

QUT Digital Repository:
http://eprints.qut.edu.au/

Babbage, Steve and Cid, Carlos and Pramstaller, Norbert and Raddum, Havard
(2007) An Analysis of the Hermes8 Stream Ciphers. In Pieprzyk, Josef and
Ghodosi, Hossein and Dawson, Edward P., Eds. Proceedings 12th Australasian
Conference, ACISP 2007: Information Security and Privacy 4586/2007, pages
pp. 1-10, Townsville, Australia.

 © Copyright 2007 Springer
This is the author-version of the work. Conference proceedings published, by
Springer Verlag, will be available via SpringerLink.
http://www.springer.de/comp/lncs/ Lecture Notes in Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10884321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Analysis of the Hermes8 Stream Ciphers

Steve Babbage1, Carlos Cid2, Norbert Pramstaller3 and Håvard Raddum4

1 Vodafone Group R&D,
Newbury, United Kingdom

steve.babbage@vodafone.com
2 Information Security Group,

Royal Holloway, University of London
Egham, United Kingdom
carlos.cid@rhul.ac.uk

3 IAIK, Graz University of Technology
Graz, Austria

norbert.pramstaller@iaik.tugraz.at
4 Dept. of Informatics, The University of Bergen,

Bergen, Norway
haavardr@ii.uib.no

Abstract Hermes8 [6,7] is one of the stream ciphers submitted to the
ECRYPT Stream Cipher Project (eSTREAM [3]). In this paper we
present an analysis of the Hermes8 stream ciphers. In particular, we
show an attack on the latest version of the cipher (Hermes8F), which
requires very few known keystream bytes and recovers the cipher secret
key in less than a second on a normal PC. Furthermore, we make some
remarks on the cipher's key schedule and discuss some properties of ci-
phers with similar algebraic structure to Hermes8.
Keywords: Hermes8, Stream Cipher, Cryptanalysis.

1 Introduction

Hermes8 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT
Stream Cipher Project [3]. The cipher has a simple byte-oriented design, con-
sisting of substitutions and shifts of the state register bytes. Two versions of the
cipher have been proposed. Originally, the cipher Hermes8 [6] was submitted as
candidate to eSTREAM. Although no weaknesses of Hermes8 were found dur-
ing the �rst phase of evaluation, the cipher did not seem to present satisfactory
performance in either software or hardware [4]. As a result, a slightly modi�ed
version of the cipher, named Hermes8F [7], was submitted for consideration dur-
ing the second phase of eSTREAM. In this paper we present an analysis of the
Hermes8 stream ciphers. In Section 2 we present an alternative description of
the Hermes8 ciphers. Section 3 describes an attack against the latest version
of Hermes8. Section 4 contains some remarks on the key schedule of Hermes8,
while we discuss some algebraic properties of the ciphers in Section 5.

2 Description of Hermes8F

According to [7], Hermes8F is a stream cipher based on the Substitution� Per-
mutation network principle. Hermes8F is de�ned for two di�erent key lengths:
Hermes8F-80 uses 80-bit keys, while Hermes8F-128 uses 128-bit keys. The ci-
pher uses two byte-oriented registers: a 17-byte state register and a 10-byte key
register (16 bytes for Hermes8F-128). Additionally, there is a single byte register
Accu, which seems to have the use of a memory register (Figure 1). The di�u-
sion is provided by moving pointers through both registers, while non-linearity
is provided by the AES S-Box [2].

The main operation of the cipher consists of the following steps:

1. XOR the value stored at Accu with a byte from the state register and a byte
from the key register;

2. Use the previous result as input for the AES S-Box;

3. Replace the state register value used in step 1. by the output of the S-Box;

4. Store the output of the S-Box also in Accu;

5. Increment both the state and key register pointers (denoted by p1 and p2,
respectively).

Figure1. Hermes8F stream cipher [7].

The steps above are performed at each clocking. A round of the cipher consists of
17 clockings. At every 7 clockings, two bytes of the key register are updated. The
updating function is also based on the AES S-Box (Section 4). In the cipher's
initialization, the encryption key is loaded into the key register, and the IV is
loaded into the state register. The register Accu starts with the zero byte as
content1. The initialization process consists of �ve rounds (i.e. 85 clockings),
1 In Hermes8, the initial value of Accu is key-dependent; see Section 4.

and so all the state registers are updated �ve times before the cipher enters
the normal mode of operation. The �rst bytes of the keystream are produced
after two further rounds. The output consists of 8 bytes from the state register,
taken from alternating positions of the register. Further bytes of the output are
produced at every two rounds. More details of the algorithm can be found in [7].

2.1 Alternative Description of Hermes8F

We note that it follows from the description above that during the cipher oper-
ation, the contents of the registers Accu and state[p1− 1] are always the same.
Thus a more natural description of Hermes8F is given in Figure 2. It consists of
the state register R, which is represented as a feedback shift register of length
17, de�ned as

st
i = state[p1 + i] , 0 ≤ i ≤ 16,

where state[p1] is the byte addressed by pointer p1 at time t. This FSR is updated
according to the following relations:

st+1
i = st

i+1 , 0 ≤ i ≤ 15,
st+1
16 = S(st

0 ⊕ st
16 ⊕ kt),

where the byte kt is the output of the key register K at time t (that is, k[p2]),
and S represents the AES S-Box.

s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

S

?

¾-

¾

-

¾

i

i

p1

?
State Register-Accu

?

Key Register
. . .kt

p2

?

Figure2. Hermes8F as a feedback shift register.

In our attack, we need to consider the reverse cipher (clocking the genera-
tor backwards, and so generating the keystream blocks in reverse order2). The
2 As pointed out by one of the anonymous referees, the backward keystream was also
used in the attack described in [5].

relation of the feedback register of the reverse cipher is given by

st
0 = S−1(st+1

16)⊕ st
16 ⊕ kt

= S−1(st+1
16)⊕ st+1

15 ⊕ kt.

The inverse cipher is depicted in Figure 3.

s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

S−1

?

?

?-

¾

¾i

i

p1

?
State Register¾

Accu

?

Key Register
. . .kt kt+1

p2
6

Figure3. The inverse of Hermes8F.

3 Cryptanalysis of Hermes8F

The attack we describe exploits two features of Hermes8F:

1. In contrast to the forward cipher, the reverse cipher has slow di�usion. (In
the forward cipher, the new byte s16 contributes to the feedback in the very
next clock. But in the reverse cipher, the new byte s0 has no in�uence on
the feedback until it has shifted all the way along to the s15 position.)

2. The IV does not a�ect the key register.

Let us consider the keystream produced by Hermes8F under a secret key and a
random IV, and let Bj be the jth set of 8 bytes output by the cipher. Thus, if
we de�ne T = 34 · j + 85, we have

Bj = [sT
0 , sT

2 , sT
4 , sT

6 , sT
8 , sT

10, s
T
12, s

T
14].

Consider the �rst two sets of B1 and B2, for which T is equal to 7 × 17 = 119
and 9× 17 = 153 respectively. Suppose that in addition to the last two bytes of
B2 (that is, s153

12 and s153
14), we also know the values of s153

13 , k150 and k149. Then
we have

S−1(s153
14)⊕ s153

13 ⊕ k150 = S−1(s151
16)⊕ s151

15 ⊕ k150 = s150
0 .

Likewise, we have that

S−1(s153
13)⊕ s153

12 ⊕ k149 = S−1(s150
16)⊕ s150

15 ⊕ k149 = s149
0 .

Now, assuming that we also know k133, we have

S−1(s150
0)⊕ s149

0 ⊕ k133 = S−1(s134
16)⊕ s134

15 ⊕ k133 = s133
0 = s119

14 .

We note however that s119
14 is the last byte of B1.

Thus consider an attack where we guess on the values of k133, k149 and k150

and verify against the known byte s119
14 . The equation we have is

S−1(S−1(s153
14)⊕ s153

13 ⊕ k150)⊕ S−1(s153
13)⊕ s153

12 ⊕ k149 ⊕ k133 = s119
14 , (1)

where the key bytes and s153
13 are unknown. By setting c1 = S−1(s153

14) ⊕ k150

and c2 = s153
12 ⊕ s119

14 ⊕ k149 ⊕ k133 the equation can be more simply written as

S−1(s153
13 ⊕ c1)⊕ S−1(s153

13) = c2. (2)

That is, a particular guess of the three key bytes is possible if and only if an
input di�erence of c1 to S−1 can lead to an output di�erence of c2. We know that
S−1 is a�nely equivalent to the inverse mapping in GF(28), and thus it is rather
close to being APN [9]. This means that just under one half of all (c1, c2)-values
are possible, or equivalently that one half of the guesses of the three key bytes
remains as possible after checking them against (1).

Note that since c2 depends on the sum k149 ⊕ k133 we can never learn the
individual values of k149 and k133 this way, only the sum of them. Hence we are
not guessing on 3-byte values but only on 2-byte values, and the complexity of
guessing once is 216 and not 224. By repeating the guessing for several IVs we
can remove all wrong guesses, and �nd two bytes of information - the values of
k150 and k149 ⊕ k133.

The process above can be repeated using the output bytes s153
12 and s153

10 to
obtain k148 and k147 ⊕ k131, and so on, until we have 14 bytes of information
about the key register at times 121 ≤ t ≤ 150. For Hermes8F-80 it is then not
too hard to �nd the contents of the key register at a speci�c time t, and we can
run the key register back to obtain the original encryption key.

The key register in Hermes8F-128 is 16 bytes long, and so after �nding the
14 bytes of information we will need to guess the values of the two remaining
bytes. For each of these guesses we run the key register back to the point where
the encryption key was loaded to obtain a candidate for the encryption key. This
key is then used for generating a keystream with a known IV, and we can verify
our guess against the corresponding known keystream.

The attack requires no more than 16 bytes of output under a few (about 16)
distinct IVs. In general, the complexity of the attack is of the order of 7× 16×
216 < 223 very simple operations for Hermes8F-80 and 7×16×216+216 < 223 for
Hermes8F-128. The attack for Hermes8F-80 has been implemented on a normal
workstation and succeeds in recovering the key in less than a second.

3.1 Analysis of Hermes8

We have considered extending the attack presented above to the original Hermes8
cipher. The main di�erences between Hermes8 and Hermes8F are the length
of the state register (23 bytes and 37 bytes for Hermes8-80 and Hermes8-128,
respectively, against 17 bytes for Hermes8F), and the number of rounds between
each output of the cipher (three rounds for Hermes8 against two rounds for
Hermes8F). Some of the features that we have exploited in our attack, such as
the simpler representation of the generator as a shift register, slow di�usion of the
reverse clocking cipher, and the fact that the key register is not IV-dependent,
apply also to Hermes8. The main di�culty in extending the attack to Hermes8
is the number of rounds between output of the cipher. With three full rounds in
Hermes8 between each output, the relations obtained contain a larger number of
unknown key and state register bytes. As the state register values are expected to
be di�erent for each IV used, we have not been able to obtain a simple equation
such as (2) to derive key bits. Therefore a simple extension of the attack does
not seem to work against Hermes8. We note however that the increase in the
length of the state register alone would in no way have strengthened the cipher
against our attack.

4 Equivalent Keys in Hermes8

The key schedule for Hermes8 is described in detail in [6] and is illustrated in
Figure 4 (Hermes8F features a similar key scheduling method [7]). The cipher's
designer presents a brief analysis of the key schedule and remarks the existence
of weak keys for Hermes8. More precisely, keys with equal byte patterns lead to
a repetition of byte values in the output of the key scheduling method [6]. In an
extreme case, the key de�ned as ki = 63hex, for 0 ≤ i ≤ 9, is invariant by the
key schedule, and it therefore always outputs the byte value 63hex (this follows
from the fact that S(00hex) = 63hex).

. k[p2] k[p3] k[p4] k[]

S S

?

?

? ?

-

-

¾ -

i
i

p2

?

Figure4. Hermes8 key schedule.

A further property of the Hermes8 key schedule that seemed to have been
overlooked by the designer is the existence of equivalent keys. These are keys that
for a given IV result in the same keystream. This is an immediate consequence of
the structure of the key scheduling method and the key-dependent initialization
of the pointers p1, p2, src, and the Accu register [6].

Consider a key k∗, which results from the byte-wise rotation of the key k.
In order to get the same keystream we have to ensure that for both keys, the
pointers p1, src, and the register Accu have the same value, that is p1k

= p1k∗ ,
srck = srck∗ , and Accuk = Accuk∗ . Additionally, we require that the pointers p2k

and p2k∗ address the key register in such a way that the key scheduling method
produces the same output for both keys. For instance, consider the 80-bit version
of Hermes8 and assume the 10-byte cipher key is given by k = k0, . . . , k9. The
rotated key k∗ = k9, k0, . . . , k8 is equivalent to k if the following conditions are
satis�ed:

cond. p1 : (k0 ⊕ k1 ⊕ k2) mod 23 = (k0 ⊕ k1 ⊕ k9) mod 23 (3)
cond. src : (k0 ⊕ k3 ⊕ k9) mod 7 = (k2 ⊕ k8 ⊕ k9) mod 7 (4)

cond. Accu : k6 ⊕ k7 ⊕ k8 = k5 ⊕ k6 ⊕ k7 (5)
cond. p2 : (k2 ⊕ k3 ⊕ k4) mod 10 = ((k3 ⊕ k4 ⊕ k5) mod 10) + 1 (6)

Condition (6) ensures that the output of the key schedule is the same for k and
k∗. If, in addition, the remaining conditions (3)-(5) are satis�ed, then the key
stream generation is equivalent for both keys k and k∗. There are approximately

280−(8−log2(d 256
23 e))−(8−log2(d 256

7 e))−8−(8−log2(d 256
10 e)+log2(1.109)) ≈ 261

keys k satisfying the conditions above, which are therefore essentially equivalent
to the key k∗ obtained by a simple cyclic shift of its bytes. A similar analysis
can be done for other rotation values of the key k, giving us approximately
5 × 261 ≈ 263 pairs of equivalent keys. Although this represents a very small
fraction of an 80-bit key space, the above argument shows however that Hermes8-
80 does not reach the theoretically expected entire 80-bit key space. In fact, if
we assume that 80-bit encryption keys are randomly generated, we have that
approximately 263 keys e�ectively occur with twice the expected probability,
while 263 keys do not occur at all.

5 Algebraic Structure

Given the highly algebraic structure of Hermes8, it is natural to consider the
feasibility of algebraic attacks against the cipher. The only two operations in
Hermes8 are the S-Box operation (which is based on the inversion over GF(28))
and XOR. Thus at each clocking, we can express the resulting register updated
through a relation over GF(28) (which in turn can be described as a set of
multivariate quadratic equations over GF(2)). After a number of rounds we
should have enough equations to solve the system of equations and therefore

recover the secret key. In our estimates however the size of the resulting system
appears to be too large to be solved in practice. This is due to the large number
of clockings between the cipher output. However it may be possible that one can
simplify some of the relations, or exploit this rich algebraic structure in some
other way.

We note that the attack presented in section 3 can also be mounted using a
more algebraic approach. Due to the algebraic structure of the S-Box, the ex-
pressions considered when describing the attack can also be written as a simple
system of multivariate equations. If we solve the system (e.g. by computing the
corresponding Gröbner basis under the appropriate monomial ordering), requir-
ing that the equations have solutions in GF(28), we obtain relations between
the key bytes. This corresponds to the bit of information we derived from the
relation (2). If we repeat this procedure for a number of IVs, we should obtain
enough such relations to allow us to solve the resulting system and recover the
respective key bytes. Again, this approach does not seem to work with Hermes8,
as we have not been able to obtain relations on the key bytes alone (they always
involve at least one unknown register value, which as noted in section 3.1, should
change with each di�erent IV). Moreover, this algebraic approach does not seem
to be more e�cient than the attack described early in this paper.

5.1 Algebraic Structure of a Variant of Hermes8
In this section we consider a slightly modi�ed version of Hermes8, to illustrate
how its highly algebraic structure may be exploited. In this modi�ed version, we
remove the �nal a�ne transformation from the Sbox, so that the variant uses as
S-Box the modi�ed inversion in the Rijndael �eld only, that is S : x 7→ x254. We
note that the only two operations of the cipher (SBox and XOR) correspond to
the exponentiation and addition in the Rijndael �eld F ∼= GF(28), respectively.
We also know that the original AES S-Box is a�nely equivalent to the inversion,
and so this variant of Hermes8 should share much of the security properties with
the original Hermes8 cipher.

However the new cipher presents a very interesting property. Let τ : F→ K
be any isomorphism from F to a �eld K ∼= GF(28) (in particular, we may have
K = F so that τ is an automorphism of F). Then we have

S(τ(x)) = τ(S(x)) and τ(x⊕ y) = τ(x)⊕ τ(y), ∀x, y ∈ F.
If we assume the simpli�ed version of initialization of the cipher's pointers

(as with Hermes8F), we can then use these relations to construct a very simple
chosen-key algebraic distinguisher against the cipher. Let KS = E(k, IV) rep-
resent the keystream (of length m) generated by the cipher using initialisation
vector IV and encryption key k. Then we have

E(τ(k), τ(IV)) = τ(KS),

where τ(k) denotes the application of τ on each byte of the encryption key k
(similar for τ(IV) and τ(KS)).

This property is called self-duality [1], and is similar to the complementation
property of DES [8]. In particular, it allows us to construct a simple method
that reduces the key space when performing exhaustive key search, as following.

Let k be the secret encryption key to be searched, so that an attacker has
access to the encryption operation E(k, ·), and can generate the keystream for
any IV . Let τ be an automorphism of F.

Prior to performing the exhaustive search, the attacker partitions the key
space into equivalence classes

k1 ≡ k2 ⇐⇒ k2 = τ r(k1),

and given an IV , computes the set of initialisation vectors

{IV, τ(IV), τ2(IV), . . . , τn−1(IV)},

where n is the order of τ . It can now compute the set of keystreams of length m
(for m long enough)

KSi = τ−i(E(τ i(IV), k)) = E(IV, τ−i(k))

for i = 0, . . . , n− 1.
To perform the exhaustive key search, for each equivalence class of encryption

keys, the attacker selects a key k′ and computes the keystream of length m K =
E(IV, k′). If K = KSi for some i, then τ i(k′) is a candidate for the encryption
key k. Otherwise k is not in the equivalence class of k′. This method should
reduce the complexity of exhaustive key search by a factor of about n, and is
similar to the method that exploits the complementation property of DES (which
uses the complementation map of order 2).

For a concrete example, let us consider the Frobenius automorphism de�ned
as τ : x 7→ x2. Since the order of τ is 8, this method should reduce the complexity
of exhaustive key search to the order of 277 operations (enabling key recovery on
average in the order of 276 operations). From the many isomorphisms of �elds
of order 28 [10], this map seems to provide the best reduction for the key space
search.

We note however that this property and method of attack does not apply
to the original Hermes8 cipher, since the a�ne operation in the SBox does not
commute with the �eld isomorphisms.

6 Conclusion

We presented in this paper an analysis of the Hermes8 [6] stream cipher, and
some of its variants. In particular, we showed how to mount an attack to recover
the secret key for the latest version of the cipher (Hermes8F-80) with complexity
of around the order of 223 operations, requiring a very small number of known
keystream bytes. Although we have not been able to extend the method of attack
used to the original version of Hermes8, we note that many of the features that

we have exploited - the simpler representation of the generator as a shift register,
slow di�usion of the reverse clocking cipher, and the fact that the key register
is not IV-dependent - apply also to Hermes8. An interesting topic for further
research is whether there are other stream ciphers that may have their security
compromised by analysis of the reverse cipher, as with Hermer8F.

Acknowledgments

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. We would also like to thank Vincent Rijmen for his suggestion to con-
sider the existence of equivalent keys for the Hermes8 stream ciphers.

References
1. E. Barkan and E. Biham. In How Many Ways Can You Write Rijndael?. Cryptology

ePrint Archive 2002/157, 2002. http://eprint.iacr.org/2002/157/.
2. J. Daemen and V. Rijmen. The Design of Rijndael. Springer�Verlag, 2002.
3. eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/

stream/.
4. C. De Cannière. eSTREAM testing framework. http://www.ecrypt.eu.org/

stream/perf/.
5. J. Golic. Iterative Probabilistic Cryptanalysis of RC4 Keystream Generator. In

E. Dawson, A. Clark and C. Boyd, editors, Information Security and Privacy,
5th Australasian Conference, ACISP 2000, volume 1841 of LNCS, pages 220�233.
Springer�Verlag, 2000.

6. U. Kaiser. Hermes8 : A Low-Complexity Low-Power Stream Cipher. Cryptology
ePrint Archive, Report 2006/019. http://eprint.iacr.org/2006/019.pdf.

7. U. Kaiser. Hermes8F : A Low-Complexity Low-Power Stream Cipher. eSTREAM,
the ECRYPT Stream Cipher Project, Second Phase Ciphers. http://www.ecrypt.
eu.org/stream/p2ciphers/hermes8/hermes8f_p2.pdf.

8. A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

9. K. Nyberg. Diferentially uniform mappings for cryptography, Advances in Cryp-
tography, EUROCRYPT'93, LNCS 765, pp. 55�64, Springer�verlag, 1994.

10. H. Raddum. More Dual Rijndaels. In H. Dobbertin, V. Rijmen, and A. Sowa,
editors, Advanced Encryption Standard - AES, Fourth International Conference,
volume 3373 of LNCS, pages 142�147. Springer�Verlag, 2005.

