe�cients between real and simulated signals. However, notall forms of seizure �t into this general piecewise LFM pattern of behaviour. This can be
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clear interference Figure 4.11: Simulated and real seizure.seen by the low coe�cient in trial 4. This particular form of seizure has a higher relativenoise component, a non�piecewise LFM IF law, more transient events and containssevere �spiky� behaviour compared to other seizures. These phenomenon contribute toan e�ective whitening of the spectrum which interferes with the simulative capacityof a piecewise LFM model. Nonetheless, the synthesized seizure still has sections thatprovide a good approximation, in addition to poor approximation sections. This isshown in Figure 4.11.The advantage of using TFSS over other techniques is its relative simplicity, itsability to handle spectral distortion and the discontinuities of the piecewise IF law.In addition, this technique can provide a larger variety of seizure waveforms, withinBT7 product limits, depending on the fundamental TF template or templates chosen.This modularity has an advantage over a method such as Celka's which would requireadditional complexity to incorporate other forms of seizure.By combining the simulation algorithm for the newborn EEG background and new-born EEG seizure, we develop a complete newborn EEG simulator. This system forEEG simulation is demonstrated in Figure 4.12. During seizure periods the range forthe gain values are given in Table 4.1 via the SBR. The seizure plus background is thenew signal used as the signal in the evaluation of the SNR and the noise is additive7The BT product refers to the value of the e�ective bandwidth of the signal multiplied by thee�ective duration of a signal and is a measure of signal richness [80].
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62 SummaryGaussian white noise. During nonseizure periods, the gain associated with the seizuresignal is zero and the background is the signal used for the SNR.Figure 4.13 shows an example of simulated EEG using the combination of the twoproposed algorithms. Channel 1 and 2 both contain seizure starting at 40 seconds andlasting until 80 seconds. However, channel 3 does not contain any seizure. This exampleis simulative of a real EEG seizure event in the newborn and could be used for assessingautomatic seizure detection algorithms.4.5 SummaryThis chapter presents a method for simulating newborn EEG background and a methodfor simulating newborn EEG seizure. It was shown that the power spectrum of real new-born EEG background closely follows a power law of the form S(f) ∝ |f |−γ . Using thisresult, it was assumed that the newborn EEG background exhibited fractal charac-teristics. Therefore, we analyzed real newborn EEG background using a FD estimateobtained from the Higuchi method [94]. It was then assumed that the FD of the new-born EEG background was random and it was estimated that the distribution was aBeta distribution with α = 7.35 and β = 7.13. The simulated newborn EEG back-ground was then created by concatenating fractal epochs, randomly chosen accordingto the de�ned Beta distribution, with peak frequencies between [0.4,0.6]Hz, also chosenrandomly. Previous background EEG simulation methods have assumed stationarity.However, our proposed newborn EEG background simulation algorithm has allowed forthe nonlinear and nonstationary characteristics observed in real newborn backgroundEEG.The proposed newborn EEG seizure simulation algorithm was developed by takinginto account the prominent TF characteristics that have been observed in the TFSA ofreal newborn EEG seizure. The algorithm begins by creating a TF template of newbornEEG seizure that mimics the observed TF seizure characteristics of real newborn EEGseizure. The TF templates are then mapped to the time domain using a TFSS techniquecalled the MSTFT magnitude method. It was then demonstrated how the backgroundand seizure simulation algorithms could be combined to form a complete newborn EEGsimulator which can be used for the testing and comparison of automatic newborn EEGseizure detection algorithms.



Chapter 5Detecting Signal State ChangesUsing MP-Based StructuralComplexity
5.1 Introduction
A

tomic decomposition techniques using redundant dictionaries have become in-creasingly popular alternatives to traditional signal representations which makeuse of orthogonal bases. By incorporating redundant dictionaries, these techniques canadaptively select optimal waveforms to represent the signal. This can lead to higherresolution and sparser signal representations.The MP algorithm, proposed by Mallat and Zhang [37], is one such decompositiontechnique which is gaining popularity. It has been applied in many di�erent signalprocessing areas. In particular, it has been recently used for the analysis of adult EEG[38, 39, 40, 42] and has been incorporated into an automatic adult EEG seizure detectionalgorithm [43]. The MP algorithm using TF dictionaries has a number of advantagesover classical analysis techniques. It can provide information about the time�varyingcharacteristics of nonstationary signals without introducing crossterms, as in the caseof QTFDs [37]. It can also provide information on the nonlinearities in the signal [39].Another advantage of the MP algorithm is that it can be used as a denoising tool.The denoising technique of MP relies on the TF dictionary being more coherent withthe desired signal structures than the noise component. This means that the atomsrepresenting the desired signal structures will be chosen �rst in the MP decomposition.Therefore, if the iterations are stopped before the noise component is represented, wecan reconstruct a signal or obtain a TFR with less noise. The change in exponential63



64 Sparsity Comparison of MP and BP Approximationsdecay of the absolute value of the atom coe�cient value is generally used as a stoppingcriterion for denoising with MP [37].Another atomic decomposition which has only recently been proposed is the BPdecomposition technique [88]. Like the MP algorithm, BP can also provide crosstermfree TFRs and has denoising capabilities. BP decomposition was proposed with thegoal of providing a sparser signal representation than MP. However, in many signalprocessing applications, such as signal and image compression and denoising, only anadequate signal approximation is required instead of a complete signal representation.In this chapter, we begin by comparing the sparsity of signal approximations fromboth MP and BP decompositions. This comparison is done in order to determine whichof the two decomposition techniques generally provides the sparsest signal approxima-tion.We then introduce a new signal complexity measure in section 5.3, referred to assignal structural complexity (SC). The measure is shown to be a quanti�cation of thecoherency between the decomposition dictionary's atoms and the structures within asignal.Often, if the underlying process generating the signal undergoes some type of change,this will generally re�ect on the signal itself. Through synthetic examples in section5.3, we demonstrate how the SC measure can be incorporated as a method of detectingchanges in signal structure and, therefore, state of the underlying process.The generic detection methodology based on the change in the SC measured is thenapplied to the automatic detection of newborn EEG seizure in section 5.4. To optimizethis automatic detection method, we develop a TF dictionary that is coherent withnewborn EEG seizure structures. The automatic detection method is demonstrated�rstly using synthetic newborn EEG data and then con�rmed using real newborn EEGdata.5.2 Sparsity Comparison of MP and BP ApproximationsThere are three desirable attributes of a decomposition technique that have been de�nedby Chen et al. [88]. The �rst attribute is speed, which means that a decompositionalgorithm should run in the order of O(N) or O(N log2(N)) time. Secondly, it isdesirable for a decomposition technique to be able to resolve components that are closein time and frequency (i.e. superresolution). Thirdly, a decomposition technique shouldaim to provide the sparsest (most compact) representation, which is the representation



Detecting Signal State Changes Using MP-Based Structural Complexity 65with the fewest signi�cant coe�cients1.It has been shown through a number of computational examples that BP providesa sparser signal representation than MP [88]. Also, for some speci�c redundant dictio-naries, it has been shown that the `1 optimization of the BP algorithm results in theoptimally sparse representation, which has been referred to as the ideal signal repre-sentation [101]. However, in many signal processing applications we only require anadequate signal approximation instead of a complete signal representation.An approximation of the signal x(t) using MP or BP can be written as:
x̂ = x − ea (5.1)where ea is the approximation error (n.b. it was previously referred to as the residualin Chapter 3). A relative measure of approximation accuracy is de�ned through thesignal to error ratio (SER), expressed as

SER = 10 log10

(
Ex

Eea

)
dB (5.2)where Ex and Eea represent the energy in the signal and energy in the error signal, ea,respectively.If a desired level of signal approximation, SERD, is prede�ned, it can be used asa stopping criterion for MP. That is, at iteration i of the MP algorithm, SERi

x̂ iscompared with SERD. If SERi
x̂ ≥ SERD the iterations are stopped, otherwise, theiterations are continued. The atoms selected in the approximation are referred to asthe signi�cant atoms.Determining the signi�cant atoms from a BP decomposition di�ers slightly fromMP. The BP decomposition technique does not select its atoms iteratively like MP, butinstead iteratively improves the signal representation according to the objective function(see Chapter 3). Therefore, after BP has obtained its optimal signal representation, wethen iteratively add the selected atoms in order of their coe�cient value (i.e. largestcoe�cient to smallest) until the signal approximation achieves SERx̂ ≥ SERD.5.2.1 Comparison ExperimentTo compare the sparsity of signal approximations using MP and BP, we developed anexperiment using two real life signals; a whale song and a newborn EEG recording. Inthis experiment we segmented the real life signals into 50 epochs of length 512 samples.1It should be noted that signi�cant coe�cients and signi�cant atoms are used interchangeably torepresent the number of atoms (coe�cients) in a signal representation.



66 Structural ComplexityThe WP dictionary was used for both decomposition techniques. The range of desiredsignal approximations levels were, SERD = [7.5, 10, 12.5, 15, 17.5, 20].Figures 5.1(a) and (b) show the average number of signi�cant atoms needed byMP and BP, at each approximation level, for the whale signal and EEG recordingrespectively. It can be seen from the plots in Figures 5.1(a) and (b) that the BPdecomposition, on average, requires more atoms than MP to approximate both thewhale song and EEG recording. These two examples indicate that MP provides thesparsest signal approximation. In fact, extensive testing using di�erent types of real lifeand synthetic signals show that MP generally provides a sparser approximation thanBP [46, 47].Recently, it has also been proven that for quasi-incoherent2 dictionaries, the orthog-onal MP (OMP)3 provides a sparser approximation than BP [102]. For this reason,as well as our experimental results shown in this section and in [46, 47, 49], we haveadopted MP as the preferred signal decomposition method in this thesis.5.3 Structural ComplexityAn important feature from an MP decomposition is the number of signi�cant atoms.This feature can provide information about the structure of the signal under analysisin relation to the decomposition dictionary. For example, if a signal has componentsthat have strong correlation with the decomposition dictionary's atoms, fewer signi�cantatoms will be needed to approximate the signal. We qualify this by saying that the signalcomplexity is low. These signal components are referred to as coherent structures [37].If the signal structures change such that their correlation with the decomposition dictio-nary's atoms is reduced, the number of signi�cant atoms needed for the approximationwill increase, which indicates that the signal complexity has become higher. Therefore,we can use the number of signi�cant atoms in a signal approximation to quantify thecomplexity of a signal. We refer to this measure of complexity as structural complexity(SC).Figure 5.2 shows the basic methodology for obtaining the SC measure. It can beseen from Figure 5.2 that the SC measure is a function of:1. Desired level of accuracy of the approximation (SERD)2The de�nition of coherent and incoherent here is based on the coherency between atoms within thedecomposition dictionary. This should not be confused with our de�nition of coherent which is basedon how much atoms from the decomposition dictionary correlate with signal structures. Our de�nitionis the same as the de�nition provided in the original MP paper by Mallat and Zhang [37].3OMP has an added criterion which requires that the selected atoms in the decomposition beorthogonal.
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Figure 5.2: Methodology for obtaining the SC measure.2. Type of decomposition dictionaryTherefore, we emphasize that the SC measure is not an absolute measure, but rather arelative measure that strongly depends on the nature of the decomposition dictionary.5.3.1 Detection of Signal Transitions using SCA change in the SC relates to a change in the coherency between the decompositiondictionary atoms and the signal structures. If the SC is changing, this implies thatthe structures making up the signal are changing. This may be the result of a newevent taking place or the system under analysis is undergoing a change. Therefore,the proposed SC measure can be used to detect changes in the state of signals. Todemonstrate the use of SC in detecting signal state transitions, we have developed twoexperiments.Experiment 1:In this experiment, we created a number of synthetic signals which have varying levelsof coherency with the decomposition dictionary (i.e. di�erent SC levels). To do this,we �rstly chose two di�erent TF dictionaries. Atoms were selected from both of thesedictionaries to synthesize the signals. However one of the dictionaries chosen to createthe synthetic signals was also used for signal decomposition. This dictionary is referredto as the decomposition dictionary, ΦD. The second dictionary, not used for signaldecomposition is referred to as the alternative dictionary, ΦA. By using varying numbersof atoms from ΦD and ΦA, we created a number of synthetic signals with varying levels
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Figure 5.3: Demonstrates how the signal complexity changes as the decompositiondictionary becomes less coherent with signal structures.of SC. That is, if a signal was constructed with a large number of ΦD atoms and a smallnumber of ΦA atoms, the signal would be more coherent with ΦD and therefore havelow SC. However, if a signal was constructed using a large number of ΦA atoms and asmall number of ΦD atoms, the signal would be less coherent with ΦD and would resultin high SC. For ease of reference, this is shown in Table 5.1Atoms Coherency SC
ΦD >> ΦA High Low
ΦA >> ΦD Low HighTable 5.1: Relationship between signal structures, coherency and SCFor this experiment, the synthetic signals, of length N , were constructed using krandomly selected atoms of which k − l were selected from ΦD and l from ΦA. Thenumber, l, was increased from 0 to k, resulting in synthetic signals with varying levelsof SC. Atoms in both dictionaries were normalized such that their `2 norm was equalto 1. This was done to remove any amplitude biasing of components.The results of this experiment are shown in Figure 5.3. In this experiment we chosethe signal length, N = 512, number of atoms, k = 30, a WP dictionary as ΦD and
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SERD = 13dB. In this experiment, two alternative dictionaries:1. ΦA : CP dictionary2. ΦA : Gabor dictionarywere used to provide two separate subexperiments so that the results could be validated.In the �rst subexperiment, we used the CP dictionary as the alternative dictionary forsynthesizing signals. It can be seen from Figure 5.3 that as the number of alternativeatoms is increased (i.e. l) the level of SC also increases. This explicitly shows that theSC measure of a signal is related to the coherency between the decomposition dictionaryand signal structures. For the second subexperiment, we used a Gabor dictionary asthe alternative dictionary. It can be observed from Figure 5.3 that similar results havebeen obtained as with the CP dictionary.As a secondary result from the two subexperiments, we can see that the CP atomsare slightly more coherent with the WP atoms than the Gabor atoms. This is indicatedby slower rate of rise in SC measure.Experiment 2:In this experiment, we show how a change in SC can be used to detect a change in signalstructure or a change in signal state. Epochs of length N = 1024 samples were createdusing 100 atoms. The atoms were randomly selected from ΦD and ΦA, which werechosen as the redundant WP dictionary and CP dictionary respectively. A completesignal was created by the concatenation of 300 epochs. The epochs for the signal weredesigned as follows:

• Epochs 1 → 100: {15 atoms ∈ ΦD & 85 atoms ∈ ΦA}, randomly chosen for eachepoch
• Epochs 101 → 200: {50 atoms ∈ ΦD & 50 atoms ∈ ΦA}, randomly chosen foreach epoch
• Epochs 201 → 300: {85 atoms ∈ ΦD & 15 atoms ∈ ΦA}, randomly chosen foreach epochThe synthetic signal formed by the concatenation of synthesized epochs is shown inFigure 5.4(b). The SC measure for the synthetic signal is shown in Figure 5.4(a). Itcan be seen from the SC measure that there are two signi�cant changes, separating thesignal into three distinct states. The �rst signi�cant change is a drop in SC which occursat Epoch 101. The second signi�cant change is a drop occurring at Epoch 201. These
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Figure 5.4: The (a) SC measure of the (b) synthetic signal which has three distinctstates, as indicated by the SC measure.
are exactly the two places in which we designed the synthetic signal to have change instructure.In Figure 5.4(a), we have also plotted the average SC value for the three signalstates, indicated by `*-*'. This further emphasizes where the signi�cant changes in SCoccur. Therefore, the example in Figure 5.4 clearly illustrates the applicability of SC indetecting changes in signal state.To demonstrate the signi�cance of the SC measure in detecting changes in signalstructure, we have also plotted the time domain and frequency domain representationsof epochs from the three signal states. Figures 5.5(a)-(c) show Epoch number 50, 150and 250, respectively. These epochs have been chosen to represent the three states of thesynthetic signal. However, from these plots, the change in signal structure is not easilydistinguishable. The frequency domain representations of Epoch 50, 150 and 250 areshown in the plots of Figures 5.5(d)-(f). Again, the change in signal structure betweenthe three signal states is not clearly visible in the frequency domain. This indicates thesuperiority of the SC measure in detecting changes in signal structure.
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(f) Frequency domain; Epoch 250Figure 5.5: Time domain representation (a-c) and frequency domain representation (d-f) of the three states of the signal in Figure 5.4(b). No clear di�erence in states is visiblefrom either the time domain or frequency domain.



Detecting Signal State Changes Using MP-Based Structural Complexity 735.4 Newborn EEG State Transition Detection using SCIn the previous section, it was shown that if a signal had structures that were highlycoherent with the decomposition dictionary, then the SC measure for the signal waslow. As the signal structures became less coherent with the decomposition dictionary,the SC measure increased. Therefore, we demonstrated that SC could be used to detectchanges in signal structure or transitions in signal state.In the previous experiments, we designed signals with varying levels of coherencywith the decomposition dictionary. This assumed that we had a decomposition dic-tionary that was highly coherent with a particular signal state. However, in real lifeapplications, decomposition dictionaries that are coherent with a particular signal statemay not be readily available. The reason is that the structures (or models) of thesesignals are generally unknown. In this case, a decomposition dictionary, coherent witha particular signal state, may have to be designed. Our method of designing coher-ent dictionaries involves creating TF atoms that match the TF patterns observed in aparticular signal state. The TF patterns in the signal state of interest may be used toconstruct dictionary atoms that are coherent with the signal structures for that partic-ular state.5.4.1 Time-Frequency Analysis of Newborn EEGThe newborn EEG of patients who experience seizure events is one example of a real lifesignal which has two speci�c states. The �rst EEG state is the background (nonseizure)and the second state is the ictal or seizure state. Therefore, the automatic detectionof the transition between these two states is a possible application of the SC detectionmethodology.An investigation into the TF characteristics of the newborn EEG was previouslyundertaken by Boashash et al. [16, 103]. In this investigation, the authors looked atboth the seizure state and background state of the neonatal EEG. The analysis wasdone using the B-distribution (described in chapter 3). It was concluded from theirTF analysis that the IF of the newborn EEG seizure could be broadly characterized bypiecewise LFM with slowly varying amplitude. In their analysis, it was also quite oftenobserved that the newborn EEG seizure was multicomponent in nature. Both thesecharacteristics can be seen in the TFRs of seizure epochs in Figures 5.6(a) and (b).In Figure 5.6(a), it can clearly be seen that the IF slope changes signi�cantly ataround the 8 second mark. This is a demonstration of the piecewise LFM nature of thenewborn EEG seizure. In contrast, the seizure epoch in Figure 5.6(b) has an almostconstant IF.
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(b) Seizure exhibiting quasi-constant,multicomponent
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(d) Background lacking speci�c patternFigure 5.6: TFR of various seizure patterns (a-b) and nonseizure patterns (c-d).In the analysis of the newborn EEG background, it was found that there wereonly two signi�cant types of patterns in the TF domain. The �rst pattern is relatedto the burst-suppression background abnormality. In the time domain, this patternis characterized by a burst of high voltage activity lasting 1-10 seconds followed bya period of quiescence or inactivity [59], which was discussed in detail in chapter 2.Figure 5.6(c) illustrates a burst-suppression pattern in the TF domain. It can be seenthat the burst of high energy masks all other patterns in the TFR. The second class ofpattern found in the TFR of newborn EEG background is the EEG activity lacking aspeci�c TF pattern [103]. In this background state, there does not exist a dominant TFcomponent which follows any speci�c IF law. An example of this type of background isshown in Figure 5.6(d).
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(c) Residual: R1x

−0.100.1
Time signal

5

20

P
S

D

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

Frequency (Hz)

T
im

e 
(s

)

(d) Atom 2
−1500150

Time signal

2

8
x 10

6

P
S

D

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

Frequency (Hz)

T
im

e 
(s

)

(e) Residual: R2xFigure 5.7: The MP decomposition of a seizure epoch using the proposed TF dictionary.The �rst two atoms selected by the MP algorithm, (b) and (d), are clearly coherent withthe seizure signal structures (a) and (c). The residual after two iterations (d) has noclear, dominant TF patterns.



76 Newborn EEG State Transition Detection using SC5.4.2 Coherent Dictionary DesignIn the TF analysis of the newborn EEG seizure by Boashash et al. [16], the authorsdetermined that LFM nature of seizure patterns had starting frequencies of between[1.5,5]Hz and an LFM frequency slope of between [-0.06,0]Hz/sec. However, in our TFanalysis of newborn EEG seizure, also using the B�distribution, we have found thatLFM components have a wider range than that presented in [16]. It was found that amore appropriate range for the starting frequency of newborn EEG seizure componentswas between [0.65,5]Hz with LFM slopes of between [-0.06,0.06]Hz/sec. Figure 5.7(a)shows an epoch of newborn EEG seizure which has two components with increasingfrequency (i.e. positive LFM slope) verifying the inclusion of these positive rates.It was concluded from the TF analysis that the coherent TF dictionary must includeLFM atoms which cover the de�ned ranges in starting frequency and LFM slopes. Itwas also decided that only LFM atoms were to be included in the dictionary and notpiecewise LFM, which would cause a combinational explosion for constructing atoms,making the decomposition dictionary excessively large and causing unrealistic processingtimes.The set of LFM atoms to be included in the proposed dictionary were of the form
φγLFM (n) = cos

(
2π(ξi +

ξr

2
n)n

Fs

+ θ

) (5.3)where Fs is the sampling frequency and θ = [0, 2π) is the starting phase. As mentionedbefore, the initial frequency ξi ranged between [0.65,5]Hz and the frequency rate, ξr,ranged between [-0.06,0.06]Hz/sec. The sampling frequency chosen was 20Hz as fre-quencies above 10Hz did not exhibit signi�cant LFM components. The epoch lengthchosen was N = 256 samples (equivalent to 12.8 seconds).Since the described set of LFM atoms do not form a complete dictionary, we com-bined this set of LFM atoms with a redundant Gabor dictionary so that the constructeddictionary spanned the N dimensional Hilbert space, forming an overcomplete dictio-nary.To illustrate the coherency between the signal structures of the newborn EEG seizurestate and the proposed TF dictionary, we applied MP decomposition on the EEG signalwhose TFR is shown in Figure 5.7(a). The atom chosen in the �rst iteration of MPdecomposition using the newly proposed TF dictionary is shown in Figure 5.7(b). Itcan be seen that the atom chosen clearly resembles the dominant LFM component inthe newborn EEG seizure signal. The selected atom represents approximately 50% ofthe energy in the seizure epoch. The residual after the �rst MP iteration is shown in



Detecting Signal State Changes Using MP-Based Structural Complexity 77Figure 5.7(c)4. The TFR of the atom chosen in the second MP iteration is shown inFigure 5.7(d). This atom closely resembles the second LFM component in the EEGseizure epoch and accounts for approximately 10% of the signal energy. Therefore,approximately 60% of the epoch energy is represented with two coherent atoms, resultingin extremely low SC. The residual after two iterations, R2x, is shown in Figure 5.7(e),which illustrates that no clear TF patterns remain in the residual.5.4.3 EEG Seizure Detection using SC: Synthetic EEG DataFor the initial validation of the SC methodology for detecting changes in newbornEEG signal structure, we began testing using artefact free synthetic EEG data. Thesimulation process described in Chapter 4 was used to generate the synthetic newbornEEG data. By testing initially on synthetic data, we could produce long EEG signalsfor which we knew the exact time location where the EEG signal had changed frombackground to seizure.Signal GenerationIn the testing of our SC state detection method applied to newborn EEG, we createdtwenty �ve synthetic newborn EEG recordings. All synthetic EEG data was createdwith a sampling rate of 20Hz. For each recording, a 10 minute period of newborn EEGbackground was created so that an estimate of the baseline for the background periodcould be attained. Further to this 10 minute period of newborn EEG background,another 10 minute period of background was synthesized for testing of the false de-tection rate (FDR). Therefore, in total, more than 8 hours of synthetic newborn EEGbackground was created.A seizure state was then added to the synthetic recordings. The seizure durationsranged between 25 seconds and 345 seconds. All seizures generated were characterizedby piecewise LFM and were all multicomponent. The time-varying amplitudes of thevarious components of the synthetic EEG seizure were randomly selected. An exampleof a synthetic newborn EEG recording containing 180 seconds of seizure is displayed inFigure 5.8. In the recording, we have also marked exactly the time period for which theseizure has occurred, mimicking the marking of real EEG data by a neurologist. Wehave also shown which part of the background state has been used for estimating thebaseline background value.4It should be noted that the TFR in this plot has been rescaled to clearly show how the remainingsignal energy, R1x, is distributed in the TF domain. This is why the second LFM component appearsto have larger amplitude in Figure 5.7(c) than in Figure 5.7(a).
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Figure 5.8: Synthetic newborn EEG recording containing background and seizure states.Results and DiscussionThe automatic detection of newborn EEG seizure using SC requires a threshold valueto be set to distinguish between seizure and non seizure periods. We determine thethreshold value using the baseline data, shown in Figure 5.8.The minimum SC value for the baseline data was used as the threshold value for theseizure detection algorithm. If the SC was above the threshold value the EEG epochwas deemed a background epoch. If the SC value was less than the threshold value,then an epoch was judged to be seizure.An example of the SC analysis of the synthetic newborn EEG data is shown inFigure 5.9. The SC measure, displayed in Figure 5.9(a), clearly shows a change insignal structure of the synthetic EEG signal in Figure 5.9(b). The threshold value forthe seizure detection method was set to the minimum SC value for the �rst 10 minutesof the recording (i.e. �rst 600 seconds), and is clearly shown in Figure 5.9(a) as �*-*�.However, it can be seen that a false detection is made. In this case, it is a result of somedominant structures being highly coherent with the Gabor dictionary atoms. Therefore,an extra criterion, such as �An LFM atom must be selected �rst for a seizure detectionto be made,� may be included to discard these false detections.The accuracy of the seizure detection algorithm was measured by considering thesensitivity, Rsn, and speci�city, Rsp which are calculated using the true positives (TP),false positive (FP) and false negatives (FN). TP is the percentage of accurately detectedseizure epochs, FP is the percentage of nonseizure epochs detected as seizure and FN isthe percentage of seizure epochs missed by the algorithm. The sensitivity and speci�city
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Figure 5.9: (a) The SC measure of the (b) synthetic newborn EEG data containingnon�seizure and seizure states.measures are expressed mathematically as
Rsn =

TP

TP + FN
Rsp = 1 −

FP

TP + FP
(5.4)Table 5.2, shows the optimal results of our SC method for automatic seizure detectionapplied to the synthetic newborn EEG data. Figure 5.10 shows the correspondingreceiver operating characteristics curve associated with a changing threshold value.Parameter RateTP 100.0%FP 2.78%FN 0.00%

Rsp 100.0%
Rsn 97.3%Table 5.2: Results of the SC based seizure detection algorithm applied to syntheticnewborn EEG seizureThe results of our detection method for the synthetic data are extremely good. Thisis due to a number of factors. Firstly, the proposed dictionary is highly correlated
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Figure 5.10: Receiver operating characteristics curve for the SC�based seizure detectionalgorithm.with the structures in the synthetic newborn EEG seizure and less coherent with thesynthetic newborn EEG background. Secondly, both the synthetic background andseizure signals are free from large amplitude artefacts.Generally, it has been observed using real EEG data that the SC is drops signi�cantlyfor the epochs covering large amplitude artefacts, as these high energy signal componentsoften correlate well with Gabor atoms. This results in a relatively low number ofsigni�cant atoms being needed to approximate the epoch. Drops in SC as a result ofartefacts can therefore increase the number of FP, deteriorating the performance of thedetection algorithm. This, however, can be overcome by incorporating a redundancycriterion such as the �rst atom being an LFM, as mention previously, or considering aminimum duration below the threshold value for a seizure event to be detected.Finally, we have not incorporated the gradual onset of seizure into the syntheticsignals which is often observed [22]. However, the reason for this is that it is di�cult todetermine exactly where the seizure starts. Therefore, it would make the evaluation ofthe automatic seizure detection much more di�cult, inaccurate and possibly biased byour own interpretation of where the synthetic seizure starts.



Detecting Signal State Changes Using MP-Based Structural Complexity 815.4.4 EEG Seizure Detection using SC: Real EEG DataTo validate the excellent results attained in the previous section, we have also analyzedreal newborn EEG data using the SC measure with our proposed TF dictionary. TheEEG data analyzed in this section was recorded at the Royal Womens Hospital, Bris-bane, Australia5. The EEG data was digitally bandpass �ltered, with cuto� frequenciesat 0.5Hz and 10Hz, before resampling the EEG data at 20Hz.In the previous section, we showed that the development of an automatic seizuredetection algorithm, using the SC measure, requires the assessment of baseline data todetermine a threshold value. However, in our database of newborn EEG data, there areno recordings consisting of long background sections prior to seizure events. Therefore,we have not been able to assess baseline data to set thresholds and statistically evaluatea SC based automatic detection algorithm on real EEG data. Instead, we have analyzeda number of newborn EEG recordings which contain transitions between nonseizure andseizure to demonstrate how the SC decreases when shifting from the background stateto the seizure state and increases when shifting from the seizure state to the nonseizurestate.Figures 5.11 and 5.13, show two di�erent channels of an EEG recording and theSC for the channels. The entire period of the recording has been labeled as seizure.However, the EEG seizure patterns are not consistently present in any one channel overthe entire recording period, as indicated by a neurologist.The EEG channel shown in Figure 5.11(b) is obtained from the right side of thebrain and the EEG channel in Figure 5.13(b) is recorded from the left side. The SCmeasure indicates that the seizure event has begun in the right side of the brain. Thisis illustrated by the relatively low SC measure at the beginning of the recording period,shown in Figure 5.11(a). An example of the TF pattern associated with and epoch fromthe beginning of the right side channel is shown in Figure 5.12(a). It can be observedthat a dominant LFM component, characteristic of newborn EEG seizure, exists. Thisresulted in a relatively low SC measure as the signal structures were highly coherentwith the proposed decomposition dictionary. However, from approximately 50 secondsto 215 seconds, the SC measure is relatively high, indicating that no seizure patternsare present. This is veri�ed by the TFR shown in Figure 5.12(b), which is an epochfrom 100 to 110 seconds. It can be seen that the TFR has no clear TF patterns, whichis a characteristic of nonseizure newborn EEG.In the SC analysis of the EEG channel from the left side of the brain, illustratedin Figure 5.13, we can see that the SC value is relatively high at the beginning of the5A detailed description of the EEG data acquisition is given in Appendix A.
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Figure 5.11: (a) The SC measure for the (b) newborn EEG channel, containing seizure,recorded from the right side of the brain.
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(a) LFM seizure patterns −30040
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(b) Nonseizure patternsFigure 5.12: TFR of epochs from the signal in Figure 5.11(b) at (a) the beginningwhere clear seizure patterns are present and (b) the middle where nonseizure patternsare exhibited.recording. The high SC indicates that EEG recorded in this channel was not in theseizure state at the beginning of the recording. Figure 5.14(a) shows the TFR of anepoch at the beginning of the recording. It can be seen that no clear TF patternsare present, verifying the SC result which indicates a nonseizure state. However, from
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Figure 5.13: (a) The SC measure for the (b) newborn EEG channel, containing seizure,recorded from the left side of the brain.approximately 50 seconds onward, it can be seen in Figure 5.13(a) that the SC isgradually decreasing. The gradual decline in the SC represents the gradual onset ofEEG seizure in this channel. This corresponds well with the observations in [22], thatthe onset of seizure in newborns is quite often piecemeal. The TFR of an epoch atthe end of the recording, where the SC is low, is shown in Figure 5.14(b). It can beseen that the epoch contains a dominant LFM component, therefore providing a lowSC value.From the SC analysis of these two channels, we can see that the seizure begins inthe right side of the brain. This was indicated by the neurologist. The SC results thendemonstrate that the seizure migrates from the right side to the left side of the brain.This was also suggested by the neurologist, who indicated that clear seizure patternsappeared in the left side channel at approximately 130 seconds. This was also wherethe SC begins to drop signi�cantly for this channel, as illustrated in Figure 5.13(a).Figure 5.15(b) shows another example of a real newborn EEG signal that containsa transition from the nonseizure state to seizure state. The structural SC measureagain has a gradual decline. The seizure onset has been marked by the neurologist atapproximately the 15 seconds, which is also demonstrated by the SC measure in Figure
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(b) LFM seizure patternsFigure 5.14: TFR of epochs from the signal in Figure 5.13(b) at (a) the beginningwhere nonseizure patterns are present and (b) the end where clear seizure patterns areexhibited.5.15. A TFR of an epoch at the beginning of this recording is displayed in Figure5.16(a). It can be seen from the TFR that there are no dominant clear TF patterns,validating the SC measure for this section of the recording. Figure 5.16 shows the TFRfor an the epoch from approximately 26 to 39 seconds. This plot shows that two clearLFM components exist, which are characteristic of the newborn EEG seizure. Thesestructures were highly coherent with the proposed decomposition dictionary, resultingin low SC as illustrated in Figure 5.15(a).The results from these examples are typical of the SC measure when analyzing realnewborn EEG data that is in transition from the nonseizure state to the seizure state.This analysis of real newborn EEG data using the SC measure has demonstrated itsappropriateness as a potential method for the automatic detection of newborn EEGseizure.5.5 SummaryThis chapter presents a new signal complexity measure called structural complexity,which can be used to detect changes in signal structures (i.e. a change in signal state).This measure is extended from the idea of coherent structures which has previouslybeen used for signal denoising by atomic decomposition techniques. The SC measureis obtained from MP decomposition and is a function of the decomposition dictionaryand the desired level of signal approximation.Before developing the SC measure, we have compared the sparsity of the signal
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Figure 5.15: (a) The SC measure for the (b) newborn EEG signal, containing a seizureperiod.
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(b) LFM seizure patternsFigure 5.16: TFR of epochs from the signal in Figure 5.15(b) at (a) the beginningwhere nonseizure patterns are present and (b) the end where clear seizure patterns areexhibited.approximations of BP and MP. One of the major goals in the development of BP was toprovide the sparsest possible signal representation [88]. However, we have shown thatBP does not always provide the sparsest approximation. Through our computationalexamples, we have shown that MP generally provides a sparser approximation than BP.



86 SummaryOur proposed SC measure was shown through a number of experiments to be anindicator of the coherency between the structures in a signal and the decompositiondictionary. Through another synthetic experiment, it was shown how the SC measurecould be used to detect changes in signal state.A real life application of the SC measure was then provided. It was shown that theSC methodology could be applied to the automatic detection of newborn EEG seizure.The demonstration was done �rstly using synthetic EEG data. An automatic de-tection algorithm, based on the SC measure and the newly proposed TF dictionary,coherent with the newborn EEG seizure state, was developed and tested on the syn-thetic EEG data. Excellent results for the automatic detection algorithm were obtainedwith a speci�city of 100% and sensitivity of 97.3%. Analysis of real newborn EEG datausing the SC measure and the proposed TF dictionary demonstrated its ability in de-tecting signal transitions in the newborn EEG. Therefore, the analysis of the real EEGdata validated the synthetic EEG results and further indicated the appropriateness ofthe SC measure to be incorporated into an automatic seizure detection algorithm.



Chapter 6Newborn EEG Seizure Spike andEvent Detection using AdaptiveTFSP
6.1 Introduction
P

aroxysmal events, such as spikes in the newborn EEG, are key indicators of CNSfunctioning. The detection of spikes in the EEG is generally done by a trainedEEG expert, for whom the ability to identify spikes has come through experience inreviewing EEG. This situation is due to the fact that a concise and speci�c de�nition ofa spike pattern in the EEG is not available. That is, there is no precise, mathematicalde�nition of an EEG spike [104]. The current de�nitions of an EEG spike have beenmostly qualitative.The di�culty in detecting spikes has previously been described in [105], in whichit was shown that the disagreement of spike detections by the same reader (i.e. EEGexpert) at di�erent sittings may be as poor as 53%. This is again due to the lackof precise de�nition of the EEG spike [106]. Therefore, a method for automaticallydetecting EEG spikes accurately1 is required.Isolated spike events, which almost always characterize EEG abnormality in theadult, can often be normal ontogenetic events in the newborn (see chapter 2). However,repetitive rhythmical spiking in the newborn is a major sign of EEG abnormality and isa signi�cant characteristic of newborn EEG seizure. Therefore, EEG seizure detectionin the newborn can be based on the ability to automatically detect repetitive rhythmicalspiking in the newborn EEG.1In this context, accurately refers to a majority of expert readers referring to the pattern as a spike.87



88 Previous Methods for Automatic Spike DetectionIn this chapter we propose a method of automatically detecting EEG seizure inthe neonate using adaptive TFSP techniques. Previous methods of automatic spikedetection are reviewed in section 6.2, and their limitations explained. In section 6.3, wecompare MP and the adaptive spectrogram (ASPEC) for detecting isolated signal spikesusing synthetic and real signals. We also show that the optimal window scale (OWS)function of ASPEC can be used directly for spike detection. In section 6.4, we assess theability of MP and OWS function for detecting repetitive spikes which are harmonicallyrelated. In section 6.5, we propose a method of newborn EEG seizure detection basedon OWS. The performance of the algorithm is then compared with those of four otherwell documented seizure detection algorithms.6.2 Previous Methods for Automatic Spike DetectionA number of methods for detecting and sorting spikes from the adult EEG have pre-viously been proposed2. These techniques can be classi�ed into parametric, stationarynonlinear, and nonstationary. Parametric methods such as [104, 107], de�ne a math-ematical model that includes parameters such as duration and relative amplitude ofthe spike pattern, in an heuristic attempt to mimic the review process of an expertreader. However, the performance of these techniques is restricted signi�cantly due tothe highly varying morphology of spike patterns, particularly in the newborn EEG [9].A stationary nonlinear technique for the detection of spikes was proposed in [108].In this method a nonlinear energy operator (NEO), proposed in [109], was used toemphasize the spiking activity in the signal. The NEO, applied to a discrete signal,
x(n), is expressed as

O[x(n)] = x2
(n) − x(n + 1)x(n − 1) (6.1)This technique is highly sensitive to noise, which degrades its performance in detect-ing signal spikes. To reduce the e�ect of noise, a smoothed nonlinear energy operator(SNEO), which involves convolving the NEO output with a Bartlett window, was pro-posed in [108]. This technique was also shown to be signi�cantly e�ected by noise [110].Another problem with using NEO and SNEO is that they assume that the spike eventsoccur in a stationary background signal. This assumption is not valid for the nonsta-tionary EEG background signal of the newborn, therefore, limiting the ability of thesetechniques to detect spike occurrences.The detection of nonstationary signal patterns, such as transients or spikes, is one2Although most work done on the automatic detection of EEG spikes has involved the adult EEG,the same broad de�nition of spike and sharp waves exist for the newborn EEG.
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Figure 6.1: The TFR of spike eventapplication suited to nonstationary techniques such as TFSP and time�scale signal pro-cessing. The WT and QTFDs have both been proposed for the detection and extractionof spikes in the EEG [30, 111, 112]. The techniques based on the WT have been shownto perform well on arti�cial data. However, the WT is not optimal in separating spikesthat are close in time. This is because for large wavelet scale values, the time resolutionof the wavelets are wider than the width of the spikes. This means that when closelyspaced spike events are recorded, the WT fails to separate them [113].In [112], TF analysis using a smoothed pseudo WVD (SPWVD) of adult EEG whichcontained spikes was presented. It was shown that isolated spike events were representedin the TF domain by ridges along the time instant at which the spike occurred. However,no method of detecting the spikes was presented.In [30, 31, 114], a TF approach for the detection of spikes was presented. It was alsoshown in this method that a spike event was represented in the TF domain as a highenergy ridge that extended from low frequency to high frequency along the time instantat which the spike occurred (see Figure 6.1 for illustration). The spike detection methodpresented in [30, 31, 114] used the Choi-Williams distribution (CWD) to obtain a TFR,so as to minimize cross terms. This detection technique involves taking two arbitraryfrequency slices in the high frequency region. These slices were assumed to show high



90 Previous Methods for Automatic Spike Detectionvalues around the time instants where the spike occurred and low values at all othertimes. Also, to enhance these signatures, the SNEO was applied to the frequency slices.A threshold value, related to the median value of the frequency slice, was determinedand local maxima above the threshold values were used to indicate spikes and theirlocations.
0

0.5

1

−0.5

0

0.5

1

0 50 100 150 200 250
−0.1

0

0.1

0.2
Spike 

(a)

(b)

(c)

Time (samples)Figure 6.2: (a) A spike signal that is (b) embedded in noise. (c) Is the SNEO outputof an arbitrary high frequency slice of the CWD of (b).This TF method provides good results on synthetic and real signals which haveisolated or randomly placed spikes in the signal. An example of this is shown in Figure6.2, where Figure 6.2(a) shows the spike event, Figure 6.2(b) is the spike event embeddedin noise and Figure 6.2(c) is the SNEO of an arbitrary high frequency slice of the CWD.For this example, the spike was assumed to be the signal and it was embedded in -3dBnoise for this example.However, the method performs poorly for a signal with spike events that are har-monically related. An example of this is shown in Figure 6.3. The plots in Figures 6.3(a)and Figures 6.3(b) show a high frequency slice and its SNEO output from the CWD ofthe spiking signal in Figure 6.3(c). It can be seen in Figure 6.3(b) that the individual



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP 91spikes aren't clearly distinguishable from the SNEO output of the high frequency slice.
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Time (samples)Figure 6.3: (a) An arbitrary high frequency slice and (b) SNEO output of the CWD ofthe (c) periodically spiking signal.The ability to detect repetitive spikes which are harmonically related is signi�cant forthe application of newborn EEG spike detection. Rhythmical spiking from a particulararea of the cerebrum is a classical pattern of newborn EEG seizure [77]. If a spikedetection algorithm is to be incorporated into a seizure detection algorithm, it must beable to detect repetitive, harmonically related spikes. Therefore, we investigate the useof adaptive TF methods in detecting spikes.6.3 Evaluation of Adaptive TFRs for Detection of IsolatedSpikesA method for detecting spikes based on an adaptive TFR technique was presented in[113]. This method incorporated the best orthogonal basis algorithm with a redundantWP dictionary (see chapter 3) in an attempt to improve on the performance of WTmethods. However, due to the algorithms criterion of obtaining an orthogonal basis for



92 Evaluation of Adaptive TFRs for Detection of Isolated Spikessignal representation, this method sometimes fails to adequately represent transients[88]. Therefore, a spike detection based on the MP has been recently proposed [42].In this section, we explain the methodology for detecting spikes using MP and proposea method of detecting spikes using an adaptive QTFD called the ASPEC. We thencompare these methods for detecting isolated spikes in real EEG data.6.3.1 MP Methodology for Detecting SpikesThe MP algorithm provides an adaptive signal representation. It adaptively selects TFatoms from the decomposition dictionary which optimally3 represents the signal residueat each iteration, as was demonstrated in chapter 3. An advantage of using MP as anadaptive TFSP technique is that it can provide both an adaptive TFR and an adaptiveTF parameterization. This is best illustrated with an example.
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Figure 6.4: TFR of a spike signal embedded in -3dB noise using MP with Gabor TFdictionary.In Figure 6.4, the lower panel is an example of a spike pattern embedded in -3dBnoise. The synthetic spike has a duration of 3 samples and is centered at time, t = 128samples. The upper panel shows the TFR using MP with the redundant Gabor TFdictionary. It can be seen that this TFR provides a high energy ridge, ranging from3The measure of optimality for the MP algorithm is the largest inner product.



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP 93low frequency to high frequency along the time instant at which the spike occurred.Therefore, this TFR is quite similar, in its representation of an isolated spike, to otherTFRs such as QTFDs.Coef Scale Translation Modulation Phase57.23 5 127 0.0781 5.51124.97 113 85 0.2343 1.10224.24 3 194 0.4453 1.72923.47 19 240 0.2928 3.28722.12 14 130 0.4570 1.83822.10 34 225 0.4297 2.38121.73 6 29 0.1211 1.06620.09 107 128 0.0861 1.91719.35 77 187 0.1992 4.58618.67 24 74 0.3010 2.448Table 6.1: The TF parameterization of a spike signal embedded in -3dB noise using MPwith Gabor TF dictionary.A TF based spike detection method such as that proposed in [30, 31, 114] couldbe implement using the MP-based TFR. However, in [42], a method of spike detectionwas developed based on the adaptive TF parametrization obtained from the MP de-composition. Table 6.1, shows the TF parameters of the �rst 10 atoms selected in theMP decomposition. The parameter list includes the coe�cient value for the atom, thescale in samples, the time center (i.e. translation) of the atom in samples, the frequencycenter (i.e. modulation) in normalized frequency where the sampling frequency Fs = 1,and the phase of the real atoms which are in radians.Since spikes are characterized by high energy and short time duration, they are bestrepresented by atoms with a signi�cantly high coe�cient value and small scale parame-ter. Therefore, by setting adequate thresholds for the coe�cient and scale parameters,the signal spikes can be detected directly from the MP adaptive TF parameterization.The temporal information regarding the spike occurrence, can be extracted directlyfrom the translation parameter associated with the spike atom. This is illustrated inTable 6.1, where the �rst atom has a coe�cient signi�cantly larger than all other atoms,and has an extremely small scale parameter, indicating that it is a parameterization ofthe spike event in the signal. It can be seen that the translation parameter suggeststhe spike is located at time, t = 127 samples which is within 1 sample of the true spikelocation of t = 128 samples. This clearly shows the methodology for spike detectionfrom the MP TF parameterization which was developed in [42].



94 Evaluation of Adaptive TFRs for Detection of Isolated Spikes6.3.2 Adaptive QTFDs Methodology for Detecting SpikesA number of adaptive QTFDs have been proposed in an attempt to achieve good TFresolution and crossterm suppression for a large class of signals [115]. Adaptive QTFDmethods can be separated into two classes: global optimization methods and time�localized methods. Adaptive QTFDs which strive for global optimization, such as thatproposed in [116], do so by searching for the QTFD kernel which meets the desiredoptimization criteria. However, there has been much focus recently on time-localizedmethods for achieving adaptive QTFDs. Examples of time�optimized methods includethe development of optimal short�time ambiguity functions [117], optimal time�varyingwindow lengths to be applied to the IAF [87], and optimal time�varying window lengthsfor the spectrogram [118, 119, 120].The adaptive QTFD methods which appear to be the most appealing for spike de-tection are the time-localized methods with adaptive window lengths. For example,if a spike event occurs within a signal, it should be expected that the optimal win-dow lengths around the time location of the spike would be small and, therefore, fullyemphasize the spike event in the TF domain.For our proposed adaptive QTFD spike detection method, we have incorporated theASPEC derived in [120]. The optimization criterion for this ASPEC, which determinesthe OWS at each time instant, is referred to as the maximum correlation criterion. Thisadaption method selects the window scale, p, from the set of windows scales, P , at timeinstant, t, which maximizes the projection of the signal onto the modulated window.This is shown mathematically as
p(t) = arg max

p∈P
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∫
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−∞
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(
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)
e−j2πfτdτ

∣∣∣∣ (6.2)Using this criterion, the predominant time�frequency�scale structure in the signal,centered at the time instant, t, determines the OWS (i.e. window length) for that timeinstant. This criterion is similar to the objective function of the MP algorithm.Figure 6.5 shows the TFR from the ASPEC of a spike signal embedded in -3dBnoise. It can be seen that ASPEC also clearly represents the spike in the TF domainwith a ridge running from low frequency to high frequency along the time instant atwhich the spike occurs. This representation is similar to both the CWD and MP TFRs.Once again a TF based spike detection method such as that proposed in [30, 31,114] could be implemented using the ASPEC. However, we propose a new method fordetecting spikes from the ASPEC output. In our spike detection method, we proposeusing only the OWS to detect spikes (not the adaptive TFR). In our method, a spikeevent is detected if the OWS falls in the range associated with the scale or duration of
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Figure 6.5: TFR of a spike signal embedded in -3dB noise using ASPEC.a spike event. This is demonstrated in Figure 6.6, where Figure 6.6(a) shows the OWSfor the noisy spike signal shown in Figure 6.6(b).To save on processing time we have used a set of dyadic scales, given by
S = [2

d − 1] (6.3)in which d = [1, 2, . . . , log2(N)], and N is the signal length. From Figure 6.6(a) andusing (6.3), it can be seen that the optimal window length at time instant t = 128samples is 3 samples. Therefore, the OWS can be used to correctly identify the spikelocation and its approximate duration.This methodology can be easily applied to EEG spike detection. The spike patternin the EEG has been de�ned as having a duration between 20-70msec and a sharpwave having a duration between 70-200msec. Therefore if the adaptive window lengthis between 20-200msec at any time instant, we can conclude that a spike/sharp wavehas occurred4.4For the rest of this chapter, we refer to the spike and sharp wave transients in the newborn EEGas spikes only.
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Figure 6.6: (a) The OWS, s(t), for the (b) spike signal embedded in -3dB noise6.3.3 Comparison of Adaptive TF Spike Detectors on Real EEG DataIt was explained in section 6.3.1, that before MP TF parameterization can be used forspike detection, the parameter values indicating a spike have to be de�ned. That is, arange of coe�cient values (or atom amplitude values) and range of scale values whichare representative of a spike have to be de�ned. These values are generally determinedbased on a priori analysis of the EEG which contains both epochs with spikes andepochs free of spikes.For the MP spike detection method in [42], the e�ective scale half widths of theatoms were chosen to be between 30-60msec. The amplitude of the atoms to indicate aspike were chosen to be above 300 a.u. (i.e. arbitrary units). Arbitrary units were usedsince the conversion ratio of points/µV was unknown for their database. However, ifthis ratio is known, 300 a.u. can be easily expressed in µV.The EEG data used in [42] was obtained from http://republika.pl/eegspike, whichwas created by the authors of [111]. To compare our proposed spike detection method,based on the OWS, with the MP spike detection algorithm in [42], we used the samereal EEG data. The data set contained 84 epochs which were divided into three groups[42]:
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Figure 6.7: Real adult EEG containing an isolated spike event.1. signals with large, single spikes or sharp waves which are not accompanied by theprominent slow wave � 30 epochs2. signals with spikes or sharp waves followed by slow waves with comparable am-plitudes � 14 epochs3. signals with artifacts and portions of EEG traces with no spikes or sharp waves �40 epochsThere were 73 spikes in total from the 44 epochs which contained spikes. An example ofan EEG epoch with a spike event from the database is displayed in Figure 6.7. The MPspike detection method proposed in [42] obtain a sensitivity of 92% and a speci�city of84% for this EEG database.For the OWS method of spike detection we added in a preprocessing step. Thesignals were initially sampled at Fs = 256Hz. We lowpass �ltered the signals witha cuto� frequency at Fs/4, before downsampling the signal Fsnew = 128Hz, whichsigni�cantly reduced the amount of data to be processed without signi�cantly hinderingthe shape of the spikes. We processed the signal in epochs of length 512 samples andused a dyadic set of scales. The scale lengths used to detect the spikes were d = 2, 3, 4,which equate to time durations between approximately 20-120msec. The OWS method



98 Evaluation of Adaptive TFRs in Detecting Repetitive SpikesSensitivity Speci�cityMP 92% 84%OWS 91% 87%Table 6.2: Results of MP and OWS in detecting isolated spikes from real adult EEGdataof spike detection produced a sensitivity of 91% and a speci�ty of 87%, which are quitesimilar to the results for the MP detection method. Table 6.2 shows the results of thetwo algorithms for easy comparison.6.4 Evaluation of Adaptive TFRs in Detecting RepetitiveSpikesRhythmical spiking in the newborn EEG is a classical pattern characterizing a seizureevent. Neonatal seizures with rhythmical spiking are often multifocal and the spikingactivity may shift from one area to another, with the temporal, occipital and centralregions often being involved [77].The ability to detect repetitive, rhythmical spiking in the newborn EEG may there-fore be seen as a method of detecting ictal or EEG seizure events. The detection ofindividual spikes of a rhythmical, repetitively spiking signal using TF techniques is muchmore di�cult then the detection of isolated spikes. This is caused by the harmonic re-lationship of quasi-periodic spikes being shown in the TF domain as components withlong time duration. In this section, we investigate the ability of MP and OWS in detect-ing individual spikes of repetitively spiking signals and determine what are the limitingfactors of these techniques.6.4.1 MP Representation of Synthetic Repetitive SpikesThe assessment of the MP algorithm, using a redundant Gabor TF dictionary, fordetecting the individual spikes of a repetitively spiking signal begins with the decompo-sition of synthetic signals. These signals, referred to as ideal periodic spike sequences,are expressed as
III

T
N (n) =

{
1 : n = l · T, l = 0, 1, . . . , Nt − 1

0 : else
(6.4)where T is the period between spikes and Nt = N/T is the number of spikes in thesignal. We have chosen these signals in our initial investigation because these contain



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP 99the most extreme form of a spike and the most extreme form of repetition which isperiodicity.The �rst ideal periodic sequence to be assessed for spike detection using MP is III
32

256.Figure 6.8 shows III
32

256 in the lower panel and its MP TFR in the upper panel. It canbe clearly seen from Figure 6.8 that the MP algorithm has accurately represented theindividual spikes with spike (i.e. small scaled)5 atoms, illustrated by the characteristicridge in the TFR along the time instants of the spike event from low frequency to highfrequency. For this ideal periodic signal, the MP spike detection method can accuratelydetect the spikes.Figure 6.9 shows the MP TFR of the ideal periodic spike sequence III
16

256, whichhas a shorter period between individual spikes than the previous sequence. It can beobserved from the TFR in Figure 6.9 that the MP has not represented the individualspikes of the periodic spikes sequence with spike atoms. Instead, the MP algorithm haschosen large scaled atoms to represent the harmonic relationship between the spikes inthe periodic spike sequence. Therefore, the MP algorithm would not be able to detectthe individual spike events of this ideal periodic spike sequence. However, in Figure6.10, we have taken an epoch of 128 samples of the ideal periodic sequence III
16

256
,resulting in an ideal periodic spike sequence III

16

128
. It can be seen from the MP TFRthat the same individual spikes are now represented with spike atoms, resulting in thecharacteristic TF patterns of a spike. Therefore, by reducing the epoch length, the MPalgorithm has represented the spikes with spike atoms and allowed for individual spikedetection of the spike sequence.The results from the three example signals, III32

256, III16

256 and III
16

128 clearly indicatethat there is a relationship between the epoch length and spiking period which deter-mines the capability of MP in detecting individual spikes of periodically spiking signal.From our synthetic computational examples, we have observed that if T >
√

2N , MPrepresents the individual spikes of an ideal periodic spike sequence with spike atoms,therefore allowing for spike detection. However, we found that if T <
√

2N , MP repre-sents the spike sequence with large scale atoms which indicate the harmonic relationshipbetween the spikes.To further emphasize our results we present another synthetic example in Figure6.11. The signal in Figure 6.11(a) is of length 512 samples with periodic spiking. Thespikes are Gaussian windows with a duration of 3 samples and are separated by a periodof 32 samples. This spike sequence also has white Gaussian noise added to it with a5Spikes atoms are characterized by small scale lengths. The speci�c length of the scale for an atomto be classed as a spike atom is dependent on the application. Therefore, we have generalized �spikeatom� as those with small scale and provide a TF pattern which is characteristic of a spike.
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Figure 6.8: MP TFR of the ideal periodic spike sequence III
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Figure 6.10: MP TFR of the ideal periodic spike sequence III
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(b)Figure 6.11: The (a) MP TFR of a noisy, repetitively spiking signal only shows theharmonic relationship of the spikes. (b) MP TFR of a shorter epoch of the noisy,repetitively spiking signal is able to indicate the individual spikes.



102 Evaluation of Adaptive TFRs in Detecting Repetitive SpikesSNR of 10dB. From the TFR of Figure 6.11(a) it can be seen that MP fails to clearlyrepresent the spikes with spike atoms. Instead, it shows the harmonic relationshipbetween the spikes. However, in Figure 6.11(b), we have taken an epoch of 256 samplesat the start of the signal in Figure 6.11(a). It is clear from the TFR in Figure 6.11(b)that MP has represented the individual spikes with spike atoms, therefore allowing forspike detection. This again emphasizes the importance of the relationship between thespike period and epoch length for MP to detect repetitive spikes.6.4.2 OWS Representation of Synthetic Repetitive SpikesThe �rst synthetic ideal periodic spike sequence for which MP could not detect theindividual spike events was III
16

256. This was shown in the TFR of Figure 6.9, for whichthe characteristic ridges of a spike event, occurring at the time instant of the spikeand ranging from low frequency to high frequency, were not observed. Figure 6.12shows the TFR obtained from the ASPEC, which adaptively selects the OWS, for theideal periodic spike sequence III
16

256. The TFR in Figure 6.12 shows both the harmonicrelationship between the periodic spikes as well as giving the TF characteristics of theindividual spikes. Figure 6.13(a) shows the OWS for III
16

256. It can be seen that theOWS clearly indicates the individual spike occurrences, which is shown by a small scalesize being optimal at the time instants when the individual spikes occur. Therefore,OWS has been able to detect the spikes where the MP method failed.Although the OWS has been shown to be able to detect the individual spikes of
III

16

256, where MP failed, the OWS also has limits in its ability to detect these periodicspikes. In Figure 6.14(a), we show the OWS for the ideal periodic sequence III
8

256,which has a shorter period that the previous example. It can be seen from Figure6.14(a), that OWS does not detect any of the individual spike events as in the previousexample. The OWS method's ability to detect the individual spikes of an ideal periodicspike sequence is also dependent upon the relationship between the spike period andthe signal length. However, OWS is less e�ected than MP as demonstrated with theperiodic spike signal III16

256.To emphasize the superiority of OWS over MP in detecting individual spikes of arepetitively spiking signal we compare OWS and MP using a noisy synthetic signal.The synthetic signal for this example is of length 128 samples. The individual spikeshave a duration of 3 samples and are separated by 16 samples. White Gaussian noiseis added to the spike sequence resulting in an SNR of 10dB. This signal is shown inFigure 6.15(a). It can be seen from 6.15(b) that the OWS spike detection method canaccurately indicate the individual spike events. However, it can be seen from the MPTFR in Figure 6.15(c) that MP does not represent the individual spikes with spike atoms
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Figure 6.12: ASPEC TFR of the ideal periodic signal III16
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Figure 6.13: (a) The OWS of the (b) ideal periodic signal III16

256
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Figure 6.14: (a) The OWS of the (b) ideal periodic signal III8

256
.and therefore the MP-based method of spike detection fails to detect these spikes. Thisresults is another case where OWS can detect individual spikes of repetitively spikingsignals for which MP fails.6.4.3 MP and OWS Representation of Real Repetitive EEG SpikesThe previous sections indicated that the OWS method performs better than MP indetecting individual spikes of periodically spiking sequences. To validate these results,we have selected an epoch of real newborn EEG seizure which contains repetitive,rhythmical spikes.Figure 6.16(a) shows the OWS for the seizure epoch in Figure 6.16(b), which containsrepetitive rhythmical spiking. It can be seen from Figure 6.16(a), that the spike eventsare clearly indicated by the OWS with scale values of 3 and 4. These scale values areassociated with time durations of approximately 35-80msec which matches closely withthe de�nition of a spike (i.e. 20-70msec in duration). Also, it can be seen for the �rst4 spikes and the last spike that OWS not only detects the spikes but also detects thebiphasic6 nature of the spikes. However, this is unnecessary for our application as we6A biphasic spike has a crest and a trough where as a monophasic spike has only a peak which isgenerally negative [104].
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(c)Figure 6.15: The individual spikes of the (a) repetitively spiking signal can be detectedby (b) OWS but not (c) MP.



106 OWS-based Newborn EEG Seizure Detectiononly require the detection of the spike event, whether it is biphasic or monophasic, andnot the classi�cation of the spike patterns.
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Figure 6.16: (a) OWS indicates the individual spike locations of the (b) real repetitivelyspiking EEG signal.In Figure 6.17, we show the MP TFR of the same newborn EEG spiking signal inFigure 6.16(b). The atoms from the MP decomposition which had energy values greaterthan 2.5% of the total signal energy were de�ned as the signi�cant atoms. It can be seenfrom the TFR in Figure 6.17 that only one spike atom, centered at approximately 460samples, was chosen in the decomposition. Instead, the MP algorithm has selected largescale atoms, which indicate the harmonic relationship between the repetitive spikes, torepresent the signal.This example of real newborn EEG seizure, which contains repetitive spikes, con-�rms the previous results using synthetic signals which indicate that the OWS methodis better at detecting repetitive, harmonically related spikes. Therefore, we will use anOWS-based method for detecting seizure spikes in the newborn EEG.6.5 OWS-based Newborn EEG Seizure DetectionThe automatic detection of seizure in the newborn involves �rstly de�ning a feature, ora set of features, which clearly distinguishes the seizure state of the EEG from all other
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Figure 6.17: (a) MP fails to indicate the individual spike locations of the (b) realrepetitively spiking EEG signal.states. In our proposed automatic seizure detection algorithm, we use the repetitivebehaviour of spike/sharp waves in EEG seizure to distinguish the seizure state from allother EEG states.Although spikes and sharp waves in the EEG can be normal morphological varia-tions of the newborn EEG, it is the continual repetition of spikes or sharp waves for aminimum of approximately 10-20 seconds, which characterize the newborn EEG seizureevent [9, 22]. The real newborn EEG data used in the assessment of the proposed auto-matic seizure detection algorithm was acquired at the Royal Womens Hospital, Brisbane,Australia, using the MEDELEC system7. Twenty EEG channels were recorded fromfourteen electrodes in a bipolar montage. The raw EEG data was bandpass �ltered withcuto� frequencies at 0.5Hz and 70Hz before being digitized at 256Hz. A notch �lter at50Hz was also applied to remove any AC line artefacts.6.5.1 Automatic Detection AlgorithmThe newborn EEG has most of its power in the low frequency range of between 0.4�7.5Hz, with the majority of this in the 0.4�4Hz range [72]. Therefore, the preprocessingstep of the automatic EEG seizure detection algorithm consists of digitally low pass7A detail description of the EEG data acquisition is given in Appendix A



108 OWS-based Newborn EEG Seizure Detection�ltering the recorded EEG with a cuto� frequency of 15Hz. The �ltered signal is thendownsampled to 32Hz. By resampling the EEG at this rate, we signi�cantly reducedthe amount of EEG data to be processed without a�ecting spike and sharp wave eventstoo severely.The repetition of the spiking activity in the newborn EEG seizure is commonlyfound at rates between 1�3/second [77]. However, for neonates su�ering from herpessimplex encephalitis, the seizure spiking rate has been seen as low as 0.5/second [121].Therefore, we have chosen to segment the EEG signal into non�overlapping epochs of128 samples (i.e. 4 seconds). This assures that during a seizure event with repetitivespiking, a minimum of two spikes will be contained in the epoch.Multiple spikes in an EEG epoch is our proposed feature used to detect a newbornEEG seizure event. However, for a seizure event to be detected, at least three out of�ve successive epochs of any channel had to contain multiple spikes. If three successiveepochs contained seizure and no others after that, then the seizure event was markedas the time period for the three epochs only. If the three epochs containing multiplespikes were spread across �ve successive epochs the seizure event was marked as thetime period for the �ve successive epochs. This is demonstrated in Figure 6.18 withtwo examples of seizure events characterized by repetitive spiking. This marking systemwas chosen to account for the highly variable and complex morphology of newborn EEGseizure patterns. It was also used to counteract the e�ects of large amplitude artefactswhich may mask the repetitive spiking characteristic for relatively short periods of time(i.e. less than 4 seconds). The proposed seizure detection algorithm is summarized inFigure 6.19.6.5.2 Performance Evaluation of Detection AlgorithmAt present, there is no unique standard testing procedure for the evaluation of seizuredetection algorithms. Two of the most widely used methods of assessing automaticseizure detection algorithms include the event-detection method and the neurologist-correlation method.The event-detection method of performance evaluation determines the percentageof seizure events that have been correctly identi�ed during an EEG recording. The falsealarm rate for this assessment method is quanti�ed by the number of false detectionsper hour. Figure 6.20(a) provides an illustration of this assessment method. It canbe seen from Figure 6.20(a) that the example seizure detection algorithm has correctlyidenti�ed two out of three seizure events. Therefore, the seizure detection rate is 66.7%for this example. The background period in Figure 6.20(a) is of length 90 minutes. Inthat period, the example seizure detection algorithm has detected two seizure events.
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110 OWS-based Newborn EEG Seizure DetectionTherefore, the FDR for this algorithm is 1.33 false alarms/hr.
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Figure 6.20: Methods for assessing automatic seizure detection algorithms. (a) is theevent detection method. It can be seen that 2 out 3 seizure events have been detectedcorrectly during the seizure periods and that 2 false detections have occurred in thenonseizure periods. (b) is the neurologist-correlation method. It can be seen thaton average 66.7% of seizure detection correlates with the neurologist with 10% (i.e.9mins/90mins) false detection.The neurologist-correlation method is a more ambitious method of assessing seizuredetection algorithms. For this assessment criterion, the seizure detection rate is basedon the average percentage of seizure event lengths correctly identi�ed by the automaticdetection algorithm as seizure. The FDR is determined as the percentage of nonseizuredata incorrectly identi�ed as seizure by the automatic detection algorithm. Figure6.20(b) illustrates the neurologist-correlation method of algorithm assessment. It canbe seen from Figure 6.20(b) that the example seizure detection algorithm, on average,correctly identi�es 66.7% of the seizure events. Figure 6.20(b) also shows that theexample seizure detection algorithm falsely identi�es 10% of nonseizure sections.



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP111Performance assessment using the event-detection method requires a very largedatabase of EEG signals obtained from long term EEG monitoring in order to givestatistically valid seizure event detection and false alarm rates. However, long termEEG monitoring of the neonate is not practical at this stage.The neurologist-correlation method does not require a large database to evaluatean algorithm's performance and is more informative than the event-detection method.Therefore, we have adopted the neurologist-correlation method for evaluating our au-tomatic newborn EEG seizure detection algorithm.To assess the performance of our automatic newborn EEG seizure detection algo-rithm, we have used the real EEG recordings from 8 newborns. The database containsnine seizure events from six neonatal patients. The seizure events had durations rangingfrom 12 seconds to 412 seconds (as marked by an expert in neonatal EEG). The othertwo newborn used in this evaluation did not experience any seizure event and were onlyused to evaluate the FDR.Tables 6.3(a) and (b) show the results of the our proposed seizure detection algo-rithm. It can be seen from the results in Table 6.3 that the algorithm correlated wellwith neurologists markings. The average GDR and average FDR for our algorithm are:
Average GDR : 95.8%

Average FDR : 2.38%In developing a seizure detection algorithm, a decision on the minimum duration ofseizure positive activity for a seizure event to be detected must be decided upon. How-ever, as the minimum duration is decreased (e.g. from 20 seconds to 10 seconds), theFDR generally increases. This tradeo� occurs because the newborn EEG backgroundcan sometimes mimic the behaviours of newborn EEG seizure over short periods. There-fore, a promising result from this algorithm is the fact that the shortest duration seizureevent (i.e. 12 seconds) was correctly identi�ed by the algorithm while simultaneouslyproviding an extremely low false detection rate.6.5.3 Comparison of Automatic Newborn EEG Seizure DetectorsTo further evaluate our proposed automatic newborn EEG seizure detection algorithm,we compared it with four published and well-documented newborn EEG seizure detec-tion algorithms. These algorithms include LIU [19], GOTMAN [22], CELKA [25] andHASSANPOUR [31]. These algorithms have previously been mentioned in Chapter 1.



112 OWS-based Newborn EEG Seizure DetectionTable 6.3: Performance of OWS-based detection algorithm using neurologist-correlationmethod. (a) Tables the results assessing the GDR and (b) shows the results for FDRassessment.
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The methods originally used in assessing the performance of each the publishedalgorithms (i.e. LIU, GOTMAN, CELKA and HASSANPOUR) di�er signi�cantly.At this point, we note that the method used for assessing the performance of an auto-matic detection algorithm often drives the empirical threshold values for the algorithms.Therefore, it may be unfair to compare algorithms using a method of assessment whichis di�erent to the original method. However, recently, a method of performance assess-ment was proposed in [122] which allowed for the comparison of the LIU, GOTMANand CELKA algorithms.In the performance assessment method of [122], all EEG data was segmented into60 second blocks which either contain seizure or nonseizure EEG, as labeled by a neu-rologist. If an algorithm detected seizure during any period of a seizure segment, agood detection was recorded. If an algorithm detected seizure during any period of a



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP113nonseizure segment, a false detection was recorded. Therefore, the performance resultswere obtained as:
GDR =

Number of Good Detections

Number of Seizure Segments
FDR =

Number of False Detections

Number of Nonseizure SegmentsFrom our experience, the longer the seizure segment is, the better chance a detectionalgorithm has of detecting some part of the segment as seizure and therefore providinga good seizure detection. However, as the seizure segment length decreases it is moredi�cult for a detection algorithm to make a good detection. The minimum durationof a seizure event in the newborn is a much debated topic between neonatologists andneurologists, with most agreeing on a period of between 10-20 seconds of ictal charac-teristics to de�ne a seizure event. Therefore, we believe that segmentation of the EEGinto 60 seconds blocks is too long of a period.To compare our algorithm with the LIU, GOTMAN, CELKA, and HASSANPOURalgorithms, we have adopted the assessment method of [122], describe above. However,we decided upon segmenting the EEG data into 30 second epochs. The LIU algo-rithm requires the longest epoch length out of the four algorithms, which is 30 seconds.Therefore, it was the discriminating factor in our choice of segmentation length. Wethen tested the di�erent algorithms on 52 seizure segments and 44 nonseizure segments.In the comparison of LIU, GOTMAN and CELKA presented in [122], it was foundthat all three algorithms performed poorly on their data set8. Subsequently, slightmodi�cations were made to these algorithms to improve performance.In our initial testing of the LIU, GOTMAN, CELKA and HASSANPOUR algo-rithms on our data set, we also found that the algorithms performed poorly. Therefore,we also made slight modi�cations to these algorithms. In the following section we brie�ydescribe the original algorithms and then explain our modi�cations.LIU Algorithm with Modi�cationsThe LIU algorithm segments the EEG data into 30 seconds epochs. Autocorrelation isthen performed on 5 windows of the 30 second epoch of which four are of length of 6.4seconds and one is of length 4.4 seconds. For nonperiodic signals, the peaks and troughsin the autocorrelation are irregularly spaced. The time interval between peaks of theautocorrelation become constant for periodic signals. Since the newborn EEG seizure ischaracterized by rhythmic, repetitive patterns, the LIU algorithm assumes that seizure8The data set of [122] contained 43 seizure segments and 34 nonseizure segments.



114 OWS-based Newborn EEG Seizure DetectionEEG should have peaks in the autocorrelation that are evenly spaced, whereas thenonseizure EEG will have irregular spacing.To classify the EEG data, the moment center of the peaks of the autocorrelationare determined and the ratio between centers are calculated. The closer the ratios areto whole numbers the higher the score that window obtains. The scoring values for theratio di�erences are presented in [19].For the LIU algorithm, either of the following three criterion's must be met for achannel to be considered seizure positive:(a) 2 consecutive window scores within a channel are ≥ 2, with the sum of the twowindow scores ≥ 10.(b) 3 consecutive window scores within a channel are ≥ 2, with the sum of the threewindow scores ≥ 14.(c) A score from a single window is ≥ 12.If 2 or more channels in the epoch were seizure positive, the epoch was considered tocontain EEG seizure.The results of the original LIU algorithm for our dataset showed excellent GDRbut extremely poor FDR. Therefore, to improve the performance of LIU we modi�edthe criterion for a channel to be considered seizure positive. The modi�ed criterion areexplained as follows.(a) 2 consecutive window scores within a channel are ≥ 2, with the sum of the twowindow scores ≥ 14.(b) 3 consecutive window scores within a channel are ≥ 2, with the sum of the threewindow scores ≥ 16.(c) A score from a single window is ≥ 13.If 2 or more channels in the epoch were seizure positive, the epoch was considered asseizure.GOTMAN Algorithm with Modi�cationsThe GOTMAN algorithm takes a sliding window of 10.24 seconds with an overlap of75%. The power spectrum of the EEG window is then obatined through the FastFourier Transform (FFT). The power spectrum of nonseizure newborn EEG is assumedto exhibit a peak frequency between 0.5-0.8Hz with an exponential decay. However,



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP115Dominant Width of Power ratiofrequency dominant peakFirst combination 0.5-1.5Hz ≤ 0.6 3-4Second combination 1.5-10Hz ≤ 0.6 2-4Third combination 1.5-10Hz ≤ 1 4-80Table 6.4: Boundary values for features of GOTMAN algorithm.the rhythmic characteristic of the newborn EEG seizure is often represented in thespectrum with signi�cantly large peaks at the main seizure frequency. Therefore, theGOTMAN algorithm incorporates features which try to emphasize this distinguishingcharacteristic.In the GOTMAN algorithm, the spectrum of the window under investigation iscompared with the spectra of two windows occurring 60 seconds prior. These previouswindows are referred to as the background windows. The features of the GOTMANalgorithm include: dominant frequency, width of dominant spectral peak and powerratio between the dominant spectral band of the current window and background win-dow. Table 6.4 shows the boundary values of the features which distinguish seizure fromnon-seizure. A seizure detection is made if a current windows meets any of the criteriain Table 6.4.The results of the original GOTMAN algorithm gave a poor FDR. To improve theFDR of the GOTMAN algorithm we required that 5 successive sliding windows in achannel be seizure positive before a seizure event was detected. The alteration of thealgorithm meant that 20 seconds of ictal discharge was required for a seizure to bedetected instead of the original 10 seconds. This tradeo� between FDR and minimumseizure duration was previously addressed in section 6.5.2CELKA Algorithm with Modi�cationsThe CELKA algorithm begins with the determination of an autoregressive moving av-erage (ARMA) model of nonseizure EEG using pre-recorded nonseizure EEG signals.A preprocessing step of �ltering the EEG signal using the inverse of the ARMA modelis undertaken in an attempt to whiten the background portion of the newborn EEG.The Rissanen MDL [28] of the SVD of the EEG trajectory matrix is then used to de-termine whether the �ltered EEG signal is pure white noise or contains a nonstochasticcomponent.The details of the CELKA algorithm are as follows. For the �ltered EEG signalin state space of dimension ns, the MDL determines from the SVD, the dimension,
no ≤ ns, which is the minimal size embedding space. In the case of pure white noise,
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no = 1. Otherwise, if no > 1, the signal contains a nonstochastic component. Therefore,a seizure detection is made if no > 1.In [122] it was found that the �lter coe�cients of the ARMA model varied signif-icantly from one sample section to another. Therefore, using the mean of the �ltercoe�cients for the whitening preprocessing step lead to highly inaccurate results. How-ever, it was found that the frequency response of the �lters was consistent from onesection to another and therefore an average frequency response was used to obtain thepreprocessing �lter. We have also taken this approach for the whitening preprocessingstep.HASSANPOUR Algorithm with Modi�cationsThe HASSANPOUR algorithm is composed of three stages: (1) spike detection, (2)training: class forming and (3) seizure detection: classi�cation into one of the prede�nedclasses. The spike detection stage involves segmenting the data into nonoverlappingepochs of 4 seconds. The epoch is then transformed to the TF domain using theCWD. Two frequency slices at approximately 60Hz and 65Hz are then taken from theTFD and fed through SNEO to emphasize the spike events. Two separate thresholdvalues, empirically chosen, were set for each of the frequency slices. The center ofthe local maximums, which were above the threshold value, were chosen as possiblespike locations. If the marked spike locations were observed in both frequency slices, apositive spike detection was made.The HASSANPOUR algorithm suggests that the distribution of intervals betweenspikes di�ers between seizure and nonseizure. Therefore, a histogram of successive spikeintervals (HSSI) was used as a feature for the classi�cation stage. Six seizure classeswere unsupervisely constructed using the k-nearest neighbour algorithm [31].In the seizure detection stage, the EEG database was again segmented into epochsof 4 seconds, transformed to the TF domain, SVD-based enhancement of the TFR wasapplied, and the HSSI obtained. The epoch HSSI was then compared to these classesusing the Jensen function and if the output was less than 0.1 (i.e. an epoch was closeenough to any of the classes according to this threshold) a seizure detection was declaredfor that epoch. Otherwise, the EEG data was classed as nonseizure.We believe that since the minimum duration of ictal patterns in the EEG is 10seconds for a seizure event to be decided upon, a seizure detection based on 4 secondsof EEG is too short. Therefore, we added in the constraint that at least two successiveepochs in any channel be seizure positive before a seizure event detection is declared.
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46Table 6.5: Results of newborn EEG seizure detection algorithms on a common database.Results and DiscussionThe results of LIU, GOTMAN, CELKA, HASSANPOUR and OWS newborn EEGseizure detection algorithms on our EEG database are shown in Table 6.5. It canbe seen from the results in Table 6.5 that our OWS-based seizure algorithm performssigni�cantly better than the other algorithms. These results can be attributed to anumber of factors for which we will discuss. Table 6.5 also includes the results fromthe comparison of Faul et al. [122]. The table shows similar results between our resultsand the results of [122]. The largest variation between comparison occurs for the LIUalgorithm. However the GDR-FDR (i.e. di�erence) is similar. This suggests that themodi�cations of the LIU algorithm in [122] were driven by the desire to minimize theFDR.LIU PerformanceThe most interesting performance measure for the LIU algorithm is its signi�cantly largeFDR. From our investigation of this algorithm, with respect to our EEG database, wefound two major factors causing this result. Firstly, the data acquisition system usedin Liu et al. [19], only recorded 12 channels in a bipolar montage. The LIU algorithmrequired that two channels or more exhibit seizure activity. This was most likely decidedupon because each recording electrode placed on the scalp is used in the acquisition oftwo or more channels. Therefore, if signi�cant seizure electrical activity was occurringunder one electrode, it should be seen in at least two channels.Our data acquisition system records twenty EEG channels, also in a bipolar montage.This is a signi�cant increase in the number of recording channels for newborn EEGpatients whose scalp size is already small. Therefore, the chance that two or morechannels may record artefacts mimicking seizure activity is much greater, leading toincreased false detections.The second factor causing an excessively large FDR for the LIU algorithm is theappearance of slow wave activity in the background which has signi�cantly large am-
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(b)Figure 6.21: Two consecutive windows of nonseizure EEG data which result in a falseseizure detection by the LIU algorithm.



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP119plitude. These slow waves result in a repetition in the autocorrelation function, similarto that which is seen for seizure windows. This can be seen in Figure 6.21(a), in whichan epoch of real newborn EEG background with a slow wave causes a large score valuefrom the autocorrelation function. The following window in Figure 6.21(b) does nothave the slow wave characteristic seen for the previous window. However, the scoringfrom the autocorrelation function is large enough such that when combined with theprevious window, a false detection is made by the algorithm.GOTMAN PerformanceThe GOTMAN algorithm compares the spectrum of the current EEG epoch with thatof two EEG epochs approximately 60 seconds prior to the current epoch. In our as-sessment methodology, we have created a database containing 30 second segments ofseizure and nonseizure EEG. Therefore, we used 60 seconds worth of marked EEG back-ground data to calibrate the GOTMAN algorithm. This calibration was also employedin the newborn EEG seizure detection algorithm comparison presented in [122]. How-ever, we found that the both the GDR and FDR were extremely high. Therefore, themodi�cations made to the GOTMAN algorithm were aimed at reducing the FDR whilemaintaining a relatively high GDR.It can be seen that the GOTMAN algorithm has signi�cantly lower FDR than LIUor CELKA whilst retaining a comparable GDR. It was noted in [122] that the separationof nonseizure and seizure in the de�ned 3 dimensional feature space of the GOTMANalgorithm was not always distinct. We also found that the there was signi�cant overlapbetween some seizure and nonseizure data in the feature space, as shown in Figure 6.22.This is a major factor causing the ine�cient performance of the GOTMAN algorithm.CELKA PerformanceThis algorithm is referred to as a seizure detection algorithm, however, it is essentially anewborn EEG background detector. The whitening pre-processing step of the CELKAalgorithm attempts to whiten the background portion of the EEG signal. This meansthat the whitening process should only be successful if the newborn EEG data is back-ground. In this case the MDL should give a minimal embedding dimension value of
no = 1. Otherwise, if no > 1 the EEG data is classed as seizure. Therefore, thealgorithm only detects the background data and classes everything else as seizure.The CELKA algorithm performs poorly, as can be seen from Table 6.5. In par-ticular, it gives a particularly high FDR. This is due to the whitening preprocessingstep. The static whitening �lter cannot always whiten the nonstationary newborn EEG



120 OWS-based Newborn EEG Seizure Detection

0
1

2
3

4
5

6

0

0.2

0.4

0.6

0.8
0

200

400

600

800

1000

Peak Frequency (Hz)Bandwidth (Hz)

P
ow

er
 R

at
io

Seizure

Nonseizure

Figure 6.22: Three dimensional feature space of the GOTMAN algorithm showingseizure and nonseizure data points.background. The result of the background not being whitened properly is that a falseseizure detection is made.The GDR of the CELKA algorithm also su�ers from the whitening process. Thenonstationary EEG seizure has a time-varying magnitude spectrum. The average of thistime�varying magnitude spectrum may be similar to the average of the time�varyingmagnitude spectrum of the background EEG. Therefore, because the discriminatingtemporal information is discarded, this may lead to whitening of the EEG seizure dataand result in a missed seizure detection. From these results, it is obvious that a time-invariant whitening �lter cannot achieve the desired results for nonstationary signalssuch as the newborn EEG background. Similar observations to ours were also describedin [122].HASSANPOUR PerformanceIn the assessment of the HASSANPOUR algorithm, we used the set of histograms cov-ering the seizure classes that were de�ned in [31, 123], as well as the original algorithm.However, it can be seen in Table 6.5 that the HASSANPOUR algorithm has the poorestoverall performance. This poor result is due to a number of reasons.Firstly, it seems that the spike detection stage of the seizure detection algorithm



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP121is extremely sensitive to fast variations in the signal, leading to many false EEG spikedetections. In Figure 6.23, we show a four second epoch of EEG data which has a singleepileptiform spike, as marked by a neurologist. At the bottom of Figure 6.23, we haveshown the HASSANPOUR spike detection locations using pins. It can be seen that thespike detection algorithm detects the true EEG spike correctly, however, it also detectsmany other spike events which have not been marked by a neurologist as EEG spikeevents. Therefore, the algorithm is not truly detecting the time interval between EEGspikes which may result in poor detection results.
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Figure 6.23: Spike detection of a four second EEG epoch using the HASSANPOURspike detector.Secondly, the HASSANPOUR algorithm classi�ed newborn EEG seizure into 6classes using 5000 epochs of seizure from 11 newborns [123]. It then determined thatEEG data not falling into any of these classes are nonseizure. However, it seems thatthe classi�cation process should have been applied to nonseizure EEG data as well.This way, it could be veri�ed that the nonseizure EEG data does not fall into the anyof the seizure classes. This may be one reason for the high FDR of the HASSANPOURalgorithm.Thirdly, the testing of the HASSANPOUR algorithm was previously done using 5



122 OWS-based Newborn EEG Seizure Detectionnewborns and it achieved good detection rates. However, it was not stated whetherthese newborn EEG recordings were also used in the classi�cation process, which wouldbe the reason for the good performance of the algorithm in that assessment. Also, itseems that the number of classes of newborn EEG seizure is too small as an extremelylarge number of EEG seizure epochs were missed by the algorithm. Another way tocombat this is to reduce the threshold value of the Jensen function. However this maylead to an increase in the FDR.Finally, there are a large number of thresholds which can be set in this algorithm.However, because of the long processing times, optimization of these thresholds is ex-tremely di�cult and time consuming. Therefore, we only ran the HASSANPOURalgorithm with the original threshold values. By changing these threshold values, itmay be possible to improve the performance of the HASSANPOUR algorithm.OWS PerformanceTable 6.5 clearly demonstrates the superiority of our proposed newborn EEG seizuredetection algorithm. The excellent results of this algorithm can be attributed to anumber of factors. Firstly, the algorithm uses an adaptive TFSP technique (i.e. OWS)to accurately detect repetitive newborn EEG seizure spikes/sharp waves. This methodhas been shown to provide the best performance in the detection of repetitive spikeswhen compared with QTFDs such as the CWD, used in HASSANPOUR, and MP,which is another adaptive TFSP technique.The nonstationarity of the newborn EEG is a major factor which restricts the per-formance of techniques such as LIU, GOTMAN and CELKA. The time-varying char-acteristics which may discriminate between the nonstationary seizure data from thenonstationary background data cannot be included in any of the LIU, GOTMAN, orCELKA algorithms. These restrictions are overcome using the adaptive TFSP techniqueof the OWS.The major drawback of the OWS-based seizure detection algorithm is its processingtime. The LIU, GOTMAN and CELKA algorithms are all computationally e�cient andcan all be used for real�time newborn EEG seizure detection. Neither the OWS�basednor HASSANPOUR algorithms can be run in real�time. However, the OWS�basedalgorithm is approximately twice as fast as the HASSANPOUR algorithm. This due tothe fact that OWS-based spike detection method does not need to compute the TFR.Another limitation of the OWS-based seizure detection algorithm is that although amajority of seizures exhibit repetitive spiking, some seizures are characterized by slowwaveforms. Therefore, these types of seizures will be missed by the OWS-based seizuredetection method.



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP1236.6 SummaryThis chapter presents a new method for the automatic detection of seizure in newborns.The proposed seizure detection algorithm is based on the ability to automatically detectthe individual spikes of repetitively spiking signals.It has previously been shown that QTFD-based methods perform better in detectingspikes than time domain based techniques, [114]. However, in this chapter, we gave anexample which showed that QTFD-based spike detectors, such as the one proposed in[114], can fail to detect the individual spikes of a repetitively spiking signal. Therefore,a new method of detecting signal transients or spikes based on adaptive TFSP wasdeveloped.The proposed method of spike detection used in this chapter was the OWS method,which was originally developed to optimize the window size of the Spectrogram andother QTFDs. It was shown that if a spike occurred in the signal, the OWS would besmall around the time location of the spike and can therefore be used as a basis forspike detection.The performance of the new method for spike detection was compared with anotheradaptive TFSP spike detection method based on the MP. It was shown that bothmethods performed well on the detection of isolated spike in real EEG signals, with bothmethods having similar speci�city and sensitivity rates. However, it was shown thatthe OWS method of spike detection performed better than MP in detecting repetitivelyspiking signals. This was illustrated using synthetic and real signals.A seizure detection algorithm based on the detection of repetitive spikes using theOWS was presented. Firstly, we assessed the proposed algorithm using the neurologist-correlation method of performance evaluation. It was shown that the algorithm corre-lated extremely well with the neurologist markings, with an average GDR of 95.8% andan average FDR of 2.38%.Due to the various methods for assessing the performance of seizure detection algo-rithms, a generic method of performance assessment was required. We chose to use amethod proposed in [122], to compare our OWS-based algorithm with the LIU, GOT-MAN, CELKA, and HASSANPOUR algorithms. It was observed from this comparisonthat the OWS-based seizure detection algorithm was superior to the other newbornEEG seizure detection algorithms with 94% of seizure epochs being detected correctlyand only 2.3% of nonseizure epochs being falsely detected as seizure. Possible reasonsfor the poorer performance of each of the other algorithms were provided to validatethe comparison results.



Chapter 7Conclusions and Future ResearchIntentions
7.1 Thesis Summary
T

his thesis is focused on the accurate, automatic detection of newborn EEG seizure.A variety of time-frequency signal processing techniques were investigated in thisthesis and many sophisticated variations and applications of these techniques were pro-posed. This led to the development of an automatic newborn EEG seizure detectionmethod which was shown to outperform other well-documented methods.The �rst objective of this thesis was to analyze the newborn EEG using nonlinearand nonstationary techniques for the development of a realistic newborn EEG simula-tor. It was found that a prominent feature associated with the background newbornEEG signal was its self-similarity. This thesis assessed the background EEG of the new-born using the most appropriate method of fractal dimension estimation (i.e. Higuchimethod). Using the results of this analysis and the relationship between fractal di-mension and power spectrum law, a method of simulating newborn EEG backgroundwas developed. This method was shown to exhibit similar characteristics to real new-born EEG in the time, frequency and time-frequency domains, as well having similarnonlinear characteristics.Nonstationarity is a signi�cant characteristic of newborn EEG seizure, which hasalso been shown to consist of multiple TF components. To allow for the TF characteris-tics, a newborn EEG seizure simulator was proposed using TFSS. In this method, a TFtemplate image was constructed based on TF analysis and characterization of newbornEEG seizure. The time domain signal associated with the designed template was thensynthesized using the MSTFT magnitude method. This simulator has a number of ben-124



Conclusions and Future Research Intentions 125e�ts over previous methods including its simplicity, ability to handle spectral distortionand the discontinuities of the piecewise instantaneous frequency law.Atomic decomposition techniques were investigated in this thesis for their ability inanalyzing and processing newborn EEG. A major goal of atomic decomposition tech-niques incorporating redundant dictionaries is the ability to provide sparse representa-tions. However, in most engineering applications, only su�cient signal approximationsare needed. We investigated two recent atomic decompositions techniques, MP and BP,for their ability to provide sparse approximations. It was shown that although BP pro-vides the sparsest representation, it did not always provide the sparsest approximation1.Instead, it was shown that MP generally provided sparser signal approximations. Thiswas demonstrated using a variety of signals and desired approximation levels. For thisreason, MP was chosen as our preferred method of signal decomposition in this thesis.It was shown that the number of signi�cant atoms (i.e. the minimum number ofatoms needed to approximate the signal to a desired level) from MP decomposition, in-creased as the signal structures became less coherent with the decomposition dictionary.This indicated that the number of signi�cant atoms needed in an approximation quanti-�ed the coherency between the signal structures and the decomposition dictionary. Thenumber of signi�cant atoms was termed �structural complexity� (SC) as the observedcomplexity (i.e. number of signi�cant atoms) is totally dependent on the structures inthe signal and the decomposition dictionary.A method of detecting changes in signal structure was then derived based on thechange in SC. It was established that if a dictionary, which was highly coherent witha particular signal state, was developed, then changes from this signal state could bedetected through a change in the SC. This generic method of detecting signal transitionswas demonstrated using synthetic signals, which clearly showed its applicability.The SC-based method of detecting signal transitions was applied to the newbornEEG for detecting the transition of the EEG signal into and out of the EEG seizurestate. A TF dictionary, coherent with the newborn EEG seizure state, was developedbased on the TF characterization of the newborn EEG seizure and background states.The SC-based detection method was �rst demonstrated with, and applied to, a largedatabase of synthetic newborn EEG signals, created using the simulation methods ofChapter 4. The algorithm achieved a sensitivity and speci�city of 100% and 97.3%respectively. The SC measure applied to real newborn EEG was used to validate thesynthetic results, in which it was shown that a signi�cant change in SC occurred duringsignal transitions.1Signal representation infers that all signal energy is represented, whereas signal approximationmeans that some residual signal energy is not accounted for.



126 ConclusionsSpike events are paroxysmal events which often occur in the EEG of abnormal new-borns. The MP algorithm was previously used for adult EEG epileptic spike detection[42], and showed promising results. However, the results were based on isolated spikeevents in the EEG signal.The newborn EEG seizure is characterized by repetitive, rhythmical spiking. There-fore, we assessed the MP algorithm for detecting repetitive spikes. It was demonstrated,using synthetic and real signals, that the ability of MP in detecting individual spikesof a repetitively spiking signal was dependent on the relationship between signal lengthand period between successive spikes.The adaptive spectrogram using a window adaption method referred to as the max-imum correlation criterion [120], was shown to be another valid method of detectingspikes. In particular, it was demonstrated that the method could be used to detectrepetitive spikes as well as provide information about the harmonic relationship be-tween successive spikes. It was illustrated that this representation of dual informationwas not attainable using MP.It was then shown that spike detection could be determined directly from the adap-tive window optimization algorithm used for the adaptive spectrogram. That is, theoptimal window scale (OWS), provided by the adaption algorithm, was small at thetime instants where spike events occurred, therefore, allowing for spike detection. ThisOWS-based method of spike detection was shown to detect isolated spikes in the EEGwith the same accuracy as MP. It was also shown to detect repetitive spikes much betterthan the MP method.A seizure detection algorithm was proposed based on the OWS method of spikedetection. The algorithm was evaluated using the neurologist-correlation method ofassessment and achieved an average GDR of 95.8% and an average FDR of 2.38%. Thealgorithm was then compared with four well documented seizure detection algorithms[19, 22, 25, 31], and was shown to outperform these algorithms.7.2 ConclusionsIn accordance with the results obtained in this thesis, a number of conclusions havebeen made. These conclusions are detailed in the following:
� EEG simulation methods should address all signi�cant nonlinear andnonstationary characteristics of the real EEG.The newborn EEG has both signi�cant nonlinear and nonstationary characteris-tics which must be addressed in the development of a newborn EEG simulator.



Conclusions and Future Research Intentions 127Previous simulation techniques have not addressed the nonstationarity associatedwith the newborn EEG background or the multicomponent nature of the newbornEEG seizure, which have both been accounted for in our proposed simulationmethods. This has led to more realistic simulation of the newborn EEG which canbe used con�dently in the development and assessment of newborn EEG seizuredetection algorithms.
� Atomic decomposition techniques which provide sparse signal repre-sentations do not necessarily provide sparse signal approximations.Previously, much work has been done in the development of atomic decomposi-tion techniques which provide highly sparse signal representations. This thesishas demonstrated that decomposition techniques which provide sparse signal rep-resentations do not necessarily provide sparse signal approximations. Therefore,a decision on which atomic decomposition technique to use should incorporate thea priori knowledge of whether a signal approximation or signal representation isdesired for a particular application.
� Sparse approximations can also be achieved through the use of carefullydesigned coherent TF dictionaries.This thesis also shows that sparse signal approximations can be achieved throughcareful dictionary design. It was shown, using the real life signal example of new-born EEG seizure, that sparse signal approximations could be achieved throughthe design of a coherent time-frequency dictionary. The coherent dictionary wasdeveloped based on the observed time-frequency characteristics of the newbornEEG seizure state. By developing a time-frequency dictionary that is coherentwith a speci�c state in a signal, we demonstrated that transitions into and outof this state could be detected using the number of signi�cant atoms needed inan approximation (i.e. using the structural complexity measure). This has in-troduced to the area of atomic decomposition the idea of using application speci�cdictionaries to achieve sparse signal approximations and detect particular signalstates.
� Di�culties arise when trying to detect repetitive rhythmical spikes us-ing TF techniques. Therefore, adaptive TF techniques should be usedfor detection of repetitive spikes.Time-frequency signal processing techniques have been shown to be suitable toolsfor the detection of signal transients. However, di�culties in detecting repetitiverhythmical transients using time-frequency signal processing techniques have been



128 Future Research Directionsidenti�ed in this thesis. It was shown in this thesis that adaptive quadratic TFDscan provide more information about the TF characteristics of repetitive rhythmi-cally spiking signals than QTFDs. Therefore, adaptive QTFDs should be used inplace of QTFDs for detecting repetitive rhythmical spikes, which occur in real lifesignals such as the newborn EEG.
� Detection of repetitive rhythmical spikes can be achieved using thewindow optimization algorithm used by adaptive QTFDs.The optimal window scale which gives the adaptive window length used by adap-tive QTFDs can be used for the detection of transients without having to computethe TFR. Spikes are indicated by small window scales/lengths at the time loca-tions of the spike events. This technique of spike detection was developed in thisthesis and also shown to be better than QTFDs and matching pursuit for thedetecting repetitive rhythmical spiking. This is signi�cant as the optimal windowscale method of spike detection reduces processing time in the application of spikedetection. It also signi�es the use of the optimal window scale in solving signalprocessing problems.
� Seizure detection can be achieved by the detection of repetitive rhyth-mical spiking in the EEG signal.A signi�cant characteristic of the newborn EEG that is synonymous with theEEG seizure state is repetitive rhythmical spiking. It was demonstrated in thisthesis that techniques capable of indicating the occurrence of repetitive rhythmicalspiking, such as the optimal window scale method, could be used for newborn EEGseizure detection. In fact, the seizure detection algorithm proposed in this thesiswas based on the OWS method of spike detection and was shown to outperformother highly recognized seizure detection algorithms. Therefore, this presentsa suitable algorithm for possible use in the clinical setting for o�ine automaticseizure detection. Further re�nement of the algorithm and increased computerspeeds may one day see this algorithm being used for real-time/online automaticseizure detection.7.3 Future Research DirectionsIn achieving the objectives and reaching the goal of the this thesis, outlined in section1.3, a number of future research directions were identi�ed. Speci�cally, the followingresearch areas could be addressed:
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• Newborn EEG background simulation. The simulator proposed in this thesisprovides nonstationary newborn EEG background with nonlinear characteristics.However, in the simulation of the EEG, envelope variation, which is common inthe newborn over lengthy periods, was not considered. It should therefore beobserved how the envelope varies over time for a collection of newborns. Also, itwould be bene�cial to test for any correlations between envelope (or epoch energy)and fractal dimension estimates. Further analysis on the distribution of the fractaldimension estimate of the newborn EEG using more background recordings shouldbe undertaken.
• Newborn EEG seizure simulation. A wide variety of newborn EEG seizurepatterns with varying TF characteristics are available. We considered a number offactors including the number of linear frequency modulated (LFM) piecewise partsto the IF law, the slope of the LFM, frequency range and multiple components(i.e. the harmonics of the fundamental component). We have proposed a constantlaw that governs the amplitude of the harmonic components. However, furtherinvestigation into the amplitude laws for various components should be assessed.It is believed that this will lead to a variety of spiking patterns in the time domainsignal, which will mimic the complex morphology of repetitive spikes found in realnewborn EEG seizure.The parameters for the proposed newborn EEG seizure model were estimatedthrough the subjective analysis of a large number of newborn EEG seizure epochs.Future work should include a quantitative extraction of these parameters andjusti�cation using some statistical hypothesis testing. Also, investigations intopossible validation methods of the model should be undertaken.
• Coherent dictionary development. This thesis proposed a TF dictionary thatwas coherent with the signal structures found in the newborn EEG seizure state.This included LFM atoms, which were representative of the patterns observedin the seizure state. Improvements in this dictionary could be made by de�ningatoms more coherent with the newborn EEG seizure structures. Suggestions in-clude scaled LFM atoms, piecewise LFM atoms, FM atoms with other IF lawsand multicomponent LFM atoms which include harmonics. However, care shouldbe taken so that the new TF atoms are not coherent with the background EEGstate.
• Signal transition detection applications using structural complexity.The generic method of detecting changes in signal structure proposed in this



130 Future Research Directionsthesis has only been applied to newborn EEG to distinguish between seizure andnonseizure. This method of detection may also be used in other applications suchas EEG sleep stage detection and machine condition monitoring.
• Improving spike detection methods. The seizure detection method proposedin this thesis was based on the ability to detect repetitive spikes. Improvingthe accuracy of spike detection algorithms will correspond with improved seizuredetection algorithms. For the matching pursuit method of spike detection, wesuggest a weighting function be applied to the Gabor dictionary that is inverselyproportional to the atom scale. We believe that this biasing would improve theMP algorithm in selecting smaller scaled atoms to represent individual spikes ofa repetitively spiking signal, rather than selecting large scaled atoms to showthe harmonic relationship between spikes. This type of weighting function couldalso be applied to the maximum correlation criterion for the adaptive windowoptimization method used by the adaptive spectrogram. For both techniques, theweighting function would need to be optimized based on the trade o� betweentrue positives and false positives.We have used only one method of adapting the window length of QTFDs. How-ever, there are many other methods of adapting the window length for QTFDs.These window adaption methods may be tested and compared to the maximumcorrelation criterion for detecting spikes to see which method performs the best.



Appendix AAppendix 1: EEG Data Acquisition
A.1 Introduction
T

he recording of EEG in the newborn has proven to be a highly valuable tool. Ithas been shown to be superior in many ways to clinical examination of neonatalpatients, particularly in the detection and prognostication of brain dysfunctions [9].The EEG is a measure of the electrical activity generated by the physiological pro-cesses of the brain. The non�invasive nature of the EEG means it is a relatively simplemethod for assessing the health of the CNS and brain functioning.There are currently a number of devices for the simultaneous recording, monitoringand pre-processing of EEG data. AMLAB [124], PHOENIX Clinical Lab EEG[125] and MEDELEC [126] are some commonly used EEG recording systems.In this thesis, the EEG data has been acquired using MEDELEC's Pro�le longterm monitoring system. Therefore, this appendix is restricted to the description ofMEDELEC Pro�le.A.2 MEDELEC Pro�le SystemThe MEDELEC Pro�le System is a product of the Taugagering company. It is dis-tributed by Oxford Instruments Medical which is a world leading distributor of cardi-ology, neurophysiology and obstetric equipment [127].In routine adult EEG recording using MEDELEC Pro�le, 20 EEG electrodes areplaced over the scalp. The recorded signals are extremely small, (µV ). The MEDELECPro�le system ampli�es and displays the recorded electrical activity, while simultane-ously saving the data for review by an EEG expert. The MEDELEC Pro�le systemalso allows for the recording of other biological signals such as EOG, ECG, EMG and131



132 MEDELEC Pro�le System

Figure A.1: EEG display on windows operating system using the MEDELEC Pro�lesystem.respiration. An example of the Pro�le display of 20 newborn EEG channels and 1 ECGchannel is shown in Figure A.1. It can be seen from the top of Figure A.1 that thisperiod of EEG data has been labeled as seizure by the neurologist.Features of the MEDELEC Pro�le system are discussed brie�y as follows [127]:
• Providing distributed data: Information of a patient in the database is in-stantly available over the network using Microsoft access. Fast and intensivesearch capabilities with integral work �ow software provide an appropriate solu-tion for a distributed EEG system.
• Simple, high quality recording: To ensure quality recordings, an electrodeimpedance check is available at the head�box and a remote event marker is built-in. High quality ampli�ers and high sampling rates allow for high quality digiti-zation of up to 40 EEG channels.
• Multimedia EEG: The Pro�le system takes advantage of sound and vision PC-technology to display and store EEG, video and audio signals creating true mul-timedia EEG. Digital videometry means no complicated wiring and no need to
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Figure A.2: A frame of the video record using the MEDELEC Pro�le system.program VCRs. The video picture can be moved around the screen or can bechanged in size. A still frame of the video record is shown in Figure A.2.
• Mapping: Further investigation of the recorded data is possible using the an-imated mapping features of the Pro�le system. Head map displays can be cal-culated for power spectrum and coherence analysis across four frequency bands,as well as instantaneous scalp potential and current�density amplitude mapping.The possible mappings are listed below1.� Amplitude mapping: provides a picture of the instantaneous EEG ampli-tude when a referential montage is selected and displays either amplitude orcurrent density.� Band power analysis: allows for the determination of dominant frequencyband and location of frequency content using four head maps for the variousfrequency bands.� Coherence analysis: provides an index of the synchrony of the EEG signal be-tween two di�erent cortical regions, re�ecting the degree of shared electricalactivity between those areas.1To view the raw EEG data we use the MEDELEC Pro�le Reader software. This software does notinclude the mapping capabilities.



134 Location of EEG RecordingA.3 Location of EEG RecordingThe EEG data used in this thesis was recorded at the neonatal intensive care unit(NICU) at the Royal Womens Hospital2, Brisbane, Australia. The patients in the NICUare often monitored by members of the Perinatal Research Centre (PRC), located inthe RBWH. The PRC is directed by Prof. Paul Colditz who is an expert in neonatalintensive care and quali�ed in biomedical engineering.The EEG data used in this thesis were thoroughly reviewed by Dr. Chris Burke andassisted by Jane Richmond, an EEG technologist. Dr. Burke is a neurologist from theNeurosciences department at the Royal Children's Hospital, Brisbane, Australia.A.4 EEG Recording Speci�csThe MEDELEC Pro�le system allows for a number of �ltering and sampling possibili-ties. All EEG data recorded at the RWH has the same recording protocol. This protocolis explained in the following:1. Placement of 14 electrodes on the newborn EEG scalp. 20 EEG channels arerecorded using bipolar montage.2. EEG data digitized. Sampling frequency: Fs = 256Hz3. EEG data digitally bandpass �ltered. Cuto� frequencies: FLow = 0.5Hz and
FHigh = 70Hz.4. EEG data notch �ltered. Notch center: Fn = 50Hz

2The Royal Womens Hospital has now merged with the Royal Brisbane Hospital and is now knownas the Royal Brisbane and Womens Hospital (RBWH).
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