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Abstract 

Intelligent machine fault prognostics estimates 
how soon and likely a failure will occur with little 
human expert judgement. It minimizes production 
downtime, spares inventory and maintenance 
labour costs. Prognostic models, especially 
probabilistic methods, require numerous historical 
failure instances. In practice however, industrial 
and military communities would rarely allow their 
engineering assets to run to failure. It is only 
known that the machine component survived up to 
the time of repair or replacement but there is no 
information as to when the component would have 
failed if left undisturbed. Data of this sort are 
called truncated data. This paper proposes a novel 
model, the Intelligent Product Limit Estimator 
(iPLE), which utilizes truncated data to perform 
adaptive long-range prediction of a machine 
component’s remaining lifetime. It takes advantage 
of statistical models’ ability to provide useful 
representation of survival probabilities, and of 
neural networks ability to recognise nonlinear 
relationships between a machine component’s 
future survival condition and a given series of 
prognostic data features. Progressive bearing 
degradation data were simulated and used to train 
and validate the proposed model. The results 
support our hypothesis that the iPLE can perform 
better than similar prognostics models that neglect 
truncated data. 

1. INTRODUCTION 

Increasingly complex and refined machines 
prevalent today require highly sophisticated 
maintenance. Domestic plants in the United States 
spent more than $600 billion to maintain their 
critical plant systems in 1981 and by 1991, the 
costs had increased to more than $800 billion and 
topped $1.2 trillion in 2000 (Raytek, 2004). An 
even more alarming fact is that one third to one 

half of maintenance expenditure is wasted through 
ineffective maintenance management methods. It 
has been argued that this trend is similar in 
Australia and industry can no longer absorb this 
incredible level of inefficiency. Therefore, there is 
a pressing need to continuously develop and 
improve modern intelligent maintenance systems, 
in order to compete in the global market. Machine 
component prognostics determines whether a fault 
is impending and estimates how soon and likely a 
fault will occur with little human expert 
judgement. It minimizes production downtime, 
spares inventory and maintenance labour costs.  
 
Even though the concept proposed may be applied 
to the prognosis of various machine components, 
this work focuses on rolling element bearings for 
illustration purposes as bearing failure is one of the 
foremost causes of machinery breakdown. For 
bearing life prediction, data like vibration signals, 
oil particle count and temperature are usually 
collected periodically. Data features like RMS are  
then extracted and plotted in order to trend the 
changes in feature values. These changes indicate 
the progression of fault severity over time. 
However, there are still remaining problems to be 
solved in the research area of bearing prognostics. 

1.1. Remaining problem: negligence of 
truncated data 

Prognostics models, especially probabilistic 
models (Sutherland et al., 2002, Vlok et al., 2004, 
Groer, 2000) and artificial intelligence models 
(Gebraeel et al., 2004, Huang et al., , Qiu et al., 
2003, Wang and Vachtsevanos, 2001) require 
numerous historical failure instances. In practice 
however, industrial and military communities 
would rarely allow their engineering assets to run 
to failure. Most of the time, once a defect has been 
detected in a machine component, the component 
is extracted and replaced before it fails. Therefore 
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the cut-off point at which the component will cease 
to function is not always known or recorded. It is 
only known that the machine component survived 
up to the time of repair or replacement but there is 
no information as to when the component would 
have failed if left undisturbed. Data of this sort are 
called truncated data.  
 
The intelligent machine prognostics models 
proposed in the literature have not taken this into 
consideration. When all the component truncation 
times in historical data are treated as the 
component failure times, the prognostic model will 
produce biased estimates (underestimation) of the 
time to failure. Since in most instances a 
component is replaced once a fault is detected, 
treating the replacement times as failure times 
defeats the purpose of prognostics because it is the 
duration the failing component can survive beyond 
this point that is of interest (Figure 1). It is not 
uncommon that a component’s remaining useful 
life (from the point where a defect is detected) is 
substantially more than its L10 life. It is a 
prognostician’s goal to recommend a maintenance 
schedule that does not interrupt production or 
wastefully replace components that still have 
useful remaining life. It is the ability to estimate 
this remaining lifetime that is critical to optimal 
maintenance scheduling. 
 

 
Figure 1 Timeline of a machine component’s 
operational life. 

 
On the other hand, prediction models that carefully 
omit truncated data from the training data sets will 
worsen the problem of data unavailability in real 
life. Progressive component degradation data are 
already scarce due to irregular measurement 
recording or/and the huge amount of time it takes 
to accumulate enough sets of failure data. For 
example, a bearing can last for several years even 
under harsh operating conditions. Therefore, a 

good prognostics model must be able to maximize 
use of available data. 

1.2. Problems associated with the 
existing neural network prognostics 
models 

Current prognostics approaches fall into 3 main 
categories: statistical approaches, model-based 
approaches and artificial intelligence approaches. 
 
Statistical approaches (Vlcek et al., 2003, Groer, 
2000, Schömig and Rose., 2003) typically involve 
fitting probabilistic failure distribution to historical 
data. These approaches are the least complex and 
may be the only alternative in not-so-critical or 
low-failure-rate situations. The next logical 
extension to these statistical models is to correlate 
failure instances records with more specific health 
condition data that are directly related to the 
system being monitored. 
 
Model-based approaches can be the most accurate 
when a correct and accurate model is available. 
However, it is very difficult to build mathematical 
models for complex systems. It requires system-
specific mechanistic knowledge. (Jantunen, 2004) 
stated that the wear of rotating machinery 
components is still not fully understood today. 
Most model-based prognostics methods (Li et al., 
2000, Qiu et al., 2002) focus on the prediction of 
crack propagation. However, there is a large 
variety of other failure modes and the 
prognostician needs to correctly identify the fault 
type in question. Even if that has been 
accomplished, defect growth is not a deterministic 
process. Virkler et al. (1979) has shown that even 
under well-controlled experimental conditions, 
crack growths of a set of identical components are 
vastly different. It is also difficult to apply crack 
growth models in practice because they require the 
knowledge of the exact geometry or/and 
orientation of the crack, which are usually very 
irregular and cannot be identified without 
disassembling the machine component.  
 
Compared to model-based models, artificial 
intelligence models make much fewer assumptions 
about the system and its operating conditions. One 
popular artificial intelligence prognostics technique 
in the literature is artificial neural networks. Neural 
networks can be tuned using well-established 
algorithms to provide desired outputs directly in 
terms of vibration signals (Roemer et al., 2005). 
They learn from examples and aim to capture the 
relationship among data. A neural network consists 

Start of operation 

It is the ability to 
estimate the duration a 
failing component can 
survive beyond this 
point that is critical to 
optimal maintenance 
scheduling 

Actual failure 
point if left 
undisturbed

Preventive replacement 
(often mistakenly treated as 
failure point) 
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of a layer of input nodes, one or more layers of 
hidden nodes, one layer of output nodes and 
connecting weights. The network learns the 
unknown function by adjusting its weights with 
repetitive observations of inputs and outputs. 
 
Neural networks have produced comparable and, 
in some cases, superior results to standard 
mechanistic or statistical models in various 
disciplines (Reibnegger et al., 1991, White, 1989). 
In recent years, several methods employing neural 
networks have been proposed for bearing 
prognosis. Tse and Atherton (1999) have 
approached bearing prognosis as a time series 
prediction using a recurrent neural network (RNN).  
These models perform single-step-ahead 
predictions to output the predicted vibration signal 
feature(s) at the next immediate time step. 
However, single-step predictions rarely in reality 
raise the bar from diagnostics to prognostics. 1 
time step in a plot of vibration feature 
measurement for prognostics can be only 15 
minutes. A prognostics horizon of 15 minutes or 
even 1 day is not of much help to optimal 
maintenance scheduling.  
 
Gebraeel et al. (2004) and Huang et al. attempted 
to predict the actual bearing failure time and based 
their bearing prognosis on the assumption that all 
bearing degradation signals possess an inherent 
exponential growth. They proposed a feed forward 
neural network model that derives exponential 
parameters α and β to fit each bearing degradation 
signal with the best exponential fit of the form 
αeβt. Huang et al. built on the above mentioned 
method and used a feed forward neural network to 
generate a predicted failure time based on 100 
interpolated points which are exhaustively 
searched from each bearing degradation data set. 
This model assumes that the bearing degradation 
data are continuously monitored and the 100 points 
can be uniformly interpolated at any prediction 
point. It is unclear that if these seemingly complex 
neural network models offer analysis more 
sophisticated than that provided by a simple 
exponential curve fitting and extrapolation method. 
Exponential extrapolations often have a large 
region of uncertainty. Due to the probabilistic 
nature of bearing integrity and operating condition, 
defect propagation rates are vastly stochastic. If the 
growth of a bearing defect differs from the 
exponential pattern assumed by the above-
mentioned models, the bearing degradation will be 
poorly extrapolated. Even for proper assumptions 
about the exponential defect growth, the prediction 
confidence interval of extrapolations often 
diverges to impossible values. Extrapolating 

beyond that range can lead to misleading results. 
Besides, successive prediction outputs may vary 
vastly and seem confusing. Without an indication 
of probability distribution, it is rather difficult for 
maintenance personnel to make maintenance 
decisions. Lastly, these feed forward neural 
network models also require knowledge of the 
current bearing operational age (the time from the 
start of a bearing operation/degradation to the 
current prediction point). 

2. AN INTELLIGENT PRODUCT-LIMIT 
ESTIMATOR THAT FULLY UTILIZES 
TRUNCATED DATA  

2.1. Model Architecture 

We propose the Intelligent Product Limit Estimator 
(iPLE) that maximizes the use of available data. 
While this model also employs a neural network as 
one of its tools, it differs from the above 
techniques in several respects. The network’s 
inputs and prediction outputs will be interpreted as 
probabilities, incorporating statistical reliability or 
failure distribution analysis. Truncated data sets 
will be fully utilized and incorporated directly into 
the training set, not by using an artificial cut-off 
time, but rather by using the probability that they 
will not fail before a certain time as the training 
signal. Also, the network will separate the failure 
cases into output classes based on their failure 
time. Therefore the network output will be a 
predicted survival curve for individual machine 
components (bearings, in this case). Lastly, in 
cases where components failure instances (failure 
times) are recorded but not every failure record 
comes with trending data (e.g. vibration data), 
iPLE maximizes use of these failure instances 
records. Conventional neural network models, on 
the other hand, can only use the failure records 
which come with trending data. This is because 
iPLE’s baseline estimation of survival probabilities 
is based on historical failure instances. 
 
The network proposed is a feed-forward input-
delay network, which has 7 inputs, xt, xt-1, xt-2, xt-3, 
xt-4, xt-5 and xt-6 (the current bearing degradation 
indicator value and 6 delayed values, which are the 
inputs from 6 previous time steps). There is 1 
hidden layer made up of 10 hidden nodes. For 
illustration purposes we use 5 output nodes here. 
However, more outputs can be used especially 
when more data readings are available.  The 
network is trained using a gradient descent 
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algorithm with momentum back-propagation. 
 

 
Figure 2 Architecture of the probability neural 
network used in iPLE 

 
Let k denote the “current” time interval. The first 
output node represents the probability of the 
bearing surviving the next time interval (e.g. 1 time 
interval = 10 days), Sk+1; the second node 
represents the probability of the bearing surviving 
the 2nd next time interval (between day 10 and day 
20), Sk+2; and so on, up to the next 5th interval (50 
days) (Figure 2) . There will be another class, the 
6th class, which represents the class of bearings 
which may survive beyond day 50. The activations 
of the output units were trained with and 
interpreted as the probability that the bearing 
would survive up to that time.  

2.2. Model Training 

Representation of training data vectors 
 
The training vector T for each bearing in the 
training set consists of the survival probability Sk+n 
for each time interval k.  In our example of 5 
prediction horizons (n=1,2,…,5), a training vector  
for the kth interval would have the format: Tk = [ 

Sk+1; Sk+2; Sk+3; Sk+4; Sk+5].  
 
Training data vectors for complete degradation 
data sets 
 
Data sets are considered complete if the bearing 
has reached a predetermined failure threshold 
when removed from the machine. For these 
complete failure data sets, the network will be 
trained with values of 1 for outputs up to the last 
observed survival time interval, and 0 thereafter. 
For example, a data set of a bearing that fails at 
day 22 (within the 3rd time interval) would have a 
training vector Tk = [1; 1; 0; 0; 0].  
 
Training data vectors for truncated degradation 
data sets 
 
Data sets are considered truncated if the bearing 
has not reached the predetermined failure threshold 
when removed from the machine. For these 
truncated data sets, the network will similarly be 
trained with values of 1 only up to the last 
observed survival time. The outputs for later time 
intervals will be computed as survival probabilities 
using a variation of the standard Product Limit 
Estimation (also known as the Kaplan-Meier 
estimation) to the true survival rate of the complete 
data sets. The Kaplan-Meier’s 1958 paper (Kaplan 
and Meier, 1958) is one of the top 5 most cited 
papers in the field of Sciences. The aim of using 
this method is to produce the most accurate 
survival probability possible taking into account all 
of the information available. In this work, the 
standard Product Limit Estimator (PLE) which 
computes survival probability for the total set of 
samples under study is modified to the Intelligent 
Product Limit Estimator (iPLE) which produces 
real-time survival probability for individual 
bearing samples.  
 
We define the risk of failure in n next time 
interval, riskk+n, as the conditional probability that 
a bearing will fail in time interval k+n, given that 
they have not failed up to time interval k-1. Let 
Fk+n denote the number of failures in time interval 
k+n and Rk+n the number of bearings being at risk 
in time interval k+n. Then the risk of a suspended 
bearing failing in the kth time interval if left 
undisturbed, is defined as riskkn = Fk+n / Rk+n.  
 
As an example, consider a study containing a total 
of 30 bearings. Suppose that 1 bearing failed in the 
1st time interval (time interval k+1), 2 more failed 
and 1 got suspended in time interval k+2, and then 
another 3 failed in interval k+3. The training 
vector in interval k for the suspended bearing 

N
o failulre in the next interval  

(e.g. next 10 days), S
k+1  

N
o failulre in the 2

nd next interval, 
S

k+2

N
o failulre in the 5
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S

k+5  
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Output Layer 
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would have values of 1 up to interval k+2 (Tk = [1; 
1; ?; ?; ?]). The training vector values for the 
following intervals are computed using the 
modified PLE method. Firstly, we know that the 
number of bearings being at risk in the 3rd time 
interval, Rk+3 = 30-1-2-1 = 26. (Note that only the 
bearings that are still being monitored are at risk, 
which means failed bearings and suspended 
bearings are not considered at risk.). Then, the risk 
of this suspended bearing failing in the 3rd time 
interval if left undisturbed, riskk+3 = Fk+3 /3k+3 = 
3/26 =0.15.  
 
Further suppose that 3 more bearings failed and 2 
other suspended in the 4th interval. The risk of the 
suspended bearing failing in the 4th interval if left 
undisturbed, riskk+4 = Fk+4 /Rk+4 = 3/21 = 0.143. If 
4 more failed in the 5th interval, riskk+5 = Fk+5 /Rk+5 
= 4/18 =0.222. The Product Limit estimation of 
the survival curve, S, tracks the cumulative 
survival probability for any time interval in the 
study, using the risks in the following fashion: 

⎩
⎨
⎧

>+−
≤+≤

=
++

+ ).(),1(
)(0,1

iLnkriskS
iLnk

S
nknk

nk  

where L(i) denotes the last observed survival time 
of the individual bearing i (i = 1, 2, … , 30. in this 
example). Note that we simply use the last 
observed survival time L of each suspended 
bearing as the starting time, rather than time 0, to 
compute appropriate training probabilities. 
Continuing the above example, Sk+1 = 1.0; Sk+2 = 
1.0; Sk+3 = 1.0(1-0.15) = 0.85; Sk+4 = 0.85(1-
0.143) = 0.728; Sk+5 = 0.728(1-0.222) = 0.566. 
 
The training vector for that suspended bearing data 
set in interval k will be Tk = [1; 1; 0.850; 0.728; 
0.566]. For each individual output node k+n, this 
training signal represents the input sample’s 
probability of membership in the class represented 
by that node, i.e. the probability that the bearing 
will fail in time interval k+n. Collectively, the 
survival probability values represent an expected 
survival curve for that bearing at the time of 
prediction (Figure 3). 
 

 
 
Training the network’s predictive power 
 
During training, the training vectors of the training 
set are repetitively presented to the neural network. 
The neural network attempts to produce output 
values that are as close to the target vectors as 
possible. Connection weights within the network 
are changed during training using the back 
propagation of errors algorithm. Throughout 
training, the connection weight structure of the 
neural network evolves, and the response to a 
given input vector changes. 

3. VALIDATION OF THE INTELLIGENT 
PRODUCT-LIMIT ESTIMATOR (iPLE) 

After training, the predictive abilities of the neural 
network can be evaluated using the bearing 
degradation data from the testing set. When a 
bearing’s degradation indicator values at the 
current time t and 6 previous time steps, xt, xt-1, xt-2, 
xt-3, xt-4, , xt-5 xt-6  are fed into the input nodes, along 
with the feedback values from the hidden nodes, 
the network will produce an output vector Yt. As 
the next set of input values becomes available, a 
new updated output vector will be produced, 
generating a new survival probability curve. This 
method continuously tracks the survival 
probability of the bearing being monitored in the 
future time intervals, at any time t, in the following 
fashion: 

⎩
⎨
⎧
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Each output vector has the format: 
];;;;[

54321 +++++
=

kkkkk tttttt SSSSSY , 
which can also be plotted as the survival 
probability curve for that bearing, estimated at time 
t.  
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Figure 3  The survival curve represented by
the network output node values. 
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3.1. Simulation of Bearing Failure Data 
Sets 

Before sufficient real-life bearing failure data sets 
become available, the Matlab model for simulating 
progressive bearing degradation vibration data that 
the author has developed previously was used to 
generate bearing inner race degradation data sets 
for the trial training and testing of the proposed 
model(Figure 4).  
 

 
These simulated signals have defect impulses that 
increase at different rates and discontinuities. 
Therefore, the time of reaching the failure 
threshold are different for each data set, since all 
data sets were assigned the same level of 
predetermined failure threshold (Figure 5).  

 
 
The generated signals were high-pass filtered to 
separate bearing fault frequency signals from 
dominant high-frequency resonant signals. We 
used a Self-organizing Map (SOM) to combine 3 
extracted features (peak, kurtosis and entropy 
estimation) into a single degradation indicator 
(Heng et al., 2006). Even though research has 
identified that frequency domain features can help 
reflect the machine condition difference and 
influence of background noise, we found that for 
our simulation tests (with a constant level of 
simulated background noise and operation 
conditions), the time domain features selected 
suffice. For more information on simulating these 
data and using SOM quantization error to combine 
signal features, please refer to the above-
mentioned paper (Heng et al., 2006). 
 
Truncations were imposed on some of the data sets 
at different points in the simulated bearing lifetime. 
To do this, the degradation indicator values 
extracted from suspended data sets were presented 
to the prognostics model only up to the point of 
imposed truncation. In this way, the predicted 
survival probability could be compared to the 
actual survival time since we actually know when 
the failure threshold was reached in the simulated 
data. 
 
40 sets of progressive degradation data were 
generated by using the simulation model. Each set 
of data consists of 80 recordings (time steps, t).  
One recording could represent for example, 30 
minutes or several days in reality. In our test, 4 
time steps are grouped as 1 time interval. 
Therefore there are a total of 20 intervals in each 
data set. The prediction horizon is 5 time intervals 
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Figure 4  One plot of every 20 data sets 
generated – with increasing defect impulse. 
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Figure 5  Simulated failure data sets with defect 
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(n = 1, 2, …, 5). One training vector (Tk = [ Sk+1; 
Sk+2; Sk+3; Sk+4; Sk+5]) is generated for each interval.  
 
30 of the 40 simulated data sets were assigned for 
training (Table 1) and the remaining 10 for testing 
(Table 2). Truncations were randomly imposed on 
1/3 of the 30 training data sets. 
 

Data set Failure time 
(time step) Truncation time if any 

1 74   
2 62 truncated at 57 
3 63   
4 66 truncated at 60 
5 65   
6 66   
7 67   
8 59 truncated at 45 
9 56   
10 55   
11 64   
12 68   
13 65 truncated at 55 
14 64   
15 62   
16 61   
17 63 truncated at 58 
18 60   
19 63 truncated at 62 
20 57   
21 55 truncated at 49 
22 53   
23 50   
24 49 truncated at 44 
25 47   
26 71 truncated at 59 
27 72   
28 75   
29 77 truncated at 69 
30 62   

Table 1  Data sets simulated for model training  

 

Data set Actual failure time 
(time step) 

31 71 
32 56 
33 58 
34 63 
35 62 
36 67 
37 68 
38 46 
39 58 
40 77 

Table 2  Data sets simulated for model testing  

 
We compared the prediction results of the 
proposed Intelligent Product Limit Estimator 
(iPLE) with those of: 
1. a similar neural network that treats truncation 

times as failure times (model A) 
2. a similar neural network that excludes 

truncated data sets (model B). 
 
The training target vectors for the complete 
training data sets are the same for all 3 models. 
The training target vectors for the truncated sets 
are different for the iPLE and model A and none 
for model C.  For the iPLE, training target vectors 
were computed using the modified product limit 
survival estimation method as discussed 
previously. The standard Product Limit Estimation 
of survival probability for the entire training data 
sets is depicted in Figure 6. Model A, on the other 
hand, was trained based on the false assumption 
that truncation times were failure times. Model B 
represents prediction models which only use 
complete failure data and exclude truncated data. 
 
Our simulation test consists of 3 assessments. In 
Assessment I, we used all 20 complete data sets 
and 10 truncated ones to train all three models. In 
Assessment II, we used only 10 complete training 
data sets and 10 truncated ones. In the last 
assessment, we only used the 10 truncated sets for 
training. 

 

4. RESULTS AND DISCUSSION 

A significant methodological issue is that of 
evaluating the trained model. As the prediction 
outputs of our model are represented by survival 
probabilities, there is no representation of the exact 
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Figure 6  The standard Product Limit 
Estimation of survival probability for the 
entire training data sets 
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predicted failure times. Still, there is a well-defined 
goal: the accurate prediction of individual 
prognosis. We analysed each of the 10 prediction 
outputs individually. For evaluation purposes, we 
identify the predicted failure time merely by noting 
the first output unit that predicts a survival 
probability of less than 0.5. We observed that the 
predicted survival probabilities closely match the 
actual failure times. Figure 7 shows one of the 
sample input data set (Dataset 40 where the actual 
failure time was simulated at t=77) inputted into 
the iPLE and Figure 7 shows its prediction results. 
The prediction output at each time step, Yt, is 
arranged vertically, with first row value 
representing the probability that the bearing will 
survive the immediate next interval, second row 
value representing the probability that the bearing 
will survive the 2nd next interval, and so on.  
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Figure 7  The indication of simulated bearing 
degradation condition and  
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     Time Interval k=1 
     t=1 t=2 t=3 t=4 

Surv. Prob. in next interval, 
1+kt

S  1.00 1.00 1.00 1.00 
Surv. Prob. in 2nd next interval, 

2+kt
S  1.00 1.00 1.00 1.00 

Surv. Prob. in 3rd next interval, 
3+kt

S  1.00 1.00 1.00 1.00 
Surv. Prob. in 4th next interval, 

3+kt
S  1.00 1.00 1.00 1.00 

Surv. Prob. in 5th next interval, 
3+kt

S  1.00 1.00 1.00 1.00 

         

     Time Interval k=10 
     t=37 t=38 t=39 t=40 

     1.00 1.00 1.00 1.00 

 ……    1.00 1.00 1.00 1.00 
     1.00 1.00 1.00 1.00 
     1.00 1.00 1.00 1.00 
     1.00 1.00 1.00 1.00 

         

Time Interval k=11  Time Interval k=12 
t=41 t=42 t=43 t=44  t=45 t=46 t=47 t=48 

1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
0.97 0.97 0.96 0.96  0.94 0.94 0.92 0.91 

         

Time Interval k=13  Time Interval k=14 
t=49 t=50 t=51 t=52  t=53 t=54 t=55 t=56 

1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00  1.00 1.00 0.91 0.88 
1.00 1.00 0.99 0.98  0.96 0.92 0.77 0.73 
0.91 0.88 0.86 0.85  0.83 0.78 0.63 0.58 

         

Time Interval k=15  Time Interval k=16 
t=57 t=58 t=59 t=60  t=61 t=62 t=63 t=64 

1.00 1.00 1.00 1.00  1.00 1.00 1.00 0.99 
1.00 1.00 1.00 1.00  0.97 0.91 0.87 0.81 
0.84 0.79 0.88 0.84  0.81 0.74 0.70 0.64 

0.70 0.64 0.74 0.69  0.66 0.59 0.54 0.48 

0.54 0.48 0.59 0.54  0.50 0.43 0.37 0.31 

         

Time Interval k=17  Time Interval k=18 
t=65 t=66 t=67 t=68  t=69 t=70 t=71 t=72 

0.88 0.84 0.79 0.76  0.72 0.67 0.61 0.58 

0.71 0.68 0.64 0.60  0.57 0.53 0.47 0.45 

0.54 0.51 0.46 0.43  0.40 0.35 0.30 0.27 
0.37 0.33 0.28 0.25  0.21 0.16 0.10 0.07 
0.19 0.15 0.10 0.06  0.02 0.00 0.00 0.00 

         

Time Interval k=19  Time Interval k=20 
t=73 t=74 t=75 t=76  t=77 t=78 t=79 t=80 

0.53 0.48 0.43 0.37  0.29 0.19 0.16 0.11 
0.40 0.36 0.31 0.26  0.22 0.16 0.11 0.05 
0.22 0.18 0.13 0.08  0.04 0.00 0.00 0.00 
0.02 0.00 0.00 0.00  0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 

Figure 8  Results for the test using Data Set 40  

 
As you can see in Figure 8, the survival probability 
was unity (

nkt
S

+
= 1.00) when the simulated bearing 

condition was at healthy state. The probability 
value began to drop at the end of the 11th interval 
when the bearing defect impulse started to rise. 
The survival probability first fell below 0.5 at the 
5th column of interval 15’s prediction output. This 
means that the bearing was expected to fail in the 
5th following interval, i.e. interval 20. In interval 
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14, the first output unit that displays a probability 
of less than 0.5 is at the 4th column, which means 
the bearing was expected to fail in the 4th following 
interval, i.e. interval 20. This implication can be 
observed consistently in intervals 17, 18 and 19. 
The actual simulated failure is indeed in interval 
20. Results of the tests using the other data sets 
(Datasets 31 to 39) produced similarly promising 
results. 
 
As mentioned, the probability values of the output 
nodes can be combined to form an estimated 
survival curve for an individual bearing. Figure 9 
depicts the survival curve represented by the 
output values of iPLE at t=64. Note that the the 
survival probability curve for Dataset 40 (Figure 8) 
is indeed different from the cumulative survival 
probability curve for the entire training bearing 
data sets (Figure 5). This observation proves that 
iPLE produces customised survival prediction for 
individual bearings by adapting the survival 
probabilities with more specific health condition 
data, rather than only fitting a statistical failure 
distribution (e.g. Weibull distribution) to failure 
instances history. 
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Figure 9  Results for the test using Data Set 40  

 
To compare the effectiveness of the proposed iPLE 
with that of: 
• a simlar neural network that treats suspension 

times as failure times and 
• a similar neural network network that omits 

suspended data sets, 
we calculated the accuracy of each model’s 
prediction outputs. We obtain the prediction 
accuracy by subtracting the error ratio (the 
absolute error between the predicted failure 
interval (kP) and the actual failure interval (kA)  
divided by the actual failure interval) from unity. 

%100)1( ×
−

−=
A

AP

k
kk

Accuracy  

 
Figure 10 presents a bar graph of the average 
accuracy levels of the 3 prediction models in all 3 
different assessments. (Note that we only plot the 
portion beyond 40% for comparison. This is 
because there is no death before the 12th interval in 
any of the training or testing datasets, the models 
generally produce a prediction output of 1.0 
survival before the 12th interval (predicted failure 
interval, kP ≥12) where accuracy at that point is 

already at least 40% [ %100)
20

2012
1( ×

−
− ].) The 

graph suggests that the iPLE provides more 
accurate outputs than those of the 2 control models 
in all assessments.  Model B (which excludes 
truncation data) performs same as well as iPLE 
when sufficient sets of complete data are available. 
Its performance drops substantially when there are 
only a limited number of complete data sets (which 
is often the case in practice). When only truncated 
data are available for training, for example, in 
Assessment III, model B is totally incapable of 
performing prediction. Model A (which wrongly 
handles truncated data as failure data) is the 
weakest model among the 3 models. 

 
Even though the simulation test results support our 
hypothesis that the iPLE can perform better than 
prognostics models that neglect truncated data, the 
difference between model A’s accuracies in each 
assessment are smaller than we expected. This 
discrepancy between the expected and the actual 
validation results could be because the sample size 
is small (only 20 time intervals). For example, 
since the difference between the actual failures and 
truncations are usually only less than 3 time 
intervals, the prediction error of model A is also 
expected to be less than 3 time intervals. However, 
in real life situations where data may span 
numerous more intervals, model A’s prediction 
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Figure 10  Prediction accuracy comparison 
between the iPLE and the 2 control models
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error can be larger and its accuracy can drop to 
very low values. The other possible reason is that 
the simulated data are rather predictable. Even 
without much training, the models are already 
capable of estimating the time the degradation 
indicator will exceed the failure threshold. We 
anticipate seeing a larger difference between the 
performance of the iPLE and that of the 2 control 
models when our experimental bearing life test 
data become available. 

5. CONCLUSIONS 

The purpose of this study is threefold: 
 
1. To illustrate the potential power of addressing 

the negligence of suspended lifetime data in 
machine component prognostics.  

2. To enhance the output of a neural network by 
including survival probability estimation, in 
order to model, measure and manage risks.  

3. To provide real-time long-range prediction, 
taking advantage of statistical models’ ability 
to provide useful representation of survival 
probabilities, and of neural network’s ability to 
recognise the nonlinear relationship between a 
machine component’s future survival condition 
and a given series of prognostic data features. 

 
iPLE is still in its infancy and we are continuing to 
improve its design and at the same time gather 
more real-life data for its verification. Despite 
possible shortcomings, this work still presents a 
compelling concept for long range machine 
component prognosis utilizing available 
information more fully and accurately, as well as 
for potentially stimulating other more robust 
variants of the proposed technique.  
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