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Abstract

ysfunction in the central nervous system of the neonate is often first identified
through seizures. The difficulty in detecting clinical seizures, which involves the
observation of physical manifestations characteristic to newborn seizure, has placed

greater emphasis on the detection of newborn electroencephalographic (EEG) seizure.

The high incidence of newborn seizure has resulted in considerable mortality and
morbidity rates in the neonate. Accurate and rapid diagnosis of neonatal seizure is
essential for proper treatment and therapy. This has impelled researchers to investigate
possible methods for the automatic detection of newborn EEG seizure. This thesis is
focused on the development of algorithms for the automatic detection of newborn EEG

seizure using adaptive time—frequency signal processing.

The assessment of newborn EEG seizure detection algorithms requires large datasets
of nonseizure and seizure EEG which are not always readily available and often hard to
acquire. This has led to the proposition of realistic models of newborn EEG which can
be used to create large datasets for the evaluation and comparison of newborn EEG
seizure detection algorithms. In this thesis, we develop two simulation methods which
produce synthetic newborn EEG background and seizure. The simulation methods use
nonlinear and time-frequency signal processing techniques to allow for the demonstrated

nonlinear and nonstationary characteristics of the newborn EEG.

Atomic decomposition techniques incorporating redundant time-frequency dictio-
naries are exciting new signal processing methods which deliver adaptive signal repre-
sentations or approximations. In this thesis we have investigated two prominent atomic
decomposition techniques, matching pursuit and basis pursuit, for their possible use
in an automatic seizure detection algorithm. In our investigation, it was shown that
matching pursuit generally provided the sparsest (i.e. most compact) approximation
for various real and synthetic signals over a wide range of signal approximation levels.
For this reason, we chose MP as our preferred atomic decomposition technique for this

thesis.

A new measure, referred to as structural complexity, which quantifies the level or
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degree of correlation between signal structures and the decomposition dictionary was
proposed. Using the change in structural complexity, a generic method of detecting
changes in signal structure was proposed. This detection methodology was then applied
to the newborn EEG for the detection of state transition (i.e. nonseizure to seizure
state) in the EEG signal. To optimize the seizure detection process, we developed a
time—frequency dictionary that is coherent with the newborn EEG seizure state based
on the time-frequency analysis of the newborn EEG seizure. It was shown that using
the new coherent time—frequency dictionary and the change in structural complexity, we
can detect the transition from nonseizure to seizure states in synthetic and real newborn
EEG.

Repetitive spiking in the EEG is a classic feature of newborn EEG seizure. There-
fore, the automatic detection of spikes can be fundamental in the detection of newborn
EEG seizure. The capacity of two adaptive time-frequency signal processing techniques
to detect spikes was investigated. It was shown that a relationship between the EEG
epoch length and the number of repetitive spikes governs the ability of both match-
ing pursuit and adaptive spectrogram in detecting repetitive spikes. However, it was
demonstrated that the law was less restrictive for the adaptive spectrogram and it was
shown to outperform matching pursuit in detecting repetitive spikes.

The method of adapting the window length associated with the adaptive spectro-
gram used in this thesis was the mazimum correlation criterion. It was observed that
for the time instants where signal spikes occurred, the optimal window lengths selected
by the maximum correlation criterion were small. Therefore, spike detection directly
from the adaptive window optimization method was demonstrated and also shown to
outperform matching pursuit.

An automatic newborn EEG seizure detection algorithm was proposed based on the
detection of repetitive spikes using the adaptive window optimization method. The
algorithm shows excellent performance with real EEG data. A comparison of the pro-
posed algorithm with four well documented newborn EEG seizure detection algorithms
is provided. The results of the comparison show that the proposed algorithm has signif-
icantly better performance than the existing algorithms (i.e. Our proposed algorithm
achieved a good detection rate (GDR) of 94% and false detection rate (FDR) of 2.3%
compared with the leading algorithm which only produced a GDR of 62% and FDR of
16%).

In summary, the novel contribution of this thesis to the fields of time-frequency signal
processing and biomedical engineering is the successful development and application of
sophisticated algorithms based on adaptive time-frequency signal processing techniques

to the solution of automatic newborn EEG seizure detection.
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Preface

t has been a winding path to this thesis’ end, and one which has explored some
Iof the diverse areas in which signal processing is applicable. I was introduced to
the fundamentals of signal processing and its possible applications in the aerospace
industry throughout my undergraduate degree. I further developed my signal process-
ing skills during my honours year, taking on a project with Prof. Boashash in mobile
communications. This project was my conception to the field of time—frequency signal
processing and its powerful ability in representing nonstationary signals often encoun-
tered in real applications. On finishing my undergraduate degree, I continued working
as a research assistant in the signal processing research centre, analysing the newborn
EEG signal using time—frequency signal analysis techniques. This work inspired my

continued research in this area and helped define the topic of this thesis.

A significant aspect of the newborn EEG signal, in particular the newborn seizure
EEG, is its nonstationarity. This implies that time—frequency techniques are highly
suitable for the analysis and processing of the newborn EEG. However, there are a mul-
titude of techniques for providing joint time—frequency representation. Therefore, how is
a specific technique decided upon? The answer is “Assessment of available techniques.”

Throughout this thesis, I have enjoyed investigating many time—frequency signal
processing techniques. It has also been quite interesting to see how fundamental time—
frequency techniques can be presented in a number of ways, depending on the authors
ideas on these topics. Understanding the links between various time—frequency tech-
niques and the benefits of particular techniques over others in certain applications has
helped immensely in the completion of this thesis.

A number of detection algorithms, with application to newborn EEG seizure, are
developed in this thesis. Mostly, they are derived using multiple time—frequency tech-
niques to benefit from their particular advantages.

It is my hope that the results of this research will be a benchmark for others to
compare newly proposed newborn EEG seizure detection algorithms against and moti-

vate further research in this area. Hopefully, it will also emphasize the advantages of

xvi
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broadening one’s signal processing skills.

Luke Rankine
Brisbane, Australia
April 2005






Chapter 1

Introduction

iomedical signals are key tools used by physicians for monitoring the health of
B patients. They originate from various biological systems which include; the diges-
tive, musculoskeletal, respiratory, circulatory and nervous systems [2]. These signals are
recorded in various forms, such as pressure, temperature or electric potential [3]. There
are numerous reasons for recording biomedical signals such as diagnosis, monitoring of
health, research, therapy and prognosis [2]. All of which aim to improve the overall

level of health care for the community.

Bioelectrical signals, which are specific types of biomedical signals, are obtained by
electrodes that record the variations in electrical potential generated by a physiologi-
cal system. Bioelectric potentials result from large groups of neural or muscular cells

producing an electric field which propagates through various tissues in the body [3].

Electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG)
and electromyogram (EMG) are a few bioelectric signals which are used regularly in
the clinic. The EEG is used to monitor neural activity, EOG to record eye movement,
ECG to assess heart functioning and EMG to measure muscular activity. There are
copious amounts of information regarding the health of a biological system attainable
from bioelectric signals. However, information relating to particular pathologies is not
always clear from the raw bioelectric recording. This is where the field of biomedical
signal processing can assist.

Biomedical signal processing involves the manipulation, or transformation, of biomed-
ical signals to enhance the relevant information in the recorded signals for accurate di-
agnosis and prognosis. Another facet of biomedical signal processing, particularly due
to the emergence of digital signal processing and powerful digital computers, is the abil-
ity for automatic detection and classification of pathological events. This is currently

a major area of research as it has the potential to provide many health and economic



2 Motivation of Research

benefits to the community.

1.1 Motivation of Research

Seizures are the result of excessive, synchronized electrical discharges from a collection
of neurons. They are caused by a number of brain abnormalities and are expressed
through physical manifestations and particular EEG characteristics.

In the newborn, seizures are the most frequent and sometimes only clinical sign of
central nervous system (CNS) pathologies [4]. Seizure events in the newborn are of
great concern for physicians because of the possible cause of the brain disorder as well
as the effects they may have on the developing brain. Some major causes of neonatal
seizures include; energy failure (e.g. hypoxic-ischaemic encephalopathy), metabolic dis-
turbances (e.g. hypoglycemia, hypocalcaemia), cerebrovascular lesions (e.g. intracranial
hemorrhage), and infections (e.g. bacterial meningitis, herpes, syphilis and rubella) [5].

The highest incidence of seizure occurs during the neonatal period. This is due to
the immature brain having particular features that make it more susceptible to seizure
generation. These factors include enhanced cellular excitation, enhanced synaptic ex-
citation and enhanced propagation of an epileptic discharge [4]. The incidence rate of
seizure in newborns is in the range of 0.15% to 0.55% [4]. It was found that the incidence
of seizure is correlated with the birth weight of the neonate. The incidence rate for very
low birth weight neonates (i.e. less than 1,500g) was found to be 10 times greater than
the average incidence rate [6, 7]. High risk newborns (i.e. those with energy failure,
metabolic disturbances, cerebrovascular lesions or infections) have an incidence rate of
25%.

There are two signs of newborn seizure; clinical and electrical. Clinical seizures are
recognized by certain physical manifestations while electrical seizures are identified by
particular abnormal patterns (i.e. ictal patterns) that are observed in the EEG. These
seizure signs may occur simultaneously or separately. EEG seizure without clinical
manifestations is called subclinical.

Clinical seizures are characterized by sucking, chewing, tongue protrusions, twitch-
ing, drooling, ocular fixation, foaming at the mouth, rowing or swimming movements
of arms and pedaling or bicycling movements of the legs [4, 8]. However, some of these
characteristics are also normal behaviour in newborns. Therefore, recognition of these
characteristics as seizure attributes often depends on both the skill of the observer,
which may be parents, family or medical staff, and length of time that the newborn is
being observed. Physical manifestations of newborn seizure are also often very subtle, of

short duration and infrequent, making detection of newborn seizure extremely difficult.
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The recognition of electrical seizure activity is also more difficult in the newborn
than in older children and adults where the electrographic seizure is easily recognizable
against the low amplitude background. Neonatal seizures may be covert and their elec-
trographic manifestations erratic and fragmented. Its patterns are also highly variable,
with complex and varied frequency content and morphology [8]. Neonatal seizures are
progressive in nature with the buildup of rhythmic activity at various frequencies. An-
other factor that makes detection of EEG seizure difficult in the newborn is the fact
that normal babies have a large variety of peculiar electrographic manifestations which
can mimic real seizures [9]. Therefore, much care is needing in discerning seizure from
nonseizure activity. Because of these difficulties, overdiagnosis of seizure has been a

recent occurrence [9].

Identification of seizures is extremely important for evaluating the long term outcome
of sick neonates. Since the advent of the neonatal intensive care unit (NICU), mortality
and morbidity rates have declined. However, newborn seizures are still significantly
related to mortality. Mortality rates associated with newborns suffering seizure range
between 21% and 55% [10, 11, 12]. The morbidity statistics of newborns who have
experienced seizure events are also poor. Rates of severe handicaps such as spasticity,
mental retardation, cerebral palsy, language delay and sensory deficits are between 38%
and 56% of those who survive [10, 13].

There are a number of benefits in using the EEG to identify seizure activity in the
newborn. Often neonates, especially premature neonates, are paralyzed for artificial
respiration. In this case, clinical manifestations are subdued, leaving the EEG as the
only method of assessing the CNS [9]. The EEG also can provide unique information

for diagnosis and therapy of seizures [8].

The complexity of EEG recordings usually requires a neurologist to identify seizure
events. However, due to the often infrequent nature of neonatal EEG seizure, lengthy
recording sessions are required to capture EEG seizure events. The review process is an
arduous and time consuming task. Therefore, an accurate automatic seizure detection
method is highly desirable as it removes the need for a neurologist to review an entire
EEG recording.

Continual excessive discharge of neurons that occurs during seizure may cause per-
manent brain damage [14]. Therefore, the early detection of newborn seizure is vital
in minimizing the brain injury [1]. In full term neonates with hypoxic-ischaemic en-
cephalopathy, for example, it may be possible to reduce delayed neural death or pro-
grammed cell death [15]. The duration of the window for therapeutic intervention is
considered to be 2—6 hours after birth asphyxia. The treatment, however, may have

serious side effects which means early and accurate detection of seizures is important.
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Therefore, online automatic detection of neonatal seizures may play a pivotal role in

preventing or reducing brain damage.

1.2 Existing Newborn EEG Seizure Detection Techniques

A number of methods for seizure detection have previously been proposed using a va-
riety of signal processing techniques. These techniques can be divided into two broad
classes, namely; stationary and nonstationary. However, it has been shown that the
newborn EEG signal is highly variable and nonstationary. Therefore, the assumption of
stationarity implied by using stationary signal processing techniques is inaccurate and
leads to suboptimal detection algorithms [16].

In this section, we provide a review of the most widely cited automatic EEG seizure
detection algorithms for the newborn. The techniques reviewed are classified into either

stationary or nonstationary techniques.

1.2.1 Stationary Techniques

The term stationary was originally defined in statistics to describe a particular type of
random process [17]. Generally speaking, a random process is said to be stationary if all
of its statistical properties do not change with time [18|. All other random processes are
referred to as non-stationary. However, for a deterministic signal, which is characterized
by the ability to predict future values from past values, the term stationary refers to
those signals whose power spectra are independent of time.

The autocorrelation function is a time domain analysis tool. It is a useful method
of assessing the similarity of a signal with itself over varying time shifts and hence,
periodicity in the signal. The autocorrelation function of a deterministic signal, x(t), is

given by

Ry (1) = /00 x(t)z(t + 7)dt (1.1)

—0
It can be seen that the autocorrelation function is a function of the variable 7 only, which
represents a time shift of the signal x. This indicates that the autocorrelation function
cannot accurately represent the time—varying information contained in nonstationary
signals.

A seizure detection algorithm, developed by Liu et al. [19], incorporated the auto-
correlation function to assess the periodicity of the signal as the algorithm assumes that
the EEG seizure is a periodic signal. The details of the algorithm are as follows.

In this method, each EEG channel was segmented into epochs of 30 seconds. The
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epochs were further subdivided into 5 windows, as shown in Figure 1.1, and 5 autocor-
relation functions were obtained. For periodic behaviour, peaks of the autocorrelation
function are separated by the same time difference. Therefore the ratio of the time dif-
ferences between peaks of the autocorrelation function were used as the distinguishing

feature for this algorithm.

window 1 | window 2 | window 3 | window 4 [window 3
|
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Figure 1.1: Liu’s method of windowing epochs for autocorrelations to be calculated.

Liu assumed that the newborn EEG is stationary over a 6 second epoch. However,
it has been shown that the EEG can have major variations in frequency content for
periods less than 6 seconds [20]. Therefore, the assumption of local stationarity and a
periodic seizure signal are not always satisfied. This means that accurate detection of

seizure cannot always be achieved.

Spectral estimation is one of the key analysis tools used in all facets of applied
signal processing. The frequency content is commonly used as a feature of EEG to help
in classification, diagnosis and interpretation. The Fourier transform (FT) is a linear
integral transform that provides a frequency domain representation. The FT of a signal

x(t) is given as

o0

]-'{x(t)}:X(f):/ x(t)e 92t dt (1.2)

—0o0
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Figure 1.2: Two epochs, one nonseizure and one seizure, are shown here to have signif-
icant differences in the frequency domain.

where F{-} is called the FT operator and e/27/t is the FT kernel. To obtain a power
spectrum, S(f), we take the square magnitude of (1.2). An alternative method of
obtaining the power spectrum is through the Wiener-Khintchine theorem [18, 21]. This
theorem states that the power spectrum of a stationary signal can be attained through

the FT of its autocorrelation function (1.1).

In [22], a method for automatic seizure detection using the power spectrum was
presented. Spectral analysis was used to find rhythmic discharges at various frequencies.
In this method the FT was applied to a sliding window of 10 seconds. Features such as
dominant frequency, width of dominant frequency and power ratio between dominant
frequency bands were extracted from an epoch. These features were then compared to
the same features of 2 previous epochs, which were approximately 60 seconds behind.
Therefore, this method attempts to discriminate between seizure and nonseizure using
the differences exhibited in the frequency domain. An example of this is shown in
frequency domain representations in Figure 1.2, of a nonseizure epoch and a seizure

epoch.

Problems with this method result from the assumption of stationarity. Firstly, due
to the nonstationary nature of the newborn EEG signal, significant differences in the
spectrum of two epochs spaced 60 seconds apart may result even when seizure is not
occurring [20, 23|. Therefore, this may lead to false seizure detections. Also, frequency
content within the 10 second analysis epoch, which is assumed to be stationary, can
be highly time-varying [20]. Therefore, only suboptimal features can be extracted from

the frequency domain analysis of a 10 second newborn EEG epoch.

In [1], a model-based approach for seizure detection was proposed. For this detection

scheme, a model of newborn EEG, which included both background and seizure, was
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Figure 1.3: Schematic of newborn EEG model proposed by Roessgen et al. [1].

proposed. The model architecture is shown in Figure 1.3, and is an extension to the
model proposed by Lopes Da Silva et al. [24]. In the model, Z(¢) is used to model
the seizure generating signal, and is chosen as a random repetitive waveform. The
background generating signal, P(t), is assumed to be stationary, zero mean, white

Gaussian noise.

The full EEG model in Figure 1.3 consists of 11 model parameters. To detect seizure
events in real newborn EEG, the model parameters are firstly estimated from the real
EEG using Whittle’s approximation. If the estimated model parameters for the real

EEG are close to the seizure model parameters, then a seizure detection is scored.

This method had limited success due to the extremely complex system it is trying to
model. Assumptions in the model such as generating the background using stationary
white Gaussian noise are incorrect as it has been shown that the EEG is nonstationary
and non-Gaussian [20, 25]. Another drawback of this model-based approach, as stated
in [26], is that the model parameters may never converge accurately when estimating
for real EEG signals. It was also shown that the autocorrelation—based technique of Liu
et al. [19] and the power spectrum-based technique of Gotman et al. [22] both gave
better performance than the model-based parametric approach [26].

A method for detecting seizure in infants using a singular spectrum analysis (SSA)
approach was presented in [27]. The motivations for using an SSA approach was its
good performance with quasi-periodic signals and the robustness to noise of the singular
value decomposition (SVD) process used in the SSA method.

This method begins with a preprocessing stage which attempts to whiten the back-
ground signal prior to SSA. A nonlinear function [27] is used to Gaussianize the data
before a whitening filter, derived from the inverse of an ARMA model of the newborn

EEG background, is used to whiten the background. This process, however, does not
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affect the rhythmical characteristics of the newborn EEG seizure. Therefore, seizure
detection can be made by detecting the period for which the signal is not Gaussian
white noise.

After the whitening preprocessing step, the signal is converted into a trajectory
matrix so that the signal part and noise part can be separated. The signal space is
related to the ng largest singular values in the SVD of the trajectory matrix. The number
no is determined using the Rissanen’s minimum description length (MDL) method [28].
If the value is ng = 1, the signal is pure white noise, and if ng > 1 a nonstochastic
component exists. The SSA-based newborn EEG seizure detection algorithm is shown
in Figure 1.4.

The SSA approach has a major flaw in that it uses a time-invariant model of the
newborn EEG for the whitening preprocessing stage. The newborn EEG is a dynamic
nonstationary signal. Therefore, the whitening process may not correctly whiten sec-

tions of the background, leading to false alarms.

1.2.2 Nonstationary Techniques

Due to the time-varying frequency content of the EEG signal, signal processing tech-
niques capable of handling nonstationarity in the signal are the best techniques to be
used for automatic seizure detection. Joint time-frequency representations (TFRs) can
be used to track the frequency content as it evolves over time. Therefore, a number of
recent seizure detection algorithms have incorporated time-frequency signal processing
(TFSP) techniques. In this section, we briefly introduce the various TFSP techniques
that have been used for the detection of EEG seizure in newborns. A thorough review
of TFSP will be presented in chapter 3.

Quadratic time-frequency distributions (QTFDs) are a class of methods for obtain-
ing a TFR and have been used in the development of seizure detection algorithms. The
general form of a QTFD is given as the convolution of the Wigner-Ville distribution

with a time-frequency filter and may be expressed as:

E.(t f)= / / / g(v, 7)2(u + 5)z* (u — 3)ed2 W) qudydr (1.3)

where g(v,7) is the Doppler-lag kernel which uniquely defines the QTFD [29].

In [16, 20], the authors characterized seizure patterns in the TF domain using a
QTFD. A TF template for seizure was created using observations from their TF analysis.
A 2D cross—correlation process in the TF domain, using the seizure template and the
TFD of EEG epochs, was then used to identify seizure events.

A limitation of this technique is that a large number of TF seizure templates are
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Figure 1.4: Algorithm for seizure detection using SSA-MDL approach.
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needed for accurate seizure detection. This then leads to excessive computation times

because of the 2D correlation process.

In [30, 31], a method of detecting spikes in the EEG signal using QTFDs was defined.
It was shown that the high frequency area of the TF domain could be used to detect
spikes and that the distribution of time intervals between successive spikes differed
between seizure and nonseizure epochs. The distribution of time intervals between
successive spikes were then characterized using a histogram of successive spike intervals
(HSSI). A number of HSSI which represented different seizure classes were formed. An
automatic seizure detection algorithm, which compared the HSSI of an EEG epoch to
the defined HSSI seizure templates using the Jensen function [32] for similarity, was
proposed.

In [33], a method of seizure detection based on the SVD of the TFR using a QTFD
was proposed. It was shown that the first and second, left and right singular vectors
of the TFR differed between seizure and nonseizure epochs. It was suggested that the
singular vectors characterized the low frequency signature of newborn EEG seizure. A
two-layer feed forward neural network was used to classify the EEG data into seizure
and nonseizure.

The SVD-based method was combined with the HSSI-based method to provide a
seizure detection algorithm which could detect both the high frequency and low fre-
quency signatures of newborn EEG seizure. However, both methods require training
for the template design (i.e. HSSI and singular vectors). This requires a large database
of seizures, but these templates were designed using only a small data set. Also, both
techniques use QTFDs for TFR but it was shown in [34] that a single QTFD cannot
simultaneously show spike activity and long duration slow frequency activity optimally.
For this, an adaptive TFR such as the adaptive spectrogram (ASPEC), defined in
Chapter 6, is needed.

Wavelet transform (WT) is another nonstationary signal processing technique that
has become popular for analyzing transient signals. In [35], features such as the mean
and variance of particular coefficients from the W'T were chosen as possible features for
distinguishing between seizure and nonseizure EEG signals. From these list of features,
an optimal subset of features was derived using the mutual information evaluation func-
tion [36]. The optimal discriminating features were fed to an artificial neural network
classifier for automatic seizure detection. A limitation of this algorithm, however, is
that the artificial neural network was only trained using the EEG from one baby. This
training set is not adequate as EEG patterns vary significantly within patients and
between patients. Therefore, the algorithm would need to be reassessed using a larger

database.
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Analysis of adult EEG using an adaptive time-frequency (TF) method known as
matching pursuit [37] has been undertaken in [38, 39, 40, 41, 42]. This method has many
benefits such that it can provide high resolution TFRs without crossterms [40, 37], it can
provide information about the nonlinearities associated with a signal [39], and provide
a TF parameterization of the signal [42]|. This technique has recently been incorporated
into an algorithm for seizure detection in the adult [43]. Matching pursuit, however,
has not previously been used in the analysis of newborn EEG or for the development

of automatic newborn EEG seizure detection algorithm.

1.3 Scope, Aims and Objectives

The scope of the thesis includes the analysis of newborn EEG using appropriate nonlin-
ear and nonstationary techniques to determine the significant characteristics of various
EEG states. It also includes the development of automatic seizure detection algorithms
based on appropriate adaptive time-frequency signal processing techniques. These al-
gorithms should outperform other well documented automatic seizure detection algo-
rithms, but are not required to run online.

The specific aim of this thesis, therefore, is to develop a superior automatic new-
born EEG seizure detection algorithm which may be used to aid in better monitoring
and treatment of sick neonates. This aim can be achieved by specifying the following

objectives:

1. To provide a realistic newborn EEG simulation algorithm based on the nonlinear

and nonstationary characteristics of the real EEG signal. (Chapter 4)

2. To investigate the use of atomic decomposition techniques, such as matching pur-

suit and basis pursuit, in analyzing nonstationary signals. (Chapter 5)

3. To extract EEG seizure features from the newborn EEG using matching pursuit
decomposition, and develop an automatic seizure detection methodology based on
these features. (Chapter 5)

4. To develop a method of spike detection using adaptive TF techniques and imple-

ment the method in an automatic seizure detection algorithm. (Chapter 6)

5. To assess the performance of the proposed newborn EEG seizure detection al-
gorithms using synthetic and real EEG data and compare with previous, well

documented, newborn EEG seizure detection algorithms. (Chapter 6)
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Thesis Contributions

1.4 Thesis Contributions

The work presented in this thesis contain a number of original contributions to the field

of biomedical signal processing. The contributions are:

1.

We provided a new method for simulating newborn EEG data using both nonlinear
and nonstationary analysis and synthesis techniques |23, 44, 45|. (see Chapter 4,
sections 4.2, 4.3 and 4.4)

. Basis pursuit was proposed as an atomic decomposition technique which pro-

vides the sparsest signal representation. In many signal processing applications,
however, only an adequate signal approximation is needed. We have shown that
basis pursuit does not always provide a sparser signal approximation than match-
ing pursuit. Indeed, we have shown that matching pursuit generally provides a
sparser signal approximation than basis pursuit for various levels of approximation
[46, 47|. (see Chapter 5, section 5.2)

. We introduced a new signal complexity measure, referred to as “structural com-

plexity”, which is a measure of the coherency between the dictionary used for
signal decomposition and signal structures. This measure has been used as a ba-
sis for detecting changes in signal structure, such as newborn EEG [47, 48, 49, 50].
(see Chapter 5, section 5.3)

. We developed a new TF dictionary that is coherent with the TF structures found

in newborn EEG seizure. Using this dictionary and the structural complexity
measure, we were able to detect the transition from non—seizure to seizure states
[50]. (see Chapter 5, section 5.4)

. We have shown that the signal length is pivotal for detecting periodic and repet-

itive spikes when using matching pursuit [51, 52|. Without allowing for this re-
lationship, the performance of detecting repetitive spikes becomes poor. (see
Chapter 6, section 6.4)

. We have shown that the adaption algorithm for ASPEC, which optimizes the

window length at each time instant, can be used for detecting spikes. It was also
demonstrated that this method of spike detection outperformed matching pursuit

in detecting repetitive spikes |34, 53|. (see Chapter 6, sections 6.3 and 6.4)

. We developed a new automatic seizure detection algorithm based on the detection

of seizure spikes using the optimal window scale method [53]. (see Chapter 6,
section 6.5)
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1.5 Organization of Thesis

This thesis is structured as follows:

Chapter 1 describes the motivation for this research and reviews some previous
techniques and methods used for detection of newborn EEG seizure. It also details
the objectives and major contributions of this research and outlines an overview of the
thesis.

Chapter 2 provides an introduction to the EEG signal. This chapter describes many
characteristics of the EEG signal from both clinical (i.e. medical) and signal processing
perspectives.

Chapter 38 provides a detailed review of current TFR methods. This includes linear
and quadratic time-frequency distributions, time-scale transforms, and relevant atomic
decomposition techniques. The ability of TFR methods to relay the time—varying in-
formation associated with nonstationary signals is demonstrated.

Chapter J proposes a new method of simulating the newborn EEG signal. The
simulation of background EEG begins with the fractal dimension (FD) analysis of real
newborn EEG background. It is assumed that the FD estimate is a random variable and
an estimate of the distribution is given. Using FD theory and the estimated distribution,
a background EEG simulator is derived. (Answers Objective 1)

The proposed method for newborn EEG seizure simulation is based the time-frequency
signal synthesis (TFSS) of simulated seizure TFRs. Comparison in the time, frequency
and TF domain between real and simulated signals show the validity of the simulation
methods. (Answers Objective 1)

Chapter 5 compares the sparsity of matching pursuit and basis pursuit signal ap-
proximations. It is determined that matching pursuit generally provides a sparser signal
approximation. For this reason, matching pursuit is the preferred atomic decomposition
technique to be used in this thesis. (Answers Objective 2)

A new signal complexity measure, referred to as structural complezity, obtained using
matching pursuit is defined. A generic method for detecting changes in signal structure
is proposed based on a change in the structural complexity. This methodology for
detecting changes in signal structure is then applied to newborn EEG. To optimize the
use of SC for the newborn EEG case, we create a TF dictionary that is coherent with
the newborn EEG seizure structures. (Answers Objective 3)

Chapter 6 reviews a number of spike detection algorithms. The ability of TFSP
techniques to detect repetitive spikes is investigated. It is demonstrated that epoch

length is pivotal in the ability of MP to detect the individual spikes of a repetitively
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spiking signal.

ASPEC is shown to be a better TF technique for detecting the individual spikes
of a repetitively spiking signal than MP. The adaption algorithm for ASPEC, which
determines the optimal window scale at each time instant, was also demonstrated to
be a valid spike detection method and shown to outperform the MP-based technique.
(Answers Objective 4)

A seizure detection algorithm, based on the ability to detect repetitive spikes using
the optimal window scale method, is proposed. This algorithm is evaluated using two
performance assessment methods and is compared to four well-documented newborn
EEG seizure detection algorithms. (Answers Objective 5)

Chapter 7 gives a summary of the work undertaken and provides a number of con-
clusions based on the results in the thesis. It also outlines recommendations for future

research in this area.
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Chapter 2

Newborn EEG Signal

Characteristics

2.1 Introduction

ichard Caton’s discovery in the late 19th century, that “feeble currents of varying
Rdirection pass through the multiplier when electrodes are placed on two points of
the external surface, or one electrode on the grey matter and one on the surface of the
scull” of rabbits and other animals is believed to be the beginning of the EEG [54].
However, it wasn’t until 1929 that Hans Berger first demonstrated electrical activity in
the human brain [54, 55].

The EEG has many uses as a diagnostic and prognostic tool. Primarily, the EEG
is used in the assessment of the CNS and diagnosis of neurological diseases [56]. The
EEG is extremely useful in the management of epileptic patients. Other uses of the
EEG include localization of abnormal brain structures [57], investigation of patients
with neurological and psychiatric disorders [58] and the monitoring of patients with
metabolic disorders [59]. The EEG is also used for studying sleep disorders and for

evaluating states of consciousness [59, 60].

In this chapter we review the characteristics of the newborn EEG signal. In section
2.2 we summarize the neurophysiological mechanisms responsible for the newborn EEG
signal. The methods of recording the EEG signal are presented in section 2.3. The
characteristics of the newborn EEG signal associated with the normal and abnormal
background EEG state, along with the characteristics of the seizure state, are then

presented in section 2.4.

16
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2.2 EEG Neurophysiology

The basic mechanism of the CNS is the neuron (nerve cell). CNS functioning results
from the depolarization and hyperpolarization of the neuron membrane, which is caused
by ion flux across the membrane. The depolarization of membranes causes an action
potential generation. This releases neurotransmitters from presynaptic regions to ei-
ther excitatory or inhibitory postsynaptic receptors resulting in excitatory postsynaptic
potentials or inhibitory postsynaptic potentials respectively [4, 61]. Figure 2.1 shows a
diagram of a CNS neuron and displays a zoomed picture of the synapse, demonstrating
the presynaptic and postsynaptic regions. Figure 2.2 illustrates the neurotransmitter
process, with the density of ions, shown by the number of '+’ and ’-’ signs, indicating
the polarization. In normal brain functioning there is an equilibrium between excita-
tory and inhibitory processes [4]|, and, as a consequence, neurons fire randomly and

asynchronously.

2.3 Recording Methods

Significant differences exist in the EEG recorded from the scalp and the cerebral cortex!.
The cortical EEG, also referred to as the electrocorticogram (ECoG), is a measure of
neural activity in the neighbourhood of the electrode whereas the scalp EEG is an
average of the diverse activities of many small regions of the cortical surface in proximity
to the scalp electrode [64]. The amplitude of the scalp EEG is generally much smaller
than the ECoG unless a significant area of the cortical region under the scalp electrode
is synchronized. This then results in comparable amplitudes between the scalp and
cortical EEG.

Differences in frequency content exist between the scalp EEG and ECoG. Observa-
tions have revealed that the ECoG contained more power in higher frequencies than the
scalp EEG due to the higher frequencies tendency to be spatially coherent over small
cortical surface areas and the scull acting as a low pass filter [65, 66]. Also, the ECoG
is generally unaffected by artifacts resulting from eye movements and muscle contrac-
tions, unlike the scalp EEG [67]. However, the invasive nature of the ECoG restricts its
clinical use, leaving the scalp EEG as the primary method of analyzing the CNS of the

newborn.

!The brain has three major parts, the cerebrum, cerebellum and brain stem. The cerebrum consists
of two hemispheres and the cerebral cortex, which is the extensive outer layer of gray matter. The
cerebral cortex is responsible for higher brain functions such as mathematical abilities, voluntary muscle
movement, reasoning, and perception [62, 63]. A detailed description of human brain anatomy is given
in [64].
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Figure 2.2: The ionic current flows around the synapse (shown in Figure 2.1) through
the neuronal membrane and along the membrane, demonstrated by the arrows.

Most recordings of scalp EEG involve the placement of electrodes over the head
according to the International 10-20 standard. Twenty one electrode sites are defined

under the 10-20 standard [68] and they are determined by four standard positions on the



Newborn EEG Signal Characteristics 19

head: the nasion, inion, and left and right preauricular points [59]. The 10-20 standard
of electrode placement is shown in Figure 2.3 where odd numbers refer to the left side

and even numbers refer to the right side.
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Figure 2.3: International 10-20 standard of electrode placement.

The EEG is a voltage measurement, which infers that a potential difference is
recorded. The montage is the method by which the potential difference between elec-
trode sites are selected as EEG channels. Two montages recommended by the American
EEG society are bipolar and referential (monopolar) montages [68]. In bipolar mon-
tage, an EEG channel is obtained by measuring the potential difference between two
adjacent electrode sites. This method of recording removes common electrical activ-
ity between the two electrode sites such as unwanted artefacts, but may exclude some
important EEG information localized around either of the recording sites. In the refer-
ential method, a common reference electrode to all EEG channels is used. Usually, it is
placed away from the scalp on either the chin, nose or ear to minimize the possibility of

including potentials from the brain [62]. This method of recording provides a localized
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representation of electrical activity but may be hindered by its susceptibility to noise

and artefact.

2.4 Characteristics of Newborn EEG

2.4.1 Background

The EEG signal is a complex waveform that, in the first instance, appears to be some
form of noisy signal. For epileptic patients, the EEG can be divided into a background
state (i.e. when seizure is not occurring) and a seizure state. The background EEG
activity is characterized by patterns that are relatively stable, and is generally without
major temporal changes in frequency and voltage [69, 9].

The frequency content of the background EEG has no clear upper and lower bound-
aries. However, current EEG measuring equipment generally concentrate on capturing
the clinically relevant range of between 0.1Hz to 100Hz [70|. This frequency range is
divided into a number of bands. These bands, designated by Greek letters, are defined

as:

e Delta (0) 0.1-3.5Hz
e Theta (0) 4-7.5Hz

e Alpha («a) 8-13Hz

e Beta () 13-30Hz

e Gamma (y) above 30Hz

Delta activity is the predominant range in infants and is normal during deep sleep
stages in the adult. It is considered abnormal in the EEG of awake adults. Theta
activity, if focal or lateralized, with excessive amplitude is an indicator of possible
localized cerebral pathology in the adult patient. However, it is often seen in normal
children. The Alpha rhythm is best seen when the adult patient is resting with closed
eyes and is the classical EEG correlate of wakefulness [59, 70]. The Beta and Gamma
activities are just regarded as a fast variant of the alpha activity (i.e. higher frequency).

The EEG characteristics differ considerably from the adult and older child to the
newborn, particularly in frequency content. In the adult and older child, the predomi-
nant frequency range is between 8-30Hz (Alpha and Beta activity). Frequencies between
0.3-7THz and above 30Hz are sparsely represented [70]. The newborn EEG has most of
its power in the low frequency range of between 0.4-7.5Hz |71, 72|. Also, the varia-
tions in newborn EEG are more rapid, the stages of sleep-wake cycle are unstable, the

reaction to opening eyes is missing, an interhemispheric asymmetry is observable and
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certain adult features of EEG are missing (e.g. spindles and K-complexes)? [73]. The
amplitude of EEG in the adult is most commonly between 10-50xV [70]. This range is
also common to the newborn EEG [73]. Observations show that the maximum ampli-
tudes of various EEG rhythms, from the defined frequency bands, tend to be inversely
related to their frequency [62].

A comparison between 2 seconds of background EEG of the adult and newborn is
shown in Figures 2.4 (a) and (b) respectively. From these plots, it is clear that the adult
EEG has much more high frequency activity than the newborn. The amplitudes of the

EEGs are comparable in magnitude.
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Figure 2.4: The background EEG signals of the (a) Adult and (b) Newborn.

2.4.2 Abnormal Background Patterns

Abnormalities occurring in the EEG signal can be specifically associated with some
underlying pathology. Therefore, these types of abnormalities are labeled as specific

abnormalities. The abnormalities which are not related to any pathology are labeled as

2Spindles are rhythmic waves at approximately 14Hz occurring during sleep stages. K-complexes
are transient complex waveforms consisting of slow waves associated with sharp components [62].
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nonspecific abnormalities. The majority of abnormalities in the EEG are nonspecific.

Specific and nonspecific EEG abnormalities can been classified into three groups [74]:

(a) Distortion or disappearance of normal patterns
(b) Appearance or increase of abnormal patterns

(c) Disappearance of all patterns

Abnormalities can be further classified in terms of the spatial coverage and period of
persistence. The term paroxysmal has been given to abnormalities that are characterized
by an abrupt onset and termination and is significantly different to the background
activity in frequency and amplitude [59]. Usually, specific EEG abnormalities occur
paroxysmally [74].

A number of abnormal EEG patterns are common to the adult and newborn. Two
such patterns are the spike and sharp wave patterns. A spike is defined as “a transient,
clearly distinguishable from the background activity, with a pointed peak at conventional
paper speed and a duration from 20 to under 70msec. Main component is generally
negative to other areas. Amplitude is variable” |62, 75]. This broad definition is due
to the large variations between spikes within an individual, and between individuals,
making more precise definition difficult.

Similar to the spike pattern, a generalized definition of a sharp wave is given as
“a transient, clearly distinguishable from background activity, with pointed peak at con-
ventional paper speeds and duration of between 70-200msec. The main component is
generally negative to other areas” [62, 75]. Another difference between spikes and sharp
waves, not mentioned in the definition above, is that the starting phase of the sharp
wave has a similar duration as a spike, but the finishing phase is longer. This is shown
in Figures 2.5 (a) and (b), which show a spike and sharp wave respectively.

Isoelectric pattern, which can be referred to as electrocerebral inactivity pattern, is
an abnormal pattern characterized by extremely low voltage patterns. The majority
of patients exhibiting this EEG abnormality generally die, (e.g. An isoelectric EEG
pattern occurs at the moment of cardiac arrest [76]). Otherwise these type of patterns
indicate a poor prognosis for the patient, as those who survive are left with severe
neurological sequelae [59].

Burst-Suppression pattern is characterized by a burst of high voltage lasting ap-
proximately 1-10 seconds followed by periods of quiescence or inactivity (i.e. isoelectric
patterns) lasting 2-10 seconds [9, 59].

Runs of rapid spikes is an abnormal pattern that is particular to only adult and

older children EEG. This abnormal pattern consists of bursts of spikes occurring at
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Figure 2.5: Two abnormal paroxysmal EEG events: (a) Spike and (b) Sharp wave.

rates between 10 to 25/sec. Various forms of Spike wave complex, which are classified
according to the rate they occur, are also specific to the adult and older child patients.
For example, the classic 3/sec spike wave complex is almost never seen before the age
of 4 [75].

2.4.3 Normal Paroxysmal Patterns in Newborns

The assessment of paroxysmal patterns occurring in the newborn EEG is much more
complicated than for the adult and older child. This is due to some paroxysmal patterns
being normal variants for newborns at specific conceptional ages (CA)? [9].

Delta brushes, also called spindle-shaped bursts, refer to patterns containing spin-
dles of varying frequencies and voltages along with a delta wave. They are highly
representative of prematurity, and mostly disappear at term [9].

Fast transients are spikes and sharp waves, described previously. These patterns,
which are nearly always abnormal patterns in the adult and older child, may be normal
ontogenetic events in the newborn. For example, spikes in the frontal region may be

normal for newborns between 35 weeks on to 40 weeks CA. Also, sharp transients

3Conceptional age refers to the time in weeks since conception.
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consisting of 3-8 sharp, rhythmic waves with high voltages in the temporal region are
common to newborns aged between 30 and 32 weeks CA [9].

Slow transient patterns consist of short runs of rhythmic delta waves with high
amplitude. The delta waves are approximately between 0.5-1Hz for ages 29-31 weeks
CA and appear as 1-2Hz delta waves from 37-40 weeks CA [9].

2.4.4 Ictal EEG

Ictal or seizure patterns in the EEG are the most significant EEG abnormalities.
Seizures are abnormal reactions of the brain and are the result of a number of diseases
such as, but not limited to, measles encephalitis, tuberculous meningitis, neurosyphilis,
Rickettsia disease and herpes simplex encephalitis [77]|. Seizures may also be a result of
craniocerebral trauma or brain damage.

The neurophysiological mechanism for seizure generation is the imbalance between
excitatory and inhibitory processes [4], as described in section 2.2 and shown in Figure
2.2. This results in an excessive synchronous discharge of neurons within the CNS [4, 14].
The continuance and propagation of seizure requires the recruitment of a critical mass
of neurons within the region of onset and functionally intact pathways between neurons.

The ictal patterns in the newborn are highly variable, with complex and varied mor-
phology and cover a variety of frequencies [8]. However, in broad terms, ictal patterns
in the newborn are generally characterized by periods of rhythmic spiking or repetitive
sharp waves [22]. An example of newborn EEG seizure activity is shown in Figure 2.6,
clearly indicating the repetitive spiking characteristic.

The newborn EEG seizure event is generally characterized by a gradual, progressive
build up of ictal activity. The EEG seizures in newborns are generally focal* and
spread across the brain in various ways [9]. However, newborn seizures which have
highly rhythmical spiking are often multifocal with slow migration of the spike activity
from one area to another [77].

The minimum duration of ictal patterns in the newborn EEG used to define a seizure
event is a highly debated topic among neurologists. Some require that a seizure event
display ictal patterns for no less than 10 seconds. However, others require a duration
of at least 20 seconds [9]. Evidence from a recent study has shown that even shorter
durations than 10 seconds are clinically significant and provide prognostic value [78].
In a study of 487 neonatal electrographic seizures, the average seizure duration was 137
seconds, with a range of between 10 seconds to 46 minutes. An important result of this

study was that 97% of all seizure events were less than 9 minutes [79].

4Localized to a particular area of the brain.
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Figure 2.6: Repetitive, rhythmical spiking, characteristic of newborn EEG seizure.

The newborn EEG has been shown to be a nonstationary signal, particularly the
ictal patterns. Therefore, representation of the rhythmic seizure patterns in the fre-
quency domain, as shown in Figure 2.7, does not clearly illustrate any of the important
time—varying information. Due to this, time—frequency signal analysis (TFSA) has re-
cently been applied to the newborn EEG. Many significant time—varying patterns, such
as piecewise linear components, were found to exist in the EEG seizure. This is demon-
strated in Figure 2.8, which starts off with a single increasing linear component. The
same component then begins to decrease for approximately 3 seconds before the signal
becomes a multicomponent signal with constant frequency. This clearly emphasizes the

superiority of TFSA in analyzing nonstationary signals.

2.5 Summary

This chapter provided an overview of the EEG signal. The neurophysiological mech-
anism of EEG generation involves the generation of inhibitory and excitatory post-
synaptic potentials. Recordings of the EEG can be obtained through electrodes placed
on the scalp or directly on the cerebral cortex. The recording of newborn EEG, how-

ever, is always through scalp electrodes because of the fragility of the brain during the
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Figure 2.7: Frequency domain representation of the signal in Figure 2.6.
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neonatal period.

The newborn EEG activity is concentrated in the 0.4-7.5Hz frequency band. Parox-
ysmal patterns that are abnormal in the adult EEG are sometimes normal ontogenetic
events in the newborn. Ictal patterns in the EEG are the most notable EEG abnormal-
ity. The ictal pattern is a result of the excessive synchronous discharge of neurons and
is a primary indicator of CNS dysfunction. TFSA clearly demonstrates the important
time-varying information in the nonstationary EEG signal and is superior to both the

time domain representation (i.e. raw time series) and frequency domain representation.



Chapter 3

An Overview of Time—Frequency

Signal Representations

3.1 Introduction

raditionally, signal analysis has been done in either the time domain or frequency

domain. These representations can provide adequate information about station-
ary signals. However, most real life signals are nonstationary, exhibiting time—varying
spectra. For nonstationary signals, neither the time domain nor frequency domain rep-
resentations can clearly illustrate all relevant signal information [80].

Time-frequency signal analysis (TFSA) involves analyzing signals in a joint TF
domain. From a TFR, important information about the instantaneous frequency (IF)
content of a signal can be extracted. This gives the signal analyst the ability to observe
how frequency content of a signal is changing over time.

Joint TFR can be obtained through a number of techniques. In this chapter, we
present an overview of various TFRs that are relevant to this thesis. In section 3.2,
we demonstrate the need for joint TFR of nonstationary signals. Linear TF transforms
are reviewed in section 3.3, followed by an introduction to quadratic time—frequency
distributions (QTFDs) in section 3.4. Finally, in section 3.5, we outline various methods

of atomic decomposition and how they can be used to provide joint TFR.

3.2 The Need for Joint Time—Frequency Representation

The recording of real life signals involves the measurement of a parameter, which we
can generalize with the term amplitude, as it changes in time. Hence, this signal repre-

sentation is often referred to as the #ime domain representation. Signal analysis almost

28
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always begins with this type of representation, yet only minimal information about the

signal can be easily extracted.

One of the most frequently used methods of signal analysis is through the transfor-
mation of the time domain signal into the frequency domain. The frequency domain
representation provides information regarding the energy and phase of particular fre-
quency components in the signal. The FT is the most widely used method to obtain the
frequency domain representation. The FT of a signal, z(t), given in (1.2), is repeated

here for convenience

o0

X(f) = Fla(t)} = / 2(t)e 201 gy (3.1)

—00

The magnitude of the frequency content, called the magnitude spectrum, is the most
common, and often useful, method of frequency analysis. The magnitude spectrum is
obtained by taking the absolute value of the FT (i.e. | X(f)|).

Although the FT is a powerful tool and often used in many signal processing appli-
cations, it suffers from the inability to exhibit all relevant signal information for many
nonstationary signals. Instead, the FT provides an average of frequency content over

the signal period without providing any temporal information.

To show the limitation of the FT in the analysis of nonstationary signals, we consider
the case of two linear frequency modulated (LFM) signals, given in Figure 3.1(a). Figure
3.1(b) shows that, on average, over the entire signal length, both signals contain the
same magnitude spectrum!. Figure 3.1(b) also shows that the magnitude spectrum does
not provide any temporal information about the frequency content of the nonstationary
signals in Figure 3.1(a). However, by analyzing these signals in the TF domain, we
can clearly see how the frequency content varies in the signal. This is demonstrated in
Figures 3.2(a) and (b), which are the TFR of signal 1 and signal 2 respectively. The
Wigner—Ville distribution, which will be discussed in section 3.4, was used to provide
the TFR in this example.

The plots in Figures 3.2(a) and (b), clearly show how the frequency content of the
signal varies with time, illustrating the differences between the two LFMs. The TFRs
also provide all information available from the time domain and frequency domain rep-
resentations, such as signal duration and frequencies, contained in the signal. Therefore,
from this example, the powerful nature of TFR in the analysis of nonstationary signals

is clearly demonstrated.

Tt should be noted that the discriminating information for these signals is contained in the phase
of the frequency components, which has been discarded in obtaining the magnitude spectrum.
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Figure 3.1: (a) The time domain representation and (b) frequency domain representa-

tion of two different LFMs.
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Figure 3.2: The TFR of (a) signal 1 and (b) signal 2. A clear distinction between the
two signals is apparent from their TFRs.

3.3 Linear Time-Frequency Transforms

Linear TF transforms are achieved by using the inner product? concept to correlate

the signal with a collection of waveforms (atoms) that are highly concentrated in time

and frequency [81]. Unlike the FT, which correlates the signal with complex sinusoidal

functions that spread the entire time domain, these concentrated TF atoms can indicate

*The inner product of two functions f(t) and g(t) is given by (f,g) = [*_ f(t)g"(t)dt. The ¢* norm
of a function f is given by (f, f) = [|fll2 = [ f(t)f (t)dt.
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how much signal energy is located in a particular TF region of the TF domain. This
then provides the ability to analyze the frequency content as it evolves over time [17].

The general linear TF transform of a signal, x(¢), is given by

o0

T{a(t)} = Eolt, ) = / 2(r)(r)dr (3.2)

—o0
where T'{-} is a linear TF operator, E,(t, f) is the TFR and ¢; ¢(7) is a TF atom
concentrated around time ¢ and frequency f3.

The short-time Fourier transform (STFT) is an example of a linear TFR that has
found wide application in different areas of science and engineering. For the STFT, the
TF atoms in (3.2) are

G, (1) = w(T — t)eﬂ”fT (3.3)

where the function w(7) is generally a real even function with relatively short duration.

It is often referred to as a window function [17]. Therefore, the STFT is expressed as

STFT(t, f) = / " alryu(r — eI gy (3.4)

—00

The wavelet transform (WT) is another method which can be used to obtain a
TFR. It was proposed as a method of analyzing signals with structures of differing time
durations by correlating the signal with TF atoms that have varying time supports [81].
The atoms are created by scaling and translating a function ¢(7) which is referred to

as the mother wavelet. The WT is given as

WT(t,s) = /_: x(T)%gb* (T = t> dr (3.5)

which, in essence, is a time-scale representation. A TFR can be obtained from the WT
as a result of the relationship between scale and frequency. That is, if fy is the center
frequency of ¢(7), then all center frequencies for the time-scaled atoms can be given as
f = fo/s [17, 81]. Therefore, the TFR using the WT is given by

E.(t, f) =WT(t, 8)‘S:f70 (3.6)

For both the WT and the STFT, time and frequency resolution is restricted by the
resolution of the TF atoms used in the transform [81]. This TF resolution is bounded

by the Heisenberg uncertainty principle

3The symbol '+ in (3.2) represents the complex conjugate.
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1
AAF > — (3.7)

a7
where At and Af are the effective duration and effective bandwidth of the TF atoms
respectively [21]. It can be seen from (3.7) that the uncertainty principle puts a lower

limit on the spread or concentration of a function in time and frequency.

3.4 Quadratic Time-Frequency Distributions

QTFDs are commonly used methods for obtaining joint TFR. A QTFD is a special form
of bilinear transform [82, 83]. The most basic QTFD is the Wigner-Ville distribution
(WVD). All other QTFDs can be obtained by a TF averaging or smoothing of the WVD
[81, 29].

The WVD of a signal, x(t), is defined using its analytic associate z(t). The analytic

associate of z(t) is obtained using the Hilbert transform, shown as [84, 21|

Hix(t)} = X (k) = %7{% o) g (3.8)

P
such that z(t) = x(t) + jH{z(t)}. The instantaneous autocorrelation function (IAF) of

z(t) is then defined as
K.(t,7) = 2(t+ 5)z"(t = 5) (3.9)

and the WVD is expressed as
Wt.f) = F (Kult)} = / 2t + D)2t — T)e 2T dr (3.10)

As a TFR, the WVD has a number of remarkable properties. For this reason, the
WYVD is the most widely studied QTFD. Some of the important properties include®:

e Realness: W,(t, f) is always real

e Time-shift invariance: A time shift in the signal causes the same shift in the WVD
such that
2(t — to) — Walt — to, ) (3.11)

e Frequency-shift invariance: Frequency modulation of a signal causes the same

frequency shift in the WVD as the modulating frequency. That is

2(t)e?™ o — W (t, f — fo) (3.12)

*A detailed description of properties can be found in [29].
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e Time marginal: Integrating the WVD with respect to f gives the instantaneous

power

rawP:/mvnuJMf (3.13)

e Frequency marginal: Integrating the WVD with respect to ¢ gives the energy

spectrum

2P = [ Wit (3.14)

e [F: The first moment of the WVD with respect to f is the IF

Jooo IWE Hdf 1 dfarg 2(t)}

[ Wt df — 2r ot (3.15)

3.4.1 Crossterm Interference of the WVD

Among all of the QTFDs, the WVD also provides the highest TF resolution for LFM
monocomponent signals (see Figure 3.2) and provides a positive two dimensional Gaus-
sian for a Gaussian signal. However, despite these desirable properties, the application
of the WVD is limited by the interference terms occurring as a result of the bilinear
transformation. These interferences or crossterms occur in the case of nonlinear FM
monocomponent signals and multicomponent signals [29].

The crossterms resulting from WVD of a nonlinear FM monocomponent signal can
be explained as follows. Consider a finite duration signal with a time-varying amplitude
such that

2(t) = a(t)el’® (3.16)

where a(t) is real. Therefore, the IAF (see (3.9)) can be written as

K. (t,7) = K4(t,7)e V7 (3.17)

where
Kalt,) = alt + Palt — 3) (3.18)
Pt 7) =0(t+3) —0(t—3) (3.19)
If the phase function 0(t) is quadratic, relating to a linear IF function f;(¢), then the
central finite difference approximation in (3.19) is exact and gives (t,7) = %T =

1 do()
27 dt

"The IF, f;(t), is defined as the derivative of the phase such that f;(t) =



34 Quadratic Time-Frequency Distributions

27 f;(t)T, which leads to [21]
K.(t,7) = Kq(t, 7)e? 207 (3.20)

Therefore, K,(t,7), when considered as a function of 7 only, has a constant frequency
equal to f;(t). This process is referred as dechirping [21]. When the signal has a
nonlinear IF function, the central finite difference approximation is not exact and the
TAF is not dechirped, resulting in the formation of crossterms called inner artefacts [29].

Crossterms resulting from multi-component signals can be explained as follows. Con-

sider a multicomponent analytic signal
z(t) = z1(t) + 22(t) (3.21)
The IAF for z(t) can then be shown to be [29]
K,(t,7) = K, (t,7) + K., (t,7) + K. 2, (t,7) + K., (t,7) (3.22)

where K, ,,(t,7) and K,,.,(t,7) are the instantaneous cross-correlation functions be-
tween the two components. Taking the FT of (3.22), with respect to 7, we obtain the
WVD of the multicomponent signal, such that

Wa(t, f) = Wa (4, ) + W (4 f) + 2Re{W;, (1, )} (3.23)

It can be seen in (3.23), that the WVD of the multicomponent signal is the sum of the
WVD of each component plus some interference term which is related to the cross-WVD
of the two components [29]. These crossterms are referred to as outer artefacts.
Figures 3.3(a) and 3.3(b) show the WVD of a nonlinear FM signal and a multicom-
ponent signal respectively, along with their associated IFs for individual components.
From these TFR plots, it is clear that the information regarding the IFs is masked by

unwanted cross-terms, reducing the effectiveness of the TFR.

3.4.2 Suppression of Crossterms

All QTFDs can be formulated by smoothing the WVD with a time-lag kernel, G(¢, 7).
By correctly designing G(t,7), we can define QTFDs that attenuate the cross-terms
associated with the WVD. QTFDs which have the cross—terms attenuated in comparison
to the desired terms are often called reduced interference distributions (RIDs) [29]. The
general form of QTFDs, including all RIDs, which are defined by the time-lag kernel,

is shown as
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Figure 3.3: The TFR and corresponding IF of (a) a nonlinear FM monocomponent
signal and (b) a multicomponent signal made up of two LFMs components.

E.(t, f) = /_00 /_00 Gt —u,7)z(u+ 3)z*(u — 3)e ™" dudr (3.24)

The spectrogram, defined as the square magnitude of the STFT (i.e. |STFT(t, f)|?)
is another important QTFD. However, it can also be obtained from (3.24) by using the
time-lag kernel

Gopec(t,7) = w(t + F)w(t — 3) (3.25)

where w(7) is the window function used in the STFT. The spectrogram can be thought
of as a RID with almost no interference terms. However, this interference reduction

also results in poor TF resolution [29]. Therefore other RIDs attempt to provide the
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resolution of the WVD with the crossterm reduction of the spectrogram. Table 3.1
shows the time-lag kernels, G(¢,7) of some QTFDs. It can be seen from Table 3.1
that the Choi-Williams (CW) [85], B [86] and Modified B (MB) [87| distributions have
tunable parameters (i.e. o for CW and 8 for B and MB). The parameters can be

changed for various signals to improve the TFR obtained by these distributions.

Distribution | Kernel G(t,7)

Wigner-Ville 5(t)
Choi-Williams @ e—mot? /T2
B |7]% cosh =27 ¢
1 cosh—2P ¢
Modified B T o

Table 3.1: QTFDs and their associated time-lag kernels

Figure 3.4 shows the WVD, spectrogram, B-distribution and CW for a multicom-
ponent signal made up of two LFM signals. It can be seen that the WVD gives high
resolution for the LFM components but is corrupted by a number of interference terms.
However, the spectrogram does not display any interference terms but has low resolu-
tion for the signal components. For both the B-distribution and the CW, we can see

that they provide high resolution and minimal crossterm interference.

3.5 Atomic Decomposition Techniques with Time-Frequency

Dictionaries

In reviewing atomic decomposition techniques as methods for TFSA, there is terminol-
ogy particular to these methods which must first be addressed. The term atom, which
was previously referred to in section 3.3, is used to describe an elementary waveform,
¢~(t), which is used for signal representation. A collection of atoms used for signal rep-
resentation is called the dictionary, represented as ® = {¢,},cr. The dictionary atoms
are generally obtained through transformations of a fundamental waveform ¢(t). The
transformations are indicated by “+”, which can be a single or multi-index parameter.
Therefore, I' represents the entire set of parameters used to create ®.

Time—frequency atom generally refers to those atoms which are highly concentrated
in time and frequency. However, we also use this term to describe atoms which have
specific TF characteristics (i.e. LEM atoms, hyperbolic FM atoms etc.).

If ® spans the Hilbert space, H, the dictionary is said to be complete [37]. For a

finite dimension signal space, the dictionary may have more atoms than are needed to
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Figure 3.4: The TFR of a multicomponent signal using (a) Wigner-Ville distribution,
(b) Spectrogram, (c) B-distribution and (d) Choi-Williams distribution.

span the space. This is a redundant dictionary®. Orthogonal bases, such as the Fourier
basis and orthogonal wavelet bases, can be thought of as dictionaries which have the
minimum number of atoms needed to span the finite Hilbert space (i.e. the minimum

number of atoms to make the dictionary complete).

Traditional analysis techniques involving orthogonal bases provide a unique rep-
resentation. However, these analysis techniques are limited in the information they
provide. For example, the Fourier basis provides poor representations of signals with
structures well localized in time, and W'Ts give poor frequency resolution for signals

with narrow high frequency support [37]. Therefore, it would be desirable to have a

51t should be noted that a redundant dictionary is complete, but due to its redundancy it is often
referred to as overcomplete [88].
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dictionary with TF atoms capable of representing all types of signal structures with
high resolution. This is possible with redundant TF dictionaries. However, because of
this redundancy, there are many possible signal representations, (i.e. unlike the unique
representation from an orthonormal basis). Therefore, a method of choosing atoms that
are best adapted to signal structures is required [37].

Atomic decomposition techniques are methods for selecting atoms ¢~ from a redun-
dant dictionary, ® = {¢,},er, to provide a signal representation, (or approximation),
as a linear superposition of the selected atoms. A representation of signal, x, can be

given using atoms from ® as

x = Zozﬁygi)ﬂY (3.26)

yel’

where o, is the coefficient associated with ¢,. An approximation of x using m atoms

can also be given by

T = O‘fyiﬁb'yi (327)

The signal left over from the approximation, R™x = x — Z, is often referred to as the
residual. The method of selecting the atoms for signal representation or approximation
constitutes an atomic decomposition technique. A number of atomic decomposition
techniques are available, including: best orthogonal basis, method of frames, matching
pursuit (MP) and basis pursuit (BP) [89, 90, 37, 88|.

For certain redundant dictionaries, such as the cosine packet (CP) and wavelet
packet (WP) dictionaries, it is possible to have subcollections of atoms which form or-
thogonal bases. Using these dictionaries, the best orthogonal basis algorithm finds the
orthogonal basis whose corresponding coefficients have the minimum entropy [88]. How-
ever, by choosing a single basis, the representation still cannot provide high resolution
for signals with structures that have highly varying TF supports.

Method of frames picks out the representation, given in (3.26), whose coefficients

have the minimum ¢? norm; expressed as [88]

min ||a|l2 subject to x = Z Qy by (3.28)
~yel'

However, there are two major problems with this atomic decomposition technique. First,

its representation is generally not very sparse’, which is a desirable characteristic for

TA sparse representation is defined as one with the minimum number of significant atoms [88].
Sparse representations will be discussed in detail in chapter 5.



An Overview of Time-Frequency Signal Representations 39

atomic decomposition techniques. Second, examples have shown that method of frames

gives poor resolution in its representations for a variety of signals [88].

MP is currently finding application in a multitude of engineering areas. MP is an
iterative algorithm that selects the atom which best represents (i.e. correlates with)
the signal residue at each iteration. That is, the atom selected at each iteration is the
one for which the projection of the residual, using the inner product, is largest. The

objective function for each iteration of MP is given by

vi = arg{sup(R'z, 6,)} (3.29)
~yel'

Using (3.29) at each iteration, the MP decomposition of a signal, z, approximating with

m atoms, is given as

—_

m—

T = Z (R'w, dri)yi + R™x (3.30)
i=0
where the inner product, (R'z, ¢~i), is taken as the coefficient value associated with the

atom ¢.;. It should also be clearly noted that at i = 0 we have Rz = z.

Each atom in @ is generally normalized such that

oy (Oll2 =1; ¥y (3.31)

The normalization of the dictionary removes any magnitude bias in the projection of the
residual vector onto the dictionary vectors. A thorough description of the MP algorithm
is provided in [37].

BP is a recently proposed atomic decomposition technique [88]. It was introduced
as an alternative to previous decomposition techniques in an attempt to provide the
sparsest representation and with the ability to resolve signal structures that are close in
time and frequency. BP decomposition is an optimization method which tries to solve

the following problem:

min |||l subject to x = Z:owgb7 (3.32)

yel’
This optimization problem can be expressed in terms of a linear programming problem
of standard form. Any available linear programming technique can be used to solve
the BP optimization problem. The simplex method and interior point method were
proposed in [88]. Finding a solution to the linear programming problem as applied to

BP criteria is equivalent to finding the basis with the minimum ¢! norm of coefficients
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such that

z
L

i

Il
=)

where NV is the length of the discrete signal . For the BP representations, the selected
atoms are linearly independent, but are not necessarily orthogonal.

The simplex method initially chooses N atoms from the dictionary as the first guess
of the optimal basis. The next step is to swap the atoms from this basis with other
atoms from the dictionary so as to improve the objective function (i. e. minimum ¢
norm of coefficients). Using the simplex method there is always a swap that can improve
the objective function until the optimal solution is found. This can be thought of as
jumping from one vertex to another on the boundary of the simplex until the optimal
solution is found. The interior point method begins by choosing a point inside the
simplex. The first vector of coefficients a(?), which gives the initial point inside the
simplex, also provides the initial overcomplete representation ®a(®) = f. The interior
point method iteratively modifies the coefficients in a way that moves the point in the
simplex toward the outer vertex which is the optimal solution. The iterations continue

until there are < N atoms which are significantly non-zero [88].

3.5.1 Time-Frequency Representation from Atomic Decompositions

Joint TFR of a signal can be derived from the TF atoms selected in the atomic decom-
position. The TFR is obtained by the summation of the estimated TF contribution of

each of the selected atoms such that

Eu(t,f)= Y loyl’Eg,(t, ) (3.34)

v€lap
where I" gp is the set of atom parameters relating to the atoms chosen in the decompo-
sition to represent the signal.
There are various methods of estimating the TF contribution of each TF atom. Two

such methods include:

1. The WVD of TF atoms, (see (3.10)).

2. Heisenberg boxes [37, 81].

A Heisenberg box is formed by evaluating the spread of the atom in time and frequency

and assigning a rectangle to cover that area of the TF domain. This is shown in Figure
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Figure 3.5: Heisenberg boxes of two TF atoms.

3.5 with two TF atoms® localized around different time and frequency positions and
with different bandwidths and durations.

A TF dictionary that is regularly used is the Gabor TF dictionary. This dictionary
consists of dilated, s, translated, v, and modulated, £, Gaussian windows ¢(t), such

that the dictionary atoms are expressed as

6,(0) = o () e (3.39
where v = [s,u,£] and I' = Rt x R2. The WVD distribution is highly suitable for
estimating the TF contribution of the Gabor atoms. This is because the WVD of a
Gaussian signal is a positive 2D Gaussian centered at the time and frequency position
of the translation and modulation parameters and shaped by the scale parameter. Using
the time and frequency shift invariance properties of the WVD, the Gabor TF atom

has a WVD [37]

t—u

W, (L, ) =W ( ,s(f — 5)) (3.36)

8Note that the windows in Figure 3.5 only indicate the durations, bandwidths and time and frequency
centers of the atoms, not the actual atom functions.
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The Gaussian window, which is usually chosen, and its corresponding WVD are [17, 37]
o(t) = 214 — Wy(t, f) = 227+ (3.37)

where Wy(t, f) is the WVD of the Gaussian window ¢(t).

Other TF Dictionaries that are regularly used for decomposition by MP and BP
include the CP and WP dictionaries [37, 81, 88]. WP and CP dictionaries generally use
Heisenberg boxes to estimate the TF contribution of atoms. Figure 3.6(a) and 3.6(b)
show the TFR of the multicomponent signal shown in Figure 3.4, using MP and BP
respectively. The Gabor dictionary has been used with MP and the CP dictionary
has been used with BP. It can be seen that the Gabor dictionary using the WVD to
estimate atom contribution provides a more aesthetic TFR than the CP dictionary using
Heisenberg boxes. This is due to the smooth 2D Gaussian nature of the WVD of the
Gabor atom. However, from both representations it is obvious that no crossterms exist.

The crossterm free representation is simply explained by the formulation of the
TFR. By adding, individually, the TF contribution of the selected atoms, the crossterms
between the selected atoms is neglected and therefore not added into the representation.
This can be explained with a simple example. Consider a signal with a decomposition
which contains two Gabor atoms. If we use the WVD to estimate the TF contributions,
using (3.34), the TFR would be

1
Eu(t,f) =) layil> WV Dy (¢, f) (3.38)
=0

It can be seen that the TFR in (3.38) does not include WV Dy_y4., (¢, f), which is the
interference term produced in the traditional WVD (see (3.23)).

Another benefit of using atomic decomposition is that the signal decomposition
also provides a TF parameterization of the signal [42]. That is, TF parameters such as
dilation, translation and modulation associated with the selected TF atoms also provide
information about signal characteristics. Also, for noisy signals, approximations using
atomic decomposition techniques can lead to lower signal to noise ratios (SNR) in the
TF plane [37, 88].

3.6 Summary

The analysis and processing of nonstationary signals requires techniques that can show
the time-varying spectrum characteristic of these signals. This chapter has demon-

strated that TFSA is appropriate for the analysis of nonstationary signals. However,
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Figure 3.6: TFRs of a multicomponent signal using (a) MP with a Gabor dictionary
and (b) BP with a CP dictionary.

there are many different techniques for obtaining a TFR.

Linear TF transforms were introduced as a method of TFSA. Although they are
widely used, these methods are restricted because of the limited TF resolution attainable
in their TFR. A review of QTFDs was given, beginning with the WVD. Despite the
desirable properties of the WVD, it was shown that its representation was not suitable
for nonlinear FM signals and multicomponent signals due to the crossterms produced
by the bilinear transform. The spectrogram was explained and shown to be related to
the WVD. Although it was not severely affected by crossterms, it was shown that the
lower TF resolution of signal components was attained from the spectrogram. It was
then demonstrated that smoothing of the WVD, to provide RIDs, could produce much
more comprehendible TFRs. Finally, we presented an overview of atomic decomposition
techniques and illustrated their ability to provide a joint TFR. We also demonstrated

how atomic decomposition can be used as methods of TF parameterization.



Chapter 4

Newborn EEG Simulation

4.1 Introduction

he newborn EEG is a highly complex signal, which has been shown to exhibit
T nonstationarities as well nonlinearities [20, 91]. Therefore, different signal process-
ing techniques such as TFSA techniques (for nonstationarity) and nonlinear techniques
(for nonlinear and chaotic behaviour), are required for analysis of these various charac-

teristics.

Nonlinear behaviour is a significant characteristic of the newborn EEG background
[27, 91], which has also been shown to exhibit nonstationarities [19, 20]. The promi-
nent characteristic of the newborn EEG seizure is its nonstationarity [20]. Therefore,
in developing a method for newborn EEG simulation, the nonlinear nonstationary be-
haviour of the newborn EEG background and prominent nonstationary behaviour of

the newborn EEG seizure must be carefully considered.

In this chapter, we develop a method for simulating newborn EEG background and
a method for simulating newborn EEG seizure, which can be combined to provide a
method of artefact free, newborn EEG simulation. In section 4.2, we provide an intro-
duction to nonlinear time series analysis and review fractional dimension as a nonlinear
measure. It is then demonstrated in section 4.3, that the background newborn EEG
exhibits nonlinear characteristics and we analyze real newborn EEG background using
fractal dimension (FD). Using the results from the FD analysis and fractal theory, we
propose a method of simulating newborn background EEG. In section 4.4, we propose
a method of simulating newborn EEG seizure using the TF characteristics of real new-
born EEG seizure. This method incorporates a time—frequency signal synthesis (TFSS)
process which transforms the simulated newborn EEG seizure TFR into a newborn

EEG seizure time domain signal.

44
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4.2 Nonlinear Analysis Techniques

Linear models for signal analysis are suitable as an initial approximation in most engi-
neering applications. However, linear equations can only lead to exponential growth /decay
or periodically oscillating solutions [92, 93]. All other irregular behaviours of a linear
system are considered as a result of randomness in the signal. Chaos theory, however,
demonstrates that irregular outputs of a system are not only a result of irregular input
to a system, but can also be obtained through nonlinear systems with deterministic
equations [93]. In this section, we give a brief overview of nonlinear signal analysis
techniques.

The phase space reconstruction of discrete time series is the focal tool used in non-
linear analysis. The phase space is created using various lag samples of the time series
to form a d-dimensional multivariate space such that for a discrete signal z(n), the

d-dimensional vectors are [92]

y(n)=lz(n),z(n+T),z(n+2T),...,z(n+ (d — 1)T)] (4.1)

where T is the time lag interval for the state space in samples. This process is referred
to as phase space reconstruction by method of delays [93]. The dimension, d, is called
the embedding dimension of the phase space. A typical phase portrait with embedding

dimension two and time lag of one sample for the nonlinear Hénon map, described by

z(n) =14 —2%(n —1) + 0.3z(n — 2) (4.2)

is given in Figure 4.1. This time series is not periodic, but instead chaotic [93]. The
random nature of the chaotic signal becomes structured in the phase portrait.

A number of nonlinear signal measures can be calculated from the phase space
reconstruction of a time series. These measures are methods of quantifying the nonlinear
properties of the signal in the hope of enhancing the knowledge of the underlying system

[93]. One such measure is fractional dimension of a time series.

4.2.1 Fractal Dimension

Fractal signals with fractional dimension are typical of chaotic systems [93]. Correlation
dimension is one of several methods used to quantify self-similarity associated with
fractal signals. It is defined by the correlation sum, C(e), for a collection of points y,
in a vector space, (i.e. the phase space). The correlation sum is the fraction of points

that are closer than a defined distance € according to a particular norm and is given as
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Nonlinear Analysis Techniques

Phase Portrait

-15

Figure 4.1: The phase portrait of a Hénon map time series.

9 N N
Cle) = N(T_l);j;l@(e— ly: = y;ll)

where O is the Heaviside step function

@(x):{ 1:2>0

0:2<0

and N is the number of vectors. In essence, the double sum of the Heaviside function

(4.4)

in (4.3) counts the pairs of (y;,y;) whose distance are less than e. The correlation

dimension is then given as the power law relating € to C'(€) such that

dlnC(e)
D=—+
dlne

The use of the correlation dimension, however, is limited to stationary signals as it

suffers considerably from nonstationarities in the signal [93].

(4.5)

Previous to the development of these nonlinear techniques based on the phase space
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reconstruction, the power spectrum was used as the dominant means of analyzing ir-

regular time series. When a signal spectrum, S(f), exhibits a power law such that

S(f) o [T (4.6)

the power law exponent, -, can be used as a measure of irregularity or complexity. To
obtain the power law, an ensemble average of power spectra over a long time period
has been used, assuming that the signal is statistically stationary [94]. This method of

analysis is therefore, inappropriate for nonstationary signals such as the newborn EEG.

There is a relationship between a signal with a spectral power law of |f|~ and the

theoretical FD of the signal. It can be shown that the FD of a signal with a spectrum

c
S(f) = - 4.7
=1 (4.7)

where ¢ is a constant, will have a FD of [95]
D= 5_T7 (4.8)

If the FD can be accurately estimated over short periods, it may be used to track
nonstationarities in the signal'. It could also provide much better time resolution of
signal complexity than the power law exponent ~.

In [96], a comparison between FD estimators was performed. The comparison found
that the Higuchi method provided the most accurate results for estimating the FD.
Therefore, in our analysis of the newborn EEG we have only used the Higuchi method
[94] for FD estimation.

Higuchi FD Estimation

Consider a discrete time series xz(n) of length N. From this time series we can construct

k new time series, x}", for each value m such that

o = |a(m), w(m + k), 2(m + 2K), ... & <m + {WJ k)] (4.9)

where m and k are integers that indicate the initial time and time interval respectively.
The function |u] gives the integer part of w. The length of the constructed time series
in (4.9) is defined as

LA time-varying FD relates to a time-varying power spectrum, or nonstantionary signal.
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L(N—m)/k| N_1

Lo(k)= > |a(m+ik) —z(m+ (i — k)| X =

i=1 LTJ -k

The term (N —1)/|(N —m)/k] - k is a normalization factor for the curve length of the
subset time series.

The length of the signal for the time interval k, < L(k) >, is then defined as the

(4.10)

average value over k sets of Ly, (k) such that

k
L, (k
<L@g>:ZQL%lil (4.11)
If < L(k) >oc k=P, then the signal will have dimension D. For Higuchi’s method,
the FD can be found from a linear least squares fit of the curve, log(< L(k) >) versus
log(k). This technique gives stable indices and time scale from a small number of data

[94], giving it the ability to track nonstationarities in a signal.

4.3 Newborn EEG Background Simulation

Power spectrum analysis has been a major tool in the analysis of the newborn EEG.
However, as demonstrated previously in chapter 3, it cannot display all relevant infor-
mation from nonstationary signals, nor can it give accurate information regarding the
nonlinearities of nonlinear, nonstationary signals. However on inspection of the new-
born EEG background power spectra, we can see that it follows some form of power
law. This is demonstrated in Figure 4.2(a) and 4.2(b), which gives the power spectra
of two background EEG epochs.

The fact that the newborn EEG background exhibits some form of power law in
the power spectrum infers that it may be fractal in nature. Along with its demon-
strated nonstationarity, this suggests that FD estimation using the Higuchi method is

appropriate for analysis of the newborn EEG background.

4.3.1 Fractal Dimension Analysis of the Background EEG

The EEG data used in this analysis was acquired at the Royal Womens Hospital, Bris-
bane, Australia, using the MEDELEC? system?®. Electrodes were placed on the scalp
according to the 10-20 international standard of electrode placement and twenty EEG
channels were obtained using bipolar montage. Signals were bandpass filtered with cut-

off frequencies at 0.5Hz and 30Hz, with a sampling frequency of 64Hz. The recordings

MEDELEC is a product of oxford instruments (see www.oxford-instruments.com)
3 A detailed description of the EEG data acquisition is given in Appendix A.
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Figure 4.2: The power spectrum of two newborn EEG background epochs, demonstrat-
ing the power law associated with the spectrum.

from three newborns were used in this analysis and were marked as seizure free periods

by a neurologist.

As a result of the bandpass filtering, the lowest significant frequency in the recorded
newborn EEG is 0.5Hz. For a fractal signal to be considered stationary it must be at
least twice as long as the period of the lowest significant frequency component [93]. It
was shown that the newborn EEG can be significantly nonstationary for periods as low
as 6 seconds [20]. Therefore, using this information, we decided to segment the EEG
recordings into epochs of 256 samples (i.e. 4 seconds) which fits the requirements of a

quasi-stationary period for the newborn EEG background.

A total of 5000 epochs from three newborns were assessed using the Higuchi method
of FD. The FD estimates appeared to be random with an estimate of the probability
density function (pdf) shown in Figure 4.3.

The Lilliefors and Jarque-Bera tests for goodness—of-fit to a normal distribution
were applied to the FD estimates. Both tests indicate that the FD estimates were
not normally distributed at the 5% significance level. Therefore, we assumed that the
distribution was a Beta distribution. Using the betafit function in Matlab, we estimated
the parameters « and [ for the Beta distribution, along with there 95% confidence

intervals to be
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Figure 4.3: An estimate of the pdf for the FD of real newborn EEG background.

7.5620
7.1323

7.3770

8= 7.1321{ (4.12)

a ="7.3471
6.8873

The relatively small confidence intervals indicate the likeness of the estimated Beta
distribution to the dataset. The distribution has a mean of 1.51 and a standard deviation
of 0.125, which can both be derived from « and (3. The theoretical pdf for the defined

Beta distribution* of the FD estimates is also shown in Figure 4.3.

“The Beta distribution is a two parameter (i.e. o and ) distribution which has a finite density if
a, B > 1, and the integral is finite if «, 5 > 0.The density function for the Beta distribution is expressed
as [97]

A0 = Harg” -0
6 € [0,1]
where 8
E0) = 15 Va0 = CEE Py (4.13)
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4.3.2 Background Simulation Algorithm

The simulation of the newborn EEG background is based on the formation of signals
which have similar fractal and time—varying characteristics as the real newborn EEG
background. To create the desired fractal signals with known FD, we start with a power

spectrum Sy, (f) representative of a white sequence, such that

Sy (f) =r? (4.14)

where r is a positive constant. We then multiply the power spectrum in (4.14) by
the power law sequence that relates to the desired theoretical FD to give the power

spectrum of the fractal signal,

Se(f) = 777 = Xr(f)XE(f) (4.15)

where

Xp(f) = |f|7;/2 306 (4.16)

is the FT of the fractal signal, x(¢). The mapping from Sr(f) — Xp(f) is not unique
because the phase information 0(f) has been discarded in power spectrum. Therefore,
in generating our desired fractal signals we have chosen 6(f) to be a realization of
stationary random process O(f), with uniform distribution on the interval [0,27). The
hypothesis of a uniform distribution was tested using the Kolmogorov-Smirnov test on
five hundred newborn EEG background epochs and could not be rejected at the 5%
significance level.

The FT of a real signal gives a function with Hermitian symmetry®. This means
that for the realization of the random process, §(f), we only need the frequency variable
f to be positive (i.e. f € RT), as this will also provide us with the negative frequency
values of §(f). Once 0(f) has been obtained, we can obtain the fractal signal by taking
the inverse FT of (4.16), such that

wp(t) = /_ T Xp(p)eitds (4.17)

Insignificant power in frequencies less than 0.5Hz, is generally removed from the
EEG by highpass or bandpass filtering [71, 98]. Therefore, to simulate EEG data, our
next step was to highpass filter the fractal signal. To investigate the effect of filtering
on the synthetic fractal signal, we plotted the FD estimate of the non—filtered signal
versus the FD estimate of the filtered signal in Figure 4.4.

A function, g(t), is Hermitian if g(t) = g*(—t).
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Figure 4.4: FD estimate of the non—filtered signal versus the FD estimate of the filtered
signal.

The plot in Figure 4.4 shows that the FD estimate of the filtered signal is approxi-
mately equal to the FD estimate of the non—filtered signal from 1.2 to 1.8, for which a
large proportion of the real EEG is estimated (see Figure 4.3).

To simulate the newborn background EEG, we chose to create synthetic epochs of
length 256 samples, which is the same length used in the analysis of the real newborn
EEG background. The theoretical FD of each epoch was randomly chosen according
to the Beta distribution with parameters o = 7.35 and 3 = 7.13, as was explained in
section 4.3.1. The epochs were then highpass filtered with cutoff frequency randomly
selected according to a uniform distribution on the interval [0.4,0.6]Hz to vary the peak
frequency. The synthetic epochs were then concatenated to form the synthetic signal.
The synthesized signals are therefore nonstationary as a result of the epochs having
varying FD and peak frequencies.

Figures 4.5(a) and 4.5(b), show an epoch of the simulated newborn EEG and real
newborn EEG, in the time and frequency domains respectively. It is clear from Figure
4.5(b) that both the simulated and real EEG have similar spectral power laws. It should

also be noted that the simulated signal in Figure 4.5(a) is free of artefacts, as are all
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the simulated newborn EEG background using this technique. This is desirable for the

initial evaluation of some detection algorithms.
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A comparison between the real and simulated EEG in the TF domain, using the
B—distribution [21], is shown in Figure 4.5(c). These plots show the nonstationarity of
the real and simulated EEG. Figure 4.5(c) also shows that neither the real or simulated
EEG have any clear pattern in the TF domain. Instead they both exhibit random
fluctuations in the IF content which is a known characteristic of the newborn EEG
background [16].

Evaluating newborn EEG simulation algorithms is a difficult task. However, this
method of simulation allows for both the nonlinear and nonstationary characteristics of
the newborn EEG background where previous methods of newborn EEG background

simulation, such as [1, 27|, make the invalid assumption of stationarity.

4.4 Newborn EEG Seizure Simulation

A prominent characteristic of newborn EEG seizure is its nonstationarity. The TF
patterns of the nonstationary newborn EEG seizure have been extensively studied and
classified in [16, 20, 99]. This indicates that the simulated newborn EEG seizure should

somehow incorporate the general TF characteristics found in the newborn EEG seizure.

Two models for newborn EEG seizure simulation have previously been proposed.
The first technique developed by Roessgen in [1] is based on some physiological pa-
rameters of the brain and utilizes a stationary sawtooth waveform. This technique was
recently extended by Boashash and Mesbah in [16] to incorporate a single LEM signal.
Celka and Colditz have also developed a piecewise LFM model of seizure based on a

Weiner filter with sawtooth inputs and nonlinear gain [27].

The Roessgen model lacks the incorporation of nonstationarity, while Boashash’s
and Mesbah’s addition only handles single LFM behaviour, not the piecewise LFM
often seen in seizure. The method proposed by Celka and Colditz lacks time-dependent
signal shape and time-dependent harmonic magnitude variation. It is also unable to

simulate the sharp repetitive spikes often associated with newborn EEG seizure.

Our proposed method of newborn EEG seizure simulation makes use of the piece-
wise LFM patterns outlined in [16, 20, 99|, as well as the results from our own TF
investigation. Using these defined patterns, we generate various TF templates of new-
born EEG seizure. The TF templates are then mapped to the time domain using the
modified short—time Fourier transform (MSTFT) magnitude method [100]. We refer to
this operation as time—frequency signal synthesis (TFSS).
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4.4.1 Seizure Simulation Algorithm

Initially, the desired seizure length is determined. The parameters for the seizure are
chosen from their specific sampling distribution, which were based on our TF analysis
of newborn EEG seizure. These parameters include the number of LFM pieces in
the IF law, the slope of the LFM pieces, the seizure start frequency, the envelope of
each harmonic component (relative amplitude and frequency), the SNR and seizure to
background ratio (SBR). The parameter range and parameter sampling distribution are
specified in Table 4.1. Note, as the beta distribution ranges from 0 to 1, the range value is
used to correctly scale the sampling distribution. We have chosen the beta distribution
because the distribution can be skewed and shaped using the chosen parameters, to

match the observations from our TF analysis®.

Table 4.1: Parameter ranges and distribution

parameter range distribution
LFM slope (Hz/sec): {a} -0.07:0.07 Beta(2,4)
LFM pieces: {N} 1:4 Beta(3,3)
LFM envelope amplitude -0.25:0.25 Beta(1,1)
SNR (dB) 10:20 Beta(1,1)
SBR (dB) 10:15 Beta(1,1)
seizure start frequency (Hz)  0.5:3.5 Beta(2,4)

The initial IF law of the fundamental component is generated from the selected

parameters according to,

N
)= aiti +ci, (4.18)
i=1
where,
0 for t < tfo,
=<t for i, <t <t (4.19)
0 for t > ti,,

where f;(t) is the IF law, a; is the slope of the i* LFM piece, ¢; is a constant to correctly
align the pieces of the IF law, N is the number of pieces in the piecewise LFM and tfo
and tfn are uniform random variables ranging across the epoch with tfli conditioned on
ti, such that ¢}, >t (see Figure 4.7).

The TF image is initially constructed, using the IF law, with a number of harmonics.
The magnitude of each harmonic component, including the fundamental component,

is multiplied by a specific, oscillating, random amplitude envelope that is estimated

A special case of the Beta distribution is Beta(1,1), which is the uniform distribution.
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using cubic spline interpolation (fenvelope(t) << f(t)). The TF image is smoothed,
along the frequency axis, using a one—dimensional Hamming window that is scaled
according to the seizure length. The two—dimensional, TF image is then synthesized into
a one—dimensional, time domain signal using the MSTFT magnitude method assuming
a sampling frequency of 10Hz. The seizure simulation protocol is outlined in Figure 4.6.

The MSTFT magnitude method uses an iterative technique developed by Griffin and

Lim, [100], to estimate the discrete time domain signal x[n]. The difference between
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\ 4

SELECT
SIGNAL
PARAMETERS

« BETA(a,b)

\ 4

GENERATE IF LAW

A 4

GENERATE MODIFY
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Figure 4.6: Block diagram of newborn EEG seizure simulation algorithm.
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the desired STFT and the update STFT is minimized in this procedure. The update

equation is as follows,

S wln —m] [0, Xin, el ™ df

zip1[n] = = Zis:—oo;?é?n — ] (4.20)
where,
K, ) = |Y[n,f>|%, (421)

Y[n, f) is the desired STFT, X;[n, f) is the i*" update STFT, z;[n] is the i*" update
synthesized signal, w[n — m] is the STFT window, n is discrete time, f is continuous
frequency and m is the discrete time lag. The signal is synthesized with an initial x[n]
of white Gaussian noise. In this case, the stopping criterion of the MSTFT magnitude
method is the iteration number (. = 200). Further details on the convergence of the

algorithm can be found in [100].

This method of signal synthesis was chosen over other available techniques as the
signal synthesis is performed on a much simpler image than other techniques, which
require the incorporation of crossterms in the original image. Also, the MSTFT mag-

nitude method does not require any knowledge of the synthesized signal’s initial phase.

An example of the TF template and its associated TF seizure image are shown in
Figures 4.7(a) and 4.7(b) respectively. The one-dimensional simulated seizure signal
using the TF image in Figure 4.7(b) is shown in Figure 4.8(a). It can be seen that the
simulated EEG signal exhibits similar characteristics, in the time domain, to the real

seizure signal in Figure 4.8(b).

For a more quantitative analysis, specific segments of real EEG seizure were analyzed
with the intention of extracting an approximation to the piecewise LFM law and the
component envelope. These values were fed into the seizure simulation algorithm and
the TF images were then correlated to assess the similarity between simulated and real

seizure. The results of this experiment, conducted on five seizure epochs, are shown in
Table 4.2.

Table 4.2: The results of the seizure simulation technique, = 0.8, o2 = 0.03.

trial correlation

1 0.861
2 0.920
3 0.943
4 0.486
5 0.789
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Figure 4.8: Comparison between the (a) synthesized seizure and (b) real seizure signals

An example of the TF output of the experiment is shown in Figure 4.9. The synthe-
sized seizure is plotted above the real seizure in Figure 4.10. The general shape of the
simulated TF image conforms to the seizure epoch with a correlation coefficient of 0.94.
In the time domain the signal has the general characteristics required of a simulated
signal, [16, 27], notably, nonstationary frequency content, moderate “spiky” behaviour,

asymmetric oscillation and envelope amplitude variation.

The simulated EEG provides the essential signal structures seen in EEG seizure,
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Figure 4.10: Time domain comparison of real and simulated seizure.

particularly in the TF domain, as outlined in [16]. This is shown in the high two—

dimensional correlation coefficients between real and simulated signals. However, not

all forms of seizure fit into this general piecewise LEM pattern of behaviour. This can be
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Figure 4.11: Simulated and real seizure.

seen by the low coefficient in trial 4. This particular form of seizure has a higher relative
noise component, a non—-piecewise LFM IF law, more transient events and contains
severe “spiky” behaviour compared to other seizures. These phenomenon contribute to
an effective whitening of the spectrum which interferes with the simulative capacity
of a piecewise LFM model. Nonetheless, the synthesized seizure still has sections that
provide a good approximation, in addition to poor approximation sections. This is
shown in Figure 4.11.

The advantage of using TFSS over other techniques is its relative simplicity, its
ability to handle spectral distortion and the discontinuities of the piecewise IF law.
In addition, this technique can provide a larger variety of seizure waveforms, within
BT7 product limits, depending on the fundamental TF template or templates chosen.
This modularity has an advantage over a method such as Celka’s which would require
additional complexity to incorporate other forms of seizure.

By combining the simulation algorithm for the newborn EEG background and new-
born EEG seizure, we develop a complete newborn EEG simulator. This system for
EEG simulation is demonstrated in Figure 4.12. During seizure periods the range for
the gain values are given in Table 4.1 via the SBR. The seizure plus background is the

new signal used as the signal in the evaluation of the SNR and the noise is additive

"The BT product refers to the value of the effective bandwidth of the signal multiplied by the
effective duration of a signal and is a measure of signal richness [80].
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Gaussian white noise. During nonseizure periods, the gain associated with the seizure
signal is zero and the background is the signal used for the SNR.

Figure 4.13 shows an example of simulated EEG using the combination of the two
proposed algorithms. Channel 1 and 2 both contain seizure starting at 40 seconds and
lasting until 80 seconds. However, channel 3 does not contain any seizure. This example
is simulative of a real EEG seizure event in the newborn and could be used for assessing

automatic seizure detection algorithms.

4.5 Summary

This chapter presents a method for simulating newborn EEG background and a method
for simulating newborn EEG seizure. It was shown that the power spectrum of real new-
born EEG background closely follows a power law of the form S(f) o< |f|~. Using this
result, it was assumed that the newborn EEG background exhibited fractal charac-
teristics. Therefore, we analyzed real newborn EEG background using a FD estimate
obtained from the Higuchi method [94]. It was then assumed that the FD of the new-
born EEG background was random and it was estimated that the distribution was a
Beta distribution with o = 7.35 and 8 = 7.13. The simulated newborn EEG back-
ground was then created by concatenating fractal epochs, randomly chosen according
to the defined Beta distribution, with peak frequencies between [0.4,0.6]Hz, also chosen
randomly. Previous background EEG simulation methods have assumed stationarity.
However, our proposed newborn EEG background simulation algorithm has allowed for
the nonlinear and nonstationary characteristics observed in real newborn background
EEG.

The proposed newborn EEG seizure simulation algorithm was developed by taking
into account the prominent TF characteristics that have been observed in the TFSA of
real newborn EEG seizure. The algorithm begins by creating a TF template of newborn
EEG seizure that mimics the observed TF seizure characteristics of real newborn EEG
seizure. The TF templates are then mapped to the time domain using a TFSS technique
called the MSTF'T magnitude method. It was then demonstrated how the background
and seizure simulation algorithms could be combined to form a complete newborn EEG
simulator which can be used for the testing and comparison of automatic newborn EEG

seizure detection algorithms.



Chapter 5

Detecting Signal State Changes
Using MP-Based Structural
Complexity

5.1 Introduction

tomic decomposition techniques using redundant dictionaries have become in-
A.creasingly popular alternatives to traditional signal representations which make
use of orthogonal bases. By incorporating redundant dictionaries, these techniques can
adaptively select optimal waveforms to represent the signal. This can lead to higher
resolution and sparser signal representations.

The MP algorithm, proposed by Mallat and Zhang [37], is one such decomposition
technique which is gaining popularity. It has been applied in many different signal
processing areas. In particular, it has been recently used for the analysis of adult EEG
[38, 39, 40, 42] and has been incorporated into an automatic adult EEG seizure detection
algorithm [43]. The MP algorithm using TF dictionaries has a number of advantages
over classical analysis techniques. It can provide information about the time—varying
characteristics of nonstationary signals without introducing crossterms, as in the case
of QTFDs [37]. It can also provide information on the nonlinearities in the signal [39].
Another advantage of the MP algorithm is that it can be used as a denoising tool.

The denoising technique of MP relies on the TF dictionary being more coherent with
the desired signal structures than the noise component. This means that the atoms
representing the desired signal structures will be chosen first in the MP decomposition.
Therefore, if the iterations are stopped before the noise component is represented, we

can reconstruct a signal or obtain a TFR with less noise. The change in exponential

63
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decay of the absolute value of the atom coefficient value is generally used as a stopping

criterion for denoising with MP [37].

Another atomic decomposition which has only recently been proposed is the BP
decomposition technique [88]. Like the MP algorithm, BP can also provide crossterm
free TFRs and has denoising capabilities. BP decomposition was proposed with the
goal of providing a sparser signal representation than MP. However, in many signal
processing applications, such as signal and image compression and denoising, only an

adequate signal approximation is required instead of a complete signal representation.

In this chapter, we begin by comparing the sparsity of signal approximations from
both MP and BP decompositions. This comparison is done in order to determine which
of the two decomposition techniques generally provides the sparsest signal approxima-

tion.

We then introduce a new signal complexity measure in section 5.3, referred to as
signal structural complezity (SC). The measure is shown to be a quantification of the
coherency between the decomposition dictionary’s atoms and the structures within a

signal.

Often, if the underlying process generating the signal undergoes some type of change,
this will generally reflect on the signal itself. Through synthetic examples in section
5.3, we demonstrate how the SC measure can be incorporated as a method of detecting

changes in signal structure and, therefore, state of the underlying process.

The generic detection methodology based on the change in the SC measured is then
applied to the automatic detection of newborn EEG seizure in section 5.4. To optimize
this automatic detection method, we develop a TF dictionary that is coherent with
newborn EEG seizure structures. The automatic detection method is demonstrated
firstly using synthetic newborn EEG data and then confirmed using real newborn EEG
data.

5.2 Sparsity Comparison of MP and BP Approximations

There are three desirable attributes of a decomposition technique that have been defined
by Chen et al. [88]. The first attribute is speed, which means that a decomposition
algorithm should run in the order of O(N) or O(Nlogy(N)) time. Secondly, it is
desirable for a decomposition technique to be able to resolve components that are close
in time and frequency (i.e. superresolution). Thirdly, a decomposition technique should

aim to provide the sparsest (most compact) representation, which is the representation
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with the fewest significant coefficients’.

It has been shown through a number of computational examples that BP provides
a sparser signal representation than MP [88]. Also, for some specific redundant dictio-
naries, it has been shown that the ¢! optimization of the BP algorithm results in the
optimally sparse representation, which has been referred to as the ideal signal repre-
sentation [101]. However, in many signal processing applications we only require an
adequate signal approzimation instead of a complete signal representation.

An approximation of the signal z(¢) using MP or BP can be written as:
T=x—eq (5.1)

where e, is the approximation error (n.b. it was previously referred to as the residual
in Chapter 3). A relative measure of approximation accuracy is defined through the

signal to error ratio (SER), expressed as

SER = 10logy, ( Eq ) dB (5.2)
E.,

where E,; and E,, represent the energy in the signal and energy in the error signal, e,,

respectively.

If a desired level of signal approximation, SERp, is predefined, it can be used as
a stopping criterion for MP. That is, at iteration ¢ of the MP algorithm, SER% is
compared with SERp. If SERf% > SERp the iterations are stopped, otherwise, the
iterations are continued. The atoms selected in the approximation are referred to as
the significant atoms.

Determining the significant atoms from a BP decomposition differs slightly from
MP. The BP decomposition technique does not select its atoms iteratively like MP, but
instead iteratively improves the signal representation according to the objective function
(see Chapter 3). Therefore, after BP has obtained its optimal signal representation, we
then iteratively add the selected atoms in order of their coefficient value (i.e. largest

coefficient to smallest) until the signal approximation achieves SER; > SERp.

5.2.1 Comparison Experiment

To compare the sparsity of signal approximations using MP and BP, we developed an
experiment using two real life signals; a whale song and a newborn EEG recording. In

this experiment we segmented the real life signals into 50 epochs of length 512 samples.

Tt should be noted that significant coefficients and significant atoms are used interchangeably to
represent the number of atoms (coefficients) in a signal representation.
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The WP dictionary was used for both decomposition techniques. The range of desired
signal approximations levels were, SERp = [7.5,10,12.5,15,17.5,20].

Figures 5.1(a) and (b) show the average number of significant atoms needed by
MP and BP, at each approximation level, for the whale signal and EEG recording
respectively. It can be seen from the plots in Figures 5.1(a) and (b) that the BP
decomposition, on average, requires more atoms than MP to approximate both the
whale song and EEG recording. These two examples indicate that MP provides the
sparsest signal approximation. In fact, extensive testing using different types of real life
and synthetic signals show that MP generally provides a sparser approximation than
BP [46, 47].

Recently, it has also been proven that for quasi-incoherent® dictionaries, the orthog-
onal MP (OMP)? provides a sparser approximation than BP [102]. For this reason,
as well as our experimental results shown in this section and in [46, 47, 49|, we have

adopted MP as the preferred signal decomposition method in this thesis.

5.3 Structural Complexity

An important feature from an MP decomposition is the number of significant atoms.
This feature can provide information about the structure of the signal under analysis
in relation to the decomposition dictionary. For example, if a signal has components
that have strong correlation with the decomposition dictionary’s atoms, fewer significant
atoms will be needed to approximate the signal. We qualify this by saying that the signal
complexity is low. These signal components are referred to as coherent structures |37].
If the signal structures change such that their correlation with the decomposition dictio-
nary’s atoms is reduced, the number of significant atoms needed for the approximation
will increase, which indicates that the signal complexity has become higher. Therefore,
we can use the number of significant atoms in a signal approximation to quantify the
complexity of a signal. We refer to this measure of complexity as structural complexity
(SC).

Figure 5.2 shows the basic methodology for obtaining the SC measure. It can be

seen from Figure 5.2 that the SC measure is a function of:

1. Desired level of accuracy of the approximation (SERp)

2The definition of coherent and incoherent here is based on the coherency between atoms within the
decomposition dictionary. This should not be confused with our definition of coherent which is based
on how much atoms from the decomposition dictionary correlate with signal structures. Our definition
is the same as the definition provided in the original MP paper by Mallat and Zhang [37].

30MP has an added criterion which requires that the selected atoms in the decomposition be
orthogonal.
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Figure 5.2: Methodology for obtaining the SC measure.

2. Type of decomposition dictionary

Therefore, we emphasize that the SC measure is not an absolute measure, but rather a

relative measure that strongly depends on the nature of the decomposition dictionary.

5.3.1 Detection of Signal Transitions using SC

A change in the SC relates to a change in the coherency between the decomposition
dictionary atoms and the signal structures. If the SC is changing, this implies that
the structures making up the signal are changing. This may be the result of a new
event taking place or the system under analysis is undergoing a change. Therefore,
the proposed SC measure can be used to detect changes in the state of signals. To
demonstrate the use of SC in detecting signal state transitions, we have developed two

experiments.

Experiment 1:

In this experiment, we created a number of synthetic signals which have varying levels
of coherency with the decomposition dictionary (i.e. different SC levels). To do this,
we firstly chose two different TF dictionaries. Atoms were selected from both of these
dictionaries to synthesize the signals. However one of the dictionaries chosen to create
the synthetic signals was also used for signal decomposition. This dictionary is referred
to as the decomposition dictionary, ®p. The second dictionary, not used for signal
decomposition is referred to as the alternative dictionary, ® 4. By using varying numbers

of atoms from ®p and ® 4, we created a number of synthetic signals with varying levels
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Figure 5.3: Demonstrates how the signal complexity changes as the decomposition
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of SC. That is, if a signal was constructed with a large number of ®p atoms and a small
number of ®4 atoms, the signal would be more coherent with ®p and therefore have
low SC. However, if a signal was constructed using a large number of ® 4 atoms and a
small number of ®p atoms, the signal would be less coherent with ®p and would result

in high SC. For ease of reference, this is shown in Table 5.1

Atoms Coherency | SC
Op >> Dy High Low
Dy >>Pp Low High

Table 5.1: Relationship between signal structures, coherency and SC

For this experiment, the synthetic signals, of length N, were constructed using k
randomly selected atoms of which k — [ were selected from ®p and [ from ®4. The
number, [, was increased from 0 to k, resulting in synthetic signals with varying levels
of SC. Atoms in both dictionaries were normalized such that their £5 norm was equal
to 1. This was done to remove any amplitude biasing of components.

The results of this experiment are shown in Figure 5.3. In this experiment we chose

the signal length, N = 512, number of atoms, k¥ = 30, a WP dictionary as ®p and
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SERp = 13dB. In this experiment, two alternative dictionaries:
1. &4 : CP dictionary
2. ®4 : Gabor dictionary

were used to provide two separate subexperiments so that the results could be validated.
In the first subexperiment, we used the CP dictionary as the alternative dictionary for
synthesizing signals. It can be seen from Figure 5.3 that as the number of alternative
atoms is increased (i.e. 1) the level of SC also increases. This explicitly shows that the
SC measure of a signal is related to the coherency between the decomposition dictionary
and signal structures. For the second subexperiment, we used a Gabor dictionary as
the alternative dictionary. It can be observed from Figure 5.3 that similar results have
been obtained as with the CP dictionary.

As a secondary result from the two subexperiments, we can see that the CP atoms
are slightly more coherent with the WP atoms than the Gabor atoms. This is indicated

by slower rate of rise in SC measure.

Experiment 2:

In this experiment, we show how a change in SC can be used to detect a change in signal
structure or a change in signal state. Epochs of length N = 1024 samples were created
using 100 atoms. The atoms were randomly selected from ®p and @4, which were
chosen as the redundant WP dictionary and CP dictionary respectively. A complete
signal was created by the concatenation of 300 epochs. The epochs for the signal were

designed as follows:

e Epochs 1 — 100: {15 atoms € ®p & 85 atoms € P4}, randomly chosen for each
epoch

e Epochs 101 — 200: {50 atoms € ®p & 50 atoms € P4}, randomly chosen for

each epoch

e Epochs 201 — 300: {85 atoms € ®p & 15 atoms € P4}, randomly chosen for

each epoch

The synthetic signal formed by the concatenation of synthesized epochs is shown in
Figure 5.4(b). The SC measure for the synthetic signal is shown in Figure 5.4(a). It
can be seen from the SC measure that there are two significant changes, separating the
signal into three distinct states. The first significant change is a drop in SC which occurs

at Epoch 101. The second significant change is a drop occurring at Epoch 201. These
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Figure 5.4: The (a) SC measure of the (b) synthetic signal which has three distinct
states, as indicated by the SC measure.

are exactly the two places in which we designed the synthetic signal to have change in

structure.

In Figure 5.4(a), we have also plotted the average SC value for the three signal
states, indicated by ‘“*-*’. This further emphasizes where the significant changes in SC
occur. Therefore, the example in Figure 5.4 clearly illustrates the applicability of SC in

detecting changes in signal state.

To demonstrate the significance of the SC measure in detecting changes in signal
structure, we have also plotted the time domain and frequency domain representations
of epochs from the three signal states. Figures 5.5(a)-(c) show Epoch number 50, 150
and 250, respectively. These epochs have been chosen to represent the three states of the
synthetic signal. However, from these plots, the change in signal structure is not easily
distinguishable. The frequency domain representations of Epoch 50, 150 and 250 are
shown in the plots of Figures 5.5(d)-(f). Again, the change in signal structure between
the three signal states is not clearly visible in the frequency domain. This indicates the

superiority of the SC measure in detecting changes in signal structure.
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Figure 5.5: Time domain representation (a-c) and frequency domain representation (d-
f) of the three states of the signal in Figure 5.4(b). No clear difference in states is visible
from either the time domain or frequency domain.
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5.4 Newborn EEG State Transition Detection using SC

In the previous section, it was shown that if a signal had structures that were highly
coherent with the decomposition dictionary, then the SC measure for the signal was
low. As the signal structures became less coherent with the decomposition dictionary,
the SC measure increased. Therefore, we demonstrated that SC could be used to detect
changes in signal structure or transitions in signal state.

In the previous experiments, we designed signals with varying levels of coherency
with the decomposition dictionary. This assumed that we had a decomposition dic-
tionary that was highly coherent with a particular signal state. However, in real life
applications, decomposition dictionaries that are coherent with a particular signal state
may not be readily available. The reason is that the structures (or models) of these
signals are generally unknown. In this case, a decomposition dictionary, coherent with
a particular signal state, may have to be designed. Our method of designing coher-
ent dictionaries involves creating TF atoms that match the TF patterns observed in a
particular signal state. The TF patterns in the signal state of interest may be used to
construct dictionary atoms that are coherent with the signal structures for that partic-

ular state.

5.4.1 Time-Frequency Analysis of Newborn EEG

The newborn EEG of patients who experience seizure events is one example of a real life
signal which has two specific states. The first EEG state is the background (nonseizure)
and the second state is the ictal or seizure state. Therefore, the automatic detection
of the transition between these two states is a possible application of the SC detection
methodology.

An investigation into the TF characteristics of the newborn EEG was previously
undertaken by Boashash et al. [16, 103|. In this investigation, the authors looked at
both the seizure state and background state of the neonatal EEG. The analysis was
done using the B-distribution (described in chapter 3). It was concluded from their
TF analysis that the IF of the newborn EEG seizure could be broadly characterized by
piecewise LFM with slowly varying amplitude. In their analysis, it was also quite often
observed that the newborn EEG seizure was multicomponent in nature. Both these
characteristics can be seen in the TFRs of seizure epochs in Figures 5.6(a) and (b).

In Figure 5.6(a), it can clearly be seen that the IF slope changes significantly at
around the 8 second mark. This is a demonstration of the piecewise LFM nature of the
newborn EEG seizure. In contrast, the seizure epoch in Figure 5.6(b) has an almost

constant IF.
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Figure 5.6: TFR of various seizure patterns (a-b) and nonseizure patterns (c-d).

In the analysis of the newborn EEG background, it was found that there were
only two significant types of patterns in the TF domain. The first pattern is related
to the burst-suppression background abnormality. In the time domain, this pattern
is characterized by a burst of high voltage activity lasting 1-10 seconds followed by
a period of quiescence or inactivity [59], which was discussed in detail in chapter 2.
Figure 5.6(c) illustrates a burst-suppression pattern in the TF domain. It can be seen
that the burst of high energy masks all other patterns in the TFR. The second class of
pattern found in the TFR of newborn EEG background is the EEG activity lacking a
specific TF pattern [103]. In this background state, there does not exist a dominant TF
component which follows any specific IF law. An example of this type of background is

shown in Figure 5.6(d).
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Figure 5.7: The MP decomposition of a seizure epoch using the proposed TF dictionary.
The first two atoms selected by the MP algorithm, (b) and (d), are clearly coherent with
the seizure signal structures (a) and (c). The residual after two iterations (d) has no
clear, dominant TF patterns.
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5.4.2 Coherent Dictionary Design

In the TF analysis of the newborn EEG seizure by Boashash et al. [16], the authors
determined that LFM nature of seizure patterns had starting frequencies of between
[1.5,5]Hz and an LFM frequency slope of between [-0.06,0]Hz/sec. However, in our TF
analysis of newborn EEG seizure, also using the B-distribution, we have found that
LFM components have a wider range than that presented in [16]. It was found that a
more appropriate range for the starting frequency of newborn EEG seizure components
was between [0.65,5]Hz with LFM slopes of between [-0.06,0.06]Hz/sec. Figure 5.7(a)
shows an epoch of newborn EEG seizure which has two components with increasing
frequency (i.e. positive LFM slope) verifying the inclusion of these positive rates.

It was concluded from the TF analysis that the coherent TF dictionary must include
LFM atoms which cover the defined ranges in starting frequency and LFM slopes. It
was also decided that only LFM atoms were to be included in the dictionary and not
piecewise LFM, which would cause a combinational explosion for constructing atoms,
making the decomposition dictionary excessively large and causing unrealistic processing

times.

The set of LFM atoms to be included in the proposed dictionary were of the form

(5.3)

1 &
b nar(n) = cos (M . 9>

Fs

where Fy is the sampling frequency and 6 = [0, 27) is the starting phase. As mentioned
before, the initial frequency ¢; ranged between [0.65,5]Hz and the frequency rate, &,
ranged between [-0.06,0.06|Hz/sec. The sampling frequency chosen was 20Hz as fre-
quencies above 10Hz did not exhibit significant LFM components. The epoch length

chosen was N = 256 samples (equivalent to 12.8 seconds).

Since the described set of LEFM atoms do not form a complete dictionary, we com-
bined this set of LFM atoms with a redundant Gabor dictionary so that the constructed
dictionary spanned the N dimensional Hilbert space, forming an overcomplete dictio-
nary.

To illustrate the coherency between the signal structures of the newborn EEG seizure
state and the proposed TF dictionary, we applied MP decomposition on the EEG signal
whose TFR is shown in Figure 5.7(a). The atom chosen in the first iteration of MP
decomposition using the newly proposed TF dictionary is shown in Figure 5.7(b). It
can be seen that the atom chosen clearly resembles the dominant LEFM component in
the newborn EEG seizure signal. The selected atom represents approximately 50% of

the energy in the seizure epoch. The residual after the first MP iteration is shown in
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Figure 5.7(c)*. The TFR of the atom chosen in the second MP iteration is shown in
Figure 5.7(d). This atom closely resembles the second LFM component in the EEG
seizure epoch and accounts for approximately 10% of the signal energy. Therefore,
approximately 60% of the epoch energy is represented with two coherent atoms, resulting
in extremely low SC. The residual after two iterations, R?z, is shown in Figure 5.7(e),

which illustrates that no clear TF patterns remain in the residual.

5.4.3 EEG Seizure Detection using SC: Synthetic EEG Data

For the initial validation of the SC methodology for detecting changes in newborn
EEG signal structure, we began testing using artefact free synthetic EEG data. The
simulation process described in Chapter 4 was used to generate the synthetic newborn
EEG data. By testing initially on synthetic data, we could produce long EEG signals
for which we knew the exact time location where the EEG signal had changed from

background to seizure.

Signal Generation

In the testing of our SC state detection method applied to newborn EEG, we created
twenty five synthetic newborn EEG recordings. All synthetic EEG data was created
with a sampling rate of 20Hz. For each recording, a 10 minute period of newborn EEG
background was created so that an estimate of the baseline for the background period
could be attained. Further to this 10 minute period of newborn EEG background,
another 10 minute period of background was synthesized for testing of the false de-
tection rate (FDR). Therefore, in total, more than 8 hours of synthetic newborn EEG
background was created.

A seizure state was then added to the synthetic recordings. The seizure durations
ranged between 25 seconds and 345 seconds. All seizures generated were characterized
by piecewise LFM and were all multicomponent. The time-varying amplitudes of the
various components of the synthetic EEG seizure were randomly selected. An example
of a synthetic newborn EEG recording containing 180 seconds of seizure is displayed in
Figure 5.8. In the recording, we have also marked exactly the time period for which the
seizure has occurred, mimicking the marking of real EEG data by a neurologist. We
have also shown which part of the background state has been used for estimating the

baseline background value.

Tt should be noted that the TFR in this plot has been rescaled to clearly show how the remaining
signal energy, R'z, is distributed in the TF domain. This is why the second LFM component appears
to have larger amplitude in Figure 5.7(c) than in Figure 5.7(a).
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Figure 5.8: Synthetic newborn EEG recording containing background and seizure states.

Results and Discussion

The automatic detection of newborn EEG seizure using SC requires a threshold value
to be set to distinguish between seizure and non seizure periods. We determine the
threshold value using the baseline data, shown in Figure 5.8.

The minimum SC value for the baseline data was used as the threshold value for the
seizure detection algorithm. If the SC was above the threshold value the EEG epoch
was deemed a background epoch. If the SC value was less than the threshold value,
then an epoch was judged to be seizure.

An example of the SC analysis of the synthetic newborn EEG data is shown in
Figure 5.9. The SC measure, displayed in Figure 5.9(a), clearly shows a change in
signal structure of the synthetic EEG signal in Figure 5.9(b). The threshold value for
the seizure detection method was set to the minimum SC value for the first 10 minutes
of the recording (i.e. first 600 seconds), and is clearly shown in Figure 5.9(a) as “*-*”.
However, it can be seen that a false detection is made. In this case, it is a result of some
dominant structures being highly coherent with the Gabor dictionary atoms. Therefore,
an extra criterion, such as “An LFM atom must be selected first for a seizure detection
to be made,” may be included to discard these false detections.

The accuracy of the seizure detection algorithm was measured by considering the
sensitivity, Ry, and specificity, Ry, which are calculated using the true positives (TP),
false positive (FP) and false negatives (FN). TP is the percentage of accurately detected
seizure epochs, FP is the percentage of nonseizure epochs detected as seizure and FN is

the percentage of seizure epochs missed by the algorithm. The sensitivity and specificity
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Figure 5.9: (a) The SC measure of the (b) synthetic newborn EEG data containing
non-seizure and seizure states.

measures are expressed mathematically as

R TP R FP
TP+ FN o TP+ FP

Table 5.2, shows the optimal results of our SC method for automatic seizure detection

(5.4)

applied to the synthetic newborn EEG data. Figure 5.10 shows the corresponding

receiver operating characteristics curve associated with a changing threshold value.

| Parameter | Rate |

TP 100.0%
FP 2.78%
FN 0.00%
R 100.0%
R, 97.3%

Table 5.2: Results of the SC based seizure detection algorithm applied to synthetic
newborn EEG seizure

The results of our detection method for the synthetic data are extremely good. This

is due to a number of factors. Firstly, the proposed dictionary is highly correlated



80 Newborn EEG State Transition Detection using SC

0.96

094 1

0.92} 1

o
(]
T

i

0.88|" i

0.86

True Positive

0.84

0.82

=T — o — — F — —J

0.8

0.78 ; : ‘
0 0.05 0.1 0.15 0.2

False Positive

Figure 5.10: Receiver operating characteristics curve for the SC—based seizure detection

algorithm.

with the structures in the synthetic newborn EEG seizure and less coherent with the
synthetic newborn EEG background. Secondly, both the synthetic background and

seizure signals are free from large amplitude artefacts.

Generally, it has been observed using real EEG data that the SC is drops significantly
for the epochs covering large amplitude artefacts, as these high energy signal components
often correlate well with Gabor atoms. This results in a relatively low number of
significant atoms being needed to approximate the epoch. Drops in SC as a result of
artefacts can therefore increase the number of FP, deteriorating the performance of the
detection algorithm. This, however, can be overcome by incorporating a redundancy
criterion such as the first atom being an LFM, as mention previously, or considering a

minimum duration below the threshold value for a seizure event to be detected.

Finally, we have not incorporated the gradual onset of seizure into the synthetic
signals which is often observed [22]. However, the reason for this is that it is difficult to
determine exactly where the seizure starts. Therefore, it would make the evaluation of
the automatic seizure detection much more difficult, inaccurate and possibly biased by

our own interpretation of where the synthetic seizure starts.
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5.4.4 EEG Seizure Detection using SC: Real EEG Data

To validate the excellent results attained in the previous section, we have also analyzed
real newborn EEG data using the SC measure with our proposed TF dictionary. The
EEG data analyzed in this section was recorded at the Royal Womens Hospital, Bris-
bane, Australia®. The EEG data was digitally bandpass filtered, with cutoff frequencies
at 0.5Hz and 10Hz, before resampling the EEG data at 20Hz.

In the previous section, we showed that the development of an automatic seizure
detection algorithm, using the SC measure, requires the assessment of baseline data to
determine a threshold value. However, in our database of newborn EEG data, there are
no recordings consisting of long background sections prior to seizure events. Therefore,
we have not been able to assess baseline data to set thresholds and statistically evaluate
a SC based automatic detection algorithm on real EEG data. Instead, we have analyzed
a number of newborn EEG recordings which contain transitions between nonseizure and
seizure to demonstrate how the SC decreases when shifting from the background state
to the seizure state and increases when shifting from the seizure state to the nonseizure
state.

Figures 5.11 and 5.13, show two different channels of an EEG recording and the
SC for the channels. The entire period of the recording has been labeled as seizure.
However, the EEG seizure patterns are not consistently present in any one channel over
the entire recording period, as indicated by a neurologist.

The EEG channel shown in Figure 5.11(b) is obtained from the right side of the
brain and the EEG channel in Figure 5.13(b) is recorded from the left side. The SC
measure indicates that the seizure event has begun in the right side of the brain. This
is illustrated by the relatively low SC measure at the beginning of the recording period,
shown in Figure 5.11(a). An example of the TF pattern associated with and epoch from
the beginning of the right side channel is shown in Figure 5.12(a). It can be observed
that a dominant LFM component, characteristic of newborn EEG seizure, exists. This
resulted in a relatively low SC measure as the signal structures were highly coherent
with the proposed decomposition dictionary. However, from approximately 50 seconds
to 215 seconds, the SC measure is relatively high, indicating that no seizure patterns
are present. This is verified by the TFR shown in Figure 5.12(b), which is an epoch
from 100 to 110 seconds. It can be seen that the TFR has no clear TF patterns, which
is a characteristic of nonseizure newborn EEG.

In the SC analysis of the EEG channel from the left side of the brain, illustrated
in Figure 5.13, we can see that the SC value is relatively high at the beginning of the

A detailed description of the EEG data acquisition is given in Appendix A.



82 Newborn EEG State Transition Detection using SC

N
ol

IN
o

Complexity
w
al

30
25 1 1 1 1
0 50 100 150 200
Time (sec)
(b)
50 b
>
=
g of
2
£ s
E -
_100 1 1 1 1
0 50 100 150 200
Time (sec)

Figure 5.11: (a) The SC measure for the (b) newborn EEG channel, containing seizure,
recorded from the right side of the brain.
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Figure 5.12: TFR of epochs from the signal in Figure 5.11(b) at (a) the beginning
where clear seizure patterns are present and (b) the middle where nonseizure patterns
are exhibited.

recording. The high SC indicates that EEG recorded in this channel was not in the
seizure state at the beginning of the recording. Figure 5.14(a) shows the TFR of an
epoch at the beginning of the recording. It can be seen that no clear TF patterns

are present, verifying the SC result which indicates a nonseizure state. However, from
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Figure 5.13: (a) The SC measure for the (b) newborn EEG channel, containing seizure,
recorded from the left side of the brain.

approximately 50 seconds onward, it can be seen in Figure 5.13(a) that the SC is
gradually decreasing. The gradual decline in the SC represents the gradual onset of
EEG seizure in this channel. This corresponds well with the observations in [22], that
the onset of seizure in newborns is quite often piecemeal. The TFR of an epoch at
the end of the recording, where the SC is low, is shown in Figure 5.14(b). It can be
seen that the epoch contains a dominant LFM component, therefore providing a low
SC value.

From the SC analysis of these two channels, we can see that the seizure begins in
the right side of the brain. This was indicated by the neurologist. The SC results then
demonstrate that the seizure migrates from the right side to the left side of the brain.
This was also suggested by the neurologist, who indicated that clear seizure patterns
appeared in the left side channel at approximately 130 seconds. This was also where
the SC begins to drop significantly for this channel, as illustrated in Figure 5.13(a).

Figure 5.15(b) shows another example of a real newborn EEG signal that contains
a transition from the nonseizure state to seizure state. The structural SC measure
again has a gradual decline. The seizure onset has been marked by the neurologist at

approximately the 15 seconds, which is also demonstrated by the SC measure in Figure
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Figure 5.14: TFR of epochs from the signal in Figure 5.13(b) at (a) the beginning
where nonseizure patterns are present and (b) the end where clear seizure patterns are
exhibited.

5.15. A TFR of an epoch at the beginning of this recording is displayed in Figure
5.16(a). It can be seen from the TFR that there are no dominant clear TF patterns,
validating the SC measure for this section of the recording. Figure 5.16 shows the TFR
for an the epoch from approximately 26 to 39 seconds. This plot shows that two clear
LFM components exist, which are characteristic of the newborn EEG seizure. These

structures were highly coherent with the proposed decomposition dictionary, resulting

~—

in low SC as illustrated in Figure 5.15(a).

The results from these examples are typical of the SC measure when analyzing real
newborn EEG data that is in transition from the nonseizure state to the seizure state.
This analysis of real newborn EEG data using the SC measure has demonstrated its
appropriateness as a potential method for the automatic detection of newborn EEG

seizure.

5.5 Summary

This chapter presents a new signal complexity measure called structural complexity,
which can be used to detect changes in signal structures (i.e. a change in signal state).
This measure is extended from the idea of coherent structures which has previously
been used for signal denoising by atomic decomposition techniques. The SC measure
is obtained from MP decomposition and is a function of the decomposition dictionary
and the desired level of signal approximation.

Before developing the SC measure, we have compared the sparsity of the signal
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Figure 5.15: (a) The SC measure for the (b) newborn EEG signal, containing a seizure
period.

Fs=20Hz N=256 Fs=20Hz N=256
Time-res=4 Time-res=4

;
:

(a) Nonseizure patterns (b) LFM seizure patterns

Figure 5.16: TFR of epochs from the signal in Figure 5.15(b) at (a) the beginning
where nonseizure patterns are present and (b) the end where clear seizure patterns are
exhibited.

approximations of BP and MP. One of the major goals in the development of BP was to
provide the sparsest possible signal representation [88|. However, we have shown that
BP does not always provide the sparsest approximation. Through our computational

examples, we have shown that MP generally provides a sparser approximation than BP.
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Our proposed SC measure was shown through a number of experiments to be an
indicator of the coherency between the structures in a signal and the decomposition
dictionary. Through another synthetic experiment, it was shown how the SC measure
could be used to detect changes in signal state.

A real life application of the SC measure was then provided. It was shown that the
SC methodology could be applied to the automatic detection of newborn EEG seizure.

The demonstration was done firstly using synthetic EEG data. An automatic de-
tection algorithm, based on the SC measure and the newly proposed TF dictionary,
coherent with the newborn EEG seizure state, was developed and tested on the syn-
thetic EEG data. Excellent results for the automatic detection algorithm were obtained
with a specificity of 100% and sensitivity of 97.3%. Analysis of real newborn EEG data
using the SC measure and the proposed TF dictionary demonstrated its ability in de-
tecting signal transitions in the newborn EEG. Therefore, the analysis of the real EEG
data validated the synthetic EEG results and further indicated the appropriateness of

the SC measure to be incorporated into an automatic seizure detection algorithm.



Chapter 6

Newborn EEG Seizure Spike and
Event Detection using Adaptive
TESP

6.1 Introduction

aroxysmal events, such as spikes in the newborn EEG, are key indicators of CNS

functioning. The detection of spikes in the EEG is generally done by a trained
EEG expert, for whom the ability to identify spikes has come through experience in
reviewing EEG. This situation is due to the fact that a concise and specific definition of
a spike pattern in the EEG is not available. That is, there is no precise, mathematical
definition of an EEG spike [104]. The current definitions of an EEG spike have been
mostly qualitative.

The difficulty in detecting spikes has previously been described in [105], in which
it was shown that the disagreement of spike detections by the same reader (i.e. EEG
expert) at different sittings may be as poor as 53%. This is again due to the lack
of precise definition of the EEG spike [106]. Therefore, a method for automatically
detecting EEG spikes accurately' is required.

Isolated spike events, which almost always characterize EEG abnormality in the
adult, can often be normal ontogenetic events in the newborn (see chapter 2). However,
repetitive rhythmical spiking in the newborn is a major sign of EEG abnormality and is
a significant characteristic of newborn EEG seizure. Therefore, EEG seizure detection
in the newborn can be based on the ability to automatically detect repetitive rhythmical

spiking in the newborn EEG.

'Tn this context, accurately refers to a majority of expert readers referring to the pattern as a spike.

87
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In this chapter we propose a method of automatically detecting EEG seizure in
the neonate using adaptive TFSP techniques. Previous methods of automatic spike
detection are reviewed in section 6.2, and their limitations explained. In section 6.3, we
compare MP and the adaptive spectrogram (ASPEC) for detecting isolated signal spikes
using synthetic and real signals. We also show that the optimal window scale (OWS)
function of ASPEC can be used directly for spike detection. In section 6.4, we assess the
ability of MP and OWS function for detecting repetitive spikes which are harmonically
related. In section 6.5, we propose a method of newborn EEG seizure detection based
on OWS. The performance of the algorithm is then compared with those of four other

well documented seizure detection algorithms.

6.2 Previous Methods for Automatic Spike Detection

A number of methods for detecting and sorting spikes from the adult EEG have pre-
viously been proposed?. These techniques can be classified into parametric, stationary
nonlinear, and nonstationary. Parametric methods such as [104, 107], define a math-
ematical model that includes parameters such as duration and relative amplitude of
the spike pattern, in an heuristic attempt to mimic the review process of an expert
reader. However, the performance of these techniques is restricted significantly due to
the highly varying morphology of spike patterns, particularly in the newborn EEG [9].

A stationary nonlinear technique for the detection of spikes was proposed in [108].
In this method a nonlinear energy operator (NEO), proposed in [109], was used to
emphasize the spiking activity in the signal. The NEO, applied to a discrete signal,

x(n), is expressed as

Olz(n)] = 2*(n) — x(n + Vz(n — 1) (6.1)

This technique is highly sensitive to noise, which degrades its performance in detect-
ing signal spikes. To reduce the effect of noise, a smoothed nonlinear energy operator
(SNEO), which involves convolving the NEO output with a Bartlett window, was pro-
posed in [108]. This technique was also shown to be significantly effected by noise [110].
Another problem with using NEO and SNEO is that they assume that the spike events
occur in a stationary background signal. This assumption is not valid for the nonsta-
tionary EEG background signal of the newborn, therefore, limiting the ability of these
techniques to detect spike occurrences.

The detection of nonstationary signal patterns, such as transients or spikes, is one

2 Although most work done on the automatic detection of EEG spikes has involved the adult EEG,
the same broad definition of spike and sharp waves exist for the newborn EEG.
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Figure 6.1: The TFR of spike event

application suited to nonstationary techniques such as TFSP and time—scale signal pro-
cessing. The WT and QTFDs have both been proposed for the detection and extraction
of spikes in the EEG [30, 111, 112]. The techniques based on the WT have been shown
to perform well on artificial data. However, the WT is not optimal in separating spikes
that are close in time. This is because for large wavelet scale values, the time resolution
of the wavelets are wider than the width of the spikes. This means that when closely
spaced spike events are recorded, the WT fails to separate them [113].

In [112], TF analysis using a smoothed pseudo WVD (SPWVD) of adult EEG which
contained spikes was presented. It was shown that isolated spike events were represented
in the TF domain by ridges along the time instant at which the spike occurred. However,
no method of detecting the spikes was presented.

In [30, 31, 114], a TF approach for the detection of spikes was presented. It was also
shown in this method that a spike event was represented in the TF domain as a high
energy ridge that extended from low frequency to high frequency along the time instant
at which the spike occurred (see Figure 6.1 for illustration). The spike detection method
presented in |30, 31, 114] used the Choi-Williams distribution (CWD) to obtain a TFR,
so as to minimize cross terms. This detection technique involves taking two arbitrary

frequency slices in the high frequency region. These slices were assumed to show high
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values around the time instants where the spike occurred and low values at all other
times. Also, to enhance these signatures, the SNEO was applied to the frequency slices.
A threshold value, related to the median value of the frequency slice, was determined

and local maxima above the threshold values were used to indicate spikes and their

locations.
(a)
1F ]
0.51 i
0
. ()

50 100 150 200 250
Time (samples)

Figure 6.2: (a) A spike signal that is (b) embedded in noise. (c) Is the SNEO output
of an arbitrary high frequency slice of the CWD of (b).

This TF method provides good results on synthetic and real signals which have
isolated or randomly placed spikes in the signal. An example of this is shown in Figure
6.2, where Figure 6.2(a) shows the spike event, Figure 6.2(b) is the spike event embedded
in noise and Figure 6.2(c) is the SNEO of an arbitrary high frequency slice of the CWD.
For this example, the spike was assumed to be the signal and it was embedded in -3dB
noise for this example.

However, the method performs poorly for a signal with spike events that are har-
monically related. An example of this is shown in Figure 6.3. The plots in Figures 6.3(a)
and Figures 6.3(b) show a high frequency slice and its SNEO output from the CWD of
the spiking signal in Figure 6.3(c). It can be seen in Figure 6.3(b) that the individual
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spikes aren’t clearly distinguishable from the SNEO output of the high frequency slice.
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Figure 6.3: (a) An arbitrary high frequency slice and (b) SNEO output of the CWD of
the (c) periodically spiking signal.

The ability to detect repetitive spikes which are harmonically related is significant for
the application of newborn EEG spike detection. Rhythmical spiking from a particular
area of the cerebrum is a classical pattern of newborn EEG seizure [77]. If a spike
detection algorithm is to be incorporated into a seizure detection algorithm, it must be
able to detect repetitive, harmonically related spikes. Therefore, we investigate the use

of adaptive TF methods in detecting spikes.

6.3 Evaluation of Adaptive TFRs for Detection of Isolated
Spikes

A method for detecting spikes based on an adaptive TFR technique was presented in
[113]. This method incorporated the best orthogonal basis algorithm with a redundant
WP dictionary (see chapter 3) in an attempt to improve on the performance of WT

methods. However, due to the algorithms criterion of obtaining an orthogonal basis for
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signal representation, this method sometimes fails to adequately represent transients
[88]. Therefore, a spike detection based on the MP has been recently proposed [42].
In this section, we explain the methodology for detecting spikes using MP and propose
a method of detecting spikes using an adaptive QTFD called the ASPEC. We then

compare these methods for detecting isolated spikes in real EEG data.

6.3.1 MP Methodology for Detecting Spikes

The MP algorithm provides an adaptive signal representation. It adaptively selects TF
atoms from the decomposition dictionary which optimally® represents the signal residue
at each iteration, as was demonstrated in chapter 3. An advantage of using MP as an
adaptive TFSP technique is that it can provide both an adaptive TFR and an adaptive

TF parameterization. This is best illustrated with an example.
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Figure 6.4: TFR of a spike signal embedded in -3dB noise using MP with Gabor TF
dictionary.

In Figure 6.4, the lower panel is an example of a spike pattern embedded in -3dB
noise. The synthetic spike has a duration of 3 samples and is centered at time, ¢t = 128
samples. The upper panel shows the TFR using MP with the redundant Gabor TF
dictionary. It can be seen that this TFR provides a high energy ridge, ranging from

3The measure of optimality for the MP algorithm is the largest inner product.
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low frequency to high frequency along the time instant at which the spike occurred.
Therefore, this TFR is quite similar, in its representation of an isolated spike, to other
TFRs such as QTFDs.

Coef | Scale | Translation | Modulation | Phase

57.23 5 127 0.0781 5.511
24.97 113 85 0.2343 1.102
24.24 3 194 0.4453 1.729
23.47 19 240 0.2928 3.287
22.12 14 130 0.4570 1.838
22.10 34 225 0.4297 2.381
21.73 6 29 0.1211 1.066
20.09 107 128 0.0861 1.917
19.35 7 187 0.1992 4.586
18.67 24 74 0.3010 2.448

Table 6.1: The TF parameterization of a spike signal embedded in -3dB noise using MP
with Gabor TF dictionary.

A TF based spike detection method such as that proposed in [30, 31, 114] could
be implement using the MP-based TFR. However, in [42], a method of spike detection
was developed based on the adaptive TF parametrization obtained from the MP de-
composition. Table 6.1, shows the TF parameters of the first 10 atoms selected in the
MP decomposition. The parameter list includes the coefficient value for the atom, the
scale in samples, the time center (i.e. translation) of the atom in samples, the frequency
center (i.e. modulation) in normalized frequency where the sampling frequency F's = 1,

and the phase of the real atoms which are in radians.

Since spikes are characterized by high energy and short time duration, they are best
represented by atoms with a significantly high coefficient value and small scale parame-
ter. Therefore, by setting adequate thresholds for the coefficient and scale parameters,
the signal spikes can be detected directly from the MP adaptive TF parameterization.
The temporal information regarding the spike occurrence, can be extracted directly
from the translation parameter associated with the spike atom. This is illustrated in
Table 6.1, where the first atom has a coefficient significantly larger than all other atoms,
and has an extremely small scale parameter, indicating that it is a parameterization of
the spike event in the signal. It can be seen that the translation parameter suggests
the spike is located at time, ¢ = 127 samples which is within 1 sample of the true spike
location of t = 128 samples. This clearly shows the methodology for spike detection
from the MP TF parameterization which was developed in [42].
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6.3.2 Adaptive QTFDs Methodology for Detecting Spikes

A number of adaptive QTFDs have been proposed in an attempt to achieve good TF
resolution and crossterm suppression for a large class of signals [115]. Adaptive QTFD
methods can be separated into two classes: global optimization methods and time-
localized methods. Adaptive QTFDs which strive for global optimization, such as that
proposed in [116], do so by searching for the QTFD kernel which meets the desired
optimization criteria. However, there has been much focus recently on time-localized
methods for achieving adaptive QTFDs. Examples of time—optimized methods include
the development of optimal short—time ambiguity functions [117], optimal time-varying
window lengths to be applied to the IAF [87], and optimal time-varying window lengths
for the spectrogram [118, 119, 120].

The adaptive QTFD methods which appear to be the most appealing for spike de-
tection are the time-localized methods with adaptive window lengths. For example,
if a spike event occurs within a signal, it should be expected that the optimal win-
dow lengths around the time location of the spike would be small and, therefore, fully
emphasize the spike event in the TF domain.

For our proposed adaptive QTFD spike detection method, we have incorporated the
ASPEC derived in [120]. The optimization criterion for this ASPEC, which determines
the OWS at each time instant, is referred to as the mazimum correlation criterion. This
adaption method selects the window scale, p, from the set of windows scales, P, at time

instant, ¢, which maximizes the projection of the signal onto the modulated window.

— z(thw| —— e dr
VP J oo ™) D

Using this criterion, the predominant time—frequency-scale structure in the signal,

This is shown mathematically as

p(t) = arg max (6.2)

peP

centered at the time instant, ¢, determines the OWS (i.e. window length) for that time
instant. This criterion is similar to the objective function of the MP algorithm.

Figure 6.5 shows the TFR from the ASPEC of a spike signal embedded in -3dB
noise. It can be seen that ASPEC also clearly represents the spike in the TF domain
with a ridge running from low frequency to high frequency along the time instant at
which the spike occurs. This representation is similar to both the CWD and MP TFRs.

Once again a TF based spike detection method such as that proposed in [30, 31,
114] could be implemented using the ASPEC. However, we propose a new method for
detecting spikes from the ASPEC output. In our spike detection method, we propose
using only the OWS to detect spikes (not the adaptive TFR). In our method, a spike

event is detected if the OWS falls in the range associated with the scale or duration of
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Figure 6.5: TFR of a spike signal embedded in -3dB noise using ASPEC.

a spike event. This is demonstrated in Figure 6.6, where Figure 6.6(a) shows the OWS
for the noisy spike signal shown in Figure 6.6(b).

To save on processing time we have used a set of dyadic scales, given by
S =27 1] (6.3)

in which d = [1,2,...,logy(N)], and N is the signal length. From Figure 6.6(a) and
using (6.3), it can be seen that the optimal window length at time instant ¢ = 128
samples is 3 samples. Therefore, the OWS can be used to correctly identify the spike

location and its approximate duration.

This methodology can be easily applied to EEG spike detection. The spike pattern
in the EEG has been defined as having a duration between 20-70msec and a sharp
wave having a duration between 70-200msec. Therefore if the adaptive window length
is between 20-200msec at any time instant, we can conclude that a spike/sharp wave

has occurred?.

4For the rest of this chapter, we refer to the spike and sharp wave transients in the newborn EEG
as spikes only.
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Figure 6.6: (a) The OWS, s(¢), for the (b) spike signal embedded in -3dB noise

6.3.3 Comparison of Adaptive TF Spike Detectors on Real EEG Data

It was explained in section 6.3.1, that before MP TF parameterization can be used for
spike detection, the parameter values indicating a spike have to be defined. That is, a
range of coefficient values (or atom amplitude values) and range of scale values which
are representative of a spike have to be defined. These values are generally determined
based on a priori analysis of the EEG which contains both epochs with spikes and
epochs free of spikes.

For the MP spike detection method in [42], the effective scale half widths of the
atoms were chosen to be between 30-60msec. The amplitude of the atoms to indicate a
spike were chosen to be above 300 a.u. (i.e. arbitrary units). Arbitrary units were used
since the conversion ratio of points/uV was unknown for their database. However, if
this ratio is known, 300 a.u. can be easily expressed in uV.

The EEG data used in [42| was obtained from http://republika.pl/eegspike, which
was created by the authors of [111]. To compare our proposed spike detection method,
based on the OWS, with the MP spike detection algorithm in [42], we used the same
real EEG data. The data set contained 84 epochs which were divided into three groups
[42]:
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Figure 6.7: Real adult EEG containing an isolated spike event.

1. signals with large, single spikes or sharp waves which are not accompanied by the

prominent slow wave — 30 epochs

2. signals with spikes or sharp waves followed by slow waves with comparable am-

plitudes — 14 epochs

3. signals with artifacts and portions of EEG traces with no spikes or sharp waves —

40 epochs

There were 73 spikes in total from the 44 epochs which contained spikes. An example of
an EEG epoch with a spike event from the database is displayed in Figure 6.7. The MP
spike detection method proposed in [42] obtain a sensitivity of 92% and a specificity of
84% for this EEG database.

For the OWS method of spike detection we added in a preprocessing step. The
signals were initially sampled at F's = 256Hz. We lowpass filtered the signals with
a cutoff frequency at F's/4, before downsampling the signal F's,ey, = 128Hz, which
significantly reduced the amount of data to be processed without significantly hindering
the shape of the spikes. We processed the signal in epochs of length 512 samples and
used a dyadic set of scales. The scale lengths used to detect the spikes were d = 2, 3, 4,
which equate to time durations between approximately 20-120msec. The OWS method
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| Sensitivity | Specificity
MP 92% 84%
OWS 91% 87%

Table 6.2: Results of MP and OWS in detecting isolated spikes from real adult EEG
data

of spike detection produced a sensitivity of 91% and a specifity of 87%, which are quite
similar to the results for the MP detection method. Table 6.2 shows the results of the

two algorithms for easy comparison.

6.4 Evaluation of Adaptive TFRs in Detecting Repetitive
Spikes

Rhythmical spiking in the newborn EEG is a classical pattern characterizing a seizure
event. Neonatal seizures with rhythmical spiking are often multifocal and the spiking
activity may shift from one area to another, with the temporal, occipital and central
regions often being involved [77].

The ability to detect repetitive, rhythmical spiking in the newborn EEG may there-
fore be seen as a method of detecting ictal or EEG seizure events. The detection of
individual spikes of a rhythmical, repetitively spiking signal using TF techniques is much
more difficult then the detection of isolated spikes. This is caused by the harmonic re-
lationship of quasi-periodic spikes being shown in the TF domain as components with
long time duration. In this section, we investigate the ability of MP and OWS in detect-
ing individual spikes of repetitively spiking signals and determine what are the limiting

factors of these techniques.

6.4.1 MP Representation of Synthetic Repetitive Spikes

The assessment of the MP algorithm, using a redundant Gabor TF dictionary, for
detecting the individual spikes of a repetitively spiking signal begins with the decompo-
sition of synthetic signals. These signals, referred to as ideal periodic spike sequences,

are expressed as

1:n=101-T, |=0,1,..., N, — 1

6.4
0: else (6.4)

111 (n) = {

where T is the period between spikes and N; = N/T is the number of spikes in the

signal. We have chosen these signals in our initial investigation because these contain
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the most extreme form of a spike and the most extreme form of repetition which is
periodicity.

The first ideal periodic sequence to be assessed for spike detection using MP is III%?G.
Figure 6.8 shows III%?)G in the lower panel and its MP TFR in the upper panel. It can
be clearly seen from Figure 6.8 that the MP algorithm has accurately represented the
individual spikes with spike (i.e. small scaled)® atoms, illustrated by the characteristic
ridge in the TFR along the time instants of the spike event from low frequency to high
frequency. For this ideal periodic signal, the MP spike detection method can accurately
detect the spikes.

Figure 6.9 shows the MP TFR of the ideal periodic spike sequence 111526, which
has a shorter period between individual spikes than the previous sequence. It can be
observed from the TFR in Figure 6.9 that the MP has not represented the individual
spikes of the periodic spikes sequence with spike atoms. Instead, the MP algorithm has
chosen large scaled atoms to represent the harmonic relationship between the spikes in
the periodic spike sequence. Therefore, the MP algorithm would not be able to detect
the individual spike events of this ideal periodic spike sequence. However, in Figure
6.10, we have taken an epoch of 128 samples of the ideal periodic sequence III%EG,
resulting in an ideal periodic spike sequence III%SS. It can be seen from the MP TFR
that the same individual spikes are now represented with spike atoms, resulting in the
characteristic TF patterns of a spike. Therefore, by reducing the epoch length, the MP
algorithm has represented the spikes with spike atoms and allowed for individual spike

detection of the spike sequence.

The results from the three example signals, TTT3%,, TTI s and TIT}Sg clearly indicate
that there is a relationship between the epoch length and spiking period which deter-
mines the capability of MP in detecting individual spikes of periodically spiking signal.
From our synthetic computational examples, we have observed that if T > 2N, MP
represents the individual spikes of an ideal periodic spike sequence with spike atoms,
therefore allowing for spike detection. However, we found that if ' < /2N, MP repre-
sents the spike sequence with large scale atoms which indicate the harmonic relationship
between the spikes.

To further emphasize our results we present another synthetic example in Figure
6.11. The signal in Figure 6.11(a) is of length 512 samples with periodic spiking. The
spikes are Gaussian windows with a duration of 3 samples and are separated by a period

of 32 samples. This spike sequence also has white Gaussian noise added to it with a

Spikes atoms are characterized by small scale lengths. The specific length of the scale for an atom
to be classed as a spike atom is dependent on the application. Therefore, we have generalized “spike
atom” as those with small scale and provide a TF pattern which is characteristic of a spike.
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Figure 6.8: MP TFR of the ideal periodic spike sequence III%G.
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Figure 6.9: MP TFR of the ideal periodic spike sequence III%SG.
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Figure 6.11: The (a) MP TFR of a noisy, repetitively spiking signal only shows the
harmonic relationship of the spikes. (b) MP TFR of a shorter epoch of the noisy,
repetitively spiking signal is able to indicate the individual spikes.
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SNR of 10dB. From the TFR of Figure 6.11(a) it can be seen that MP fails to clearly
represent the spikes with spike atoms. Instead, it shows the harmonic relationship
between the spikes. However, in Figure 6.11(b), we have taken an epoch of 256 samples
at the start of the signal in Figure 6.11(a). It is clear from the TFR in Figure 6.11(b)
that MP has represented the individual spikes with spike atoms, therefore allowing for
spike detection. This again emphasizes the importance of the relationship between the

spike period and epoch length for MP to detect repetitive spikes.

6.4.2 OWS Representation of Synthetic Repetitive Spikes

The first synthetic ideal periodic spike sequence for which MP could not detect the
individual spike events was ITI3%;. This was shown in the TFR of Figure 6.9, for which
the characteristic ridges of a spike event, occurring at the time instant of the spike
and ranging from low frequency to high frequency, were not observed. Figure 6.12
shows the TFR obtained from the ASPEC, which adaptively selects the OWS, for the
ideal periodic spike sequence III%?G. The TFR in Figure 6.12 shows both the harmonic
relationship between the periodic spikes as well as giving the TF characteristics of the
individual spikes. Figure 6.13(a) shows the OWS for ITI ;. It can be seen that the
OWS clearly indicates the individual spike occurrences, which is shown by a small scale
size being optimal at the time instants when the individual spikes occur. Therefore,
OWS has been able to detect the spikes where the MP method failed.

Although the OWS has been shown to be able to detect the individual spikes of
IT1S,, where MP failed, the OWS also has limits in its ability to detect these periodic
spikes. In Figure 6.14(a), we show the OWS for the ideal periodic sequence TTI5s,
which has a shorter period that the previous example. It can be seen from Figure
6.14(a), that OWS does not detect any of the individual spike events as in the previous
example. The OWS method’s ability to detect the individual spikes of an ideal periodic
spike sequence is also dependent upon the relationship between the spike period and
the signal length. However, OWS is less effected than MP as demonstrated with the
periodic spike signal TTT3;.

To emphasize the superiority of OWS over MP in detecting individual spikes of a
repetitively spiking signal we compare OWS and MP using a noisy synthetic signal.
The synthetic signal for this example is of length 128 samples. The individual spikes
have a duration of 3 samples and are separated by 16 samples. White Gaussian noise
is added to the spike sequence resulting in an SNR of 10dB. This signal is shown in
Figure 6.15(a). It can be seen from 6.15(b) that the OWS spike detection method can
accurately indicate the individual spike events. However, it can be seen from the MP
TFR in Figure 6.15(c) that MP does not represent the individual spikes with spike atoms
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Figure 6.12: ASPEC TFR of the ideal periodic signal TTI3.
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Figure 6.14: (a) The OWS of the (b) ideal periodic signal TTI5s.

and therefore the MP-based method of spike detection fails to detect these spikes. This
results is another case where OWS can detect individual spikes of repetitively spiking
signals for which MP fails.

6.4.3 MP and OWS Representation of Real Repetitive EEG Spikes

The previous sections indicated that the OWS method performs better than MP in
detecting individual spikes of periodically spiking sequences. To validate these results,
we have selected an epoch of real newborn EEG seizure which contains repetitive,

rhythmical spikes.

Figure 6.16(a) shows the OWS for the seizure epoch in Figure 6.16(b), which contains
repetitive rhythmical spiking. It can be seen from Figure 6.16(a), that the spike events
are clearly indicated by the OWS with scale values of 3 and 4. These scale values are
associated with time durations of approximately 35-80msec which matches closely with
the definition of a spike (i.e. 20-70msec in duration). Also, it can be seen for the first
4 spikes and the last spike that OWS not only detects the spikes but also detects the

biphasic® nature of the spikes. However, this is unnecessary for our application as we

A biphasic spike has a crest and a trough where as a monophasic spike has only a peak which is
generally negative [104].



Newborn EEG Seizure Spike and Event Detection using Adaptive TFSP105

Amplitude

. . . . . .
0 20 40 60 80 100 120
Time (samples)

(a)
1
ol
sH
@4
]
S
o
3l
ol
1k
o . . . . . .
0 20 40 60 80 100 120
Time (samples)
0.5
0.45
0.4F
0.35

Frequency
°
N
&

o
N

. . . .
0 20 40 60 100 120
Time (samples)

()

Figure 6.15: The individual spikes of the (a) repetitively spiking signal can be detected
by (b) OWS but not (¢) MP.



106 OWS-based Newborn EEG Seizure Detection

only require the detection of the spike event, whether it is biphasic or monophasic, and

not the classification of the spike patterns.
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Figure 6.16: (a) OWS indicates the individual spike locations of the (b) real repetitively
spiking EEG signal.

In Figure 6.17, we show the MP TFR of the same newborn EEG spiking signal in
Figure 6.16(b). The atoms from the MP decomposition which had energy values greater
than 2.5% of the total signal energy were defined as the significant atoms. It can be seen
from the TFR in Figure 6.17 that only one spike atom, centered at approximately 460
samples, was chosen in the decomposition. Instead, the MP algorithm has selected large
scale atoms, which indicate the harmonic relationship between the repetitive spikes, to

represent the signal.

This example of real newborn EEG seizure, which contains repetitive spikes, con-
firms the previous results using synthetic signals which indicate that the OWS method
is better at detecting repetitive, harmonically related spikes. Therefore, we will use an
OWS-based method for detecting seizure spikes in the newborn EEG.

6.5 OWS-based Newborn EEG Seizure Detection

The automatic detection of seizure in the newborn involves firstly defining a feature, or

a set of features, which clearly distinguishes the seizure state of the EEG from all other
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Figure 6.17: (a) MP fails to indicate the individual spike locations of the (b) real
repetitively spiking EEG signal.

states. In our proposed automatic seizure detection algorithm, we use the repetitive
behaviour of spike/sharp waves in EEG seizure to distinguish the seizure state from all
other EEG states.

Although spikes and sharp waves in the EEG can be normal morphological varia-
tions of the newborn EEG, it is the continual repetition of spikes or sharp waves for a
minimum of approximately 10-20 seconds, which characterize the newborn EEG seizure
event [9, 22]. The real newborn EEG data used in the assessment of the proposed auto-
matic seizure detection algorithm was acquired at the Royal Womens Hospital, Brisbane,
Australia, using the MEDELEC system’. Twenty EEG channels were recorded from
fourteen electrodes in a bipolar montage. The raw EEG data was bandpass filtered with
cutoff frequencies at 0.5Hz and 70Hz before being digitized at 256Hz. A notch filter at

50Hz was also applied to remove any AC line artefacts.

6.5.1 Automatic Detection Algorithm

The newborn EEG has most of its power in the low frequency range of between 0.4—
7.5Hz, with the majority of this in the 0.4-4Hz range [72|. Therefore, the preprocessing

step of the automatic EEG seizure detection algorithm consists of digitally low pass

"A detail description of the EEG data acquisition is given in Appendix A
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filtering the recorded EEG with a cutoff frequency of 15Hz. The filtered signal is then
downsampled to 32Hz. By resampling the EEG at this rate, we significantly reduced
the amount of EEG data to be processed without affecting spike and sharp wave events
too severely.

The repetition of the spiking activity in the newborn EEG seizure is commonly
found at rates between 1-3/second [77|. However, for neonates suffering from herpes
simplex encephalitis, the seizure spiking rate has been seen as low as 0.5/second [121].
Therefore, we have chosen to segment the EEG signal into non—overlapping epochs of
128 samples (i.e. 4 seconds). This assures that during a seizure event with repetitive
spiking, a minimum of two spikes will be contained in the epoch.

Multiple spikes in an EEG epoch is our proposed feature used to detect a newborn
EEG seizure event. However, for a seizure event to be detected, at least three out of
five successive epochs of any channel had to contain multiple spikes. If three successive
epochs contained seizure and no others after that, then the seizure event was marked
as the time period for the three epochs only. If the three epochs containing multiple
spikes were spread across five successive epochs the seizure event was marked as the
time period for the five successive epochs. This is demonstrated in Figure 6.18 with
two examples of seizure events characterized by repetitive spiking. This marking system
was chosen to account for the highly variable and complex morphology of newborn EEG
seizure patterns. It was also used to counteract the effects of large amplitude artefacts
which may mask the repetitive spiking characteristic for relatively short periods of time
(i.e. less than 4 seconds). The proposed seizure detection algorithm is summarized in
Figure 6.19.

6.5.2 Performance Evaluation of Detection Algorithm

At present, there is no unique standard testing procedure for the evaluation of seizure
detection algorithms. Two of the most widely used methods of assessing automatic
seizure detection algorithms include the ewvent-detection method and the neurologist-
correlation method.

The event-detection method of performance evaluation determines the percentage
of seizure events that have been correctly identified during an EEG recording. The false
alarm rate for this assessment method is quantified by the number of false detections
per hour. Figure 6.20(a) provides an illustration of this assessment method. It can
be seen from Figure 6.20(a) that the ezample seizure detection algorithm has correctly
identified two out of three seizure events. Therefore, the seizure detection rate is 66.7%
for this example. The background period in Figure 6.20(a) is of length 90 minutes. In

that period, the example seizure detection algorithm has detected two seizure events.
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Figure 6.18: Two examples of how the automatic detection algorithm marks seizure
events containing repetitive spikes.
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Figure 6.19: Automatic newborn EEG seizure detection algorithm based on OWS repet-
itive spike detection.
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Therefore, the FDR for this algorithm is 1.33 false alarms/hr.
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(b) Neurologist-correlation method

Figure 6.20: Methods for assessing automatic seizure detection algorithms. (a) is the
event detection method. It can be seen that 2 out 3 seizure events have been detected
correctly during the seizure periods and that 2 false detections have occurred in the
nonseizure periods. (b) is the neurologist-correlation method. It can be seen that
on average 66.7% of seizure detection correlates with the neurologist with 10% (i.e.
9mins/90mins) false detection.

The neurologist-correlation method is a more ambitious method of assessing seizure
detection algorithms. For this assessment criterion, the seizure detection rate is based
on the average percentage of seizure event lengths correctly identified by the automatic
detection algorithm as seizure. The FDR is determined as the percentage of nonseizure
data incorrectly identified as seizure by the automatic detection algorithm. Figure
6.20(b) illustrates the neurologist-correlation method of algorithm assessment. It can
be seen from Figure 6.20(b) that the example seizure detection algorithm, on average,
correctly identifies 66.7% of the seizure events. Figure 6.20(b) also shows that the

example seizure detection algorithm falsely identifies 10% of nonseizure sections.
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Performance assessment using the event-detection method requires a very large
database of EEG signals obtained from long term EEG monitoring in order to give
statistically valid seizure event detection and false alarm rates. However, long term
EEG monitoring of the neonate is not practical at this stage.

The neurologist-correlation method does not require a large database to evaluate
an algorithm’s performance and is more informative than the event-detection method.
Therefore, we have adopted the neurologist-correlation method for evaluating our au-
tomatic newborn EEG seizure detection algorithm.

To assess the performance of our automatic newborn EEG seizure detection algo-
rithm, we have used the real EEG recordings from 8 newborns. The database contains
nine seizure events from six neonatal patients. The seizure events had durations ranging
from 12 seconds to 412 seconds (as marked by an expert in neonatal EEG). The other
two newborn used in this evaluation did not experience any seizure event and were only
used to evaluate the FDR.

Tables 6.3(a) and (b) show the results of the our proposed seizure detection algo-
rithm. It can be seen from the results in Table 6.3 that the algorithm correlated well

with neurologists markings. The average GDR and average FDR for our algorithm are:

Average GDR : 95.8%
Average FDR : 2.38%

In developing a seizure detection algorithm, a decision on the minimum duration of
seizure positive activity for a seizure event to be detected must be decided upon. How-
ever, as the minimum duration is decreased (e.g. from 20 seconds to 10 seconds), the
FDR generally increases. This tradeoff occurs because the newborn EEG background
can sometimes mimic the behaviours of newborn EEG seizure over short periods. There-
fore, a promising result from this algorithm is the fact that the shortest duration seizure
event (i.e. 12 seconds) was correctly identified by the algorithm while simultaneously

providing an extremely low false detection rate.

6.5.3 Comparison of Automatic Newborn EEG Seizure Detectors

To further evaluate our proposed automatic newborn EEG seizure detection algorithm,
we compared it with four published and well-documented newborn EEG seizure detec-
tion algorithms. These algorithms include LIU [19], GOTMAN [22], CELKA [25] and
HASSANPOUR |[31]. These algorithms have previously been mentioned in Chapter 1.
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Table 6.3: Performance of OWS-based detection algorithm using neurologist-correlation
method. (a) Tables the results assessing the GDR and (b) shows the results for FDR
assessment.

~ N
(@) CHILD EVENT GDR
_ Y,
(" BABY 1 Seizure 1 100%
BABY 2 Seizure 2 88.4%
Seizure 3 100%
BABY 3 -
Seizure 4 100%
Seizure 5 92.9%
BABY 4 -
Seizure 6 100%
BABY 5 Seizure 7 100%
Seizure 8 100%
BABY 6 -
Seizure 9 96.3%
_ Y,
CHILD EVENT FDR
_ Y,
e ) N
BABY 7 Nonseizure 2.97%
BABY 8 Nonseizure 0.00%
_ Y,

The methods originally used in assessing the performance of each the published
algorithms (i.e. LIU, GOTMAN, CELKA and HASSANPOUR) differ significantly.
At this point, we note that the method used for assessing the performance of an auto-
matic detection algorithm often drives the empirical threshold values for the algorithms.
Therefore, it may be unfair to compare algorithms using a method of assessment which
is different to the original method. However, recently, a method of performance assess-
ment was proposed in [122] which allowed for the comparison of the LIU, GOTMAN
and CELKA algorithms.

In the performance assessment method of [122], all EEG data was segmented into
60 second blocks which either contain seizure or nonseizure EEG, as labeled by a neu-
rologist. If an algorithm detected seizure during any period of a seizure segment, a

good detection was recorded. If an algorithm detected seizure during any period of a
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nonseizure segment, a false detection was recorded. Therefore, the performance results

were obtained as:

GDR — Number of Good Detections FDR — Number of False Detections
~ Number of Seizure Segments ~ Number of Nonseizure Segments

From our experience, the longer the seizure segment is, the better chance a detection
algorithm has of detecting some part of the segment as seizure and therefore providing
a good seizure detection. However, as the seizure segment length decreases it is more
difficult for a detection algorithm to make a good detection. The minimum duration
of a seizure event in the newborn is a much debated topic between neonatologists and
neurologists, with most agreeing on a period of between 10-20 seconds of ictal charac-
teristics to define a seizure event. Therefore, we believe that segmentation of the EEG
into 60 seconds blocks is too long of a period.

To compare our algorithm with the LIU, GOTMAN, CELKA, and HASSANPOUR
algorithms, we have adopted the assessment method of [122], describe above. However,
we decided upon segmenting the EEG data into 30 second epochs. The LIU algo-
rithm requires the longest epoch length out of the four algorithms, which is 30 seconds.
Therefore, it was the discriminating factor in our choice of segmentation length. We
then tested the different algorithms on 52 seizure segments and 44 nonseizure segments.

In the comparison of LIU, GOTMAN and CELKA presented in [122], it was found
that all three algorithms performed poorly on their data set®. Subsequently, slight
modifications were made to these algorithms to improve performance.

In our initial testing of the LIU, GOTMAN, CELKA and HASSANPOUR algo-
rithms on our data set, we also found that the algorithms performed poorly. Therefore,
we also made slight modifications to these algorithms. In the following section we briefly

describe the original algorithms and then explain our modifications.

LIU Algorithm with Modifications

The LIU algorithm segments the EEG data into 30 seconds epochs. Autocorrelation is
then performed on 5 windows of the 30 second epoch of which four are of length of 6.4
seconds and one is of length 4.4 seconds. For nonperiodic signals, the peaks and troughs
in the autocorrelation are irregularly spaced. The time interval between peaks of the
autocorrelation become constant for periodic signals. Since the newborn EEG seizure is

characterized by rhythmic, repetitive patterns, the LIU algorithm assumes that seizure

8The data set of [122] contained 43 seizure segments and 34 nonseizure segments.
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EEG should have peaks in the autocorrelation that are evenly spaced, whereas the
nonseizure EEG will have irregular spacing.

To classify the EEG data, the moment center of the peaks of the autocorrelation
are determined and the ratio between centers are calculated. The closer the ratios are
to whole numbers the higher the score that window obtains. The scoring values for the
ratio differences are presented in [19].

For the LIU algorithm, either of the following three criterion’s must be met for a

channel to be considered seizure positive:

(a) 2 consecutive window scores within a channel are > 2, with the sum of the two

window scores > 10.

(b) 3 consecutive window scores within a channel are > 2, with the sum of the three

window scores > 14.

(c¢) A score from a single window is > 12.

If 2 or more channels in the epoch were seizure positive, the epoch was considered to
contain EEG seizure.

The results of the original LIU algorithm for our dataset showed excellent GDR
but extremely poor FDR. Therefore, to improve the performance of LIU we modified
the criterion for a channel to be considered seizure positive. The modified criterion are

explained as follows.

(a) 2 consecutive window scores within a channel are > 2, with the sum of the two

window scores > 14.

(b) 3 consecutive window scores within a channel are > 2, with the sum of the three

window scores > 16.

(c) A score from a single window is > 13.

If 2 or more channels in the epoch were seizure positive, the epoch was considered as

seizure.

GOTMAN Algorithm with Modifications

The GOTMAN algorithm takes a sliding window of 10.24 seconds with an overlap of
75%. The power spectrum of the EEG window is then obatined through the Fast
Fourier Transform (FFT). The power spectrum of nonseizure newborn EEG is assumed

to exhibit a peak frequency between 0.5-0.8Hz with an exponential decay. However,
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Dominant Width of Power ratio
frequency | dominant peak
First combination 0.5-1.5Hz < 0.6 3-4
Second combination | 1.5-10Hz < 0.6 2-4
Third combination 1.5-10Hz <1 4-80

Table 6.4: Boundary values for features of GOTMAN algorithm.

the rhythmic characteristic of the newborn EEG seizure is often represented in the
spectrum with significantly large peaks at the main seizure frequency. Therefore, the
GOTMAN algorithm incorporates features which try to emphasize this distinguishing
characteristic.

In the GOTMAN algorithm, the spectrum of the window under investigation is
compared with the spectra of two windows occurring 60 seconds prior. These previous
windows are referred to as the background windows. The features of the GOTMAN
algorithm include: dominant frequency, width of dominant spectral peak and power
ratio between the dominant spectral band of the current window and background win-
dow. Table 6.4 shows the boundary values of the features which distinguish seizure from
non-seizure. A seizure detection is made if a current windows meets any of the criteria
in Table 6.4.

The results of the original GOTMAN algorithm gave a poor FDR. To improve the
FDR of the GOTMAN algorithm we required that 5 successive sliding windows in a
channel be seizure positive before a seizure event was detected. The alteration of the
algorithm meant that 20 seconds of ictal discharge was required for a seizure to be
detected instead of the original 10 seconds. This tradeoff between FDR and minimum

seizure duration was previously addressed in section 6.5.2

CELKA Algorithm with Modifications

The CELKA algorithm begins with the determination of an autoregressive moving av-
erage (ARMA) model of nonseizure EEG using pre-recorded nonseizure EEG signals.
A preprocessing step of filtering the EEG signal using the inverse of the ARMA model
is undertaken in an attempt to whiten the background portion of the newborn EEG.
The Rissanen MDL [28] of the SVD of the EEG trajectory matrix is then used to de-
termine whether the filtered EEG signal is pure white noise or contains a nonstochastic
component.

The details of the CELKA algorithm are as follows. For the filtered EEG signal
in state space of dimension ng, the MDL determines from the SVD, the dimension,

ne < ng, which is the minimal size embedding space. In the case of pure white noise,
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no = 1. Otherwise, if n, > 1, the signal contains a nonstochastic component. Therefore,

a seizure detection is made if n, > 1.

In [122] it was found that the filter coefficients of the ARMA model varied signif-
icantly from one sample section to another. Therefore, using the mean of the filter
coefficients for the whitening preprocessing step lead to highly inaccurate results. How-
ever, it was found that the frequency response of the filters was consistent from one
section to another and therefore an average frequency response was used to obtain the
preprocessing filter. We have also taken this approach for the whitening preprocessing

step.

HASSANPOUR Algorithm with Modifications

The HASSANPOUR algorithm is composed of three stages: (1) spike detection, (2)
training: class forming and (3) seizure detection: classification into one of the predefined
classes. The spike detection stage involves segmenting the data into nonoverlapping
epochs of 4 seconds. The epoch is then transformed to the TF domain using the
CWD. Two frequency slices at approximately 60Hz and 65Hz are then taken from the
TFD and fed through SNEO to emphasize the spike events. Two separate threshold
values, empirically chosen, were set for each of the frequency slices. The center of
the local maximums, which were above the threshold value, were chosen as possible
spike locations. If the marked spike locations were observed in both frequency slices, a

positive spike detection was made.

The HASSANPOUR algorithm suggests that the distribution of intervals between
spikes differs between seizure and nonseizure. Therefore, a histogram of successive spike
intervals (HSSI) was used as a feature for the classification stage. Six seizure classes

were unsupervisely constructed using the k-nearest neighbour algorithm [31].

In the seizure detection stage, the EEG database was again segmented into epochs
of 4 seconds, transformed to the TF domain, SVD-based enhancement of the TFR was
applied, and the HSSI obtained. The epoch HSSI was then compared to these classes
using the Jensen function and if the output was less than 0.1 (i.e. an epoch was close
enough to any of the classes according to this threshold) a seizure detection was declared

for that epoch. Otherwise, the EEG data was classed as nonseizure.

We believe that since the minimum duration of ictal patterns in the EEG is 10
seconds for a seizure event to be decided upon, a seizure detection based on 4 seconds
of EEG is too short. Therefore, we added in the constraint that at least two successive

epochs in any channel be seizure positive before a seizure event detection is declared.
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[Comparison Algorithm Liu | Gotman | Celka | Hassanpour OWS]
, GDR (%) ! 69 62 60 29 94 |
Thesis r
FDR (%) & 43 16 50 36 2.3 |
GDR (%) ' 43 63 66
Faul et al. ;;
FDR (%) ! 10 34 46

Table 6.5: Results of newborn EEG seizure detection algorithms on a common database.

Results and Discussion

The results of LIU, GOTMAN, CELKA, HASSANPOUR and OWS newborn EEG
seizure detection algorithms on our EEG database are shown in Table 6.5. It can
be seen from the results in Table 6.5 that our OWS-based seizure algorithm performs
significantly better than the other algorithms. These results can be attributed to a
number of factors for which we will discuss. Table 6.5 also includes the results from
the comparison of Faul et al. [122]. The table shows similar results between our results
and the results of [122]. The largest variation between comparison occurs for the LIU
algorithm. However the GDR-FDR (i.e. difference) is similar. This suggests that the
modifications of the LIU algorithm in [122] were driven by the desire to minimize the
FDR.

LIU Performance

The most interesting performance measure for the LIU algorithm is its significantly large
FDR. From our investigation of this algorithm, with respect to our EEG database, we
found two major factors causing this result. Firstly, the data acquisition system used
in Liu et al. [19], only recorded 12 channels in a bipolar montage. The LIU algorithm
required that two channels or more exhibit seizure activity. This was most likely decided
upon because each recording electrode placed on the scalp is used in the acquisition of
two or more channels. Therefore, if significant seizure electrical activity was occurring
under one electrode, it should be seen in at least two channels.

Our data acquisition system records twenty EEG channels, also in a bipolar montage.
This is a significant increase in the number of recording channels for newborn EEG
patients whose scalp size is already small. Therefore, the chance that two or more
channels may record artefacts mimicking seizure activity is much greater, leading to
increased false detections.

The second factor causing an excessively large FDR for the LIU algorithm is the

appearance of slow wave activity in the background which has significantly large am-
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Figure 6.21: Two consecutive windows of nonseizure EEG data which result in a false
seizure detection by the LIU algorithm.
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plitude. These slow waves result in a repetition in the autocorrelation function, similar
to that which is seen for seizure windows. This can be seen in Figure 6.21(a), in which
an epoch of real newborn EEG background with a slow wave causes a large score value
from the autocorrelation function. The following window in Figure 6.21(b) does not
have the slow wave characteristic seen for the previous window. However, the scoring
from the autocorrelation function is large enough such that when combined with the

previous window, a false detection is made by the algorithm.

GOTMAN Performance

The GOTMAN algorithm compares the spectrum of the current EEG epoch with that
of two EEG epochs approximately 60 seconds prior to the current epoch. In our as-
sessment methodology, we have created a database containing 30 second segments of
seizure and nonseizure EEG. Therefore, we used 60 seconds worth of marked EEG back-
ground data to calibrate the GOTMAN algorithm. This calibration was also employed
in the newborn EEG seizure detection algorithm comparison presented in [122]. How-
ever, we found that the both the GDR and FDR were extremely high. Therefore, the
modifications made to the GOTMAN algorithm were aimed at reducing the FDR while
maintaining a relatively high GDR.

It can be seen that the GOTMAN algorithm has significantly lower FDR than LIU
or CELKA whilst retaining a comparable GDR. It was noted in [122] that the separation
of nonseizure and seizure in the defined 3 dimensional feature space of the GOTMAN
algorithm was not always distinct. We also found that the there was significant overlap
between some seizure and nonseizure data in the feature space, as shown in Figure 6.22.

This is a major factor causing the inefficient performance of the GOTMAN algorithm.

CELKA Performance

This algorithm is referred to as a seizure detection algorithm, however, it is essentially a
newborn EEG background detector. The whitening pre-processing step of the CELKA
algorithm attempts to whiten the background portion of the EEG signal. This means
that the whitening process should only be successful if the newborn EEG data is back-
ground. In this case the MDL should give a minimal embedding dimension value of
n, = 1. Otherwise, if n, > 1 the EEG data is classed as seizure. Therefore, the
algorithm only detects the background data and classes everything else as seizure.
The CELKA algorithm performs poorly, as can be seen from Table 6.5. In par-
ticular, it gives a particularly high FDR. This is due to the whitening preprocessing

step. The static whitening filter cannot always whiten the nonstationary newborn EEG
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Figure 6.22: Three dimensional feature space of the GOTMAN algorithm showing
seizure and nonseizure data points.

background. The result of the background not being whitened properly is that a false
seizure detection is made.

The GDR of the CELKA algorithm also suffers from the whitening process. The
nonstationary EEG seizure has a time-varying magnitude spectrum. The average of this
time-varying magnitude spectrum may be similar to the average of the time—varying
magnitude spectrum of the background EEG. Therefore, because the discriminating
temporal information is discarded, this may lead to whitening of the EEG seizure data
and result in a missed seizure detection. From these results, it is obvious that a time-
invariant whitening filter cannot achieve the desired results for nonstationary signals
such as the newborn EEG background. Similar observations to ours were also described
in [122].

HASSANPOUR Performance

In the assessment of the HASSANPOUR algorithm, we used the set of histograms cov-
ering the seizure classes that were defined in [31, 123], as well as the original algorithm.
However, it can be seen in Table 6.5 that the HASSANPOUR algorithm has the poorest
overall performance. This poor result is due to a number of reasons.

Firstly, it seems that the spike detection stage of the seizure detection algorithm
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is extremely sensitive to fast variations in the signal, leading to many false EEG spike
detections. In Figure 6.23, we show a four second epoch of EEG data which has a single
epileptiform spike, as marked by a neurologist. At the bottom of Figure 6.23, we have
shown the HASSANPOUR spike detection locations using pins. It can be seen that the
spike detection algorithm detects the true EEG spike correctly, however, it also detects
many other spike events which have not been marked by a neurologist as EEG spike
events. Therefore, the algorithm is not truly detecting the time interval between EEG

spikes which may result in poor detection results.

Marked Spike

Time (sec)

Figure 6.23: Spike detection of a four second EEG epoch using the HASSANPOUR
spike detector.

Secondly, the HASSANPOUR algorithm classified newborn EEG seizure into 6
classes using 5000 epochs of seizure from 11 newborns [123]. It then determined that
EEG data not falling into any of these classes are nonseizure. However, it seems that
the classification process should have been applied to nonseizure EEG data as well.
This way, it could be verified that the nonseizure EEG data does not fall into the any
of the seizure classes. This may be one reason for the high FDR of the HASSANPOUR
algorithm.

Thirdly, the testing of the HASSANPOUR algorithm was previously done using 5
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newborns and it achieved good detection rates. However, it was not stated whether
these newborn EEG recordings were also used in the classification process, which would
be the reason for the good performance of the algorithm in that assessment. Also, it
seems that the number of classes of newborn EEG seizure is too small as an extremely
large number of EEG seizure epochs were missed by the algorithm. Another way to
combat this is to reduce the threshold value of the Jensen function. However this may
lead to an increase in the FDR.

Finally, there are a large number of thresholds which can be set in this algorithm.
However, because of the long processing times, optimization of these thresholds is ex-
tremely difficult and time consuming. Therefore, we only ran the HASSANPOUR
algorithm with the original threshold values. By changing these threshold values, it
may be possible to improve the performance of the HASSANPOUR algorithm.

OWS Performance

Table 6.5 clearly demonstrates the superiority of our proposed newborn EEG seizure
detection algorithm. The excellent results of this algorithm can be attributed to a
number of factors. Firstly, the algorithm uses an adaptive TFSP technique (i.e. OWS)
to accurately detect repetitive newborn EEG seizure spikes/sharp waves. This method
has been shown to provide the best performance in the detection of repetitive spikes
when compared with QTFDs such as the CWD, used in HASSANPOUR, and MP,
which is another adaptive TFSP technique.

The nonstationarity of the newborn EEG is a major factor which restricts the per-
formance of techniques such as LIU, GOTMAN and CELKA. The time-varying char-
acteristics which may discriminate between the nonstationary seizure data from the
nonstationary background data cannot be included in any of the LIU, GOTMAN, or
CELKA algorithms. These restrictions are overcome using the adaptive TFSP technique
of the OWS.

The major drawback of the OWS-based seizure detection algorithm is its processing
time. The LIU, GOTMAN and CELKA algorithms are all computationally efficient and
can all be used for real-time newborn EEG seizure detection. Neither the OWS-based
nor HASSANPOUR algorithms can be run in real-time. However, the OWS-based
algorithm is approximately twice as fast as the HASSANPOUR algorithm. This due to
the fact that OWS-based spike detection method does not need to compute the TFR.

Another limitation of the OWS-based seizure detection algorithm is that although a
majority of seizures exhibit repetitive spiking, some seizures are characterized by slow
waveforms. Therefore, these types of seizures will be missed by the OWS-based seizure

detection method.
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6.6 Summary

This chapter presents a new method for the automatic detection of seizure in newborns.
The proposed seizure detection algorithm is based on the ability to automatically detect
the individual spikes of repetitively spiking signals.

It has previously been shown that QTFD-based methods perform better in detecting
spikes than time domain based techniques, [114]. However, in this chapter, we gave an
example which showed that QTFD-based spike detectors, such as the one proposed in
[114], can fail to detect the individual spikes of a repetitively spiking signal. Therefore,
a new method of detecting signal transients or spikes based on adaptive TFSP was
developed.

The proposed method of spike detection used in this chapter was the OWS method,
which was originally developed to optimize the window size of the Spectrogram and
other QTFDs. It was shown that if a spike occurred in the signal, the OWS would be
small around the time location of the spike and can therefore be used as a basis for
spike detection.

The performance of the new method for spike detection was compared with another
adaptive TFSP spike detection method based on the MP. It was shown that both
methods performed well on the detection of isolated spike in real EEG signals, with both
methods having similar specificity and sensitivity rates. However, it was shown that
the OWS method of spike detection performed better than MP in detecting repetitively
spiking signals. This was illustrated using synthetic and real signals.

A seizure detection algorithm based on the detection of repetitive spikes using the
OWS was presented. Firstly, we assessed the proposed algorithm using the neurologist-
correlation method of performance evaluation. It was shown that the algorithm corre-
lated extremely well with the neurologist markings, with an average GDR of 95.8% and
an average FDR of 2.38%.

Due to the various methods for assessing the performance of seizure detection algo-
rithms, a generic method of performance assessment was required. We chose to use a
method proposed in [122], to compare our OWS-based algorithm with the LIU, GOT-
MAN, CELKA, and HASSANPOUR algorithms. It was observed from this comparison
that the OWS-based seizure detection algorithm was superior to the other newborn
EEG seizure detection algorithms with 94% of seizure epochs being detected correctly
and only 2.3% of nonseizure epochs being falsely detected as seizure. Possible reasons
for the poorer performance of each of the other algorithms were provided to validate

the comparison results.



Chapter 7

Conclusions and Future Research

Intentions

7.1 Thesis Summary

his thesis is focused on the accurate, automatic detection of newborn EEG seizure.
T A variety of time-frequency signal processing techniques were investigated in this
thesis and many sophisticated variations and applications of these techniques were pro-
posed. This led to the development of an automatic newborn EEG seizure detection
method which was shown to outperform other well-documented methods.

The first objective of this thesis was to analyze the newborn EEG using nonlinear
and nonstationary techniques for the development of a realistic newborn EEG simula-
tor. It was found that a prominent feature associated with the background newborn
EEG signal was its self-similarity. This thesis assessed the background EEG of the new-
born using the most appropriate method of fractal dimension estimation (i.e. Higuchi
method). Using the results of this analysis and the relationship between fractal di-
mension and power spectrum law, a method of simulating newborn EEG background
was developed. This method was shown to exhibit similar characteristics to real new-
born EEG in the time, frequency and time-frequency domains, as well having similar
nonlinear characteristics.

Nonstationarity is a significant characteristic of newborn EEG seizure, which has
also been shown to consist of multiple TF components. To allow for the TF characteris-
tics, a newborn EEG seizure simulator was proposed using TFSS. In this method, a TF
template image was constructed based on TF analysis and characterization of newborn
EEG seizure. The time domain signal associated with the designed template was then

synthesized using the MSTFEF'T magnitude method. This simulator has a number of ben-
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efits over previous methods including its simplicity, ability to handle spectral distortion
and the discontinuities of the piecewise instantaneous frequency law.

Atomic decomposition techniques were investigated in this thesis for their ability in
analyzing and processing newborn EEG. A major goal of atomic decomposition tech-
niques incorporating redundant dictionaries is the ability to provide sparse representa-
tions. However, in most engineering applications, only sufficient signal approximations
are needed. We investigated two recent atomic decompositions techniques, MP and BP,
for their ability to provide sparse approximations. It was shown that although BP pro-
vides the sparsest representation, it did not always provide the sparsest approzimation'.
Instead, it was shown that MP generally provided sparser signal approximations. This
was demonstrated using a variety of signals and desired approximation levels. For this
reason, MP was chosen as our preferred method of signal decomposition in this thesis.

It was shown that the number of significant atoms (i.e. the minimum number of
atoms needed to approximate the signal to a desired level) from MP decomposition, in-
creased as the signal structures became less coherent with the decomposition dictionary.
This indicated that the number of significant atoms needed in an approximation quanti-
fied the coherency between the signal structures and the decomposition dictionary. The
number of significant atoms was termed “structural complexity” (SC) as the observed
complexity (i.e. number of significant atoms) is totally dependent on the structures in
the signal and the decomposition dictionary.

A method of detecting changes in signal structure was then derived based on the
change in SC. It was established that if a dictionary, which was highly coherent with
a particular signal state, was developed, then changes from this signal state could be
detected through a change in the SC. This generic method of detecting signal transitions
was demonstrated using synthetic signals, which clearly showed its applicability.

The SC-based method of detecting signal transitions was applied to the newborn
EEG for detecting the transition of the EEG signal into and out of the EEG seizure
state. A TF dictionary, coherent with the newborn EEG seizure state, was developed
based on the TF characterization of the newborn EEG seizure and background states.
The SC-based detection method was first demonstrated with, and applied to, a large
database of synthetic newborn EEG signals, created using the simulation methods of
Chapter 4. The algorithm achieved a sensitivity and specificity of 100% and 97.3%
respectively. The SC measure applied to real newborn EEG was used to validate the
synthetic results, in which it was shown that a significant change in SC occurred during

signal transitions.

!Signal representation infers that all signal energy is represented, whereas signal approximation
means that some residual signal energy is not accounted for.
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Spike events are paroxysmal events which often occur in the EEG of abnormal new-
borns. The MP algorithm was previously used for adult EEG epileptic spike detection
[42], and showed promising results. However, the results were based on isolated spike
events in the EEG signal.

The newborn EEG seizure is characterized by repetitive, rhythmical spiking. There-
fore, we assessed the MP algorithm for detecting repetitive spikes. It was demonstrated,
using synthetic and real signals, that the ability of MP in detecting individual spikes
of a repetitively spiking signal was dependent on the relationship between signal length
and period between successive spikes.

The adaptive spectrogram using a window adaption method referred to as the max-
imum correlation criterion [120], was shown to be another valid method of detecting
spikes. In particular, it was demonstrated that the method could be used to detect
repetitive spikes as well as provide information about the harmonic relationship be-
tween successive spikes. It was illustrated that this representation of dual information
was not attainable using MP.

It was then shown that spike detection could be determined directly from the adap-
tive window optimization algorithm used for the adaptive spectrogram. That is, the
optimal window scale (OWS), provided by the adaption algorithm, was small at the
time instants where spike events occurred, therefore, allowing for spike detection. This
OWS-based method of spike detection was shown to detect isolated spikes in the EEG
with the same accuracy as MP. It was also shown to detect repetitive spikes much better
than the MP method.

A seizure detection algorithm was proposed based on the OWS method of spike
detection. The algorithm was evaluated using the neurologist-correlation method of
assessment and achieved an average GDR of 95.8% and an average FDR of 2.38%. The
algorithm was then compared with four well documented seizure detection algorithms

[19, 22, 25, 31], and was shown to outperform these algorithms.

7.2 Conclusions

In accordance with the results obtained in this thesis, a number of conclusions have

been made. These conclusions are detailed in the following:

o EEG simulation methods should address all significant nonlinear and

nonstationary characteristics of the real EEG.

The newborn EEG has both significant nonlinear and nonstationary characteris-

tics which must be addressed in the development of a newborn EEG simulator.
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Previous simulation techniques have not addressed the nonstationarity associated
with the newborn EEG background or the multicomponent nature of the newborn
EEG seizure, which have both been accounted for in our proposed simulation
methods. This has led to more realistic simulation of the newborn EEG which can
be used confidently in the development and assessment of newborn EEG seizure

detection algorithms.

¢ Atomic decomposition techniques which provide sparse signal repre-

sentations do not necessarily provide sparse signal approximations.

Previously, much work has been done in the development of atomic decomposi-
tion techniques which provide highly sparse signal representations. This thesis
has demonstrated that decomposition techniques which provide sparse signal rep-
resentations do not necessarily provide sparse signal approzimations. Therefore,
a deciston on which atomic decomposition technique to use should incorporate the
a priori knowledge of whether a signal approrimation or signal representation is

desired for a particular application.

¢ Sparse approximations can also be achieved through the use of carefully

designed coherent TF dictionaries.

This thesis also shows that sparse signal approximations can be achieved through
careful dictionary design. It was shown, using the real life signal example of new-
born EEG seizure, that sparse signal approximations could be achieved through
the design of a coherent time-frequency dictionary. The coherent dictionary was
developed based on the observed time-frequency characteristics of the newborn
EEG seizure state. By developing a time-frequency dictionary that is coherent
with a specific state in a signal, we demonstrated that transitions into and out
of this state could be detected using the number of significant atoms needed in
an approximation (i.e. using the structural complexity measure). This has in-
troduced to the area of atomic decomposition the idea of using application specific
dictionaries to achieve sparse signal approzimations and detect particular signal

states.

¢ Difficulties arise when trying to detect repetitive rhythmical spikes us-
ing TF techniques. Therefore, adaptive TF techniques should be used

for detection of repetitive spikes.

Time-frequency signal processing techniques have been shown to be suitable tools
for the detection of signal transients. However, difficulties in detecting repetitive

rhythmical transients using time-frequency signal processing techniques have been
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identified in this thesis. It was shown in this thesis that adaptive quadratic TFDs
can provide more information about the TF characteristics of repetitive rhythmi-
cally spiking signals than QTFDs. Therefore, adaptive QTFDs should be used in
place of QTFDs for detecting repetitive rhythmical spikes, which occur in real life

signals such as the newborn EEG.

¢ Detection of repetitive rhythmical spikes can be achieved using the

window optimization algorithm used by adaptive QTFDs.

The optimal window scale which gives the adaptive window length used by adap-
tive QTFDs can be used for the detection of transients without having to compute
the TFR. Spikes are indicated by small window scales/lengths at the time loca-
tions of the spike events. This technique of spike detection was developed in this
thesis and also shown to be better than QTFDs and matching pursuit for the
detecting repetitive rhythmical spiking. This is significant as the optimal window
scale method of spike detection reduces processing time in the application of spike
detection. It also signifies the use of the optimal window scale in solving signal

processing problems.

¢ Seizure detection can be achieved by the detection of repetitive rhyth-

mical spiking in the EEG signal.

A significant characteristic of the newborn EEG that is synonymous with the
EEG seizure state is repetitive rhythmical spiking. It was demonstrated in this
thesis that techniques capable of indicating the occurrence of repetitive rhythmical
spiking, such as the optimal window scale method, could be used for newborn EEG
seizure detection. In fact, the seizure detection algorithm proposed in this thesis
was based on the OWS method of spike detection and was shown to outperform
other highly recognized seizure detection algorithms. Therefore, this presents
a suitable algorithm for possible use in the clinical setting for offline automatic
seizure detection. Further refinement of the algorithm and increased computer
speeds may one day see this algorithm being used for real-time/online automatic

seizure detection.

7.3 Future Research Directions

In achieving the objectives and reaching the goal of the this thesis, outlined in section
1.3, a number of future research directions were identified. Specifically, the following

research areas could be addressed:
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¢ Newborn EEG background simulation. The simulator proposed in this thesis
provides nonstationary newborn EEG background with nonlinear characteristics.
However, in the simulation of the EEG, envelope variation, which is common in
the newborn over lengthy periods, was not considered. It should therefore be
observed how the envelope varies over time for a collection of newborns. Also, it
would be beneficial to test for any correlations between envelope (or epoch energy)
and fractal dimension estimates. Further analysis on the distribution of the fractal
dimension estimate of the newborn EEG using more background recordings should

be undertaken.

e Newborn EEG seizure simulation. A wide variety of newborn EEG seizure
patterns with varying TF characteristics are available. We considered a number of
factors including the number of linear frequency modulated (LFM) piecewise parts
to the IF law, the slope of the LFM, frequency range and multiple components
(i.e. the harmonics of the fundamental component). We have proposed a constant
law that governs the amplitude of the harmonic components. However, further
investigation into the amplitude laws for various components should be assessed.
It is believed that this will lead to a variety of spiking patterns in the time domain
signal, which will mimic the complex morphology of repetitive spikes found in real

newborn EEG seizure.

The parameters for the proposed newborn EEG seizure model were estimated
through the subjective analysis of a large number of newborn EEG seizure epochs.
Future work should include a quantitative extraction of these parameters and
justification using some statistical hypothesis testing. Also, investigations into

possible validation methods of the model should be undertaken.

e Coherent dictionary development. This thesis proposed a TF dictionary that
was coherent with the signal structures found in the newborn EEG seizure state.
This included LFM atoms, which were representative of the patterns observed
in the seizure state. Improvements in this dictionary could be made by defining
atoms more coherent with the newborn EEG seizure structures. Suggestions in-
clude scaled LFM atoms, piecewise LFM atoms, FM atoms with other IF laws
and multicomponent LEFM atoms which include harmonics. However, care should
be taken so that the new TF atoms are not coherent with the background EEG

state.

e Signal transition detection applications using structural complexity.

The generic method of detecting changes in signal structure proposed in this
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thesis has only been applied to newborn EEG to distinguish between seizure and
nonseizure. This method of detection may also be used in other applications such

as EEG sleep stage detection and machine condition monitoring.

Improving spike detection methods. The seizure detection method proposed
in this thesis was based on the ability to detect repetitive spikes. Improving
the accuracy of spike detection algorithms will correspond with improved seizure
detection algorithms. For the matching pursuit method of spike detection, we
suggest a weighting function be applied to the Gabor dictionary that is inversely
proportional to the atom scale. We believe that this biasing would improve the
MP algorithm in selecting smaller scaled atoms to represent individual spikes of
a repetitively spiking signal, rather than selecting large scaled atoms to show
the harmonic relationship between spikes. This type of weighting function could
also be applied to the maximum correlation criterion for the adaptive window
optimization method used by the adaptive spectrogram. For both techniques, the
weighting function would need to be optimized based on the trade off between

true positives and false positives.

We have used only one method of adapting the window length of QTFDs. How-
ever, there are many other methods of adapting the window length for QTFDs.
These window adaption methods may be tested and compared to the maximum

correlation criterion for detecting spikes to see which method performs the best.



Appendix A

Appendix 1: EEG Data Acquisition

A.1 Introduction

he recording of EEG in the newborn has proven to be a highly valuable tool. It
Thas been shown to be superior in many ways to clinical examination of neonatal
patients, particularly in the detection and prognostication of brain dysfunctions [9].

The EEG is a measure of the electrical activity generated by the physiological pro-
cesses of the brain. The non-invasive nature of the EEG means it is a relatively simple
method for assessing the health of the CNS and brain functioning.

There are currently a number of devices for the simultaneous recording, monitoring
and pre-processing of EEG data. AMLAB [124], PHOENIX Clinical Lab EEG
[125] and MEDELEC [126] are some commonly used EEG recording systems.

In this thesis, the EEG data has been acquired using MEDELEC’s Profile long
term monitoring system. Therefore, this appendix is restricted to the description of
MEDELEC Profile.

A.2 MEDELEC Profile System

The MEDELEC Profile System is a product of the Taugagering company. It is dis-
tributed by Oxford Instruments Medical which is a world leading distributor of cardi-
ology, neurophysiology and obstetric equipment [127].

In routine adult EEG recording using MEDELEC Profile, 20 EEG electrodes are
placed over the scalp. The recorded signals are extremely small, (uV'). The MEDELEC
Profile system amplifies and displays the recorded electrical activity, while simultane-
ously saving the data for review by an EEG expert. The MEDELEC Profile system
also allows for the recording of other biological signals such as EOG, ECG, EMG and
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Figure A.1: EEG display on windows operating system using the MEDELEC Profile
system.

respiration. An example of the Profile display of 20 newborn EEG channels and 1 ECG
channel is shown in Figure A.1. It can be seen from the top of Figure A.1 that this
period of EEG data has been labeled as seizure by the neurologist.

Features of the MEDELEC Profile system are discussed briefly as follows [127]:

e Providing distributed data: Information of a patient in the database is in-
stantly available over the network using Microsoft access. Fast and intensive
search capabilities with integral work flow software provide an appropriate solu-
tion for a distributed EEG system.

e Simple, high quality recording: To ensure quality recordings, an electrode
impedance check is available at the head—box and a remote event marker is built-
in. High quality amplifiers and high sampling rates allow for high quality digiti-
zation of up to 40 EEG channels.

e Multimedia EEG: The Profile system takes advantage of sound and vision PC-
technology to display and store EEG, video and audio signals creating true mul-

timedia EEG. Digital videometry means no complicated wiring and no need to
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Figure A.2: A frame of the video record using the MEDELEC Profile system.

program VCRs. The video picture can be moved around the screen or can be

changed in size. A still frame of the video record is shown in Figure A.2.

e Mapping: Further investigation of the recorded data is possible using the an-
imated mapping features of the Profile system. Head map displays can be cal-
culated for power spectrum and coherence analysis across four frequency bands,
as well as instantaneous scalp potential and current—density amplitude mapping.

The possible mappings are listed below!.

— Amplitude mapping: provides a picture of the instantaneous EEG ampli-
tude when a referential montage is selected and displays either amplitude or

current density.

— Band power analysis: allows for the determination of dominant frequency
band and location of frequency content using four head maps for the various

frequency bands.

— Coherence analysis: provides an index of the synchrony of the EEG signal be-
tween two different cortical regions, reflecting the degree of shared electrical

activity between those areas.

'To view the raw EEG data we use the MEDELEC Profile Reader software. This software does not
include the mapping capabilities.
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A.3 Location of EEG Recording

The EEG data used in this thesis was recorded at the neonatal intensive care unit
(NICU) at the Royal Womens Hospital?, Brisbane, Australia. The patients in the NICU
are often monitored by members of the Perinatal Research Centre (PRC), located in
the RBWH. The PRC is directed by Prof. Paul Colditz who is an expert in neonatal
intensive care and qualified in biomedical engineering.

The EEG data used in this thesis were thoroughly reviewed by Dr. Chris Burke and
assisted by Jane Richmond, an EEG technologist. Dr. Burke is a neurologist from the

Neurosciences department at the Royal Children’s Hospital, Brisbane, Australia.

A.4 EEG Recording Specifics

The MEDELEC Profile system allows for a number of filtering and sampling possibili-
ties. All EEG data recorded at the RWH has the same recording protocol. This protocol

is explained in the following:

1. Placement of 14 electrodes on the newborn EEG scalp. 20 EEG channels are

recorded using bipolar montage.
2. EEG data digitized. Sampling frequency: Fs = 256Hz

3. EEG data digitally bandpass filtered. Cutoff frequencies: Fro, = 0.5Hz and
FHigh = 70Hz.

4. EEG data notch filtered. Notch center: F;,, = 50Hz

2The Royal Womens Hospital has now merged with the Royal Brisbane Hospital and is now known
as the Royal Brisbane and Womens Hospital (RBWH).



Bibliography

1]

2]

3]

4]

5]

[6]

7]

8]

[9]

M. Roessgen, A. Zoubir, and B. Boashash, “Seizure detection of newborn EEG
using a model-based approach,” IEEE Transactions on Biomedical Engineering,
vol. 45, no. 6, pp. 673-685, 1998.

R. Northrop, Signals and Systems Analysis in Biomedical Engineering,
R. Northrop, Ed. Boca Raton: CRC Press, 2003.

A. Cohen, Biomedical Signal Processing, A. Cohen, Ed. Boca Raton: CRC Press,
1986, vol. 1.

E. Mizrahi and P. Kellaway, Diagnosis and Management of Neonatal Seizure.
Philadelphia: Lippincott—Raven, 1998.

M. van de Bor, “The recognition and management of neonatal seizures,” Current
Paediatrics, vol. 12, pp. 382-387, 2002.

M. Lanska, D. Lanska, R. Baumann, and R. Kryscio, “A population-based study
of neonatal seizures in Fayette County,” Neurology, vol. 45, no. 4, pp. 724-732,
April 1995.

R. Saliba, J. Annegers, D. Waller, J. Tyson, and E. Mizrahi, “Incidence of neonatal
seizures in Harris County, 1992-1994,” American Journal of Epidemiology, vol.
150, no. 7, pp. 763-769, October 1999.

J. Hahn and B. Tharp, “Neonatal and pediatric electroencephalography,” in FElec-
trodiagnosis in Clinical Neurology, 3rd ed., M. Aminoff, Ed. New York: Churchill
Livingstone, 1992, pp. 93-141.

C. Lombroso, “Neonatal EEG polygraphy in normal and abnormal newborns,”
in Electroencephalography: Basic Principles, Clinical Applications and Related
Fields, 3rd ed., E. Niedermeyer and F. L. D. Silva, Eds. Baltimore: Williams
and Wilkins, 1993, pp. 803-875.

135



136

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Scher, M. Painter, I. Bergman, M. Barmada, and J. Brunberg, “EEG diag-
noses of neonatal seizures: Clinical correlations and outcome,” Pediatric Neurol-
ogy, vol. 5, pp. 17-24, 1989.

J. Connell, R. Oozeer, L. D. Vries, L. Dubowitz, and V. Dubowitz, “Continuous
EEG monitoring of neonatal seizures, diagnostic and prognostic considerations,”
Archives of disease in children, vol. 64, pp. 452-458, 1989.

M. Andre, M. Matisse, P. Vert, and C. Debruille, “Neonatal seizures— recent as-
pects,” Neuropediatrics, vol. 19, 1988.

B. Wical, “Neonatal seizures and electrographic analysis: Evaluation and out-
comes,” Pediatric Neurology, vol. 10, pp. 271-275, 1994.

J. Volpe, Neurology of the Newborn, 4th ed. Philadelphia: W.B. Saunders, 2001.

M. Toet, L. Hellstrom-Westas, F. Groenendaal, P. Eken, and L. de Vries, “Am-
plitude integrated EEG 3 and 6 hours after birth in full term neonates with
hypoxic—ischaemic encephalopathy,” Archives of Disease in Childhood, vol. 81,
pp. F19-F23, 1999.

B. Boashash and M. Mesbah, “Time—frequency methodology for newborn elec-
troencephalographic seizure detection,” in Applications in Time-Frequency Signal

Processing, A. Papandreou-Suppappola, Ed. Boca Raton: CRC Press, 2003.

S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods & Applications.
Upper Saddle River, NJ: Prentice-Hall, 1996.

P. P. Jr., Probability, Random Variables and Random Signal Principles, 4th ed.
Singapore: McGraw-Hill, 2001.

A. Liu, J. Hahn, G. Heldt, and R. Coen, “Detection of neonatal seizures through
computerized EEG analysis,” FElectroencephalography and Clinical Neurophysiol-
ogy, vol. 82, pp. 30-37, 1992.

B. Boashash and M. Mesbah, “A time-frequency approach for newborn seizure
detection,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 5,
pp. 54-64, 2001.

B. Boashash, “Heuristic formulation of TFDs,” in Time—Frequency Signal Analysis
and Processing: A Comprehensive Reference, B. Boashash, Ed. London: Elsevier,
2003, pp. 29-57.



BIBLIOGRAPHY 137

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detec-
tion in the newborn: methods and initial evaluation,” Electroencephalography and
Clinical Neurophysiology, vol. 103, no. 3, pp. 356-362, 1997.

L. Rankine, H. Hassanpour, M. Mesbah, and B. Boashash, “EEG simulation using

i

fractal dimension analysis,” in Proc. Thirteenth Iranian Conference on Electrical

Engineering, vol. 3, Zanjan, Iran, May 2005.

F. L. D. Silva, A. Hoeks, H. Smits, and L. Zetterberg, “Model of brain rhythmic
activity: The alpha-rhythm of the thalamus,” Kybernetik, vol. 15, pp. 27-37, 1974.

P. Celka and P. Colditz, “A computer-aided detection of EEG seizures in infants:
A singular-spectrum approach and performance comparison,” IEEE Transactions

on Biomedical Engineering, vol. 49, no. 5, pp. 455-462, May 2002.

M. Mesbah and B. Boashash, “Performance comparison of seizure detection meth-
ods using EEG of newborns for implementation of a DSP subsystem,” in Proc.
IEEE International Conference on Acoustics, Speech an Signal Processing, May
2002, pp. 3860-3863.

P. Celka and P. Colditz, “Nonlinear nonstationary weiner model of infant EEG
seizures,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 6, pp. 556—
564, June 2002.

J. R. A. Barron and B. Yu, “The minimum description length principle in coding

and modeling,” IEEE Transactions on Information Theory, vol. 44, no. 6, 1998.

B. Boashash, “Theory of quadratic TFDs,” in Time-Frequency Signal Analysis and
Processing: A Comprehensive Reference, B. Boashash, Ed. London: Elsevier,
2003, pp. 59-81.

H. Hassanpour and M. Mesbah, “Neonatal EEG seizure detection using spike
signatures in the time—frequency domain,” in Proc. International Symposium on

Signal Processing and its Applications, vol. 2, July 2003, pp. 41-44.

H. Hassanpour, M. Mesbah, and B. Boashash, “Time—frequency based newborn
EEG seizure detection using low and high frequency signatures,” Physiological
Measurement, vol. 25, pp. 935-944, 2004.

M. Menendez, J. Pardo, L. Pardo, and M. Pardo, “The Jensen-Shannon diver-
gence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307-318, March
1997.



138

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Hassanpour, M. Mesbah, and B. Boashash, “Enhanced time-frequency features
for neonatal EEG seizure detection,” in Proc. International Conference on Circuits
and Systems, vol. 5, May 2003, pp. V-29 — V32.

L. Rankine, N. Stevenson, M. Mesbah, and B. Boashash, “A quantitative com-
parison of non-parametric time-frequency representations,” in EUSIPCO 2005,
Antalya, Turkey, September 2005, CD-Rom.

P. Zarjam, M. Mesbah, and B. Boashash, “Detection of newborn EEG seizure
using optimal features based on discrete wavelet transform,” in Proc. International
Conference on Circuits and Systems, vol. 2, May 2003, pp. 11-265 — 11-26.

A. Al-Ani and M. Deriche, “Feature selecting using a mutual information based
measure,” in Proc. IEEE Conference on Pattern Recognition, vol. 4, Quebec,
Canada, 2005, pp. 82-85.

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”
IEEE Trans. on Signal Processing, vol. 41, no. 12, pp. 3397-3415, December 1993.

P. D. P.J. Franaszczuk, G.K. Bergey and H. Eisenberg, “Time—frequency analysis
using matching pursuit algorithm applied to seizure originating from the mesial
temporal lobe,” Electroencephalography and Clinical Neurophysiology, vol. 106,
no. 6, pp. 513-521, 1998.

G. Bergey and P. Franaszczuk, “Epileptic seizures are characterised by changing

signal complexity,” Clinical Neurophysiology, vol. 112, no. 2, pp. 241-249, 2001.

K. Blinowska and P. Durka, “Unbiased high resolution method of EEG analysis in
time-frequency,” Acta Neurobiolgiae Experimentalis, vol. 61, pp. 157-174, 2001.

C. Jouny, P. Franaszczuk, and G. Bergey, “Characterization of epileptic seizure
dynamics using gabor atom density,” Clinical Neurophysiology, vol. 114, no. 3, pp.
426-437, 2003.

P. Durka, “Adaptive parameterization of epileptic spikes,” Physical Review E,
vol. 69, no. 051914, 2004.

S. Wilson, M. Scheuer, R. Emerson, and A. Gabor, “Seizure detection: evaluation
of the Reveal algorithm,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2280-
2291, 2004.



BIBLIOGRAPHY 139

[44]

[45]

[46]

[47]

[48] ——

[49]

[50]

[51]

[52]

[53]

[54]

L. Rankine, H. Hassanpour, M. Mesbah, and B. Boashash, “Newborn eeg simula-

7

tion from nonlinear analysis,” in Proc. IEEE International Symposium on Signal

Processing and its Applications, Sydney, Australia, Aug. 2005, pp. 191-194.

N. Stevenson, L. Rankine, M. Mesbah, and B. Boashash, “Newborn EEG seizure
simulation using time-frequency signal synthesis,” in Proc. Workshop on Digital
Image Computing, Brisbane, Australia, Feb. 2005, pp. 145-150.

L. Rankine and M. Mesbah, “Significant atom determination of basis pursuit de-
composition,” in Proc. International Symposium on Signal Processing and its Ap-
plications, Paris, France, July 2003, pp. 573-576.

L. Rankine, M. Mesbah, and B. Boashash, “Atomic decomposition for detecting
changes in signal structure: Application to EEG,” in Proc. International Confer-

ence on Biomedical Engineering, Innsbruck, Austria, Feb 2004, pp. 285-288.

, “Newborn seizure detection using signal structural complexity,” in Proc.
EUSIPCO 2004, Vienna, Austria, Sept. 2004, pp. 2207-2210.

——, “Atomic decomposition complexity for seizure detection in neonates,” in
Proc. International Federation for Medical and Biological Engineering, Sydney,
Australia, Aug. 2003, pp. CD-Rom.

——, “A novel algorithm for newborn EEG seizure detection using matching pur-
suits with a coherent time-frequency dictionary,” in Proc. International Confer-
ence on Scientific and Engineering Computation, Singapore, July 2004, pp. CD-

Rom.

H. Hassanpour, L. Rankine, M. Mesbah, and B. Boashash, “Comparative perfor-
mance of time-frequency based EEG spike detection,” in EUSIPCO 2005, Antalya,
Turkey, September 2005, CD-Rom.

L. Rankine, M. Mesbah, and B. Boashash, “Improving the ability of matching pur-
suit algorithm in detecting spikes,” in EUSIPCO 2005, Antalya, Turkey, Septem-
ber 2005, CD-Rom.

——, “Automatic newborn EEG seizure spike and event detection using adaptive
window optimization,” in Proc. ISSPA 2005, Sydney, Australia, Aug. 2005, pp.
187-190.

E. Niedermeyer, “Historical aspects,” in Electroencephalography: Basic Principles,
Clinical Applications and Related Field, 3rd ed., E. Niedermeyer and F. L.. D. Silva,
Eds. Baltimore: Williams and Wilkins, 1993, pp. 1-14.



140

BIBLIOGRAPHY

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

M. Brazier, “The emergence of electrophysiology as an aid to neurology,” in Elec-
trodiagnosis in Clinical Neurology, 3rd ed., M. Aminoff, Ed. New York: Churchill
Livingstone, 1992, pp. 1-16.

J. Cadwell and R. Villarreal, “Electrophysiological equipment and electrical
safety,” in Electrodiagnosis in Clinical Neurology, 3rd ed., M. Aminoff, Ed. New
York: Churchill Livingstone, 1992, pp. 17-39.

H. Huppertz, E. Hof, J. Klisch, M. Wagner, C. Liicking, and R. Kristeva-Feige,
“Localization of interictal delta and epileptiform EEG activity associated with

focal epileptogenic brain lesions,” Neurolmage, vol. 13, pp. 15-28, 2001.

E. R. John, “The role of quantitative EEG topographic mapping or ‘neurometrics’
in the diagnosis of psychiatric and neurological disorders: the pros,” Electroen-

cephalography and Clinical Neurophysiology, vol. 73, pp. 2-4, 1989.

M. Aminoff, “Electroecephalograhy: General principles and clinical applications,”
in Electrodiagnosis in Clinical Neurology, 3rd ed., M. Aminoff, Ed. New York:
Churchill Livingstone, 1992, pp. 41-91.

J. Wackermann, P. Piitz, S. Biichi, I. Strauch, and D. Lehmann, “Brain electrical
activity and subjective experience during altered states of consciousness: ganzfeld

and hypnagogic states,” International Journal of Psychophysiology, vol. 46, pp.
123-146, 2002.

E. Speckmann and C. Elger, “Introduction to the neurophysiological basis of the
EEG and DC potentials,” in Electroencephalography: Basic Principles, Clinical
Applications and Related Fields, 3rd ed., E. Niedermeyer and F. L. D. Silva, Eds.
Baltimore: Williams and Wilkins, 1993, pp. 15-26.

R. Cooper, J. Osselton, and J. Shaw, FEG Technology. London: Butterworths
& Co, 1980.

S. Gilman and S. Newman, Essentials of Clinical Neuroanatomy and Neurophys-
iology, 9th ed. Philadelphia: FA Davis, 1996.

J. Nolte, The human brain: an introduction to its functional anatomy. St. Louis:
Mosby, 2002.

P. Nunez, Electrical Fields of the Brain. New York: Oxford U. Press, 1981.



BIBLIOGRAPHY 141

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

A. Petrosian, D. Prokhorov, R. Homan, R. Dasheiff, and D. Wunsch, “Recurrent
neural network based prediction of epileptic seizures in intra- and extracranial
EEG,” Neurocomputing, vol. 30, pp. 201-218, 2000.

M. Bozek-Kuzmicki, D. Colella, and G. Jacyna, “Feature-based epileptic seizure
detection and prediction from ECoG recordings,” in Proc. IEEE-SP Int. Symp. on
Time-Frequency and Time-Scale Analysis, Philadelphia, USA, 1994, pp. 564—567.

i

E. Reilly, “EEG recording and operation of the apparatus,” in FElectroencephalog-
raphy: Basic Principles, Clinical Applications and Related Fields, 3rd ed., E. Nie-
dermeyer and F. L. D. Silva, Eds. Baltimore: Williams and Wilkins, 1993, pp.

104-124.

G. Dumermuth and L. Molinari, “Spectral analysis of EEG background activity,”
in Methods and Analysis of Brain FElectrical and Magnetic Signals, A. Gevins and
A. Rémond, Eds. Amsterdam: Elsevier, 1987, vol. 1, pp. 85-130.

E. Niedermeyer, “The normal EEG of the waking adult,” in Electroencephalogra-
phy: Basic Principles, Clinical Applications and Related Fields, 3rd ed., E. Nie-
dermeyer and F. L. D. Silva, Eds. Baltimore: Williams and Wilkins, 1993, pp.
131-152.

D. Schramm, B. Scheidt, A. Hiibler, J. Frenzel, K. Holthausen, and O. Breidbach,
“Spectral analysis of electroencephalogram during sleep related apneas in pre-term
and term born infants in the first weeks of life,” Clinical Neurophysiology, vol. 111,
pp. 1788-1791, 2000.

M. Scher, M. Sun, D. Steppe, R. Guthrie, and R.J.Sclabassi, “Comparison of EEG
spectral and correlation measures between healthy term and preterm infants,”
Pediatric Neurology, vol. 10, no. 2, pp. 104-108, 1994.

S. Giaquinto, F. Marciano, N. Monod, and G. Nolfe, “Applications of statistical
equivalence to newborn EEG recordings,” Clinical Neurophysiology, vol. 42, pp.
406-413, 1977.

F. Sharbrough, “Nonspecific abnormal EEG patterns,” in Electroencephalography:
Basic Principles, Clinical Applications and Related Fields, 3rd ed., E. Niedermeyer
and F. L. D. Silva, Eds. Baltimore: Williams and Wilkins, 1993, pp. 197-215.

E. Niedermeyer, “Abnormal EEG patterns: Epileptic and paroxysmal,” in Elec-
troencephalography: Basic Principles, Clinical Applications and Related Fields,



142

BIBLIOGRAPHY

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

3rd ed., E. Niedermeyer and F. L. D. Silva, Eds.  Baltimore: Williams and
Wilkins, 1993, pp. 217-240.

P. Prior, “Cerebral anoxia: Clinical aspects,” in Electroencephalography: Basic
Principles, Clinical Applications and Related Fields, 3rd ed., E. Niedermeyer and
F. L. D. Silva, Eds. Baltimore: Williams and Wilkins, 1993, pp. 431-444.

E. Niedermeyer, “Epileptic seizure disorders,” in Electroencephalography: Basic
Principles, Clinical Applications and Related Fields, 3rd ed., E. Niedermeyer and
F. L. D. Silva, Eds. Baltimore: Williams and Wilkins, 1993, pp. 461-564.

A. Oliveira, M. Nunes, L. Haertel, F. Reis, and J. da Costa, “Duration of rhythmic
EEG patterns in neonates: new evidence for clinical prognostic significance of brief
rhythmic discharges,” Clinical Neurophysiology, vol. 111, pp. 1646-1653, 2000.

R. Clancy and A. Legido, “The exact ictal and interictal duration of electroen-

cephalographic neonatal seizure,” Epilepsia, vol. 28, pp. 537-541, 1987.

B. Boashash, “Time—frequency concepts,” in Time—Frequency Signal Analysis and
Processing: A Comprehensive Reference, B. Boashash, Ed. London: Elsevier,
2003, pp. 4-27.

S. Mallat, A Wawvelet Tour of Signal Processing. San Diego: Academic Press,
1998.

F. Hlawatsch and G. Boudreaux-Bartels, “Linear and quadratic time-frequency

signal representations,” IEEFE Signal Processing Magazine, pp. 21-67, April 1992.

N. T.-M. L. Giulieri and P. Arqueés, “Blind sources separation using bilinear and
quadratic time-frequency representations,” in Proc. International Conference on
Independent Component Analysis and Blind Signal Separation, Dec. 2001, pp.
486-491.

L. Debnath, Integral Transforms and Their Applications. Boca Raton: CRC
Press, 1995.

H.-I. Choi and W. Williams, “Improved time—frequency representation of multi-
component signals using exponential kernels,” IEEE Transactions on, Acoustics,
Speech, and Signal Processing, vol. 37, no. 6, pp. 862-871, June 1989.

B. Barkat and B. Boashash, “A high-resolution quadratic time—frequency distribu-
tion for multicomponent signal analysis,” IEEE Transactions on signal processing,
vol. 49, no. 10, pp. 2232-2239, Oct. 2001.



BIBLIOGRAPHY 143

[87]

[83]

[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]

[97]

98]

Z. Hussain and B. Boashash, “Adaptive instantaneous frequency estimation of
multicomponent FM signals using quadratic time—frequency distributions,” IEEE

Transactions on Signal Processing, vol. 50, no. 8, pp. 1866-1876, Aug 2002.

S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”
Society for Industrial and Applied Mathematics: Review, vol. 43, no. 1, pp. 129-
159, 2001.

R. Coifman and Y. Meyer, “Entropy-based algorithms for best-basis selection,”
IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 713-718, Mar.
1992.

I. Daubechies, “Time—frequency localization operators: A geometric phase space
approach,” IEEFE Transactions on Information Theory, vol. 34, no. 4, pp. 605-612,
July 1988.

P. Colditz, C. Burke, and P. Celka, “Digital processing of EEG signals,” IEEE
Engineering in Medicine and Biology, vol. 20, no. 5, pp. 21-22, 2001.

H. Abarbanel, “Tools for the analysis of chaotic data,” in Nonlinear Signal and
Image Analysis, J. Buchler and H. Kandrup, Eds. Annals of the New York
Academy of Sciences, 1997.

H. Kantz and T. Shreiber, Nonlinear Time Series Analysis. Cambridge: Cam-
bridge University Press, 1997.

T. Higuchi, “Approach to an irregular time series on the basis of the fractal theory,”
Physica D, vol. 31, pp. 277-283, 1988.

G. Wornell and A. Oppenheim, “Estimation of fractal signals from noisy measure-
ments using wavelets,” IEEFE Trans. Signal Processing, vol. 40, no. 3, pp. 611-623,
1992.

R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, “A comparison of waveform
fractal dimension algorithms,” IEEE Trans. Circuits and Systems-I: Fundamental
Theory and Applications, vol. 48, no. 2, pp. 177-183, 2001.

A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, 2nd ed.
CRC Press, 2003.

J. Altenburg, R. Vermeulen, R. Strijers, W. Fetter, and C. Stam, “Seizure detec-
tion in the neonatal EEG with synchronization likelihood,” Clinical Neurophysi-
ology, vol. 114, pp. 50-55, 2003.



144

BIBLIOGRAPHY

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

B. Boashash, M. Mesbah, and P. Colditz, “Newborn EEG seizure pattern charac-
terisation using time-frequency analysis,” in Proc. IEEE International Conference
on Acoustics, Speech ad Signal Processing, Salt Lake City, USA, May 2001, pp.
1041-1044.

D. Griffin and J. Lim, “Signal estimation from modified short—time Fourier trans-
form,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32,
no. 2, pp. 236243, April 1984.

D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,”
IEEE Transactions on Information Theory, vol. 46, no. 7, pp. 2845-2862, Nov.
2001.

J. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEFE
Transactions on Information Theory, vol. 50, no. 10, pp. 2231-2242, Oct 2004.

B. Boashash, M. Mesbah, and P. Colditz, “Time-frequency detection of EEG
abnormalities,” in Time—Frequency Signal Analysis and Processing: A Compre-
hensive Reference, B. Boashash, Ed. London: Elsevier, 2003, pp. 663—670.

P. Ktonas, W. Luoh, M. Kejariwal, E. Reilly, and M. Seward, “Computer-aided
quantification of EEG spike and sharp wave characteristics,” Electroencephalogra-
phy and Clinical Neurophysiology, vol. 51, pp. 237-243, 1981.

W. Hostetler, H. Doller, and R. Homan, “Assessment of a computer program to
detect epileptiform spikes,” Electroencephalography and Clinical Neurophysiology,
vol. 83, no. 1, pp. 1-11, 1992.

S. Wilson, R. Harner, F. Duffy, B. Tharp, M. Nuwer, and M. Sperling, “Spike
detection. i. Correlation and reliability of human experts,” Electroencephalography
and Clinical Neurophysiology, vol. 98, no. 3, pp. 186-198, 1996.

J. Gotman and P. Gloor, “Automatic recognition and quantification of interictal
epileptic activity in the human scalp eeg,” FElectroencephalography and Clinical
Neurophysiology, vol. 41, no. 5, pp. 513-529, 1976.

S. Mukhopadhyay and G. Ray, “A new interpretation of nonlinear energy operator
and its efficacy in spike detection,” IEEFE Transactions on Biomedical Engineering,
vol. 45, no. 2, pp. 180-187, Feb. 1998.

J. Kaiser, “On a simple algorithm to calculate the energy of a signal,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1,
Alburquerque, USA, 1990, pp. 381-384.



BIBLIOGRAPHY 145

[110]

[111]

[112]

[113]

[114]

[115]

[116] —

[117]

[118]

[119]

[120]

[121]

G. Calvagno, M. Ermani, R. Rinaldo, and F. Sartoretto, “A multiresolution ap-
proach to spike detection in EEG,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 6, 2000, pp. 3582-3585.

M. Latka, Z. Wa$, A. Kozik, and B. West, “Wavelet analysis of epileptic spikes,”
Physical Review E, vol. 67, no. 5, p. 052902, 2003.

L. Senhadji and F. Wendling, “Epileptic transient detection: wavelets and time-
frequency approaches,” Clinical Neurophysiology, vol. 32, no. 3, pp. 175-192, June
2002.

E. Hulata, R. Segev, and E. Ben-Jacob, “A method for spike sorting and de-
tection based on wavelet packets and shannon’s mutual information,” Journal of
Neuroscience Methods, vol. 117, no. 1, pp. 1-12, May 2002.

H. Hassanpour, M. Mesbah, and B. Boashash, “A time-frequency approach for
spike detection,” in Proc. IEEE International Conference on Electronics, Circuits
and Systems, vol. 1, 2003, pp. 56-59.

R. Baraniuk and D. Jones, “Adaptive time-frequency analysis,” in Time—Frequency
Signal Analysis and Processing: A Comprehensive Reference, B. Boashash, Ed.
London: Elsevier, 2003, pp. 178-184.

, “A radially Gaussian, signal-dependent time-frequency representation,” Sig-
nal Processing, vol. 32, pp. 263-284, June 1993.

D. Jones and R. Baraniuk, “An adaptive optimal-kernel time-frequency represen-
tation,” IEEE Transactions on Signal Processing, vol. 43, no. 10, pp. 2361-2371,
Oct 1995.

——, “A simple scheme for adapting time-frequency representations,” IEEFE

Transactions on Signal Processing, vol. 42, no. 12, pp. 3530-3535, Dec 1994.

I. Djurovi¢ and L. Stankovi¢, “Adaptive windowed fourier transform,” Signal Pro-
cessing, vol. 83, pp. 91-100, 2003.

H. Kwok and D. Jones, “Improved instantaneous frequency estimation using an
adaptive short-time Fourier transform,” IEEE Transactions on Signal Processing,
vol. 48, no. 10, pp. 2964-2972, Oct 2000.

K. Sainio, M. Granstrom, O. Pettay, and M. Donner, “EEG in neonatal her-
pes simplex encephalitis,” Electroencephalography and Clinical Neurophysiology,
vol. 56, pp. 556-561, 1983.



146 BIBLIOGRAPHY

[122] S. Faul, G. Boylan, S. Connolly, L. Marnane, and G. Lightbody, “An evaluation
of automated neonatal seizure detection methods,” Clinical Neurophysiology, vol.
116, no. 7, pp. 1533-1541, July 2005.

[123] H. Hassanpour, “Time—frequency based detection of newborn EEG seizure,” Ph.D.
dissertation, Queensland University of Technology, Brisbane, Australia, 2004.

[124] “www.amlabtech.com.au.”
[125] “www.emsbiomed.com/emsint/phoenixshortdescr.htm.”
[126] “www.oxford-instruments.com.”

[127] P. Zarjam, “EEG data acquisition and automatic seizure detection using wavelet
transforms in the newborn,” Master’s thesis, Queensland University of Technology,
Brisbane, Australia, 2003.



	01front.pdf
	02whole.pdf

