
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

Croll, Peter R. and Henricksen, Matthew P. and Caelli, William J. and Liu, Vicky 
(2007) Utilizing SELinux to Mandate Ultra-secure Access Control of Medical 
Records. In Kuhn, Klaus A. and Warren, James R. and Leong, Tze-Yun, Eds. 
Proceedings MEDINFO 2007: the 12th World Congress on Health (Medical) 
Informatics – Building Sustainable Health Systems Studies in Health Technology 
and Informatics 129, pages pp. 498-502, Brisbane, Australia. 

 
          © Copyright 2007 IOS Press 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10884434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Utilizing SELinux to Mandate Ultra-secure Access Control of Medical Records 

Peter R Croll, Matt Henricksen, Bill Caelli and Vicky Liu 

 Information Security Institute, Queensland University of Technology, Brisbane, Australia  

Abstract 

Ongoing concerns have been raised over the effectiveness of 

information technology products and systems in maintaining 

privacy protection for sensitive data. The aim is to ensure that 

sensitive health information can be adequately protected yet 

still be accessible only to those that “need-to-know”. To 

achieve this and ensure sustainability over the longer term, it 

is advocated that an alternative, stable and secure system ar-

chitecture is required. This paper considers the adoption of a 

model targeted at health information that provides much 

higher degrees of protection. A purpose built demonstrator 

that was developed based on enterprise-level systems software 

products is detailed. The long term aim is to provide a viable 

solution by utilizing contemporary, commercially supported 

operating system and allied software. The advantages and 

limitations in its application with a medical database are dis-

cussed. The future needs in terms of research, software devel-

opment and changes in organizational policy for healthcare 

providers, is outlined. 
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Introduction 

Advances in storage and communication technologies have 

made large repositories of data available even when they are 

maintained on separate systems and geographically distributed.  

The access to such data sets is often subject to varying degrees 

of legal, social and ethical constraints. Further, the data sets 

may not be available for open scientific research due to the 

sensitive and private nature of the information they contain. 

For example, individual personal health records offer signifi-

cant value for medical and related research but such informa-

tion cannot be readily accessed in a manner suitable for such 

research. The causes include the need to abide by national 

privacy legislation, the reluctance to change to electronic re-

cord format due to security fears and the requirement to main-

tain end-user trust in the overall healthcare information sys-

tem. Even when access rights have been granted - for example 

the data has been sanitized by having all personal identifica-

tion removed - there are still legitimate concerns over the de-

gree of privacy that contemporary IT applications will provide. 

The present reality is that IT applications operate on commod-

ity level computer operating systems that do not - and cannot - 

provide the required level of assurance needed for scientific 

research to be undertaken on sensitive data. They were never 

designed for this purpose. 

Information security mechanisms do exist to ensure sensitive 

information is protected and only accessible on a “need-to-

know” and approval basis. It is imperative that both adversar-

ies, such as external system “hackers” and technical/operations 

personnel with in-house knowledge be denied inappropriate 

access. The security mechanism known as Mandatory Access 

Control (MAC) is described below and can be used, as 

adapted, to enforce the necessary security and privacy proc-

esses required for handling sensitive health data. Such mecha-

nisms have been studied and understood for over 30 years, 

mainly in defence related systems. However, they have not 

been evident in contemporary commodity level operating sys-

tem or allied application level environments. 

In particular, the ICT industry‟s move towards development of 

application systems based around so-called “Service Oriented 

Architectures (SOA)” and “Web Services” software environ-

ments presents new security challenges in the healthcare envi-

ronment. Security standards, even for these high level service 

structures often based around “interpreter” sub-systems such 

as XML, etc. and Internet/World-Wide-Web “browser” pack-

ages, are complex and only in the early stages of development 

and deployment. Moreover, all of these structures critically 

depend upon the overall security and dependability of the un-

derlying “middleware”, operating system and computer hard-

ware systems. An application cannot be any more secure than 

the underlying systems upon which it depends. The same holds 

true for contemporary computer grid technologies, e.g. the 

Globus [1]. In other words, trying to adequately secure the 

shared “virtual machine” environments that grid technologies 

currently exploit is next to impossible (i.e., far too challenging 

for the foreseeable future).  

The primary aim of this project is to build a “Concept Tech-

nology Demonstrator”, based upon advanced cryptographic 

and information research and technologies (e.g., Cryptocards
1
 

and Starlight InfoSec technology
2
) in order to provide ultra-

secure and sanitized access to the protected data sets.  

                                                           
1 “Cryptographic plug-in cards”, Eracom (Safenet) Australia. 
2 “Starlight InfoSec Technology”, Defence Science and Technology 

Organisation (DSTO), Australia. 



The non-Sustainability of Current Approaches 

There is a strong vested business interest by mainstream sup-

pliers of computer operating systems and similar middleware 

products to perpetuate the belief that computer applications 

can be “made secure from within”, irrespective of other soft-

ware or even hardware components. In other words, the cor-

rect use of their technology will ensure a sufficiently secure 

operating environment upon which application programs can 

run safely. Unfortunately, any such assumption is flawed since 

in reality they represent a “fortress built upon sand” [2].  

Current base operating systems in the commercial arena are 

based around what is designated as “Discretionary Access 

Control” or DAC. Essentially this design allows the “owner” 

of any object in a system to, at their discretion (from where the 

term DAC comes) pass on their access rights to any other per-

son or entity in the overall information system‟s environment. 

In particular, DAC really does not acknowledge the essential 

difference between a computer “user”, a person, and the indi-

vidual “processes” in the system that act on his/her behalf. 

Moreover, the DAC structure assumes that the user is com-

pletely familiar with and trusts any program or related soft-

ware system which they cause to execute in the computer. In 

the current environment these assumptions, while possibly 

valid in the era of large mainframe computer systems with 

large “in-house” software development and support organisa-

tions prior to the development of global “packaged” software 

industry, are simply no longer true. The DAC approach, more-

over, assumes that users are the formulators of their own “dis-

cretionary” policy, a situation that is no longer valid as overall 

information systems become subject to overriding legal, socie-

tal and enterprise policy requirements. 

The applications will not be secure unless the underlying oper-

ating system and hardware have been specifically developed 

with security in mind. A system that is built to utilize a Manda-

tory Access Control (MAC) mechanism will provide levels of 

security relating to all aspects of the computing system, i.e., 

“enforce an administrative set policy over all subjects and 

objects in a system, basing decisions on labels containing a 

variety of security-relevant information” [3].   

Practical Implementations of MAC 

There are many implementations of Mandatory Access Con-

trols (MAC) based systems, but one of the most popular is 

called SELinux (Security-Enhanced Linux) [4]. It was de-

signed and engineered by the National Security Agency, an 

intelligence-gathering organization belonging to the govern-

ment of the United States. Released in 2000 as a patch to the 

Linux operating system, SELinux quickly gathered popularity 

within the Linux community due to its structural simplicity and 

the impeccable credentials of its designers. It now exists as an 

open-source module transparently integrated into the Linux OS 

kernel. Optimistically, the casual user may receive security 

support from SELinux without even noticing that the module 

is active, due to generic security configurations created by 

some of the recently arisen SELinux support groups. 

SELinux shares two fundamental properties with many MAC 

systems. Firstly, the super-user concept of DAC systems (i.e. 

“root” or “Administrator”) is banished, so that all users of the 

system are controlled by the same configuration policy. The 

policy is written by a security administrator. If an attacker can 

acquire the privileges of the security administrator, then the 

policy can be changed to suit his or her ends. But unlike the 

super-user, who controls any aspect of the system, the security 

administrator exists only to secure the machine, and not to 

make use of it. 

Secondly, like some other MAC systems, SELinux is based 

upon the concept of “type enforcement”, in which all the ob-

jects in an operating system (be they files, network sockets or 

processes) are labelled and classified as “domains” or “types”. 

The system configuration determines how domains with label 

x are able to access types with label y. Typically the access 

rights will be described, in a broad sense, as “domain x can 

read type y”, “domain x can write to type y”, “domain x can 

execute type y”, combinations of these, or “domain x cannot 

interact with type y in any way”. This last option is the implicit 

default, so only positive relationships between domains and 

types need to be configured.  

Nevertheless, the flexibility provided by SELinux tends to be 

its undoing, at least from the perspective of the casual user. 

Because there are many domains and types within even a sin-

gle-user system, and because each possible positive interaction 

needs to be considered, configuration of access rights is a la-

borious and error-prone process. Add to this the fact that each 

system is guaranteed to be different to the one on which the 

prepackaged configuration was prepared, and a nightmare sce-

nario in which SELinux denies essential accesses - such as 

allowing the system's Graphical User Interface to start - be-

comes a common one [5].  

There are well-known strategies that can help to reduce con-

figuration complexities. One of the most popular of these is 

Role-Based Access Control (RBAC), which intersperses a 

“role r” into the relationship between domain and type, such 

that, for example, if “role r can read type y” and “if domain x 

is a member of role r”, then “x can read y”. Since there are a 

small number of roles relative to the number of domains and 

types, then the number of rules relating roles to types and do-

mains to roles should be much fewer than the number of rules 

that relate domains directly to types. SELinux supports a 

primitive version of RBAC, yet a typical SELinux configura-

tion file still runs to about 50,000 lines. 

The RedHat company sells RedHat Linux Enterprise and 

sponsors the “Fedora Core” open-source software activity, 

both of which sport an extension of SELinux that includes 

“strict mode” and “targeted mode” structures. Strict mode is 

no different to the “vanilla” version of SELinux, but targeted 

mode protects only a subset of domains and types, usually 

those which have interaction with the external world via net-

work sockets, etc. (that is, those objects which are most likely 

to be attacked by hackers). The remaining objects within the 

system are labelled “unconfined” and can “run amok” with 

only the discretionary access controls regulating their behav-

iour. RedHat ships SELinux in the default mode of “targeted”, 



so that basic protection is afforded to the system without the 

mechanism becoming invasive, in turn preventing the user 

from being productive, and swamping RedHat support with 

basic administrative support requests. The flipside to this is 

that RedHat does not offer support to issues arising from the 

strict mode of SELinux. As will be seen later, this has a sub-

stantial impact on the use of SELinux to protect medical or 

other application data. 

Protecting Medical Application Data 

The primary intention of SELinux is to protect objects embed-

ded within the operating system, with security of application 

data being an afterthought. SELinux in effect partitions the 

operating system space into a set of “sandboxes”, protected 

areas between which communication is tightly regulated. The 

mechanism is generic, and consequently, the security adminis-

trator can create an additional series of sandboxes at the appli-

cation level to protect medical and other kinds of data. For 

example, the administrator may configure a web-browsing 

sandbox that permits a web browser such as Internet Explorer 

or Mozilla Firefox to access the internet. In addition, the ad-

ministrator may also configure a medical-related sandbox in 

which a medical application is permitted to access medical 

records. However, unless explicitly permitted, the web 

browser does not have access to the medical records. Neither 

does the medical application have the same level of exposure 

outside the network as the web browser. The security adminis-

trator can create arbitrary levels of complexity in the applica-

tion layer by constructing sandboxes for different applications, 

yet the enforcement mechanism of SELinux treats them all 

equally and prevents unauthorized accesses. Whereas if a 

hacker attacked a DAC system through the network interface, 

and managed to acquire super-user permissions, in an SELinux 

scenario, the hacker would control only a single sandbox, and 

would need to launch additional exploits, each of which be-

came increasingly infeasible with distance from the network 

interface. 

An important caveat is that the “targeted” mode of Red Hat 

Enterprise Linux and Fedora Core does not permit application-

level sandboxes, because all application process run in the 

unconfined domain. Any system supporting application level 

security is compelled to run in strict mode, which in turn 

means that it is likely not to be fully supported by its commer-

cial vendor. 

Building an SELinux Proxy 

Application data tends to be much more dynamic and flexible 

than operating-system level data. There may be many users of 

an application level database, whereas the number of owners 

of operating system processes tends to be very small. By de-

fault, SELinux is configured for four users, including system, 

staff, sys-admin and ordinary users. Adding new users in-

volves recompiling and reloading the configuration policy, as 

does adding new rules for interactions between domains and 

types. As operating-system level relationships tend to be very 

static, for example, changing only when new software is in-

stalled, this is not especially disadvantageous for the normal 

use cases for SELinux but is not well suited for creating rap-

idly changing sandboxes. 

Our solution to this problem, which also avoids the problem of 

creating additional complex interactions between application 

and operating system level objects, is to create a proxy. The 

proxy runs at the application level and is secured in its own 

sandbox by SELinux, preventing unwanted interactions with 

other processes. The proxy regulates access by application-

level process to protected data, using its own set of configura-

tion files.  In one sense, this solution can be viewed as nested 

SELinux, whereby the proxy represents a micro-instance of 

SELinux that deals only with application data. Operating sys-

tem level processes see only a monolithic object (the proxy) 

representing application processes, meaning that the number of 

configuration rules between the two layers is linear rather than 

multiplicative. 

The proxy deals with the added levels of interaction complex-

ity at the application layer by using an enhanced version of 

RBAC, in which role permissions are inherited throughout a 

hierarchy. By collating roles into hierarchy, and associating 

the lowest member of each hierarchy with each type, this obvi-

ates the need to associate every role with every type. As an 

example, a vertical slice of a role hierarchy may consist of 

“Doctor is a subset of role Clinician” and “Surgeon is a subset 

of role Doctor”. Configuring the policy with “any user in the 

role of Clinician has access to type y” automatically covers the 

rules for “any user in the role of Doctor has access to type y” 

and “any user in the role of Surgeon has access to type y” by 

virtue of their membership of the family. Portions of the hier-

archy can be overridden: configuring “any user in the role of 

Surgeon does not have access to type y” does not cause a con-

tradiction but allows only Clinicians and Doctors access to 

type y. 

An option in this research was to build the extended RBAC 

functionality natively into SELinux for which the source code 

is freely available. However, the benefits to operating-system 

level objects, which are not ordered hierarchically, are 

unlikely to outweigh the disadvantage in branching the 

SELinux source code, consequently reducing the successful 

uptake of this solution. 

The mechanism by which the proxy works is very simple, and 

abstractly mirrors the SELinux mechanism. A client interacts 

with the proxy via a pair of Client and Server messages. For 

each client message received, the proxy sends exactly one 

server message. 

The client authenticates itself to the proxy using a client mes-

sage with type CREDENTIALS and with a payload containing 

the user, role and password that describe the client. Until the 

next such message is received, the proxy caches the creden-

tials. This mimics the SELinux mechanism, which authenti-

cates a user via a password before transitioning the user into 

the requested role. The proxy generally responds to credential 

messages by sending a dummy OK response. 

The credentials are evaluated whenever the client requests 

access, either a read or a write, to a record in the proxy data-



base. The proxy passes the credentials, along with the record 

identifier and the policy to the security filter. The security fil-

ter assesses the credentials, decides whether the record can be 

accessed in the way intended and passes this decision to the 

proxy. In the case of a read request, the proxy relays the ap-

propriate record back to the client. If the client has requested a 

write, then the material passed in the payload of the 

REQUEST_WRITE_FILE message is appended or overwrit-

ten to the record. 

 

Figure 1 - Architecture of the SELinux Proxy 

Whereas SELinux can protect data to the granularity of the 

file, the proxy has arbitrary granularity, as determined by tags 

exchanged between the proxy and its client. The client may 

wish to retrieve a single word from a database, or an entire 

collection of files. Our mechanism allows this with as little as 

a single configuration, although for more complex cases, the 

number of configuration rules will increase linearly in the 

number of database items. 

There are some cases when records must be accessible even in 

the absence of legitimate credentials. For example, if the au-

thorized viewer of a patient‟s case file is not present, but the 

patient requires emergency treatment, then the availability of 

the information is more important than its privacy. So the 

proxy is programmed to respond to a special role of “Emer-

gency”, in which case it moves into auditing mode, until a new 

set of credentials with a differing role is provided. In auditing 

mode, all records can be retrieved and modified, but each ac-

tion is recorded and flagged for review by the security admin-

istrator. Appropriate punishment for abusing this mode can be 

metered out at a social level.  Our prototype does not handle 

differential records, whereby the deltas between subsequent 

versions of records are stored, although this would be advan-

tageous for malicious or accidental modification of records in 

auditing mode. 

It is not essential for the proxy and the client to maintain an 

encrypted channel, since access control on the channel can be 

maintained by SELinux. For ease of configuration, all commu-

nication can be encrypted using commonly available algo-

rithms such as the Advanced Encryption Standard. Our re-

search did not consider key management issues between the 

client and the proxy, although the usual public key establish-

ment protocols, such as Diffie-Hellman can be used.  

To prove the effectiveness of the proxy, we developed a sim-

ple prototype of the proxy and a client, as shown in Figure 2. 

Auditing data for the client is shown in Figure 3. We used the 

proxy and client to demonstrate the security advantages of 

SELinux over DAC-based systems such as Windows XP.  In 

DAC-based systems, it was relatively easy to use hacking tools 

such as rainbow tables [6] to break weak Windows system 

administrator passwords, and modify the proxy and client code 

to allow unauthorized and unaudited accesses.  As the proxy 

was housed in its own sandbox under SELinux, traditional 

hacking tools did not provide an avenue for breaking into or 

changing the proxy.  The issue remains that this security is 

present only in the unsupported “strict” mode of SELinux 

which is still too complex to deploy in commercial situations.  

Although the proxy significantly simplifies configuration of 

application data, it does not address problems at the operating-

system level that need to be resolved.  Further research in this 

area needs to focus on simplifying generic SELinux configura-

tion, to allow realistic deployment of “strict” SELinux, which 

supports protection of application data. This is indeed happen-

ing, as witnessed by the development of modular policy logic 

in Fedora Core 5, which allows the configuration to be devel-

oped and loaded in blocks relating to the processes or dae-

mons being protected. The efficacy of this strategy has yet to 

be solidly determined. 

 

Figure 2 – The Proxy Client 

 
Figure 3 – Auditing data for the Proxy Client 

Conclusions 

Sufficient evidence is emerging that the security requirements 

and obligations for the protection of sensitive health data can-

not be sustained using contemporary data access control and 

protection mechanisms in current commercial, commodity 



computer systems. “Mandatory Access Control” or MAC, 

incorporated into basic operating systems and allied support-

ing software structures, provides an alternative, strict, security 

policy driven approach far superior to industry standard DAC 

mechanisms. MAC can strengthen protection from unauthor-

ised access to sensitive health related information from both 

outside and inside an organization. This provides enhanced 

privacy protection from staff, including knowledgeable ICT 

professional staff members, gaining access to such sensitive 

data for which they are not authorised (i.e. view, modify, copy, 

transmit, delete, etc.). It further provides enhanced „boundary‟ 

security from outside intrusion whereby adversaries, such as 

hackers and spyware operatives, are unable to gain full control 

of an information system. In the MAC case it can be demon-

strated that damage can be limited to violation of an individual 

user‟s account [7].  

This research has found that a MAC based medical data sys-

tems, although viable, still presents some key research and 

practical deployment challenges. In particular, the “strict” op-

erational mode offered by SELinux may be seen as being too 

rigid for deploying Role-Base Access Control or RBAC struc-

tures with the required levels of flexibility needed in practical 

healthcare situations. Without this flexibility, system recon-

figuration may be required each time a user is added or re-

moved. This is infeasible in practice and is already the subject 

of a number of active research projects. It was shown with the 

demonstrator described in this paper that a compromise can be 

derived that provides an application level proxy to facilitate a 

secure, role-based access interface. A balance has to be struck 

between strict access control security and the degree of flexi-

bility for dynamic modification of any system in the “real 

world”. Any approach taken should be determined from a pri-

vacy impact oriented risk assessment process. For example, 

such an assessment might readily determine a need for emer-

gency over-ride capability to enable at least wide read-only 

access to medical/health data. Such a facility would, however, 

have to be subject to new audit and control requirements as 

well as to limitations potentially related to time periods and the 

location of users. In this regard an implementation that can 

support dynamic reconfiguration in a manageable and under-

standable manner may be essential. Earlier MAC systems were 

simply not designed for this environment where the security 

policy may need to be dynamic, not just in detail but also in 

structure.   

Future needs in terms of research also involve a better under-

standing of the complimentarity of SELinux‟s concept of “type 

enforcement” versus more traditional security structures based 

around hierarchical “Multi-level Secure” or MLS schemes. In 

the health information area it needs to be determined whether 

or not such hierarchical security schemes have a place or not 

and, if so, to what level are modifications of the basic concepts 

involved necessary. Likewise, the concept of “compartmen-

talization”, reflected in the SELinux type enforcement system, 

needs to be assessed in relation to its suitability for all levels 

of information services needed in a nationwide health informa-

tion structure. At the same time, application software devel-

opment needs to become aware of the new parameters af-

forded by the MAC facilities and determine to what level such 

applications may or may not make use of the security mecha-

nisms and services offered, i.e. to determine the distinction 

between what may be labelled as “security aware” versus “se-

curity ignorant” applications. Moreover, the integration of 

existing software systems into this environment must be under-

stood requiring further research into appropriate techniques for 

system integration in higher security environments. In turn, 

this places new demands on education and training as ICT 

professionals need to develop the skills needed to understand, 

utilise and manage this new environment. This indicates that 

necessary or desirable changes in organizational policy and 

management structures for healthcare providers may be also 

needed and, at present, full guidance to policy makers and 

operational management in relation to deployment of newer 

MAC based overall information systems do not appear to ex-

ist. This leads to the need for further research and experimen-

tal system development in the area to enable study of the eco-

nomic, cultural, social and legal responses required. 
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