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Abstract 
 

Vibration is a serviceability limit-state for the design of suspended floor systems in buildings 

that is not well understood by many structural engineers, and is often ignored.  Dynamic 

response is an important design consideration for slender, two-way floors, particularly for 

those of post-tensioned concrete construction.  At present, there are no reliable design 

guidelines that deal with this problem.  This paper describes a research program, which will 

enable the development of much needed design guidance on the dynamic behavior of 

suspended post-tensioned concrete floors.  Results from this parametric investigation have led 

to the preliminary development of new approach for predicting the natural frequency of flat, 

post-tensioned concrete floor structures.  This new method has been named, the Frequency 

Coefficient-Root Function (FCRF) method.  The FCRF method is a revolutionary and 

convenient tool structural engineers can use to design for the vibration serviceability limit-state 

of cast-insitu, post-tensioned concrete floor systems. 

1. INTRODUCTION 

Floor vibration is typically characterized by cyclic, vertical motion usually resulting from 

transient human induced loads.  Among a number of studies that address this issue for 

composite, steel-framed floors, two very successful design guides have been published in the 

United Kingdom and North America that are commonly referred to and used in practice [1,2].  

The reason these guides are successful in accessing the dynamic serviceability for composite 

floor construction is that they provide reasonably accurate methods for calculating the natural 

frequency of a floor panel. Research focused on the dynamic behaviour of cast-insitu concrete 

floors is limited, particularly for post-tensioned systems.  The only available formal guideline 

for the dynamic analysis and design of post-tensioned systems is the Concrete Society 

Technical Report 43 (CSTR43) of 1994 [3].  Since its publication, there have been reports that 
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the CSTR43 produces over conservative designs when used for assessing vibration 

serviceability, because the method suggested in this guide has the tendency to underestimate 

natural frequency [4-6].   

 

This paper describes a state-of-the-art method for determining the dominant frequency 

response of post-tensioned concrete floors, which was empirically developed using finite 

element and experimental techniques. This method will be known as the Frequency 

Coefficient-Root Function (FCRF) method, and will deliver efficient dynamic serviceability 

designs. 

2. THEORETICAL BACKGROUND 

For single degree-of-freedom (SDOF) structural systems subjected to free vibration, it can be 

shown that for low to moderate damping the natural frequency of the solution to the equation 

of motion is approximately equal to the undamped, natural frequency: 

m

k
f

π2

1
=                                           Equation 1 

Where, f (Hz) is the natural frequency of the system, k is the system dynamic stiffness and m is 

the system mass.   

 

Cast, in-situ, post-tensioned concrete floors are immensely complicated, multiple- degree-of-

freedom (MDOF) systems that are not easily simplified and demand special attention.  Because 

of the complexity of boundary conditions, material properties, geometry and internal loading, 

vibration problems in post-tensioned floors are very difficult.  The most common approach to 

these problems is the employment of finite element analysis (FEA) to perform eigenvalue 

natural frequency analyses.  In this case, the modal frequencies may take the form: 
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=                                        Equation 2 

Now, fi (Hz) is the modal frequency, ki represents the modal dynamic stiffness and mi is the 

modal mass, each for the i
th

 mode of vibration.  Recognizing that the modal frequency is 

proportional to the natural frequency of a SDOF system, we have: 

m

k
Cf ii =                                             Equation 3 

In this case, Ci (cyc/rad) is a proportionality coefficient for the ith mode of vibration.  In 

current practice, engineers generally assume the first mode, i = 1, is the governing case as 

calculated from an eigenvalue natural frequency analysis.  This assumption is not necessarily 

true and may result in over conservative and uneconomical designs.  For plate structures, like 

flat, post-tensioned concrete floors, the stiffness-to-mass ratio 'λ (rad/s
2
) ' is calculated as 

follows: 

   
mL

IE

m

k

x

dyn

4
==λ                                               Equation 4   

Here, Edyn (MPa) is the dynamic, elastic modulus of the concrete, I (mm
3
) is the second 

moment of area per unit width of the slab, Lx (mm) is the short span dimension of the floor 

panel and m (tonne/mm
2
) is the mass of the floor per unit area.  
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This paper will show that the primary response frequency of a given panel within a flat post-

tensioned floor structure is not always proportional to the square-root of  'λ '.  The findings of 

this research show that the proportionally coefficient, C, and the root of 'λ ' are functions of the 

floor panel aspect ratio, 'α '.  This paper proposes a new expression for the primary natural 

frequency of a floor panel as follows: 

 

 )(),( αλα pp Cf =  
)(α
λpR

                                   Equation 5   

 

Now, fp is the dominant response frequency of the panel as a function of 'α ' and 'λ ' . Cp(α) is 

the panel coefficient function, Rp(α) is the panel root function, each of which are functions of 

the panel aspect ratio, α = Ly/Lx, where Ly (mm) is the long span dimension of the panel.  

Equation 5 represents the basic form of the Frequency Coefficient-Root Function (FCRF) 

method.  This new, empirical method will assist engineers in the economic design of flat, post-

tensioned concrete floors for vibration serviceability. 

3. FINITE ELEMENT ANALYSIS 

3.1 FEA Panel Configuration Methodology 

The objective of this phase of the investigation was to determine the response frequency of a 

variety of floor panel configurations.  In plan, these configurations were based on the bending 

moment and deflection coefficients derived from yield-line theory, which account for edge 

continuity conditions for wall supported floor plates [7].  A plan sketch and of list of these edge 

conditions are shown in Figure 1. 

 This phase of the study has investigated the dynamic behavior of floors with exterior and 

interior columns.  Using the FEA material model for the floor structure, which was calibrated 

from laboratory tests as described by Jetann et.al.[8], e.g., Edyn = 33.3GPa and ζ =1.2%, a series 

of three-dimensional (3-D) FEMs was established.  This series involved, three sets of three 

models.  For each set, the long spans, Ly, of the floor panels were held constant at nine meters 

(9m) while the short spans, Lx, were adjusted to vary the aspect ratio, α = Ly/Lx, at 1, 1.5 and 2.   

For each model in a set, the parameter 'λ ' was investigated by adjusting the span-to-depth ratio, 

Ly/d, at 25, 35 and 45.  To simulate the effect of support stiffness in real buildings, columns 
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Figure 1 –Floor panel edge continuity conditions 
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were modeled above and below the slab with eight-node solid elements having an elastic 

modulus of 35GPa.  Columns heights were three meters (3m) above and below mid-depth of the 

slab elements, and all translational degrees of freedom at the end nodes were restrained to 

provide fixed supports. Column cross-sections were dimensioned at 5.0% of the panel span in 

each direction at the panel corner to provide reasonable geometry for nominal punching shear 

considerations.  These models were analyzed for eigenvalue natural frequencies and for the 

panel response to a ‘heel-drop’ load function using non-linear, transient dynamic analysis.   

 

3.2 FEA Results 
 
For clarity of discussion, only the series of results related to Panel Edge Condition ‘1’, as 

depicted in Figure 1, will be described initially in this section.  A complete set of results for all 

other panel edge conditions will be summarized at the end of this paper.  A graphic 

representation of one FEM floor structure analysed during the course of this investigation is 

shown in Figure 2.  This particular FEM has the following parameters: α  = 1, Ly/d = 45 and λ = 

7.05.  The FEA results provided in Figure 6 are the set of eigenvalue natural frequencies for the 

first through the thirteenth modes, the acceleration contours immediately following a heel-drop 

excitation and transient dynamic response frequency resulting from a heel-drop excitation.  It 

can be observed that the transient response frequency, of Panel 1, corresponds to the thirteenth 

eigenvalue frequency of 7.6Hz.  It should be emphasized here that in current practice, engineers 

generally assume that the first mode frequency as calculated from an eigenvalue analysis is the 

governing frequency.  Results from this investigation prove that this assumption is not 

necessarily true.  The results given in Figure 2 show that the panel primary natural frequency of 

7.6Hz would be underestimated by 17% if the first mode eigenvalue natural frequency of 6.3Hz 

were assumed to be the governing response for this panel, which could lead to an over 

conservative dynamic serviceability design.   
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Figure 2 – FEM Floor Structure: Results for Panel Edge Condition ‘1’ 
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To obtain the transient 

response frequency, a time-

history record of 

acceleration was extracted 

from the nonlinear, transient 

dynamic FEA output.  From 

the time-history record, a 

power-spectrum was then 

analyzed.  Further analyses 

were conducted by 

adjusting the FEM span-to-

depth ratio, Ly/d, from 45, to 

35 and 25. Now expanding 

this approach, when we 

study the frequency 

response behaviour of Panel 

1 for aspect ratios of α  = 1, 

1.5 and 2 in addition to 

variable values of 'λ', it is obvious 

that the coefficient of 

proportionality and the root of 'λ ' 
change with 'α '.    These three 

cases are plotted together in Figure 

3. By plotting the coefficient of 

proportionality 'C ' and the root of 

'λ ' against the aspect ratio 'α ', 
and performing a regression 

analysis curve-fit to these data, we 

can obtain expressions for each as 

a function of 'α '.  These functions 

are C1(α), the panel coefficient 

function, and R1(α), the panel root 

function, where the subscript of ‘1’ 
indicates the special case of Panel 

1.   Plots of C1(α) and R1(α) are 

provided in Figure 4.   

 

Applying these functions to the 

form of Equation 5 gives the 

Frequency Coefficient-Root 

Function (FCRF) expression, 

f1(α,λ),  which can be used to 

estimate the primary response 

frequency, of a floor with the edge 

continuity conditions of Panel 1, 

as depicted Figure 5, for any value 

of 'α ' or 'λ ' as follows: 

 

 

 

Figure 4 – a) Panel ‘1’ coefficient function, C1(α); 

b) Panel ‘1’ root function, R1(α) 
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( )0.9)(47.8)(63.2),( 2

1 +−= ααλαf
( )[ ]56.3)(26.2)(92.0 2 +− αα

λ  

4. FIELD TESTING AND FCRF CORRELATION 

The aim of this phase of the study was to measure the natural frequency of post-tensioned 

concrete floor structures in real buildings, and to compare the measured natural frequencies 

with the frequencies predicted by the FCRF method.  This section of the paper will briefly 

discuss the correlation of natural frequency measurements and the FCRF predicted frequency 

response for a floor structure having edge continuity conditions corresponding to Panel 1 as 

depicted in Figure 1. 

 

Vibration measurements were gathered from a suspended, post-tensioned concrete floor panel at 

Charlotte Tower in Brisbane, Australia, which is a 34 story residential building.  An 

accelerometer was rigidly fixed to the concrete surface of the slab at the center of the panel.  

Heel-drop tests were conducted on the panel, and a portable data acquisition system was used to 

obtain the acceleration time-history record and power-spectrum on site.  The measured response 

frequency for this floor structure was 8.5Hz.  The power-spectrum and acceleration time-history 

record for the tests conducted on this panel are given in Figure 5. 
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The geometric and material properties of this panel are as follows: Lx = 7200mm, Ly = 

8500mm,  d = 180mm, I (mm
3
) = d

3
/12 = 486x10

3
,  m (tonne/mm

2
) = 432x10

-9
, f’c = 32Mpa, 

Edyn = 1.04(5055.75)(f’c)
.5

 = 29.7GPa .  These properties correspond to the FCRF method 

parameters: α = 1.18 and λ = 12.95.  By substituting the values of  'α ' and 'λ ' into Equation 6, 

the FCRF predicted natural frequency of the Charlotte Street floor panel shown in Figure 11 

would be calculated as follows: 

( )0.9)18.1(47.8)18.1(63.2),( 2

1 +−=λαf  
( )[ ]56.3)18.1(26.2)18.1(92.0 2

45.12
+−

 

                                    = 2.7(3.2) 

                                    = 8.6 Hz 
 

The FCRF method frequency is exactly the measured frequency of the floor panel. 

5. SUMMARY 

The research discussed in this paper illustrates that dominant response frequency of a post-

tensioned concrete floor panel resulting from a transient dynamic excitation does not 

necessarily correspond to the first-mode eigenvalue natural frequency.  Furthermore, it has been 

demonstrated through a complete parametric investigation that the primary natural frequency of 

a post-tensioned concrete floor panel can be accurately predicted by a new method: The 

Frequency Coefficient-Root Function (FCRF) method.  The basic form of the FCRF method is 

given by Equation 5.  The development of the panel coefficient function, Cp(α), and the panel 

root function, Rp(α), for a floor with edge continuity conditions corresponding to Panel ‘1’ of 

Figure 5 has been thoroughly explained.  Table 1 summarizes these functions for all of the 

panel edge continuity conditions.  The numerical subscript substituted for 'p' denotes the 

respective panel of Figure 1: 
Table 1:  

PANEL TYPE Cp(α) panel coefficient function and Rp(α) panel root function 

            1 
C1(α) = 2.63(α)

2 – 8.47(α) + 9.0 

 R1(α)  = 0.92(α)
2 – 2.26(α) + 3.56 

            2 
C2(α) = 6.2(α)

2 – 20.3(α) + 23.4 

 R2(α)  = 0.9(α)
2 – 2.26(α) + 3.68 

            3 
C3(α) = 5.6(α)

2 – 20.6(α) + 24.3 

 R3(α)  = 1.06(α)
2 – 2.66(α) + 3.92 

            4 
C4(α) = 5.8(α)

2 – 18.9(α) + 22.2 

 R4(α)  = 1.02(α)
2 – 2.65(α) + 4.01 

            5 
C5(α) = 6.6(α)

2 – 22.9(α) + 25.4 

 R5(α)  = 1.3(α)
2 – 3.25(α) + 4.33 

            6 
C6(α) = 7.8(α)

2 – 26.5(α) + 27.8 

 R6(α)  = 1.23(α)
2 – 3.14(α) + 4.29 

            7 
C7(α) = 5.4(α)

2 – 18.7(α) + 22.1 

 R7(α)  = 1.3(α)
2 – 3.38(α) + 4.58 

            8 
C8(α) = 7.8(α)

2 – 26.5(α) + 27.8 

 R8(α)  = 1.3(α)
2 – 3.38(α) + 4.58 

            9 
C9(α) = 5.4(α)

2 – 18.7(α) + 22.1 

 R9(α)  = 1.05(α)
2 – 2.5(α) + 4.01 
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The FCRF method calculations described in this paper apply to floor structures supported by 

external and internal columns.  Future work will include analyses for floor panel 

configurations having external and internal wall supports and those with external wall and 

interior columns.   

In conclusion, this research will exploit an opportunity to develop empirical guidelines for the 

dynamic behavior of post-tensioned floors, partially through the use transient dynamic 

analysis.   
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