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® School of Mechanical and Aerospace Engineering, Gyeongsang National Univ., Tongyoung, Kyongnam, Korea.

The ability to accurately predict the remainingfukéfe of machine components is critical for contous
operations in machines which can also improve ptdty and enhance system safety. In conditionebas
maintenance (CBM), effective diagnostics and pregne are important aspects of CBM which provide
sufficient time for maintenance engineers to scleduepair and acquire replacement componentgéefo
the components finally fail. All machine componehnssre certain characteristics of failure pattemd are
subjected to degradation processes in real envieatsn This paper describes a technique for accurate
assessment of the remnant life of machines basegrion expert knowledge embedded in closed loop
prognostics systems. The technique uses SuppotbiVitachines (SVM) for classification of faults and
evaluation of health for six stages of bearing ddgtion. To validate the feasibility of the propdseodel,
several fault historical data from High Pressurquieffied Natural Gas (LNG) pumps were analysed to
obtain their failure patterns. The results obtaivegke very encouraging and the prediction closely
matched the real life particularly at the end ofit®f the bearings.

Key Words: Prognostics, Degradation State, Suppertor Machines (SVM), Remaining Useful Life
(RUL), High Pressure LNG Pump

1 INTRODUCTION

An important objective of condition-based maintece&afCBM) is to determine the optimal time for re@ment or
overhaul of a machine. The ability to accuratelgdict the remaining useful life of a machine sysisraritical for its
operation and can also be used to improve prodtyc@nd enhance system safety. In condition-basathtenance,
maintenance is usually performed based on an aseas®r prediction of the machine health insteadso$ervice time,
which leads to intended usage of the machine, edidown time and enhanced operation safety. Anctifée
prognostics program will provide ample time for ntenance engineers to schedule a repair and taraagplacement
components before catastrophic failures occur. Reeglvances in computing and information technoldgyve
accelerated the production capability of modern mrees and reasonable progress has been achievealchine failure
diagnostics but not in prognostics.

Prognosis is considerably more difficult to forntelaince its accuracy is subjected to stochasticgases that are
yet to occur. In general, although many diagnostigineers have lots of information and experierto@ut machine
failure and health states by continuously conditieonitoring and analysing of machine conditionridustry, there are
still no clear systematic methodologies on how ttedjrt machine remnant life. The task still reles human expert
knowledge and experience. Therefore, there is ganimeed to continuously develop and improve #ffeg@rognostic
models which can be implemented in intelligent rexiance systems for industrial applications. Ineorh conduct
effective prognosis, performance assessment, dagwadmodels, failure analysis, health managemadt@ediction,
feature extraction and knowledge base of faultsrageired [1]. To prognosis accurately, one needsaonduct prior
analysis of the system degradation process, fagatierns and event history of the machine as aglise a data driven
approach.



In this paper, for accurate assessment of the nehiifi@ of machine, the authors proposed a machinognostics model
based on health state estimation using SVM. Innfaslel, prior expert knowledge embedded in theezldsop prognostics
system together with the SVM for classificationfafilts were used to evaluate the health states.bNearet al. [2] presented
the possibility of fault severity estimation via BMor the mode-invariant fault diagnosis of autometengines.

In our study, historical failure data and eventsen@nalysed to identify failure patterns using &peet knowledge system
to extract effective features and construct thét fdegradation steps for certain impending fadlis.validate the feasibility of
the proposed model, bearing fault cases of Higtsdtre Liquefied Natural Gas (LNG) pumps were amaly® obtain the
failure degradation process of bearing failure. m hgre-determined failure stages were employedtferestimation of the
machine’s remaining useful life (RUL) by using tB¥M classifier. The results showed that the progge®gnosis system has
the potential to be used as an estimation tooifachine remnant life prediction in real life indistapplications.

The remaining part of the paper is organised devisl Section 2 presents the proposed prognostiemylsased on health
state estimation with embedded expert knowledgeSention 3, the basic principle of SVM employedtliis research is
described briefly. Section 4 presents the resuliaafring failure cases for high pressure LiqueRedural Gas (LNG) pumps.
We conclude the paper in Section 5 with a summaryuture research work.

2 PROGNOSTICS SYSTEM BASED ON HEALTH STATE ESTIMATION

In this research, a new prognostics system basdgkalth state estimation with embedded expert kedgé is proposed. In
terms of design and development of intelligent neiance systems, effective intelligent prognostioglels using condition
monitoring techniques and failure pattern analysisa critical dynamic system can lead to robugigpostics system in
industry. Furthermore the combined analysis of edata and condition monitoring data can be accisingdl by building a
mathematical model that properly describes the tliyidg mechanism of a fault or a failure.

For an accurate assessment of machine
health, a significant amount of a priori
knowledge about the assessed machine or
process is required because the
corresponding failure modes must be
known and well-described in order to
assess the current machine or process
performance [3]. In general, each machine
system has inherent characteristics that
could be used to determine the entire life
cycle of machine. Therefore, prior analysis
and knowledge failure pattern could lead to
more accurate prediction of remnant life.
For accurate prognosis, one requires expert
knowledge about  the machinery
degradation, failure patterns  and
maintenance history. The objective of
prognosis is to predict when the machine is
likely to fail or degrade. Figure 1 illustrates
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In this research, the authors aimed to developaatigal prognostics model which has the capabibtyapplication in
current on-line condition monitoring systems. Fig@ shows the flow chart of a prognostics systesethan health state
estimation using SVM. This system consists of tteel-systems, namely, expert knowledge, diagnoatidsprognostics.
Through failure pattern analysis of the historidata and events, failure degradation stages caeteemined to estimate the
health stage of the machine. This type of prioregxgnowledge is also related with signal procagsieature extraction and
selection in diagnosis and prognosis as depictddguare 2. In this paper, the prognostic sub-systemsed to estimate the
RUL since the feasibilities of SVM for the fauleskification have been introduced in several relienatures.
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Figure 2. Flow Chart of the Prognostics System BaseHealth State Estimation.

3 SUPPORT VECTOR MACHINES

Support vector machines (SVM) is based on thessigdl learning theory introduced by Vapnik and ¢osworkers [4].
SVM s also known as maximum margin classifier withe abilities of simultaneously minimizing the ermgal
classification error and maximizing the geometriargin. Due to the excellent generalization ability,number of
applications have been addressed with the mack@mmihg method in the past few year$is section provides a brief
summary of the standard SVidr pattern recognition. Given data inpyfi = 1, 2...M), whereM is the number of samples.
Theith sample®: € R™ in an n-dimension input space belongs to one ofdlasses labelled ki¢: € {-1, 1} that have
two classes, namely, positive class and negatagsclin the case of linear data, it is possibldetiermine the hyperplane
f(x) = 0 that separates the given input data.

M
f(x)=w'x+b=> w;x;+b=0 (1)

j=1

Wherew is a coefficient vector and b is a bias of thedrpane. The vectaw and scalab are used to define the position
of the separating hyperplane. The decision fundsanade using sigffx) to create separating hyperplane that classifytinp
data in either positive class and negative class.



A distinctly separating hyperplane should satibfy tonstraints

f(x)=1 if y, =1 (2)
f(x)=-1if y, =~

or it can be presented in a complete equation
vy, f(x;)=y,(w'x; +b)=1 for i=12,.,M 3)

The separating hyperplane that creates the maxidistance between the plane and the nearest datathe maximum
margin, is called the optimal separating hyperpl@$H). By taking into account the noise with slaekiablesé and the error
penaltyC, the optimal hyperplane separating the data casbtsned as a solution to the following optimiratproblem

minimize 1 “W 12 +CZ : @
i=1
subject to yi(wix; +b)21-¢, i=1..,M -
$; 20 |_1 ,|v|

Where{ is the measured distance between the margin anexdimples; that lying on the wrong side of the margin. The
calculation can be simplified by converting the gean with the Kuhn-Tucker condition into the equéra Lagrangian dual
problem, which will be

L M M
minimize L (w,b,a) = 2w | = a,y, (wx, +b)+ > a, ®)
i=1 i=1

The task is minimizing Eq. (6) with respect to wddm while requiring the derivatives &fto a to vanish. At the optimal
point, following saddle point equations are applied

a_L:O, a_L:O )(7
ow ob

which can be replaced by
M M
W:Zaiyixi, Za’iyi=0 (8)
i=1 i=1

From Eg. (8),w is contained in the subspace spanned byxthBy substitution Eq. (8) into Eq. (7), the dualaquatic
optimization problem is obtained.

M

maximize 13 9)(
L(a) :z —EZJUinijixj

M
subjectto @20, i=1,...M. Y ay =0 (10)

Thus, by solving the dual optimization problem, aitains the coefficients; which is required to express to solve Eq.
(4). This leads to the non-linear decision function

M
f(x)=sign[2aiyi(xix,-)+b] (11)
ij=1
SVM can also be used in non-linear classificatiasks with application of kernel functions. The detabe classified is
mapped onto a high-dimensional feature space, wherénear classification is possible. Using tlim#inear vector function
®(X) = (¢,(X),...,¢ (x))to map then-dimensional input vector onto |-dimensional feature space, the linear d@tiinction

in dual form is given by

ij=1

f(x) = s‘gn[iai Y (@7 (x)@(x,)) +bJ (12)

Working in the high-dimensional feature space ezmlthe expression of complex functions, but it ajeoerates other
problems. Computational problem can occur due ® lrge vectors and overfitting can also exists tluehe high-
dimensionality. The latter problem can be solvedusing the kernel function. The Kernel is a functithat returns a dot



product of the feature space mappings of the algiata points, stated gx, , x DE(@T(x)® [ (x,) - When applying a

kernel function, learning in the feature space deegsequire explicit evaluation P and the decision function will be

aiyiK(xi,xj)+bJ (13)

i 1

M
f (x) = sign {
e
Any function that satisfies Mercer’'s theorem [Shdae used as a kernel function to compute a dadystoin feature
space. There are different kernel functions use@\iM, such as linear, polynomial and Gaussian RBte kernel defines
the feature space in which the training set exaspill be classified. In this research, the polymrfunction (§ xT-xj +r)?,

y> 0) was employed for classification of healthtesa

Support vector machines were originally designedfoary classification and there are several nmaghbat have been
addressed for multi-class classification, such‘asge-against-one”, “one-against-all”, and direct acyclic graph (DAG)
whereHsu and Lin [6] presented a comparison of theséaust and pointed out that the “one-against-onestimd is more
suitable for practical use than other methods. €guently, in this study, the authors have adopted‘one-against-one”
method to classify the six failure degradation etag

4  VALIDATION OF MODEL USING HP LNG PUMP

4.1 High Pressure LNG Pump

Liguefied natural gas (LNG) takes up six hundrefighe volume of natural gas to be reached below hbiing
temperature (-162), which can make storage and transportation maskee In an LNG receiving terminal, high pressure
LNG pumps are used to boost the LNG pressure toaBdor evaporation into highly compressed natges in order to be
sent out as highly compressed natural gas via elipg network
across the nation. The numbers of high-pressure LNBps
determine the amount of LNG at the receiving teahift is a
critical equipment in the LNG production processl afmould be
maintained at optimal conditions. Therefore, vilmatand noise
of high-pressure LNG pumps are regularly monitoradd
managed based on predictive maintenance techniques.

Table 1 shows the pump specifications. These highqure
LNG pumps are submerged and operate at super cooled
temperatures. They are self-lubricated at bothssifethe rotor
shaft and tail bearings using LNG. Due to the Idgceus value
(about 0.16cP) of LNG, the three bearings of thghipressure
LNG pump are poorly lubricated and the bearing mhet
specially designed. There are some difficultiesd@tecting the
cause of pump failure at an early stage becausertdin bearing
components which can result in rapid bearing faildue to poor
lubricating conditions and a high operating speg@Qq0rpm). In
other words, in case of abnormal problems happeming would
not have sufficient time to analyze the possiblet mause before
pump failure. Especially, due to the material propeariations of
cryogenic pumps at super low temperatures and shffieulties
in measuring the vibration signals on the submergeanp
housing, there are some restrictions for the disignof pump
health and the study of vibration behaviour. Hetheze is a need
to use the expert knowledge of the failure pattdorsaccurate
estimation of remnant life. Long term predictionceftain failures
for safe operation and Condition Based Maintenamedso highly
recommended in case of these pumps.

Figure 3. Pump schematic and vibration
measuring points



Table 1. Pump Specification

Capacity Pressure Impeller Stage Speed \oltage ngrati Current

241.8 nilhr  88.7 kg/crh g 9 3,585 RPM 6,600V 746 kW 84.5A

As shown in figure 3, high-pressure LNG pumps aréased within a suction vessel and mounted witlessel top plate.
Three ball bearings are installed to support emtyrgamic load of the integrated shaft of the pumg motor. The submerged
motor is cooled and the bearings lubricated byealgtermined portion of the LNG being pumped. Fordition monitoring of
pumps, three accelerometers are installed on hgpusdar the bearing assembly in horizontal, vertarad axial directions
respectively.

4.2 Vibration Data Acquisition of Bearing Failure

For machinery fault diagnosis and prognosis, sgyeath as vibration, temperature and pressurecanenonly used. In this
research, the authors only collected vibration de&teause the other data had no relationship wishirg failure directly and
they were simply process information. Vibrationadaias collected through three accelerometers ledtah the pump housing.
In this paper, we focused on bearing failure césesalidation of the proposed model. Thereforegadeom two pumps with
the same specifications were used for predictioth@iremaining useful life. Due to the random opereof the pumps to meet
the total production rate of LNG supply, there wsoene restrictions to collect full data for theienpump life. The acquired
vibration data are summarized in Table 2.

Table 2. Acquired vibration data of the LNG pump
Reason of remove

Machine No  Total operation hours & ROOL cause No of sample data Sampling frequency
P301C 4,698Hr’s High Vibration & 136 12,800 Hz
Outer raceway spalling
P301 D 3,511Hr's High Vibration & 120 12,800 Hz

Inner raceway flaking

As shown in Table 2, a total 136 and 120 vibrasamples were collected during full pump life faiing and testing of
the proposed prognosis model respectively.

Figure 4 shows the damage of the outer racewayirspalnd inner raceway flaking, respectively. Altigh these two
bearing faults had different fault severities oa thner race and outer race, these faults occumetthe same bearing of the

pump.

4.3 Features Calculation and Selection

In this paper, the authors calculated 10 statispeaameters from the time domain data. These fegtarameters were
mean, rms, shape factor, skewness, kurtosis, faetir, entropy estimation, entropy estimation ertostogram lower and
upper. In addition to these parameters, four parammérms frequency, frequency centre, root vaganequency and peak) in
the frequency domain were calculated. A total ofektures (14 parameters, 3 positions) were cdkullas shown in Table 3.

Table 3. Statistical feature parameters

Position Time Domain Parameters Frequency DomaiarReters
Radial(A)
Mean, RMS, Shape factor, Skewness, Root mean square frequency,
) Kurtosis, Crest factor, Entropy estimation, Frequency centre,
Radial(B) Entropy estimation error, Histogram lower Root variance frequency

Axial and Histogram upper Peak




In general, effective selection of features is reglito avoid the problem of dimensionality andhhtgaining error value
for the estimation of health states. In this pajplee, authors divided the bearing failure process 8ix stages that could
minimise the classification training error of edmaring degradation stage. For better trainingtasting of bearing failure
degradation steps, four features that represertefeadation of bearing failure among the 14 femtuvere selected.

(a) Outer raceway spalling of P301 C (b) Inner raceway flaking of P301 D
Figure 4. Outer and inner race bearing failures
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Figure 5. The mapping of random selected features.

Figure 5 shows the feature mapping of random ssdefetatures. Although some of health stages areseparated from
other stages, the figure also shows some ovenegpeck of health stages (stage 4, 5 and 6).
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Figure 6. The mapping of selected features.

Figure 6 shows the feature mapping of kurtosisiopntestimation and entropy estimation error valuee feature mapping
of selected features indicates the failure degranlatages are well grouped in clusters as compaitbdthe random selected
features.

4.4 Training and Classification of Degradation Stages

In this paper, a polynomial was used as the basindk function of SVM. Multi-class classificatiosing one-against-one
was applied to perform the classification of degtah. Sequential minimal optimization (SMO) propd<by Platt [7] was
employed to solve the SVM classification probleror Belection of optimal kernel parameters {Cd), the authors used the
cross-validation technique in order to obtain gpedormance of classification suggested by Hswsfras to avoid overfitting
or underfitting. For training and testing of thex stages of failure degradation, six data sets3ff1PD were employed to
perform the classification of health stages, whicsisted of eight sets of samples with four setbdeatures as shown in
Table 4. The test data consisted of eight setawiptes in order following the next sample. The petage of training error
was 18.75% for classification of the six classes.

Table 4. Training data sets for classification efichdation stages [P301D, Radial (a)]

Stage Training data set Average operation hours  aiteng Life (%) No of features
1 1~8 4 Hr's 99.89% 4
2 25~32 503 Hr'’s 85.67% 4
3 41 ~ 48 843 Hr's 75.99% 4
4 81 ~ 88 2,501 Hr's 28.77% 4
5 105 ~ 112 2,897 Hr's 17.49% 4
6 121 ~ 128 3,405 Hr's 3.02% 4




4.5 Classification Result and Useful Remaining Life Prdiction

Once the six stages features were trained accotdinfjove training data sets, the full data sef83#f1 D (136 data sets)
were tested to obtain the probabilities of thedagradation stages using test error values of s@aajes. Figure 7 shows the
probabilities of each stage of P301 D that was aksd for training of the six degradation statdse Tirst stage probability
started with 100% and decreased as long as neyéd pt@bability increased. Some overlaps betweenvibestages could be
explained due to the uncertainty of machine headtidition or inappropriate data acquisitions in exavironment. The entire
probabilities of each stage well explain the segaesf six degradation stages, which are distirsglyarated.

(Test error %) Probabilities of each stage
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Figure 7. Probabilities of bearing failure (P301D).

For the estimation of remaining useful life (RULhe expected life of the machine was calculatedidigig the operation
hours for each training data and their probabditiEhe average operation hours at each trainirsgasetdescribed in Table 4.
Figure 8 shows the result of estimated remnantiliié the comparison between real remaining lifeestionated life.
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Figure 8. Comparison of real remaining life andreated life (P301D).

As shown in Figure 8, although there are some ejmuncies in middle zone of the display, the overaihd of the
estimated life follows the real remaining life et machine. Furthermore, the estimated life offithel stage more closely
matched the real remaining life with less than ¥&emaining life.

Similar bearing fault data (P301 C) which consisi€d20 sample sets were also used to validatpritfosed model using
the same training data sets (P301 D) as descritmceaFigure 9 shows the result of the probabdlitéeach stage. With those
probabilities of six degradation stages, the remgifife of the P301 D pump was also estimated.



In Figure 10, the result of estimated remaining iifdicated that the expected remaining life (%pahatched closely with
the real remaining life (%) of P301 C pump. Howevbere are some differences between the calcutetedining life time
(Hr’s) and real remaining life time (Hr's) as shownrFigure 11.
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Figure 9. Probabilities of bearing failure (P301C).
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Figure 10. Comparison of real remaining life antinested life (P301C).
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As mentioned above, the estimated time was cakailfiiom training data sets (P301 D) which had 3,Ba&lrs in total
operation. Therefore, this difference at initialgtedation stages was caused by the discordancetalf dperation hours
between training and test data.

5 CONCLUSIONS

Machine prognostics based on health state estimatimg SVM has been presented. Through the faateern analysis of
historical data in terms of expert knowledge, falulegradation stages were determined for the astimof degradation
stages of a machine. To verify the proposed mdaksing failure data of High Pressure LNG pump wssd to extract
features and determine the probabilities of sixrdegtion stages using an SVM classifier. Althougg training error value
was about 18.75% for classification of the six séasrespectively, the result of estimated remainiseful life followed
closely with the real remaining life of machinend#y, in the second case with similar failure patit the estimated life
probability matched closely with the real remainliig, especially in the final stage of bearingldeé. These results indicate
that the proposed concept has the potential fahdarstudy and application in industry. Howevéfedive feature extraction
techniques for a variety of faults are still needédcurate training of failure states and the tiprediction using the
probabilities of each stage still needs investayati
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