

QUT Digital Repository:
http://eprints.qut.edu.au/

Croll, Peter R. and Henricksen, Matthew P. and Caelli, William J. and Liu, Vicky
(2007) Utilizing SELinux to Mandate Ultra-secure Access Control of Medical
Records. In Kuhn, Klaus A. and Warren, James R. and Leong, Tze-Yun, Eds.
Proceedings MEDINFO 2007: the 12th World Congress on Health (Medical)
Informatics – Building Sustainable Health Systems Studies in Health Technology
and Informatics 129, pages pp. 498-502, Brisbane, Australia.

 © Copyright 2007 IOS Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10884434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Utilizing SELinux to Mandate Ultra-secure Access Control of Medical Records

Peter R Croll, Matt Henricksen, Bill Caelli and Vicky Liu

 Information Security Institute, Queensland University of Technology, Brisbane, Australia

Abstract

Ongoing concerns have been raised over the effectiveness of

information technology products and systems in maintaining

privacy protection for sensitive data. The aim is to ensure that

sensitive health information can be adequately protected yet

still be accessible only to those that “need-to-know”. To

achieve this and ensure sustainability over the longer term, it

is advocated that an alternative, stable and secure system ar-

chitecture is required. This paper considers the adoption of a

model targeted at health information that provides much

higher degrees of protection. A purpose built demonstrator

that was developed based on enterprise-level systems software

products is detailed. The long term aim is to provide a viable

solution by utilizing contemporary, commercially supported

operating system and allied software. The advantages and

limitations in its application with a medical database are dis-

cussed. The future needs in terms of research, software devel-

opment and changes in organizational policy for healthcare

providers, is outlined.

Keywords: Information Security, Health Information Systems,

Operating Systems, Access Control

Introduction

Advances in storage and communication technologies have

made large repositories of data available even when they are

maintained on separate systems and geographically distributed.

The access to such data sets is often subject to varying degrees

of legal, social and ethical constraints. Further, the data sets

may not be available for open scientific research due to the

sensitive and private nature of the information they contain.

For example, individual personal health records offer signifi-

cant value for medical and related research but such informa-

tion cannot be readily accessed in a manner suitable for such

research. The causes include the need to abide by national

privacy legislation, the reluctance to change to electronic re-

cord format due to security fears and the requirement to main-

tain end-user trust in the overall healthcare information sys-

tem. Even when access rights have been granted - for example

the data has been sanitized by having all personal identifica-

tion removed - there are still legitimate concerns over the de-

gree of privacy that contemporary IT applications will provide.

The present reality is that IT applications operate on commod-

ity level computer operating systems that do not - and cannot -

provide the required level of assurance needed for scientific

research to be undertaken on sensitive data. They were never

designed for this purpose.

Information security mechanisms do exist to ensure sensitive

information is protected and only accessible on a “need-to-

know” and approval basis. It is imperative that both adversar-

ies, such as external system “hackers” and technical/operations

personnel with in-house knowledge be denied inappropriate

access. The security mechanism known as Mandatory Access

Control (MAC) is described below and can be used, as

adapted, to enforce the necessary security and privacy proc-

esses required for handling sensitive health data. Such mecha-

nisms have been studied and understood for over 30 years,

mainly in defence related systems. However, they have not

been evident in contemporary commodity level operating sys-

tem or allied application level environments.

In particular, the ICT industry‟s move towards development of

application systems based around so-called “Service Oriented

Architectures (SOA)” and “Web Services” software environ-

ments presents new security challenges in the healthcare envi-

ronment. Security standards, even for these high level service

structures often based around “interpreter” sub-systems such

as XML, etc. and Internet/World-Wide-Web “browser” pack-

ages, are complex and only in the early stages of development

and deployment. Moreover, all of these structures critically

depend upon the overall security and dependability of the un-

derlying “middleware”, operating system and computer hard-

ware systems. An application cannot be any more secure than

the underlying systems upon which it depends. The same holds

true for contemporary computer grid technologies, e.g. the

Globus [1]. In other words, trying to adequately secure the

shared “virtual machine” environments that grid technologies

currently exploit is next to impossible (i.e., far too challenging

for the foreseeable future).

The primary aim of this project is to build a “Concept Tech-

nology Demonstrator”, based upon advanced cryptographic

and information research and technologies (e.g., Cryptocards
1

and Starlight InfoSec technology
2
) in order to provide ultra-

secure and sanitized access to the protected data sets.

1 “Cryptographic plug-in cards”, Eracom (Safenet) Australia.
2 “Starlight InfoSec Technology”, Defence Science and Technology

Organisation (DSTO), Australia.

The non-Sustainability of Current Approaches

There is a strong vested business interest by mainstream sup-

pliers of computer operating systems and similar middleware

products to perpetuate the belief that computer applications

can be “made secure from within”, irrespective of other soft-

ware or even hardware components. In other words, the cor-

rect use of their technology will ensure a sufficiently secure

operating environment upon which application programs can

run safely. Unfortunately, any such assumption is flawed since

in reality they represent a “fortress built upon sand” [2].

Current base operating systems in the commercial arena are

based around what is designated as “Discretionary Access

Control” or DAC. Essentially this design allows the “owner”

of any object in a system to, at their discretion (from where the

term DAC comes) pass on their access rights to any other per-

son or entity in the overall information system‟s environment.

In particular, DAC really does not acknowledge the essential

difference between a computer “user”, a person, and the indi-

vidual “processes” in the system that act on his/her behalf.

Moreover, the DAC structure assumes that the user is com-

pletely familiar with and trusts any program or related soft-

ware system which they cause to execute in the computer. In

the current environment these assumptions, while possibly

valid in the era of large mainframe computer systems with

large “in-house” software development and support organisa-

tions prior to the development of global “packaged” software

industry, are simply no longer true. The DAC approach, more-

over, assumes that users are the formulators of their own “dis-

cretionary” policy, a situation that is no longer valid as overall

information systems become subject to overriding legal, socie-

tal and enterprise policy requirements.

The applications will not be secure unless the underlying oper-

ating system and hardware have been specifically developed

with security in mind. A system that is built to utilize a Manda-

tory Access Control (MAC) mechanism will provide levels of

security relating to all aspects of the computing system, i.e.,

“enforce an administrative set policy over all subjects and

objects in a system, basing decisions on labels containing a

variety of security-relevant information” [3].

Practical Implementations of MAC

There are many implementations of Mandatory Access Con-

trols (MAC) based systems, but one of the most popular is

called SELinux (Security-Enhanced Linux) [4]. It was de-

signed and engineered by the National Security Agency, an

intelligence-gathering organization belonging to the govern-

ment of the United States. Released in 2000 as a patch to the

Linux operating system, SELinux quickly gathered popularity

within the Linux community due to its structural simplicity and

the impeccable credentials of its designers. It now exists as an

open-source module transparently integrated into the Linux OS

kernel. Optimistically, the casual user may receive security

support from SELinux without even noticing that the module

is active, due to generic security configurations created by

some of the recently arisen SELinux support groups.

SELinux shares two fundamental properties with many MAC

systems. Firstly, the super-user concept of DAC systems (i.e.

“root” or “Administrator”) is banished, so that all users of the

system are controlled by the same configuration policy. The

policy is written by a security administrator. If an attacker can

acquire the privileges of the security administrator, then the

policy can be changed to suit his or her ends. But unlike the

super-user, who controls any aspect of the system, the security

administrator exists only to secure the machine, and not to

make use of it.

Secondly, like some other MAC systems, SELinux is based

upon the concept of “type enforcement”, in which all the ob-

jects in an operating system (be they files, network sockets or

processes) are labelled and classified as “domains” or “types”.

The system configuration determines how domains with label

x are able to access types with label y. Typically the access

rights will be described, in a broad sense, as “domain x can

read type y”, “domain x can write to type y”, “domain x can

execute type y”, combinations of these, or “domain x cannot

interact with type y in any way”. This last option is the implicit

default, so only positive relationships between domains and

types need to be configured.

Nevertheless, the flexibility provided by SELinux tends to be

its undoing, at least from the perspective of the casual user.

Because there are many domains and types within even a sin-

gle-user system, and because each possible positive interaction

needs to be considered, configuration of access rights is a la-

borious and error-prone process. Add to this the fact that each

system is guaranteed to be different to the one on which the

prepackaged configuration was prepared, and a nightmare sce-

nario in which SELinux denies essential accesses - such as

allowing the system's Graphical User Interface to start - be-

comes a common one [5].

There are well-known strategies that can help to reduce con-

figuration complexities. One of the most popular of these is

Role-Based Access Control (RBAC), which intersperses a

“role r” into the relationship between domain and type, such

that, for example, if “role r can read type y” and “if domain x

is a member of role r”, then “x can read y”. Since there are a

small number of roles relative to the number of domains and

types, then the number of rules relating roles to types and do-

mains to roles should be much fewer than the number of rules

that relate domains directly to types. SELinux supports a

primitive version of RBAC, yet a typical SELinux configura-

tion file still runs to about 50,000 lines.

The RedHat company sells RedHat Linux Enterprise and

sponsors the “Fedora Core” open-source software activity,

both of which sport an extension of SELinux that includes

“strict mode” and “targeted mode” structures. Strict mode is

no different to the “vanilla” version of SELinux, but targeted

mode protects only a subset of domains and types, usually

those which have interaction with the external world via net-

work sockets, etc. (that is, those objects which are most likely

to be attacked by hackers). The remaining objects within the

system are labelled “unconfined” and can “run amok” with

only the discretionary access controls regulating their behav-

iour. RedHat ships SELinux in the default mode of “targeted”,

so that basic protection is afforded to the system without the

mechanism becoming invasive, in turn preventing the user

from being productive, and swamping RedHat support with

basic administrative support requests. The flipside to this is

that RedHat does not offer support to issues arising from the

strict mode of SELinux. As will be seen later, this has a sub-

stantial impact on the use of SELinux to protect medical or

other application data.

Protecting Medical Application Data

The primary intention of SELinux is to protect objects embed-

ded within the operating system, with security of application

data being an afterthought. SELinux in effect partitions the

operating system space into a set of “sandboxes”, protected

areas between which communication is tightly regulated. The

mechanism is generic, and consequently, the security adminis-

trator can create an additional series of sandboxes at the appli-

cation level to protect medical and other kinds of data. For

example, the administrator may configure a web-browsing

sandbox that permits a web browser such as Internet Explorer

or Mozilla Firefox to access the internet. In addition, the ad-

ministrator may also configure a medical-related sandbox in

which a medical application is permitted to access medical

records. However, unless explicitly permitted, the web

browser does not have access to the medical records. Neither

does the medical application have the same level of exposure

outside the network as the web browser. The security adminis-

trator can create arbitrary levels of complexity in the applica-

tion layer by constructing sandboxes for different applications,

yet the enforcement mechanism of SELinux treats them all

equally and prevents unauthorized accesses. Whereas if a

hacker attacked a DAC system through the network interface,

and managed to acquire super-user permissions, in an SELinux

scenario, the hacker would control only a single sandbox, and

would need to launch additional exploits, each of which be-

came increasingly infeasible with distance from the network

interface.

An important caveat is that the “targeted” mode of Red Hat

Enterprise Linux and Fedora Core does not permit application-

level sandboxes, because all application process run in the

unconfined domain. Any system supporting application level

security is compelled to run in strict mode, which in turn

means that it is likely not to be fully supported by its commer-

cial vendor.

Building an SELinux Proxy

Application data tends to be much more dynamic and flexible

than operating-system level data. There may be many users of

an application level database, whereas the number of owners

of operating system processes tends to be very small. By de-

fault, SELinux is configured for four users, including system,

staff, sys-admin and ordinary users. Adding new users in-

volves recompiling and reloading the configuration policy, as

does adding new rules for interactions between domains and

types. As operating-system level relationships tend to be very

static, for example, changing only when new software is in-

stalled, this is not especially disadvantageous for the normal

use cases for SELinux but is not well suited for creating rap-

idly changing sandboxes.

Our solution to this problem, which also avoids the problem of

creating additional complex interactions between application

and operating system level objects, is to create a proxy. The

proxy runs at the application level and is secured in its own

sandbox by SELinux, preventing unwanted interactions with

other processes. The proxy regulates access by application-

level process to protected data, using its own set of configura-

tion files. In one sense, this solution can be viewed as nested

SELinux, whereby the proxy represents a micro-instance of

SELinux that deals only with application data. Operating sys-

tem level processes see only a monolithic object (the proxy)

representing application processes, meaning that the number of

configuration rules between the two layers is linear rather than

multiplicative.

The proxy deals with the added levels of interaction complex-

ity at the application layer by using an enhanced version of

RBAC, in which role permissions are inherited throughout a

hierarchy. By collating roles into hierarchy, and associating

the lowest member of each hierarchy with each type, this obvi-

ates the need to associate every role with every type. As an

example, a vertical slice of a role hierarchy may consist of

“Doctor is a subset of role Clinician” and “Surgeon is a subset

of role Doctor”. Configuring the policy with “any user in the

role of Clinician has access to type y” automatically covers the

rules for “any user in the role of Doctor has access to type y”

and “any user in the role of Surgeon has access to type y” by

virtue of their membership of the family. Portions of the hier-

archy can be overridden: configuring “any user in the role of

Surgeon does not have access to type y” does not cause a con-

tradiction but allows only Clinicians and Doctors access to

type y.

An option in this research was to build the extended RBAC

functionality natively into SELinux for which the source code

is freely available. However, the benefits to operating-system

level objects, which are not ordered hierarchically, are

unlikely to outweigh the disadvantage in branching the

SELinux source code, consequently reducing the successful

uptake of this solution.

The mechanism by which the proxy works is very simple, and

abstractly mirrors the SELinux mechanism. A client interacts

with the proxy via a pair of Client and Server messages. For

each client message received, the proxy sends exactly one

server message.

The client authenticates itself to the proxy using a client mes-

sage with type CREDENTIALS and with a payload containing

the user, role and password that describe the client. Until the

next such message is received, the proxy caches the creden-

tials. This mimics the SELinux mechanism, which authenti-

cates a user via a password before transitioning the user into

the requested role. The proxy generally responds to credential

messages by sending a dummy OK response.

The credentials are evaluated whenever the client requests

access, either a read or a write, to a record in the proxy data-

base. The proxy passes the credentials, along with the record

identifier and the policy to the security filter. The security fil-

ter assesses the credentials, decides whether the record can be

accessed in the way intended and passes this decision to the

proxy. In the case of a read request, the proxy relays the ap-

propriate record back to the client. If the client has requested a

write, then the material passed in the payload of the

REQUEST_WRITE_FILE message is appended or overwrit-

ten to the record.

Figure 1 - Architecture of the SELinux Proxy

Whereas SELinux can protect data to the granularity of the

file, the proxy has arbitrary granularity, as determined by tags

exchanged between the proxy and its client. The client may

wish to retrieve a single word from a database, or an entire

collection of files. Our mechanism allows this with as little as

a single configuration, although for more complex cases, the

number of configuration rules will increase linearly in the

number of database items.

There are some cases when records must be accessible even in

the absence of legitimate credentials. For example, if the au-

thorized viewer of a patient‟s case file is not present, but the

patient requires emergency treatment, then the availability of

the information is more important than its privacy. So the

proxy is programmed to respond to a special role of “Emer-

gency”, in which case it moves into auditing mode, until a new

set of credentials with a differing role is provided. In auditing

mode, all records can be retrieved and modified, but each ac-

tion is recorded and flagged for review by the security admin-

istrator. Appropriate punishment for abusing this mode can be

metered out at a social level. Our prototype does not handle

differential records, whereby the deltas between subsequent

versions of records are stored, although this would be advan-

tageous for malicious or accidental modification of records in

auditing mode.

It is not essential for the proxy and the client to maintain an

encrypted channel, since access control on the channel can be

maintained by SELinux. For ease of configuration, all commu-

nication can be encrypted using commonly available algo-

rithms such as the Advanced Encryption Standard. Our re-

search did not consider key management issues between the

client and the proxy, although the usual public key establish-

ment protocols, such as Diffie-Hellman can be used.

To prove the effectiveness of the proxy, we developed a sim-

ple prototype of the proxy and a client, as shown in Figure 2.

Auditing data for the client is shown in Figure 3. We used the

proxy and client to demonstrate the security advantages of

SELinux over DAC-based systems such as Windows XP. In

DAC-based systems, it was relatively easy to use hacking tools

such as rainbow tables [6] to break weak Windows system

administrator passwords, and modify the proxy and client code

to allow unauthorized and unaudited accesses. As the proxy

was housed in its own sandbox under SELinux, traditional

hacking tools did not provide an avenue for breaking into or

changing the proxy. The issue remains that this security is

present only in the unsupported “strict” mode of SELinux

which is still too complex to deploy in commercial situations.

Although the proxy significantly simplifies configuration of

application data, it does not address problems at the operating-

system level that need to be resolved. Further research in this

area needs to focus on simplifying generic SELinux configura-

tion, to allow realistic deployment of “strict” SELinux, which

supports protection of application data. This is indeed happen-

ing, as witnessed by the development of modular policy logic

in Fedora Core 5, which allows the configuration to be devel-

oped and loaded in blocks relating to the processes or dae-

mons being protected. The efficacy of this strategy has yet to

be solidly determined.

Figure 2 – The Proxy Client

Figure 3 – Auditing data for the Proxy Client

Conclusions

Sufficient evidence is emerging that the security requirements

and obligations for the protection of sensitive health data can-

not be sustained using contemporary data access control and

protection mechanisms in current commercial, commodity

computer systems. “Mandatory Access Control” or MAC,

incorporated into basic operating systems and allied support-

ing software structures, provides an alternative, strict, security

policy driven approach far superior to industry standard DAC

mechanisms. MAC can strengthen protection from unauthor-

ised access to sensitive health related information from both

outside and inside an organization. This provides enhanced

privacy protection from staff, including knowledgeable ICT

professional staff members, gaining access to such sensitive

data for which they are not authorised (i.e. view, modify, copy,

transmit, delete, etc.). It further provides enhanced „boundary‟

security from outside intrusion whereby adversaries, such as

hackers and spyware operatives, are unable to gain full control

of an information system. In the MAC case it can be demon-

strated that damage can be limited to violation of an individual

user‟s account [7].

This research has found that a MAC based medical data sys-

tems, although viable, still presents some key research and

practical deployment challenges. In particular, the “strict” op-

erational mode offered by SELinux may be seen as being too

rigid for deploying Role-Base Access Control or RBAC struc-

tures with the required levels of flexibility needed in practical

healthcare situations. Without this flexibility, system recon-

figuration may be required each time a user is added or re-

moved. This is infeasible in practice and is already the subject

of a number of active research projects. It was shown with the

demonstrator described in this paper that a compromise can be

derived that provides an application level proxy to facilitate a

secure, role-based access interface. A balance has to be struck

between strict access control security and the degree of flexi-

bility for dynamic modification of any system in the “real

world”. Any approach taken should be determined from a pri-

vacy impact oriented risk assessment process. For example,

such an assessment might readily determine a need for emer-

gency over-ride capability to enable at least wide read-only

access to medical/health data. Such a facility would, however,

have to be subject to new audit and control requirements as

well as to limitations potentially related to time periods and the

location of users. In this regard an implementation that can

support dynamic reconfiguration in a manageable and under-

standable manner may be essential. Earlier MAC systems were

simply not designed for this environment where the security

policy may need to be dynamic, not just in detail but also in

structure.

Future needs in terms of research also involve a better under-

standing of the complimentarity of SELinux‟s concept of “type

enforcement” versus more traditional security structures based

around hierarchical “Multi-level Secure” or MLS schemes. In

the health information area it needs to be determined whether

or not such hierarchical security schemes have a place or not

and, if so, to what level are modifications of the basic concepts

involved necessary. Likewise, the concept of “compartmen-

talization”, reflected in the SELinux type enforcement system,

needs to be assessed in relation to its suitability for all levels

of information services needed in a nationwide health informa-

tion structure. At the same time, application software devel-

opment needs to become aware of the new parameters af-

forded by the MAC facilities and determine to what level such

applications may or may not make use of the security mecha-

nisms and services offered, i.e. to determine the distinction

between what may be labelled as “security aware” versus “se-

curity ignorant” applications. Moreover, the integration of

existing software systems into this environment must be under-

stood requiring further research into appropriate techniques for

system integration in higher security environments. In turn,

this places new demands on education and training as ICT

professionals need to develop the skills needed to understand,

utilise and manage this new environment. This indicates that

necessary or desirable changes in organizational policy and

management structures for healthcare providers may be also

needed and, at present, full guidance to policy makers and

operational management in relation to deployment of newer

MAC based overall information systems do not appear to ex-

ist. This leads to the need for further research and experimen-

tal system development in the area to enable study of the eco-

nomic, cultural, social and legal responses required.

Acknowledgments

This research was supported under the Australian Research

Council's Special Initiative on e-Research funding scheme

(project number SR0567386). The authors would like thank

RedHat (Asia Pacific) Ltd. and the E-Health Research Centre

(a joint CSIRO and Queensland Health initiative) who have

been highly supportive.

References

[1] Foster I and Kesselman C, “The Globus Project: A Status

Report”, Proceedings of the Seventh Heterogeneous Com-

puting Workshop, 1998, ISBN: 0-8186-8365-1.

[2] Loscocco, P. A., S. D. Smalley, et al. (1998). The Inevita-

bility of Failure: The Flawed Assumption of Security in

Modern Computing Environments. Proc. 21st National In-

formation Systems Security Conference, Crystal City, VA.

[3] Loscocco, P. A. and S. D. Smalley (2001). Meeting Criti-

cal Security Objectives with Security-Enhanced Linux.

Proceedings of the 2001, Linux Symposium, Ottawa.

 [4] National Security Agency. Security Enhanced Linux

homepage. Available at http://www.nsa.gov/selinux, 2000.

[5] Thompson, K. Does SELinux support X-Windows?

http://www.crypt.gen.nz/selinux/faq.html#CP.7 Nov. 2006.

[6] Oeschlin, P. Making a Faster Cryptanalytic Time-Memory

Trade-Off, Proceedings of Crypto 2003, pp 617-630, 2003.

[7] M. Henricksen, W. Caelli and P R Croll “Securing Grid

Data Using Mandatory Access Controls”, to appear 5th

Australasian Symposium on Grid Computing and e-

Research (AusGrid 2007) Ballarat, Australia, Feb. 2007.

Address for correspondence

Prof. P.R Croll, Information Security Institute, QUT, 126

Margaret Street, Brisbane 4001, Australia. Email:

croll@qut.com

http://www.nsa.gov/selinux
http://www.crypt.gen.nz/selinux/faq.html#CP.7

