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Abstract 
As the richness and diversity of information available to us in our everyday lives 

has expanded, so the need to manage this information grows. The lack of effective 

information management tools has given rise to what is colloquially known as the 

information overload problem. Intelligent agent technologies have been explored to 

develop personalised tools for autonomous information retrieval (IR) . However, these 

so-called adaptive information agents are still primitive in terms of their learning au- 

tonomy,  inference power, and explanatory capabilities. For instance, users often need 

to provide large amounts of direct relevance feedback to train the agents before these 

agents can acquire the users’ specific information requirements. Existing information 

agents are also weak in dealing with the serendipity issue in IR because they cannot 

infer document relevance with respect to the possibly related IR contexts. 

This thesis exploits the theories and technologies from the fields of Informa- 

tion Retrieval (IR) , Symbolic Artificial Intelligence and Intelligent Agents for the 

development of the next generation of adaptive information agents to alleviate the 

problem of information overload. In particular, the fundamental issues such as rep- 

resentation, learning, and classjfication (e.g., classifying documents as relevant or 

not) pertaining to these agents are examined. The design of the adaptive informa- 

tion agent model stems from a basic intuition in IR. By way of illustration, given 

the retrieval context involving a science student, and a query “Java”, what infor- 

mation items should an intelligent information agent recommend to its user? The 
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agent should recommend documents about “Computer Programming” if it believes 

that its user is a computer science student and every computer science student needs 

to learn programming. However, if the agent later discovers that its user is study- 

ing “volcanology”, and the agent also believes that volcanists are interested in the 

volcanos in Java, the agent may recommend documents about “Merapi” (a volcano 

in Java with a recent eruption in 1994). This scenario illustrates that a retrieval 

context is not only about a set of terms and their frequencies but also the relation- 

ships among terms (e.g., java science     computer, computer         programming, 

java science volcanology merapi, etc.) In addition, retrieval contexts rep- 

resented in information agents should be revised in accordance with the changing 

information requirements of the users. Therefore, to enhance the adaptive and proac- 

tive IR behaviour of information agents, an expressive representation language is 

needed to represent complex retrieval contexts and an effective learning mechanism is 

required to revise the agents’ beliefs about the changing retrieval contexts. Moreover, 

a sound reasoning mechanism is essential for information agents to infer document 

relevance with respect to some retrieval contexts to enhance their proactiveness and 

learning autonomy. 

The theory of belief revision advocated by Alchourrón, Gärdenfors, and Makin- 

son (AGM) provides a rigorous formal foundation to model evolving retrieval contexts 

in terms of changing epistemic states in adaptive information agents. The expressive 

power of the AGM framework allows sufficient details of retrieval contexts to be cap- 
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tured. Moreover, the AGM framework enforces the principles of minimal and con- 

sistent belief changes. These principles coincide with the requirements of modelling 

changing information retrieval contexts. The AGM belief revision logic has a close 

connection with the Logical Uncertainty Principle which describes the fundamental 

approach for logic-based IR models. Accordingly, the AGM belief functions are ap- 

plied to develop the learning components of adaptive information agents. Expectation 

inference which is characterised by axioms leading to conservatively monotonic IR be- 

haviour plays a significant role in developing the agents’ classification components. 

Because of the direct connection between the AGM belief functions and the expecta- 

t ion inference relations, seamless integration of the information agents’ learning and 

classification components is made possible. Essentially, the learning functions and 

the classification functions of adaptive information agents are conceptualised by 

and q d respectively. This conceptualisation can be interpreted as: (1) learning is 

the process of revising the representation K of a retrieval context with respect to a 

user’s relevance feedback q which can be seen as a refined query; (2) classification is 

the process of determining the degree of relevance of a document d with respect to 

the refined query q given the agent’s expectation (i.e., beliefs) K about the retrieval 

context. 

At the computational level, how to  induce epistemic entrenchment which de- 

fines the AGM belief functions, and how to  implement the AGM belief functions by 

means of an effective and efficient computational algorithm are among the core re- 
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search issues addressed. Automated methods of discovering context sensitive term 

associations such as (computer programming) and preclusion relations such as 

(volcanology programming) are explored. In addition, an effective classification 

method which is underpinned by expectation inference is developed for adaptive in- 

formation agents. Last but not least, quantitative evaluations, which are based on 

well-known IR bench-marking processes, are applied to examine the performance of 

the prototype agent system. The performance of the belief revision based informa- 

tion agent system is compared with that of a vector space based agent system and 

other adaptive information filtering systems participated in TREC-7. As a whole, 

encouraging results are obtained from our initial experiments. 
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Chapter 1
Introdu
tion
1.1 An OverviewWe are living in the so-
alled \information age". Enterprises need information toidentify whom they should do business with and when the 
orresponding businesstransa
tions should be pro
essed. On the other hand, individuals need information fortheir daily a
tivities su
h as 
omparison shopping, �nan
ial management, edu
ation,and entertainment. Whether the agents are organisations or individuals, they need toseek and make use of information to survive in modern so
iety. The term \informa-tion seeking" refers to the pro
esses by whi
h information seekers retrieve informationobje
ts from some information sour
es. Information obje
ts 
an be of any kind su
has video 
lips, audio �les, traditional do
uments, ele
troni
 mail, HTML sour
es, et
.The resear
h work reported in this thesis is about the development of intelligent infor-1



2 CHAPTER 1. INTRODUCTIONmation agents whi
h autonomously pro
ess large streams of unstru
tured informationobje
ts on behalf of their users. We fo
us on information obje
ts represented in textformat or those 
onverted to text format. Theories and te
hniques from the �elds of in-telligent agents [JSW98, WJ95℄, information retrieval (IR) [Rij86, Rij89, BH94, Lal98℄,and symboli
 arti�
ial intelligen
e (AI) [GM88, GM94℄ are explored for the develop-ment of intelligent information agents.In general, information seeking pro
esses involve the following elements: infor-mation seekers and their information needs, information obje
ts, and a mat
hingfun
tion whi
h maps spe
i�
 information needs to relevant information obje
ts. Fig-ure 1.1 provides an overview of the information seeking pro
ess. In parti
ular, the
hara
teristi
s of information seekers (e.g., ba
kground, tasks on hand, et
.) and theirspe
i�
 information needs indu
e the retrieval 
ontexts in whi
h the relevan
e of infor-mation obje
ts is evaluated. In automated IR systems, the mat
hing fun
tion 
an beexpressed quantitatively [SM83℄ or qualitatively [Hun95, BSW00℄. Nevertheless, themat
hing me
hanisms in IR systems 
an only 
ompare the representations of retrieval
ontexts (e.g., users' information needs) with the representations of information ob-je
ts. As these representations are only in
omplete des
riptions of the underlyingentities, the mat
hing pro
esses in IR systems involve high un
ertainties (i.e., thepartiality problem) [Rij86, Lal98℄. In other words, there isn't a sharp boundary dis-tinguishing relevant obje
ts from non-relevant obje
ts with respe
t to a retrieval 
on-text. The mat
hing pro
ess in IR is also 
alled 
lassi�
ation (e.g., 
lassifying obje
ts



1.1. AN OVERVIEW 3as relevant or non-relevant) in the dis
ipline of ma
hine learning [BP98, Coh95, ZH00℄.

Figure 1.1: The Information Seeking Pro
essIn this thesis, IR systems refer to any 
omputer-based systems whi
h automatethe information seeking pro
ess. The representations of a users' spe
i�
 informationneeds are often 
alled \queries" by the IR resear
h 
ommunity [SM83℄. On the otherhand, the representations of information obje
ts are 
alled \do
ument 
hara
terisa-tions". If there is a 
lose mat
h between a query and a do
ument 
hara
terisation, anIR system will infer that there may be a semanti
 
orresponden
e between the under-lying information need and the do
ument. Do
uments refer to text-based informationobje
ts in this thesis. So, a Web page is 
alled a do
ument be
ause it 
ontains text
orresponding to the HTML sour
e. The most important fun
tion of an IR systemis to estimate the degree of mat
h between queries and do
uments (stri
tly speaking,do
ument 
hara
terisations) with respe
t to spe
i�
 retrieval situations (e.g., users'ba
kground, long-term IR goals, tasks on hand, et
.) [NBL95℄. The degree of mat
h



4 CHAPTER 1. INTRODUCTIONbetween a do
ument and a spe
i�
 information need 
an be approximated by a dis-tan
e metri
. This requires transforming both do
uments and information needs toa 
ommon information spa
e before applying a metri
 to quantify their distan
e. Aninformation spa
e in whi
h both information needs and do
uments are expressed interms of their semanti
s would be perfe
t. The 
orresponding distan
e metri
 
ouldthen exa
tly indi
ate their semanti
 
orresponden
e. However, transforming infor-mation obje
ts to a semanti
 information spa
e requires extensive semanti
 analysiswhi
h is 
omputationally expensive or even intra
table [CBS90℄.Another extreme is to 
hoose a purely synta
ti
 information spa
e to representboth information needs and do
uments. This approa
h has been adopted by manyexisting IR models [SM83℄. Nevertheless, there are problems with this approa
h.For instan
e, given a query term \Java", an IR system should retrieve any do
u-ments with indexing terms \Java" be
ause there is a synta
ti
 mat
h between thesetwo terms. However, if the information seeker just happens to be a tourist who islooking for resorts on the \Java" island, the do
uments about \Java programming"that may be returned by the IR system are totally irrelevant. The supposition thatinformation is intersubje
tive [Dre81℄ 
an be applied to explain the above problem.The term \Java" probably 
arries some 
ommon (obje
tive) information su
h as anisland or a programming language. However, the intersubje
tive nature of informa-tion 
auses the mis-mat
h in the information seeking pro
ess be
ause the informationseeker per
eives that \Java" is about an island in Indonesia, whereas a human in-



1.1. AN OVERVIEW 5dexer may think that the term \Java" should be used to index do
ument about aprogramming language. With the assumption that information is intersubje
tive, thedesign of the mat
hing fun
tions for IR should take into a

ount the basi
 synta
-ti
al aspe
t (
ommon meaning) of information as well as some 
onsiderations of thesubje
tive interpretations of information seekers. To this end, 
ontextual informationshould be used to re�ne a possibly ambiguous query term. The notion of 
ontext hasbeen exploited in a variety of resear
h dis
iplines whi
h try to ta
kle the IR prob-lems [DWR97, EM01, Hun95, LG98, Law00, NBL95℄. Although there is no 
onsensusabout what 
onstitutes a 
ontext, it is 
ommonly believed that 
ontextual information
an be used to improve the e�e
tiveness of IR [DWR97, Hun95, Law00, NBL95℄.The proposed approa
h of developing the mat
hing fun
tions for IR lies in themiddle of the two extremes of purely synta
ti
 mat
hing or purely semanti
 mat
hing.An expressive language is used to 
apture users' spe
i�
 information needs as well asthe 
ontextual information so that the intersubje
tive nature of information is takeninto a

ount by the IR model. From a pragmati
 point of view, the work reportedin this thesis exploits both the qualitative and the quantitative approa
hes for thedevelopment of adaptive information agent system, whi
h is one kind of IR system.The expressive power of the AGM belief revision logi
 [AGM85℄ allows suÆ
ient detailsof queries and query 
ontexts to be 
aptured. The learning and the 
lassi�
ation (i.e.,mat
hing) fun
tions in adaptive information agents are underpinned by the AGMbelief fun
tions and the 
orresponding expe
tation inferen
e relations (jKv) [GM94℄.



6 CHAPTER 1. INTRODUCTIONExpe
tation inferen
e is a kind of nonmonotoni
 inferen
e and its properties will bedis
ussed in Chapter 3. Let q represent a user's query; d denotes the representationof a do
ument; K represents a retrieval 
ontext; the learning and the 
lassi�
ationfun
tions in adaptive information agents 
an be 
on
eptualised by:1. Learning: Belief revision operations � applied to K with respe
t to q (i.e., K�q );2. Classi�
ation: Expe
tation inferen
e relations su
h as q jKv d.An information agent's learning pro
ess 
an be interpreted in the way that the re-trieval 
ontextK (i.e., an agent's knowledge base) is revised based on a user's relevan
efeedba
k q [SB90℄. In the adaptive information agent model, the relevan
e feedba
kinformation q is 
onsidered as a re�ned query. Stri
tly speaking, a user's relevan
efeedba
k is used to generate the re�ned query q by minimally transforming the exist-ing retrieval 
ontext 
aptured in K using the AGM belief fun
tions. Therefore, thelearning pro
esses of adaptive information agents are akin to the widely studied pro-
esses of query re�nement based on relevan
e feedba
k information [BSA94, SB90℄.The 
lassi�
ation fun
tions of adaptive information agents are underpinned by expe
-tation inferen
e relations. Con
eptually, a do
ument 
hara
terisation d is evaluatedwith respe
t to the re�ned query q given an agent's expe
tation K about a retrievalsituation as ba
kground information. The seamless integration of the learning andthe 
lassi�
ation fun
tions in adaptive information agents 
an be realised via the well-known 
onne
tion between belief revision and expe
tation inferen
e [GM94, MG91℄:



1.1. AN OVERVIEW 7
If d 2 K�q , then q jKv dThe interpretation of the above logi
al 
onne
tion in IR is that the re�ned queryq nonmonotoni
ally entails the do
ument 
hara
terisation d given the set K of ba
k-ground information if d is in the agent's knowledge base after revising K with respe
tto the query q. Sin
e an adaptive information agent manages a set of queries andthe query 
ontext pertaining to a user, the fo
us is not on evaluating d with respe
tto an individual q but the set of queries 
ontaining in the agent's knowledge baseK. At the 
on
eptual level, K jKv d 
an also be taken as the foundation of theagents' 
lassi�
ation fun
tions. In logi
-based IR resear
h, the usual formulation ofthe mat
hing fun
tion is d jv q, where d is the logi
al representation of an informationobje
t, q is a user query, and jv is a kind of inferen
e relation [Rij86, CC92℄. How-ever, for knowledge-based or agent-based systems, it is a 
ommon approa
h to store auser's requirements in a knowledge base, and then apply formal reasoning to dedu
eif there are obje
ts satisfying the user's parti
ular requirements. For instan
e, whenagent-based planning and s
heduling is 
ondu
ted, a user's requirements (also 
alled
onstraints) are stored in a knowledge base K. Then, a parti
ular plan or s
heduled is evaluated with respe
t to the set of requirements stored in K [Kra97℄. Thisknowledge-based view for general problem solving is adopted in the proposed adap-tive information agent model. A

ordingly, the mat
hing fun
tion is 
hara
terised byq jKv d based on an agent's expe
tation K about the parti
ular retrieval situation.



8 CHAPTER 1. INTRODUCTIONIn general, information seeking 
an be divided into two broad 
ategories, namelybrowsing and sear
hing [CHSS98, MSG97℄. Sometimes an information seeker maynot have a 
lear and spe
i�
 sear
h goal. They traverse the information sour
es su
has the World Wide Web (Web) with the hope that interesting information obje
tswill eventually appear. Su
h a pro
ess is referred to as browsing. The distinguishingfeature of browsing is that the users' interests are assumed to be broader than thosein information sear
hing. For example, an information seeker trying to lo
ate \themost tou
hing stories around the world" is more likely to 
ondu
t browsing ratherthan sear
hing. In other situations, an information seeker may have a more spe
i�
information need, for example, sear
hing for information about \Mobile Agents".Information seeking of this kind is 
alled sear
hing [MSG97℄. Information sear
hing
an be further divided into information retrieval (IR) and information �ltering (IF).Information retrieval and information �ltering are \two sides of the same 
oin" [BC92℄.However, IR often refers to the situation that an information seeker takes an a
tive roleto spe
ify their ad ho
 queries, whereas IF is 
on
erned with the removal of irrelevantinformation from a large in
oming stream of dynami
ally generated information basedon the user's long term and re
urring retrieval goals stored in a persistent storage
alled user pro�le. This thesis fo
uses on information �ltering where informationagents take a proa
tive role of sele
ting relevant information obje
ts for their usersbased on the users' long term information needs. Figure 1.2 depi
ts the adaptiveinformation �ltering pro
ess. The distin
t features of an adaptive IF system are thedeployment of a user pro�le to maintain a set of re
urring information requirements



1.2. PROBLEM STATEMENT 9(i.e., queries) and the appli
ation of users' relevan
e feedba
k to 
ontinuously revisethe 
ontent of the user pro�le.

Figure 1.2: The Adaptive Information Filtering Pro
ess
1.2 Problem StatementDistributed 
omputer-based information systems su
h as the Internet have undergoneexponential growth in re
ent years. This phenomenon has led to the growing avail-ability of large, dynami
, heterogeneous, and distributed sour
es of information likethe World Wide Web (Web). Information of this kind is normally unstru
tured when
ompared with the stru
tured information stored in traditional database systems. Asmore information be
omes available, it be
omes in
reasingly more diÆ
ult to �ndrelevant information from these ever-faster growing dynami
 sour
es. Many infor-mation seekers may experien
e that information seeking on the Internet resembles



10 CHAPTER 1. INTRODUCTION\sear
hing a needle in a haysta
k". This is the so-
alled problem of information over-load [Mae94, TKS00℄. A

ordingly, there is a growing demand for the developmentof personalised and autonomous IR systems whi
h 
an sele
t relevant informationobje
ts on behalf of their users.Existing general purpose sear
h engines and browsers provide the basi
 assistan
eto information seekers for lo
ating information obje
ts. However, �nding relevantinformation even for a narrow query (i.e., sear
hing) in a spe
i�
 domain has be
omemore and more diÆ
ult with the growth of the Web. It is not un
ommon for aninformation seeker to obtain thousands of hits whi
h mat
h their query while most ofthese hits are a
tually irrelevant with respe
t to their interests. The user then needsto traverse the list of retrieved do
uments in order to �nd the relevant ones. However,most users only have the patien
e to examine one result s
reen [BH98℄. Therefore,relevant information may not be dis
overed via sear
h engine IR. This diÆ
ulty isunderstood as the low pre
ision problem. Pre
ision is de�ned as the ratio of retrievedrelevant do
ument to retrieved do
uments [SM83℄. There are many reasons for thislow pre
ision problem. Firstly, user queries are often short and not spe
i�
 enough.In fa
t, a study 
ondu
ted by Infoseek has showed that the average Internet query
onsists of only 2.2 terms [Kir98℄. A more re
ent survey performed based on the AltaVista's log �les also 
on�rms that the average number of terms in a query for the AltaVista sear
h engine is only 2.35 [Cor00℄. Furthermore, natural language ambiguityoften results in users des
ribing 
on
epts in their queries in a quite di�erent manner



1.2. PROBLEM STATEMENT 11than the authors des
ribe the same 
on
epts in the published information obje
tssu
h as Web do
uments. With referen
e to the general information seeking pro
essdepi
ted in Figure 1.1, the problem 
an be understood in the way that informationseekers have diÆ
ulties in translating their impli
it information needs (e.g., the 
loudin the diagram) into pre
ise queries given an arti�
ial query language. Even if they 
anpartially express their needs by some query terms, these terms do not 
orrespond tothe indexing terms (i.e., do
ument representations) used to 
hara
terise the requiredinformation obje
ts be
ause of the intersubje
tive nature of information. In otherwords, a query and its asso
iated 
ontext is often not 
lear to an IR system.For information �ltering appli
ations, the re
urring information needs of a userare often stored in a persistent storage, also 
alled user pro�le. However, as a user'sinformation needs will 
hange over time, the 
ontent of the user pro�le must be revisedpromptly and a

urately to 
apture the user's latest interests; otherwise the �lteringe�e
tiveness of the IR system will drop. Unfortunately, most of the existing sear
htools su
h as Internet sear
h engines or meta sear
h engines do not support thesefun
tions. In summary, the general problem area examined by this thesis is:
\The development of an automated, personalised, and adaptive informa-tion management tool for the dissemination of relevant information fromlarge, dynami
 and unstru
tured information sour
es to information seek-ers."



12 CHAPTER 1. INTRODUCTIONThe spe
i�
 problems ta
kled by this thesis are:� The Representation Problem: Capturing users' impli
it and re
urring informa-tion needs in terms of the 
orresponding queries and retrieval situations;� The Learning Problem: Developing e�e
tive means for 
ontinuous re�nementof the representations of retrieval 
ontexts;� The Classi�
ation Problem: Developing e�e
tive and eÆ
ient means of esti-mating the semanti
 
orresponden
e between retrieval 
ontexts and informationobje
ts.
1.3 The Requirements of E�e
tive IR SystemsTo ta
kle the information overload problem, e�e
tive IR systems should be:� Autonomous: With the exponential growth of information en
oded in ele
-troni
 form, information seekers are fa
ed with the problem of information over-load. It is extremely diÆ
ult, if not totally impossible, for an information seekerto s
an through all the available information items manually. Therefore, IR sys-tems should be able to autonomously sele
t relevant information for their userswith a minimum amount of human intervention.� Proa
tive: IR systems should not only work in a passive mode by takingusers' instru
tions and responding a

ordingly, but also behave proa
tively in
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an retrieve relevant information without requiring the usersto provide the low level instru
tions regarding what items should be retrieved.This kind of proa
tive behaviour 
an be a
hieved if IR systems 
an reasonabout the informational goals of their users given the appropriate 
ontextualinformation.� Adaptive: As a user's information needs will 
hange over time, an IR systemshould be responsive to these 
hanging needs and adapt its information retrievalbehaviour a

ordingly. This requirement involves learning users' 
hanging in-formation needs promptly and a

urately, and making use of the most 
urrentrepresentation of a user's interests to determine relevant information obje
ts.� Explanatory: Be
ause of the intersubje
tive nature of information, IR systemsshould be able to explain their de
isions about do
ument sele
tion so that anydi�eren
e in terms of the per
eived do
ument relevan
e between a system andits user 
an be re
on
iled. By explaining its de
isions, an IR system 
an helpits users understand their impli
it information needs better and hen
e the users
an develop more a

urate queries at a later stage.� S
alable: Be
ause of the explosive growth of the amount of information avail-able on 
omputer-based networks, IR systems should be able to s
ale up (interms of speed and 
apa
ity) to pro
ess large and dynami
 streams of informa-tion in a timely fashion.



14 CHAPTER 1. INTRODUCTIONIn addition, an e�e
tive IR system should optimise both pre
ision and re
allwhile retrieving information obje
ts.
1.4 General Approa
hes for Adaptive IR SystemsThe problem of developing e�e
tive and eÆ
ient IR systems has been examined byvarious resear
h 
ommunities in 
omputer s
ien
e. This se
tion provides an overviewof the work 
ondu
ted in various dis
ipline areas su
h as intelligent agents, logi
-basedIR, and a spe
ialised topi
 in logi
-based IR - Belief Revision.
1.4.1 Intelligent Agent Te
hnologiesIntelligent agents are a new paradigm for developing software appli
ations. Currently,agent te
hnologies are the fo
us of intense interest in many sub-�elds of 
omputers
ien
e and arti�
ial intelligen
e. Intelligent Software Agents are being used in anin
reasingly wide variety of appli
ations su
h as email �ltering, Web page retrieval,
omparison shopping, 
omputer games, industrial pro
ess 
ontrol, air traÆ
 
ontrol,et
. An intelligent agent is a 
omputer system situated in some environments, whi
his 
apable of autonomous a
tion in these environments in order to meet its designobje
tives [JSW98, WJ95℄. The 
on
ept of autonomy simply means that the agentsystem should be able to a
t with minimal human intervention, and should have 
on-trol over its own a
tions and internal state. In addition, intelligent agents should be
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an per
eive their environment (e.g., a produ
tionline, a user, a 
olle
tion of agents, the Web, et
.) and respond in a timely fashion to
hanges that o

ur in the environment. Intelligent agents are also proa
tive. Theyshould not simply a
t in response to their environment, but also demonstrate oppor-tunisti
, goal-dire
ted behaviour. In other words, intelligent agents take the initiativeto perform tasks to ful�l their design obje
tives where appropriate. They 
an intera
twith other arti�
ial agents and humans in order to solve their problems and helpothers 
omplete their tasks.One important 
ontributing fa
tor to the problem of information overload isthat an information seeker is required to 
onstantly dire
t the information seekingpro
ess. To alleviate this problem, intelligent information agents 
an sear
h for rele-vant information on behalf of their users (e.g., agents a
ting autonomously to sear
hthe Web). The idea is so 
ompelling that many resear
h proje
ts are dire
ted toa
hieve this goal. Jasper is a distributed system of intelligent agents whi
h performinformation retrieval tasks over the Internet and the Web on behalf of a 
ommunityof users [DWR97℄. Jasper 
an summarise and extra
t keywords from the Web pagesand 
an share information among users with similar interests automati
ally. A Jasperagent holds a pro�le of a user's interests and 
ondu
ts autonomous information seek-ing based on su
h a pro�le. Moreover, by observing a user's intera
tive behaviour, theagent 
an learn more about the user's interests over time. SAIRE is another multi-agent information retrieval system operating in the spa
e s
ien
e domain [OKW+97℄.



16 CHAPTER 1. INTRODUCTIONIt is divided to three layers. The top level 
ontains interfa
e agents responsible fora

epting input from the users. The middle layer a
ts as a 
o-ordinator with the in-formation retrieval engines working at the bottom level. Based on previous work fromthe User Modelling resear
h 
ommunity, the SAIRE agent system 
an assign its usersto di�erent stereotypi
al user groups. A user's initial information needs are inferredbased on the 
orresponding stereotypi
al group and a user pro�le is then spe
ialisedbased on the user's 
ontinuous intera
tion with the system.
1.4.2 Logi
-based IRThe 
entral issue in IR is to develop a mat
hing fun
tion to determine if a do
umentis relevant with respe
t to a user's information needs. For logi
-based IR models, ado
ument and a user's need are represented by the logi
al formulae d and q respe
-tively. The mat
hing fun
tion is underpinned by logi
al dedu
tion of the form d jv q,where jv is a non-
lassi
al inferen
e relation. As both d and q are only partial repre-sentations of a do
ument and a user's need, it is often the 
ase that d 
annot entailq based on the rigid 
lassi
al derivability relation. The logi
al un
ertainty prin
iple,whi
h is a generalisation of the Ramsey test for IR, states that [Rij86℄:\Given any two senten
es x and y, a measure of the un
ertainty of x! yrelative to a given data set is determined by the minimal extent to whi
hwe have to add information to the data set, to establish the truth ofx! y."



1.4. GENERAL APPROACHES FOR ADAPTIVE IR SYSTEMS 17where x and y are often viewed as the logi
al representation of a do
ument and aquery respe
tively. Sin
e Van Rijsbergen advo
ated the logi
al un
ertainty prin
i-ple for IR, many logi
-based IR models have been proposed. Although these logi
-based IR models employed di�erent formalisms su
h as default logi
 [Hun95, Hun97℄,
onditional logi
 [NBL95℄, logi
al imaging [CvR95, Cre98℄, situation theory [LR92℄,nonmonotoni
 inferen
e [AG96℄, terminologi
al logi
 [MSST93℄, modal logi
 [Nie89℄,preferential logi
 [BL98℄, et
., they all examined the idea of minimally revising the re-trieval situation so as to evaluate the degree of mat
h between d and q. The adaptiveinformation agent system dis
ussed in this thesis is built on top of a belief revisionbased IR model whi
h adheres to the above prin
iple. Through the 
lose 
onne
tionbetween the AGM belief revision and the Ramsey test [G�ar88℄, the proposed logi-
al information agent model 
an be seen as a dire
t implementation of the logi
alun
ertainty prin
iple.Re
ent investigations into logi
-based IR have attempted to formalize the notionof \aboutness" (i.e., information mat
hing) by axiomatising its properties in termsof a neutral, theoreti
al framework [BH94, HW98, BSW00℄. The motivation for thishas been to study the aboutness relation from a theoreti
al stan
e in order to betterunderstand what properties of this relation promote e�e
tive retrieval (as well aswhi
h properties do not). The neutral, underlying framework is important as it allowsaboutness to be studied independent of the idiosyn
rasies of a given informationretrieval model. There is as yet no 
onsensus regarding the property of aboutness



18 CHAPTER 1. INTRODUCTIONex
ept that it should be logi
-based. The 
on
ept of aboutness in IR has been appliedto examine some postulates of the AGM belief revision paradigm at the 
on
eptuallevel to see if the belief revision framework is appli
able in the 
ontext of IR.In statisti
al analysis, the relationships among key phrases are established byfrequen
y ratios, whereas in semanti
 analysis, the relationships are established bymeaning. It is believed that semanti
 information is 
riti
al in mat
hing a user'sneeds to information obje
ts [Hun97℄. For automating the use of semanti
 infor-mation, it is ne
essary to spe
ify when a parti
ular spe
ialisation, generalisation, orsynonym relationship should be used. A

ordingly, an expressive formal framework isrequired to 
apture and reason about the semanti
 information. Hunter proposed touse nonmonotoni
 logi
s, parti
ularly default logi
, to pro
ess semanti
 informationabout terms, and hen
e to identify the semanti
 relationships between queries anddo
uments [Hun95℄. The notion of term positioning is proposed to 
ondu
t queryre-formulation. Given a query q, it is possible to strengthen (q� ` q and q 6` q�),weaken (q� 6` q and q ` q�), or substitute (q� 6` q and q 6` q�) q by the re�ned queryq� to improve the e�e
tiveness of information retrieval. In parti
ular, default logi
provides the ma
hinery to 
ondu
t term positioning. In default logi
, a default theoryT = (W;D), whi
h 
onsists of a set of 
lassi
al axioms W and a �nite set of defaultrules D, is used to derive a new set of information 
alled an extension E. This kindof reasoning 
an be 
hara
terised by a nonmonotoni
 
onsequen
e relation jv. A sen-ten
e 
 2 E is defeasible sin
e the pro
ess of default reasoning is based on in
omplete
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ertain information (e.g., D). A default rule Æ 2 D has the followingform: �:�
 , where � is 
alled the prerequisite, � the justi�
ation, and 
 the 
onsequentof Æ. The semanti
s of a default rule Æ is that: If � is known, and if � is 
onsistentwith all the 
urrent knowledge E, then 
on
lude 
. The 
urrent knowledge E (i.e.,an extension) is obtained from the fa
ts W and the 
onsequents of some defaults thathave been applied previously. Formally, a default Æ is appli
able to a dedu
tively
losed set of formulae E i� � 2 E and :� 62 E.When applying default logi
 to term positioning, the default rule set D 
onsistsof default rules 
apturing the semanti
 relationships su
h as synonym, spe
ialisation,generalisation, and polysemy among terms. The 
lassi
al theoryW is used to des
ribethe original query. Then, the notion of an extension E is used to des
ribe the re�nedquery. For example, given a default rule:oil ^ 
ooking : :petroleum:petroleumand a query olive ^ oil ^ 
ooking, the original query 
an be re�ned to ex
lude anyinformation obje
ts about petroleum. In other words, the new query q� = olive ^oil ^ 
ooking ^ :petroleum is positioned. Given a 
learer retrieval 
ontext, it isanti
ipated that the pre
ision and re
all of the subsequent retrieval 
an be improved.It was proposed that the default rules between terms 
ould be manually eli
ited fromdomain experts by asking them to illustrate the synonym, polysemy, generalisation,and spe
ialisation relationships [Hun95, Hun97℄.



20 CHAPTER 1. INTRODUCTIONIt has been proposed that IR pro
esses should be underpinned by nonmono-toni
 reasoning [AG96, BL98, BH96℄. Based on users' relevan
e feedba
k on in-formation obje
ts, preferential and rational orderings 
an be generated. Thereby,well-behaved nonmonotoni
 inferen
e relations (e.g. preferential inferen
e or rationalinferen
e) [Geo96℄ 
an be used to dedu
e the relevan
e of information obje
ts withrespe
t to a user's information needs. Essentially, given a set of relevant do
umentsD+ and a set of non-relevant do
uments D� judged by a user, the rational orderingbetween two terms t1 and t2 is de�ned by: t1 �+ t2 i� jD+t1j � jD+t2j; t1 �� t2 i�jD�t2j � jD�t1j. In other words, a term t2 is with a higher rank than another term t1with respe
t to �+ if the number of relevant do
uments 
ontaining t2 is more thanthe number of do
uments 
ontaining t1. In addition, t2 is with a higher rank thant1 with respe
t to �� if the number of non-relevant do
uments 
ontaining t2 is lessthan the number of do
uments 
ontaining t1. Then the preferential ordering (�) ofthese terms is: t1 � t2 i� t1 �+ t2 and t1 �� t2. It is argued that the preferentialordering � will be 
hanged with respe
t to the user's relevan
e feedba
k on D+ andD�. Therefore, the set of 
on
lusions regarding do
ument relevan
e grows nonmono-toni
ally. However, the details of how to apply the proposed non-monotoni
 inferen
erelations to information mat
hing was not reported in their paper [AG96℄.Huibers and van Linder [HvL96℄ attempted to formalise intelligent informationretrieval agents based on modal logi
. Modal operators were introdu
ed to addressthe essential 
on
epts su
h as aboutness, non-aboutness, and information pre
lusion



1.4. GENERAL APPROACHES FOR ADAPTIVE IR SYSTEMS 21in IR [BH94℄. For example, one kind of retriever agents is de�ned based on the notionof aboutness d j=a q (i.e., a do
ument d to be about a query q). Stri
tly speaking,d j=a q i� the agent knows that the query q is satis�ed in at least one do
umentmodel d. In addition, it is believed that su
h a satis�ability relation is non-
lassi
al.Moreover, the retriever agent 
onsiders a do
ument d to be non-about q, denotedd 6j=a q, i� it knows that d implies the negation of q. This is a step forward towardsimproving the expressive power and explanatory ability of information agents sin
ethe agents' behaviour 
an be justi�ed based on formal reasoning.Logi
al imaging has been applied to develop IR models [CvR95, Cre98℄. Thegoal is to evaluate the probability of the 
onditional d ! q based on the kinemati
sof probability distributions over terms. In 
onditional logi
, a 
ounterfa
tual su
h asx! y 
an be evaluated by �rst imaging x on the 
losest world wx (i.e., the x-world)that satis�es x and then examining if y is satis�ed in wx or not [Sta81℄. If y is satis�edin wx, the 
ounterfa
tual is true; otherwise it is false. The 
lose world is determinedby an a

essibility relation A � W � W , where W is the set of possible worldsbased on the possible world semanti
s [Kri71℄. When the probability Pr(d ! q)of a 
onditional d ! q is evaluated, the formula d will be imaged on the 
losestworld(s) t, where t is a term (keyword) representing a world in the logi
al imagingIR model. Then, the formula q is evaluated in these 
losest world(s). To 
apture theun
ertainty of an IR pro
ess, the worlds are 
hara
terised by a probability distribution.That is, a do
ument d is satis�ed in a world t with a prior probability. These prior



22 CHAPTER 1. INTRODUCTIONprobabilities are indu
ed based on the Inverse Do
ument Frequen
ies (IDF) of termsin a 
olle
tion. The IR logi
al imaging paradigm 
onsists of several methods to dealwith the kinemati
s of probabilities asso
iated with the worlds. Indeed, the transfer ofprobabilities among worlds rather than the inferen
e relations examined in 
onditionallogi
 is the key element of the imaging IR model. For instan
e, imaging on thed-world(s) is taken as transferring the priori probabilities from the non d-world(s)to the 
losest d-world(s) a

ording to a distan
e measure derived from the mutualinformation MI between pairs of terms.In the simplest form su
h as standard imaging, the probability asso
iated witha non d-world is simply transferred to the 
losest d-world. Then, for ea
h term ap-pearing in a query, the posterior probability (with probability transferred from a nond term) of the term is summed to derive the Retrieval Status Value (RSV) of thedo
ument with regards to the query q. So, for standard imaging, the RSV is derivedby: Pr(d! q) =Pt Pr(t)� �(td; q), where �(td; q) = 1 if a query term appears in ad world (i.e., d and q have overlapping terms); otherwise �(td; q) = 0 is obtained. Theprobability distribution Pr(t) represents the posterior probability assigned to ea
hterm (world) t. In general imaging, standard imaging is generalised in the sense thatthere 
ould be more than one 
losest world where d is true. From the point of view ofthe kinemati
s of probability distributions, an opinionated probability distribution isde�ned for ea
h term so that a set of probabilities 
an be transferred from some non d-term(s) to a d-term. In proportional imaging, the per
entage of probability transferred
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h non d-term to a d-term 
an be de�ned separately via another opinionatedprobability distribution. Implementations of standard imaging and general imagingwere 
ondu
ted using C programming and probabilisti
 datalog respe
tively. Rigor-ous evaluation based on the TREC-4 routing task was attempted [CRSR95℄. TheTREC-based evaluation approa
h applied to the belief revision based informationagent system reported in this thesis is to a large extent motivated by the evaluationmethod adopted for the logi
al imaging IR model. However, the main di�eren
e be-tween the logi
al imaging IR model and the belief revision IR model is that termweights representing a user's preferen
es are indu
ed with respe
t to epistemi
 en-tren
hment whi
h satis�es possibilisti
 rather than probabilisti
 axioms [DP91℄ in thebelief revision based IR model. Above all, the entren
hment degrees of terms are de-rived a

ording to a user's preferen
es over the underlying terms, and the kinemati
sof the entren
hment degrees are also driven by the 
hanges of a user's preferen
es. Inthis sense, the assumption of the proposed IR model is quite di�erent from the as-sumption of the system per
eived relevan
e adopted in the logi
al imaging IR model.It has been pointed out that evaluating logi
-based IR models is a great 
hallengeby itself [CRSR95℄. One of the main 
ontributions of our resear
h work is to developan operational logi
-based information agent system and apply rigorous IR ben
h-marking pro
esses to evaluate both the e�e
tiveness and eÆ
ien
y of the implementedsystem.



24 CHAPTER 1. INTRODUCTION1.4.3 Belief RevisionThe notion of beliefs has been used to represent users' information needs. In addition,belief fun
tions have been applied to re�ne the representation (i.e., beliefs) of a user'sinformation needs. The earliest and the most ambitious attempt of applying the be-lief revision formalism to IR was to use the notions of beliefs, desires, and intentionsto 
hara
terise an information seeker's (e.g., a librarian) high level IR goals and toemploy the belief revision framework to simulate the 
hanges of mental states in aninformation seeker's memory [LRJ94℄. Be
ause of the 
hanges of mental states ofan information seeker, the 
orresponding IR system must revise its beliefs about theinformation seeker's interests in order to maintain a

urate retrieval. A Natural Lan-guage Pro
essing (NLP) te
hnique was used to indu
e the system's beliefs about aninformation seeker's information needs based on the 
ontinuous intera
tions betweenthe information seeker and the IR system. As the information retrieval pro
ess 
an beseen as 
omprising many low level sub-tasks, the 
orresponding IR system is designedas a multi-agent system with ea
h autonomous agent performing a parti
ular IR sub-task. A

ordingly, the belief revision pro
ess is not only applied to a single agent, butto a set of agents with inter-related interests and beliefs. The multi-agent belief revi-sion model developed by Galliers [Gal92℄ was adopted to implement this fun
tion. Infa
t, su
h a multi-agent belief revision model is built based on the Assumption-basedTruth Maintenan
e System (ATMS) 
omputational apparatus [dK86℄.The AGM belief revision framework was examined to develop a query reformu-
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 in IR [AB99℄. The 
orresponden
e between query re�nement in IR andtheory 
hange in belief revision was analysed from a theoreti
al point of view. It isbelieved that query expansion and query re�nement 
an be explained in terms of therevision of a user's beliefs in query terms [AB99℄. For instan
e, if a user's originalquery is represented by a belief set K, and a new query term � is used to repla
eterm � (i.e. query revision), the resulting query will be de�ned by: (K�� )��. It wasassumed that query terms were represented as formulae in a 
hosen logi
 language.For query 
ontra
tion (i.e. removing 
ertain terms to broaden the sear
h s
ope), theoperation 
an be expressed by: K+� , where the query K is expanded by the originallyreje
ted terms �. However, there may be diÆ
ulty in applying the belief revisionparadigm to formalise the query reformulation logi
. For instan
e, the interpretationof negation is di�erent in these two settings. Given an information pre
lusion relationsu
h as dog?flying, dog and flying are 
onsidered in
onsistent in most IR 
ontexts.However, in general dog and :dog are 
onsidered in
onsistent, but dog and flyingare 
onsidered 
onsistent in the AGM logi
.Dalal's belief revision operator [Dal88℄ was examined for do
ument ranking inIR [LB99℄. Essentially the 
onstru
t of a total pre-ordering on interpretations, whi
his used to de�ne belief revision operators for knowledge base 
hanges, is applied tomodel a user's preferen
es over information obje
ts. Dalal's revision makes use ofthe 
ardinality of the symmetri
 di�eren
e between two interpretations I and J as ameasure of the distan
e dist(I; J) between them. For example, the semanti
 distan
e



26 CHAPTER 1. INTRODUCTIONbetween the set of models of  (i.e., M( )) and I is de�ned as: dist(M( ); I) =MinJ2M( ) dist(J; I). Thereby, a faithful assignment of a total pre-order � is de�ned:I � J i� dist(M( ); I) � dist(M( ); J). In IR, if a user's information needs N anda do
ument D are represented as formulae q and d respe
tively, the similarity betweenN andD 
an be approximated by the symmetri
 distan
e of the 
orresponding models.For example, for ea
h m 2 M(d), dist(M(q); m) = MinJ2M(q) dist(J;m) is 
omputed.An average measure 
an then be applied to 
ompute the symmetri
 distan
e betweenM(q) and M(d): Sim(D;N) = Pm2M(d) dist(M(q);m)jM(d)j .
1.5 Justi�
ations of the Proposed Approa
hJusti�
ation of the proposed adaptive information agent model is provided with ref-eren
e to the requirements of e�e
tive IR systems dis
ussed in Se
tion 1.3. Intelligentagents [WD00℄ provide the te
hnologi
al foundation to develop the next generationof information management tools. The idea of autonomous and self-motivated agentsare appealing when it is applied to information retrieval in general and information�ltering in parti
ular. With the sheer volume of information available via 
omputer-based networks su
h as the Internet, it is impossible for information seekers to traversethe huge information spa
e by themselves given the limited time. For IF appli
ationswhere information seekers are dealing with re
urring IR tasks, the savings generatedby employing autonomous and personalised information agents are even bigger. Moreimportantly, intelligent information agents are able to infer users' information goals
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tively take a
tions to ful�l these goals with minimal dire
t instru
tions fromtheir users [ACL+00, BPR+99, YKL00, O'L97, TNMH97℄. Sin
e information agentsare responsive, they 
an 
ontinuously observe their users' on-line retrieval a
tivities.Based on this information, information agents 
an learn users' 
hanging informationneeds by revising the representations of the users' interests stored in the agents' persis-tent memories. Therefore, mat
hing between users' interests and information obje
tsbe
omes adaptive.The expressive power of logi
 is believed to be able to model most of the fun-damental aspe
ts in information retrieval [CC92, LB98, Rij86, Seb98℄. To empowerintelligent information agents with the abilities to 
apture users' queries and the 
orre-sponding query 
ontexts, an expressive representation language should be used. Withsu
h an expressive representation language, it is possible to generate appropriate ex-planations about an information agent's retrieval de
isions. However, it is understoodthat 
lassi
al logi
 is too rigid to deal with in
omplete and un
ertain information in IRpro
esses [Lal98, Rij86℄. Therefore, nonmonotoni
 logi
s have been explored to modelthe mat
hing fun
tion of IR [AG96, Cre98, Hun95, Hun97, LB99℄. One distin
t 
hara
-teristi
 of nonmonotoni
 logi
s is that the 
on
lusions derived from the nonmonotoni
reasoning pro
esses are defeasible. This assumption is based on the observation thatthe information stored in an agent's knowledge base may be in
omplete. Observingthat the assumption of nonmonotoni
 reasoning 
losely resembles the 
hara
teristi
sof IR pro
esses where the representation of a user's information needs is in
omplete,



28 CHAPTER 1. INTRODUCTIONand so the 
on
lusion about the relevan
e of do
uments is in general defeasible. Whenmore information about the user's interests is obtained at a later stage, the 
lassi�
a-tion de
ision made by an agent at an earlier stage may turn out to be false. This givesrise to the requirement of 
ontinuously learning an information seeker's informationneeds. Learning and 
lassi�
ation are orthogonal. However, these two fun
tions are
losely related and a�e
t one another. It is not surprising to �nd that a formal log-i
al framework is available to model this reality. The AGM belief revision logi
 hasbeen proposed to formalise the 
hanges of an agent's beliefs [AGM85℄, and it has alsobeen proved that the basi
 information (e.g., epistemi
 entren
hment) that 
hara
-terises the belief fun
tions also indu
es the 
orresponding nonmonotoni
 
onsequen
erelations [MG91, GM94℄. From a pragmati
 point of view, by revising new informa-tion about a user's interests into an agent's persistent memory, it may lead to a new
on
lusion about do
ument relevan
e drawn by the agent. This new 
on
lusion may
ontradi
t the agent's previous 
on
lusions about do
ument relevan
e. Therefore,the AGM belief fun
tions and the 
orresponding expe
tation inferen
e relations areapplied to develop the learning and the 
lassi�
ation (i.e., mat
hing) me
hanisms ofadaptive information agents. The idea of applying belief revision and nonmonotoni
reasoning to pra
ti
al appli
ations has been explored [BGMS98℄. The work reportedin this thesis produ
es a 
on
rete example of applying these 
losely related formalframeworks to real-life appli
ations.Logan reported that the multi-agent belief revision approa
h for modelling high
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omputational problem [LRJ94℄. Even the e�e
tivenessof su
h a multi-agent IR system required further evaluation. The proposed belief revi-sion framework for modelling adaptive information agents is quite di�erent from Lo-gan's approa
h [LRJ94℄. Firstly, only propositional horn 
lauses are used to representretrieval 
ontexts. The 
omputationally expensive model operators su
h as beliefs,desires, and intentions are not used. Se
ondly, belief revision and the 
orrespondingexpe
tation inferen
e are applied to the belief set of a single agent whi
h deals witha spe
i�
 information topi
. This approa
h substantially improves the 
omputationaleÆ
ien
y over a multi-agent belief revision model. At the 
omputational level, theAGM belief revision logi
 is implemented using the anytime transmutation algorithmwhi
h is shown to be 
omputationally tra
table [Wil97℄. The AGM belief revisionframework has been used for requirement analysis in software software engineeringappli
ations [Wil96a℄. In addition, the AGM framework has been applied to model
hanges to 
onsumer preferen
es with implementation based on relational databasete
hnologies [Wil96a℄.Losada [LB99℄ applied another preferen
e relation used for de�ning belief revisionoperators to develop a mat
hing fun
tion whi
h deals with partiality in IR. However,it is extremely 
ostly to 
ompute the symmetri
 di�eren
e between sets of models evenwith a moderate number of atoms. Whether su
h an approa
h 
an be implemented inpra
ti
e is questionable. This is the reason why a formula-based rather than a model-based approa
h is preferred for the implementation of the AGM belief fun
tions and



30 CHAPTER 1. INTRODUCTIONthe expe
tation inferen
e relations [GM94℄. The proposed learning and 
lassi�
ationmodels for adaptive information agents are based on the formula-based approa
hsin
e it is more 
omputationally friendly. Therefore, there is a better 
han
e for theproposed adaptive information agent model to satisfy the s
alability requirement ofintelligent IR systems.
1.6 Contributions of the ThesisThe work presented in this thesis applies theories and te
hniques from the �elds of IR,and theoreti
al and applied AI to develop the next generation of information manage-ment tools to alleviate the information overload problem. The spe
i�
 
ontributionsmade by this thesis are as follows:1. The design and development of a novel adaptive information agent model. Thisin
ludes:� Developing a formal framework to properly 
apture retrieval 
ontexts;� Formalising the agents' learning fun
tions by means of the AGM beliefrevision operators;� Formalising the agents' 
lassi�
ation fun
tions based on the expe
tationinferen
e relations;� Seamless integration of the learning and the 
lassi�
ation me
hanisms;
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ing information agents' learning autonomy by means of nonmono-toni
 reasoning;� Improving the explanatory power of information agents based on enri
hedrepresentations of retrieval 
ontexts and nonmonotoni
 reasoning;� Exploring e�e
tive IR in terms of balan
ed pre
ision and re
all in adaptiveinformation agents;2. Developing a new logi
al model for adaptive IR based on the AGM belief revisionframework;3. Developing a novel IR model whi
h 
ombines the strength of both quantitativeand qualitative approa
hes;4. Developing an eÆ
ient and e�e
tive transmutation algorithm to implement theAGM belief fun
tions;5. Developing 
ontext sensitive text mining methods to extra
t 
ontextual infor-mation for adaptive IR;6. Applying IR ben
h-marking pro
esses to validate the proposed logi
-based IRmodels and to 
ompare the performan
e of the logi
-based IR model with otherquantitative IR models;7. The formal 
onne
tion between belief revision and nonmonotoni
 inferen
e hasbeen proposed a de
ade ago. Our work represents the �rst su

essful appli
ationof su
h a 
onne
tion to large real-world appli
ations;



32 CHAPTER 1. INTRODUCTION8. The AGM belief revision framework has been studied in a purely theoreti
al
ontext for more than a de
ade. A major 
ontribution of this thesis is to performa large s
ale empiri
al evaluation of the AGM framework in the 
ontext ofadaptive information retrieval.
1.7 Resear
h MethodologyTo ta
kle the resear
h problems raised in Se
tion 1.2, the System Development Re-sear
h Methodology [NCP91℄ is adopted as the framework to guide the entire resear
hpro
ess. The iterative resear
h pro
ess is depi
ted in Figure 1.3. The Con
eptualFramework stage involves our extensive study of the 
hosen domain and the develop-ment of new theories and te
hniques to ta
kle the resear
h 
hallenges. For instan
e,how to represent retrieval 
ontextual in information agents and how to empower adap-tive information agents with learning and 
lassi�
ation 
apabilities will be addressedat this stage.At the System Ar
hite
ture stage, an overall system ar
hite
ture is developedto ensure that theories and models established at the Con
eptual Framework stage
an be implemented and subsequently tested. With referen
e to our resear
h, thegeneral ar
hite
ture of the adaptive information agent system will be developed. Theinterfa
es to other external systems (e.g., Internet sear
h engines) will also be identi-�ed. Based on the overall system ar
hite
ture, the System Analysis and Design stage
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Figure 1.3: The System Development Resear
h Methodology
involves a detailed spe
i�
ation of \what" the prototype system's fun
tionalities willbe and \how" these fun
tionalities 
an be implemented on spe
i�
 hardware/softwareplatforms. Corresponding to the ar
hite
t's model of a building, a prototype softwaresystem will be developed a

ording to the spe
i�
ation produ
ed at the design stageto demonstrate the feasibility and e�e
tiveness of the proposed theories and models.At the prototype building stage, the ne
essary programming and testing work will be
ondu
ted based on the 
hosen development tools.Above all, the resulting physi
al prototype system provides the basis to testand evaluate the proposed 
on
eptual framework at the Observe and Evaluate stage.For example, with referen
e to the �ltering fun
tion of the prototype system, a large
olle
tion of do
uments with prede�ned relevan
e judgement 
an be fed to the in-formation agent to evaluate its e�e
tiveness. The annual Text Retrieval Conferen
e



34 CHAPTER 1. INTRODUCTION(TREC) has developed a �ltering tra
k with prede�ned do
uments and relevan
ejudgement to evaluate the e�e
tiveness of IR and IF systems [Hul98℄. Therefore, theben
h-marking pro
edure developed by the TREC forum be
omes an integral part ofthe evaluation pro
edure for our information agent model. Another text 
olle
tionssu
h as the Reuters-21578 
olle
tion will also be used to evaluate the prototype agentsystem to improve the external validity of the resear
h work. Results from the eval-uation stage may lead to the re�nement of the original theoreti
al framework or theformulation of new resear
h questions for further resear
h.
1.8 Outline of the ThesisThe rest of this thesis is organised as follows. The following 
hapter is a 
riti
al re-view of existing adaptive information agent systems. It identi�es the main paradigmsof adaptive information agents and pinpoints the weaknesses of existing informationagents. Chapter 3 gives the formal de�nitions of the AGM belief revision logi
, anddis
usses the rationale of applying the AGM belief revision framework to IR in gen-eral and adaptive information agents in parti
ular. Chapter 4 illustrates the proposedadaptive information agent model and its implementation with referen
e to the fun-damental issues su
h as knowledge representation, learning, and 
lassi�
ation. It de-s
ribes the 
omputational details (e.g., indu
tion of epistemi
 entren
hment orderings,the transmutation algorithm that implements the AGM belief revision fun
tions, the
lassi�
ation model, et
.) required to implement the belief-based information agent
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ription of the experiments performed for the prototype adap-tive information agent system and a detailed analysis of the initial experimental re-sults are presented in Chapter 5. Chapter 6 
ontains the 
on
luding remarks andsome dire
tions for future resear
h work.



Chapter 2
A Review of Adaptive InformationAgents
The materials presented in this 
hapter are largely based on those published in [Lau02b℄.Contemporary models of adaptive information agents are developed with a view toalleviating the information overload problem [ACL+00, BP99, YKL00, MB00℄. Somerepresentative adaptive information agents are studied with referen
e to the variousparadigms whi
h underpin the development of these agents. Table 2.1 depi
ts a 
rossse
tion of agent systems and their paradigms. Su
h a 
lassi�
ation 
ould be 
ontro-versial. However, it serves the purpose of establishing a starting point for furtherinvestigation into the respe
tive agents and the asso
iated paradigms. The origins ofthese agent systems are highlighted, followed by their general fun
tionalities su
h ason-line browsing, �ltering, or dire
t Web traversal. Some adaptive information agents36



37are hybrid systems whi
h employ te
hniques from several paradigms. These agentsare listed under the paradigm whi
h best des
ribes the dominating te
hniques. Al-though various paradigms of adaptive information agents have been explored, there isno general 
onsensus of whi
h paradigm or synergy of paradigms is the most e�e
tiveone. The main issues related to the development of adaptive information agents areexamined. These issues in
lude feature extra
tion (i.e., how to represent do
umentsand users' interests), feature sele
tion (i.e., the methods of removing noisy and irrel-evant features), 
lassi�
ation te
hniques, and learning and adaptation me
hanisms.Ea
h adaptive information agent paradigm addresses these issues in a di�erent way,and leads to various IR behaviour. Although the experimental results of some sur-veyed agent systems are available, it is not pra
ti
al to dire
tly 
ompare their perfor-man
e (e.g., 
lassi�
ation a

ura
y) sin
e the experimental settings vary. Therefore, aqualitative analysis of the agents' performan
e is 
ondu
ted. For example, the agents'learning autonomy (i.e., the extent of human intervention involved in an agent's learn-ing and adaptation pro
ess), mode of learning (e.g., in
remental versus bat
h modelearning), explanatory power (i.e., an agent's ability to justify its de
isions), explo-ration 
apability (i.e., an agent's ability to explore novel information topi
s), and their
apabilities of pro
essing impli
it feedba
k are examined to infer the advantages anddisadvantages of these agent paradigms. This is not an exhaustive listing of adaptiveinformation agent systems. The agent systems are surveyed based on the availability
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hni
al details (e.g., journal publi
ations) or their origins (e.g., developedby well-known resear
h groups in information agents).
Agent Origin Browsing Filtering Web AgentTraversal ParadigmWebWat
her Carnegie Mellon Yes No Yes Ve
torUniversity Spa
eLetizia MIT Yes No Yes Ve
torSpa
eLIRA Standford No Yes Yes Ve
torUniversity Spa
eFab Standford No Yes Yes Ve
torUniversity Spa
eSyskill & Webert U. California No Yes No NaiveIrvine BayesianNews Dude U. California No Yes No NaiveIrvine BayesianINFOrmer U. College No Yes No Asso
iativeCork NetworkAmalthaea MIT No Yes No EvolutionaryGIRAF Granada No Yes No FuzzyUniversity SetsInfoSpiders U. California No No Yes Conne
tionistSan DiegoColombo U. Catania & No Yes Yes Symboli
U. TorinoSIGMA U. Carleton & No Yes No ComputationalNRC E
onomyRingo MIT No Yes No CollaborativeTable 2.1: A Summary of Adaptive Information Agents



2.1. THE VECTOR SPACE PARADIGM 392.1 The Ve
tor Spa
e ParadigmThe ve
tor spa
e paradigm refers to the information agents whi
h make use of ve
torsof term frequen
ies to represent do
uments and user's interests (i.e., part of a retrieval
ontext). The agents' learning and 
lassi�
ation fun
tions are implemented based onthe algebrai
 operations on the ve
tors. The behaviour of most of the agents in this
ategory 
an be understood with referen
e to the ve
tor spa
e model [SM83℄ andits variants. WebWat
her [AFJM95, JFM97℄ is an intelligent browsing agent whi
hre
ommends hyperlinks to a user while the user is browsing the Web. When an agentis initialized, the user is asked to spe
ify their information interests (i.e., a query q)via a set of keywords. Feature extra
tion is 
ondu
ted by extra
ting words from aquery or do
ument and 
omputing the root forms of the words based on a stemmingalgorithm [Por80℄. Stri
tly speaking, keywords a
tually refer to stemmed keywords. Aquery ve
tor �!q is used to hold the weights of the keywords appearing in a query. TheTerm Frequen
y Inverse Do
ument Frequen
y (TFIDF) method is used to 
omputethe weight wq(k) of a keyword k from a query q [Sal91℄:
wq(k) =  � + �� rf (k)maxk02q rf (k0)!� log2 NNk (2.1)Based on empiri
al studies, the weight fa
tor � is set to 0:5 to optimize retrievalperforman
e [Sal91℄. The normalized term frequen
y (TF) is expressed as the fra
tion:TF = rf (k)maxk02q rf (k0) , where rf (k) is the raw term frequen
y of a keyword k. The raw



40 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSterm frequen
y is de�ned as the number of times a keyword k appears in the queryq. Inverse do
ument frequen
y (IDF) is expressed as the fra
tion: log2 NNk , where Nis the total number of do
uments of a 
olle
tion and Nk is the number of do
umentswhi
h 
ontain the keyword k in the same 
olle
tion. For information retrieval on theInternet, N is often approximated by the number of lo
ally 
a
hed do
uments in anagent system. A hyperlink or a Web page is also represented by a ve
tor of TFIDFweights. Similarly, the weight wd(k) of a keyword k in a hyperlink or do
ument d
an also be 
omputed a

ording to Eq.(2.1). The dis
riminatory power of a keywordk in a do
ument d is proportional to its o

urren
e frequen
y in d and is inverselyproportional to its o

urren
e frequen
y in the entire do
ument 
olle
tion [SM83℄. Theset of keywords with their TFIDF weights greater than a system threshold is sele
tedto represent the 
orresponding hyperlink or Web do
ument. In fa
t, this is a widelyused feature sele
tion method in information agents [Bal97, BS95, KF95, MM98℄.Given a user's information interests, a Web do
ument, and a set of hyperlinksof the Web do
ument, the obje
tive of WebWat
her is to learn a target fun
tion:LinkV alue : page� interest� link ! [0; 1℄. The agent re
ommends a hyperlink withthe highest LinkValue to the user. Two slightly di�erent learning and 
lassi�
ationmodels were used in WebWat
her. The �rst one is 
alled ANNOTATE whi
h predi
tsthe relevan
e of a hyperlink based on its similarity with the user's information needs.The annotation of a hyperlink 
onsists of its textual des
ription and the queries ofsome users who followed that hyperlink before. All the keywords with the TFIDF



2.1. THE VECTOR SPACE PARADIGM 41weights greater than a pre-de�ned threshold are sele
ted to represent the hyperlink.Basi
ally, a hyperlink ve
tor is 
reated for ea
h hyperlink of the 
urrent Web page.To predi
t if a user should 
hoose a parti
ular link, the 
osine angle (i.e., the 
osinesimilarity measure [SM83℄) between the query ve
tor and the hyperlink ve
tor of the
urrent page is 
omputed:
sim(�!q ;�!d ) = Pni=1wq(ki)� wd(ki)pPni=1(wq(ki))2 �pPni=1(wd(ki))2 (2.2)where �!q and �!d are the query ve
tor and the hyperlink ve
tor representing a queryq and a hyperlink d respe
tively. The term wq(ki) represents the weight of the ithkeyword ki in the query ve
tor �!q , and the term wd(ki) represents the weight of theith keyword ki in the hyperlink ve
tor �!d . It is assumed that there are n elementsin ea
h ve
tor. The value of n is an input to a feature sele
tion pro
ess (e.g., thetop n terms with the highest TFIDF weights). The hyperlink with the highest 
osinesimilarity s
ore sim(�!q ;�!d ) is re
ommended to the user. In fa
t, the ANNOTATEmethod integrates 
ontent-based �ltering and 
ollaborative �ltering [Oar97℄ into asingle framework. The ANNOTATE method 
an be viewed in the following way: Ifthere is a 
orrelation between the information needs of previous users, represented bythe hyperlink ve
tor �!d , and that of a 
urrent user, represented by the query ve
tor �!q ,the hyperlink explored by the previous visitors is re
ommended to the 
urrent user.This is also a 
ontent-based method sin
e the 
ontent of a hyperlink represented byits textual des
ription is 
ompared with the 
ontent of a user's query.
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lassi�
ation method 
alled (RL) is used in WebWat
her. With the RLmethod, the agent tries to �nd the most rewarding path, whi
h 
omprises a sequen
eof hyperlinks and Web pages that these hyperlinks point to starting from the 
urrentpage. A reward is measured in terms of the sum of the 
osine similarity s
ore betweena user's query ve
tor and a do
ument (or hyperlink) ve
tor. For instan
e, if theWebWat
her agent wants to re
ommend a browsing path to its user, it evaluates thetotal reward for ea
h path originating from the 
urrent Web page. The evaluationen
ompasses a pre-de�ned distan
e measured from the 
urrent page. The path withthe biggest reward indi
ates the 
losest mat
h between a user's interests and the
ontent of a parti
ular segment of the Web measured in terms of 
osine similarity.WebWat
her also supports other fun
tionalities su
h as sear
hing the Web using avariant of the Ly
os sear
h engine, and monitoring the 
hanges of some Web pagesspe
i�ed by the users. However, as the agent is not endowed with a persistent memory(i.e., a user pro�le) to 
apture a user's information needs, personalized browsing isnot supported a
ross di�erent sessions.Evaluation of WebWat
her was based on the 5; 822 browsing sessions targeting atthe site of the 
omputer s
ien
e department at CMU logged between August 1995 andMar
h 1996. Some of these sessions, whi
h 
onsist of users' interests and their traversalpaths, were used to develop the training and the test data to evaluate the 
lassi�
ationperforman
e of WebWat
her. It was found that the RL method was slightly betterthan the ANNOTATE method. However, the best 
lassi�
ation a

ura
y was obtained
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ombining these two methods using logisti
 regression. In addition, to 
omparethe performan
e between the ANNOTATE method and some human experts, eightsubje
ts 
onversant with the CMU Web site were asked to re
ommend the hyperlinksbased on the pre-de�ned users' interests. The result showed that the 
lassi�
ationa

ura
y of the ANNOTATE method (42:9%) was 
omparable with that a
hieved byhuman experts (47:5%).Letizia [Lie95℄ is another Web browsing agent with fun
tionality similar to thatof WebWat
her. It re
ommends promising hyperlinks while a user is browsing theWeb. However, Letizia does not require a user to expli
itly spe
ify their interests(i.e., queries) at the beginning of a session; instead, it uses a set of pre-de�ned rulesto infer a user's interests. A query ve
tor is then used to represent these interests. Forinstan
e, if the user 
reates a bookmark or saves a Web do
ument, Letizia will inferthat they are interested in that parti
ular do
ument. When Letizia en
ounters newhyperlinks, it will evaluate the annotations asso
iated with the hyperlinks and the Webdo
uments pointed to by these hyperlinks. If there is a suÆ
iently 
lose mat
h betweena query ve
tor and a do
ument ve
tor representing both the hyperlink and the Webdo
ument, the hyperlink will be re
ommended. Letizia di�ers from WebWat
her inthat only Boolean features representing presen
e or absen
e of keywords in do
umentsor queries are used. Moreover, the mat
hing fun
tion between any two feature ve
torsis implemented as the dot produ
t of the 
orresponding ve
tors. In other words, ifthere are a large number of overlapping keywords between a user's query ve
tor and
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ument ve
tor, the 
orresponding hyperlink is likely to be re
ommended. Similarto WebWat
her, Letizia is not endowed with a persistent memory to 
apture a user'sre
urring information needs. Therefore, the agent needs to learn from s
rat
h if theuser returns to the system the se
ond time.LIRA [BS95℄ and Fab [Bal97℄ are two adaptive information agent systems whi
hemploy the ve
tor spa
e model [SM83℄ for do
ument representation and mat
hing.In terms of the system ar
hite
ture, these agents have persistent memories (i.e., userpro�les) to 
apture ea
h individual's information needs. Training these agents to learnand adapt to the users' 
hanging information needs 
ompletely relies on the users'dire
t relevan
e feedba
k [SB90℄. Unfortunately, this is a rather intrusive approa
h.Therefore, the agents' learning autonomy is relatively low. On
e a set of do
umentsis judged by the user, a variant of the Ro

hio relevan
e feedba
k based learningmethod [Ro
71℄ is used to revise the query ve
tor. In parti
ular, this variant 
onsiderspositive examples only. The advantage of Fab over LIRA is that it employs both the
ontent-based and the 
ollaborative �ltering strategies. An agent �rst learns a userpro�le for a parti
ular topi
. It is possible to share this pro�le with other users who areinterested in the same topi
. Apart from dire
tly traversing the Web with a best-�rstsear
h strategy, Fab is also equipped with interfa
es to existing Internet sear
h enginessu
h as Alta Vista and Ex
ite for information retrieval. As user pro�les are used to
apture users' long-term interests, personalized information delivery is supported byboth LIRA and Fab.



2.2. THE NAIVE BAYESIAN PARADIGM 452.2 The Naive Bayesian ParadigmSyskill & Webert [PB97, PMB96℄ is an information agent designed to help users �lterinteresting Web pages of a parti
ular topi
. Essentially, ea
h agent maintains a userpro�le 
orresponding to the user's topi
al information needs. A user is served bya set of Syskill & Webert agents with ea
h one managing a parti
ular topi
. TheSyskill & Webert agent develops queries based on the information stored in a userpro�le and then submits these queries to Internet sear
h engines su
h as LYCOS.It ranks the relevan
e of the returned Web do
uments with respe
t to the user'stopi
al information needs. Feature extra
tion is 
ondu
ted by 
hara
terizing ea
hWeb do
ument by a Boolean feature ve
tor. This approa
h is similar to that employedin Letizia. A feature value 
orresponds to the presen
e or absen
e of a parti
ularkeyword in a Web do
ument. The proposed feature sele
tion method is based onthe expe
ted information gain, whi
h pi
ks features (i.e., keywords) with the best
lassi�
ation power from a set of training examples. A training example is a Webdo
ument together with a user's relevan
e judgement. The information 
ontent orEntropy I(D) of a set of training examples D is derived from:
I(D) = �X
2C Pr(
)� log2 Pr(
) (2.3)where C = frelevant; non-relevantg is the set of 
lasses. Pr(
) represents the esti-mated probability that an arbitrary do
ument d is with a 
lass label 
 based on the
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ted information gain is a method used inthe ID3 algorithm to generate minimal de
ision trees [Qui86℄. In the 
ontext of featuresele
tion for IR, expe
ted information gain E(k;D) 
an be seen as a measure of theredu
tion of the un
ertainty involved in 
lassifying an arbitrary obje
t d 2 D to 
lass
 2 C based on the presen
e or absen
e of a keyword k 2 d. Expe
ted informationgain is de�ned by:
E(k;D) = I(D)� [Pr(k)� I(Dk) + Pr(:k)� I(D:k)℄ (2.4)where Pr(k) is the estimated probability that a keyword k appears in a do
umentd, and Pr(:k) is the estimated probability that an arbitrary do
ument d does not
ontain the keyword k. The term I(Dk) represents the information 
ontent of theset Dk of do
uments. Ea
h do
ument d 2 Dk 
ontains the keyword k. The termI(D:k) is the information 
ontent of the set D:k of do
uments with ea
h d 2 D:k not
ontaining k.The predi
tion model of Syskill & Webert is based on the naive Bayesian 
lassi-�er. The advantage of this paradigm is its 
omputational eÆ
ien
y when 
omparedwith that of other more sophisti
ated paradigms. The obje
tive is to predi
t if a Webdo
ument d is relevant given the fa
t that 
ertain keywords are present in the do
u-ment: Pr(relevantjk1^k2^ : : :^kn). In general, the 
onditional probability estimatesthe 
han
e that a do
ument d is of 
lass 
 2 frelevant; non-relevantg given the fa
tthat the set of features (k1^k2^: : :^kn) is found in d. If the features are independent,
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onditional probability Pr(
jk1 ^ k2 ^ : : : ^ kn) is proportional to thefollowing probability fun
tion [DH73℄:
Pr(relevant) nYj=1 Pr(kjjrelevant) (2.5)where Pr(kjjrelevant) is the 
onditional probability that a do
ument d with a 
lasslabel relevant 
ontains the keyword kj; this prior 
onditional probability 
an be esti-mated from D. In fa
t, Eq.(2.5) does not 
ompute a 
onditional probability be
ausethe denominator Pr(k1 ^ k2 ^ : : : ^ kn) is not in
luded. However, as the obje
tive isto 
ompare Pr(relevantjk1 ^ k2 ^ : : : ^ kn) with Pr(non-relevantjk1 ^ k2 ^ : : : ^ kn),using the numerators alone yields the same result as that of 
omparing the true
onditional probabilities. The possible eÆ
ien
y gain is important for real-time ap-pli
ations. The posterior probability Pr(
jk1 ^ k2 ^ : : :^ kn) is approximated for ea
h
lass 
 2 frelevant; non-relevantg. Then a do
ument d is assigned to the 
lass 
 withthe highest 
onditional probability.To evaluate the performan
e of the agent, four human experts were asked to judgeWeb do
uments over nine topi
s. The largest topi
 
ontained 154 Web do
umentswith users' judgement and the smallest topi
 
ontained 26 do
uments with users'judgement. For ea
h topi
, the set of do
uments was divided into a training set anda test set. After training the agent with examples from the training set, the agentpredi
ted the relevan
e of unseen do
uments from the test set. The 
lassi�
ationa

ura
y of the naive Bayesian 
lassi�er was 
ompared with other te
hniques su
h
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ision tree, the Ro

hio method, andneural networks. The results showed that the naive Bayesian 
lassi�er outperformedsome of the more sophisti
ated models a
ross all nine topi
s. The best 
lassi�
ationa

ura
y a
hieved in one of the nine topi
s was 81:5%. Attempts were made toemploy semanti
 relationships among keywords to improve the agent's 
lassi�
ationperforman
e. The general lexi
al knowledge base WordNet [MRF+90℄ was used toremove irrelevant features from the training examples. The result 
on�rmed that usingthe lexi
al knowledge 
ould improve 
lassi�
ation performan
e. Su
h an improvementis more obvious if only a small training set is available. Moreover, it was found thatemploying domain knowledge (e.g., lexi
al knowledge) and e�e
tive feature sele
tionmethods produ
ed more signi�
ant performan
e improvement than that a
hieved byusing an e�e
tive 
lassi�
ation algorithm alone.News Dude [BP99℄ is an adaptive news �ltering agent on the Web. It employs amulti-strategy ma
hine learning approa
h to �lter Internet news. The agent's 
lassi�-
ation model is divided into a short-term model and a long-term model. The purposeof the short-term model is to 
lassify in
oming news stories into one of the re
entlyretrieved news threads. The ve
tor spa
e model [SM83℄ is used for news representa-tion and mat
hing in the short-term model. On the other hand, the long-term modelis used to represent a user's general preferen
es and to predi
t news whi
h 
ould notbe 
lassi�ed by the short-term model. The long-term model is developed based onthe naive Bayesian 
lassi�er. As a result, a news story may have two representations.
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tor, and is 
ompared with other TFIDFve
tors whi
h represent those re
ently seen stories using the 
osine similarity mea-sure. If there is a suÆ
iently 
lose mat
h, the in
oming story will be 
lassi�ed to the
orresponding news thread. On the other hand, if all the similarity s
ores are belowthe minimum threshold, the naive Bayesian 
lassi�er will be a
tivated. Under su
ha 
ir
umstan
e, the in
oming story is represented by a Boolean feature ve
tor. The
onditional probability Pr(
jk1^k2 ^ : : :^kn) is 
omputed to determine the 
ategory(i.e., 
lass) 
 = f1; 2; : : : ; ng representing one of the user's preferen
es. Apart fromusing a multi-strategy 
lassi�
ation approa
h, the agent is able to explain and justifyits de
isions based on three pre-de�ned explanation templates. This is a distin
t ad-vantage of News Dude when 
ompared with other adaptive information agents. Theevaluation of News Dude is similar to that of Syskill & Webert. Ten users were askedto train the system over a period of four to eight days. About 3; 000 labelled newsstories were obtained during this period. These stories were divided into a trainingset and a test set to evaluate the performan
e of News Dude in terms of 
lassi�
ationa

ura
y and the F1 measure 
omprising both the pre
ision and the re
all elements.It was 
on�rmed that the multi-strategy 
lassi�
ation model outperformed ea
h indi-vidual 
lassi�
ation method. With their parti
ular experimental setting, the average
lassi�
ation a

ura
y of 72:5% and an average F1 measure of 60:1% were a
hieved.
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Amalthaea [MM98℄ is a multi-agent e
osystem for information dis
overy, �lter-ing, and monitoring on the Web. The agent gradually learns and adapts to a user's
hanging information needs based on the users' relevan
e feedba
k [SB90℄ and theagent's evolutionary me
hanism. The evolution pro
ess is based on the prin
iple of\natural sele
tion". For instan
e, only the e�e
tive agents 
an survive and produ
eo�spring in the system. Those agents whi
h 
annot produ
e relevant information tothe users will be eliminated gradually. In Amalthaea, there is a 
lear distin
tion be-tween the dis
overy agents whi
h intera
t with external information sour
es su
h asInternet sear
h engines, and the �ltering agents whi
h sele
t and present the relevantdo
uments to the users. Ea
h user is in fa
t served by a group of dis
overy agents anda group of �ltering agents respe
tively. The 
urrent implementation as published is a
entralized server-based system [MM98℄. Web do
uments are represented by keywordve
tors with TFIDF weights. In other words, the pro
edure of feature extra
tion andsele
tion is similar to that employed in WebWat
her [AFJM95, JFM97℄. To estimatethe inverse do
ument frequen
y (IDF) fa
tor, the set of lo
ally 
a
hed do
uments isused to approximate the entire Web do
ument 
olle
tion. The weight of a keywordis adjusted based on whether it 
omes from the parti
ular se
tions (e.g., header) ofan HTML do
ument. It is believed that keywords from the header se
tion are betterindi
ators about the 
ontent of the Web do
ument, and so should be assigned higherweights. Web do
uments extra
ted from a user's bookmark �le are used to represent



2.3. THE EVOLUTIONARY PARADIGM 51the user's initial information needs. The user's information needs are represented bya TFIDF ve
tor.In Amalthaea, a �ltering agent 
onsists of two 
omponents, namely the genotypeand the phenotype. Genotype is the element whi
h will be modi�ed by the evolutionaryme
hanism. Its main 
omponent is a TFIDF ve
tor whi
h represents one of the user'sinformation needs. The phenotype of a �ltering agent 
ontains the non-evolvableelements su
h as the agent's �tness, date of 
reation, type of agent (e.g., user 
reatedor system generated), and exe
utable 
odes. It should be noted that the meanings ofthe terms \Genotype" and \Phenotype" as adopted in Amalthaea are quite di�erentfrom that normally being referred to in evolutionary 
omputing. At the time ofinitialization, the set of TFIDF ve
tors representing a user's initial information needsis 
lustered into di�erent topi
s. Within ea
h 
luster, a �ltering agent is randomlyassigned a TFIDF ve
tor. Agent evolution is then performed on a 
luster by 
lusterbasis. If a �ltering agent of a parti
ular 
luster presents a Web do
ument to theuser, a reward or penalty will be given dependent on whether the do
ument is judgedrelevant or not by the user. The amount of the reward +Æ or the penalty �Æ isproportional to the agent's 
on�den
e 
(d) in its re
ommendation for a do
ument d.The Æ value is used to update the �ltering agent's �tness f :
fi = fi�1 + Æi�1 � 
osti�1 (2.6)where fi is the �ltering agent's �tness pertaining to the ith generation, and 
osti�1
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ost during the (i � 1) period. It is assumed that ea
h agent has to payfor its survival in ea
h evolution 
y
le. So, if a �ltering agent does not re
ommendany do
ument, it will die eventually. Ea
h �ltering agent employs the 
osine simi-larity measure [SM83℄ sim(�!q ;�!d ) to estimate the 
orresponden
e between the user'sinformation needs (i.e., a query q) and the 
ontent of an in
oming do
ument d. The
on�den
e level of a re
ommendation is derived from:

(d) = sim(�!q ;�!d )� f (2.7)where 
(d) is the agent's 
on�den
e level of re
ommending the do
ument d, and f isthe agent's 
urrent �tness. If the �ltering agent re
ommends a Web do
ument witha high 
on�den
e and the user's feedba
k is positive, it will re
eive a high reward Æ.On the other hand, if 
(d) is high and the relevan
e feedba
k is negative, a large �Æwill be generated. Consequently, �ltering agents whi
h 
onsistently present relevantdo
uments to the user will a

umulate high �tness. Only a variable number of highly�t agents are 
hosen for reprodu
tion in ea
h evolution 
y
le. The number of agentsallowed to go into the reprodu
tion pro
ess is linearly related to the number of un�tagents to be eliminated from the system. The reprodu
tion pro
ess involves threepossible operations:1. Cloning: 
reating multiple 
opies of the same agent in the new generation.2. Two point 
rossover: randomly sele
ting two points from ea
h keyword ve
tor
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hanges all �elds within the 
hosen boundaries of the parents' ve
tors togenerate two new keyword ve
tors.3. Mutation: 
reating a randomly modi�ed individual; the new mutated keywordsare randomly sele
ted from an agent belonging to another 
luster or from ado
ument re
ently judged as relevant by the user; the existing pairs of keywordsand weights are randomly sele
ted and repla
ed by the new pairs of keywordsand weights.There are two levels of agent evolution. Firstly, ea
h individual's evolution is
ontrolled by its �tness level. Se
ondly, the rate of evolution of the whole populationis determined by the overall �tness measured by the average �tness of the entirepopulation. In a parti
ular evolution 
y
le, if the average do
ument rating from theuser is low, the number of agents going into the reprodu
tion pro
ess will in
rease. Inother words, the rate of adaptation is in
reased so that the agents 
an 
onverge to theuser's information needs qui
ker. The stru
ture of a dis
overy agent is similar to thatof a �ltering agent. A dis
overy agent's genotype 
ontains a sear
h engine's URL,parameters for query 
onstru
tion, minimum hits, and maximum hits. If a dis
overyagent retrieves a do
ument from a sear
h engine, and this do
ument is subsequentlyjudged relevant by the user, a reward +Æ is re
eived from the �ltering agent whi
hre
ommends this do
ument to the user. The same evolution pro
ess applies to thedis
overy agents. Those dis
overy agents whi
h often retrieve relevant do
uments fromthe sear
h engines are reprodu
ed. Therefore, only the useful information sour
es with
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t to the user's spe
i�
 information needs are explored. Coordination among the�ltering agents and the dis
overy agents is based on a shared bu�er. The �lteringagents pla
e their requests (i.e., queries) in the bu�er (i.e., a queue). A dis
overyagent sele
ts a request to ful�l based on its work history with a parti
ular �lteringagent. If a �ltering agent's queries often lead to an in
rease of the dis
overy agent's�tness, the �ltering agent's query has a better 
han
e to be served by the dis
overyagent.Several experiments were 
ondu
ted to evaluate the performan
e of Amalthaea.Some user pro�les 
omprising rated do
uments were manually 
onstru
ted. The do
-uments were pla
ed under di�erent dire
tories of a lo
al ma
hine to resemble thedi�erent sear
h engines. At the beginning of an experiment, a set of users' informa-tion needs was randomly assigned to the �ltering agents. A 
onstant 
hanging rate of5% was applied to ea
h pro�le. The result showed that Amalthaea 
ould 
onverge tothe virtual users' information needs. However, on average it took around 200 agentevolution 
y
les to rea
h su
h an equilibrium be
ause the agents were initially assignedrandom interests. Other experiments were developed to test if the system 
ould adaptto abrupt 
hanges or evolve based on less amount of dire
t relevan
e feedba
k. In both
ases, Amalthaea 
ould pi
k up a user's information needs after dozens of evolution
y
les. Finally, seven users were organized to test the e�e
tiveness and the usability ofthe system. During the testing period, the system's re
ommendations and the users'feedba
k were logged. In general, the users gave more positive feedba
k rather than
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k to the system. The mean absolute error of 22% was re
orded underthis parti
ular experimental setting. A

ording to their usability study, the majorityof users felt that the agents 
ould re
ommend relevant information. However, a mixedfeeling about the adaptation 
apabilities of the agents was obtained.
2.4 The Computational E
onomy ParadigmSIGMA [FK96, KF95, KF98℄ is a multi-agent system for �ltering Usenet news onthe Internet. The design obje
tive of SIGMA is to integrate reinfor
ement learn-ing, relevan
e feedba
k, and market equilibrium into a framework of 
omputationale
onomy whi
h allows the agents to learn and adapt to both 
hanges in the informa-tion sour
es and the 
hanges in users' information needs. The problem of allo
atinglimited resour
es among 
ompeting agents has been extensively studied in the �eldof e
onomi
s. The metaphors of markets and pri
ing have been used to rea
h anequilibrium (i.e., optimal solutions) of resour
e distribution among the produ
ers andthe 
onsumers. In the 
ontext of SIGMA, the resour
es are do
uments (e.g., newsarti
les), and the 
onsumers are the pro�le sele
tor (PS) agents representing users'queries; the produ
ers are the pro�le generator (PG) agents and the pro�le extra
tor(PE) agents. The PG agents pur
hase do
uments from the PE agents and then sellthese do
uments to the PS agents. Do
ument representation (i.e., feature extra
-tion and sele
tion) is 
ondu
ted by the PE agents, and this is done based on thetraditional IR te
hniques [SM83℄. Ea
h PE agent is responsible for 
hara
terizing
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uments from a parti
ular news group.Both the PS agents and the PG agents are endowed with user pro�les whi
h
apture the users' queries. In addition, ea
h PS agent keeps a history of do
umentspur
hased and the 
orresponding rewards re
eived from its user. There are two levelsof learning in SIGMA. At the lo
al level, the pro�les of the PS agents and the PGagents are updated based on the users' relevan
e feedba
k. In parti
ular, the pro�le(i.e., a keyword ve
tor with TFIDF weights) of a PG agent is revised by a variant ofthe Ro

hio learning method [Ro
71℄:
�!Q t+1 = 8>><>>: �!Q t + ��!d if d relevant�!Q t � 
�!d if d non-relevant (2.8)

where �!Q t is the TFIDF ve
tor representing a user's query at time t, and � and 
are the learning fa
tors for the relevant and the non-relevant do
uments respe
tively.They are set to 0:9 and 0:1 in the TREC-7 experiments [KF98℄. The term �!d is aTFIDF ve
tor representing a do
ument d judged by the user. Global learning of theentire system is based on the pri
ing me
hanism. The main pri
ing me
hanism isimplemented through the PG agents. Ea
h PG agent sets a standard pri
e for all thedo
uments that it sells at time t+ 1 based on the following fun
tion:
pri
et+1 = F(et; bt) (2.9)
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ision of the PG agent's output up to time t, and bt is the ratioof the number of times the PG agent has been sele
ted in a bid over the total numberof bids quoted up to time t. Unfortunately, the details of the fun
tion F were notpublished [KF95℄. However, the basi
 idea is that the PG agents pur
hase do
umentsfrom the PE agents with a 
ost 
. This 
ost 
ould be �xed or 
oating (e.g. the 
ost
an vary dependent on the information 
ontent or popularity of a news group). APG agent's pro�t equals Pni=1 pri
ei � 
i, where i represents ea
h do
ument boughtand sold by the PG agent. If a PG agent 
ontinuously sells interesting do
uments tothe PS agents and the users eventually provide positive feedba
k to these do
uments,the PG agent's pre
ision in
reases. A

ordingly, the PG agent 
an raise the pri
esof its items at a later stage. Assuming that the PS agents have suÆ
ient budget topur
hase items from this PG agent be
ause it tends to produ
e interesting items, the
umulated pro�t of the PG agent in
reases.On the other hand, if the PG agent does not pur
hase the right items from the PEagents, a loss is in
urred be
ause the PG agent has to pay for the 
ost of pur
hasingea
h item no matter if there is any PS agent to buy the item or not. Those PG agentswhi
h 
annot produ
e relevant do
uments will eventually go bankrupt, and vanish inthe market. Consequently, the SIGMA system 
an gradually 
onverge to the users'information needs. Basi
ally, the 
lassi�
ation fun
tion of SIGMA is implementedbased on the 
osine similarity measure [SM83℄. For instan
e, the PG agents pur
hasedo
uments from the PE agents based on the 
osine similarities between its pro�le
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tor and the do
ument ve
tors supplied by the PE agents. To support exploratorylearning, a probability value p is de�ned to 
ontrol the PG agents to pur
hase do
u-ments with high 
osine similarity s
ores from the PE agents, and another probabilityvalue 1� p to allow the PG agents to pur
hase do
uments with low similarity s
ores.These do
uments represent the novel topi
s whi
h were not expli
itly requested bythe users before. Moreover, ea
h PS to PG market is formed based on the 
osinesimilarity between the pro�le ve
tors of the respe
tive agents. Evaluation of SIGMAwas performed based on the adaptive information �ltering task of the seventh annualTREC 
onferen
e [KF98℄. Unfortunately, the performan
e of SIGMA, in terms ofthe pre
ision oriented F1 measure, is below the average as a
hieved by the majorityparti
ipants in the TREC-7 adaptive �ltering task. However, SIGMA is among thevery few agent systems with a large s
ale and rigorous evaluation.
2.5 The Fuzzy Set Paradigm

GIRAF [MBVL99℄ is a fuzzy information �ltering agent on the Internet. Itutilizes fuzzy sets and geneti
 algorithms for 
lassi�
ation and learning. Do
umentrepresentation, whi
h 
omprises feature extra
tion and sele
tion, is based on the tra-ditional IR te
hniques [SM83℄. For example, term frequen
y (TF) is used as a measureto sele
t signi�
ant keywords from a do
ument. At system initialization time, a user�rst 
hooses some relevant do
uments. The Parser module of the system extra
ts the
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y tf (k) of ea
h keyword k from the set of relevant do
uments.The set of do
uments judged by a user is stored in the form of do
ument ve
tors in alo
al database. This database is 
ontinuously updated based on the user's relevan
efeedba
k [SB90℄. A user's information needs are eventually represented by a popu-lation of 
hromosomes. Ea
h 
hromosome 
omprises a set of genes, and ea
h gene
hara
terizes a fuzzy information requirement in terms of a keyword k and its averagefrequen
y 
 derived from the set of do
uments judged by the user. Basi
ally, thereare four types of genes. Ea
h type of gene is 
hara
terized by a fuzzy membershipfun
tion �. Gene type g1 represents an information item that the user requires (i.e.,positive keyword); gene type g2 represents an information item that should not be ina relevant do
ument (i.e., negative keyword); g3 is similar to g1 but with a di�erentmembership distribution:
�1(x) = min(x; 
)max(x; 
) �2(x) = 8>><>>: 
�x
 x < 
0 x � 
 �3(x) = 8>><>>: x
 x < 
1 x � 
where x is the term frequen
y of a keyword k in a do
ument d. For example, themembership value �3(x) of a term k is 1 (i.e., a very positive keyword) if its termfrequen
y in a do
ument d is greater than or equal to the average frequen
y 
 that
hara
terises a user's positive interest in the term k. Gene type g4 takes into a

ountthe fa
t that a token's signi�
an
e varies dependent on its lo
ation in a do
ument (e.g.,the �rst 10% of text, the last 10% of text, and the 80% of text in the middle). Themembership value �4(x) is de�ned as the weighted OR-aggregation of the membership
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h appears in various se
tions of a do
ument. Thisfuzzy geneti
 approa
h di�ers from the other geneti
 approa
hes in that the samekeyword k may be applied to more than one gene type in the same 
hromosome or indi�erent 
hromosomes be
ause the 
on
ept of positive/negative keyword is fuzzy.Mat
hing in
oming do
uments with respe
t to a user's information needs is 
on-du
ted by 
omputing the population s
ore Sim(d) of the 
urrent generation:
Cl(d) = 1jGj � Xi2T;j2G;k2d�ji (tf (k)) (2.10)

Sim(d) = Pl2F Cl(d)jF j (2.11)where Cl(d) is the 
hromosome s
ore of a do
ument d 
omputed with respe
t to the
hromosome l. Ea
h keyword k 2 d is mat
hed with the keyword of ea
h gene fromthe set of genes G in the 
hromosome l. If a mat
h is found, the term frequen
ytf(k) of the keyword k is used to 
ompute the fuzzy membership value �ji (tf (k)) withrespe
t to the 
orresponding 
on
epts (e.g., positive keyword or negative keyword).The set T de�nes the allowable types of genes in the system. The set F 
ontains the
hromosomes with high �tness of a parti
ular generation. A parameter �, whi
h isde�ned in terms of a per
entage of the 
urrent population, 
ontrols the 
ardinalityof F . So, the population s
ore Sim(d) of a do
ument d is de�ned as the arithmeti
mean of the 
hromosome s
ores Cl(d) derived from the best �t 
hromosomes l 2 F .



2.5. THE FUZZY SET PARADIGM 61The ability of a 
hromosome in 
lassifying do
uments is 
alled a payo� (pay) inGIRAF. In ea
h evolution 
y
le, the 
urrent �tness fi of a 
hromosome of a generationi is 
omputed by adding the payo� to its previous �tness fi�1, and subtra
ting the
ost of living in
urred during that period: fi = fi�1+pay� 
ost. The 
ost of living isa 
onstant applying to the whole population so that those poor performers are gradu-ally eliminated. Three methods are proposed to 
ompute the payo� of a 
hromosome.The basi
 method is to 
ompute the di�eren
e between the 
hromosome s
ore of ado
ument d and the user's relevan
e feedba
k for d: pay1 = 1� jCl(d)�U(d)j, whereU(d) is the user's rating on d. To assign extra 
redits to high payo� values, anothermethod is used: pay2 = 1� [Cl(d)� U(d)℄2. The last method is a weighted 
ombina-tion of pay1 and pay2: payi3 = (payi2)�� [(Sim(d)i�1�U(d)i)2℄�, where payi3 and payi2are the payo�s with respe
t to the 
urrent evolution 
y
le i; the di�eren
e betweenthe population s
ore Sim(d)i�1 obtained from the (i � 1) evolution 
y
le and theuser's rating U(d)i obtained from the 
urrent evolution 
y
le i represents the 
lassi�-
ation power of the 
hromosome at the (i� 1)'th generation. The 
ontrol parameters� 2 [0; 1℄; � 2 [0; 1℄ spe
ify the signi�
an
e of respe
tive elements in 
omputing the�nal payo�. On
e the �tness of ea
h 
hromosome is determined, the standard ge-neti
 operators su
h as 
rossover and mutation are applied to the individuals with�tness greater than a threshold so that both the exploitation and the explorationlearning [Bal98℄ 
an take pla
e. GIRAF di�ers from Amalthaea in that the size ofits population is maintained 
onstant. Whenever a new 
hromosome is born, another
hromosome with the lowest �tness will be purged from the 
urrent population.



62 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSThe agent was evaluated based on a virtual user pro�le. There were 13 test setswith ea
h one 
ontaining �ve do
uments. The purpose was to examine the agent's
apability of adapting to the 
hanges, both smooth and abrupt, of the virtual pro-�le. In parti
ular, the 
orresponden
e between a set of system parameters and theagent's 
lassi�
ation a

ura
y and rate of adaptation was studied. It was found thatin
reasing the o

urren
e of gene types 3 and 4, lowering the 
rossover probability,and using the payo� fun
tion pay1 improve 
lassi�
ation a

ura
y. On the other hand,in
reasing the o

urren
e of gene type 1, raising the mutation probability, and usingthe payo� fun
tion pay3 improve the agent's learning and adaptation ability.
2.6 The Conne
tionist ParadigmInfoSpiders [MB00℄ and EVA [YKL00℄ are adaptive information agents endowed withneural networks and geneti
 algorithms for intelligent information retrieval. The dis-
ussion in this se
tion fo
uses on InfoSpiders. The InfoSpiders agents dire
tly traversethe Web to 
olle
t relevant information on behalf of their users. The design philos-ophy of InfoSpiders is that information agents 
an make use of the link topologyon the Web to predi
t the (lo
al) optimal traversal paths so that as many relevantWeb pages are visited as possible. This assumption 
an be expressed as follows:Pr[rel(d2)jrel(d1)^link(d1; d2)℄ > Pr[rel(d2)℄, where Pr[rel(d2)jrel(d1)^link(d1; d2)℄is the probability that a Web do
ument d2 is relevant given that the agent is 
urrentlyvisiting a relevant do
ument d1 and there is a hyperlink from d1 to d2; Pr[rel(d2)℄ rep-



2.6. THE CONNECTIONIST PARADIGM 63resents the probability that an arbitrary do
ument d2 visited by the agent is relevant.It is believed that the probability of retrieving a relevant do
ument by following thehyperlinks from relevant do
uments is higher than that of performing a random walkover the Web. In InfoSpiders, Web do
uments are represented by keyword ve
tors.There are both lo
al and global representations of a user's information needs. Whenthe system is initialized, a user is asked to spe
ify a set of signi�
ant keywords to
hara
terize their information needs. Moreover, the user 
an also submit a bookmark�le to the system. Based on the traditional IR te
hniques [SM83℄, a set of keywordsare extra
ted to represent the user's initial interests. These keywords are weighted inthe interval [0; 1℄, and stored in the 
entralized keyword table of the system (i.e., theglobal representation). Ea
h InfoSpiders agent 
an then a

ess this table to determinea user's most 
urrent information needs.In addition, ea
h agent's genotype 
ontains a Boolean feature ve
tor �!q , a neuralweight ve
tor, and a 
ontrol parameter �. The parameter � spe
i�es the signi�
an
eof using the link topology to predi
t traversal paths. The Boolean feature ve
tor isa lo
al representation of the user's information needs. When an agent is initialized,keywords from the user's initial query are assigned to the agent. Furthermore, theagent is sent to one of the bookmarked pages as the starting point for Web traversal.The non-evolving 
omponent of the agent 
ontains the 
on�guration of a feed-forwardneural network and other parameters whi
h 
ontrol the agent's evolution (e.g., energylevel, mutation rate). In the simplest form, the feed-forward neural network is a



64 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSsingle layer network (i.e., a per
eptron). Basi
ally, predi
ting whi
h hyperlink tofollow is based on the agent's neural network. A hyperlink is represented by a featureve
tor. Ea
h feature value is the distan
e between the hyperlink and a surroundingkeyword. In parti
ular, the agent 
omputes the distan
e values for ea
h keywordde�ned in its genotype. The assumption is that a hyperlink is often surrounded bysome words (i.e., annotations) whi
h des
ribe the nature of the do
ument pointed toby the hyperlink. Based on the distan
e fun
tion dist(k; l), the agent 
an estimatehow 
losely a hyperlink l 
orresponds to its lo
al representation of the user's interestsstored in the query ve
tor �!q . For ea
h keyword k in the agent's query ve
tor �!q , aninput value inkl for the 
orresponding input unit of the neural network is 
omputed:
inkl = Xi:dist(ki;l)�� 1dist(ki; l) (2.12)where ki is the ith o

urren
e of k surrounding the hyperlink l in the 
urrent Webdo
ument d, and dist(ki; l) is a simple 
ount of the intervening links from l up to amaximum window size of �� links away. Ea
h inkl is then fed to the 
orrespondinginput unit of the neural network. The initial output of the jth unit is 
omputeda

ording to the integrator:

oj = tanh bj +Xk2q wjk � inkl! (2.13)where bj is the jth unit's bias term; wjk and inkl are the jth unit's in
oming weight



2.6. THE CONNECTIONIST PARADIGM 65and input respe
tively for ea
h k 2 q. Basi
ally, the fun
tion of the integrator is to
ompute the weighted sum of the set of inputs inkl. The �nal output of a unit isthe a
tivation value �j derived a

ording to a logisti
 fun
tion fj. This pro
ess isrepeated for ea
h hyperlink l 
ontained in a do
ument d. Finally, the retrieval agentemploys a sto
hasti
 sele
tor to sele
t a link with the GIBBS probability distribution:
Pr(l) = e��lPl02d e��l0 (2.14)where �l is the neural network's a
tivation value for a link l, and l0 2 d representsone of the links in the 
urrent do
ument. �l0 is the a
tivation value of a link l0 in the
urrent do
ument d. If the user provides relevan
e feedba
k �(d) 2 [�1;+1℄ for thedo
ument d pointed to by l, the feedba
k value 
an be used to update the agent'senergy (i.e., �tness). The user's relevan
e feedba
k will also be used to update the
entralized keyword table. For example, new keywords are added or the weights ofexisting keywords are updated. It is 
laimed that an InfoSpiders agent 
an performlo
al learning without the user's dire
t relevan
e feedba
k. Based on the keywordtable, the relevan
e of a new do
ument d pointed to by the 
hosen link l 
an beestimated by: �(d) = tanh �Pk2d tf(k)� w(k)�, where tf(k) is the term frequen
y(TF) of a keyword k in the do
ument d normalized by do
ument size; w(k) 2 [0; 1℄ isthe weight of the keyword k re
orded in the system's keyword table. If k is not foundfrom the keyword table, its weight is zero. To prevent an agent from travelling thesame path several times, the agent will not gain any energy from a visited do
ument.



66 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSMoreover, there is a 
onstant 
ost (i.e., energy dedu
tion) of an agent's a
tions su
has following a link, or reading the keyword table. Those agents with the energylevel (i.e., �tness) below a threshold will be purged by the evolution pro
ess. Lo
allearning in an agent takes pla
e in the form of adjusting the input weights of itsneural network. Essentially, a neural network is trained on-line based on the lo
al
ontext 
hara
terized by the hyperlinks and the do
uments surrounding the retrievalagent. After visiting a new do
ument, the relevan
e estimation �(d), generated bythe system or provided by the user, is taken as a reinfor
ement signal to 
ompute thetea
hing error:
Æ(d) = �(d) + ��maxl2Lf�lg � �d (2.15)where � is a dis
ount fa
tor; L is the set of links of the do
ument where the agentoriginally resides, and �d is the a
tivation value of the hyperlink leading to a newdo
ument d. Based on Æ(d), the neural network's weights are modi�ed by using thestandard ba
k-propagation method. After this lo
al learning, the agent 
an improveits predi
tion in the following moves.Global learning in InfoSpiders has a signi�
ant impa
t on the agents' adaptivebehaviour. The evolutionary approa
h is used to reprodu
e e�e
tive agents thattraverse relevant Web do
uments, and eliminate those that perform poorly. Theretrieval agents with high energy level (i.e., �tness) have a better 
han
e to be sele
tedfor reprodu
tion. Two-point 
rossover is used to generate new keyword ve
tors in the



2.6. THE CONNECTIONIST PARADIGM 67o�spring. The parents' energies are then evenly distributed to their 
hildren. Inaddition, mutation is applied to an agent's keyword ve
tor and neural weight ve
tor.The neural ve
tor is mutated by adding a random noise to a fra
tion of the neuralweights. On the other hand, the keyword ve
tor is mutated with a probability. Inparti
ular, the probability that a 
andidate keyword is sele
ted to repla
e the leastsigni�
ant keyword in the keyword ve
tor is proportional to its term frequen
y in arelevant do
ument (e.g., the starting page of the agent) and its weight in the system'skeyword table. Be
ause of mutation, InfoSpiders 
an explore potential topi
s eventhough it might not be expli
itly requested by the user before. The evolutionaryme
hanism ensures that the entire population of the retrieval agents will gradually
onverge to the user's interests.Controlled experiments based on the En
y
lopaedia Britanni
a (EB) were 
on-du
ted in a 
losed environment. The purpose was to study if the retrieval agents 
ouldadapt to both the spatial 
ontext, an agent's ability to sele
t signi�
ant features basedon the surrounding linkage topology, and the temporal 
ontext, an agent's ability toabsorb important features with respe
t to the user's information needs exhibited atdi�erent points of time. Furthermore, a small s
ale Web 
ase study was 
ondu
ted.Four Web pages were sele
ted to represent a user's information needs. Moreover, apre-de�ned query was submitted to the Ex
ite sear
h engine to establish the startingtraversal points. Sin
e the user's information needs were assumed 
onstant, this 
asestudy only served to evaluate the agents' adaptation 
apability in a spatial 
ontext. A



68 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSpopulation of ten InfoSpiders agents was initialized and sent to the top ten Web pagesreturned from Ex
ite. These agents autonomously traversed the Web and adaptedto the surrounding linkage topology via automated reinfor
ement learning and agentevolution. There was no relevan
e feedba
k provided by the users. The result wasthat 66 Web pages had been visited and all the four relevant Web pages were foundin 9 minutes. Although these experiments had a limited s
ale, they shed some lighton the potential e�e
tiveness of the InfoSpiders agents.
2.7 The Symboli
 ParadigmQuantitative approa
hes su
h as the ve
tor spa
e paradigm and the naive Bayesianparadigm have been applied to develop adaptive information agents. However, theweakness of these paradigms is that an agent's de
ision, based purely on a relevan
es
ore or a probability, is not suÆ
ient to generate human 
omprehensible explanationof the agent's de
ision. Moreover, be
ause of the de�
ien
y in knowledge representa-tion and reasoning (e.g., 
annot reason about term asso
iations), the agents' learningautonomy is also weakened. The symboli
 paradigm has been explored for develop-ing intelligent information agents [BPR+99, LRJ94℄. Colombo [BPR+99℄ is a mobileagent for distributed information retrieval over the Internet. A user spe
i�es theirqueries in terms of a set of weighted (e.g., in the interval [0; 1℄) keywords. Thesekeywords are used to personalized the knowledge base of Colombo. For example, thefollowing Prolog fa
ts represent a user's interests about \Shakespeare" and \Hamlet":
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keyword(shakespeare):keyword(hamlet):Web do
uments are 
hara
terized by a set of attributes (e.g., keywords) withthe 
orresponding TFIDF weights [SM83℄. Those keywords with TFIDF weightsgreater than a pre-de�ned threshold are sele
ted to represent the Web do
uments.The Colombo agents represent knowledge about a user's preferen
es in terms of theweighted links between a set of query terms (i.e., keywords) and a set of attributes
hara
terizing the do
ument 
olle
tion. This preferen
e knowledge is represented asProlog fa
ts and rules:link(K; [K; 1:0℄):link(shakespeare; [british drama; 0:8℄):link(football; [mat
h; 0:6℄):The �rst Prolog 
lause states that if a user's query term (the �rst K) is thesame as the attribute (the se
ond K) 
hara
terizing a do
ument, this link 
ontributesa weight of 1:0 to the overall do
ument s
ore. The se
ond 
lause represents thefa
t that the query term \shakespeare" is asso
iated with a do
ument 
hara
terizedby an attribute \british-drama", and this asso
iation 
ontributes a weight of 0:8 tothe do
ument s
ore. The last Prolog 
lause says that the query term \football" isasso
iated with the do
ument attribute \mat
h" and the asso
iation 
ontributes aweight of 0:6 to the do
ument s
ore. It should be noted that the weights asso
iated



70 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSwith a set of query terms and a set of do
ument attributes may vary a

ording toan individual's information preferen
es. At the time of initialization, the asso
iationweight of a link is set to 1:0 if a query term mat
hes a do
ument attribute; otherwiseit is set to 0:5. Retrieving a do
ument also requires the knowledge of the databaseagents. A database agent holds the TFIDF ve
tors of all the do
uments pertaining toa parti
ular Web site. These ve
tors are represented as Prolog fa
ts in the databaseagent's knowledge base:good file(\
lassi
.html"; [british drama; 0:8℄):good file(\
lassi
.html"; [italian paintings; 0:8℄):good file(\football.html"; [ball; 0:9℄):good file(\football.html"; [mat
h; 1:0℄):The �rst two Prolog 
lauses represent the do
ument \
lassi
.html" by the at-tributes \british-drama" and \italian-paintings". Both of these attributes (i.e., to-kens) have the TFIDF weight of 0:8. The 
lassi�
ation method of the mobile in-formation agent system is essentially based on the overlapping model [BSW00℄. Forexample, if a user is interested in \shakespeare", this interest mat
hes the keyword el-ement of the keyword to attribute link link(shakespeare; [british drama; 0:8℄) in theColombo agent's knowledge base. Moreover, as the attribute \british-drama" mat
hesthe attribute element of the do
ument to attribute link good file(\
lassi
.html",[british drama, 0:8℄) in the database agent's knowledge base, the do
ument \
las-si
.html" is retrieved with a do
ument s
ore 
omputed based on the weights of the
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iated links. The more overlapping between the query terms and the attributes ofa do
ument, the better 
han
e that the do
ument is retrieved. This reasoning pro
essis implemented as the formal dedu
tion of the Prolog inferen
e engine.Learning and adaptation of the system is based on the users' relevan
e feed-ba
k. There are two possible learning models. The basi
 learning model is to di-re
tly modify the asso
iation weights between the query terms and the do
umentattributes in a Colombo agent's knowledge base. For example, if the user's queryterm is \shakespeare" and the Web do
ument 
hara
terized by the attribute \british-drama" is judged as relevant by the user, the weight of the link link(shakespeare,[british drama, 0:8℄) will in
rease; otherwise its weight will de
rease. In the ad-van
ed learning model, users' relevan
e feedba
k is used to generate a set of ba
k-ground knowledge (i.e., Prolog 
lauses) 
omprising links, keywords and attributes. Bymeans of the te
hniques of Indu
tive Logi
 Programming (ILP) [BGNR96℄, a set of�rst-order rules are indu
ed. This rule set 
an then be used to update the Colomboagents' knowledge bases. The same method 
an be applied to learn new knowledgefor the database agents. It is believed that Prolog rules su
h as the following 
an belearnt using ILP [BPR+99℄:
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good file(File; User;Weight1 �Weight2) : � keyword(User; K);link(K;Attribute; User;Weight1);relevan
e(Attribute; F ile;Weight2):link(Keyword; Attribute; User;Weight) : � domain(User; \uk00);equals(Keyword; \hamlet00);member(Attribute; [\theater00; \literature00℄);equals(Weight; 0:8):link(Keyword; Attribute; User;Weight) : � equals(Keyword; \hamlet00);equals(Attribute; \musi
00);equals(Weight; 0:2):Unfortunately, neither the evaluation of the agent system nor the details of theILP-based learning pro
ess was reported in the publi
ation. It seems that further workis required to assess the e�e
tiveness and the eÆ
ien
y of the mobile information agentsystem.

2.8 The Asso
iative Network ParadigmINFOrmer [OS95, SOO97℄ is an adaptive information agent for �ltering Usenet news.Feature extra
tion involves using a lexi
al analyser to tokenize the do
uments (i.e.,news arti
les), extra
ting words, dealing with pun
tuation, and expanding a
ronyms.Then, senten
e boundary disambiguation is performed to isolate individual senten
es.
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tion is performed by using a pre-de�ned stop word list to remove highfrequen
y words. Finally, a stemming algorithm is applied to strip in
e
tional andderivational word endings. After do
ument pre-pro
essing, signi�
ant phrases areextra
ted from the news arti
les. Asso
iative networks are then used to represent thephrases extra
ted. An asso
iative network is a spe
ial kind of semanti
 network; itsedges represent the term asso
iation relationships only. There is no generalizationnor spe
ialization relationship in an asso
iative network. The nodes in an asso
iativenetwork represent keywords, and the edges with atta
hed weights 
onne
t keywordsinto phrases. The weights indi
ate the signi�
an
e of the term asso
iations. Theadvantage of the asso
iative networks is that not only keywords and their frequen
iesare 
onsidered but also their 
ontext (e.g., a senten
e) is 
aptured.A user's information needs are also represented by an asso
iative network. Mat
h-ing between a user's information needs and the in
oming messages is 
ondu
ted by
omparing the stru
tural similarities between the 
orresponding networks. Four typesof graph 
omparison algorithms are used in INFOrmer [SDG+85℄. Essentially, theyare all based on the overlapping of neighbourhoods to measure the similarity betweena pair of graphs. These algorithms only di�er in the normalization methods used. Forinstan
e, the index of similarity for a 
ommon node in two graphs is 
omputed as the
ardinality of the interse
tion of the nodes' neighbourhoods divided by the 
ardinalityof the union of the neighbourhoods. Let A(V;E1) and B(V;E2) be two graphs with a
ommon node set V of 
ardinality n, their similarity is derived by:
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Sim(A;B) = 1nPv2V jAv\BvjjAv[Bvj (2.16)

where v is a node in the 
ommon node set V . The terms Av and Bv are the setsof neighbourhoods identi�ed from graph A and graph B respe
tively. An in
omingdo
ument B is 
onsidered relevant with respe
t to the user's information needs Aif the 
orresponding graphs demonstrate high stru
tural similarity. In other words,the Sim(A;B) value is greater than a pre-de�ned threshold. Learning in INFOrmerheavily relies on the user's relevan
e feedba
k. The news arti
les with the user'sfeedba
k are used to update the prototype asso
iative network. A set of phrasesrepresenting a news item is �rst extra
ted. The weight of ea
h word from the judgeddo
ument is then used to modify the weight of a mat
hing node in the prototypenetwork. A variant of the Ro

hio method is used for this purpose. The weight ofea
h edge in the prototype network is updated by 
omputing the arithmeti
 mean ofthe asso
iated nodes. The system was formally evaluated based on a large do
ument
olle
tion and the pro
edure of the routing task pertaining to the se
ond TREC
onferen
e. It was 
laimed that the performan
e of INFOrmer, in terms of pre
isionand re
all, was 
omparable with other �ltering systems parti
ipating in TREC-2.Nevertheless, no spe
i�
 details of the 
omputational eÆ
ien
y of the agent systemhave been reported.



2.9. THE COLLABORATIVE FILTERING PARADIGM 752.9 The Collaborative Filtering ParadigmThe adaptive information agents dis
ussed so far are mainly based on the 
ontent-based IR approa
h. Basi
ally, the agents 
hara
terize the 
ontent of do
uments andthe users' queries by means of observable features (e.g., keywords). If these represen-tations are similar, measured by a mat
hing fun
tion, the in
oming do
uments aredeemed relevant by the agents. There is an alternative way for information retrieval.Ringo [SM95℄ is an adaptive information agent on the Web. It makes personalizedmusi
 re
ommendations for its users. Instead of 
hara
terizing the des
ription of analbum or artist (i.e., a do
ument) by means of its 
ontent, the agent represents andre
ommends items (e.g., albums, books, Web pages, et
.) via the \word of mouth"me
hanism 
alled automated 
ollaborative �ltering. The basi
 prin
iple of the 
ollab-orative paradigm is that a user's interests are 
orrelated with others based on theirfeedba
k pertaining to some items. Groups of like-minded 
onsumers are then formedbased on a similarity metri
. To predi
t if a user will be interested in an item, theagent makes use of the preferen
es of other members in the same group to 
omputethe preferen
e index for the user. Users with similar interests are identi�ed via thePearson 
orrelation 
oeÆ
ient r(ux; uy):
r(ux; uy) = Pi2D(uxi � �ux)� (uyi � �uy)pPi2D(uxi � �ux)2 �pPi2D(uyi � �uy)2 (2.17)where r(ux; uy) is the Pearson 
orrelation 
oeÆ
ient between user ux and user uy.



76 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSThe set D is 
ommonly rated do
uments or produ
ts by both ux and uy. The termuxi represents the user ux's rating for an item i 2 D. �ux is ux's average rating for allthe items in D, whereas �uy is uy's average rating for all the items in D. This kind ofpair-wise 
omparison is 
ondu
ted for ea
h pair of users. For a pair of users ux anduy, if r(ux; uy) is above a pre-de�ned threshold, they will be 
onsidered in the samegroup. To predi
t if a parti
ular user ux is interested in an item d, the agent refers tothe ratings of that item given by other members in the like-minded user group:
pred(ux; d) = �ux + Puy2U(uyd � �uy)� r(ux; uy)Puy2U jr(ux; uy)j (2.18)where pred(ux; d) is the agent's predi
tion for user ux's rating of an item d. In otherwords, it is the agent's predi
tion of how mu
h the user will like or dislike the item d.The set U 
ontains all the nearest neighbours of the user ux; the term uyd representsuy's rating for an item d, and �uy is uy's average rating for all the items. The termjr(ux; uy)j is the absolute value of the Pearson 
orrelation 
oeÆ
ient between a pairux and uy. A

ording to pred(ux; d), the information agent 
an rank all the itemswhi
h have not been seen by the user ux before. Moreover, if the predi
ted ratingof an item d is above a system threshold, the agent 
an re
ommend this item to theuser.With the 
ollaborative paradigm, a do
ument is represented in terms of thepreferen
e values (i.e., ratings) of a group of users. A user's information needs arerepresented by their own preferen
e values (ratings) for some items. Classifying an
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lasses (i.e., one of the preferen
e values) is based on the user'saverage rating, other nearest neighbours' ratings of the same item, and the 
orrelationbetween the ratings of the user and that of their nearest neighbours. The informationagent is adaptive by taking into a

ount a user's 
hanging ratings for some itemsand the 
orrelation between the user's ratings and others ratings for the items. The
hanges of the 
orrelation values trigger the agent to generate di�erent re
ommenda-tions. In general, this kind of leaning is not in
remental be
ause ea
h 
orrelation valuebetween a user and another member in a group needs to be 
omputed again if theuser 
hanges their ratings for an item. One advantage of the 
ollaborative paradigmis its simpli
ity in terms of representing items and users' preferen
es.Evaluation of Ringo was performed based on the rating data of the 1876 artistsfrom 1000 users. The data is divided into a training set (80%) and a test set (20%).Several variants of the Pearson algorithm were 
ompared with the mean squareddi�eren
es algorithm in terms of the mean absolute error and the standard deviationof error. To produ
e re
ommendations to a user, ea
h algorithm is used to 
omputethe 
orrelation between the user and another member in a group (i.e., the like-mindedgroup). All users whose 
orrelation 
oeÆ
ient greater than a threshold were identi�ed,and the weighted average of their ratings were used to generate the agent's predi
tions.It was shown that the 
onstrained Pearson algorithm, whi
h used a 
hosen valueinstead of the mean rating value of a user to distinguish positive 
orrelation fromnegative 
orrelation between a pair of users, performed best. When the similarity



78 CHAPTER 2. A REVIEW OF ADAPTIVE INFORMATION AGENTSthreshold was set to 0:6 to train the agent, 94% of the ratings in the test set 
ouldbe predi
ted. Feedba
k from the 2; 000 users who used Ringo during the usabilitystudy period was 
olle
ted. It was found that some users were initially disappointedby the re
ommendations of the agent. However, as the number of ratings grew,more positive feedba
k was re
eived from the users. There are other 
ollaborativeinformation agents whi
h re
ommend Internet news [GSK+99, RNM+94℄, resear
hpapers [DIU98℄, or Web pages [GCS98, LDV99℄ to individuals.
2.10 Analysis of the State of the ArtTables 2.2 and 2.3 summarize the information pertaining to the adaptive informationagents dis
ussed in this 
hapter. It aims at a systemati
 analysis of the pros and 
onsof the various adaptive information agent paradigms. The 
hara
teristi
s of do
u-ment representation, pro�le representation, feature sele
tion, 
lassi�
ation methods,and the impa
t of these features on the agents' explanatory power are tabulated intable 2.2. Moreover, issues su
h as the agents' learning methods, the agents' 
apa-bilities of pro
essing impli
it feedba
k, and the impa
t of these issues on the agents'exploratory 
apabilities, learning autonomy, and the modes of learning (e.g., in
remen-tal vs. non-in
remental) are tabulated in table 2.3. TF stands for term frequen
ies,and TFIDF stands for term frequen
y inverse do
ument frequen
y. In some systems,di�erent granularity of representation are used. For example, both the TFIDF ve
torsand the abstra
tion of 
hromosomes are used to represent users' information needs
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tion su
h as 
hromosomes are shown inTables 2.2.Agent Paradigm Do
ument Context Feature Classifying ExplanatoryRep. Rep. Sele
tion Method PowerWebWat
her Ve
tor TFIDF TFIDF TFIDF Cosine LowSpa
e ve
tors ve
tors similarityLetizia Ve
tor Boolean Boolean TF Dot FairSpa
e ve
tors ve
tors produ
tLIRA Ve
tor TFIDF TFIDF TFIDF Cosine LowSpa
e ve
tors ve
tors similarityFab Ve
tor TFIDF TFIDF TFIDF Cosine LowSpa
e ve
tors ve
tors similaritySyskill & Naive Boolean Boolean Information Naive LowWebert Bayesian ve
tors ve
tors gain BayesianNews Dude Naive TFIDF TFIDF TFIDF Cosine FairBayesian ve
tors+ ve
tors+ + similarity +Boolean Boolean Information Naiveve
tors ve
tors gain BayesianINFOrmer Asso
iative Asso
iative Asso
iative Stop word Graph LowNetwork networks networks list 
omparisonAmalthaea Evolutionary TFIDF Chromosomes TFIDF Cosine Lowve
tors similarityGIRAF Fuzzy TF Fuzzy TF Membership LowSets ve
tors 
hromosomes fun
tionsInfoSpiders Conne
tionist Weighted Neural TF Neural LowTF ve
tors networks networksColombo Symboli
 Prolog Prolog TFIDF Formal Fair
lauses 
lauses dedu
tionSIGMA Computational TFIDF TFIDF TFIDF Cosine LowE
onomy ve
tors ve
tors similarityRingo Collaborative Users' Correlation not Correlated Lowratings matri
es appli
able mean ratingsTable 2.2: Analysis of Adaptive Information Agents (representation & 
lassi�
ation)
First generation adaptive information agents su
h as WebWat
her [AFJM95,JFM97℄, LIRA [BS95℄, Fab [Bal97℄, Letizia [Lie95℄ utilize weighted (e.g., TFIDF or
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it Learning Exploratory In
remental LearningFeedba
k Methods Learning Learning AutonomyWebWat
her No Linear No No Low
orrelationLetizia Yes Inferen
e No No ModeraterulesLIRA No Ro

hio No Yes LowvariantFab No Ro

hio No Yes LowvariantSyskill & Webert No Bayesian No No LowlearningNews Dude No Con
ept No Yes Moderatefeedba
kINFOrmer No Ro

hio No Yes LowvariantAmalthaea No Geneti
 Yes Yes ModeratealgorithmsGIRAF No Geneti
 Yes Yes ModeratealgorithmsInFoSpiders No Ba
k Yes Yes ModeratepropagationColombo No ILP Yes No ModerateSIGMA No Market Yes Yes ModerateequilibriumRingo No Linear Yes No Low
orrelationTable 2.3: Analysis of Adaptive Information Agents (Learning)
Boolean) ve
tors to represent do
uments and user's information needs. Classi�
ationis 
ondu
ted by 
omputing the 
osine angles or the dot produ
ts of these ve
tors.These te
hniques have been extensively studied in the �eld of IR and are generally
onsidered eÆ
ient and e�e
tive [SM83℄. However, the impli
it assumption of term(e.g., keyword) independen
e in these models is not able to 
apture the realities in IR
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h other. For instan
e, if one is inter-ested in do
uments about \automobile", it is desirable that an information agent 
anautomati
ally infer that a do
ument about \
ar" is relevant be
ause \automotive"and \
ar" are related by the synonym relationship [Hun95℄. The term independen
eassumption not only a�e
ts the agents' 
lassi�
ation e�e
tiveness but also their learn-ing autonomy sin
e the users need to provide dire
t relevan
e feedba
k to train theagents. In terms of the learning autonomy among the �rst generation adaptive infor-mation agents, Letizia is prominent be
ause it 
an utilize pre-de�ned rules to inferthe users' information needs rather than asking them to provide dire
t feedba
k.The advantage of the Ro

hio learning method is that it is an in
remental learn-ing me
hanism. Nevertheless, it la
ks the power of exploring new information topi
sas the learned prototypi
al ve
tors only des
ribe the do
uments previously viewedby the users. This is the so-
alled serendipity problem [MM98℄. In general, it ismore desirable to have a balan
e between exploitation oriented and exploration ori-ented learning [Bal98℄. Moreover, many agents in this 
ategory are weak in terms oftheir explanatory power. Justi�
ation of an agent's information retrieval de
ision ispurely based on a similarity s
ore or probability value. This weakness is an obsta
leof developing trust between the agents and their users be
ause the users 
annot fullyunderstand the de
ision making behaviour of the agents. It has been pointed out thatthe issue of users' trust on information agents has a signi�
ant impa
t on the pra
ti
alappli
ations of these agents [MM98℄. Moreover, some of the �rst generation adaptive
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h as WebWat
her and Letizia are not endowed with persistentmemories to hold users' re
urring interests. Consequently, proa
tive and personalizedre
urring IR is not supported by these agents.The naive Bayesian paradigm su�ers from problems similar to that of the ve
torspa
e paradigm sin
e it is also based on the naive assumption of feature independen
e.Moreover, the 
onditional probabilities alone may not be suÆ
ient to generate 
om-prehensible explanations of the agents' de
isions. Sin
e the 
onditional probabilitythat a do
ument is relevant given the presen
e of 
ertain features is 
omputed solelybased on the previously seen do
uments, the information agents are not learning toexplore novel information topi
s. In addition, the mode of learning is not in
rementalbe
ause all the 
onditional probabilities need to be 
omputed again if new trainingexamples are added to or deleted from the user pro�les.The 
omputational e
onomy paradigm found in SIGMA is one of the early at-tempts to address the issue of multi-agent learning and 
o-ordination in the 
ontext ofIR. The intuition behind this paradigm is that there are un
ertainties about a user'sinformation needs. Through a 
omputational market, these un
ertainties are repre-sented (e.g., by the diversity of agents with ea
h one 
apturing a possible informationneed) and pro
essed (e.g., via the pri
ing me
hanism). This paradigm may be analternative to the evolutionary paradigm whi
h is based on geneti
 algorithms.The evolutionary paradigm has been explored in many 
ontemporary modelsof adaptive information agents, whereas the 
omputational e
onomy paradigm is yet
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e me
hanism as reported in the lit-erature is in
omplete [FK96, KF95, KF98℄. For example, the PE agents' marginalpro�t thresholds, bankrupt
y threshold, the algorithmi
 details of the pri
ing fun
-tion F , the 
onsumers' budgets, et
. are not illustrated thoroughly. In addition,the intera
tion between the pri
e me
hanism and the ve
tor spa
e model probably re-quires further re�nement. More re
ent work pertaining to the 
omputational e
onomyparadigm demonstrates the 
ontinuous development of this paradigm for IR [WFG01℄.The 
ollaborative paradigm [GCS98, RNM+94, SM95℄ o�ers the advantages ofa handy do
ument representation, a better balan
e between exploitation and explo-ration oriented learning, and eÆ
ient 
lassi�
ation. However, this paradigm alone hasnot been widely used to build adaptive information agents. One of the reasons is thesparse rating problem [BP98℄. For a highly dynami
 domain su
h as the Web, it is dif-�
ult, if not totally impossible, to 
olle
t suÆ
ient ratings from the users for a signi�-
ant number of items su
h as Web do
uments. Some empiri
al studies have shown thatthe 
ollaborative paradigm alone is not as e�e
tive as 
ombining the 
ontent-basedand the 
ollaborative paradigms for information retrieval [DIU98, SSH99℄. Fab [Bal97℄and RAAP [DIU98℄ are among the information agents whi
h employ a hybrid modelof the 
ollaborative and the 
ontent-based approa
hes to improve the agents' e�e
tive-ness. In general, the 
ollaborative paradigm demonstrates non-in
remental learningbehaviour sin
e the 
orrelation data between a user and ea
h member in a group mustbe re
omputed if the user's rating for a single item is 
hanged. The learning autonomy
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ause this paradigm heavily relies on the users' dire
t feedba
k. Moreover,one pra
ti
al issue of applying this paradigm to information agents is that users maynot want to share their preferen
es with other people be
ause of the priva
y 
on
ern.It has been a trend to apply geneti
 algorithms to develop the learning me
h-anisms of adaptive information agents [YKL00, MBVL99, MB00, MM98℄. Some ofthese agents su
h as InfoSpiders [MB00℄, EVA [YKL00℄, and GIRAF [MBVL99℄ a
-tually demonstrate a synergy between di�erent paradigms. This paper des
ribesGIRAF under the heading of the Fuzzy set paradigm and InfoSpiders under theheading of the Conne
tionist paradigm be
ause the 
orresponding paradigms seemto best des
ribe the dominating te
hniques in these agents. In general, the notionof \
hromosome" is used to represent a user's distin
t information need. A gene ona 
hromosome represents the presen
e or absen
e of a parti
ular keyword. Based onthe geneti
 operators su
h as 
loning, 
rossover, and mutation, a better balan
e be-tween exploitation-oriented and exploration-oriented learning in the high dimensionalinformation spa
e is a
hieved. It is a kind of in
remental learning be
ause a newpopulation of information agents is gradually evolved from previous generations. Theprin
iple of natural sele
tion ensures that e�e
tive agents measured by a �tness fun
-tion will gradually dominate the entire population. Therefore, retrieval performan
eof the agents is improved over time. The evolutionary paradigm and the 
omputa-tional e
onomy paradigm share some 
ommon properties. On the one hand, they bothrely on an evolution me
hanism. For instan
e, the pri
ing poli
y in the 
omputational
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onomy paradigm and the prin
iple of natural sele
tion in the evolutionary paradigmare enfor
ed in the adaptive information agents so that they gradually 
onverge tothe user's information needs. On the other hand, both of these paradigms are alsofa
ed with the 
hallenge of responsive learning. It may take a while (e.g., dozens ofevolution 
y
les) for the agents to 
ompletely absorb users' new interests into the
orresponding user pro�les. However, with the help of the geneti
 operators, it seemsthat the evolutionary paradigm is stronger, in terms of the exploratory power, thanthe 
omputational e
onomy paradigm.Various �tness fun
tions have been used in adaptive information agents. These�tness fun
tions heavily rely on user's relevan
e judgements. A

ordingly, a largeamount of dire
t human intervention is still required to train the agents. Therefore,the learning autonomy of the evolutionary paradigm is only moderate. Both InfoS-piders [MB00℄ and EVA [YKL00℄ distinguish lo
al learning from global learning, andsupport automated relevan
e feedba
k. The basi
 idea is that the results of a lo
al
lassi�
ation are 
ompared with a global representation of a user's interests. Then,relevan
e feedba
k is automati
ally generated based on these 
omparisons. For exam-ple, if there is a suÆ
iently 
lose mat
h between the lo
al 
lassi�
ation result and theglobal information needs, a positive relevan
e feedba
k is generated; otherwise nega-tive feedba
k is produ
ed. The problem is that the global representation of a user'sinterests still heavily relies on the user's relevan
e feedba
k to bring it up-to-date;otherwise the automated feedba
k me
hanism will fail.
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 operations su
h as mutation enhan
e exploratory learning. However, itmay have a negative impa
t on the agent's 
lassi�
ation e�e
tiveness and explanatorypower be
ause irrelevant or strange information needs 
ould be 
omposed during themutation pro
ess. Finally, the evolutionary paradigm requires the development of aset of evolution parameters su
h as �tness threshold, �tness fun
tion, 
rossover rate,mutation rate, population size, et
. A thorough methodology is not available to guidethe development of the geneti
 parameters. Consequently, two di�erent agents em-ploying similar evolutionary operators may demonstrate quite di�erent learning andadaptation behaviour. One of the 
hallenges of applying the evolutionary paradigmto adaptive information agents is to develop a more dis
iplined way of establishingthe evolutionary parameters.It is intuitively appealing to apply the 
on
ept of fuzzy sets to develop the 
lassi-�
ation models of information agents be
ause the 
on
ept of relevan
e is vague. Thefo
us of this paradigm is on improving the 
lassi�
ation e�e
tiveness based on thefuzzy membership fun
tions. With the GIRAF agents [MBVL99℄, three basi
 typesof membership fun
tions are pre-de�ned and they are assumed valid in all retrievalsituations. However, the 
on
ept of relevan
e is more likely dependent on a lo
al
ontext [Law00, XC96℄. Therefore, the 
hallenge of applying the fuzzy set paradigmto information agents is to develop an automated means of dynami
ally learning thefuzzy membership fun
tions based on the lo
al do
ument 
olle
tions and users' rele-van
e feedba
k. Another issue is how to generate human 
omprehensible explanations
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isions based on the underlying fuzzy membership fun
tions.The asso
iative network paradigm allows primitive semanti
 relationships amonginformation items to be represented in information agents. In prin
iple, this approa
hmay improve the agent's learning autonomy, exploration power, and 
lassi�
atione�e
tiveness. However, representing do
uments and retrieval 
ontexts by graphs, and
omputing their similarities based on the stru
tural 
hara
teristi
s of the graphs is
omputationally expensive. Even though a graph 
an help visualize the semanti
relationships between tokens (e.g., keywords), it may not be easy for novi
e users tounderstand the agent's de
isions based on the stru
tural similarities of graphs. Interms of the learning autonomy of INFOrmer [OS95℄, the users still need to providea 
onsiderable amount of dire
t relevan
e feedba
k to revise the asso
iative networks.Moreover, more empiri
al studies are required to prove the s
alability of the asso
iativenetwork paradigm.The 
onne
tionist paradigm has been su

essfully applied to many real life ap-pli
ations. It o�ers the advantage of automati
ally learning non-linear 
lassi�
ationfun
tions [YKL00℄. Representing IR mat
hing fun
tions by the non-linear relation-ships between features (e.g., keywords) and do
ument 
lasses is a sound approa
h.Therefore, the 
onne
tionist paradigm is a viable alternative for improving the agents'
lassi�
ation e�e
tiveness when 
ompared with the fuzzy set paradigm. Althoughonly supervised learning (e.g., ba
k propagation) is explored in InfoSpiders [MB00℄,unsupervised training algorithms for arti�
ial neural networks are available [Bar89a℄.
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onne
tionist paradigm has the potential of enhan
ing the learning autonomyof adaptive information agents. In addition, learning in neural networks is in
remen-tal. It should be noted that only the lo
al learning method of InfoSpiders is depi
tedin table 2.3 be
ause this method is relevant to the 
onne
tionist paradigm. However,in general, the 
omputational 
omplexities asso
iated with arti�
ial neural networksare high. More empiri
al studies are required to test the s
alability of this paradigmfor on-line information agents. On the other hand, it is diÆ
ult, if not 
ompletelyimpossible, to generate human 
omprehensible explanations of the agent's de
isionssolely based on the network 
on�gurations and the weights of neurons. Resear
h inknowledge extra
tion from neural networks sheds light on generating high level rulesto explain the agent's de
isions [Tsu00℄.Contemporary models of adaptive information agents fo
us on the agent's knowl-edge representation, 
lassi�
ation e�e
tiveness, learning autonomy, explanatory 
apa-bility, and the balan
e between exploitation oriented and exploration oriented learning.It has been observed that employing domain knowledge su
h as lexi
al knowledge and
ontextual information 
an substantially improve the agent's 
lassi�
ation e�e
tive-ness [ACL+00, Law00, PB97℄. The agents' abilities to represent and reason about
omplex retrieval 
ontexts are parti
ularly important be
ause it is unrealisti
 to as-sume that the users will spend a lot of time and e�ort to train these agents beforethe agents are expe
ted to retrieve relevant information autonomously. A ri
h repre-sentation of a retrieval 
ontext 
an also enhan
e an agent's explanatory power, and
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e improve the user's trust in using the agents. It is believed that the explanationme
hanisms of information agents 
an a
tually speed up the agent's learning [BP99℄.The symboli
 agent paradigm seems promising for the development of the nextgeneration of adaptive information agent systems. The expressive power of logi
allows 
omplex retrieval 
ontexts to be 
aptured in information agents. Based onenri
hed representations of retrieval 
ontexts, information agents 
an use sound androbust inferen
e me
hanisms to enhan
e their learning autonomy and proa
tive IRbehaviour. Above all, the agents 
an justify their de
isions based on the formalreasoning frameworks. However, logi
-based system is in general 
omputationallyexpensive. This is one of the major obsta
les for applying sound logi
al frameworksto build pra
ti
al appli
ations. Therefore, apart from the development of a sound androbust logi
-based information agent model, it is essential to implement and evaluatesu
h a model to examine if the model 
an s
ale up for IR appli
ations with a realisti
s
ale.Existing symboli
 information agents su
h as Colombo is weak in demonstratingits ability to deal with realisti
 IR requirements sin
e rigorous evaluations of theseagents are missing. Moreover, for the Colombo agent system, it seems that its 
las-si�
ation model is mainly based on the overlapping IR model whi
h is known to beine�e
tive [BSW00, Rij86℄. The symboli
 inferen
e power seems not fully utilised.Moreover, how to learn a retrieval 
ontext in general and a user's information needsin parti
ular is not illustrated with suÆ
ient details. Unfortunately, this issue is 
ru-
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ial to the su

ess of a symboli
 information agent model. The following 
hapterwill dis
uss a rigorous symboli
 framework, whi
h is based on the sound AGM beliefrevision logi
, for the development of an e�e
tive IR model. Su
h an IR model un-derpins the learning and the 
lassi�
ation fun
tions of adaptive information agents.The 
omputational aspe
ts of the proposed belief revision based adaptive informationagents will then be illustrated in Chapter 4.



Chapter 3
Belief Revision and Expe
tationInferen
e
This 
hapter explains the intuition behind the AGM belief revision paradigm andillustrates the implementation of the AGM belief fun
tions. A new transmutation-based strategy for implementing the AGM 
hange fun
tions is proposed. Moreover,the inter
onne
tion between belief revision and nonmonotoni
 inferen
e is dis
ussed.Finally, how the AGM belief fun
tions and the related expe
tation inferen
e relationsare applied to adaptive information agents is examined at the 
on
eptual level.

91
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Old epistemic state New epistemic state

Epistemic input

K K’α
α

Figure 3.1: Transition Between Epistemi
 States3.1 The AGM Belief Revision ParadigmThe AGM belief revision framework is 
oined after its founders Al
hourr�on, G�ardenfors,and Makinson [AGM85℄. It is one of the most in
uential works in the theory of beliefrevision. The AGM framework provides a rigorous formal foundation for modellingthe 
hanges of beliefs in rational agents. A belief 
hange in an agent is viewed as atransition from an epistemi
 state K to a new epistemi
 state K 0� with respe
t to thenew epistemi
 input � as depi
ted in Figure 3.1. The AGM prin
iple ensures thatthe new epistemi
 state remains 
onsistent and modi�ed in a minimal way after anepistemi
 state transition (revision). Whether a foundational approa
h su
h as theAssumption-Based Truth Maintenan
e System (ATMS) belief revision [dK86℄ or a
oherent approa
h su
h as the AGM belief revision [AGM85℄ should be used to modelbelief 
hanges in rational agents has undergone a long debate [G�ar90℄. However, ithas been shown that it is possible to simulate the behaviour of the ATMS using theAGM approa
h by en
oding the foundational beliefs as an epistemi
 entren
hmentordering [DF93℄. It has also been proven that these two main paradigms of beliefrevision (i.e., foundational or 
oherent) are mathemati
ally equivalent [dV97℄. For
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e, every belief revision operator that 
an be de�ned by the foundational ap-proa
h 
an also be de�ned by the 
oherent approa
h and vi
e versa. Nevertheless,the AGM paradigm is a pure logi
al approa
h. Therefore, formal reasoning 
an be
ondu
ted within the same system. For the ATMS based system, logi
al reasoningneeds to be 
arried out by a separate problem solver. To a
hieve a seamless inte-gration between the learning and the mat
hing 
omponents of the proposed adaptiveinformation agents, the AGM approa
h seems intuitively more attra
tive. Moreover,the AGM belief fun
tions 
an also be used to revise the IR 
ontextual information(e.g., asso
iation and pre
lusion rules) into an agent's knowledge base, whereas theassumptions maintained by an ATMS system must be literals. In fa
t, belief revisionhas been taken as a learning paradigm and the learning power of various belief revi-sion formalisms has been formally studied [Kel98℄. With all these reasons, the AGMbelief revision framework is exploited to develop the learning 
omponents of adaptiveinformation agents.In the AGM belief revision framework, the notion of belief sets was introdu
edto represent epistemi
 states in rational agents [G�ar88℄.De�nition 1 A set of senten
es K is a non-absurd belief set i�:(1) K 0?, and(2) K ` � implies � 2 K.The 
onsequen
e relation ` is de�ned with respe
t to an obje
t language. In gen-
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es K of the obje
t language logi
ally entailsa senten
e � of the same language. Usually this obje
t language refers to a propo-sitional language L 
losed under the usual Boolean 
onne
tives :, !, $, ^, and_ [AGM85, GM88, GM94℄. The two sentential 
onstants > (truth) and ? (falsity)of L are also used. The ba
kground logi
 is de�ned by its 
onsequen
e operation Cnwhi
h satis�es the following 
onditions:
In
lusion: � � Cn(�)Iteration: Cn(Cn(�)) = Cn(�)Monotoni
ity: Cn(�) � Cn(�0) whenever � � �0Supra
lassi
ality: � 2 Cn(�) if � 
lassi
ally implies �Dedu
tion: � 2 Cn(� [ f�g) i� (�! �) 2 Cn(�)Compa
tness: If � 2 Cn(�) then � 2 Cn(�0) for some �nite �0 � �

where � and �0 are sets of senten
es of L and � and � are senten
es of L. Therefore,the 
onsequen
e relation � ` � means � 2 Cn(�). The set of logi
al 
onsequen
esof � is Cn(�) = f� : � ` �g. With referen
e to the de�nition of non-absurd beliefsets (or simply refers to as belief sets in this thesis), the �rst property states thata belief set must be 
onsistent. The se
ond property spe
i�es that a belief set is
losed under logi
al 
onsequen
e. Therefore, a belief set K is essentially a theory
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es K represents the information (e.g., propositions) that arational agent believes. The notation K? denotes an absurd belief set. A

ordingto the AGM prin
iple, every e�ort should be made to prevent the transformationfrom K to K? be
ause rational agents do not entertain absurd epistemi
 states. Thetransition between any two epistemi
 states K and K 0� as depi
ted in Figure 3.1 
anbe modelled by a 
hange fun
tion from �� L to �. In other words, the pro
esses ofbelief revision are modelled by some 
hange fun
tions whi
h transform a theory � of Lwith respe
t to a formula � to another theory ���. In the AGM framework, three typesof belief state transitions are identi�ed and they are modelled by the 
orrespondingbelief fun
tions F : K � L 7! K:Expansion (K+� ) is the pro
ess of a

epting a new belief � that does not 
on-tradi
t existing beliefs in a belief set K (i.e., � =2 K; :� =2 K; � 2 K+� ). This isa straightforward operation of in
orporating the new information � and its logi
al
onsequen
es into the belief set K;Contra
tion (K�� ) is the removal of a belief � and all other beliefs that logi
allyimply � from a belief set K (i.e., � 2 K; � =2 K�� );Revision (K��) is the in
orporation of a belief � that may 
ontradi
t existingbeliefs in a belief set K (i.e., � =2 K; :� 2 K; � 2 K��).Unlike the expansion fun
tions, both the 
ontra
tion fun
tions and the revisionfun
tions 
annot be uniquely de�ned purely based on set oriented operations. There
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lose relationships among the belief fun
tions. For instan
e, the pro
esses ofbelief revision 
an be derived from the pro
esses of belief 
ontra
tion via the LeviIdentity [Lev77℄:K�� = (K�:�)+�The Levi identity states that a belief revision operation K�� is equivalent to �rst
ontra
ting the negation of � from K (i.e., a 
ontra
tion operation) followed by anexpansion operation of adding � to the belief set K. Moreover, a belief 
ontra
tionfun
tion 
an also be de�ned in terms of a belief revision fun
tion via the HarperIdentity [Har77℄:K�� = K \K�:�The Harper identity says that a belief 
ontra
tion operation K�� is equivalent to theset interse
tion of the original belief set K and the result of the belief revision op-eration K�:� whi
h revises K with respe
t to :�. Essentially, the AGM frameworkin
ludes sets of postulates to 
hara
terise well-behaved belief fun
tions and variousmethods su
h as epistemi
 entren
hment orderings, sele
tion fun
tions on belief sets,systems of Spheres, et
. to 
onstru
t the 
hange fun
tions [G�ar88℄. The AGM pos-tulates for expansion, 
ontra
tion, and revision attempt to identify 
lasses of 
hangefun
tions for modelling the manner in whi
h a rational agent should alter its beliefsin fa
e of 
hanges. Let K represent the set of all non-absurd belief sets. The AGMpostulates for belief 
ontra
tion are de�ned as follows:
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(K�1) K�� 2 K (Closure)(K�2) K�� � K (In
lusion)(K�3) If � 62 K, then K�� = K (Va
uity)(K�4) If 6` �, then � 62 K�� (Su

ess)(K�5) If � 2 K, then K � (K�� )+� (Re
overy)(K�6) If ` �$ �, then K�� = K�� (Preservation)(K�7) K�� \K�� � K��^� (Conjun
tion)(K�8) If � 62 K��^�, then K��^� � K�� (Sele
tion)

The �rst 
ontra
tion postulate simply states that a 
ontra
tion operation maintainsthe property of non-absurd belief set for the belief set involved in the 
hange. These
ond postulate indi
ates that no new belief should be in
luded into a belief set Kafter a 
ontra
tion operation. The third postulate impli
itly applies the informationale
onomy prin
iple to the belief 
ontra
tion pro
esses. For instan
e, if the informationto be 
ontra
ted is not 
ontained in a belief set (i.e., � 62 K), the information 
ontentof the belief set should remain the same after a 
ontra
tion operation. The fourthpostulate de�nes the su

essful 
riterion of a belief 
ontra
tion operation. After a
ontra
tion operation, the 
ontra
ted belief � will not be a logi
al 
onsequen
e of the



98 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEresulting belief set if � is not valid (i.e., � 62 K�� ). The �fth postulates states that allthe beliefs in K 
an be re
overed after 
ontra
ting a belief � if the 
ontra
ted beliefset K�� is expanded with respe
t to the same belief afterwards. (K�6) says that theresults of two belief 
ontra
tion operations will be the same if the same belief setis 
ontra
ted with respe
t to two logi
ally equivalent senten
es. (K�7) and (K�8)explain the nature of 
ontra
tion with respe
t to a 
onjun
tion of senten
es. Theresult of 
ontra
ting a belief set K with respe
t to the 
onjun
tion of two senten
es �and � 
ontains all the beliefs that are in both K�� and K�� . Moreover, the 
ontra
tionof K with respe
t to � and � results in either � or � (or both) being removed. Thispostulate a
tually reinfor
es the prin
iple of informational e
onomy. For instan
e, theminimal 
hange to K��^� may be a
hieved by just removing either � or � dependenton whi
h belief is more important to an agent.The AGM postulates for belief expansion, 
ontra
tion, and revision fun
tionsde�ne the 
lasses of 
hange fun
tions whi
h adhere to the rationales of 
onsistentand minimal belief 
hanges. However, these postulates do not provide the ne
essaryinformation to develop the 
orresponding fun
tions. Extra information is required touniquely de�ne a 
ontra
tion or a revision fun
tion. One of the ways to 
onstru
tthe AGM 
hange fun
tions is by epistemi
 entren
hment (6) [GM88℄. The epistemi
entren
hment relation is de�ned over the senten
es of L, and is relative to a belief setK. For instan
e, if �; � are beliefs in a belief set K (i.e., senten
es of L), � 6 � meansthat � is at least as entren
hed as �. Intuitively, epistemi
 entren
hment relations
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e preferen
e orderings of beliefs a

ording to the importan
e of these beliefs inthe fa
e of 
hange. When in
onsisten
y arises during a belief 
hange operation, beliefswith the lowest degree of epistemi
 entren
hment are given up in order to maintain theproperties of minimal and 
onsistent belief 
hanges in rational agents. The 
on
ept ofepistemi
 entren
hment 
aptures the notions of �rmness, signi�
an
e, or defeasibilityof beliefs as per
eived by some agents. This approa
h is 
onsidered more appropri-ate than measuring the magnitude of belief 
hanges in terms of the 
ardinality ofthe modi�ed information. By way of illustration, an intelligent information agent(human or software) strongly believes that understanding the paper about \
ommonsense aboutness" and/or the paper about \the logi
al un
ertainty prin
iple" will helpher develop an insight about logi
-based IR. Now, she reads some IR papers perhapsabout the above topi
s (the agent is not really sure sin
e she is only a novi
e in this�eld), but �nds that she has no idea about logi
-based IR at all. Should the agent
ontra
t the beliefs �, �, or � _ � ! 
 be
ause of the new information :
? Thepropositions are used to represent these events: � : \understanding 
ommon senseaboutness", � : \understanding the logi
al un
ertainty prin
iple", and 
 : \under-standing logi
-based IR". For a 
ardinality-based measure of minimal belief 
hange,the agent should 
ontra
t �_� ! 
. After su
h a 
ontra
tion, a new 
onsistent beliefstate su
h as f�; �;:
g is rea
hed. However, is this a rational approa
h? The agentis almost 
ertain that �_� ! 
, but not sure if � and � are true. The agent may notread papers really about the 
hosen topi
s, or she may read relevant papers, but shestill does not understand the 
ontent of these papers. The reliability or the �rmness
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e of a strong belief of :
, a more rational attitudeof the agent is to 
ontra
t the beliefs � and � sin
e she is less 
ertain (�rmly believ-ing) about this information. Therefore, measuring the magnitude of belief 
hanges interms of the underlying epistemi
 entren
hment orderings is a better solution. For-mally, an epistemi
 entren
hment ordering is a total pre-order of the senten
es (e.g.,�; �; 
) in L, and is 
hara
terised by the following postulates [GM88, G�ar92℄:
(EE1) If � 6 � and � 6 
, then � 6 
 (Transitivity)(EE2) If � ` �, then � 6 � (Dominan
e)(EE3) For any � and �, � 6 � ^ � or � 6 � ^ � (Conjun
tiveness)(EE4) When K 6= K?; � =2 K i� � 6 � for all � (Minimality)(EE5) If � 6 � for all �, then ` � (Maximality)
(EE1) simply states that an epistemi
 entren
hment ordering is transitive. (EE2)indi
ates that a logi
ally weaker senten
e is at least as entren
hed as a logi
allystronger senten
e. (EE3) tells us that a 
onjun
tion is at least as entren
hed as oneof its 
onjun
ts. (EE4) says that senten
es not in a 
onsistent belief set are minimalwith respe
t to an in epistemi
 entren
hment ordering. (EE5) de�nes that validsenten
es are maximal in epistemi
 entren
hment orderings. G�ardenfors has indi
atedthat epistemi
 entren
hment has its roots in information theory [G�ar88℄. The basi
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es have di�erent information 
ontent (e.g., measured interms of entropy). Be
ause information is valuable, it is rational to minimise theloss of information when giving up senten
es in a 
ontra
tion of a state of belief.G�ardenfors and Makinson have established the (C-) 
ondition for the 
onstru
tionof belief 
ontra
tion fun
tions dire
tly from the underlying epistemi
 entren
hmentorderings [GM88℄. The 
ontra
tion 
ondition (C-) is de�ned in Theorem 1. Theyproved that if an ordering satis�es (EE1) - (EE5), the 
ontra
tion fun
tion uniquelydetermined by (C-) satis�es all the 
ontra
tion postulates (K�1) to (K�8) [GM88℄:Theorem 1 Let K be a belief set represented by a set of senten
es of L. For every
ontra
tion fun
tion K� for K, there exists an epistemi
 entren
hment 6 related toK su
h that the (C-) 
ondition holds for every senten
e � 2 L. Conversely, for everyepistemi
 entren
hment 6 related to K, there exists a 
ontra
tion fun
tion K� su
hthat (C-) is true for every � 2 L.(C-) K�� = 8>><>>: f� 2 K : � < � _ �g if 6` �K otherwisewhere < is the stri
t part of epistemi
 entren
hment de�ned above. This 
onditionstates that the 
ontra
tion of K with respe
t to � is the set of senten
es � su
h thatthe epistemi
 entren
hment of � _ � is stri
tly greater than that of �. Sin
e a beliefrevision fun
tion 
an be de�ned based on a 
ontra
tion fun
tion and an expansionfun
tion, the above theorem is suÆ
ient to uniquely de�ne a revision fun
tion as well.



102 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEIndependently, Peppas and Williams have later proved that the (C*) 
ondition holdsfor belief revision fun
tions [PW95℄:Theorem 2 Let K be a belief set represented by a set of senten
es of L. For everyrevision fun
tion K� for K, there exists an epistemi
 entren
hment 6 related to Ksu
h that the (C*) 
ondition holds for every senten
e � 2 L. Conversely, for everyepistemi
 entren
hment 6 related to K, there exists a revision fun
tion K� su
h that(C*) is true for every � 2 L.(C*) K�� = 8>><>>: f� 2 L : :� < �! �g if 6` :�? otherwiseFor the 
onvenien
e of representing a subset of senten
es (e.g., a theory) withrespe
t to an epistemi
 entren
hment ordering, the 
ut6 operator is introdu
ed. Es-sentially, a 
ut operation su
h as 
ut6(�) extra
ts the set of senten
es whi
h is at leastas entren
hed as � from a belief set K. Similar to the AGM belief revision operators,the 
ut operation 
an be generalised to apply to any senten
e � 2 L rather than abelief in a belief set. It has been shown that for an epistemi
 entren
hment 6 and asenten
e � 2 L, 
ut6(�) always returns a theory [Wil96a℄.De�nition 2 For an epistemi
 entren
hment ordering 6 and a belief � 2 K, the 
utoperation 
ut6(�) returns a set of beliefs de�ned by:
ut6(�) = f� 2 K : � 6 �g
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tion is introdu
ed in Chapter 4 when the Rapid Anytime Maxi-adjustmenttransmutation algorithm (RAM) is illustrated. The Cut() fun
tion 
an be seen as theimplementation of the above 
ut operation. However, the Cut() fun
tion assumesthat the entren
hment rank of a belief � or the ranks of two delimiting beliefs areknown. A formal de�nition of 
ut was also introdu
ed with respe
t to a �nite par-tial entren
hment ranking [Wil95℄. However, the above de�nition is more general inthe sense that it applies to both epistemi
 entren
hment orderings and �nite partialentren
hment rankings. Moreover, the above de�nition whi
h is based on [Wil96a℄ ismore 
on
ise and pre
ise than the one presented in [Wil95℄.The AGM belief revision framework provides a rigorous foundation for modellingthe 
hanges of belief states in rational agents. As a belief set K is a theory of a logi
allanguage and a theory 
ould be in�nite even for a �nite language, there 
ould be a rep-resentation problem for epistemi
 entren
hment orderings when they are implementedon 
omputer-based systems whi
h store �nite data stru
tures. Moreover, the AGM
hange fun
tions take a belief set and a senten
e as inputs and produ
e a modi�ed be-lief set su
h as K�L 7! K. The 
hange fun
tions do not produ
e a revised epistemi
entren
hment ordering as output. This makes it diÆ
ult to perform iterated beliefrevision whi
h is often a 
ompulsory feature for many real-life appli
ations. For ex-ample, in the 
ontext of adaptive information retrieval, the information agents' beliefsabout users' information needs require 
ontinuous revision be
ause the users' interests
hange over time. As a whole, for a 
omputer-based implementation of the AGM belief
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tions, a �nite representation of epistemi
 entren
hment and an iterated belief re-vision me
hanism are needed. Williams has proposed the �nite partial entren
hmentranking (B) that ranked the senten
es of a theory in L with the minimum possi-ble degree of entren
hment (6B) [Wil95℄. Moreover, implementing the AGM 
hangefun
tions based on a transmutation me
hanism was also explored [Wil94℄. The Ad-justment transmutation algorithm [Wil95℄ whi
h exa
tly implements the AGM 
hangefun
tions, and the Maxi-adjustment algorithm [Wil96b, Wil97℄ whi
h is based on therationale of absolute minimal 
hange under maximal information inertia have alsobeen developed. In a transmutation-based approa
h, belief revision is not just takenas adding or removing senten
es to or from belief sets but also the transmutation ofthe underlying epistemi
 entren
hment ranking. A �nite partial entren
hment rank-ing B assigns the minimal degree of entren
hment (in terms of a real number) to ea
hsenten
e, and hen
e indu
es the underlying epistemi
 entren
hment ranking. Thefollowing de�nitions are based on Williams' work [Wil95, Wil96a, Wil96b, Wil97℄:
De�nition 3 A �nite partial entren
hment ranking is a fun
tion B that maps a �nitesubset of senten
es of L to the real interval [0, 1℄ su
h that the following 
onditionsare satis�ed for all � 2 dom(B):(PER1) f� 2 dom(B) : B(�) < B(�)g 6` �.(PER2) If ` :� then B(�) = 0.(PER3) B(�) = 1 if and only if ` �.
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es ranked stri
tly higher than a senten
e �
annot entail �. In other words, a logi
ally stronger senten
e should have a lower en-tren
hment degree represented by B(�). This property of �nite partial entren
hmentranking 
orresponds to the postulate of epistemi
 entren
hment (EE2). The mean-ing of (PER2) is that in
onsistent senten
es have the lowest entren
hment degree orshould be ranked at the highest position. (PER3) says that valid senten
es are as-signed the maximal entren
hment degree or should be ranked the lowest. The set of allpossible �nite partial entren
hment rankings is denoted B. B(�) is referred to as thedegree of a

eptan
e of an expli
it belief �. The expli
it information 
ontent of B 2 Bis f� 2 dom(B) : B(�) > 0g, and is denoted exp(B). In other words, exp(B) de�nesa �nite theory base whi
h 
aptures a rational agent's expli
it beliefs. In addition,the impli
it information 
ontent of B 2 B is derived by Cn(exp(B)), and is denoted
ontent(B). The operator Cn is the 
lassi
al 
onsequen
e operator as de�ned before.Therefore, 
ontent(B) 
orresponds to the belief set K, whi
h is the information 
on-tent of an agent's knowledge base 
hara
terising an IR 
ontext. For a set � of expli
itbeliefs, the degree of a

eptan
e of � is de�ned by B(�) = min(fB(�) : � 2 �g). Inorder to des
ribe the epistemi
 entren
hment ordering (6B) generated from a �nitepartial entren
hment ranking B, it is ne
essary to 
ompute the degrees of a

eptan
e(i.e., entren
hment degress) of impli
it beliefs. The following de�nition is equivalentto the one presented in [Wil97℄ but our re�ned de�nition is based on the 
ut operationde�ned in De�nition 2:
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ontingent senten
e. Let B be a �nite partial entren
h-ment ranking and � 2 exp(B). The degree of a

eptan
e of � is de�ned by:degree(B; �) = 8>><>>: sup(fB(�) 2 ran(B) : 
ut6B(�) ` �g) if � 2 
ontent(B)0 otherwiseThe sup operator returns the maximal degree of a

eptan
e from a set of ordinalsin the range of B. The 
ut6B(�) operation extra
ts a set of expli
it beliefs whi
h isat least as entren
hed as � from an epistemi
 entren
hment ordering 6B generatedbased on a �nite partial entren
hment ranking B. Therefore, the above de�nitionstates that the degree of a

eptan
e of an impli
it belief � equals the maximal degreeof a

eptan
e of a 
ut (in a

ordan
e with 6B) of expli
it beliefs that 
lassi
ally entail�. The Maxi-adjustment method [Wil96b, Wil97, Wil96a℄ transmutes (e.g., raisingor lowering) the degrees of the expli
it senten
es in a theory base to simulate the pro-
esses of in
orporating beliefs into (or removing beliefs from) a belief set. In order toimplement the AGM 
hange operations whi
h are applied to a set of logi
ally 
losedsenten
es, the Maxi-adjustment algorithm needs a 
lassi
al theorem prover to evaluatethe impli
it senten
es 
aptured in 
ontent(B). The Maxi-Adjustment method di�ersfrom the Adjustment method whi
h exa
tly implement the standard AGM 
hangefun
tions in that it transmutes a partial entren
hment ranking B a

ording to therationale of absolute minimal 
hange under maximal information inertia [Wil96b℄. Inother words, it may retain even more senten
es than the standard AGM 
ontra
tion
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tion while preserving the AGM prin
iples of minimal and 
onsistent belief 
hange.In addition, Williams also tried to introdu
e the notion of reasons as advo
ated bySpohn [Spo87℄ and reason maintenan
e in her Maxi-adjustment method [Wil96a℄.With referen
e to �nite partial entren
hment rankings, a senten
e � is a reason of �if and only if degree(B; � ! �) > B(�). However, the main di�eren
e between theMaxi-adjustment transmutation method and the Adjustment method whi
h dire
tlyimplements the standard AGM belief fun
tions is that the senten
es in the theorybase exp(B) are assumed independent unless logi
al dependen
es 
an be derived via`. This assumption behind the Maxi-adjustment method makes it a better 
andidatefor modelling belief 
hanges in many real-life appli
ations. The assumptions behindthe Maxi-adjustment method 
orrespond to the 
hara
teristi
s as demonstrated in IRappli
ations. For example, when modelling the IR requirements of information seek-ers, term independen
y is often assumed unless the inter-dependen
ies are expli
itlyspe
i�ed. This approa
h has been adopted in existing quantitative IR models [SM83℄as well as logi
-based IR models [LB98℄. The following is a re-produ
tion of thede�nition of the Maxi-adjustment method based on [Wil96a℄:De�nition 5 Let B 2 B be �nite. The range of B is enumerated in as
ending ordersu
h as j0; j1; j2; : : : ; jmax. Let � be a 
ontingent senten
e, jm = degree(B; �) and0 � i < 1. Then the (�; i) Maxi-adjustment of B is B?(�; i) de�ned by:B?(�; i) = 8>><>>: B�(�; i) if i � jm(B�(:�; 0))+(�; i) otherwise



108 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEwhere for all � 2 dom(B), B�(�; i) is de�ned as follows:1. For � with B(�) > jm; B�(�; i)(�) = B(�).2. For � with i < B(�) � jm, suppose B�(�; i)(�) for � is de�ned with B(�) �jm�k for k = 0; 1; 2; : : : ; n� 1, then for � with B(�) = jm�n,
B�(�; i)(�) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
i if � ` � or� 6` � and � 2 �where � is a minimal subset off
 : B(
) = jm�ng su
h thatf
 : B�(�; i)(
) > jm�ng [ � ` �B(�) otherwise3. For � with B(�) � i ;B�(�; i)(�) = B(�).

For all � 2 dom(B) [ f�g; B+(�; i) is de�ned as follows:
B+(�; i)(�) =

8>>>>>>>>>><>>>>>>>>>>:
B(�) if B(�) > ii if � � � orB(�) � i < degree(B; �! �)degree(B; �! �) otherwiseThe algorithm deals with 
ontingent senten
es be
ause they are the prin
iple
ases. For a valid senten
e, a transmutation operation 
an easily be de�ned andimplemented by assigning the senten
e with the maximal degree. On the other hand,
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onsistent belief as input, a transmutation operation 
an trivially be doneby returning the existing entren
hment ranking. The intuition of the above de�nitionis that if the new entren
hment degree i of a senten
e � is less than its existingdegree jm, it is equivalent to a 
ontra
tion operation (i.e., lowering its degree). A
ontra
tion operation is implemented by B�(�; i) in the algorithm. If the new degreeof � is higher than its existing degree, it is 
onsidered a revision operation. Hen
e,:� must �rst be assigned the lowest degree of a

eptan
e (i.e., 
ontra
ting it fromthe belief set). The 
ontra
tion pro
ess 
ould be very time 
onsuming be
ause :�may not be in the theory base exp(B), but implied by other expli
it beliefs in thetheory base. So, a theorem prover must be invoked to perform the satis�ability 
he
k.After 
ontra
ting :� and all the beliefs that entail :�, the degree of � is raised tothe new degree i. This pro
ess 
orresponds to belief expansion and is implemented byB+(�; i) in the algorithm. Therefore, the Maxi-adjustment method ensures that theAGM prin
iple of 
onsistent belief revision is enfor
ed (i.e., 
ontent(B) 6` ?). Duringraising or lowering of the degree of �, the degrees of other senten
es in the theory baseare adjusted in a minimal way su
h that the (PER1) property (i.e., the dominan
eproperty of epistemi
 entren
hment) is maintained. This is a very time 
onsumingpro
ess sin
e it invokes the theorem prover to prove 
ertain logi
al 
onditions forea
h senten
e being a�e
ted by the belief 
hange pro
ess. It should be noted thatwith referen
e to the postulates (K�1) to (K�8), the part B�(�; i)(�) = i if � ` �in the Maxi-adjustment method is not an element of a standard AGM 
ontra
tionoperation. It was introdu
ed as a kind of reason maintenan
e 
alled subsumption
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e, if � is the only reason for � to be in
luded in a beliefset, � should not exist after � is 
ontra
ted. It has been shown that if i > 0 then
ontent(B?(�; i)) = (
ontent(B))�� [Wil96b℄. In other words, maxi-adjustment withi > 0 is an AGM revision. On the other hand, 
ontent(B?(�; 0)) satis�es all but there
overy postulates for AGM 
ontra
tion [Wil96b℄.The advantage of the Maxi-adjustment method for belief revision 
an be illus-trated with an example. Assuming that an information seeker is looking for do
u-ments about \apple", \banana", and \
at". Her preferen
es 
an be 
hara
terised byan epistemi
 entren
hment ordering whi
h is �nitely represented by a �nite partialentren
hment ranking B:B(apple) = 0:8B(banana) = 0:7B(
at) = 0:6If the information seeker is no longer interested in do
uments about \apple",a 
ontra
tion fun
tion 
an be de�ned to model the 
hange of her beliefs. By us-ing the standard AGM 
ontra
tion fun
tion K� as de�ned by the (C-) 
ondition inTheorem 1, K�apple = fg is derived be
ause apple 6< (banana _ apple) and apple 6<(
at _ apple) are true. The degree of a

eptan
e degree(B; banana _ apple) = 0:8for the belief (banana _ apple) is 
omputed a

ording to De�nition 4. Therefore,apple 6< (banana _ apple) is derived. Similarly, apple 6< (
at _ apple) is also derived.



3.1. THE AGM BELIEF REVISION PARADIGM 111In other words, if an information agent is told that the information seeker gives up herinterest about \apple", the agent will believe that she is no longer interested in \ba-nana" nor \
at". Is it true that a person who does not like \apple" will always reje
t\banana" or \
at"? The problem is not 
aused by the AGM rationale of belief 
hangebut the impli
it assumption of the (C-) 
ondition where information in the belief set isinter-related by default. On the other hand, by applying the Maxi-adjustment methodto model the same situation, the result of B?(apple; 0) = f(banana; 0:7); (
at; 0:6)g isobtained. With referen
e to the 
ontra
tion part of the Maxi-adjustment method, itis easy to see that the minimal subsets in the two entren
hment ranks are fbananagand f
atg respe
tively. In either 
ase, the minimal subset � together with any stri
tlymore entren
hed beliefs does not entail apple (i.e., f
 : B�(�; i)(
) > jm�ng [ � ` � isnot true). Therefore, the entren
hment degrees are not 
hanged B�(�; i)(�) = B(�).In other words, the beliefs (banana; 0:7) and (
at; 0:6) are retained in the belief set.The Maxi-adjustment method seems to appropriately model the 
hanges of beliefs inadaptive information agents.The most 
ostly pro
edure of the Maxi-adjustment method is to evaluate ifthe minimal subsets � together with other stri
tly more entren
hed beliefs in theentren
hment ranking will entail �, the senten
e to be assigned a lower degree inthe 
ontra
tion operation B�(�; i). If there are many senten
es in the same rank, the
omputational 
omplexity grows exponentiallyO(2N) in the worst 
ase, whereN is thenumber of senten
es with the same rank. In general, O(2N) is required to enumerate



112 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEall the possible subsets of a base set with size N . The proof of whether ea
h subset
an logi
ally entail � is 
ostly as well although a polynomial time algorithm exists ifthe representation language is a 
lassi
al propositional Horn language LHorn [Hod93℄.Lang has proven that if B has x natural partitions then it requires log2 x satis�ability
he
ks [Lan97℄. So, the 
omputational 
ost of the Maxi-adjustment method de
reasesas the number of ranks in
reases. When the ideal 
ase o

urs where ea
h rank inB 
ontains only one senten
e, the 
omputational 
omplexity of the Maxi-adjustmentalgorithm is polynomial sin
e log2 x plus the polynomial time for the satis�ability
he
k of x senten
es of LHorn is till 
hara
terised by a polynomial time 
omplexity.Williams has proposed the anytime version of the Maxi-adjustment method whi
h
an approximate B?(�; i) based on a time parameter that de�nes the maximum timeallowed for ea
h B�(�; i)(�) or B+(�; i)(�) operation [Wil97℄. The anytime approa
hallows a trade-o� between 
omputational 
ost and the quality of the belief revisionpro
esses. Basi
ally, the anytime algorithm 
opies all the un-
hanged beliefs to a newtheory base �rst. For ea
h belief � from the problemati
 segment of the theory base,transmutes the degree of � as de�ned in the Maxi-adjustment method and 
opies itto the new theory base if the elapsed time is within the time limit. Therefore, theanytime algorithm 
an revise as many beliefs as possible while ensuring that all theproperties of epistemi
 entren
hment are ful�lled. However, whether this approa
h isfeasible for large real-life appli
ations still requires empiri
al evaluation. One of the
ontributions of this thesis is to provide an answer for su
h a resear
h question.



3.2. THE RAPID MAXI-ADJUSTMENT METHOD 113An alternative of implementing the AGM 
hange fun
tions is to develop anothermore eÆ
ient transmutation method whi
h avoids the 
omputational bottle-ne
k ofgenerating and evaluating the minimal subsets � in an entren
hment ranking (thereby
ir
umventing the O(2N) 
omputational 
ost) and yet adheres to the AGM prin
ipleof minimal and 
onsistent belief revision. To this end, the Rapid Maxi-adjustmentmethod is proposed in this thesis. In parti
ular, the anytime version of this method
alled Rapid Anytime Maxi-adjustment (RAM) is the standard transmutation methodfor implementing the AGM 
hange fun
tions in adaptive information agents. The
omputational algorithm of RAM will be illustrated in Chapter 4.
3.2 The Rapid Maxi-adjustment MethodThe Rapid Maxi-adjustment method is developed based on the Maxi-adjustmentmethod. The major improvement is the removal of the minimal subset generationpro
edure during belief 
ontra
tion. Moreover, the reason maintenan
e me
hanism isalso removed be
ause 
ausal reasoning is less appli
able to IR pro
esses. Finally, some
orre
tions to the Maxi-adjustment method are done so that the segment of a �nitepartial entren
hment ranking under revision is 
learly identi�ed to fa
ilitate perfor-man
e tuning. The anytime feature is not in
luded in the following logi
al de�nitionbe
ause it is more an implementation oriented feature.De�nition 6 Let B 2 B be �nite. Let � be a 
ontingent senten
e, j = degree(B; �)



114 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEand 0 � i < 1. Then the (�; i) Rapid Maxi-adjustment of B is B?(�; i) de�ned by:
B?(�; i) =

8>>>>>>>>>><>>>>>>>>>>:
B�(�; i) if i < j(B�(:�; 0))+(�; i) if i > jB+(�; i) if i = j > 0 and � 62 exp(B)B otherwisewhere for all � 2 dom(B), B�(�; i) is de�ned as follows:

1. For � with B(�) > j; B�(�; i)(�) = B(�).2. For � with i < B(�) � j,
B�(�; i)(�) = 8>>>>>><>>>>>>: i if f
 : B�(�; i)(
) > B(�)g [fÆ : B�(�; i)(Æ) = B(�) ^ Seq(Æ) � Seq(�)g ` �B(�) otherwise3. For � with B(�) � i; B�(�; i)(�) = B(�).
For all � 2 dom(B) [ f�g; B+(�; i) is de�ned as follows:
1. For � with B(�) � i; B+(�; i)(�) = B(�).2. For � with j � B(�) < i,
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B+(�; i)(�) = 8>><>>: i if i < degree(B; �! �)degree(B; �! �) otherwise3. For � with B(�) < j; B+(�; i)(�) = B(�).When a transmutation pro
ess begins, the algorithmwill not invoke a 
ontra
tionpro
ess B�(�; i) if the entren
hment degree of the belief � 2 exp(B) under questiondoes not 
hange. The Rapid Maxi-adjustment method eliminates the 
omputationalbottle-ne
k of evaluating the minimal subsets in a rank when a 
ontra
tion operationis performed. The B�(�; i)(�) part works by sequentially pro
essing ea
h a�e
tedbelief �. When a belief � from the problemati
 segment of B (e.g., i < B(�) � j) isevaluated, � together with other beliefs with the same entren
hment rank but assignedlower sequen
e numbers su
h as fÆ : B�(�; i)(Æ) = B(�)^ Seq(Æ) � Seq(�)g and thestri
tly more entren
hed beliefs su
h as f
 : B�(�; i)(
) > B(�)g are added to thetheorem prover to test if they 
an logi
ally entail �. If it is true, the degree of � willbe lowered to i. Moreover, the senten
e � will be removed from the theorem proverbefore evaluating the remaining senten
es in the problemati
 segment. Thereby, theproperties of �nite partial entren
hment ranking are maintained. The Seq fun
tionsimply assigns unique numbers to the beliefs residing in the same rank in as
endingorder, the Seq 
onstru
t is not part of an epistemi
 entren
hment ranking. It isintrodu
ed to handle beliefs with the same epistemi
 entren
hment degrees. If LHornis 
hosen as the representation language, the Rapid Maxi-adjustment algorithm will
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omplexity (i.e., log2 x plus the polynomial time forproving x horn 
lauses). Another distin
t advantage of the Rapid Maxi-adjustmentmethod is that it may retain more beliefs than the Maxi-adjustment does in some
ases. This shows the operational 
hara
teristi
 of the proposed method in termsof ful�lling the AGM prin
iple of minimal 
hanges. The following example showsthe advantage of the Rapid Maxi-adjustment method. An agent's theory base isdes
ribed by a �nite partial entren
hment ranking. The sequen
e numbers on the leftare not part of the �nite partial entren
hment ranking. These numbers help uniquelyidentify ea
h belief, and they 
an be seen as the sequen
e numbers returned by the Seqfun
tion when there are several beliefs in the same entren
hment rank. rankingB. Aninformation agent per
eives an IR 
ontext in terms of some beliefs su
h as \Australia",\Brazil", \Canada", \Denmark", \Egypt" be
ause its user is interested in retrievinginformation about these 
ountries. These beliefs are represented by the 
orrespondingpropositions of L. Initially, the agent's theory base exp(B) 
omprises a set of beliefs
hara
terising the user's preferen
es of information pertaining to di�erent 
ountries.By relevan
e feedba
k, the user informs the agent that she is no longer interestedin information about \Australia". The agent's knowledge base 
ontent(B) needs tobe revised by invoking a belief revision operation su
h as B?(:australia; 0:9). Theagent's initial theory base and the theory bases after applying the standard AGMAdjustment method, the Maxi-adjustment method, and the Rapid Maxi-adjustmentmethod are shown as follows:



3.2. THE RAPID MAXI-ADJUSTMENT METHOD 117Before Belief Revision1. B(australia _ brazil) = 0:82. B(australia _ denmark) = 0:73. B(:
anada _ :brazil) = 0:64. B(
anada) = 0:65. B(denmark) = 0:66. B(egypt) = 0:6Standard AGM revision7. B(:australia) = 0:91. B(australia _ brazil) = 0:82. B(australia _ denmark) = 0:75. B(denmark) = 0:6For all these transmutation methods, the revision pro
edure will �rst 
ontra
tthe belief australia from the belief set K = 
ontent(B). In other words, any expli
itbeliefs that logi
ally entail australia are 
ontra
ted from the theory base exp(B).Then, the belief (:australia; 0:9) is revised into the theory base. It is obvious that theexpli
it beliefs faustralia _ brazil;:
anada _ :brazil; 
anadag entail australia. A
-
ording to the (C-) 
ondition, the standard AGM 
ontra
tion will 
ontra
t :
anada_:brazil sin
e australia 6< ((:
anada_:brazil)_ australia) is derived. A

ording toDe�nition 4, degree(B; (:
anada_:brazil)_australia) = 0:6 = degree(B; australia)is true. Similarly, 
anada and egypt are 
ontra
ted. The belief denmark is retainedRevision by Maxi-adjustment7. B(:australia) = 0:91. B(australia _ brazil) = 0:82. B(australia _ denmark) = 0:75. B(denmark) = 0:66. B(egypt) = 0:6



118 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCERevision by Rapid Maxi-adjustment7. B(:australia) = 0:91. B(australia _ brazil) = 0:82. B(australia _ denmark) = 0:73. B(:
anada _ :brazil) = 0:65. B(denmark) = 0:66. B(egypt) = 0:6
be
ause B(australia _ denmark) = 0:7 > degree(B; australia) = 0:6. For the beliefrevision pro
ess implemented via the Maxi-adjustment method, one more belief egyptis retained be
ause the 
ontra
tion 
riterion is B�(�; i)(�) = i if f
 : B�(�; i)(
) >jm�ng [ � ` � is true. The minimal subset � = f:
anada _ :brazil; 
anadag isdeveloped for the rank with beliefs having entren
hment degree 0:6 in this example.This minimal subset � together with other more entren
hed beliefs entail australia,and so all the senten
es of � are assigned the degree 0. Other senten
es in the samerank but not 
ontained in � are retained.For the Rapid Maxi-adjustment method, the 
ontra
tion 
riterion isB�(�; i)(�) =i if f
 : B�(�; i)(
) > B(�)g [ fÆ : B�(�; i)(Æ) = B(�) ^ Seq(Æ) � Seq(�)g ` �is true. The above 
ondition is true when the fourth belief 
anada is added to thetheorem prover to prove australia, and so the degree of 
anada is lowered to zero.After this adjustment operation, ea
h belief in this rank (i.e., degree = 0.6) togetherwith any stri
tly more entren
hed beliefs do not entail australia. Therefore, morebeliefs are retained at the end of the 
ontra
tion pro
ess. The proposed Rapid Maxi-adjustment method is more eÆ
ient than the Maxi-adjustment method sin
e there is
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arry out the time-
onsuming pro
ess of 
omputing the minimal in
on-sistent subsets in a rank (e.g., the beliefs with entren
hment degree equal 0.6). Asdemonstrated in this example, the Rapid Maxi-adjustment method is also more e�e
-tive in terms of ful�lling the minimal belief 
hange 
riterion than the Maxi-adjustmentmethod does. However, in this thesis, we will validate the qualities of the Rapid Maxi-adjustment approa
h by 
ondu
ting empiri
al evaluations of the method within largeadaptive information �ltering experiment. The evaluation work and the results willbe reported in Chapter 5.
3.3 Expe
tation Inferen
e RelationsWhen an intelligent agent attempts to solve a problem, it may not have 
ompleteinformation about the problem domain. However, it may still be useful if the agent
an develop tentative solutions in a timely fashion. When more information about theproblem domain is obtained later on, the agent must be prepared to alter its tenta-tive 
on
lusion if the new information 
ontradi
ts previous information from whi
h thetentative 
on
lusion is drawn. This kind of situation prevails in adaptive informationretrieval where little information about the retrieval 
ontexts is known at the begin-ning. However, with the help of users' relevan
e feedba
k, more information aboutthe retrieval 
ontexts may be obtained later. The new information about the retrieval
ontexts requires information agents to revise their beliefs about the situations, andalter their previous de
isions about do
ument sele
tion. Nonmonotoni
 reasoning pro-



120 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEvides a formal framework for intelligent agents to make qui
k de
isions when they arefa
ed with in
omplete and un
ertain information. In 
lassi
al logi
s the derivabilityrelation ` allows an agent to determine if a formula � follows from a set of premises �.The set of 
on
lusions are assumed to grow monotoni
ally (i.e., Cn(�) � Cn(�[f�g)for any new information �). The notion of nonmonotoni
 inferen
e allows an intel-ligent agent to draw tentative 
on
lusions, and these 
on
lusions 
an be retra
tedwhen more a

urate information is available later [KLM90, LM92, Mak93℄. Unlikethe 
lassi
al inferen
e relation `, the information dedu
ed via a nonmonotoni
 infer-en
e relation jv grows nonmonotoni
ally. In general, � jv � means that the pie
e ofinformation � nonmonotoni
ally entails another pie
e of information �. A

ordingto G�ardenfors and Makinson [GM94℄, well-behaved nonmonotoni
 inferen
e relations
an be 
hara
terised by the following properties. These properties are presented in away to fa
ilitate the dis
ussion of applying nonmonotoni
 inferen
e to IR rather thanestablishing a one to one mapping to the postulates of the AGM belief fun
tions. Arelation jv is an inferen
e relation i� it satis�es the four postulates:
� ` � (Supra
lassi
ality)� jv �� � � � jv 
 (Left Logi
al Equivalen
e)� jv 
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� jv � � ` 
 (Right Weakening)� jv 
� jv � � jv 
 (And)� jv � ^ 
An inferen
e relation jv is a well-behaved nonmonotoni
 inferen
e relation i� itis an inferen
e relation and it satis�es the following four postulates:� jv � � ^ � jv 
 (Cut)� jv 
� jv � � jv 
 (Cautious Monotony)� ^ � jv 
� jv 
 � jv 
 (Or)� _ � jv 
� j� :� � jv 
 (Rational Monotony)� ^ � jv 
An inferen
e relation jv is an expe
tation inferen
e relation (jKv) i� it is a non-monotoni
 inferen
e relation and it additionally satis�es the postulate of 
onsisten
ypreservation: � jv ? (Consisten
y Preservation)� ` ?



122 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEIt has been shown that the set of postulates 
hara
terising the expe
tation infer-en
e relations 
an be translated to the set of postulates whi
h de�ne the AGM beliefrevision fun
tions [MG91℄. Indeed, belief revision and nonmonotoni
 inferen
e areviewed as two sides of the same 
oin [GM94℄. The relevan
e of nonmonotoni
 reasoningwith respe
t to IR has re
eived 
onsiderable interest [BH94, BH96, Hun96, Seb94℄. A
-
ordingly, nonmonotoni
 inferen
e provides adaptive information agents with a soundand robust formalism to make de
isions regarding do
ument relevan
e. G�ardenforsand Makinson [MG91, GM94℄ have examined the inter
onne
tions between belief re-vision and nonmonotoni
 inferen
e. In general, the inter
onne
tion between beliefrevision and nonmonotoni
 inferen
e is des
ribed by the following relationship:� 2 K�� � � jKv �where K�� is the revision of a belief state K with respe
t to a formula �, and thispro
ess is taken as the nonmonotoni
 inferen
e from � to � given the set K offormulae as ba
kground expe
tations. More spe
i�
ally, G�ardenfors and Makinsonexamined the orderings of formulae in K and how the orderings 
an be used to de�nea 
lass of nonmonotoni
 inferen
e relations. They evaluated a subset of the epistemi
entren
hment postulates (EE1) to (EE3), and 
alled the orderings as 
hara
terisedby (EE1) to (EE3) the expe
tation orderings. It was found that both the expe
tationorderings and the epistemi
 entren
hment orderings would generate the same 
lassof nonmonotoni
 inferen
e relations whi
h satisfy the postulates of the expe
tationinferen
e relations. The formal de�nition of expe
tation inferen
e was �rst proposed



3.3. EXPECTATION INFERENCE RELATIONS 123by G�ardenfors and Makinson [GM94℄. The following de�nition is based on theirproposal with the emphasis on the beliefs in a belief set K:De�nition 7 jKv is a 
omparative expe
tation inferen
e relation i� there is an order-ing 6 satisfying (EE1) - (EE3) su
h that the following 
ondition holds:(C jKv) � jKv � i� � 2 Cn(f�g [ f
 2 K: :� < 
g)Expe
tation inferen
e provides a sound and powerful inferen
e framework fordeveloping the de
ision making me
hanisms in adaptive information agents. It is ar-gued that 
onservatively monotoni
 IR models are promising be
ause the operational
hara
teristi
 of IR pro
esses are essentially 
onservatively monotoni
 [BSW00℄. As
hara
terised by the postulates of 
autious monotony and rational monotony, it iseasy to �nd that the kind of de
ision making (i.e., do
ument 
lassi�
ation) me
ha-nisms underpinned by expe
tation inferen
e demonstrates 
onservatively monotoni
property be
ause given the fa
t � jKv 
, the expansion � ^ � jKv 
 is not alwayspossible. Extending an agent's beliefs su
h as � ^ � subje
ts to 
ertain restri
tions.In fa
t, the nonmonotoni
 axioms su
h as \Cut", \And", and \Cautious Monotony"have dire
t 
ounterparts in the set of properties 
hara
tering well-behaved IR mod-els [BH94, HW98, BSW00℄. The nonmonotoni
 axiom of \Rational Monotony" alsoplays an important role in establishing the fundamental property su
h as QLM of
ommon sense aboutness whi
h 
hara
terises the prominent features of IR mod-els [BSW00℄. An obvious advantage of applying the AGM belief revision paradigmto develop adaptive information agents is that the learning 
omponents and the 
las-
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ation 
omponents 
an be seamlessly integrated in these agents. The learningfun
tions of the agents are 
hara
terised by the AGM belief revision fun
tions K��and the 
lassi�
ation fun
tions of the agents are underpinned by expe
tation infer-en
e � jKv �. In the 
ontext of IR, a belief set K represents an agent's per
eptionabout a parti
ular retrieval 
ontext, and � is the relevan
e feedba
k information pro-vided by a user. In general, a relevan
e feedba
k 
an be seen as a re�ned query orinformation whi
h leads to the development of a re�ned query. Therefore, � jKv �represents the evaluation of a do
ument representation � with respe
t to the re�nedquery �. Sin
e an adaptive information agent fun
tions like a user pro�le whi
h holdsmultiple long term re
urring queries for a user, the inferen
e pro
ess in the 
lassi�
a-tion 
omponent of the agent 
an also be 
on
eptualised as K jKv � where the agentuses all the information about a user's queries and the query 
ontext to dedu
e if ado
ument is relevant or not with respe
t to these queries.
3.4 The AGM Paradigm in the Context of IRThis se
tion brie
y des
ribes some fundamental 
on
epts in IR [BH94, BSW00℄ sothat the assumptions of the AGM belief revision paradigm 
an be evaluated in the
ontext of IR. Parti
ularly, epistemi
 entren
hment whi
h underpins the AGM belieffun
tions will be examined with referen
e to the fundamental IR 
on
epts.Information Carriers: Information 
arriers (IC ) represent the 
ontent of infor-mation. Examples of ICs are do
uments, parts of do
uments (e.g., a se
tion) and
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ument des
riptors, su
h as keywords. The lower
ase letters su
h as i, j, et
. areused to represent information 
arriers. The elementary information 
arriers that 
an-not be further de
omposed are 
alled atomi
 information 
arriers. From an appli
ationpoint of view, keywords or terms are elementary enough to be 
onsidered as atomi
information 
arriers.Information Containment : As some information 
arriers 
onvey more informa-tion about a situation(s) than others, it was suggested that information 
an be par-tially ordered with respe
t to information 
ontainment, denoted by !T [Bar89b℄.i !T j i� information 
arrier i 
ontains all the information 
arried by information
arrier j.Information Composition: Information 
arriers 
an be 
omposed to form more
omplex information 
arriers. For example, information 
arriers su
h as river andpollution 
an be 
omposed be
ause river � pollution means the pollution of rivers.More formally, i� j is the smallest information 
arrier (with respe
t to the ordering!T ) that pre
isely 
ontains the information 
arried by information 
arriers i and j.There is a di�eren
e between � des
ribed here and ^ used in Boolean retrieval mod-els. The Boolean operator ^ assumes terms independen
e. However, it is assumedthat � satis�es idempoten
y, but 
ommutativity and asso
iativity 
an not be takenfor granted be
ause they are dependent on the semanti
 meanings of asso
iated in-formation 
arriers. In general, an information language LT whi
h is built from a setof terms 
an be de�ned [Bru96℄: Let IC be a set of information 
arriers, then, (1)



126 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEIC � LT ; (2) if i; j 2 LT then (i� j) 2 LT .Aboutness: Information retrieval is driven by a pro
ess whi
h de
ides whether ado
ument is about a query. Abstra
ting from do
uments and queries renders the IRpro
ess as one whi
h de
ides whether one information 
arrier is about another. Re-
ently, \Aboutness" has been examined as a by produ
t of resear
h within logi
-basedinformation retrieval [Rij89℄. Early attempts viewed aboutness as being a model-theoreti
 relation, that is a do
ument was 
onsidered as a sort of model in whi
h thequery was interpreted [BH94℄. More re
ent investigations have shown that about-ness is similar in many ways to nonmonotoni
 
onsequen
e [BL98, Bru96, BSW00,WSBC01, AG96℄. For example, an information 
arrier i is deemed to be about infor-mation 
arrier j, denoted i j=a j if the information borne by j holds in i. In otherwords, information 
arrier j is a summary or an abstra
tion of information 
arrier i.Information Pre
lusion: Not all information 
arriers 
an be meaningfully 
om-posed be
ause the information that they 
arry is 
ontradi
tory. In general, infor-mation 
arriers i and j are said to pre
lude ea
h other, denoted i ? j [BH94℄. Itis natural to assume that any fa
t pre
ludes its negation (i.e. i ? :i). This is the
on
ept of logi
al 
onsisten
y in 
lassi
al logi
. Within IR, information 
arriers natu-rally pre
lude ea
h other with respe
t to the information need of a user [Bru96℄. Forinstan
e, apple ? orange if the user just wants to retrieve information about applesrather than oranges.Adaptive information agents are intelligent agents whi
h hold beliefs about re-
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ontexts and predi
t the relevan
e of do
uments with respe
t to these beliefs.Sin
e retrieval 
ontexts will 
hange over time, the agents' beliefs about these retrieval
ontexts must also be revised promptly and appropriately. The AGM belief fun
tionsprovide a robust formalism to model the learning 
omponents of adaptive informa-tion agents. After presenting a do
ument to a user, an information agent will re
eivethe user's relevan
e feedba
k � about the do
ument. This feedba
k information isused to re�ne the agent's beliefs about the retrieval 
ontext, and the pro
ess is mod-elled by the AGM belief revision fun
tion K��. After obtaining the latest informationabout a retrieval 
ontext, the information agent de
ides if 
ertain do
uments shouldbe retrieved for its users. This pro
ess is underpinned by the expe
tation inferen
erelation K jKv d, where d is the logi
al representation of a do
ument. The appli
a-tion of expe
tation inferen
e to adaptive IR is slightly di�erent from its usage in atheoreti
al 
ontext. For instan
e, the emphasis is not on � jKv �, where � and � 
anbe viewed as an individual query and the representation of a do
ument respe
tively.Sin
e adaptive IR is 
on
erned about retrieving do
uments with respe
t to a set oflong-term re
urring queries, it makes sense to evaluate K jKv d, where K represents aretrieval 
ontext whi
h 
omprises all the related queries. The following dis
ussion isbased on the work presented in [LtHB99℄.An example is used to illustrate the belief revision pro
ess at the 
on
eptual level.If a user is interested in do
uments about Japanese, Buddhism, and Sushi, her initialinformation needs 
an be represented by a belief set: K = fjapanese; buddhism; sushig.



128 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEIf the user's information preferen
e shifts from Japanese to English later on, the infor-mation agent will employ the belief revision fun
tion to revise the belief of English toits belief set i.e. K�english. It is assumed that English ? Japanese is true in this 
ontext.This information pre
lusion relation 
an be dete
ted by observing a positive feedba
kfrom a do
ument 
ontaining information 
arrier English, and a negative feedba
k froma do
ument 
ontaining information 
arrier Japanese. Be
ause of English ? Japanese,a 
ontra
tion operation K�japanese must �rst be invoked to remove the belief Japanesefrom the belief set. In general, to implement preferential pre
lusion (?), both the be-lief revision fun
tion and the belief 
ontra
tion fun
tion are involved. The IR pro
ess
an be expressed in terms of belief revision operations su
h as i?j � (K�j )�i , wherei 2 IC+ and j 2 IC�. The AGM rationale of minimal and 
onsistent 
hanges is quiteappli
able in adaptive IR. With referen
e to this example, after in
orporating thenew belief English into the agent's knowledge base, the beliefs of Sushi and Buddhismshould remain be
ause the user is still interested in this information. Moreover, if thebelief english is in the belief set, the belief :english should not be there. It doesnot make sense to retrieve do
uments about English and not to retrieve do
umentsabout English at the same time. The AGM belief revision logi
 is able to maintainthe desirable properties exhibited in adaptive IR pro
esses. Sin
e epistemi
 entren
h-ment is used to 
onstru
t the AGM belief fun
tions, its validity in the 
ontext of IRshould be examined before applying this formalism to develop adaptive informationagents. The �ve postulates of epistemi
 entren
hment are examined with respe
t tothe fundamental IR 
on
epts. In general, beliefs are taken as information 
arriers,
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 entren
hment orderings 
an be interpreted as preferen
e orderings overinformation 
arriers in the 
ontext of IR. Then, a set of information 
arriers K is usedto partially 
apture a retrieval 
ontext.
(EE1): 8a; b; 
 2 K : a 6 b 6 
 implies a 6 
 (transitivity)In IR, it is believed that a user's information need imposes a preferential order-ing on the underlying set of do
uments [BL98℄. Furthermore, it is assumed that thepreferen
e relation is irre
exive and transitive. For example, if an information seekerprefers do
ument 
 over b, and do
ument b over a, then it means that she prefersdo
ument 
 over a. As do
uments are in fa
t information 
arriers, it implies thata transitive preferen
e relation exists among information 
arriers. Therefore, EE1 isvalid in the 
ontext of IR.
(EE2): 8a; b 2 K : a ` b implies a 6 b (dominan
e)To examine this property in the 
ontext of IR, the 
lassi
al (`) derivabilityrelation must �rst be interpreted in terms of IR 
on
epts. The aboutness relation (j=a)in IR seems a 
ounterpart of the derivability relation in 
lassi
al logi
. The left handside of the aboutness relation represents a spe
i�
 information 
arrier and the righthand side of the aboutness relation is an abstra
tion about the information 
arrier. Forexample, given an aboutness relation su
h as salmon j=a �sh, is salmon 6 fish? If we



130 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEinterpret 6 in terms of defeasibility, will \salmon" be a more defeasible information
arrier than \�sh"? In a query re�nement situation, assuming that a user is interestedin di�erent kinds of �sh, she may try out di�erent information 
arriers like \salmon",\tuna", \bream", et
. until she �nally re
eives some relevant information from theIR system. In other words, her beliefs about the information 
arriers 
hange from\salmon" to \tuna", and from \tuna" to \bream". Nevertheless, the informationneed is still represented by the information 
arrier \�sh". Therefore, the information
arrier of \�sh" is less defeasible than either \salmon", \tuna", or \bream". So, in aquery re�nement situation, the aboutness relation demonstrates the 
hara
teristi
 asdes
ribed by EE2.Brooks has 
ondu
ted a phenomenologi
al study about human per
eption intext-based obje
ts [Bro95℄. This study may provide further support of the validityof (EE2) among information 
arriers. In this study, hierar
hi
al thesauri 
apturingthe semanti
 relationships su
h as \generalisation" and \spe
ialisation" among textswere used to evaluate human per
eption about text relevan
e given the generalisationor spe
ialisation transformations of texts. These semanti
 relationships are essen-tially the information 
ontainment relations !T dis
ussed in the 
ontext of IR. Forexample, SoftwareAgent !T DistributedAI !T ComputerS
ien
es !T S
ien
es.In Brooks' study, it was found that the per
eived relevan
e of text would be bro-ken approximately after two semanti
 steps. For instan
e, if a user per
eives thatthe information 
arrier SoftwareAgent is relevant to her needs, both DistributedAI
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ien
es may also be 
onsidered as relevant (e.g., 2 steps). However,S
ien
es in general will not be 
onsidered as relevant with respe
t to her needs. Inaddition, it was found that per
eived relevan
e would be broken immediately if thetransformation between information 
arriers was 
ondu
ted from the opposite dire
-tion [Bro95℄. For instan
e, from DistributedAI to SoftwareAgent, a user may �ndthat SoftwareAgent is not really about her preferen
e ofDistributedAI whi
h impliesother topi
s su
h as DistributedConstraintSatisfa
tion more relevant to her spe
i�
interest. Therefore, if the derivability relation appearing in (EE2) is interpreted as theinformation 
ontainment relation, su
h a postulate 
aptures an information seeker'spreferen
e over information 
arriers. In other words, if Salmon !T Fish is true,Salmon 6 Fish 
an be established be
ause she prefers Fish as mu
h as Salmongiven the fa
t that she likes Salmon.(EE3): 8a; b 2 K : a 6 a ^ b or b 6 a ^ b (
onjun
tiveness)This property 
an be linked to the 
on
ept of spe
i�
ity in IR. From an IRpoint of view, more spe
i�
 terms should generally produ
e higher pre
ision results.Therefore, if given a 
hoi
e of information 
arrier a or information 
arrier a � b fordes
ribing a user's information need, a� b should be the preferred representation ofthe user's information needs. So, a 6 a� b or b 6 a� b mat
hes the 
hara
teristi
 ofpre
ision oriented IR. Nevertheless, in the 
ontext of IR, we must be 
areful about thesemanti
 
lash between information 
arriers. For example, if a ? b, a � b 
ertainlywill not be more useful than a alone. So, it is ne
essary to add su
h a 
ondition



132 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEto the original EE3 if we want to develop the postulates of epistemi
 entren
hmentpertaining to information 
arriers.However, the 
ombined result of (EE1) to (EE3) shows that a = a^b or b = a^bis true. In general, the assumption that both information 
arrier a and the informa-tion 
arrier a� b are about a user's information need is diÆ
ult to establish sin
e theuser's information need is 
ontingent. For example, if the user a
tually prefers moregeneral information, either a or b will be a better representation of her need. Hen
e,in a re
all oriented situation1, it may not be appropriate to state that a 6 a � b orb 6 a�b. The property 
an only be generalised in that any information 
arrier a is asuseful or entren
hed as itself plus another arbitrary information 
arrier i.e. a = a� bas long as their meanings do not 
lash.
(EE4): If K 6= K?; a =2 K i� 8b 2 K : a 6 b (minimality)If a set of information 
arriers K = fJapanese, Buddhism, Sushi g is used torepresent a user's information needs, the information 
arrier Japanese should only beremoved from this set if the user is no longer interested in information about Japanese.In other words, Japanese is the least preferred information 
arrier in the set. So, ingeneral, an information 
arrier should only be 
ontra
ted from a belief set if it isthe least entren
hed information 
arrier when 
ompared with all other information1This is an IR situation in whi
h the user is interested in retrieving as many relevant information
arriers as possible with respe
t to the given information need.
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arriers in the set. This 
onforms to the property of EE4.
(EE5): 8b 2 K : b 6 a implies ` a (maximality)This is another property whi
h 
an be used to 
apture the spe
ial 
ase in IR.Validity (` a) 
an be interpreted as information 
arrier a being true in all retrievalsituations. The 
on
ept of validity 
an be used by an information agent to handlespe
ial information requirements from a user. For instan
e, if a user wants to spe
ifya query that should not be dis
arded by the agent under any 
ir
umstan
es, she 
anassign the maximal entren
hment degree to the 
orresponding information 
arrierswith respe
t to an epistemi
 entren
hment ordering. As these information 
arrierswill be treated as valid formulae by the belief revision formalism, they will be retainedin the belief set until the user makes an expli
it request to delete them.In summary, the �ve postulates of epistemi
 entren
hment 
an be translated tothe following 
ounterparts whi
h 
hara
terise the preferen
e ordering among informa-tion 
arriers in the 
ontext of IR:

(IC-EE1): 8i; j; k 2 LT : i 6 j 6 k implies i 6 k(IC-EE2): 8i; j 2 LT : i j=a j implies i 6 j(IC-EE3): 8i; j 2 LT : if i 6? j, i 6 i� j or j 6 i� j(IC-EE4): If K 6= K?; i =2 K i� 8j 2 LT : i 6 j(IC-EE5): 8j 2 LT : j 6 i implies ` i



134 CHAPTER 3. BELIEF REVISION AND EXPECTATION INFERENCEThe 
lose resemblan
e of the postulates (e.g., IC-EE1 to IC-EE5) 
hara
teris-ing the preferen
e orderings of information 
arriers in IR and that 
hara
terising theepistemi
 entren
hment orderings of beliefs in rational agents provides the theoreti
albasis to apply the AGM belief revision framework to model 
hanging retrieval 
on-texts and represent these 
hanges as transitions among epistemi
 states in adaptiveinformation agents. In fa
t, the work reported in this se
tion is the �rst attempt ofevaluating the validity of the AGM belief fun
tions in the 
ontext of IR by analysingthe postulates of epistemi
 entren
hment orderings whi
h underpin the belief fun
-tions.



Chapter 4
An Agent-Based InformationFiltering System
This 
hapter illustrates how the AGM belief revision logi
 is applied to develop adap-tive information agents. In parti
ular, the learning and the 
lassi�
ation fun
tions ofthe agents are examined at the 
omputational level. An overview of an agent-basedinformation �ltering system (AIFS) is �rst provided. Issues regarding how to repre-sent do
uments and users' information needs are then dis
ussed. The 
omputationalalgorithm whi
h implements the AGM belief fun
tions is dis
ussed. Finally, the learn-ing and the 
lassi�
ation (predi
tion) me
hanisms of the adaptive information agentsare explained and highlighted with some examples.

135
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Figure 4.1: The System Ar
hite
ture of AIFS4.1 System Ar
hite
tureFigure 4.1 depi
ts the system ar
hite
ture of an agent-based adaptive information �l-tering system (AIFS). An interfa
e agent is situated on the 
lient side to 
ommuni
atewith a user. For ea
h information topi
 of interest, the user instru
ts the interfa
eagent to instantiate an adaptive information agent on the server side. Therefore, there
ould be a number of adaptive information agents serving a single user at the sametime. However, from the user's point of view, it is a single en
apsulated adaptive infor-mation agent. The mat
hing module of an adaptive information agent 
ompares thelogi
al representation d of ea
h in
oming information obje
t Do
 (i.e., a do
ument)with the representation K (i.e., the agent's knowledge base) of a retrieval 
ontextCtx. A retrieval 
ontext refers to a user's information needs and their ba
kground



4.1. SYSTEM ARCHITECTURE 137knowledge about a retrieval domain. If there is a suÆ
iently 
lose mat
h betweend and K, the do
ument together with the agent's unique ID will be transferred tothe output database. Therefore, every �ltered do
ument is asso
iated with the agentwho re
ommends the do
ument. Periodi
ally, an interfa
e agent extra
ts the �ltereddo
uments from the output database and presents these do
uments to the user basedon the mat
hing agent IDs. Presentations of the system's �ltering results in the formof summaries are also supported. In this mode, the interfa
e agent only deliver listsof do
ument headings (and URLs for Web pages) to the user. After viewing a par-ti
ular do
ument, the user may 
hoose to save the do
ument or invoke the feedba
kme
hanism to rate the do
ument. The interfa
e agents also observe the duration thata do
ument is viewed on the display window to infer the relevan
e of a do
ument. Ifthe review time of a do
ument ex
eeds a pre-de�ned threshold, the interfa
e agentswill infer that the user 
onsiders the do
ument as relevant.Manual or inferred feedba
k information is then transferred to the server side andstored along with the 
orresponding do
ument representation in the output database.At ea
h learning 
y
le (e.g. after n �ltered do
uments are viewed by a user), the learn-ing module of an information agent is a
tivated to analyse the relevan
e judgementinformation stored in the output database. The resulting statisti
al data is used toindu
e beliefs about a user's interests pertaining to a parti
ular topi
. The beliefsare then revised into the 
orresponding agent's knowledge base through the belief re-vision operations. In parti
ular, these beliefs whi
h represent the agent's per
eption



138 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMof a retrieval 
ontext are revised in a minimal and 
onsistent fashion. Moreover, ano�-line pro
ess is invoked regularly to mine the term asso
iation rules [JBB00℄ andthe information pre
lusion relations [Bru96℄ from the output database. These rulesare also revised into the agents' knowledge bases through belief revision operations.In AIFS, 
ollaborative �ltering is also supported. An information agent trained by auser 
an be deployed to the publi
 agent library. New users of the system 
an sear
hfor information agents spe
ializing in parti
ular information topi
s from the agent li-brary. Therefore, ar
hived information agents 
an re
ommend do
uments to new usersbased on the preferen
es of similar users. The kernel module (i.e., the learning andthe mat
hing modules of adaptive information agents) of AIFS has been implemented.The system was evaluated based on the TREC-AP 
olle
tion and the Reuters-21578
olle
tion. Details of these experiments are provided in the next 
hapter.
4.2 Do
ument RepresentationCon
eptually, there are two levels of do
ument representation in AIFS. At the physi
allevel, a do
ument is 
hara
terised by a set of terms. Su
h a term-based representationis 
ommonly found in IR systems [Sal89, SM83℄. In the 
urrent prototype system, aterm is a keyword extra
ted from a do
ument. At the symboli
 level, a do
ument isrepresented by a set of atoms of a 
lassi
al logi
 language L. After an informationobje
t is retrieved from an external sour
e, the AIFS system will parse the obje
tto extra
t the text elements. For instan
e, video, audio, and exe
utable 
odes are



4.2. DOCUMENT REPRESENTATION 139removed at this stage. In addition, non-informative elements su
h as HTML tags areignored. The result is a plain text �le without any mark-up tags, images, nor em-bedded exe
utable obje
ts. The stop word removal pro
edure is followed to removeinsigni�
ant 
ommon words based on a pre-de�ned stop word list. The stop word listused in AIFS is developed based on the di
tionary found in the SMART system [Sal90℄(ftp://ftp.
s.
ornell.edu/pub/smart/). All text is then folded to lower 
ases.Non-alphabeti
 
hara
ters are removed from a word be
ause our theorem prover 
an-not deal with spe
ial 
hara
ters. A stemming pro
edure is then applied to 
omputethe root form of ea
h word by applying Porter's stemming algorithm [Por80℄. Forinstan
e, the terms 
omputer, 
omputing, 
omputation are all transformed to 
omputafter a stemming pro
ess. The TFIDF weighting s
heme (also 
alled the \at
" weightin SMART) is applied to 
ompute the TFIDF value of ea
h term [SB88℄. In parti
ular,Eq.(2.1) illustrated in Se
tion 2.1 of Chapter 2 is used to 
ompute the term weights.A

ording to previous resear
h, using a small subset of terms to represent a do
umenthas led to improved retrieval performan
e [BS95, Bal97, PB97℄. Therefore, only thetop n tokens ranked by the TFIDF weights are used as the initial representation ofa do
ument. The parameter n is derived by applying a per
entage � to the averagelength of do
uments 
a
hed in AIFS.At the symboli
 level of do
ument representation, ea
h term t present at thephysi
al level is mapped to the ground term of the positive keyword predi
ate (i.e.,pkw(t)) if the 
hosen representation language is predi
ate logi
. The intended inter-



140 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMpretation of these atoms su
h as pkw(t) is that they are satis�ed in a do
ument Do
(i.e., Do
 j= pkw(t)) if Do
 is taken as a model [CC92, Lal98℄. For example, if Do
 =ftext; agent; web; : : :g is the do
ument representation at the physi
al level, the 
orre-sponding symboli
 representation will be d = fpkw(text); pkw(agent); pkw(web); : : :g.In Losada and Barreiro's logi
al IR model [LB99℄, positive literals of L represent to-kens whi
h are about a do
ument, whereas negated literals represent tokens whi
hare not about a do
ument. Nevertheless, in pra
ti
e, there are usually a large num-ber of tokens whi
h are not about the 
ontent of a parti
ular do
ument. Therefore,if negated literals are used to represent do
uments, it may lead to serious represen-tational and 
omputational problems. Moreover, given the fa
t that only imperfe
t
hara
terisations of do
uments 
an be a
hieved [Lal98℄, it is very diÆ
ult to distin-guish if a token is not about a do
ument or it is a missing des
riptor of the do
ument.The proposed do
ument representation s
heme a
knowledges the problem of partial-ity in do
ument representation [Lal98℄. The un
ertainties arising from mat
hing theimperfe
t 
hara
terisations of do
uments with the partial representations of retrieval
ontexts are managed through the belief revision operations and the related expe
-tation inferen
e me
hanisms. For a more eÆ
ient implementation, a term present atthe physi
al level is translated to a propositional letter of a 
lassi
al propositionallanguage. In fa
t, it is obvious that if a term t is mapped to the ground term of apredi
ate pkw(t), it is equivalent to a proposition be
ause the interpretation of theformula is either true or false dependent on whether the term t is 
ontained in thedo
ument or not. Therefore, the 
omputationally more expensive �rst order repre-



4.3. INDUCTION OF EPISTEMIC ENTRENCHMENT ORDERINGS 141sentation may not bring extra bene�t for do
ument representation when 
omparedwith the propositional representation. The implemented prototype system supportsboth the �rst order and the propositional do
ument representations. However, allthe experiments reported in this thesis are based on the propositional do
ument rep-resentation. In parti
ular, the 
lassi
al propositional Horn language LHorn is usedto represent do
uments and retrieval 
ontexts. With referen
e to the previous do
-ument example, the propositional representation of the do
ument at the symboli
level is simply d = ftext; agent; web; : : :g. In other words, it is a dire
t translationfrom a term to a propositional letter with the interpretation that the proposition issatis�ed with respe
t to the asso
iated do
ument. For a pra
ti
al implementation ofan adaptive IR system, ea
h do
ument representation is augmented with some extrainformation su
h as the title of a do
ument, the name of an author, the URL (for aWeb do
ument), et
. to fa
ilitate subsequent retrieval of the do
ument.
4.3 Indu
tion of Epistemi
 Entren
hment Order-ingsThe AGM belief revision fun
tions and the 
orresponding expe
tation inferen
e rela-tions are 
onstru
ted based on the epistemi
 entren
hment orderings of beliefs [GM88,GM94℄. Therefore, the �rst step towards building the learning and the 
lassi�
a-tion me
hanisms of adaptive information agents is to develop an automated meansof indu
ing the epistemi
 entren
hment orderings. From the 
lassi�
ation point of



142 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMview, the purpose of entren
hment indu
tion is to identify highly entren
hed beliefsor disbeliefs about a user's information needs so that an information agent 
an drawsensible 
on
lusions about the relevan
e of do
uments with respe
t to these beliefs.In this sense, the pro
ess of entren
hment indu
tion is similar to the pro
ess of fea-ture sele
tion, whi
h identi�es the most prominent subset of features for learning and
lassi�
ation, in the 
ontext of ma
hine learning [YP97℄. Intuitively, if a term oftenappears in the set of do
uments D+ judged as relevant by a user, it is a good indi-
ator of the user's positive interest [KYMW97℄. A

ordingly, these positive terms orkeywords be
ome the agent's beliefs about the user's information needs. In addition,if a term frequently appears in the set of non-relevant do
uments D� judged by theuser, it be
omes a disbelief in the agent's knowledge base.The sear
h for an e�e
tive entren
hment indu
tion method stems from the area ofinformation theory [Man87, Los99℄. In fa
t, G�ardenfors also pointed out that it wouldbe possible to develop a quantitative evaluations of the \degree of 
hange" based oninformation theoreti
 measures (e.g., based on the 
on
ept of entropy) [G�ar88℄. Theamount of information I 
arried by an event e 
an be measured in terms of bits:I(e) = � log2 Pr(e) where I(e) is the information 
ontent of an event e and Pr(e)is the probability that the event e o

urs. The expe
ted amount of informationgenerated from a system S whi
h 
onsists of multiple events ei is measured by theentropy H(S) and is de�ned by: H(S) = �Pi Pr(ei) log2 Pr(ei) where Pr(ei) is theprobability of the o

urren
e of an event ei in a system S. In addition, the notion of



4.3. INDUCTION OF EPISTEMIC ENTRENCHMENT ORDERINGS 143mutual information (MI) between two events x and y is used to measure the inter-dependen
y between these events and is de�ned by: log2 Pr(x^y)Pr(x)Pr(y) . In the 
ontext ofIR, MI is often used to measure the asso
iation between terms or the dependen
ybetween a term t and a 
lass 
 2 frelevant; non-relevantg. In parti
ular, mutualinformation for text 
ategorisation tasks is de�ned as [YP97℄:
MI(t; 
) = log2 Pr(t ^ 
)Pr(t)Pr(
) (4.1)whereMI(t; 
) is the mutual information between a term t and a 
lass 
, and Pr(t^
)is the joint probability that a term appears in a do
ument with a 
lass label 
 (e.g.,relevant or non-relevant). This formulation is suitable for IR tasks be
ause there 
ouldbe a large number of terms not appearing in a do
ument (i.e., Pr(:t)), and their ab-sen
e does not 
ontribute mu
h to the pro
ess of 
lassi�
ation. A

ordingly, the fo
usis on the mutual information MI(t; relevant) between the presen
e of a term t andthe relevant 
lass rather thanMI(:t; 
). It is interesting to �nd that theMI measure
oin
ides with the interpretation of entren
hed beliefs in the proposed adaptive agentframework. For instan
e, if a term has strong asso
iation with the set of relevant do
-uments (i.e., MI(t; relevant)), it be
omes a strong belief for representing a user's in-formation need. Based on the notion of entropy, 
ross entropy, also 
alled 
onditionalmutual information, is de�ned by: CMI(xi; y) = Pj Pr(yjjxi) log2 Pr(yj jxi)Pr(yj) . Then,expe
ted 
ross entropy EH(x; y) is de�ned by: Pi Pr(xi)Pj Pr(yjjxi) log2 Pr(yj jxi)Pr(yj) .In fa
t, expe
ted 
ross entropy is also referred to as information gain in the ma
hine
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h 
ommunity [Qui86℄. So, the following equivalen
e relation is estab-lished: EH(x; y) = InformationGain(x; y) = H(x) � H(xjy) where H(xjy) is the
onditional entropy of x given y; the variable y normally refers to a spe
i�
 feature.Expe
ted 
ross entropy has been applied to binary text 
lassi�
ation problem and theformulation in su
h a 
ontext is [KS97℄:
EH(t; C) = Pr(t)X
2C Pr(
jt) log2 Pr(
jt)Pr(
) (4.2)where EH(t; C) is the expe
ted 
ross entropy for a term t with respe
t to two 
lassesC = frelevant; non-relevantg, and Pr(
jt) is the 
onditional probability that a do
u-ment d is asso
iated with a parti
ular 
lass label 
 2 C given that the term t appearsin d. The main di�eren
e between the formulation in Eq.(4.2) and the general no-tion of expe
ted 
ross entropy EH(x; y) is that Eq.(4.2) (expe
ted 
ross entropy fortext 
lassi�
ation) is only normalised by the probability of term appearan
e insteadof averaging the 
ross entropy CMI by term presen
e and term absen
e. Again theintuition of su
h a formulation is that many terms are not 
ontained in a do
ument.Considering term absen
e may only in
rease 
omputational 
omplexity without im-proving 
lassi�
ation a

ura
y. Be
ause of the su

ess of expe
ted 
ross entropy fortext 
lassi�
ation Eq.(4.2), this measure is 
onsidered as one of the 
andidates forentren
hment indu
tion.Based on the statisti
al method of Kullba
k divergen
e, whi
h is often used tomeasure the distan
e between two probability distributions, a measure 
alled Keyword



4.3. INDUCTION OF EPISTEMIC ENTRENCHMENT ORDERINGS 145Classi�er KC was developed for adaptive text �ltering [KYMW97℄. The keyword
lassi�er was used to distinguish among positive keywords whi
h represent a user'spositive information interests, negative keywords whi
h indi
ate what the user dislikes,and neutral keywords whi
h are not good indi
ators of what the user likes or dislikes.Formally, the measure of KC is de�ned by:
KC(t) = tanh�df(t)� �� �Pr(
1jt) log2 Pr(
1jt)Pr(
1) � Pr(
2jt) log2 Pr(
2jt)Pr(
2) � (4.3)where df(t) is the do
ument frequen
y of a term t and it is simply the number ofdo
uments 
ontaining t in the 
olle
tion. The term � is a user de�ned parameterto 
ontrol the learning rate. The 
lass value 
1 represents the relevant 
lass and the
lass value 
2 represents the non-relevant 
lass. The 
onditional probability Pr(
1jt)is the estimated probability that a do
ument is relevant given that the term t appearsin the do
ument. Observe that the two terms inside the square bra
kets in Eq.(4.3)are exa
tly the same elements to be summed in Eq.(4.2) (expe
ted 
ross entropy fortext 
lassi�
ation). The only di�eren
e is that a substra
tion instead of an additionis applied to these terms in Eq.(4.3). This similarity may not be purely driven by
oin
iden
e, but rather the adoption of slightly di�erent views to model the samereality.It is believed that the probability ranking prin
iple [Rob77℄ is one of the most in-
uential prin
iples within information retrieval theory [LC01℄. This prin
iple suggests
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uments should be 
omputed based on the odds of the estimated
onditional probabilities Pr(dj
1) and Pr(dj
2) where 
1 and 
2 represent the relevant
lass and the non-relevant 
lass respe
tively. Along the same line of wisdom, theOdds Ratio OR was proposed to predi
t the 
lass values given the presen
e of a termt in a do
ument [vRHP81℄. In parti
ular, Odds Ratio is used to rank do
umentswith respe
t to a given query based on the appearan
e of some terms in the do
u-ments. Su
h a ranking is derived by: R(d; 
1) = log2 Pr(
1jd)Pr(
2jd) = log2 Pr(
1)Qj Pr(tj j
1)Pr(
2)Qj Pr(tj j
2) =Pj OR(tj)m + k, where OR(tj) is the odds ratio for a term tj 
ontained in a do
-ument d and m is a Boolean variable indi
ating if a term appears in the do
ument(m = 1) or not (m = 0). The term k de�nes a 
onstant to establish the baseline ofthe do
ument s
ores. The odds ratio OR(t) for a term t is formally de�ned by:
OR(t) = log2 odds(tj
1)odds(tj
2) (4.4)

odds(x) = 8>>>>>><>>>>>>:
Pr(x)1�Pr(x) if Pr(x) 6= 0 ^ Pr(x) 6= 11n21� 1n2 if Pr(x) = 01� 1n21n2 if Pr(x) = 1 (4.5)

where odds(x) is the odds for an event x, and n is the total number of trainingexamples (i.e., do
uments with relevan
e judgement). In the 
ontext of adaptiveinformation agents, n denotes the number of do
uments viewed by a user.The 
andidate methods whi
h are 
onsidered for entren
hment indu
tion so far
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lude Expe
ted Cross Entropy for text Eq.(4.2), Mutual Information Eq.(4.1), Key-word Classi�er Eq.(4.3), and Odds Ratio Eq.(4.4). As epistemi
 entren
hment degreesare de�ned in the unit interval [0; 1℄, the following formula is used to normalise theraw term s
ore S(t) 
omputed a

ording to the aforementioned measures to the unitinterval:
SS(t) = S(t)� S(t)minS(t)max � S(t)min (4.6)

where SS(t) is the s
aled term s
ore and S(t) is the raw term s
ore as derived from oneof the 
andidate methods for entren
hment indu
tion. S(t)max and S(t)min representthe maximal term s
ore and the minimal term s
ore respe
tively. These values areestimated based on a trial run over the entire do
ument 
olle
tion. Apart from these
andidate methods, the TFIDF measure as de�ned in Eq.(2.1) is also 
onsideredfor the task of entren
hment indu
tion. As the TFIDF ve
tor asso
iated with ea
hdo
ument is subje
t to 
osine normalisation, it is not ne
essary to apply Eq.(4.6) tos
ale the term weights. The standard Ro

hio method is used to revise the TFIDFweights of terms. Based on an initial query (e.g., a topi
 des
ription), a set of positivedo
uments and a set of negative do
uments, the top n terms ranked by normalisedTFIDF weights in the prototype ve
tor are 
onverted to a set of beliefs in an agent'sknowledge base. The Ro

hio learning method is de�ned by [Ro
71℄:
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�!Q i+1 = ��!Q i + � 1jRjXd2R�!d � 
 1jN � RjXd62R�!d (4.7)where standard parameters (e.g., � = 1; � = 0:75; 
 = 0:25) were applied to theRo

hio formula in our experiments. �!Q i+1 is the prototype ve
tor (i.e., a user pro�le)at time point i+1 and �!Q i is the prototype ve
tor 
ontaining the initial term weights.The term jRj represents the 
ardinality of the set R of relevant do
uments judged bya user and the set N represents the total number of do
uments parsed in a learning
y
le. So, N � R is the set of non-relevant do
uments. If an agent updates itsprototype ve
tor �!Q i after pro
essing ea
h training do
ument, there is no need to
ompute the average weights. Therefore, the fa
tors 1jRj and 1jN�Rj are not applied.In the experiment related to the Ro

hio-based entren
hment indu
tion method, thelearning 
y
le was set to 500 (i.e., N = 500). Su
h a value is derived a

ording toseveral trial runs for balan
ing between 
omputational time and retrieval e�e
tiveness.New terms found in a positive training do
ument are used to expand the prototypeve
tor �!Q i+1.

4.4 Representing Users' Information NeedsA retrieval 
ontext is mainly 
hara
terised by a user's information needs. The user'sinformation needs or preferen
es are formally represented by the epistemi
 entren
h-ment orderings of beliefs in adaptive information agents. At the implementation level,
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 entren
hment orderings are represented by �nite partial entren
hment rank-ing (B) that ranked the senten
es of a theory in LHorn with the minimum possibledegree of entren
hment (6B). Se
tion 4.3 des
ribed the intuition and some 
andidatemethods for entren
hment indu
tion. This se
tion des
ribes the standard entren
h-ment indu
tion method used in the 
urrent prototype system and gives a 
ompleteexample of how to represent a user's information needs in an agent's knowledge base.Figure 4.2 visualises a sample of 10 training do
uments and the distribution of thesedo
uments inD+ and D� respe
tively. Ea
h do
ument represented by a re
tangle box
ontains a set of terms su
h as fbusiness; insuran
e; system; : : :g. This small train-ing set stored in AIFS's output database will be used for the entren
hment indu
tionexample dis
ussed in this se
tion.Although it was found that the keyword 
lassi�er KC performed well for sometext �ltering tasks [KYMW97℄, our 
urrent experiments show that a modi�ed versionof the keyword 
lassi�er 
alled MKC is the most e�e
tive one among the 
andidatesfor entren
hment indu
tion sin
e the MKC method 
an take into a

ount asymmetri

lass value distribution typi
ally found in information �ltering appli
ations. Thedetails about the empiri
al evaluations of all the 
andidate methods are reported inChapter 5. TheMKC method de�ned below is the default method used in the 
urrentprototype system of AIFS:
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Figure 4.2: Relevant do
. D+ and Non-relevant do
. D�
MKC(t) = �� tanh �df(t)� � Pr(
1jt) log2 Pr(
1jt)Pr(
1) � df(t)� Pr(
2jt) log2 Pr(
2jt)Pr(
2) �(4.8)� and � are the learning thresholds for positive terms and negative terms respe
tively.The negative learning threshold is de�ned by: � = Pr(
2)Pr(
1)��. In other words, the neg-ative learning threshold is proportional to the estimated probability that an arbitrarydo
ument is non-relevant and inversely proportional to the estimated probability thatan arbitrary do
ument is relevant. The term df(t)� or df(t)� is used to sele
t the verypositive or negative keywords for belief generation. The hyperboli
 tangent fun
tion
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ts the MKC values into the interval [�1; 1℄. The adjustment fa
tor �ensures that all the entren
hment degrees indu
ed are less than the maximal degree(e.g., 1) be
ause beliefs indu
ed in this way are 
ontra
table (defeasible) from theagents' point of view. Pr(
1jt) = df(trel)df(t) is the estimated 
onditional probability thata do
ument is relevant (i.e., 
lass 
1) given that it 
ontains the term t. It is expressedas the fra
tion of the number of relevant do
uments whi
h 
ontain the term t overthe total number of do
uments whi
h 
ontain t. Similarly, Pr(
2jt) = df(tnrel)df(t) is theestimated 
onditional probability that a do
ument is non-relevant (i.e., 
lass 
2) ifit 
ontains the term t. In addition, Pr(
1) = jD+jjD+j+jD�j is the estimated probabilitythat a do
ument re
ommended by an agent is relevant, and Pr(
1) = jD�jjD+j+jD�j isthe estimated probability that a do
ument is non-relevant. Stri
tly speaking, a terms
ore returned byMKC(t) should be interpreted as the preferen
e value of the term tdriven by a user's spe
i�
 information needs. A

ording to the de�nition of �nite par-tial entren
hment ranking de�ned in Chapter 3, entren
hment degrees are in the unitinterval [0,1℄. So, it is ne
essary to 
onvert the raw preferen
e values indu
ed by theMKC method to the 
orresponding epistemi
 entren
hment degrees. The entren
h-ment degree B(�t) of a belief �t pertaining to a term t is derived by applying Eq.(4.9)to the 
orresponding preferen
e value returned by MKC(t). Moreover, to improve
omputational eÆ
ien
y, the preferen
e values of terms are 
ompared with a prefer-en
e threshold � su
h that only signi�
ant beliefs are indu
ed and revised into theagents' knowledge bases. This pro
edure is essential for a pra
ti
al implementationof the belief revision formalism sin
e ea
h belief revision operation is 
omputationally



152 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMTerms df(trel) df(tnrel) MKC(t) Formula: �t B(�t)business 5 0 0.724 business 0.605
omputing 0 4 -0.631 :
omputing 0.473insuran
e 3 0 0.510 insuran
e 0.300s
ien
e 0 2 -0.361 :s
ien
e 0.087
ommer
e 5 4 0.266 - -system 5 5 0 - -Table 4.1: Indu
tion of Preferen
e Values by MKCexpensive, and hen
e the number of revisions should be minimised. A

ording to ourempiri
al study, a large number of trivial belief revision operations are saved if thesystem fo
uses on a subset of highly entren
hed beliefs. By using an extra �lter toremove noisy features, the agents' 
lassi�
ation a

ura
y may be improved be
auseonly the reliable information is used to infer do
ument relevan
e. The minimum en-tren
hment degree B(�t) of an expli
it belief �t representing a user's preferen
e for aterm t is derived by:
B(�) = 8>><>>: (jMKC(t)j��)1�� if jMKC(t)j > �0 otherwise (4.9)A positive MKC(t) implies that the asso
iated term t is a positive keyword.The 
orresponding belief is represented by a positive literal of LHorn. If the repre-sentation language is a 
lassi
al �rst order language, the token t will be mapped tothe ground term of the pkw predi
ate (i.e., pkw(t)). Sin
e our belief revision en-gine is language independent, the AIFS system 
an pro
ess beliefs represented by apropositional language or a �rst order language. However, the experiments reported
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lassi
al propositional Horn language LHorn. A neg-ative preferen
e value indi
ates that t is a negative keyword, and the 
orrespondingdisbelief is represented by a negated proposition su
h as :t, or :pkw(t) in the 
aseof a �rst order representation. If the absolute preferen
e value jMKC(t)j is belowa threshold value �, the asso
iated token is 
onsidered neutral. Neutral tokens arenot represented in the agents' knowledge bases. For the examples des
ribed in this
hapter, � = 0:95, � = 0:3, and the learning threshold � = 5 are assumed. Table 4.1summarises the results of applying Eq.(4.8) and Eq.(4.9) to the training do
umentsdepi
ted in Figure 4.2. The 
ardinality of the positive training set equals that of thenegative training set (i.e., jD+j = jD�j = 5). The �rst 
olumn in Table 4.1 shows theterms t extra
ted from the training do
uments. The se
ond and the third 
olumnsshow the frequen
ies of these terms in D+ and D� respe
tively. By applying Eq.(4.8)to the training examples shown in Figure 4.2, the preferen
e value of ea
h term t is
omputed and listed in the fourth 
olumn. The �fth 
olumn lists the beliefs indu
edfrom the training examples. The last 
olumn shows the entren
hment degrees B(�t)of the 
orresponding beliefs �t. The entren
hment degrees of the beliefs 
ommer
eand system are zero be
ause the preferen
e values of these terms are below the pref-eren
e threshold �. The \-" in Table 4.1 indi
ates that the beliefs are not indu
ed. Ifthe information dis
losed in Table 4.1 is used qualitatively, the indu
ed �nite partialentren
hment ranking looks like:
business > :
omputing > insuran
e > :s
ien
e



154 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMFigure 4.3 depi
ts a learning interfa
e of the 
urrent prototype system. Theupper panel shows the parameters passed to an adaptive information agent. Theseparameters in
lude the belief revision algorithm used, the learning thresholds (e.g.,� and �), the frequen
y of learning (i.e., learning 
y
le), the preferen
e threshold �,the entren
hment adjustment fa
tor �, the revision sensitivity threshold, and the �lenames linked to the training do
ument set. These �les are used to store the do
u-ments as well as the relevan
e judgement information for the TREC-AP experiments.The revision sensitivity threshold is another me
hanism used to minimise the 
om-putational 
ost of belief revision. Only those beliefs with an a

umulated 
hange ofentren
hment degree greater than the sensitivity threshold sin
e the previous learn-ing 
y
le will be revised into an agent's knowledge base. The lower left panel inFigure 4.3 listed the ten training do
uments and the 
orresponding user's judgement.The lower right panel shows the 
ontent of the agent's theory base after learning theuser's preferen
es.
4.5 The Rapid Anytime Maxi-Adjustment Algo-rithmIndu
ing the epistemi
 entren
hment orderings based on users' preferen
es over do
-uments is only the �rst step of a learning pro
ess in adaptive information agents.The agents a
tually learn the users' preferen
es by revising the 
orresponding be-liefs into the agents' knowledge bases via the AGM belief revision operations in the
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Figure 4.3: Indu
ing a user's information preferen
eslight of information derived from users' relevan
e feedba
k. At the 
omputationallevel, the belief revision pro
esses are not only taken as adding or removing beliefsfrom an agent's knowledge base but also the transmutations of the underlying �nitepartial entren
hment rankings B. Chapter 3 illustrated two transmutation methods,namely Maxi-adjustment and RAM. The Rapid Anytime Maxi-adjustment (RAM)method proposed in this thesis is an improvement over the original maxi-adjustmentmethod developed by Williams [Wil96b℄. The RAM method is faster than the maxi-adjustment method as demonstrated by our empiri
al testings reported in Chapter 5.Moreover, the RAM method still adheres to the AGM belief revision prin
iples. Forinstan
e, the properties (PER1) - (PER3) of �nite partial entren
hment rankings B
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e the postulates (EE1) - (EE5) of epistemi
 entren
hment are maintained forany entren
hment ranking B transmuted by the RAM method.This se
tion illustrates the details of the Rapid Anytime Maxi-adjustment al-gorithm implemented in the prototype agent system AIFS. Invoking the AGM belieffun
tions and hen
e the RAM transmutation algorithm involves a 
lassi
al theoremprover. Early attempts were made to 
onstru
t our belief revision engine basedon the SATEN belief revision system [WS00℄ whi
h is equipped with a �rst or-der theorem prover 
alled Vader. Unfortunately, some fundamental programmingproblems of the Vader theorem prover prevented us from doing so. Eventually, abrand new belief revision engine was developed on top of the SICStus Prolog system(http://www.si
s.se/ps/si
stus.html), a 
ommer
ially available Prolog system.The Prolog inferen
e engine is the work horse to 
ondu
t 
lassi
al theorem proving.Our Java-based agent system utilises the Jasper Java interfa
e supported by SICStusProlog to 
ommuni
ate with the SICStus inferen
e engine.The main fun
tion RapidMaxi() of the RAM algorithm takes a �nite partial en-tren
hment ranking OldB, a belief �, the new entren
hment degree Ndegree of �, anda time limit in milli-se
onds as inputs and returns a revised �nite partial entren
hmentranking NewB as output. The high level de�nition of the RAM method presented inChapter 3 assumes that the belief � is a 
ontingent senten
e. The 
omputational al-gorithm of the RAM method illustrated in this 
hapter 
an deal with the ex
eptional
ases (e.g., tautologies). The RapidMaxi() main fun
tion �rst 
omputes the exist-
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hment degree Odegree of the belief � by invoking the Degree fun
tion.The Degree fun
tion is developed a

ording to De�nition 4 de�ned in Chapter 3. Ifthe entren
hment degree of the 
orresponding disbelief :� equals the maximal de-gree (i.e., 1 in our 
urrent implementation), it means that ` :� is true. A

ordingto the AGM 
ontra
tion fun
tion as de�ned by the (C-) 
ondition, the 
orrespond-ing belief set K (i.e., 
ontent(B)) will not be revised. Under su
h 
ir
umstan
e, theRapidMaxi() fun
tion is terminated by returning the old theory base OldB. If thisis not the 
ase, the new entren
hment degree Ndegree of � is 
ompared with its ex-isting degree Odegree to determine if a revision fun
tion Revision() or a 
ontra
tionfun
tion Contra
tion() should be 
alled next. In either 
ase, the algorithm exits byreturning a new theory base NewB.
FUNCTION RapidMaxi(OldB, �, Ndegree, TimeLimit)Odegree := Degree(OldB; �)REMARKS: MaxDegree = 1 in our implementationIF Degree(OldB;:�) = MaxDegreeRETURN OldBENDIFIF Ndegree � Odegree



158 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMNewB := Revision(OldB, �, Odegree, Ndegree, TimeLimit)ELSE NewB := Contra
tion(OldB, �, Odegree, Ndegree, TimeLimit)ENDIFRETURN NewBEND FUNCTIONThe AGM belief revision fun
tion is implemented by the fun
tion Revision()whi
h raises the degree of a belief � to Ndegree. The Revision() fun
tion �rst 
he
ksif the new entren
hment degree equals the minimal degree (i.e. 0 in our implemen-tation). If it is true, a trivial revision is done by returning the existing theory baseOldB. If the entren
hment degree of :� is greater than the minimal degree (i.e.,:� 2 K), the 
ontra
tion fun
tion Contra
tion() must �rst be invoked to remove :�to ensure that the new belief set K = 
ontent(BNewB) remains 
onsistent. If :� 62 Kholds, a revision operation (i.e., raising the degree of � to Ndegree based on OldB)is performed immediately. One of the main tasks of the Revision() fun
tion is toidentify and extra
t the problemati
 segment of beliefs ProblemB from the existingtheory base OldB. Therefore, the algorithm will transmute the entren
hment degreesof beliefs in the problemati
 segment with the help of a theorem prover. In this sense,HighB and LowB represent the segments of the existing theory base OldB whi
h arenot a�e
ted by the belief revision operation. Therefore, beliefs from these segments
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opied to the new theory base NewB. The Cut() fun
tion extra
ts asegment of beliefs from a given theory base a

ording to a starting point and an end-ing point expressed by the ranks of the beliefs residing at these points. The Rank()fun
tion 
onverts a given entren
hment degree to the 
orresponding rank with respe
tto a theory base. A portion of the new theory base newB is safely 
onstru
ted byNewB := HighB + (�;Ndegree) sin
e the entren
hment degrees of the beliefs inHighB are not a�e
ted by the belief revision operation. As su
h an operation doesnot invoke the theorem prover, it 
an be �nished qui
kly. The FOR . . . NEXT loopenumerates ea
h element of ProblemB and 
arries out the main revision fun
tion.For ea
h looping, the ElaspsedT ime() fun
tion returns the elapsed time sin
e theRevision() fun
tion is exe
uted, and this elapsed time is 
ompared with the maxi-mum duration T imeLimit allowed for a belief revision operation. If the elapsed timeex
eeds the time limit, the main loop is terminated and the Revision() fun
tion willreturn the una�e
ted theory base segments plus any revised beliefs from the problem-ati
 theory base segment. Therefore, the returned approximation of the new theorybase NewB is guaranteed to maintain the properties of �nite partial entren
hmentrankings. Essentially, for ea
h senten
e � = ProblemB[x℄:belief from the problemati
belief segment ProblemB, it is ne
essary to 
he
k if any beliefs ranked stri
tly higherthan � 
an 
lassi
ally entail (`) �. If this is the 
ase, the property (PER1) of �nitepartial entren
hment rankings (i.e., the dominan
e property (EE2)) is violated, andso the minimal 
hange to restore (PER1) is to raise the degree of � to Ndegree ordegree(BNewB; � ! �) depending on whi
h one is 
loser to the existing degree of �.



160 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMThe Beliefs() fun
tion extra
ts a set of senten
es from a given theory base segment.The Proved() fun
tion returns true if a senten
e (e.g., ProblemB[x℄:belief) is a log-i
al 
onsequen
e of the set of senten
es (i.e., axioms) 
urrently held in the theoremprover. The axioms are added to the theorem prover via the AddAxioms() fun
tion.
FUNCTION Revision(OldB, �, Odegree, Ndegree, TimeLimit)REMARKS: MinDegree = 0 in our implementationIF Ndegree = MinDegreeRETURN OldBENDIFNegDegree := Degree(OldB;:�)IF NegDegree > MinDegreeOldB := Contra
tion(OldB, :�, NegDegree, MinDegree, TimeLimit)ENDIFREMARKS: Theory base without :�IF Ndegree > OdegreeHighB := Cut(OldB, Rank(MaxDegree), Rank(Ndegree))ProblemB := Cut(OldB, Rank(Ndegree)+1, Rank(Odegree))



4.5. THE RAPID ANYTIME MAXI-ADJUSTMENT ALGORITHM 161LowB := Cut(OldB, Rank(Odegree)+1, Rank(MinDegree))NewB := HighB + (�, Ndegree)FOR x := 1 TO NoElements(ProblemB)IF ElapsedTime() > TimeLimit AND TimeLimit > 0EXITENDIFIF ProblemB[x℄.belief = �SKIP NEXTENDIFprover := NEW TheoremProver()AddAxioms(prover, Beliefs(Cut(NewB, Rank(MaxDegree), Rank(Ndegree))))IF Proved(prover, ProblemB[x℄.belief)ProblemB[x℄.degree := NdegreeNewB := NewB + ProblemB[x℄ELSEREMARKS: beliefs ranked higher than ProblemB[x℄.belief



162 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMFOR y := 1 TO x - 1IF NOT Exist(NewB, ProblemB[y℄.belief)AddAxioms(prover, ProblemB[y℄.belief)ENDIFIF Proved(prover, ProblemB[x℄.belief)ProblemB[x℄.degree := ProblemB[y℄.degreeEXITENDIFNEXTNewB := NewB + ProblemB[x℄ENDIFNEXTREMARKS: Existing normalised lower end theory baseREMARKS: Could be emptyNewB := NewB + LowBELSEREMARKS: IF Ndegree = Odegree AND � 62 exp(BOldB)



4.5. THE RAPID ANYTIME MAXI-ADJUSTMENT ALGORITHM 163IF NOT Exist(OldB; �)NewB := NewB + (�, Ndegree)ENDIFENDIFRETURN NewBEND FUNCTIONThe AGM belief 
ontra
tion fun
tion is implemented by Contra
tion() whi
hlowers the existing degree Odegree of a belief � to Ndegree. The Contra
tion()fun
tion �rst 
he
ks if the new entren
hment degree Ndegree equals the existing de-gree Odegree. If this is true, a trivial 
ontra
tion is done by returning the existingtheory base OldB. For a non-trivial 
ontra
tion operation, the problemati
 segmentof beliefs ProblemB and the segments HighB and LowB whi
h are supposed tobe inta
t are identi�ed based on the existing theory base OldB. A portion of thenew theory base NewB is 
onstru
ted by 
opying the beliefs from segment HighB.A

ording to the AGM prin
iple, if a belief � is 
ontra
ted from a belief set, theother beliefs whi
h entail � should also be 
ontra
ted. Therefore, all the senten
esof HighB are also added to the theorem prover to test if any beliefs ranked stri
tlyhigher than � logi
ally entail �. The main FOR . . . NEXT loop 
ontra
ts senten
esfrom the problemati
 theory base ProblemB by lowering the entren
hment degrees ofthe a�e
ted beliefs to Ndegree. For ea
h loop, the ElaspsedT ime() fun
tion returns
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e the 
ontra
tion fun
tion is exe
uted, and this elapsed time is
ompared with the maximum duration T imeLimit allowed for a belief 
ontra
tionoperation. If the elapsed time ex
eeds the time limit, the main loop is terminatedand the Contra
tion() fun
tion will return the una�e
ted theory base segments plusany revised beliefs from the problemati
 theory base segment so far. Therefore, thereturned new theory base NewB still satis�es the postulates of �nite partial en-tren
hment rankings. Essentially, for ea
h senten
e � = ProblemB[x℄:belief of theproblemati
 theory base segment ProblemB, it is ne
essary to 
he
k if any beliefsranked stri
tly higher than � 
an 
lassi
ally entail (`) �. If this is the 
ase, theproperty (PER1) of �nite partial entren
hment ranking (i.e., the dominan
e property(EE2)) is violated, and so the minimal 
hange for restoring the property (PER1) isto lower the degree of � to Ndegree. If the belief � should still appear in the newtheory base NewB, the a�e
ted belief � will be 
opied to the new theory base afterits entren
hment degree is revised to Ndegree; otherwise the beliefs � as well as �are simply ex
luded from the 
opying operation. If a belief � from ProblemB to-gether with other senten
es from HighB entails �, the axiom � must be removedfrom the theorem prover before testing the remaining beliefs in ProblemB otherwiseevery remaining belief 
an prove �. The RemoveAxioms() fun
tion is used to removeaxioms from the theorem prover. At the end of the Contra
tion() fun
tion, the inta
tsegment LowB from the old theory base will also be 
opied to the new theory baseNewB if the new entren
hment degree Ndegree is greater than the minimal degree.
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tion(OldB, �, Odegree, Ndegree, TimeLimit)REMARKS: MinDegree = 0 in our implementationIF Ndegree = OdegreeRETURN OldBENDIFHighB := Cut(OldB, Rank(MaxDegree), Rank(Odegree) - 1)ProblemB := Cut(OldB, Rank(Odegree), Rank(Ndegree) - 1)LowB := Cut(OldB, Rank(Ndegree), Rank(MinDegree))NewB := HighBprover := NEW TheoremProver()AddAxioms(prover, Beliefs(HighB))FOR x := 1 TO NoElements(ProblemB)IF ElapsedTime() > TimeLimit AND TimeLimit > 0EXITENDIFIF ProblemB[x℄.belief = �SKIP NEXT



166 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMENDIFAddAxioms(prover, ProblemB[x℄.belief)IF Proved(prover, �)IF Ndegree > MinDegreeProblemB[x℄.degree := NdegreeNewB := NewB + ProblemB[x℄ENDIFRemoveAxioms(prover, ProblemB[x℄.belief)ELSEREMARKS: f
 : B�(�; i)(
) > B(�)g [ f�g 6` �NewB := NewB + ProblemB[x℄ENDIFNEXTIF Ndegree > MinDegreeNewB := NewB + (�, Ndegree)NewB := NewB + LowBENDIF
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4.6 Mining Contextual InformationA retrieval 
ontext refers to a user's information needs as well as the ba
kground in-formation about these needs. For example, the ba
kground knowledge su
h as \Ora
leis a database produ
t" 
an be used by an information seeker to retrieve informationobje
ts about database produ
ts. Formally, the \is-a" relationship is expressed bythe asso
iation rule ora
le ! database. Other semanti
 relationships 
an also berepresented by logi
al impli
ations. For instan
e, a synonym relationship 
an be rep-resented by a bi
onditional$. Indeed, information agents 
an make use of this kind ofbeliefs to enhan
e their learning and 
lassi�
ation fun
tions. This pro
ess is similar toquery expansion by means of manually or automati
ally 
onstru
ted thesauri [Gre98℄.However, the ba
kground knowledge should be 
ontext sensitive be
ause ea
h informa-tion seeker may have di�erent interpretations about term asso
iations. For instan
e,java! indonesia is true for a tourist visiting Indonesia, but java! programmingis true for a 
omputer programmer spe
ialising in Java programming. Therefore,asso
iation rule mining te
hniques have been explored to dynami
ally extra
t termasso
iations pertaining to retrieval domains [FH96, LSC+98, JBB00℄. Based on theTREC-4 routing tasks and the AP-90 do
ument set, it was found that 
ontext sensi-tive asso
iation rules were more e�e
tive than manually 
onstru
ted stati
 thesaurus
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h as WordNet [JBB00℄.The asso
iation rule mining te
hnique employed by the AIFS prototype system isbased on the Apriori algorithm be
ause it has been su

essfully applied to text miningappli
ations [FH96, JBB00℄. The Apriori algorithm was originally used to 
ondu
tdata mining over transa
tional databases [AS94℄. Formally, a database is 
on
eptu-alised by a set of transa
tions D, where ea
h transa
tion t 2 D 
onsists of a set ofitems X also 
alled itemset in data mining. A �nite set of items I = fi1; i2; : : : ; ing isoften used to represent the physi
al obje
ts su
h as 
onsumer produ
ts, Web pages,�nan
ial instruments, et
. present in data mining appli
ations. Therefore, ea
h trans-a
tion t 
an be seen as a subset of I (i.e., t � I). In general, the number of items
ontained in an itemset is 
alled the size of the itemset. For instan
e, if an itemsetX 
onsists of k items, it is 
alled a k -itemset. It is assumed that items within anitemset are kept in lexi
ographi
 order. An asso
iation rule is an impli
ation of theform X ! Y , where X � I, Y � I, and X \ Y = ;. In addition, two quantitativemeasures, rule support and rule 
on�den
e, are used to represent the signi�
an
e ofthe asso
iation rules. The asso
iation rule X ! Y holds in a transa
tional databaseD with support s if s% of transa
tions in D 
ontain X [ Y . In other words, the rulesupport s represents the joint probability Pr(X^Y ) that a transa
tion t 2 D 
ontainsthe items from both X and Y . Moreover, the asso
iation rule X ! Y has rule 
on�-den
e 
 with respe
t to D if 
% of transa
tions in D that 
ontain X also 
ontain Y .In other words, rule 
on�den
e 
 represents the 
onditional probability Pr(Y jX) that
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tion t 2 D will 
ontain the set of items Y if the set of items X is present int. This 
onditional probability 
an also be expressed in terms of: 
 = support(X^Y )support(X) a
-
ording to Bayes' theorem. The followings are the general meanings of rule 
on�den
eand support often referred to in the data mining literature:
support(X ! Y ) = Number of transa
tions 
ontaining X ^ YTotal number of transa
tions (4.10)


on�den
e(X ! Y ) = Number of transa
tions 
ontaining X ^ YNumber of transa
tions 
ontaining X (4.11)Given a set of transa
tions D, the data mining problem is to �nd all the asso-
iation rules with support and 
on�den
e greater than the user spe
i�ed minimumsupport minsup and the minimum 
on�den
e min
onf respe
tively. The Apriorialgorithm de
omposes the asso
iation rule mining problem into two sub-problems.Firstly, the sets of items satisfying the minimum support are identi�ed. Itemsets withminimum support are 
alled large itemsets. For example, Lk represents the set of largeitemsets with ea
h itemset of size k. The se
ond step is to use the large itemsets to
onstru
t the asso
iation rules. For every large itemset l 2 L, �nd all the non emptysubsets of l. Then, for every su
h subset x, generate a rule of the form x! (l� x) ifthe 
on�den
e of the rule is greater than min
onf (i.e., support(l)support(x) > min
onf). Thefollowing algorithm is used to �nd large itemsets:



170 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEML1 = flarge itemsets with size k = 1gFOR (k = 2; Lk�1 6= ;; k ++)Ck = Apriori-gen(Lk�1) // Generate 
andidate itemsetsFORALL transa
tions t 2 D DOCtk = Subset(Ck; t) // subsets 
ontained in tFORALL s 2 Ctk DOs:
ount++ // in
rement the 
ount of a 
andidate itemsetENDENDLk = fs 2 Ckjs:
ount � minsupgNEXTSets of large itemsets = Sk Lk
With the Apriori algorithm, the �rst database s
an is used to �nd large itemsetswith size 1 (i.e.,L1). For any subsequent pass k, the large itemsets Lk�1 found in the(k � 1) pass are used to generate the 
andidate itemsets Ck using the Apriori-genfun
tion. The merit of the Apriori algorithm is that a smaller 
andidate itemset Ck isgenerated for database s
anning by �rst joining the Lk�1 large itemsets 
on�rmed in
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andidate itemsets whi
h 
ontain subsetsnot in Lk�1. The basi
 intuition is that any subsets of a large itemset must alsobe large. Based on su
h an intuition, the Apriori algorithm aims at minimising the
omputational time wasted on generating and 
ounting the hopeless itemsets. Thejoin step of the Apriori-gen fun
tion 
an be 
hara
terised by a SQL statement asbelow:INSERT INTO CkSELECT p:item1; p:item2; : : : ; p:itemk�1; q:itemk�1FROM Lk�1 p; Lk�1 qWHERE p:item1 = q:item1; : : : ; p:itemk�2 = q:itemk�2; p:itemk�1 < q:itemk�1;
Before a database s
anning begins to 
ount the large itemsets of size k, thefollowing prune step in the Apriori-gen fun
tion is 
ondu
ted to delete the hopeless
andidate itemsets. The Subset(Ck; t) fun
tion 
an easily be implemented using aneÆ
ient hash tree data stru
ture. The 
andidate itemsets of Ck are stored in a hashtree and the items from a transa
tion t are used to hash su
h a tree.FORALL itemsets 
 2 Ck DOFORALL k � 1 subset s of 
 DOIF (s 62 Lk�1)
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 from CkBREAKENDIFENDENDIn the 
ontext of text mining for IR, a transa
tion is taken as a do
ument, anda database is seen as the 
olle
tion of do
uments. An item refers to a token or termpresent in a do
ument. For the dis
ussion in this thesis, a token is a single keyword
ontained in a do
ument. A

ordingly, an itemset is simply a set of terms. TheApriori algorithm is applied to dis
over the asso
iations among terms in a do
ument
olle
tion. Sin
e the prototype agent system AIFS employs the Horn logi
 LHorn asits representation language, ea
h term asso
iation rule must satisfy the property ofHorn 
lauses. For instan
e, the 
onsequent (i.e., the right hand side) of an asso
iationrule 
ontains a single item only. Therefore, the Apriori algorithm is applied as usualto �nd large itemsets. However, the pro
edure of rule generation is implemented ina slightly di�erent way. For ea
h large itemset l 2 L, every non-empty item x 2 lis used to develop the 
onsequent of a rule. If the rules generated by the templateSubsets(l�x) ! x satisfy min
onf , they will be in
luded in the rule set representingthe ba
kground knowledge about a retrieval 
ontext. The Subsets() fun
tion is usedto generate all the non-empty subsets from (l � x). In pra
ti
e, a parameter k is
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onstrain the subsets with sizes � k so as to speed up the rule generationpro
esses. To 
onvert the term asso
iation rules to beliefs in an agent's knowledgebase, the entren
hment degree B(�) is derived by multiplying the rule support s andrule 
on�den
e 
 by an adjustment fa
tor �. In the 
urrent prototype system, theadjustment fa
tor � is tuned based on empiri
al eviden
e to optimise the retrievale�e
tiveness of the system.Apart from term asso
iation rules, an information agent 
an also make use ofother semanti
 relationships su
h as information pre
lusion [BH94, Bru96℄ to 
har-a
terise a retrieval 
ontext so as to enhan
e retrieval e�e
tiveness. An informationpre
lusion relation su
h as �?� indi
ates that an information 
arrier � (representedby a senten
e � of a LHorn) pre
ludes another information 
arrier �. For exam-ple, text ? multimedia may hold if an information seeker only wants to retrievedo
uments about \text" but not about \multimedia". It should be noted that theinformation pre
lusion relations are driven by users' spe
i�
 information needs, and sothese relations are 
ontext sensitive. A

ordingly, using automated methods to indu
ethese relationships is desirable. Statisti
al information generated from AIFS's outputdatabase 
an be used to indu
e 
ontext sensitive information pre
lusion relations. Forinstan
e, the statisti
al data as depi
ted in Table 4.1 provides a valuable sour
e formining the information pre
lusion rules. Formally, an information pre
lusion rela-tion between two terms �?� 
an be represented by a rule � ! :�. In the 
urrentprototype system, only stri
t pre
lusion rules are indu
ed. For any term t from the
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h as the one depi
ted in Table 4.1, if df(trel) > 0 and df(tnrel) = 0, t isadded to a set L. Similarly, for any term t satisfying df(tnrel) > 0 and df(trel) = 0,it is added to a set R. Then, for ea
h term ti 2 L, generate a rule ti ! :tj for ea
htj 2 R. The entren
hment degree of su
h a rule is derived by: Pr(ti) � Pr(tj) � �,where a term probability Pr(t) = df(t)N . df(t) is the do
ument frequen
y of a termt (i.e., the number of do
uments 
ontaining t) and N is the total number of do
u-ments reviewed by a user. These training do
uments are 
a
hed in AIFS's outputdatabase. The adjustment fa
tor � is used to tune the entren
hment degrees of rules.For instan
e, based on the data presented in Table 4.1, the information pre
lusionrule (business ! :s
ien
e; 0:95) is indu
ed if � = 9:5 is assumed. The followingba
kground knowledge is used for the learning and 
lassi�
ation examples dis
ussedin Se
tion 4.8. In the 
ontext of IR, the �rst rule represents a synonym relationship.For instan
e, the term \business" is 
onsidered as equivalent to the term \
ommer
e"from the perspe
tive of a parti
ular information seeker. The se
ond and the thirdbeliefs des
ribe the 
lassi�
ation knowledge per
eived by the information seeker. Forinstan
e, \Insuran
e" is a kind of \Business", and \Computing" belongs to the \S
i-en
es" dis
ipline. The last asso
iation illustrate an information pre
lusion relation.(business$ 
ommer
e; 0:95)(insuran
e! business; 0:95)(
omputing ! s
ien
e; 0:95)(s
ien
e! :business; 0:95)
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ting Do
ument Relevan
e
The primary fun
tion of any IR system is to determine if a do
ument Do
 is relevantwith respe
t to a given retrieval 
ontext Ctx. In fa
t, only the representation d of Do
and the representation K of Ctx are being evaluated in IR systems. Therefore, thesemanti
 
orresponden
e between Ctx and Do
 
an only be approximated by evalu-ating d with respe
t to K. Mat
hing between retrieval 
ontexts and do
uments is abinary 
lassi�
ation problem (e.g., a do
ument d is assigned the 
lass label relevantor non-relevant). The advantage of the proposed belief-based adaptive informationagent framework is that ri
her representations of the retrieval 
ontexts Ctx 
an bedeveloped, and the representations K (i.e., belief sets) 
an be re�ned by means ofthe AGM belief revision fun
tion and users' relevan
e feedba
k. In addition, boththe learning and the 
lassi�
ation behaviour of adaptive information agents 
an bepredi
ted based on the axioms 
hara
terising the AGM logi
. The belief-based agentframework also fa
ilitates the development of the explanation fun
tions of adaptiveinformation agents sin
e the agents' de
isions 
an be justi�ed based on formal de-du
tion. Expe
tation inferen
e provides a sound and powerful framework to reasonabout the relevan
e of do
uments with respe
t to a retrieval 
ontext. The notion ofexpe
tation inferen
e � jKv � states that a rational agent expe
ts � to be true if itbelieves � is true and its existing beliefs (expe
tation) K together with � logi
allyentail �. Moreover, expe
tation inferen
e is 
losely related to belief revision in thesense that an agent believes � if � is in the agent's belief set K after the belief revision



176 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMoperation K��. In other words, � 2 K�� implies � jKv � with the set of beliefs K asba
kground information.In adaptive information retrieval, information agents revise their beliefs K aboutthe retrieval 
ontexts Ctx (e.g., users' 
urrent information needs, users' IR goals,users' ba
kground, semanti
 information of retrieval domains, et
.) a

ording to users'relevan
e feedba
k. A given user's relevan
e feedba
k 
an be viewed as a re�ned queryq. An information agent infers if an in
oming do
ument is relevant with respe
t tothe re�ned query and other ba
kground information (expe
tation) K. As 
an beseen, the learning fun
tions and the 
lassi�
ation fun
tions in adaptive informationagents 
losely resemble the pro
esses of belief revision and the pro
esses of expe
tationreasoning. The learning fun
tions and the 
lassi�
ation fun
tions of the agents are
hara
terised by K�q and q jKv d respe
tively. In parti
ular, if d 2 K�q is true, theagents will 
on
lude that q jKv d. In pra
ti
e, what an agent would like to infer iswhether an in
oming do
ument d is relevant with respe
t to K, the representation ofa retrieval 
ontext whi
h in
ludes a set of long-term queries. Therefore, the do
ument
lassi�
ation fun
tions of adaptive information agents are underpinned by expe
tationinferen
e of the form K jKv d rather than q jKv d whi
h emphasises inferen
e pertainingto ea
h individual query. The idea of establishing do
ument relevan
e by evaluatinga do
ument with respe
t to a retrieval 
ontext was also examined by Nie [NBL95℄.However, the inferen
e K jv d is 
hara
terised by 
ounterfa
tual in their logi
-basedIR model. In addition, it has also been pointed out that estimating the probability
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iated with a 
onditional su
h as q ! d within the logi
al imaging framework leadsto a more sensible 
on
lusion about the relevan
e of a do
ument if ambiguous termspresent in a retrieval 
ontext [Cre98℄. The proposed 
lassi�
ation framework q jKv d ininformation agents are akin to the aforementioned approa
hes. At the 
omputationallevel, the degree fun
tion de�ned in Chapter 3 provides a gradated assessment ofdo
uments with respe
t to retrieval 
ontexts. For instan
e, the notion degree(B; �)is used to assess an element � of the logi
al representation d of a do
ument Do
 withrespe
t to an agent's theory base B (i.e., a �nite representation of a retrieval 
ontext).Given the fa
t that both d and K are only partial representations of the underlyingDo
 and Ctx, the 
lassi�
ation pro
esses are inherently un
ertain. Do
ument rankingis often used by IR models to deal with the un
ertainties arising in mat
hingDo
 withCtx [MBVL99, MM98, PB99, SM83℄. In parti
ular, several similarity measures havebeen used for do
ument ranking [LB99, SM83, TKS00℄. In general, these measurestry to approximate the semanti
 
orresponden
e between a do
ument Do
 and thepertaining retrieval 
ontext Ctx. To 
ombine the advantage of quantitative rankingand symboli
 reasoning, an entren
hment-based similarity measure Eq.(4.12) is usedto evaluate do
uments in AIFS. Indeed in the quest of 
ommon sense aboutness, theauthors have indi
ated that by employing 
ertain weighting s
hemas in 
onjun
tionwith the non-monotoni
 models, it may be able to simulate a form of 
onservativemonotoni
ity whi
h is believed to be the desirable behaviour for IR models [BSW00℄.The entren
hment-based similarity measure represents an initial attempt along thisdire
tion.
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Sim6(Ctx;Do
) = P�2d[degree(B; �)� degree(B;:�)℄jSj (4.12)The basi
 idea is that a do
ument Do
 is 
hara
terized by a set of positive literald = f�1; �2; : : : ; �ng. If an agent's knowledge base K, whi
h represents a retrieval
ontext Ctx, nonmonotoni
ally entails an atom �i 2 d via jKv, a positive 
ontributionto the overall similarity s
ore is made be
ause of the possible semanti
 
orresponden
ebetween Ctx andDo
. The gradated assessment of the likelihood ofK jKv �i is derivedfrom degree(B; �i) where K = 
ontent(B). On the other hand, if K entails thenegation of an atom �i in d, it demonstrates the possible semanti
 distan
e betweenCtx and Do
. Therefore, the entren
hment degree of K jKv :�i is subtra
ted fromthe similarity s
ore. This approa
h is similar to the paradigm of assumption-basedreasoning where a plan or design is evaluated against a set of 
onstraints stored inan agent's knowledge base [Kra97℄. In the 
ontext of do
ument 
lassi�
ation, thenegation of a do
ument representation is the assumption whi
h should be testedagainst the agent's knowledge base. The set S = f� 2 d : degree(B; �) > 0 _degree(B;:�) > 0g 
ontains the literals whi
h are nonmonotoni
ally entailed by theagent's knowledge base K.In logi
-based IR, it has been proposed that a do
ument 
an be 
hara
terised bya 
onjun
t of atoms [CC92℄. However, it seems that an alternative is to represent ado
ument by a disjun
t of atoms if we a

ept the fa
t that do
ument 
hara
terisationis imperfe
t and partial. For instan
e, given a do
ument partially indexed by tokens



4.7. PREDICTING DOCUMENT RELEVANCE 179fhtml; webg, it is more appropriate to assume that the do
ument is about html orweb be
ause there is un
ertainty if the do
ument is really about HTML s
ripting orWeb sur�ng in general. Therefore, the proposed entren
hment-based similarity mea-sure evaluates ea
h atom �i 2 d individually. In fa
t, terms are also seen as disjointpossible worlds in logi
al imaging for IR [Cre98℄. An intuitive example follows: assum-ing that an information seeker's preferen
es about \Web" and \Musi
" are partiallyrepresented by K = f(web! internet; 0:6); (Web; 0:6); (musi
; 0:4)g in an agent'sknowledge base, and a do
ument indexed by the tokens d = fmp3; internetg is be-ing evaluated by the agent. Should this do
ument be re
ommended by the agent?The user may be interested in this do
ument be
ause \Web" is about the \Inter-net" and \MP3" is a popular form of ar
hiving musi
al items on the Internet. Ifthe do
ument is represented by d = mp3 ^ internet, degree(B; d) = 0 is derived. Inother words, the agent is totally un
ertain about the relevan
e of the do
ument withrespe
t to the retrieval 
ontext K. On the other hand, based on the entren
hment-based similarity measure Eq.(4.12), a positive similarity s
ore is derived be
ause ofdegree(B; internet) > 0. Therefore, the proposed logi
al 
hara
terisation of do
u-ments and the entren
hment-based similarity measure Sim6(Ctx;Do
) seem moree�e
tive in dealing with the issue of partiality in IR. A high positive s
ore derivedfrom Eq.(4.12) implies that an agent is 
ertain that there is semanti
 
orresponden
ebetween a do
ument Do
 and a retrieval 
ontext Ctx. If the similarity s
ore is zero,the agent is totally un
ertain about the relevan
e of Do
 with respe
t to Ctx. How-ever, a high negative similarity s
ore implies that an agent is quite 
ertain that the
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ument Do
 is irrelevant with respe
t to Ctx. Based on the similarity s
ores derivedfrom Eq.(4.12), a ranking of do
uments (i.e. (�; Do
)) 
an be formed to des
ribe therelative relevan
e of the do
uments with respe
t to a retrieval 
ontext. If a do
umentdelivery threshold is employed, the agents 
an also make binary de
isions about therelevan
e of in
oming do
uments.The entren
hment-based similarity measure has the advantage that the 
om-puted similarity s
ores (i.e., the 
on
lusions) 
an be explained and justi�ed based ona retrieval 
ontext (e.g., the relationships among terms). Four explanation templatesare implemented in our adaptive information agent system AIFS to justify an agent's
lassi�
ation de
isions. The notation [variable℄ means that the variable inside thesquare bra
kets will be instantiated during exe
ution time.1. Item [�℄ is requested.If � 2 d is an expli
it belief 
aptured in exp(B), the agent's theory base.2. Item [�℄ is requested, and item [�℄ is asso
iated with it.For � 2 d and � 2 exp(B), degree(B; � ! �) > 0 is dedu
ed from 
ontent(B).3. Item [�℄ is requested, whi
h pre
ludes item [�℄.For � 2 d and � 2 exp(B), degree(B; � ! :�) > 0 is dedu
ed from 
ontent(B).4. Neither support nor reje
tion.For � 2 d, degree(B; �) = 0 and degree(B;:�) = 0 are dedu
ed from 
ontent(B).
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isionAssuming that a retrieval 
ontext Ctx is 
hara
terised by an agent's theory baseas follows: exp(B) = f(internet! softbot; 0:850);(softbot! spider; 0:850);(spider ! 
rawler; 0:850);(
rawler ! :musi
; 0:023);(internet; 0:300)gThe �rst three beliefs represent term asso
iations. The fourth belief is the in-formation pre
lusion relation driven by a user's spe
i�
 information needs. The lastbelief represents the user's 
urrent interest in \Internet". If a do
ument Do
 =finternet; spider;musi
;mp3g is presented to the agent, the agent's predi
tion andexplanation will look like the one depi
ted in Figure 4.4. In this example, a userwho is interested in information about the \Internet" may also be interested in \MP3musi
" whi
h is among the 
ool items available on the Internet. Even though thepreferen
e of \Internet" may pre
lude the general interest of \Musi
" as des
ribedby the pre
lusion rule and the other term asso
iation rules in the agent's knowledgebase, su
h a pre
lusion is not strong enough to totally rule out the user's possibleinterest in the do
ument Do
 whi
h is about \Internet Spider for MP3 Musi
". AsDo
 is partially relevant to the retrieval 
ontext Ctx, the agent should re
ommendthis do
ument to its user.
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Figure 4.4: Justifying an agent's de
ision based on the explanation templates4.8 Examples of Learning and Classi�
ationThe following examples illustrate how an adaptive information agent learns a retrieval
ontext based on a user's relevan
e feedba
k and how the agent 
lassi�es do
umentswith respe
t to the 
hanging retrieval 
ontext. It is assumed that at time (t0), theagent does not know the user's preferen
e ex
ept the ba
kground knowledge about theparti
ular information retrieval domain. Therefore, the retrieval 
ontext at time (t0)is represented by the term asso
iation rules and the information pre
lusion relationonly. At time (t1), the user is interested in do
uments about \Insuran
e". Throughthe user's relevan
e feedba
k, the agent learn the new belief insuran
e and other re-
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ontext. The user's involvement is minimal andthe agent 
an autonomously learn the user's possible interests related to \Insuran
e".At time (t2), the user's interest shifts from \Insuran
e" to \Computing". The infor-mation agent revises its beliefs about the 
urrent retrieval 
ontext by in
orporating
omputing and other related beliefs into its knowledge base while 
ontra
ting the 
on-tradi
tory information by exe
uting the Rapid Anytime Maxi-adjustment algorithm.At ea
h stage, only the impli
it beliefs relevant for our dis
ussion are shown.Example 2: Learning at Time t0

Figure 4.5: Learning at Time t0It is assumed that only the following four rules indu
ed based on the text miningmethods des
ribed in Se
tion 4.6 are 
aptured in exp(Bt0). The impli
it beliefs whi
h



184 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMare derived from exp(Bt0) are not listed along Kt0 sin
e they are not relevant forour dis
ussion for the time being. It should be noted that Kt0 = 
ontent(Bt0). Thetheory base of the adaptive information agent is depi
ted in Figure 4.5. The lowerright panel displays the agent's 
urrent theory base.Kt0 = f(business$ 
ommer
e; 0:950);(insuran
e! business; 0:950);(
omputing ! s
ien
e; 0:950);(s
ien
e! :business; 0:950); : : :gExample 3: Learning at Time t1The user informs the agent about their information needs by providing relevan
efeedba
k. For example, if two do
uments 
hara
terised by the term \Insuran
e" arejudged as relevant by the user, the 
orresponding belief (insuran
e; 0:087) is indu
eda

ording to the pro
edure des
ribed in Se
tion 4.4. A low entren
hment value (e.g.,0:087) is deliberately 
hosen in this example to indi
ate that an entren
hment valueis not the same as a probability value. In parti
ular, the belief (insuran
e; 0:087)should not be interpreted that the 
han
e of the item \Insuran
e" being requested bythe user is low. For do
ument ranking, the relative ranking rather than the absoluteentren
hment degrees of beliefs is important. In fa
t, the entren
hment degrees of be-liefs 
an be adjusted by means of the � parameter of Eq.(4.9) dis
ussed in Se
tion 4.4.The next step in the learning pro
ess is to revise this belief into the agent's knowledgebase via B?(insuran
e; 0:087). The RAM algorithm that implements B?(�; i) is illus-
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tion 4.5. Sin
e insuran
e is a new belief, its original degree of a

eptan
ejm = degree(Bt0; insuran
e) equals zero. As the new entren
hment degree i = 0:087is greater than jm, the revision fun
tion of the RAM algorithm is invoked:B?(insuran
e; 0:087) =(B�(:insuran
e; 0))+(insuran
e; 0:087)Formula:� B(�) Before (t1) B(�) After (t1)business$ 
ommer
e 0.950 0.950insuran
e! business 0.950 0.950
omputing ! s
ien
e 0.950 0.950s
ien
e! :business 0.950 0.950insuran
e 0.000 0.087business 0.000 0.087
ommer
e 0.000 0.087:s
ien
e 0.000 0.087:
omputing 0.000 0.087Table 4.2: The retrieval 
ontext Kt1 at time (t1)By exe
uting the RAM algorithm, the before and after images of the informa-tion agent's knowledge base Kt1 (i.e. 
ontent(Bt1)) are tabulated in Table 4.2. Theupper se
tion of the table represents the agent's expli
it beliefs (i.e. exp(Bt1)), andthe lower se
tion delimited by a horizontal line shows some of the agent's impli
itbeliefs. As demonstrated in this example, the user only needs to provide dire
t rele-van
e feedba
k for the token \Insuran
e" and the agent 
an autonomously learn theuser's other possible interests su
h as \Business" and \Commer
e". The degree ofa

eptan
e degree(Bt1; business) = 0:087 of the impli
it belief business is 
omputeda

ording to De�nition 4 de�ned in Se
tion 3.1 of Chapter 3. In
orporating the be-
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orresponds to our intuition of how theretrieval 
ontext should be revised at this point of time. Sin
e \Insuran
e" is a kindof \Business", if the agent believes that the user may be interested in informationobje
ts about \Insuran
e", there is a good reason for the agent to believe that theuser may also be interested in information obje
ts about \Business". Similarly, thebelief 
ommer
e is also automati
ally revised into the agent's knowledge base and thedegree of a

eptan
e of the belief 
ommer
e is 0:087.

Figure 4.6: Learning at Time t1The advantage of applying the AGM belief revision logi
 to 
onstru
t the learn-ing me
hanisms of adaptive information agents is that the amount of dire
t relevan
efeedba
k required from human users 
an be minimised be
ause the agents 
an infer
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hanging information needs based on formal dedu
tion. In other words,the learning autonomy of the adaptive information agents is enhan
ed. Moreover, itis possible to explain su
h a learning behaviour by showing the relationships betweenterms. For example, the reason why the agent dedu
es that the user may be inter-ested in do
uments about \Commer
e" is that the token \Commer
e" and the token\Business" are 
orrelated in the 
urrent retrieval 
ontext. Therefore, do
uments about\Commer
e" may 
ontain information about \Business" as well. The agent's theorybase at the end of time (t1) is depi
ted in Figure 4.6. The lower left panel showsthat two do
uments are judged relevant by the user. The lower right panel displaysthe agent's theory base after learning the new belief based on the user's relevan
efeedba
k at time (t1). In summary, at the end of time (t1), the agent's knowledgebase 
ontains:
Kt1 = f(business$ 
ommer
e; 0:950);(insuran
e! business; 9:950);(
omputing ! s
ien
e; 0:950);(s
ien
e! :business; 0:950);(insuran
e; 0:087);(business; 0:087);(
ommer
e; 0:087);(:s
ien
e; 0:087);(:
omputing; 0:087); : : :g



188 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMExample 4: Learning at Time t2If the user's interest shifts from \Insuran
e" to \Computing", the agent's per-
eption K about the 
urrent information 
ontext Ctx 
an be re�ned based on theuser's relevan
e feedba
k pertaining to the token \Computing". Other related 
hanges
an automati
ally be inferred by the agent. Assuming that four do
uments 
har-a
terised by the token \Computing" are judged as relevant by the user, the belief(
omputing; 0:473) is indu
ed a

ording to the entren
hment indu
tion pro
ess de-s
ribed in Se
tion 4.4. The belief revision operation B?(
omputing; 0:473) is theninvoked to revise the agent's beliefs about the 
urrent retrieval 
ontext.As the impli
it belief :
omputing exists in Kt1, the new belief 
omputing 
an-not be revised into the agent's knowledge base unless its negation :
omputing is 
on-tra
ted �rst. In addition, the impli
it beliefs (:business; 0:473) and (:insuran
e; 0:473)are also dedu
ed by the agent if the belief (
omputing; 0:473) is a

epted. These de-du
ed impli
it beliefs together with the agent's existing beliefs also lead to logi
alin
onsisten
y (?) in the agent's knowledge base. Sin
e it does not make sense ifa user is interested in \Computing" and not interested in \Computing" at the sametime, the existing belief :
omputing that represents the user's previous interest shouldbe retra
ted.The 
omputational advantage of the transmutation-based AGM belief revisionis that a theory revision 
an be 
ondu
ted based on a �nite theory base B. Byexe
uting the RAM algorithm to raise the entren
hment degree of 
omputing from
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 theory base segment ProblemB must �rst be identi�ed.In this example, ProblemB is the one bound by the [higher; lower℄ entren
hmentdegrees su
h that [higher < 0:473; lower > 0℄. It is easy to see that the expli
it beliefinsuran
e is the least entren
hed belief 
ausing in
onsisten
y in the entire knowledgebase K. Therefore, it should be 
ontra
ted �rst. A

ording to the RAM algorithm,the following pro
edure will be exe
uted:B?(
omputing; 0:473) =(B�(:
omputing; 0))+(
omputing; 0:473)The impli
it belief (:
omputing; 0:087) was introdu
ed to the agent's knowledge baseat time (t1). The 
ontra
tion part of the RAM algorithm B�(:
omputing; 0) lowersthe entren
hment degree of the belief insuran
e 2 ProblemB to zero be
ause:If 8�2ProblemBf
 2 B : B�(:
omputing; i)(
) � B(�)g [ f�g ` :
omputingThen B�(:
omputing; i)(�) = iIn this example, the result is obvious be
ause the only expli
it belief in ProblemBis (insuran
e; 0:087). As the belief insuran
e together with other beliefs with higherentren
hment degrees (i.e., the set of expli
it beliefs (insuran
e; 0:087), (insuran
e!business, 0:950), (s
ien
e ! :business, 0:950), and (
omputing ! s
ien
e, 0:950))logi
ally entail (`) the belief :
omputing, it should be assigned the same entren
h-ment degree as :
omputing a

ording to the RAM algorithm. In this 
ase, the newdegree of :
omputing equals zero. In other words, the belief insuran
e is assignedzero entren
hment degree and is 
ontra
ted from the theory base Bt2. After 
on-
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ting the belief insuran
e from the theory base, the agent's knowledge base Kt2is 
onsistent and the belief 
omputing 
an be added to Kt2 to represent the newretrieval 
ontext at time (t2). As 
an be seen, the RAM algorithm adheres to theAGM prin
iple of minimal and 
onsistent belief revision. After revising the belief
omputing into the agent knowledge base, the 
auses of in
onsisten
y in Kt2 are(insuran
e; 0:087), (insuran
e ! business; 0:950), (s
ien
e ! :business; 0:950),and (
omputing ! s
ien
e; 0:950). The minimal 
hange to the agent's knowledgebase su
h that the knowledge base remains 
onsistent is to give up the least signi�
antbelief (insuran
e; 0:087) rather than one of the signi�
ant beliefs with entren
hmentdegree 0.950. The before and after images of the �ltering agent's knowledge base Kt2are tabulated in Table 4.3.Formula:� B(�) Before (t2) B(�) After (t2)business$ 
ommer
e 0.950 0.950insuran
e! business 0.950 0.950
omputing ! s
ien
e 0.950 0.950s
ien
e! :business 0.950 0.950
omputing 0.000 0.473insuran
e 0.087 0.000s
ien
e 0.000 0.473:business 0.000 0.473:insuran
e 0.000 0.473:
ommer
e 0.000 0.473business 0.087 0.000
ommer
e 0.087 0.000Table 4.3: The retrieval 
ontext Kt2 at time (t2)The degree of a

eptan
e of the impli
it beliefs su
h as s
ien
e, :business,:insuran
e, and :
ommer
e are 
omputed a

ording to De�nition 4. After 
on-
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Figure 4.7: Learning at Time t2tra
ting the belief insuran
e from exp(Bt2), business 62 
ontent(Bt2) is establishedand so is 
ommer
e 62 
ontent(Bt2). A

ordingly, the degrees of a

eptan
e of thesebeliefs are zero. By taking the user's relevan
e feedba
k for a single item \Computing",the agent 
an automati
ally dedu
e that the user may no longer require informationobje
ts about \Insuran
e", \Business", and \Commer
e". This illustrates how theAGM logi
 based learning me
hanism 
an improve the adaptive information agents'learning autonomy. It should be noted that if the belief insuran
e is �rmer thanthe belief s
ien
e ! :business, the prin
iple of minimal belief 
hange makes theagent 
ontra
t the information pre
lusion relationship s
ien
e ! :business. Sin
e\Business" is less likely to pre
lude \s
ien
e", both the user's information needs of
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e" and \Computing" 
an 
o-exist in the agent's knowledge base. On theother hand, if the entren
hment degree of 
omputing is lower than that of insuran
eat time (t2), the agent should still revise the belief 
omputing into its knowledge baseand 
ontra
t the belief insuran
e be
ause the user's 
urrent interest is more likelyabout \Computing" rather than \Insuran
e". The agent's theory base at the end oftime (t2) is depi
ted in Figure 4.7. The lower left panel shows that additional fourdo
uments are judged relevant by the user. The lower right panel displays the agent'stheory base after learning the new belief based on the user's re
ent relevan
e feedba
k.In summary, at the end of time (t2), the agent's knowledge base Kt2 
ontains:Kt2 = f(business$ 
ommer
e; 0:950);(insuran
e! business; 0:950);(
omputing ! s
ien
e; 0:950);(s
ien
e! :business; 0:950);(
omputing; 0:473);(s
ien
e; 0:473);(:business; 0:473);(:insuran
e; 0:473);(:
ommer
e; 0:473); : : :g
Example 5: Mat
hing at Time t1The do
ument 
lassi�
ation me
hanisms in adaptive information agents are based
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hment-based similarity measure Eq.(4.12) whi
h is underpinned by ex-pe
tation inferen
e. The similarity measure Eq.(4.12) 
an be used for do
ument rank-ing whi
h 
orresponds to multi-
lass 
lassi�
ation with ea
h do
ument being assigneda rank (i.e., a 
lass label), or for \Yes/No" re
ommendation whi
h 
orresponds to bi-nary 
lassi�
ation with ea
h do
ument being assigned either the 
lass label of Relevantor Non-relevant. With the binary 
lassi�
ation mode, a do
ument delivery threshold� is used to divide the do
uments into two 
lasses. Any do
uments with similaritys
ores greater than the delivery threshold are assigned to the relevant 
lass and thedo
uments will be dispat
hed to the users. With referen
e to the learning examplesdis
ussed before, if the following four do
uments are presented to the agent at time(t1) and (t2), the 
lassi�
ation results will be:d1 = finsuran
e; business; 
ommer
egd2 = finsuran
e; business; 
omputinggd3 = f
omputing; business; s
ien
egd4 = f
omputing; agent; s
ien
egSim6(Ctxt1; Do
1) = (0:087+0:087+0:087)�0:0003 = 0:087Sim6(Ctxt1; Do
2) = (0:087+0:087)�0:0873 = 0:029Sim6(Ctxt1; Do
3) = 0:087�(0:087+0:087)3 = �0:029Sim6(Ctxt1; Do
4) = 0�(0:087+0:087)2 = �0:087
) Do
4 � Do
3 � Do
2 � Do
1



194 CHAPTER 4. AN AGENT-BASED INFORMATION FILTERING SYSTEMThe notation � represents the preferential ordering (i.e., relevan
e) of do
u-ments with respe
t to a retrieval 
ontext Ctx. For example, Do
x � Do
y meansthat Do
y is at least as preferred or relevant as Do
x with respe
t to a retrieval 
on-text. More pre
isely, the semanti
 
orresponden
e between a do
ument Do
i and theCtxt1 is approximated by the net entren
hment degree of the logi
al representationdi of the do
ument Do
i. The above ranking 
orresponds to our intuition of do
u-ment relevan
e. At time (t1), the user is interested in do
uments about \Insuran
e",\Business", and \Commer
e". However, the user is not interested in do
uments about\Computing" nor \S
ien
e" in general. Therefore, the retrieval 
ontext Ctxt1 is aboutthe \Business" world but not about \S
ien
e". There may be semanti
 
orrespon-den
e between Do
1 and Ctxt1, and the do
ument Do
1 should be ranked the highestin the list. Do
2 is partially 
orresponding to Ctxt1, and so it should be ranked higherthan Do
3 and Do
4. Do
3 seems about \Business Computing" rather than \Busi-ness", and so Do
3 is ranked lower than Do
2. It is obvious that Do
4 is not aboutthe \Business" world at all, and so it is ranked the lowest with respe
t to Ctxt1. Forbinary 
lassi�
ation, a do
ument delivery threshold � = 0 is assumed. A

ordingly,only the do
uments Do
1 and Do
2 whi
h are really about \Insuran
e" and \Busi-ness" will be re
ommended by the agent. Justi�
ation of su
h a do
ument ranking isbased on the underlying entren
hment-based entailment (i.e., expe
tation inferen
e).For instan
e, insuran
e is an expli
it belief 
aptured in the agent's knowledge base,and so a do
ument 
hara
terised by the token \Insuran
e" 
ontributes a positive valueto the overall similarity s
ore. Furthermore, sin
e \Insuran
e" is a kind of \Business"
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lassi�
ation rule insuran
e! business, do
uments 
hara
terised bya token \Business" may also be relevant with respe
t to the user's information needs.As 
an be seen, expe
tation inferen
e opens the door to a more explanatory infor-mation retrieval pro
ess. Figure 4.8 shows an example of how the prototype agentsystem AIFS 
omputes and explains the entren
hment-based similarity s
ore. In thisexample, a binary 
lassi�
ation de
ision for do
ument Do
2 is made based on thedo
ument delivery threshold �.

Figure 4.8: Classi�
ation and Explanation at Time t1Example 6: Mat
hing at Time t2Sim6(Ctxt2; Do
1) = 0:000�(0:473+0:473+0:473)3 = �0:473Sim6(Ctxt2; Do
2) = 0:473�(0:473+0:473)3 = �0:158
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3) = (0:473+0:473)�0:4733 = 0:158Sim6(Ctxt2; Do
4) = (0:473+0:473)�0:0002 = 0:473
) D1 � D2 � D3 � D4The user's information need has shifted from \Insuran
e" to \Computing" attime (t2), and so the retrieval 
ontext Ctxt2 at time (t2) is about \Computing" and"S
ien
e" in general. The four do
uments 
an be ranked again based on the agent's
lassi�
ation me
hanism. The ranking 
orresponds to our intuition about do
umentrelevan
e with respe
t to Ctxt2. The do
ument Do
4 is more likely to be semanti-
ally 
orresponding to Ctxt2 be
ause the do
ument is about \Computing S
ien
e".The measure Sim6(Ctxt2; Do
4) is able to 
apture this reality by returning the high-est positive similarity s
ore. Therefore, the do
ument Do
4 is ranked the highestin the list. On the other hand, Do
1 is totally in
ompatible with the retrieval 
on-text Ctxt2. The semanti
 distan
e between Do
1 and Ctxt2 is approximated by thesum of the entren
hment degrees degree(Bt2;:insuran
e), degree(Bt2;:business)and degree(Bt2;:
ommer
e). As Sim6(Ctxt2; Do
1) returns the smallest similaritys
ore, the do
ument Do
1 is ranked the lowest in the list. Do
uments Do
3 is par-tially relevant with respe
t to the retrieval 
ontext Ctxt2, and so it is ranked higherthan Do
2. Figure 4.9 shows another example of how the prototype agent systemAIFS 
omputes and explains the entren
hment-based similarity s
ore at time (t2). Inthis example, a binary 
lassi�
ation de
ision and the 
orresponding explanation for
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ument Do
2 is made.

Figure 4.9: Classi�
ation and Explanation at Time t2Chapter 3 dis
ussed the theory of belief revision in a broad sense via the AGMbelief revision framework. In addition, how the AGM belief revision fun
tions andthe 
orresponding expe
tation inferen
e relations is applied to adaptive informationretrieval is illustrated at the 
on
eptual level. Chapter 4 further des
ribes the 
ompu-tational details of the belief revision based adaptive information model and illustrateshow the 
omputational algorithms 
an be applied to develop an agent-based adaptive�ltering system AIFS. In parti
ular, the epistemi
 entren
hment indu
tion methodand the RAM belief revision algorithm are examined. An entren
hment-based sim-ilarity measure whi
h 
ombines the power of expe
tation inferen
e and quantitative
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lassi�
ation me
hanism. An exampleis used to explain how AIFS's learning and 
lassi�
ation me
hanisms work. The tasknow is to evaluate AIFS in a mu
h larger pra
ti
al setting.



Chapter 5
Experiments and Results
To evaluate IR models, one needs to 
onsider at least three aspe
ts: performan
emeasures, do
ument 
olle
tions, and evaluation pro
edures. This 
hapter des
ribeshow the proposed belief-based adaptive information agent model is evaluated, andreports the results of our initial experiments. Basi
ally, the kernel module of the agent-based adaptive information �ltering system (AIFS) was tested against two ben
h-mark 
olle
tions: the TREC-AP 
olle
tion and the Reuters-21578 
olle
tion whi
hare widely used in IR and ma
hine learning resear
h.
5.1 The Performan
e Measures for IRPrevious studies in information retrieval have used a variety of measures to evaluatethe e�e
tiveness of IR systems. However, ea
h measure has its merits and limitations.One well-known measure often employed in ma
hine learning resear
h is referred to199
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lassi�
ation a

ura
y. For binary 
lassi�
ation problem su
h as text �ltering,only two 
lass values (e.g., relevant vs. non-relevant) are 
onsidered. Classi�
ationa

ura
y for binary 
lassi�
ation problems 
an then be de�ned with respe
t to a
ontingen
y table as depi
ted in Table 5.1. In the 
ontingen
y table, the letters a,b, 
, d represent the number of do
uments 
lassi�ed to the respe
tive 
ategories. Forexample, a represents the number of do
uments 
lassi�ed as relevant by the agentand these do
uments are really relevant with respe
t to a user's spe
i�
 informationneeds. With respe
t to the 
ontingen
y table, 
lassi�
ation a

ura
y 
an be formallyde�ned by:
A

ura
y = a + da + b+ 
+ d (5.1)Relevant do
ument Non-relevant do
umentAgent predi
ted a brelevant do
ument (true positive) (false positive)Agent predi
ted 
 dnon-relevant do
ument (false negative) (true negative)Table 5.1: Contingen
y Table for Binary Classi�
ation ProblemGeneralisation of 
lassi�
ation a

ura
y for any number of 
lass values (e.g.,the 
ategorisation problem in IR) is done by dividing the sum of diagonal elements(i.e., the number of 
orre
tly 
lassi�ed obje
ts) by the sum of all table elements:A

ura
y = Pi xiiPiPj xij , where xij is the element in the i-th row and the j-th 
olumnof the 
ontingen
y table. For instan
e, the 
ategory b in Table 5.1 is referred to as
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ura
y measure. For text �ltering appli
ations, 
lass valuedistribution is often asymmetri
 (e.g., many do
uments falling into the non-relevant
lass). Under su
h 
ir
umstan
e, high 
lassi�
ation a

ura
y 
an be trivially a
hievedby a 
lassi�er by simply 
lassifying all the obje
ts into the majority 
lass (i.e., thenon-relevant 
lass).Pre
ision and Re
all are two widely used measures in IR resear
h [SM83℄. Oneof the 
lass values 
orresponds to the target 
lass (e.g., relevant) for whi
h pre
isionand re
all should be maximised. An ideal IR system would have both the pre
isionand the re
all values equal 1. Nevertheless, perfe
t pre
ision 
an be trivially obtainedby an IR system that does not 
lassify do
uments into the target 
lass, while perfe
tre
all 
an be trivially a
hieved by a system that 
lassi�es all do
uments into the target
lass. Therefore, using just one of these measures alone is not suÆ
ient to validatethe e�e
tiveness of the underlying IR models. Pre
ision is de�ned as the proportionof retrieved relevant do
uments in the set of all retrieved do
uments. For a binary
lassi�
ation problem su
h as text �ltering, pre
ision 
an be estimated with referen
eto the 
ontingen
y table:
Pre
ision = aa+ b (5.2)In the ex
eptional 
ase that there is no do
ument retrieved by an IR system (i.e., noobje
t falling into the target 
lass), there will be no 
lassi�
ation error in the resultset. A

ordingly, the maximum pre
ision of 1 is a
hieved trivially. On the other hand,
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all is de�ned as the proportion of retrieved relevant do
uments out of the set of allrelevant do
uments. A

ordingly, re
all 
an be estimated by the following formula:
Re
all = aa+ 
 (5.3)In 
ase that there is no relevant do
ument in a 
olle
tion, an IR system 
an triviallya
hieve the maximum re
all be
ause the number of retrieved relevant do
uments al-ways equals the number of relevant do
uments. A better approa
h than employingthe pre
ision measure or the re
all measure alone to evaluate the e�e
tiveness of IRsystems is to use the F-measure. The F-measure is a weighted 
ombination of pre-
ision and re
all values [vR79℄. The relative signi�
an
e of pre
ision and re
all isexpressed by the � parameter. The F-measure is formally de�ned by:

F� = (1 + �2)Pre
ision� Re
all�2Pre
ision+Re
all (5.4)If the parameter � equals 0, the parti
ular F0 measure is equivalent to the Pre-
ision measure. On the other hand, if the parameter � takes the value of 1, the
orresponding F1 measure is the same as Re
all. As 
an be seen, the value of � 
anbe 
hosen between 0 and1. To emphasise the importan
e of pre
ision, the value of �should be less than 1. On the other hand, to emphasise the importan
e of re
all, thevalue of � should be greater than 1. As stated in Chapter 1, one of the requirementsof e�e
tive IR systems is their 
apabilities of maximising both pre
ision and re
all in
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esses. A

ordingly, the parameter � = 1 is 
hosen to evaluate the e�e
tivenessof our adaptive information agents. With referen
e to the 
ontingen
y table 5.1, theF-measure 
an also be expressed as: F� = (1+�2)a(1+�2)a+b+�2
 . In the 
ase of singularitysu
h as a + b + 
 = 0, it 
an be interpreted that an IR system does not retrieve anydo
ument given that there is no relevant do
ument in the 
olle
tion. Under su
h a
ir
umstan
e, the value of F� equals 1. Sin
e the value of the � parameter is set to 1in our experiments, the following equivalent measure is used to assess the performan
eof the adaptive information agents:
F1 = 2a2a+ b+ 
 (5.5)However, one drawba
k of the F-measure is that its value is not easily 
om-prehended by ordinary information seekers [SSS98℄. In pra
ti
e, it may not be easyfor a user to judge the relative importan
e of re
all and pre
ision. For instan
e, itmay be diÆ
ult for an ordinary information seeker to assert that re
all is twi
e asimportant as pre
ision in their parti
ular IR 
ontext. Nevertheless, the F-measure is
onsidered the most e�e
tive measure for evaluating the performan
e of IR systemsamong the measures of 
lassi�
ation a

ura
y, raw pre
ision, and raw re
all. Re
ently,the TREC text �ltering evaluations have been using the utility measure to assess theperforman
e of IR systems [Hul98℄. A utility-based measure assigns a value or 
ostto ea
h do
ument based on whether it is retrieved or not, and whether it is relevantor not. With referen
e to Table 5.1, one 
an imagine that ea
h 
ategory is asso
iated
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e, the 
ategory a is asso
iated with a rewardA, the 
ategory b is asso
iated with a 
ost B and so on. For a binary 
lassi�
ationproblem, a general utility fun
tion is de�ned by:
Utility = A� a +B � b+ C � 
+D � d (5.6)The utility parameters A;B;C;D determine the relative value of the 
orresponding
ategories a; b; 
; d. The parameters A and D are generally 
onsidered as rewards,and the parameters B and C are 
onsidered as penalties. The larger the utilitys
ore, the better an IR system is performing. However, the utility measure is notperfe
t either. Utility s
ores vary widely from topi
 to topi
 depending on the a
tualnumber of relevant do
uments in the respe
tive topi
s. In addition, 
onverting theutility s
ores to a standard measure for 
omparison a
ross topi
s requires 
omplexs
aling and normalisation pro
edures. Finally, the linear utility fun
tion treats allrelevant do
uments with the same preferen
e value even though a user may �nd thata parti
ular do
ument is more important than the others in a 
olle
tion.Nevertheless, the utility measure is e�e
tive for evaluating IR models whi
h dealwith problems 
hara
terised by asymmetri
 
lass values distribution (e.g., many non-relevant do
uments vs. a few relevant do
uments). For instan
e, the pre
ision of anIR system retrieving one non-relevant do
ument is the same as another IR systemretrieving ten thousand non-relevant do
uments if there is no relevant do
ument inthe 
hosen topi
. An evaluation metri
 based on utility fun
tions 
an alleviate the
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ase more than the former. Therefore, a utilityfun
tion based measure is a good 
hoi
e for evaluating IR systems that deal with text�ltering tasks. To fa
ilitate the 
omparison between our experimental results withthat of the other IR or ma
hine learning experiments, all the aforementioned measureswill be used to evaluate the performan
e of our adaptive information agents.
5.2 The Colle
tionsThere are three main 
omponents in every do
ument 
olle
tion namely, do
uments,topi
s, and relevan
e judgements. The experiments presented in this thesis are basedon both the TREC-AP 
olle
tion and the Reuters-21578 
olle
tion.
5.2.1 The TREC-AP Colle
tionThe TREC-AP 
olle
tion 
onsists of 3 years of Asso
iated Press newswire 
overingthe period from 1988 to 1990. This 
olle
tion is distributed in the TREC TIPSTERdisks 1-3. The annual TREC 
onferen
e is 
o-sponsored by NIST and the Informa-tion Te
hnology OÆ
e of the Defen
e Advan
ed Resear
h Proje
t Agen
y (DARPA)as part of the TIPSTER text retrieval resear
h program (http://tre
.nist.gov/).There are 84; 678 do
uments (254 mega bytes) for the year 1989 in the TREC-AP 
ol-le
tion, 79; 919 do
uments (237 mega bytes) for the year 1988, and 78; 321 do
uments(237 mega bytes) for the year 1990. Our experiments only utilise the AP-89 (disk 1)
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uments be
ause it is the one with the most 
omprehensive relevan
e judgements.The average do
ument length of the AP-89 subset is 137 words. The TREC-APdo
uments are ordered roughly by date. The AP newswire 
overs a broad variety ofdomains su
h as e
onomi
s, trade, te
hnology, et
. These do
uments are tagged usingSGML to allow easy parsing. Ea
h do
ument in this 
olle
tion has a distin
t title �eldmarked by the SGML tag <HEAD>, and a distin
t body �eld marked by the SGML tag<TEXT>. Both the title �eld and the main body text were used in our experiments.The following is an example of an AP news story formatted by the SGML tags:<DOC><DOCNO> AP890101-0001 </DOCNO><FILEID>AP-NR-01-01-89 2358EST</FILEID><FIRST>r a PM-APArts:60sMovies 01-01 1073</FIRST><SECOND>PM-AP Arts: 60s Movies,1100</SECOND><HEAD>You Don't Need a Weatherman To Know '60s Films Are Here</HEAD><HEAD>Eds: Also in Monday AMs report.</HEAD><BYLINE>By HILLEL ITALIE</BYLINE><BYLINE>Asso
iated Press Writer</BYLINE><DATELINE>NEW YORK (AP) </DATELINE><TEXT>``Film is a very powerful art medium,'' he said. ``I believe itvery a

urately refle
ts not only the prevailing but the 
omingtrends. It's be
ause film writers, like other writers, areper
eptive people. They get the message of what's going on.''</TEXT></DOC>An AP do
ument does not 
ontain any �elds to indi
ate if the 
orrespondingstory is about a parti
ular topi
 or 
ategory. So, the topi
s related to the AP newswirea
tually refer to the topi
 des
riptions 
reated as part of the TREC evaluation pro-
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edure. A topi
 
an be seen as a representation of a user's spe
i�
 information need(i.e., a query). The format of the TREC topi
s has evolved over time. Generally, thetopi
 des
riptions be
ome shorter in re
ent TREC experiments. The original ad ho
topi
s 1-50 used in TREC-1 
ontain the longest des
riptions. Ea
h topi
 des
ription
ontains multiple �elds and lists of 
on
epts related to the topi
. The experimentsreported in this thesis used the TREC topi
s 1-50 to represent a wide variety of initialinformation needs of a hypotheti
al user. An example of a TREC topi
 
an be foundin Appendix B. In our experiments, ea
h TREC topi
 des
ription was treated as ado
ument, and they were parsed along with the AP-89 do
ument 
olle
tion based onthe standard text pre-pro
essing and TFIDF weighting pro
edure similar to the oneemployed in the SMART system [Sal90℄. For example, the stop word list as de�nedin SMART was used to remove insigni�
ant 
ommon words from the 
olle
tion andthen Porter's stemming algorithm [Por80℄ was applied to 
ompute the root form ofea
h word. Non-alphabeti
 
hara
ters are removed from a word be
ause our theoremprover 
annot deal with spe
ial 
hara
ters. Finally, the TFIDF weighting s
heme(also 
alled the \at
" weight in SMART) was applied to 
ompute the TFIDF weightof ea
h term [SB88℄. After text pre-pro
essing, there are 131; 906 unique terms foundin the AP-89 
olle
tion. For ea
h indexed TREC topi
 des
ription, the top 10 termswith the highest TFIDF weights were then sele
ted to represent an initial query (i.e.,a user's initial information need). The top n tokens ranked by the TFIDF weightswere used to represent an AP newswire story. For all the results presented in thisthesis, n = 50 was employed. Previous studies revealed that using a small number of
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ument produ
ed better retrieval results [BS95, Bal97, PB97℄.A pilot run of our experiments showed that the setting of n = 50 produ
ed betterresult in terms of F1 s
ores when 
ompared with that of other parameter settings su
has n = 30, n = 100, et
. The a
tual size of the AP-89-50 subset with ea
h do
umentrepresented by no more than 50 terms is 122; 298KB.Relevan
e judgements are among the most important elements of any 
orpora.To assess the e�e
tiveness of IR systems, a list of relevant do
uments pertaining toea
h topi
 is 
ompiled in advan
e. This list of do
uments is 
alled the relevan
ejudgement whi
h de�nes the possibly 
hanging information needs pertaining to a hy-potheti
al user. By 
omparing an IR system's predi
tions with the user's relevan
ejudgements, the IR system's e�e
tiveness 
an then be estimated. For the TREC-AP
orpus, not all the do
uments were assessed manually. A pooling method was usedto 
onstru
t a list of do
uments whi
h were predi
ted as relevant by the majorityof the parti
ipating IR systems in TREC [VH99℄. The parti
ular sampling methodused in TREC was to take the top 100 do
uments retrieved in ea
h submitted run fora given topi
 and then these do
uments were merged into a pool for assessment byhuman experts. It is assumed that a do
ument not in the list of relevan
e judgementis non-relevant. Our experiments related to the AP-89 
olle
tion employed the rele-van
e judgement �le provided by TREC [Con02℄. A sample format of the relevan
ejudgement �le is as follows:1 0 AP880212-0161 01 0 AP880216-0139 1



5.2. THE COLLECTIONS 2091 0 AP880216-0169 01 0 AP880217-0026 01 0 AP880217-0030 0The �rst �eld (
olumn) represents the TREC topi
 number; the se
ond �eldis not used in our experiments. The remaining �elds (
olumns) 
ontain the TRECdo
ument ID and the relevan
e judgement respe
tively. If the relevan
e �eld 
ontains\1", it means that the asso
iated do
ument is relevant with respe
t to the giventopi
; otherwise it is non-relevant. In addition, if a parti
ular topi
 and do
ument ID
ombination is not found in the relevan
e judgement �le, the do
ument is assumednon-relevant for that parti
ular topi
.5.2.2 The Reuters-21578 Colle
tionThe Reuters 
orpus of newswire stories is widely used for IR and ma
hine learningresear
h. The do
uments of the Reuters-21578 
olle
tion appeared on the Reutersnewswire in 1987. These do
uments were �rst assembled by Reuters Ltd. and theCarnegie Group In
. and then re�ned by David Lewis. Sin
e then, the Reuters-21578test 
olle
tion has been made publi
ly available from the following Web site:http://www.resear
h.att.
om/~lewisSimilar to the TREC-AP 
olle
tion, the do
uments in the Reuters-21578 
olle
tionwere marked up with the SGML tags and ea
h do
ument was assigned a do
umentID 
orresponding to the 
hronologi
al order of appearan
e of the newswire stories.
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ument of the Reuters-21578 
orpus is depi
ted in Appendix C.Among the �ve 
ategories \Ex
hange", \Orgs", \People", \Pla
es", and \Topi
s",a human assessor de
ided whi
h 
ategories a do
ument belonged to. Our experi-ments only dealt with the \Topi
s" 
ategory. The Reuters-21578 topi
s are aboute
onomi
 subje
ts su
h as \
o
onut", \gold", \inventories", \money-supply", et
..If a do
ument has been assigned to one or more topi
s, there will be 
orrespondingtopi
 names delimited by the tags <D> and </D> inserted in the <TOPICS> �eld of thedo
ument. For example, a do
ument belonging to the topi
 \
o
oa" will have theentry <TOPICS><D>
o
oa</D></TOPICS> inserted in the topi
 �eld. As 
an be seen,the representation of relevan
e judgement information in the Reuters-21578 
olle
tionis di�erent from that employed in the TREC-AP 
olle
tion. In our experiments, a
omputer program was developed to parse every do
ument and 
reate a relevan
ejudgement �le with the same format as the one employed in the TREC-AP 
olle
tion.There are 135 topi
s in the Reuters-21578 
olle
tion and ea
h one of them issequentially assigned a topi
 number in our experiments. There 
ould be multiplerelevan
e judgement re
ords generated for a single do
ument if there are more thanone topi
 names in the <TOPICS> �eld. As in the TREC-AP 
olle
tion, if a relevan
ejudgement re
ord is not found given a topi
 number and a do
ument ID, the 
orre-sponding do
ument is assumed non-relevant. Only the �rst 20 topi
s were used inour experiments. Among these topi
s, there are topi
s with many relevant do
uments(e.g., topi
 1 - a
q) and also topi
s with no relevant do
ument at all (e.g., topi
 4 -
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s seems suÆ
ient to represent di�erent kindsof 
lass value distributions 
orresponding to various retrieval situations. Text appear-ing in the <TITLE> �eld or the <BODY> �eld was used to represent a do
ument in ourexperiments. The same text pre-pro
essing pro
edure as applied to the TREC-AP
olle
tion was used to parse the Reuters-21578 
olle
tion. Table 5.2 lists the �rst20 topi
s of the Reuters-21578 
olle
tion and the 
orresponding number of relevantdo
uments pertaining to ea
h topi
:Topi
 No. Des
ription No. of Relevant Do
uments1 a
q 23662 alum 573 austdlr 44 austral 05 barley 516 bfr 07 bop 1058 
an 39 
ar
ass 6810 
astor-meal 011 
astor-oil 212 
astorseed 113 
itruspulp 114 
o
oa 7315 
o
onut 616 
o
onut-oil 717 
o�ee 13918 
opper 6519 
opra-
ake 320 
orn 237Table 5.2: The Reuters-21578 Topi
s & Relevant Do
uments
There are two standard subsets of the Reuters-21578 
olle
tion for bat
h learning
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alled \Modi�ed Lewis Split" and the another is the \Modi�edApte Split". The main di�eren
e between these two subsets is that the latter 
ontainsdo
uments belonging to at least one topi
. With bat
h mode learning tasks, a do
-ument 
olle
tion is often divided into a training set and a test set. For our adaptivelearning and �ltering task, su
h a split is not required be
ause an information agentlearns as soon as a do
ument is presented. In other words, there is no training periodto develop an initial user model. Our experiments used the \Modi�ed Lewis Split"but without the a
tual splitting. The original \Modi�ed Lewis Split" 
ontains 19; 813do
uments. Nevertheless, there were only 19; 702 do
uments used in our experimentsbe
ause there were some do
uments with empty text body after our stop word re-moval pro
edure. There are 31; 568 unique terms found in the \Modi�ed Lewis Split"subset of the Reuters-21578 
olle
tion. The average number of words per do
ument is45. The reason why the \Modi�ed Lewis Split" instead of the \Modi�ed Apte Split"was used is that more realisti
 IR s
enarios are preferred. For instan
e, there 
ouldbe no do
ument satisfying a user's information needs in real IR situations, and these
ases are represented in the \Modi�ed Lewis Split" do
ument subset.
5.3 Evaluation Pro
eduresThe evaluation pro
edure for our adaptive information agents is based on the adaptiveinformation �ltering task of the seventh Text REtrieval Conferen
e (TREC-7) [Hul98℄.The primary obje
tive of the TREC forum is to en
ourage resear
h in text retrieval
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olle
tions, and to fa
ilitate the ex
hange of ideas among industry,a
ademia, and the government. The emphasis on individual experiments evaluatedwithin a 
ommon setting has proven to be a major strength of TREC. The mainreason for employing the adaptive �ltering ben
h-marking pro
edure of TREC is thattheir method provides a realisti
 assessment of adaptive IR systems. By using theTREC-7 ben
h-marking pro
edure to evaluate our agent system, it be
omes possibleto 
ompare the performan
e of the proposed belief-based information agent modelwith that of other well-known IR models. The TREC-7 adaptive �ltering task assumesthat an IR system will make a binary de
ision of do
ument relevan
e as soon asa do
ument arrives. Su
h an assumption is more akin to the s
enarios of on-lineintera
tive IR pro
esses.For the TREC-7 adaptive information �ltering task, ea
h IR system is onlyprovided with a set of topi
 des
riptions (i.e., a user's initial interests) based on theTREC topi
s 1-50 originally used in the ad ho
 retrieval task of TREC-1. Trainingdo
uments are not available to develop an initial user pro�le. Do
uments arrivesequentially and an IR system needs to make an immediate de
ision if the 
urrentdo
ument is relevant or not (i.e., binary 
lassi�
ation) with respe
t to the 
urrent userpro�le. Therefore, the adaptive �ltering task is 
onsidered mu
h more diÆ
ult thanthe bat
h �ltering or routing tasks where an IR system is supplied with a set of trainingexamples to learn the information needs of a hypotheti
al user before the system startsto make re
ommendations. The terms \routing", \�ltering", and \ad ho
 retrieval"
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onfusing in TREC. In all the TREC experiments, ranked text retrievalwith respe
t to a query is 
alled \ad ho
 retrieval". Ranked text �ltering is referredto as \routing", whereas binary text �ltering in whi
h a \yes" or \no" de
ision mustbe made as ea
h do
ument arrives is referred to as \text �ltering". For the TREC-7adaptive �ltering task, ea
h parti
ipating system starts with a query derived froma topi
 des
ription. An IR system pro
esses do
uments one at a time a

ording totheir 
hronologi
al order. If the system de
ides to retrieve a do
ument, it obtains therelevan
e judgement asso
iated with the do
ument. Then, the IR system uses therelevan
e judgement to re�ne its user pro�le. So, only retrieved do
uments are usedas learning examples. To simulate the intera
tive relevan
e feedba
k environment,the relevan
e judgement information asso
iated with ea
h do
ument should not beread by the system before a predi
tion about the 
urrent do
ument is produ
ed. InTREC-7, there was no me
hanism to enfor
e this poli
y and it was entirely up to theparti
ipating systems to follow this pro
edure based on self dis
ipline. Apart fromthe relevan
e judgement information, parti
ipating systems were allowed to use theTREC do
ument 
olle
tion other than the AP 
orpus to develop 
olle
tion frequen
ystatisti
s su
h as IDF or auxiliary data stru
tures su
h as automati
ally generatedthesauri.As ea
h parti
ipating system returns an unordered set of do
uments insteadof a ranking, the evaluation measure is quite di�erent from the measures used forad ho
 or routing tasks in TREC. Classi
al set-based evaluation measures su
h as
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ision and re
all do not behave gra
efully for topi
s with asymmetri
 
lassvalue distributions. The adaptive �ltering task of TREC-7 used utility fun
tions tomeasure the quality of the retrieved do
uments. In parti
ular, su
h a quality metri
 is
omputed as a fun
tion of the bene�t of retrieving a relevant do
ument and the 
ostof retrieving an irrelevant do
ument. In TREC-7, two utility fun
tions namely F1and F3 were used. In general, the F1 measure favours pre
ision-oriented IR systemsand the F3 measure favours re
all-oriented IR systems:
F1 = 3� a� 2� b (5.7)
F3 = 4� a� b (5.8)With referen
e to the 
ontingen
y table 5.1, a and b are the number of relevantand non-relevant do
uments retrieved respe
tively. However, our experimental pro-
edure di�ered from the TREC-7 evaluation method in that the agent system wasallowed to use reje
ted do
uments as training examples to re�ne its knowledge basebe
ause our belief revision model 
an learn beliefs as well as disbeliefs. Moreover,only a subset of the TREC-AP 
olle
tion (AP-89) was used in our experiments. TheTREC-7 results indi
ated that the adaptive �ltering task was a very 
hallenging prob-lem even for the sophisti
ated IR systems [Hul98℄. Therefore, adopting the TREC-7adaptive �ltering ben
h-marking pro
edure to assess our belief-based agent systemAIFS has the added advantage of examining the s
alability of the system for large
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omplex text �ltering tasks.
5.4 Experiment on Entren
hment Indu
tionAll the experiments reported in this thesis were 
ondu
ted on Intel Pentium III800MHz PCs with 256MB main memory running under Windows2000. Though theagent system was also tested on Sun Mi
rosystems' Enterprise Server under SunOS5.7, for the reason of 
onsisten
y, only the performan
e data 
olle
ted from the Pen-tium III based PC platforms are reported. Sin
e the indu
tion of epistemi
 entren
h-ment orderings is a 
ru
ial step for applying belief revision and non-monotoni
 rea-soning to adaptive information agents, the �rst experiment aimed at identifying ane�e
tive and eÆ
ient method to indu
e epistemi
 entren
hment orderings represent-ing information seekers' information preferen
es. All the test runs were performedbased on the Reuters-21578 
olle
tion in this experiment. The 
andidate indu
tionmethods whi
h were subje
t to empiri
al testing in
luded expe
ted 
ross entropy fortext (EH) Eq.(4.2), mutual information (MI) Eq.(4.1), the original version of thekeyword 
lassi�er (KC) Eq.(4.3), modi�ed keyword 
lassi�er (MKC) Eq.(4.8), oddsratio (OR) Eq.(4.4) and Eq.(4.5), and normalised TFIDF Eq.(2.1) with Ro

hio up-dating Eq.(4.7). If a 
andidate entren
hment indu
tion method produ
es term s
oresoutside the unit interval [0,1℄, the terms s
ores will be s
aled to the unit interval by alinear fun
tion Eq.(4.6). The s
aling pro
ess was performed by �rst parsing the entiredo
ument 
olle
tion to identify the maximal raw term s
ore S(t)max and the minimal
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ore S(t)min. Then, a se
ond pass was followed and the pres
ribed indu
tionmethod was invoked to indu
e the beliefs and their asso
iated entren
hment degrees.All the 
andidate methods used the same adjustment fa
tor � to adjust the entren
h-ment degrees so that indu
ed beliefs would not be assigned the maximal degree 1whi
h is atta
hed to tautologies only. The same belief revision method (e.g., RapidAnytime Maxi-adjustment RAM) and do
ument s
oring pro
edure were applied toea
h indu
tion method. For ea
h 
andidate method, the e�e
tiveness measures su
has the F1 measure, F1 utility and F3 utility were 
olle
ted for 20 runs 
orresponding tothe �rst 20 topi
s of the Reuters-21578 
olle
tion. These results were ma
ro-averagedto fa
ilitate 
omparison. The �nal result for the six entren
hment indu
tion methodsis depi
ted in Table 5.3.Indu
tion Method F1 measure F1 Utility F3 UtilityOdds Ratio 0.365 112.5 160.1Mutual Information 0.117 10.8 63.2Expe
ted Cross Entropy 0.046 -113.3 -56.9TFIDF+Ro

hio 0.301 90.2 144.6Keyword Classi�er 0.386 124.1 188.3Modi�ed Keyword Classi�er 0.486 160.4 285.1Table 5.3: Comparison of Entren
hment Indu
tion MethodsAmong the evaluated entren
hment indu
tion methods, the method that wasadopted from expe
ted 
ross entropy for binary text 
lassi�
ation [KS97℄ performedworst. As 
an be seen in Eq.(4.2), the raw term s
ore is mainly derived from the sum
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onditional probabilities Pr(Reljt) and Pr(Nreljt) and normalised by theprobability of term appearan
e Pr(t). Even if a term t appears frequently in boththe set of relevant do
uments D+ and the set of non-relevant do
uments D� (e.g.,Pr(Reljt) and Pr(Nreljt) are even), the raw term s
ore S(t) based on the expe
ted
ross entropy for text 
ould be high. This entren
hment indu
tion method does not
orrespond to our intuition about epistemi
 entren
hment orderings. A term t oftenfound in D+ should be a highly entren
hed belief about a user's information need(i.e., positive keyword). On the other hand, if the term t often appears in D�, it isa highly entren
hed disbelief (i.e., negative keyword). If t appears frequently in bothD+ and D�, it is not a good indi
ator (i.e., neither belief nor disbelief) of what theuser likes or dislikes (i.e., neutral keyword). It is also observed that if a term t oftenappears in D� only, a medium term s
ore may be generated a

ording to Eq.(4.2).Unfortunately, there is no way to distinguish if it is a belief or disbelief. Su
h adistin
tion is important in our belief-based 
lassi�
ation framework sin
e beliefs inan agent's knowledge base are used to infer relevant do
uments and disbeliefs areused to reje
t non-relevant do
uments. Without su
h a distin
tion, it is possiblethat disbeliefs 
ould be mistakenly used to infer a user's positive information need.Consequently, poor retrieval performan
e was observed.It should be noted that information gain was regarded as one of the most ef-fe
tive feature sele
tion methods [YP97℄. Indeed, information gain is equivalent toexpe
ted 
ross entropy. However, the main di�eren
e between our experiment and
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tion me
hanism was 
onsumed by a K-Nearest Neighbours (KNN) 
lassi�er ora linear regression model. However, our indu
ed entren
hment degrees are reasonedabout by the belief revision engine. Indeed, there is a mis-mat
h between how theentren
hment degrees are indu
ed based on the expe
ted 
ross entropy method andthe way how these entren
hment degrees are interpreted by the belief revision en-gine. It is believed that the 
orresponden
e between a feature sele
tion method anda parti
ular 
lassi�
ation model is 
ru
ial for improved IR performan
e [YP97℄. These
ond di�eren
e is that Eq.(4.2) represents a spe
ialisation of the general expe
ted
ross entropy measure. In fa
t, only term presen
e (e.g., Pr(Reljt) and Pr(Nreljt))is taken into a

ount in Eq.(4.2). Nevertheless, both term presen
e and term absen
e(e.g., Pr(Relj:t)) are in
luded in the general expe
ted 
ross entropy formulation. So,Eq.(4.2) is not exa
tly the same as the notion of information gain often referred to inthe ma
hine learning 
ommunity [Qui86℄.The Mutual Information measure Eq.(4.1) was tested for entren
hment indu
tionas well. Parti
ularly, MI(t; Rel) = log2 Pr(t^Rel)Pr(t)Pr(Rel) was used to indu
e the entren
h-ment degree. A

ording to our experiment, theMI method is not e�e
tive as re
e
tedby the low F1 value, F1 utility s
ore, and F3 utility s
ore. The reason is that the MImeasure favours rare terms whi
h does not 
orrespond to our intuition about epis-temi
 entren
hment orderings. A term seldom appearing in a do
ument 
olle
tiondoes not ne
essarily imply that it is a highly entren
hed belief representing the most
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t, Eq.(4.1) 
an be expressed by:
MI(t; Rel) = log2 Pr(tjRel)� log2 Pr(t) (5.9)From Eq.(5.9), it is easy to observe that given the same Pr(tjRel), a rare term (i.e.,low Pr(t)) will have a higherMI(t; Rel) s
ore. Su
h a highly weighted term would be
onverted to a highly entren
hed belief even though the underlying term may not bea strong indi
ator of a user's positive information need. The epistemi
 entren
hmentindu
tion methods whi
h are based on Odds Ratio (OR) and normalised TFIDF withRo

hio term re-weighting produ
e better IR results when 
ompared with that ofthe MI and EH methods. The OR method seems slightly better than the TFIDFmethod. Odds Ratio was proposed for do
ument ranking [vRHP81℄, but it is not thebest method for epistemi
 entren
hment indu
tion. The reason is that the Odds Ratioas de�ned in Eq.(4.4) generates a high term s
ore for a term t if Pr(tjRel) is mu
hhigher than Pr(tjNrel). Indeed, the Odds Ratio based indu
tion method partially
orresponds to our intuition about epistemi
 entren
hment orderings. Therefore, theresulting IR performan
e is moderate. However, the Odds Ratio method did not per-form as well as the Keyword Classi�er method be
ause it assigned very positive termswith high term s
ore and very negative terms with low term s
ore. This prin
ipleis suitable for do
ument ranking be
ause negative information items should be pre-sented after all the positive information items. However, in the 
ontext of epistemi
entren
hment indu
tion, very negative terms 
an also be used as disbeliefs by the
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t non-relevant items. The original formulation of Odds Ra-tio Eq.(4.4) is not e�e
tive in indu
ing disbeliefs whi
h are quite useful for reje
tingnon-relevant do
uments.Surprisingly, the entren
hment indu
tion method based on normalised TFIDFre-weighted by the Ro

hio method produ
ed 
omparable performan
e to that of theOdds Ratio based indu
tion method. TFIDF is an e�e
tive method to identify themost dis
riminatory terms for do
ument representation. Nevertheless, a representa-tive term in a do
ument does not ne
essarily imply that it is a good representation(i.e., a belief) of a user's information need. Therefore, the original intention of test-ing this method was to provide a baseline result to 
ompare with other informationtheoreti
 approa
hes. The reason why this method performed better than the otherinformation theoreti
 methods su
h as mutual information may be that the Ro

hiomethod is e�e
tive with respe
t to re-weighting the terms based on the set of positivetraining examples D+ and the set of negative training examples D� [SB90℄. Thesere-weighted terms (and hen
e the indu
ed beliefs) 
an more or less represent a user's
urrent information needs. In our experiment related to the TFIDF method, onlynormalised positive TFIDF weights (i.e., in the interval [0; 1℄) were used. Therefore,disbeliefs, whi
h 
an be used to reje
t non-relevant do
uments, were not indu
ed.Besides, there is still a fundamental mis-mat
h between the TFIDF weights andthe epistemi
 entren
hment degrees. For example, a term with a very high TFIDFweight in a positive do
ument and a low TFIDF weight in a negative do
ument
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ause of its low term frequen
y) may still generate a moderate term s
ore byRo

hio updating be
ause negative do
uments are only penalised by a small fa
tor(e.g., 0.25), whereas positive do
uments are rewarded by a high rating fa
tor (e.g.,0.75). A

ordingly, a moderately entren
hed belief 
ould be indu
ed even though theunderlying term is more likely to be 
onsidered as a neutral keyword be
ause of itseven appearan
e in D+ and D� respe
tively. This may explain why entren
hmentindu
tion based on normalised TFIDF is not as e�e
tive as the keyword 
lassi�er(KC) method. A

ording to our experiment, the normalised TFIDF method forentren
hment indu
tion is quite ineÆ
ient. The 
hange of one term weight may a�e
tall the other term weights be
ause of the 
osine normalisation pro
edure. Even thoughsu
h a normalisation pro
ess may not be 
omputationally expensive, performing beliefrevision (i.e., raising or lowering the entren
hment degree) for every a�e
ted term (i.e.,belief) is very time 
onsuming. A

ording to our empiri
al study, on average it took2:4 se
onds more to pro
ess a do
ument if the normalised TFIDF method rather thanthe MKC method was used for entren
hment indu
tion. This result indi
ates that theTFIDF method for entren
hment indu
tion is not appealing for large IR appli
ations.Both the KC method Eq.(4.3) and the modi�ed MKC method Eq.(4.8) out-performed other entren
hment indu
tion methods. Even if the term Pr(
jt) log2 Pr(
jt)Pr(
) ,where 
 2 fRelevant;Non-relevantg, appearing in both Eq.(4.3) and Eq.(4.8) is ex-a
tly the same as the one appearing in the expe
ted 
ross entropy formula Eq.(4.2),the resulting term s
ores are quite di�erent as derived from the respe
tive methods.
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e is that the 
onditional probability Pr(Nreljt) will lower the over-all term s
ore in the keyword 
lassi�er formulas. Moreover, without the presen
e ofa term t in the relevant set D+ (i.e., Pr(Reljt) = 0), a negative term s
ore is derivedfrom Pr(Nreljt). Su
h a negative term s
ore exa
tly re
e
ts the entren
hment degreeof the 
orresponding disbelief. In other words, if a term t only appears in the non-relevant set D�, it may be
ome a strong disbelief of a user's information need. Thisdisbelief 
an then be used by the agent to reje
t non-relevant do
uments. A

ordingly,the 
ombined re
all and pre
ision s
ore F1 is better than that as obtained via othermethods. In addition, the modi�ed keyword 
lassi�er MKC method is appre
iablybetter than the KC method be
ause it 
an take into a

ount the asymmetri
 distri-bution of 
lass values (e.g., many non-relevant do
uments vs. relevant do
uments). Ifthe majority 
lass (e.g., non-relevant) is not the target 
lass (e.g., relevant), the terms
ore as derived by Eq.(4.3) is dominated by the negative terms. As a 
onsequen
e,the agent's knowledge base will only be �lled with many highly entren
hed disbeliefs.While the disbeliefs 
an help improve pre
ision in IR, it does not help retrieve relevantdo
uments at all.The modi�ed keyword 
lassi�er Eq.(4.8) takes into a

ount the possible asym-metri
 
lass value distribution by weighting positive eviden
e and negative eviden
ewith di�erent fa
tors (i.e., the � and � parameters). In information �ltering situations,the positive learning threshold � is set mu
h higher than the negative learning thresh-old �. Therefore, a disbelief will only be indu
ed if the 
orresponding term is found



224 CHAPTER 5. EXPERIMENTS AND RESULTSfrom a large number of non-relevant do
uments. This assumption better 
aptures thereality in information �ltering situations where there is a relatively higher 
han
e thatan arbitrary term is found in non-relevant do
uments. To be 
onsidered as a negativekeyword (disbelief), the term must appear quite frequently in the non-relevant setD�. Our experimental results 
on�rmed the above observation. Upon 
loser exam-ination of the agent system's knowledge base, it was found that the knowledge basewas dominated by disbeliefs when the KC method was used to indu
e entren
hmentorderings. However, when the MKC method was used, the agent's knowledge base
ontained more evenly distributed beliefs and disbeliefs. This is the reason why theagent system's retrieval performan
e is better when the MKC method is used. As aresult, the MKC method is adopted as the standard method to indu
e the epistemi
entren
hment orderings within AIFS.
5.5 Experiment on Adaptive LearningOne important property of adaptive information agents is their abilities to 
ontinu-ously learn users' 
hanging information needs so as to improve the agents' retrievalperforman
e over time. If our adaptive agents are e�e
tive in learning users' infor-mation needs, improvement of the agents' retrieval performan
e should be observedover time. To evaluate the agent system's learning e�e
tiveness, the F1 s
ores wereplotted against the number of training examples en
ountered by the system. The F1measure is used instead of the F1 utility or the F3 utility be
ause the utility values are
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uments in a do
ument 
olle
tion. For example,if there are 10 relevant do
uments out of the �rst 1000 do
uments in a 
olle
tion andan agent performs quite well so that all the 10 relevant do
uments are retrieved, theutility s
ore is positive. However, if there is no relevant do
ument in the following1000 do
uments and the agent is still performing well by reje
ting all the non-relevantdo
uments, the utility s
ore will drop to zero. Therefore, the utility fun
tions are notgood indi
ators for the agents' adaptive learning performan
e. On the other hand,the F1 measure allows us to monitor if an agent's performan
e is really 
hanging inde-pendent of the number of relevant do
uments 
ontained in a 
olle
tion. To evaluatean agent's learning and 
lassi�
ation performan
e over time, the do
ument 
olle
tionis evenly divided into several subsets to observe the agent's performan
e in di�erentperiods. The hypothesis is that if the proposed belief revision framework for adap-tive information agents is e�e
tive, the F1 s
ores should improve over time. In otherwords, an up turning 
urve should be observed. To test this hypothesis, both theReuters-21578 and the AP-89 
olle
tions were used. A set of topi
s, some with manyrelevant do
uments and some with few or no relevant do
uments, were used to testthe agents' learning performan
e under various retrieval situations.For TREC topi
 10 (112 relevant do
uments) and topi
 17 (106 relevant do
u-ments), the hypothesis is 
on�rmed in that the agent's 
lassi�
ation performan
e inthe last period (do
uments 70,000 - 80,000) is improved when 
ompared with the �rstperiod (do
uments 1 - 10,000). These results are plotted in Figure 5.1 and Figure 5.2
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Figure 5.1: Adaptive Learning (TREC Topi
 10)

Figure 5.2: Adaptive Learning (TREC Topi
 17)respe
tively. The plotting after the 80,000 do
ument point should be ignored be
ausethe number of do
uments in this interval is not the same as that of the previous in-
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Figure 5.3: Adaptive Learning (TREC Topi
 37)

Figure 5.4: Adaptive Learning (TREC Topi
 21)tervals. There is 
u
tuation in the middle periods. This 
u
tuation of performan
e isexpe
ted sin
e a user's information needs will 
hange over time. Therefore, the 
u
-
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e
t the periods when an agent is learning new information needs. Ingeneral, the lowest points in these 
u
tuated periods are still higher than the pointplotted after the initial period (do
uments 1 - 10,000). This indi
ates that the agenthas a
quired the user's basi
 information interests after the initial learning period. ForTREC topi
 37 (7 relevant do
uments), the agent 
an also learn the user's preferen
esqui
kly even with a small number of positive training examples as demonstrated inFigure 5.3. This is re
e
ted by the positive F1 s
ore after the �rst period (do
uments1 - 10,000). The agent's performan
e keeps improving sin
e then. The maximal �l-tering performan
e is obtained during the fourth period (do
uments 30,000 - 40,000),and this performan
e is maintained sin
e then. The maximal �ltering performan
ea
hieved after the fourth period is due to the stable interests of the user exhibited inthese later learning periods.However, for TREC topi
 21 (2 relevant do
uments) as depi
ted in Figure 5.4,the agent's learning pro
ess is not so obvious. Parti
ularly, there is a serious drop ofperforman
e in a relatively late period (do
uments 40,000 - 50,000) when improvedperforman
e is expe
ted. Upon 
loser examination, it was found that there was onerelevant do
ument in the 
orresponding do
ument subset. Unfortunately, the agentsystem reje
ted all the do
uments. Consequently, the F1 s
ore dropped to zero. Su
ha zero s
ore does not ne
essarily indi
ate that the agent performed very poorly. Ingeneral, if there is only a small number of relevant do
uments with respe
t to a giveninformation need, it will be quite diÆ
ult for an agent to learn an a

urate user model.
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lassi�
ation performan
e may 
u
tuate 
onsiderably due tomissing some relevant do
uments. As a whole, with few positive training examples, itis quite diÆ
ult for the agent to learn a user's positive information needs. It seems thatthe proposed belief revision learning model is e�e
tive if there is a reasonable numberof positive training examples to gradually train the agent. The proposed learningmodel may su�er from the same weakness pertaining to the state of the art ma
hinelearning algorithms su
h as the Boosting method [SSS98℄. However, the advantageof the belief revision model is that it enables an agent to learn in
rementally ratherthan learning in a bat
h mode manner.

Figure 5.5: Adaptive Learning (Reuters-21578 Topi
 01)The adaptive learning performan
e of the information agents was also examinedwith referen
e to the runs based on the Reuters-21578 
olle
tion. Figure 5.5 andFigure 5.6 depi
t two su
h runs. For Reuters topi
 1 (2366 relevant do
uments) and
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Figure 5.6: Adaptive Learning (Reuters-21578 Topi
 20)

Figure 5.7: Adaptive Learning (Reuters-21578 Topi
 10)topi
 20 (237 relevant do
uments), adaptive learning was realised by the improved
lassi�
ation performan
e re
orded in the last period (do
uments 16,000 - 18,000)
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Figure 5.8: Adaptive Learning (Reuters-21578 Topi
 12)when 
ompared with that obtained in the initial period (do
uments 1 - 2,000). Theseresults 
on�rm that the agent system 
an learn a retrieval 
ontext over time andemploy the a
quired knowledge to make more a

urate 
lassi�
ation de
isions. Againthe plotting after the 18,000 do
ument point should be ignored be
ause there areinsuÆ
ient do
uments to 
ompute an agent's average performan
e �gure after thatperiod. There is not as large a 
u
tuation in the middle periods as demonstrated bythe test runs based on the AP-89 
olle
tion (e.g., Figure 5.2). This observation 
anbe explained in that the information needs of the hypotheti
al user as representedin many Reuters topi
s are more or less stable. In fa
t, the retrieval e�e
tivenessas demonstrated by many previous studies based on the Reuters-21578 
olle
tionis generally better than that obtained based on the TREC AP 
olle
tion [SSS98,YP97℄. The learning and 
lassi�
ation tasks based on the Reuters-21578 
olle
tion
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onsidered easier than that of the TREC-AP 
olle
tion. In our experiment, theagent system AIFS was able to learn rapidly (e.g., a sharp up-turning 
urve) duringthe initial learning period. Further investigation found that there were quite a numberof relevant do
uments among the �rst 2,000 do
uments for both topi
s. Be
ause ofthe e�e
tive belief revision me
hanism, the agent system was quite responsive to thesepositive training examples and was able to learn high quality user pro�les early inits learning 
y
le. The agents' learning and 
lassi�
ation performan
e for topi
s withfew or no relevant do
uments in the Reuters-21578 
olle
tion is di�erent from thatobtained based on the AP-89 
olle
tion. For Reuters topi
 10 (0 relevant do
uments)and topi
 12 (1 relevant do
ument), the agent system was able to learn as e�e
tivelyand qui
kly as the other topi
s where a large number of positive training examplesexisted. As shown in Figure 5.7 and Figure 5.8, after the initial learning periods, theagent system was able to maintain its maximal �ltering performan
e in the subsequentperiods. This di�eren
e 
an be explained in that the information needs as presentedin most of the Reuters topi
s are relatively stable. On
e the agent system learns thebeliefs about the users' information needs, the system 
an make use of its knowledge topredi
t the relevan
e of forth-
oming do
uments. In the 
ase that there is no relevantdo
ument for a topi
, the agent system 
an make use of its disbeliefs e�e
tively toreje
t all non-relevant do
uments.



5.6. EXPERIMENT ON TRANSMUTATION METHODS 2335.6 Experiment on Transmutation MethodsThe obje
tive of running this experiment is to evaluate the various belief revisionmethods. Stri
tly speaking, it is the 
orresponding adjustment methods being testedin an empiri
al setting. A

ording to previous theoreti
al analysis, the Maxi-adjustmentmethod should be superior to the standard AGM adjustment method be
ause the be-liefs of a user's information needs will be retained unless there is really a reason(e.g., a logi
al impli
ation) to support the 
ontra
tion [Wil96a, LtHB01a, LtHB01b℄.However, the 
omputational 
ost of the Maxi-adjustment method is a major 
on
ernwhen it is applied to pro
ess large and 
omplex appli
ations. It is believed that the
omputationally more eÆ
ient Anytime Maxi-adjustment method 
an produ
e 
loseapproximations of the results as generated by the Maxi-adjustment method [Wil97℄.The Anytime approa
h is theoreti
ally sound, but to our knowledge its e�e
tivenessand eÆ
ien
y in large real-life appli
ations are yet to be validated. So, one of thegoals of this experiment is to examine the properties of the Anytime me
hanism inan empiri
al setting. In addition, as the Rapid Anytime Maxi-adjustment method(RAM) is proposed in this thesis, this experiment also aims at evaluating the e�e
-tiveness of the RAM method and 
omparing its performan
e with that a
hieved bythe Anytime Maxi-adjustment method.Two text �ltering tasks were used to examine the various adjustment methods.The �rst text �ltering task was 
ondu
ted based on the TREC topi
 22 with thelargest number of relevant do
uments (524) in the AP-89 
olle
tion. It is also one of



234 CHAPTER 5. EXPERIMENTS AND RESULTSAdjustment Methods Time F1 measure F1 Utility F3 UtilityStandard AGM 12H44M45S 0.129 -121 -23Maxi-adjust 271H7M56S 0.236 -93 176Anytime Maxi-adjust 48H50M43S 0.241 -88 192Rapid Anytime Maxi-adjust 32H28M18S 0.248 -86 198Table 5.4: Comparison of Adjustment Methods (TREC Topi
 22)
the most time-
onsuming runs among the 50 TREC topi
s. Moreover, TREC topi
37 with a few relevant do
uments (7) was also used to test the various adjustmentmethods. The motive of using these two TREC topi
s to test the various adjustmentmethods is to 
ompare their performan
e under quite di�erent retrieval situations(e.g., one with many beliefs to learn and one with only a few beliefs to learn). Inorder to test the s
alability of the belief revision framework, the AP-89 
olle
tion wasused instead of the Reuters-21578 
olle
tion. The results are depi
ted in Table 5.4 andTable 5.5 respe
tively. The time limit applied to both the anytime Maxi-adjustmentmethod and the RAM method was 5000ms in this experiment. For a retrieval domainwith many positive beliefs, it takes substantially longer time for the Maxi-adjustmentmethod to learn and revise the beliefs into an agent's knowledge base. In fa
t, it is22 times longer than using the standard AGM adjustment method.This problem 
an be explained based on the 
urrent learning and revision method.In all our experiments, the standard do
ument pre-pro
essing approa
h is to take thetop 50 terms with the highest TFIDF weights to represent a do
ument. Based on our
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urrent entren
hment indu
tion method (MKC), a relevant do
ument may have upto 50 beliefs indu
ed and revised into a theory base. If all the terms are new to theagent system, these beliefs will have exa
tly the same entren
hment degree. In otherwords, it is possible to have 50 or even more beliefs with the same rank pertaining toan epistemi
 entren
hment ordering. The maxi-adjustment algorithm 
omputes theminimal in
onsistent subsets of beliefs if there is more than one belief in a parti
ularrank during a belief revision operation. The minimal subset 
omputation is exponen-tial with time 
omplexity O(2n) in the worst 
ase, where n is the number of beliefs ina parti
ular rank. As demonstrated in this empiri
al testing, the Maxi-Adjustmentmethod does not s
ale up well for demanding appli
ations su
h as text �ltering fora large do
ument 
olle
tion. The agent system took 271 hours to �lter the AP-89
olle
tion if the Maxi-adjustment method was used. Moreover, it is surprising to �ndthat the learning e�e
tiveness of the Maxi-adjustment method is not better than thatof the Anytime Maxi-adjustment method nor the RAM method. The reason may bethat although the Maxi-adjustment method 
an theoreti
ally retain more beliefs inan agent's knowledge base than the other methods do, these beliefs may not be signif-i
ant (e.g., beliefs with low entren
hment degrees). Some of these insigni�
ant beliefsmay eventually 
ause the agent system to make ina

urate 
lassi�
ation de
isions.A

ordingly, both the F1 and the F3 utility s
ores a
hieved by the 
orrespondingagent were low be
ause of the penalty applied to the wrong 
lassi�
ation.The standard AGM adjustment method produ
es the fastest belief revision op-



236 CHAPTER 5. EXPERIMENTS AND RESULTSeration. This method was invoked in the agent system by setting zero (i.e., no timelimitation) for the time limit parameter in the Anytime standard AGM adjustmentpro
edure. The 
omplete algorithm of the standard AGM adjustment method is do
-umented in Appendix D. However, the learning e�e
tiveness of the agent systembased on the standard AGM adjustment method is not as good as that of the otheradjustment methods. After a 
loser examination of the agent system's theory base,it was found that some useful beliefs were not 
aptured in the agent's theory basewhen the standard AGM adjustment method was applied. The reason is that thestandard AGM belief revision operation will 
ontra
t any 
ontradi
tory beliefs as wellas beliefs with entren
hment degrees lower than or equal to these 
ontradi
tory beliefsfrom an agent's knowledge base. This �nding 
on�rms previous theoreti
al analysisin that the standard AGM belief revision operator may not be suitable for adaptivetext �ltering appli
ations [LtHB01b℄. In our initial experiment, both the AnytimeMaxi-Adjustment method and the Rapid Anytime Maxi-Adjustment method (RAM)produ
ed promising results. The performan
e �gures of these two methods are 
om-parable, but the RAM method is slightly better. Sin
e the RAM method does notinvolve the 
omputation of minimal in
onsistent subsets when belief 
ontra
tion takespla
e, it is faster than the Anytime Maxi-Adjustment method as validated by the re-spe
tive text �ltering tasks. In addition, the F1 measure, F1 utility and F3 utilitya
hieved by the RAM method are also slightly better than those obtained based on theAnytime Maxi-Adjustment method. It was found that some disbeliefs in the agent'stheory base after applying the RAM method did not exist in the agent system's the-



5.6. EXPERIMENT ON TRANSMUTATION METHODS 237ory base if the Anytime Maxi-Adjustment method was applied. These beliefs mightbe lost during a belief revision operation when the time limit of the Anytime Maxi-adjustment method was ex
eeded. As the RAM method is faster than the AnytimeMaxi-adjustment method (e.g., no minimal subsets of beliefs are 
omputed), thereis less 
han
e that some signi�
ant beliefs are lost be
ause the time limit of a be-lief revision operation is rea
hed. As a result, more a

urate do
ument 
lassi�
ationis a
hieved based on a larger number of reliable beliefs about the 
urrent retrieval
ontext. Adjustment Methods Time F1 measure F1 Utility F3 UtilityStandard AGM 0H48M13S 0 0 0Maxi-adjust 4H49M02S 0.767 12 16Anytime Maxi-adjust 2H45M16S 0.769 13 19Rapid Anytime Maxi-adjust 2H26M33S 0.769 13 19Table 5.5: Comparison of Adjustment Methods (TREC Topi
 37)When there were only a few positive examples to be learnt from a topi
, the var-ious adjustment methods, ex
ept standard AGM adjustment, produ
ed 
omparableresults as depi
ted in Table 5.5. The standard AGM adjustment method produ
ed thepoorest result measured in terms of the F1 measure, F1 utility, and F3 utility. Afterexamining the agent's theory base, it was observed that some positive beliefs learntby the other adjustment methods were not present if the standard AGM adjustmentmethod was applied. This is perhaps 
aused by the fa
t that some beliefs with equalor lower entren
hment degree may be 
ontra
ted from the agent's knowledge base
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ausing the in
onsisten
y. Without an adequate representationof the retrieval 
ontext, the agent 
ould not identify the relevant do
uments. A
-
ordingly the F1 measure, F1 utility and F3 utility were all zeros when the standardadjustment method was invoked.The Maxi-adjustment method, Anytime Maxi-adjustment method, and RapidAnytime Maxi-adjustment method a
hieved 
omparable learning e�e
tiveness. Againit took longer to �lter the AP-89 
olle
tion if the Maxi-adjustment method was ap-plied. The additional time was 
onsumed while the Maxi-adjustment method pro-
essed some disbeliefs with the same rank. In fa
t, there were only a few disbeliefswith the same entren
hment degree (i.e., in the same rank) in the agents' theory basesfor this �ltering task. Consequently, the Maxi-adjustment method did not 
onsumesubstantially more time to learn the hypotheti
al user's 
hanging information needswhen 
ompared with the RAM method. The small time di�eren
e between the Maxi-adjustment method and the Anytime Maxi-adjustment method also indi
ated thatthe anytime feature was only invoked o

asionally to terminate a belief revision op-eration when the Anytime Maxi-adjustment pro
edure was exe
uted. However, afterexamining the agents' theory bases, it was found that some disbeliefs 
aptured inthe agent's theory base when the Maxi-adjustment method was applied did not ap-pear in the agent's theory base if the anytime Maxi-adjustment method or the RAMmethod was invoked. This probably explains the small di�eren
e of the F1 measure,F1 utility, and F3 utility when these methods were invoked. For this �ltering task,
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ed the same set of positive beliefs asthe RAM method did. This is the reason why their learning e�e
tiveness is the same.However, the Anytime Maxi-adjustment method still 
onsumed a bit more time tolearn the retrieval 
ontext be
ause it enumerated the minimal in
onsistent subsets inseveral entren
hment ranks.As a whole, this preliminary experiment provides new empiri
al eviden
e to sup-port the 
on
ept of anytime belief revision [Wil97℄. The Anytime Maxi-adjustmentmethod a
hieves 
omparable learning e�e
tiveness to that of the Rapid Anytime Maxi-adjustment method if there is a small number of beliefs to be learnt by the agents.However, if there are many beliefs to be learnt from a retrieval topi
, the RAM methodis more promising than the Anytime Maxi-adjustment method in terms of both learn-ing e�e
tiveness and 
omputational eÆ
ien
y. Therefore, the RAM method is appliedto our belief-based information agent system AIFS. The remaining experiments re-ported in this thesis are all based on the RAM adjustment algorithm and the MKCentren
hment indu
tion method.
5.7 Evaluation of AIFS based on the Reuters-21578Colle
tionThe overall �ltering performan
e of the AIFS prototype system based on the Reuters-21578 
olle
tion is depi
ted in Figure 5.9. The system was evaluated against 20
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s. The �rst 
olumn in Figure 5.9 shows the topi
 number, and the se
ond
olumn lists the number of relevant do
uments pertaining to ea
h topi
. These �guresrepresent the a
tual number of relevant do
uments judged by human assessors. Theremaining 
olumns show the 
lassi�
ation a

ura
y, re
all, pre
ision, F1 measure, F1utility, F3 utility, and �ltering time in se
onds. The last row in Figure 5.9 showsthe average result a
ross topi
s. The proposed agent system a
hieves an averageF1 of 0:486, an average F1 utility s
ore of 160:4, and an average F3 utility s
ore of285:1. The average time of �ltering a topi
 for the \Modi�ed Lewis Split" subset(19; 702 do
uments) of the Reuters-21578 
olle
tion is 1; 791:1 se
onds (around 30minutes). Therefore, on average our belief-based agent system AIFS spends about0:091 se
ond to learn and to 
lassify if a do
ument is relevant with respe
t to a user's
hanging information needs. These eÆ
ien
y �gures produ
e 
on
rete eviden
e thatthe proposed logi
al framework is feasible for the development of adaptive informationagents whi
h deal with large on-line information retrieval tasks.From among the 20 topi
s, the most time 
onsuming one is topi
 1 whi
h involvesa signi�
ant number of belief revision operations to learn both beliefs (i.e., positivekeywords) and disbeliefs (i.e., negative keywords). The pro
essing time related totopi
 1 represents our worst 
ase of �ltering for the Reuters-21578 
olle
tion. Theagent spent about 1:04 se
onds to pro
ess (e.g., 
lassi�
ation and learning) a do
umentin this worst 
ase s
enario. However, the e�e
tiveness result of topi
 1 is quite good.The 
lassi�
ation a

ura
y, the F1 s
ore, the F1 utility, and the F3 utility are 0:907,
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tively.

Figure 5.9: Overall Results of AIFS by Reuters-21578 Topi
sIn order to gain more insight into the performan
e of the belief-based agentsystem, a base line agent system (VSpa
e) was developed and applied to the same�ltering task. All the experimental 
onditions remained the same ex
ept that theVSpa
e agent system was developed based on the Ve
tor Spa
e model [SM83℄ andusing the Ro

hio learning method [Ro
71℄ to revise the term weights 
aptured in a
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Figure 5.10: Overall Results of VSpa
e by Reuters-21578 Topi
sprototype ve
tor representing the hypotheti
al user's information needs. The Ve
torSpa
e model together with the Ro

hio learning method is a well-known quantitativeapproa
h for developing IR and IF systems. This approa
h has been su

essfullyapplied to pro
ess large and 
omplex IR tasks [Sal90℄. In the base line system, thedo
ument pre-pro
essing pro
edure is exa
tly the same as the belief-based agent sys-tem AIFS. The performan
e �gures of the base line agent system are depi
ted in
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Figure 5.11: Comparison (AIFS vs. VSpa
e) by Reuters-21578 Topi
sFigure 5.10, and the 
omparison between the AIFS agent system and the base linesystem is shown in Figure 5.11. In Figure 5.11, a positive value represents how mu
hthe belief-based agent system out-performs the base line system, and a negative �gureindi
ates that the belief-based agent system is inferior to the base line system. Allthe positive �gures are highlighted in Figure 5.11.The average F1, F1 utility, and F3 utility a
hieved by the base line system are
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tively. On average it only took 0:017 se
ond to pro
essa do
ument. So, the Ve
tor Spa
e based information agent model is more eÆ
ientthan our belief-based adaptive information agent model. In fa
t, the base line systemis 5 times faster than the belief-based agent system in �ltering the Reuters-21578do
uments. However, in terms of learning and 
lassi�
ation e�e
tiveness, the belief-based agent system AIFS outperforms the base line agent in these �ltering tasks. It isshown that the average F1, F1 utility and F3 utility a
hieved by AIFS are all superiorto the equivalent values produ
ed by the base line agent system. The di�eren
es are0:007, 44:8, and 115:7 respe
tively as depi
ted in the last row of Figure 5.11. Thelast 
olumn (total exe
ution time in se
onds) indi
ates how many se
onds more are
onsumed by the belief-based agent system to pro
ess the do
uments. Sin
e ea
h�ltering topi
 has distin
t 
hara
teristi
s (e.g., number of relevant do
uments), theaverage F1 s
ore, F1 utility, and F3 utility a
ross di�erent topi
s may not be anelegant way to show the overall performan
e of the system. A better approa
h isto 
arry out a topi
-by-topi
 
omparison among systems. In this experiment, theAIFS system out-performed the VSpa
e system in 7 topi
s if their performan
e wasmeasured in terms of the F1 s
ores, whereas the VSpa
e system out-performed theAIFS system in only 4 topi
s. If the IR e�e
tiveness is measured in terms of theF1 utility or the F3 utility, the number of topi
s that AIFS performed better thanVSpa
e was also more than the number of topi
s that VSpa
e performed better thanAIFS. As a whole, the initial experimental result shows that the belief-based agentmodel out-performs the ve
tor spa
e based agent model in many of the �ltering tasks
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olle
tion. The 
ost of a
hieving this improved retrievalperforman
e is spending about 0:073 se
onds more to pro
ess ea
h do
ument. Thissmall 
omputational 
ost seems a

eptable even for demanding intera
tive informationretrieval a
tivities.
5.8 Evaluation of AIFS based on the TREC-APColle
tionThe overall �ltering performan
e of the AIFS system against the AP-89 
olle
tionis depi
ted in Figure 5.12 and Figure 5.13 respe
tively. Figure 5.12 illustrates theresult pertaining to the �rst 25 TREC topi
s, and Figure 5.13 shows the result ofthe remaining 25 topi
s as well as the average s
ores. In ea
h table, the �rst 
olumnshows the topi
 number, and the se
ond 
olumn lists the number of relevant do
u-ments pertaining to a topi
. These �gures represent the a
tual number of relevantdo
uments judged by the TREC assessors. The remaining 
olumns show the 
lassi-�
ation a

ura
y, re
all, pre
ision, F1 s
ore, F1 utility, F3 utility, and �ltering timein se
onds. The last row in Figure 5.13 shows the average result a
ross topi
s. AIFSa
hieved an average F1 of 0:175, an average F1 utility s
ore of �7:7, and an averageF3 utility s
ore of 27:1. These performan
e �gures are not as good as that obtainedbased on the Reuters-21578 
olle
tion. However, given that the TREC-AP basedadaptive IR represents mu
h more diÆ
ult learning and 
lassi�
ation tasks than thatbased on the Reuters-21578 
olle
tion, it is more appropriate to 
ompare the results
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Figure 5.12: Overall results of AIFS by TREC Topi
s (1-25)produ
ed by di�erent systems based on the TREC-AP 
olle
tion. The average timefor �ltering a topi
 of the AP-89 dataset (84; 678 do
uments) is 34; 772:8 se
onds(around 9 hours and 39 minutes). Therefore, on average our belief-based agent sys-tem spends about 0:41 se
ond to 
lassify if a do
ument is relevant and not, and at thesame time uses the relevan
e feedba
k information atta
hed to a do
ument to learnthe hypotheti
al user's 
hanging information needs. The average �ltering time per
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Figure 5.13: Overall results of AIFS by TREC Topi
s (26-50)TREC-AP do
ument is 4:5 times longer than the average time spent on learning and
lassifying a Reuters-21578 do
ument by the same agent system. The reason is thatthe AP 
olle
tion is mu
h larger and there are signi�
antly more beliefs to be learntby the agent system. Nevertheless, this eÆ
ien
y �gure indi
ates that the proposedlogi
al framework is feasible for the development of adaptive information agents topro
ess 
omplex IR tasks sin
e on average the agent system only needs less than half
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ond to learn and 
lassify a do
ument. The worst 
ase in terms of 
omputationaleÆ
ien
y in this experiment is TREC topi
 17. It took about 2:2 se
onds to pro
ess ado
ument. Su
h a response time is still a

eptable to on-line intera
tive informationretrieval tasks be
ause it may take up to a few se
onds for a human user to respondto a message generated by a 
omputer system.

Figure 5.14: Overall Results of VSpa
e by TREC Topi
s (1-25)The performan
e �gures of our base-line agent system (VSpa
e) are depi
ted in
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Figure 5.15: Overall Results of VSpa
e by TREC Topi
s (26-50)Figure 5.14 and Figure 5.15 respe
tively. Figure 5.14 shows the base line result forTREC topi
s 1-25, and Figure 5.15 shows the base line result for TREC topi
s 26-50.The average �gures are shown in the last row of Figure 5.15. In terms of 
omputationaleÆ
ien
y, the ve
tor spa
e based agent model is a sure winner. It took 7; 977:7 se
onds(2 hours and 12 minutes) to pro
ess a TREC topi
 on average, and 0:09 se
ond topro
ess a do
ument of the TREC-AP 
olle
tion. The base line system is at least 4:5
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Figure 5.16: Comparison (AIFS vs. VSpa
e) by TREC Topi
s (1-25)times faster than the belief-based agent system. A dire
t 
omparison between theresult of AIFS and that of VSpa
e is depi
ted in Figure 5.16 and Figure 5.17. Ingeneral, a positive performan
e �gure su
h as the F1 s
ore indi
ates that the AIFSsystem out-performs the base-line system, whereas a negative �gure implies that AIFSis not performing as well as the base-line system. However, positive �gures in the last
olumns (exe
ution time in se
onds) of Figure 5.16 and Figure 5.17 mean that the
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Figure 5.17: Comparison (AIFS vs. VSpa
e) by TREC Topi
s (26-50)AIFS system takes longer time to 
ondu
t information �ltering. The highlighted 
ellsin Figure 5.16 and Figure 5.17 indi
ate that AIFS performed better than VSpa
e. Interms of the average F1 measure, the base-line agent system is slightly better thanAIFS (e.g., �0:075). However, the average F1 utility of AIFS is better than that of thebase-line system (e.g., 16:6). The base-line system a
hieved a slightly better averageF3 utility (e.g., �3:9). For a topi
 by topi
 
omparison based on the F1 measure, there
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s where the belief-based agent system performs better than or as well asthe base-line agent system. Based on the F1 utility s
ores, there are 21 topi
s whereAIFS performs better than or at least as well as the base-line system. AIFS performsbetter than or as well as the base-line system over 20 TREC topi
s if it is assessedbased on the F3 utility s
ores. As a whole, we are unable to draw a 
on
lusion that thebelief-based information agent model out-performs the ve
tor spa
e based informationagent model. The AIFS model produ
ed 
omparable result as that a
hieved by theVSpa
e model. The base line agent system is de�nitely more eÆ
ient than the belief-based agent system in this experiment. The slightly higher average F1 utility s
oreof AIFS than that of VSpa
e demonstrates the potential of a belief-based IR model.Sin
e this is the �rst implementation of a belief revision based information agentmodel, there is still room for improvement in terms of 
omputational eÆ
ien
y andIR e�e
tiveness in the future. Given the fa
t that it is quite diÆ
ult to develop logi
-based IR models [CRSR95℄, the AIFS system is the �rst fully operational logi
-basedIR system whi
h 
an pro
ess IR tasks based on large do
ument 
olle
tions.Apart from examining the base line system, more insights about the perfor-man
e of AIFS 
an be obtained by 
omparing its 
lassi�
ation e�e
tiveness withthat of the parti
ipating systems in TREC-7 [Hul98℄. Sin
e the SIGMA informationagent system (Chapter 2, Se
tion 2.4) is the only adaptive information agent sys-tem parti
ipated in the adaptive �ltering task of TREC-7, it makes sense to 
ompareSIGMA's performan
e with that of AIFS. Figure 5.18 and Figure 5.19 depi
t the F1
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Figure 5.18: Comparison (AIFS vs. SIGMA) by TREC Topi
s (1-25)and F3 utility s
ores as obtained by AIFS and SIGMA. Figure 5.18 shows the 
om-parison over TREC topi
s 1-25, and Figure 5.19 shows the 
omparison over TRECtopi
s 26-50. The last row in Figure 5.19 depi
ts the average �gures from AIFS andSIGMA, and their di�eren
es. Sin
e only the F1 and F3 utility s
ores are availablefrom TREC-7 (http://tre
.nist.gov/pubs/tre
7/t7_pro
eedings.html), 
om-parison between AIFS and SIGMA is done based on these two measures only. The
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Figure 5.19: Comparison (AIFS vs. SIGMA) by TREC Topi
s (26-50)�rst 
olumn in Figure 5.18 and Figure 5.19 depi
ts the TREC topi
 numbers. These
ond and the third 
olumns depi
t the F1 and F3 s
ores of AIFS, and the forth andthe �fth 
olumns show the F1 and F3 s
ores of SIGMA. A positive �gure in the lasttwo 
olumns means that AIFS outperforms SIGMA in a parti
ular TREC topi
. Allthe positive �gures in these two 
olumns are highlighted. By 
omparing the F1 s
ores(the sixth 
olumn), AIFS outperforms SIGMA in all topi
s ex
ept TREC topi
 23. By
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omparing the F3 s
ores (the last 
olumn), AIFS outperforms SIGMA in 42 topi
s.Apparently, our belief-based adaptive information agent system AIFS a
hieved mu
hbetter IR performan
e than that of the SIGMA information agent system. However,we 
annot 
on
lude that AIFS is de�nitely more e�e
tive than SIGMA be
ause AIFSwas applied to �lter the AP-89 subset only. Moreover, both a

epted and reje
teddo
uments were used by AIFS to learn a user's 
hanging information needs.

Figure 5.20: Comparison of F1 utility (AIFS vs. Average TREC-7)Figure 5.20 plots AIFS's F1 utilities against the average F1 utilities of all theparti
ipating systems in the adaptive �ltering task of TREC-7 over the 50 TREC top-i
s. Ea
h bar in Figure 5.20 represents the di�eren
e between the F1 s
ore obtainedfrom AIFS and the average F1 s
ore obtained from the TREC-7 parti
ipants for the
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Figure 5.21: Comparison of F3 utility (AIFS vs. Average TREC-7)
orresponding topi
. The average F1 s
ores from the TREC-7 parti
ipants in theadaptive information �ltering task are treated as base line �gures for our 
omparison.If there is a bar above the x-axis, it means that the performan
e of AIFS is betterthan the average performan
e of the TREC-7 parti
ipants for that parti
ular topi
.A bar below the x-axis indi
ates that the performan
e of AIFS is not as good asthe average performan
e of the TREC-7 parti
ipants for the parti
ular topi
. As 
anbe seen, AIFS's performan
e is better than the average performan
e of the TREC-7parti
ipants in the adaptive information �ltering task in many o

asions (in 44 TRECtopi
s). In addition, �gure 5.21 plots AIFS's F3 utilities against the average F3 util-ities among the parti
ipating systems of TREC-7 over the 50 TREC topi
s. A bar
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e is better than the average perfor-man
e of the TREC-7 parti
ipants. AIFS's F3 utilities are above the average of theTREC-7 parti
ipants for the adaptive �ltering task in 32 TREC topi
s. Although ourexperiment is slightly di�erent from the adaptive �ltering task of TREC-7 (e.g., onlythe AP-89 dataset is pro
essed by AIFS), these topi
-by-topi
 
omparisons providethe basis for an initial assessment of AIFS's general performan
e. In general, the beliefrevision based information agent model is promising as demonstrated by the resultsprodu
ed by our very �rst prototype system. The pre
ise �gures of the topi
-by-topi

omparison between AIFS and the parti
ipating systems of the TREC-7 adaptiveinformation �ltering task are given in Appendix F.Clarite
h is among the best adaptive �ltering systems in TREC-7 [Hul98℄. The
omparison between the F1 and F3 utilities of AIFS and that of Clarite
h shows thatAIFS is not as good as Clarite
h. However, AIFS's performan
e is 
lose to that ofClarite
h based on a topi
-by-topi
 
omparison. There are 24 topi
s where AIFS'sF1 s
ores are higher than that of Clarite
h, and there are 20 topi
s where AIFS'sF3 s
ores are higher than that of Clarite
h. Nevertheless, there are 26 topi
s whereClarite
h's F1 s
ores are better than that of AIFS, and there are 30 topi
s whereClarite
h's F3 s
ores are better than that of AIFS. The pre
ise �gures of the topi
-by-topi
 
omparison between AIFS and Clarite
h are tabulated in Appendix G.



Chapter 6
Con
lusions and Future Dire
tions
6.1 Con
lusionsThe AGM belief revision framework provides a rigorous theoreti
al foundation to buildthe next generation of adaptive information agents. The logi
al language provides theexpressive power to represent 
omplex retrieval 
ontexts. The AGM belief fun
tionsformally 
hara
terise the agents' learning a
tivities, and ensure that the abstra
tion ofretrieval 
ontexts is revised in a minimal and 
onsistent fashion. Therefore, informa-tion mat
hing in these agents adheres to the logi
al un
ertainty prin
iple. In addition,expe
tation inferen
e provides a sound and robust framework to develop the agents'
lassi�
ation me
hanisms whi
h enhan
e proa
tive IR. The 
lose 
onne
tion betweenbelief revision and expe
tation inferen
e allows a seamless integration of the learn-ing and the 
lassi�
ation fun
tions in adaptive information agents. The belief-basedinformation agent system is more e�e
tive than the ve
tor spa
e based information258



6.1. CONCLUSIONS 259agent system for the adaptive �ltering tasks 
ondu
ted based on the Reuters-21578
olle
tion. Moreover, the belief-based information agent system is also eÆ
ient indealing with large IR appli
ations. It takes less than half se
ond to �lter a do
umentfor the AP-89 
olle
tion whi
h 
ontains over eighty thousand do
uments. The beliefrevision based IR model is among a few implemented logi
-based IR models, andis the �rst logi
-based IR model with both IR e�e
tiveness and 
omputational eÆ-
ien
y su

essfully evaluated based on large IR ben
h-marking 
olle
tions su
h as theReuters-21578 
olle
tion and the AP-89 
olle
tion. This is the �rst resear
h providing
on
rete eviden
e that logi
-based IR model is not only e�e
tive but also eÆ
ient forlarge and realisti
 IR appli
ations. In addition, the work reported in this thesis alsodemonstrates the �rst large s
ale implementation and validation of the AGM beliefrevision framework in an empiri
al setting.
6.1.1 Entren
hment Indu
tionMutual Information MI and a variant of the Expe
ted Cross Entropy EH are note�e
tive be
ause of the mis-mat
h between how an entren
hment degree is indu
ed andhow the entren
hment degree is interpreted by the belief-based 
lassi�
ation model.Both the Keyword Classi�er KC and Modi�ed Keyword Classi�er MKC whi
h arebased on the statisti
al method of Kullba
k Divergen
e are e�e
tive. MKC is themost e�e
tive entren
hment indu
tion method measured in terms of the F1 s
ore, F1utility and F3 utility for the IR tasks performed based on the Reuters-21578 
olle
tion.



260 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS6.1.2 Adaptive LearningThe belief revision based adaptive information agents 
an learn 
hanging retrieval
ontexts. Their learning performan
e is re
e
ted by the improvement of the F1 s
oresover time in several IR tasks based on the TREC-AP 
olle
tion or the Reuters-21578
olle
tion. However, if there are only a few relevant do
uments (i.e., positive trainingexamples) in an IR topi
, the agents' learning and 
lassi�
ation e�e
tiveness may
u
tuate be
ause of insuÆ
ient information to learn an a

urate representation of aretrieval 
ontext.6.1.3 Transmutation MethodsSeveral transmutation methods whi
h implement the AGM belief fun
tions have beenevaluated based on two adaptive �ltering tasks of the TREC-AP 
olle
tion. Thestandard transmutation method whi
h exa
tly implements the AGM belief revisionfun
tions is not as e�e
tive as the Maxi-adjustment method or the Rapid Maxi-adjustment method. The Maxi-adjustment transmutation method is not as e�e
tiveas its anytime 
ounterpart and is the least eÆ
ient transmutation method. TheAnytime Maxi-adjustment method and the Anytime Rapid Maxi-adjustment (RAM)method produ
ed 
omparable performan
e if there are not many positive beliefs abouta retrieval 
ontext to be learnt from. Nevertheless, the RAM method is more eÆ
ientthan the Anytime Maxi-adjustment method when there are many beliefs to be revisedinto an agent's knowledge base. Through our experiments, it is 
on�rmed that the



6.1. CONCLUSIONS 261anytime approximations of the AGM belief revision operations are both e�e
tive andeÆ
ient for large real-life appli
ations.
6.1.4 General Dis
ussionWith referen
e to the set of desirable features of intelligent IR systems dis
ussedin Se
tion 1.3 of Chapter 1, the belief revision based adaptive information agentmodel is promising in many aspe
ts. The belief revision based information agents 
anautonomously 
lassify do
uments from a large stream of in
oming do
uments withminimum human intervention. These agents are adaptive sin
e they 
an 
onstantlyrevise their knowledge bases in a

ordan
e with the 
hanging retrieval 
ontexts andpredi
t the relevan
e of do
uments with respe
t to the revised retrieval 
ontexts. Thebelief-based agent system is s
alable for pro
essing large and 
omplex IR appli
ations.The �rst prototype of belief revision based information agent system only requires lessthan half se
ond to pro
ess a do
ument for the AP-89 
olle
tion. The belief revisionbased information agents are also proa
tive be
ause they 
an make use of the relation-ships among information items to infer the possibly interesting do
uments whi
h arenot expli
itly requested by the users. In addition, these agents are explanatory as they
an justify their 
lassi�
ation de
isions based on the relationships among informationitems. Finally, for the requirement of balan
ed pre
ision and re
all IR behaviour,the initial experiments show that the average pre
ision of the agent system is slightlyhigher than its average re
all for both the TREC-AP and the Reuters-21578 runs.



262 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONSHowever, this may not be su
h a bad feature given the fa
t that information seekersare often overwhelmed by too mu
h rather than too little information.
6.2 Future Dire
tionsThe 
urrent resear
h work in belief revision based adaptive information agents rep-resents an initial study towards applying theoreti
al AI models to pra
ti
al IR appli-
ations. During the 
ourse of this resear
h, it was found that there were other issuesand resear
h questions related to the 
urrent study. However, be
ause of the limitedtime, these issues are left to be ta
kled by future resear
h.
6.2.1 Dis
overing Contextual KnowledgeDuring the 
ourse of developing the belief revision based IR model, it was found thatautomated means of learning IR 
ontexts is 
riti
al for the su

ess of the informationagents. Essentially, the entren
hment indu
tion pro
edure 
on
erns about indu
ingusers' information preferen
es. The more 
hallenging indu
tion task is the dis
overyof the 
orresponding IR 
ontexts where the users' information needs arise. This 
on-textual information is essential for the agents to infer the users' impli
it informationneeds. For instan
e, given the 
ontextual knowledge that s
ien
e students who areinterested in items des
ribed by the term \Java" are probably studying 
omputers
ien
es (i.e., java^ s
ien
e! 
omputer), and students with major in 
omputer s
i-
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es normally learn programming (i.e., 
omputer ! programming), an informationagent will re
ommend do
uments about \Computer Programming" to a user who isa s
ien
e student issuing a query of \Java". It is possible for the agents to dis
oversu
h 
ontextual knowledge from a student enrolment database. However, mining su
h
ontextual knowledge is not a trivial task. Indeed, there are still many outstanding re-sear
h questions to be ta
kled in the �eld of text mining. The text mining frameworkproposed in this thesis is based on the well-known asso
iation rule mining te
hniques.The notions of rule support and rule 
on�den
e in asso
iation rule mining are proba-bilisti
 measures, whereas epistemi
 entren
hment orderings do not satisfy the basi
probability axioms in general. This gives rise to a fundamental resear
h 
hallenge ofhandling the mis-mat
h between these two paradigms. In addition, a novel methodwhi
h is based on a rigid measure of term property is proposed to indu
e the infor-mation pre
lusion relationships. For instan
e, only the absolute positive terms andnegative terms are sele
ted to 
onstru
t the information pre
lusion rules. From theinitial experiments, it was found that not many su
h rigid rules exist in a 
olle
tion.On the other hand, relaxing the rigid sele
tion 
riterion to allow more terms to gointo the rule generation pro
esses jeopardises the re
all of the information agents be-
ause some of the relevant items are mistakenly identi�ed as non-relevant. A moree�e
tive text mining method for the dis
overy of information pre
lusion relationshipsis required.
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tive Classi�
ation
A formal analysis of the relationship between the AGM belief revision and minimalabdu
tion has been 
ondu
ted [PNF95℄. In the 
ontext of adaptive information agents,entren
hment-based abdu
tion 
an be applied to enhan
e the agents' informationmat
hing (
lassi�
ation) fun
tions. The proposed belief revision based learning modelrevises an agent's knowledge base only if expli
it user's relevan
e feedba
k is re
eived.Then, subsequent 
lassi�
ation is 
ondu
ted by mat
hing the revised knowledge aboutthe 
urrent retrieval 
ontext with in
oming do
ument 
hara
terisations. However, itis possible for the agents to abdu
t do
ument relevan
e given little or no relevan
efeedba
k from the users. Su
h an information mat
hing 
apability is akin to the onefound in the re
ently proposed probabilisti
 relevan
e model [LC01℄. If a do
umentrepresentation is not logi
ally entailed by an agent's knowledge base, a shadow beliefrevision operation 
an be invoked to minimally revise the knowledge base su
h thatthe revised beliefs entail the do
ument 
hara
terisation. If the minimal 
hanges satisfy
ertain 
riteria in terms of epistemi
 entren
hment, the 
orresponding do
ument isdeemed relevant. Unlike the revision pro
esses triggered by users' relevan
e feedba
k,the abdu
ted senten
es are not physi
ally added to the agents' knowledge bases.In general, su
h a 
lassi�
ation method 
an improve the re
all of the informationagent system sin
e some partially relevant do
uments may be 
onsidered relevantafter the abdu
tion pro
ess. An entren
hment-based abdu
tive framework 
an beseen as a dire
t implementation of the logi
al un
ertainty prin
iple for IR. Some
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hni
al issues need to be resolved before su
h an abdu
tive reasoning framework
an be applied to develop operational information agent systems. The fundamentalissue is the development of the entren
hment-based do
ument sele
tion 
riterion.
6.2.3 Further Optimisation of the Information Agent ModelSymboli
 IR models are 
omputationally expensive and so are the adaptive infor-mation agents built on top of su
h models. Optimisation te
hniques (e.g., featuresele
tion based on TFIDF, removing less entren
hed beliefs, redu
ing the frequen
yof belief revision, using a subset of the propositional language, et
.) were applied tothe belief revision based agent model so that an eÆ
ient prototype system 
ould bebuilt. As indi
ated from our preliminary experiments, the belief revision based agentmodel is less eÆ
ient than its ve
tor spa
e based 
ounterpart. It is going to be along battle to develop a symboli
 information agent model that is as eÆ
ient as apurely quantitative model. One possible approa
h to improve the eÆ
ien
y of the ex-isting information agent model is to apply Latent Semanti
 Indexing (LSI) [DDF+90℄to redu
e the dimensionality of the do
ument spa
e before applying the belief revi-sion logi
 for learning and 
lassi�
ation in information agents. However, sin
e LSIis also 
omputationally expensive, it remains a problem for optimising the 
omputa-tional eÆ
ien
y of on-line adaptive information agents. An alternative is to explore aphrase-based rather than word-based do
ument representation s
heme. The resear
hhypothesis is whether a phrase-based do
ument representation 
an redu
e the number
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uments, and hen
e the number of belief revisionoperations taken to learn a retrieval 
ontext. Given a smaller knowledge base in anagent, the time spent on inferring do
ument relevan
e (i.e., 
lassi�
ation) may alsobe redu
ed. Finally, with the advan
es in theorem proving te
hniques, it is possibleto optimise the degree() fun
tion whi
h is the work horse of the belief revision algo-rithm. Consequently, both the learning and the 
lassi�
ation pro
esses in adaptiveinformation agents be
ome more eÆ
ient.
6.2.4 Possibilisti
 Information AgentsIt has been proved that the numeri
al 
ounterparts of the epistemi
 entren
hmentorderings are the ne
essity measures [DP91℄. For instan
e, � 6 � is equivalent toN(�) � N(�) for any �; � 2 L; 6 represents the epistemi
 entren
hment orderingbetween � and �. The ordering indu
ed by the ne
essity measure su
h as N(�) is rep-resented by �. For any possibilisti
 formula su
h as (�;m), the greatest lower bound
ertainty m derived from the ne
essity measure equals the degree of a

eptan
e ofthe 
orresponding formula degree(B; �). This 
orresponden
e not only establishesthe 
lose 
onne
tion between the AGM belief revision and possibilisti
 logi
, but alsoprovides an alternative for modelling the learning and 
lassi�
ation fun
tions of adap-tive information agents. In a possibilisti
 knowledge base, in
onsisten
ies among be-liefs are allowed. An in
onsisten
y tolerant possibilisti
 dedu
tion framework is usedto draw 
on
lusions based on the most reliable (
ertain) subset of information in
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ent psy
hologi
al study has shown that the nonmonotoni
postulates 
hara
terising possibilisti
 logi
 are 
ompatible with the 
hara
teristi
s ofhuman reasoning [NBR00℄. It is also reported that possibilisti
 rather than proba-bilisti
 reasoning is 
loser to the kind of approximate reasoning exer
ised by humanexperts [RN98℄. Therefore, it is intuitively attra
tive to apply possibilisti
 logi
 tomodel adaptive IR situations where in
onsistent retrieval 
ontexts may arise. If theinformation needs pertaining to di�erent topi
s are 
aptured by a single knowledgebase, the 
han
e of developing an in
onsistent knowledge base in
reases. A possi-bilisti
 framework for IR has been explored [LtHB01
, LtHB01b℄. From a theoreti
alstand point, the learning pro
esses in information agents may be sped up be
ause the
omputations spent on maintaining 
onsistent knowledge bases are saved. However,the extra 
omputational 
osts involved in �nding maximal 
onsistent belief sets fordedu
ing do
ument relevan
e (i.e., 
lassi�
ation) may outweigh the agents' eÆ
ien
ygains obtained during learning. This is a severe problem if the information agents aredeployed for on-line intera
tive IR where the agents' on-line performan
e is mainlyin
uen
ed by the 
lassi�
ation pro
esses. Empiri
al studies are needed to examinethe advantages and drawba
ks of the possibilisti
 information agent model.
6.2.5 Knowledge Fusion and Collaborative FilteringWhen a large number of information agents are deployed for IR a
tivities, there will bea need to share the domain knowledge among the agents or sharing the agents among
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ommunity. The former a
tivities are related to the resear
htopi
 of knowledge fusion, whereas the latter may be empowered by 
ollaborative�ltering. For knowledge fusion, the main issue is how to 
ombine several epistemi
entren
hment orderings into a 
oherent one while retaining as mu
h information fromindividual entren
hment orderings as possible. The theories about knowledge fusionamong multiple knowledge bases need to be explored. A related issue is how to sharethe knowledge a
quired by the adaptive information agents among the users withinan information seeking 
ommunity. With these 
apabilities, the advantages of both
ontent-based �ltering (the fo
us of this thesis) and 
ollaborative �ltering are uni�edunder a single information agent ar
hite
ture. To implement 
ollaborative �ltering,an exploration of the te
hniques for generalising 
ontextual knowledge a
quired by agroup of information agents or spe
ialising the 
ontextual knowledge a
quired by ageneri
 information agent is needed. Furthermore, a more sophisti
ated agent librarystru
ture should be sought to fa
ilitate the re-use of the 
ontextual knowledge a
quiredby the adaptive information agents.
6.2.6 Web-based Adaptive Information AgentsThe Internet and the Web present very 
hallenging IR problems. As reported fromprevious studies, queries passed to the Internet sear
h engines are often short andin
omplete. This indi
ates that information seekers have diÆ
ulties in expressingtheir impli
it information needs by arti�
ial query languages. Even for a domain
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i�
 query, a sear
h engine may return thousands of hits. The adaptive informationagents proposed in this thesis are quite appli
able to solve the problem of informationoverload on the Web. The 
lient-server agent ar
hite
ture depi
ted in Chapter 4represents a feasible solution to the Web sear
h problem. With the help of the serverside adaptive information agents, information seekers residing on the 
lient sides arepushed with relevant Web information (e.g., Web pages or net news). This kindof servi
e is parti
ularly useful for satisfying users' long-term re
urring informationneeds. The development of a proxy server housing the adaptive information agents,the wrappers 
omponents interfa
ed with external Internet sear
h engines or otherinformation agents, and the intelligent user interfa
e agents whi
h 
an 
onstantlymonitor users' on-line a
tions will 
ertainly 
omplement the 
urrent prototype agentsystem and make the system fully operational on the Web. To improve the externalvalidity of the 
urrent resear
h work, huge Web 
olle
tions (e.g., from the TRECar
hive) 
an be used to examine the s
alability power of the Web-based adaptiveinformation agents. Moreover, usability studies involving real information seekers 
anbe performed to evaluate the Web-based agent system as a whole.
6.2.7 Adaptive Information Agents for E-
ommer
eThe belief revision based adaptive information agents 
an be applied to other relatedappli
ations to improve the external validity of the underlying agent model. Forinstan
e, the �rst two essential stages in agent-mediated ele
troni
 
ommer
e are
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ation and produ
t brokering [GMM98℄. During these stages, pro�lesof 
onsumers' requirements for produ
ts are 
reated by intelligent agents. Based ona 
onsumer's feedba
k about her 
urrent produ
t preferen
es, a pro�ling agent 
an
onstantly revise the 
ontent of the 
orresponding 
onsumer pro�le and reason aboutthe 
onsumer's a
tual requirements with respe
t to her latest produ
t preferen
es.This s
enario is quite similar to the adaptive IR pro
esses. In fa
t, pro�ling 
onsumers'needs and re
ommending produ
ts 
an be seen as a spe
ial 
ase of the general adaptiveIR pro
esses. In the 
ontext of ele
troni
 
ommer
e, information obje
ts are about
onsumer produ
ts. An initial investigation into the framework of applying the beliefrevision agent model to adaptive 
onsumer pro�ling and produ
t re
ommendationhas been performed [LtHB00℄. In addition, a novel belief revision based negotiationmodel has also been proposed [Lau02a℄. However, more work is required to developand evaluate the belief revision based adaptive pro�ling or negotiation system forele
troni
 
ommer
e.
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Publi
ations Related to AdaptiveInformation Agents
Journal Publi
ations1. R.Y.K. Lau. The State of the Art in Adaptive Information Agents. Interna-tional Journal on Arti�
ial Intelligen
e Tools, 11(1):19{61, Mar
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ien
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 Rim InternationalWorkshop on Intelligent Information Agents (PRIIA 2000), volume 2112 ofLe
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Appendix B
An example of a TREC topi

<top><head> Tipster Topi
 Des
ription<num> Number: 001<dom> Domain: International E
onomi
s<title> Topi
: Antitrust Cases Pending<des
> Des
ription:Do
ument dis
usses a pending antitrust 
ase.<narr> Narrative:To be relevant, a do
ument will dis
uss a pending antitrust 
ase andwill identify the alleged violation as well as the government entityinvestigating the 
ase.<
on> Con
ept(s):1. antitrust suit, antitrust obje
tions, antitrust investigation,antitrust dispute<fa
> Fa
tor(s):<def> Definition(s):Antitrust - Laws to prote
t trade and 
ommer
e from unlawfulrestraints and monopolies or unfair business pra
ti
es.</top>
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Appendix C
An Example of a Reuters-21578do
ument
<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET"OLDID="5544" NEWID="1"><DATE>26-FEB-1987 15:01:01.79</DATE><TOPICS><D>
o
oa</D></TOPICS><PLACES><D>el-salvador</D><D>usa</D><D>uruguay</D></PLACES><PEOPLE></PEOPLE><ORGS></ORGS><EXCHANGES></EXCHANGES><COMPANIES></COMPANIES><TEXT>&#2;<TITLE>BAHIA COCOA REVIEW</TITLE><DATELINE> SALVADOR, Feb 26 - </DATELINE><BODY>Showers 
ontinued throughout the week inthe Bahia 
o
oa zone, alleviating the drought sin
e earlyJanuary and improving prospe
ts for the 
oming temporao,although normal humidity levels have not been restored,Comissaria Smith said in its weekly review.</BODY></TEXT></REUTERS> 275



Appendix D
The Standard AGM AdjustmentAlgorithm
FUNCTION AnytimeAGM(OldB, �, Ndegree, TimeLimit)Odegree := Degree(OldB; �)REMARKS: MaxDegree = 1 in our implementationIF Degree(OldB;:�) = MaxDegreeRETURN OldBENDIFIF Ndegree � OdegreeNewB := Revision(OldB, �, Odegree, Ndegree, TimeLimit)ELSE NewB := AGMContra
tion(OldB, �, Odegree, Ndegree, TimeLimit)
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277ENDIFRETURN NewBEND FUNCTIONFUNCTION AGMContra
tion(OldB, �, Odegree, Ndegree, TimeLimit)REMARKS: MinDegree = 0 in our implementationIF Ndegree = OdegreeRETURN OldBENDIFHighB := Cut(OldB, Rank(MaxDegree), Rank(Odegree) - 1)ProblemB := Cut(OldB, Rank(Odegree), Rank(Ndegree) - 1)LowB := Cut(OldB, Rank(Ndegree), Rank(MinDegree))NewB := HighBFOR x := 1 TO NoElements(ProblemB)IF ElapsedTime() > TimeLimit AND TimeLimit > 0EXITENDIFIF ProblemB[x℄.belief = �SKIP NEXTENDIFIF Degree(OldB; ProblemB[x℄ _ �) > Odegree



278 APPENDIX D. THE STANDARD AGM ADJUSTMENT ALGORITHMNewB := NewB + ProblemB[x℄ELSEIF Ndegree > MinDegreeProblemB[x℄.degree := NdegreeNewB := NewB + ProblemB[x℄ENDIFENDIFNEXTIF Ndegree > MinDegreeNewB := NewB + (�, Ndegree)NewB := NewB + LowBENDIFRETURN NewBEND FUNCTION



Appendix E
The Anytime Maxi-AdjustmentAlgorithm
The Anytime Maxi-adjustment algorithm illustrated in this se
tion is developed basedon Williams' idea presented in [Wil97℄. However, it is not a re-produ
tion of Williams'algorithm. In parti
ular, this algorithm is based on the 
on
ept of identifying andextra
ting the ProblemB segment of �nite partial entren
hment ranking to produ
ethe 
losest approximation of a belief revision operation rather than based on theMoveUp() and MoveDown() fun
tions dis
ussed in [Wil97℄. The algorithm illus-trated in this se
tion is optimised to avoid the enunmeration of the minimal subsetsin a parti
ular entren
hment rank if it is not really ne
essary.FUNCTION AnytimeMaxi(OldB, �, Ndegree, TimeLimit)Odegree := Degree(OldB; �)REMARKS: MaxDegree = 1 in our implementation
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280 APPENDIX E. THE ANYTIME MAXI-ADJUSTMENT ALGORITHMIF Degree(OldB;:�) = MaxDegreeRETURN OldBENDIFIF Ndegree � OdegreeNewB := Revision(OldB, �, Odegree, Ndegree, TimeLimit)ELSE NewB := MaxiContra
tion(OldB, �, Odegree, Ndegree, TimeLimit)ENDIFRETURN NewBEND FUNCTIONFUNCTION MaxiContra
tion(OldB, �, Odegree, Ndegree, TimeLimit)IF Ndegree = OdegreeRETURN OldBENDIFHighB := Cut(OldB, Rank(MaxDegree), Rank(Odegree) - 1)ProblemB := Cut(OldB, Rank(Odegree), Rank(Ndegree) - 1) - f�;OdegreegLowB := Cut(OldB, Rank(Ndegree), Rank(MinDegree))NewB := HighBprover := NEW TheoremProver()



281AddAxioms(prover, Beliefs(HighB))REMARKS: The main loop begins hereREMARKS: Enumeration by entren
hment rank rather than individual beliefFOR rank := 1 TO NoRanks(ProblemB)IF ElapsedTime() > TimeLimit AND TimeLimit > 0EXITENDIFREMARKS: Extra
ting all beliefs from a rankSingleRankB = Cut(ProblemB, rank, rank)REMARKS: May need to 
ompute minimal subsets entailing �IF NoElements(SingleRankB) > 1AddAxioms(prover, Beliefs(SingleRankB))IF NOT Proved(prover, �)NewB := NewB + SingleRankBELSERemoveAxioms(prover, Beliefs(SingleRankB))problemsets := SortedPowerSet(SingleRankB)REMARKS: problemsets e.g., [a, b, 
, ab, b
, a
, ab
 ℄ with entren
hment degreesminimalsubsets := {}REMARKS: This loop may be very 
omputational expensive O(2n)



282 APPENDIX E. THE ANYTIME MAXI-ADJUSTMENT ALGORITHMFOR x := 1 TO NoElements(problemsets)IF (NOT SuperSet(problemsets[x℄, minimalsubsets))AddAxioms(prover, Beliefs(problemsets[x℄))IF Proved(prover, �)minimalsubsets := minimalsubsets + problemsets[x℄ENDIFRemoveAxioms(prover, Beliefs(problemsets[x℄))ENDIFNEXT
hangedset := Union(minimalsubsets)un
hangedset := SingleRankB - 
hangedsetIF NOT un
hangedset = {}NewB := NewB + un
hangedsetAddAxioms(prover, Beliefs(un
hangedset))ENDIFIF Ndegree > MinDegreeFOR y := 1 TO NoElements(
hangedset)
hangedset[y℄.degree := NdegreeNEXTNewB := NewB + 
hangedset



283ENDIFENDIFREMARKS: There is only one belief in this rankREMARKS: Use the same pro
edure as RAMELSEonebelief := SingleRankBAddAxioms(prover, onebelief.belief)IF Proved(prover, �)IF Ndegree > MinDegreeonebelief.degree := NdegreeNewB := NewB + onebeliefENDIFRemoveAxioms(prover, onebelief.belief)ELSENewB := NewB + onebeliefENDIFENDIFNEXTIF Ndegree > MinDegreeNewB := NewB + (�, Ndegree)



284 APPENDIX E. THE ANYTIME MAXI-ADJUSTMENT ALGORITHMNewB := NewB + LowBENDIFRETURN NewBEND FUNCTION



Appendix F
AIFS vs. TREC-7 AdaptiveFiltering Systems
Figure F.1 and Figure F.2 depi
t the F1 and F3 utility s
ores as obtained by AIFSand the adaptive information �ltering systems parti
ipated in TREC-7. Figure F.1shows the 
omparison over TREC topi
s 1-25, and Figure F.2 shows the 
ompari-son over TREC topi
s 26-50. The last row in Figure F.2 depi
ts the average �g-ures from AIFS and the �ltering systems in TREC-7, and their di�eren
es. Sin
eonly the F1 and F3 utility s
ores are available from TREC-7 pro
eeding Web site:(http://tre
.nist.gov/pubs/tre
7/t7_pro
eedings.html), 
omparison betweenAIFS and the adaptive �ltering systems in TREC-7 is done based on these two mea-sures only. The �rst 
olumn in Figure F.1 and Figure F.2 depi
ts the TREC topi
numbers. The se
ond and the third 
olumns depi
t the F1 and F3 s
ores of AIFS,and the forth and the �fth 
olumns show the average F1 and F3 s
ores a
hieved bythe adaptive �ltering systems in TREC-7. A positive �gure in the last two 
olumnsmeans that AIFS's result is better than the average performan
e of the adaptive �l-tering systems parti
ipated in TREC-7 for a parti
ular topi
. All the positive �gures285



286 APPENDIX F. AIFS VS. TREC-7 ADAPTIVE FILTERING SYSTEMSin these two 
olumns are highlighted. By 
omparing the F1 s
ores (the sixth 
olumn),AIFS's performan
e is better than the average performan
e of the TREC-7 adaptive�ltering systems in 44 topi
s. By 
omparing the F3 s
ores (the last 
olumn), AIFS'sperforman
e is better than the average performan
e of the TREC-7 adaptive �lteringsystems in 32 topi
s. It should be noted that a topi
-by-topi
 
omparison is ne
essarysin
e ea
h topi
 represents an IR task with quite di�erent 
hara
teristi
. Unless ana

urate normalisation pro
edure that takes into a

ount the intrinsi
 
hara
teristi
of ea
h topi
 
an be developed, 
omputing the mean and standard deviation basedon the �gures a
ross the various topi
s does not lead to a more a

urate evaluationamong di�erent IR models. Apparently, the performan
e of our belief-based adaptiveinformation agent system AIFS is better than the average performan
e of the TREC-7adaptive �ltering systems in more than half of the TREC topi
s.
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Figure F.1: Comparison AIFS vs. Filtering Systems in TREC-7 for Topi
s (1-25)
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Figure F.2: Comparison AIFS vs. Filtering Systems in TREC-7 for Topi
s (26-50)



Appendix G
Comparison AIFS vs. Clarite
h
Figure G.1 and Figure G.2 depi
t the F1 and F3 utility s
ores as obtained by AIFSand Clarite
h whi
h is among the best adaptive �ltering system in TREC-7. The �rst
olumn in Figure G.1 and Figure G.2 depi
ts the TREC topi
 numbers. The se
ondand the third 
olumns depi
t the F1 and F3 s
ores of AIFS, and the forth and the �fth
olumns show the average F1 and F3 s
ores a
hieved by Clarite
h. A positive �gurein the last two 
olumns means that AIFS's result is better than that of Clarite
h forthat parti
ular topi
. All the positive �gures in these two 
olumns are highlighted.
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290 APPENDIX G. COMPARISON AIFS VS. CLARITECH

Figure G.1: Comparison AIFS vs. Clarite
h in TREC-7 for Topi
s (1-25)



291

Figure G.2: Comparison AIFS vs. Clarite
h in TREC-7 for Topi
s (26-50)
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