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Abstract: This paper takes a Bayesian-decision theoretic approach to transfer function
estimation, nominal model estimation, and quantification of the resulting model error.
Consistency of the nonparametric estimate of the transfer function is proved together with
a rate of convergence. The required quantities can be computed routinely using reversible
jump Markov chain Monte Carlo methods. The proposed methodology has connections
with set membership identification which has been extensively studied for this problem.
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1. INTRODUCTION

An important problem in control engineering is the
identification of a nominal model for the system from
experimental data and accurate quantification of the
resulting model error. One approach to this problem
is set membership identification which introduces cer-
tain assumptions on the system and bounds on the
observational noise to form a collection of system
descriptions that are not falsified by the data (Milanese
and Vicino, 1991; Garulliet al., 2000). Other ap-
proaches to the problem are stochastic embedding and
model error modeling. These approaches have been
compared and reviewed in Reineltet al. (2002).

Maximum likelihood and related prediction error ap-
proaches, of which model error modeling is a part,
have been the two dominant estimation principles
in system identification. These estimation principles
are supported by an extensive theory and consid-
erable success in applications. However there has
also been increasing interest in the application of the
Bayesian paradigm to system identification (Ninness
et al., 2002; Juloskiet al., 2004;Šḿıdl et al., 2005).
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In a similar spirit to the set membership approach, the
Bayesian paradigm is able to incorporate prior infor-
mation about the system with observed data to form a
distribution of the parameters called the posterior.

Often interest will be in infinite dimensional quanti-
ties like a transfer function or impulse response. Such
problems belong to the area of Bayesian nonparamet-
rics which has been growing rapidly in recent years
(see Muller and Quintana (2004) for a review). One
difficulty with Bayesian nonparametrics is the require-
ment to specify a prior distribution on an infinite di-
mensional space. Frequentist asymptotics are used to
provide some guidance on how the priors should be
constructed so that the resulting estimates are consis-
tent (Ghosh and Ramamoorthi, 2003).

The objective of this paper is to demonstrate how
Bayesian nonparametrics can be applied to the prob-
lem of identifying a nominal model and quantifying
model error. Connections to the set membership ap-
proach are also shown.



2. PRELIMINARIES

Consider the following linear time-invariant (LTI)
single-input single-output system

y(t) = G(z)u(t) + e(t) (1)

whereG(z) is a LTI causal operator,u(t) is the system
input (assumed bounded),e(t) is the observational
noise process andy(t) is the observed output. It will
be useful to write the operatorG(z) in the form

G(z)u(t) =

∞∑

j=0

g jut− j (2)

whereg is its impulse response sequence, assumed in
`1.

This paper examines two related problems in system
identification: Firstly, to determine the operatorG(z)
and quantify uncertainty about its estimation from
experimental input-output data. Secondly, determine
a nominal model that is suitable for robust control
design.

As the Bayesian approach taken in this paper is similar
in spirit to the approach taken by set membership iden-
tification (SM), it will now be briefly described. To ad-
dress these problems SM introduces two assumptions
about the system;

(i) G belongs to some defined set of operatorsH .
(ii) For all timest, |e(t)| < δ for some knownδ.

The Feasible Solution Set is then formed as

FS S= L ∩H , (3)

where

L = {S : |y(t) − S(z)u(t)| < δ,∀t = 1, . . . , n} , (4)

with S denoting a general LTI causal operator. Thus
the first problem is addressed in SM by providing a
set of operators which, given assumptions (i) and (ii),
contains the true operator.

Now let F (z; ξ) , ξ ∈ Ξ be a parametric family of
operators. The second problem is addressed by taking
the nominal model parameterξ according to

ξ0 = arg min
ξ∈Ξ

sup
S∈FS S

‖S − F (·; ξ) ‖, (5)

where ‖ · ‖ is some norm appropriate to measuring
the distance between operators.F (z; ξ0) denotes the
nominal model.

3. A BAYESIAN APPROACH

In this section it will be assumed that the observational
noise processe(t) forms a sequence of independent
and identically distributed random variables with a

probability density functionp (e | θ) , θ being finite
dimensional parameter. The likelihood for (g, θ) is
given by

π(y | g, θ, u) =

n∏

t=1

p (y(t) −G(z)u(t) | θ) . (6)

Bayesian inference is based on the posterior distribu-
tion, that is the distribution of the parameters (g, θ)
given the data (y,u), denoted byπ (· | y,u). The poste-
rior distribution is formed as the probability measure
proportional to the product of the likelihood and prior
distributionπ (·).

3.1 The prior

For the system (1) a prior distribution on the space
`1 needs to be constructed. Ideally the prior would
be completely determined by the engineers’ expert
knowledge of the systems’ dynamics. However, it is
difficult for any person to adequately quantify prior
belief on high-dimensional spaces and on infinite di-
mensional spaces the task is impossible. Motivated by
this difficulty, nonparametric priors are typically con-
structed so that the resulting posterior distribution pos-
sesses some desirable asymptotic properties such as
strong consistency. Expert knowledge is incorporated
into these priors through a relatively small number of
free parameters.

For this paper a “sieve” prior shall be adopted. Sieve
priors reduce the difficulty in specifying a distribution
on an infinite dimensional space to specifying a series
of distribution of finite dimensional spaces of increas-
ing dimension. The prior forg is now constructed.

• Let K be a random variable having support on
the positive integers such that

π ({g : K = k}) ∝ e−ck(logk)ψ ,

for some positive finite constantc andψ ∈ (1,2).
• Conditional onK the elements ofg are indepen-

dent random variables such that

g j ∼
{

N(0, σ2
j ), j ≤ K

0, j > K

where N(µ, σ2) denotes a normal distribution
with meanµ and varianceσ2 and

∑
σ j < ∞.

The later condition is imposed so that the mean
of the`1 norm ofg is finite.

The form of the prior onK is dictated by the asymp-
totic concerns studied in the following subsection. It
is noted that the rate at whichσ j → 0 is important as
it representsa priori the belief of smoothness in the
transfer function. The prior forg is proportional to

e−cK(logK)ψ
K∏

j=1

σ−1
j exp


−g2

j

2σ2
j


∞∏

j=K+1

δ{g j=0}.

Realizations from this prior are just finite impulse
response operators.



It is assumeda priori thatg andθ are independent. The
parameterθ is typically a finite dimensional nuisance
parameter such as the variance of a normal distribution
and will be given a prior with continuous density.

3.2 Consistency

Let pf ,t denote the probability density function of
the output variable from a system defined by the im-
pulse response sequencef at time t. Let h (p,q) =(∫

(
√

p− √q)2dx
)1/2

denote the Hellinger distance
between to probability density functionsp andq. This
section examines the rate at which the posterior distri-
bution concentrates around the true system as measure
by the semi-metricdn where

d2
n ( f ,g) = n−1

n∑

t=1

h2
(
pf ,t, pg,t

)
. (7)

Theorem 1.Assume that the true impulse response
sequenceg satisfies:

(a) lim supj→∞ g j/σ j < ∞,
(b)

∑
j>k

∣∣∣g j

∣∣∣ < Ck−β for some positive finite con-
stantsC, β.

Let εn = n−β/(1+2β)(logn) and take the prior as defined
in Section 3.1. Asn→ ∞ the posterior satisfies

Π ({ f : dn( f ,g) > Rnεn} | y,u)→ 0 (8)

in probability, for anyRn→ ∞.

PROOF. For simplicity the proof is only given in the
case wheree(t) is Gaussian with known varianceθ. In
this case the Hellinger distanceh2

(
pf ,t, pg,t

)
is

2
[
1− exp

(
−

∣∣∣∣
∑

( f j − g j)ut− j

∣∣∣∣
2
/(8θ)

)]
. (9)

It will be simpler to work with the upper bound ondn,

dn ( f ,g) ≤ C
∞∑

j=0

∣∣∣ f j − g j

∣∣∣ , (10)

for some finiteC, assuming the input is bounded.

To determine the rate at which the posterior converges
it is sufficient to check that the conditions of Theorem
4 in Ghosal and van der Vaart (2005) hold. LetFn be
an increasing collection of subsets of sequences in`1.
Sufficient conditions for convergence of the posterior
distribution at a rateεn may be written as

π ({g : dn( f ,g) ≤ εn}) ≥ exp(−nε2
n) (11)

sup
ε>εn

logN (ε/36,Fn,dn) ≤ nε2
n (12)

π
(F c

n
) ≤ exp(−3nε2

n) (13)

whereN (ε,A,d) is the number ofd-balls of radiusε
required to cover the setA.

To check (11) consider the set{
f : K = sn,

∣∣∣ f j − g j

∣∣∣ < εnσ j

}
.

As
∑
σ j < ∞ then from (10) and (b) it follows that for

all f in this set

dn( f ,g) ≤ C
(
εn + s−βn

)

for some finite constantC. Under Assumption (a)

e−csn(log sn)ψ
sn∏

j=0

[
Φ

(
g j + σ jεn

σ j

)
− Φ

(
g j − σ jεn

σ j

)]

≥ exp
(
−csn(log(ε−1

n ) + log(sn)ψ)
)

where c is a finite constant andΦ is the Gaussian
distribution function. Takingsn to satisfy

C1n1/(1+2β) < sn < C2n1/(1+2β),

for some constantsC1,C2 condition (11) is satisfied.

To check (12) setFn =
{
f : K ≤ kn,

∣∣∣ f j

∣∣∣ < nσ j

}
. The

number ofdn-balls of sizeεn required to coverFn

is bounded by the number of̀1 balls of sizeεn/B
required to cover∪kn

k=1 [−Cn,Cn]⊗k, some finiteC suf-
ficiently large. It follows that

N (ε,Fn,dn) ≤ kn

(
Cn
εn

)kn

and so,

sup
ε>εn

logN (ε/36,Fn,dn) ≤ Ckn log

(
n
εn

)
(14)

The complement ofFn is the set of sequences for
which at leastkn + 1 elements are non-zero or at
lest one of the elements is greater in absolute value
thannσ j . Thus the prior probability onF c

n is bounded
above by

π
(F c

n
) ≤ π (K > kn) + k2

n [1 − Φ(n)]

≤C exp
(
−ckn(log(kn)ψ

)
(15)

for some finite positive constantsC, c.

Upon taking

C1n1/(1+2β)(logn) ≤ kn ≤ C2n1/(1+2β)(logn)

equations (14) and (15) are seen to satisfy conditions
(12) and (13). This completes the proof.

Remark 2.To demonstrate that Theorem 1 does not
require the Gaussian assumption, supposee(t) has
a Laplace distribution with scale parameterθ. The
squared Hellinger distanceh2(pf ,t, pg,t) is

2
[
1−

(
1 +

θδt

2

)
e−θδt/2

]
, (16)

whereδt = |∑∞j=1( f j − g j)ut− j |. Hence, for bounded
input inequality (10) is satisfied. More generally, in-
equality (10) will hold for observational error with
smooth probability density functions under certain
conditions and so, Theorem 1 will hold for a variety
of observational noise distributions.



Theorem 1 gives the convergence of the posterior dis-
tribution in terms of the semi-metric defined in (10).
Being a semi-metric there may exist two impulse re-
sponse sequencesf , g such thatdn( f ,g) = 0 however
f , g. It is important to note that this semi-metric is
dependent on the input used to generate the data and
the distance between to impulse response sequences
will be zero in they produce equivalent output from
the given input. If attention is restricted to a set of
impulse response sequences uniformly bounded in`1

norm then on this setdn is equivalent to

( f − g)′U(n)( f − g), (17)

whereU(n)
i, j = (4θn)−1 ∑n

i=1 ui− jui−k for Gaussian ob-
servational noise.

3.3 Decision theory

Decision theory provides a framework for the deter-
mination of estimates which are in a sense optimal. In
the decision theory framework the family of nominal
modelsF(z; ξ), ξ ∈ Ξ represents a set of possible
actions that can be taken. The conditional Bayes prin-
ciple (Berger, 1985) states that an action should be
chosen which minimizes the Bayesian expected loss

ρ(π, ξ) =

∫
l(S, ξ)π (dS | y,u) , (18)

where l(S, ξ) is the loss incurred when the nominal
model ξ is chosen and the true operator isS. It is
important that the loss function be chosen so to ac-
curately represent the estimates use and penalty for
error, as incorrect loss functions can lead to poor per-
formance of the estimate. WeightedL2 norms on the
transfer function space are commonly used to measure
distance between operators and have been shown to
arise in the context of other estimation methods (see
Section 6 of Reineltet al. (2002)). However, other
norms may better reflect the ultimate objective of ro-
bust control design where relative errors in the transfer
function are of greater interest than absolute errors
(see for example Hildebrand and Gevers (2003) or
Hjalmarsson (2005)).

3.4 Implementation

Bayesian computation typically is based on some form
of Markov chain Monte Carlo (MCMC). The general
methodology has been reviewed in Robert and Casella
(2004). Standard MCMC techniques are unable to deal
with priors like that described in Section 3.1 as the
number of parameters to be sampled will depend on
the value ofK. For such priors the reversible jump
MCMC algorithm of Green (1995) can be used. At
each iteration the algorithm randomly proposes one of
the following move types:

• Updateg for a givenK.
• Move fromK to K + 1 (‘birth’).
• Move fromK to K − 1 (‘death’).
• Updateθ.

Updatingg for a givenK is achieved by a simple ran-
dom walk Metropolis-Hastings proposal. The birth-
death moves are based on the zero-th order centered
proposals as defined in Brookset al. (2003). Specif-
ically, the ‘birth’ is made by proposing agK+1 from
N(0, σ2) whereσ2 is chosen so that the acceptance
probability is 1 whengK+1 = 0 is proposed.

It is assumed thatθ is given a conjugate prior so that it
may be sampled using a Gibbs step. For example, sup-
pose that the observational noise process is assumed to
have a Laplace distribution withθ as the scale parame-
ter. If it is given a Gamma prior with parameters (α, β)
thenθ can be sampled from a Gamma distribution with
parameters

α + N, β +

N∑

t=1

∣∣∣∣y(t) −
∑

g jut− j

∣∣∣∣ . (19)

The MCMC algorithm generates a sample of operators
{Gi}Mi=1 that can be used in the calculation of the
posterior expected loss by using sample averages

ρ (π, ξ) ≈ 1
M

M∑

i=1

l (Gi , ξ) . (20)

Convergence of the resulting Markov chain to its sta-
tionary distribution can be assisted by using appropri-
ate starting values, that is by starting the chain in an
area of significant probability. These starting values
could be obtained using least squares estimates of the
impulse response sequence given a moderate value of
K .

By the law of large numbers for Markov chains this
estimate will converge almost surely to the correct
value as the number of samples from the posterior
goes to infinity. The nominal model which minimizes
the posterior expected loss can then be found by
numerical optimization methods.

4. CONNECTION TO SM

The Bayesian approach described in the previous sec-
tion can be shown to have connections to set member-
ship identification. The first connection is between the
FSS defined in (3) and a Bayesian credible interval.
Again, π is used to denote the a prior on the space
of linear time invariant causal operators. Forπ to be
consistent with the Assumption (i) its support should
coincide with the setH . Now suppose that the obser-
vational noisee(t), t = 1, . . . , nhas a density and, to be
consistent with Assumption (ii), its support is assumed
to be [−δ, δ] × . . . × [−δ, δ]. The setL is precisely
the set where the likelihood function is positive. It



follows that the FSS is the set of linear time invariant
causal operators for which both the likelihood and the
prior are positive. This is the support of the posterior
distribution and so provides a 100% credible interval
for G.

The second connection between the Bayesian ap-
proach and set membership identification is through
the nominal model defined by (5). Some statisti-
cal properties of this estimator have been studied in
Akçay et al. (1996). It can be seen that (5) will not,
in general, satisfy the conditional Bayes principle.
However, it is possible to show that it can be obtained
as the limit of a sequence of decisions satisfying the
conditional Bayes principle when the nominal model
parameter is unique.

Theorem 3.Assume the prior and likelihood are con-
sistent with SM assumptions (i) and (ii). Also, assume
that the SM nominal model given by (5) is unique.
Then, there exists a sequence of loss functions such
that the conditional Bayes decisions converge to the
SM nominal model.

PROOF. We give the proof for the case ofΞ being
a finite set. This proof can be extended to the more
general setting ofΞ being a compact subset ofRd.
Define a sequence of loss functions

lm(S, ξ) = ‖S − F(·; ξ)‖m. (21)

Let ξ0 be the unique nominal model parameter from
(5) and setε = supS∈FS S‖S−F(·; ξ0)‖. As the nominal
model from (5) is unique then for anyξ1 , ξ0.

sup
S∈FS S

‖S − F(·; ξ1)‖ > ε. (22)

The ratio of expected losses is bounded below by

ρm(π, ξ1)
ρm(π, ξ0)

≥ ε−m
∫

A
lm(S, ξ1)π(dS | y,u), (23)

where

A = {S : ‖S − F(·; ξ1)‖ > ε} ∩ FS S. (24)

Assume thatH in Assumption (i) is an open set so that
FS S is also open. From (22) there exists an operator
S∗ ∈ FS S and sufficiently smallδ > 0 such that for
all S : ‖S∗ − S‖ < δ,

‖S − F(·; ξ1)‖ > ε. (25)

As the set{S : ‖S∗ − S‖ < δ} is a subset ofA and
FSS is the support of the posterior it follows that
π(A | y,u) > 0. Hence, for allS ∈ A,

lim
m→∞

( ‖S − F(·; ξ1)‖
ε

)m

→ ∞, (26)

and so Fatou’s lemma can be applied to conclude

lim
m→∞

ρm(π, ξ1)
ρm(π, ξ0)

→ ∞. (27)

That is, for all sufficiently largem; ξ0 has smaller
Bayesian expected loss thanξ1. The nominal model
parameter (5) can therefore be obtained through the
limit of decisions satisfying the conditional Bayes
principle.

5. EXAMPLE

5.1 Transfer function estimation

In this example we wish to demonstrate that having
a posterior distribution constructed in the manner de-
scribed in Section 3 will provide a reasonable quantifi-
cation of uncertainty when the true system is LTI. For
this purpose a sequence of 250 data points is simulated
from the system

G(z) =
1

1− 1.9z−1 + 1.43z−2 − 0.565z−3 + 0.1z−4
.

The input is taken to be an iid sequence of random
variables from the uniform distribution on [−1,1].
The observational error is simulated from a Laplace
distribution with scale parameterθ = 1.

The prior is taken as described in Section 3.1 with
σ j = 10× j−1.5, and

π ({g : K = k}) ∝ exp(−0.25k(logk)1.1) (28)

Simulation from the posterior is carried out using
the MCMC algorithm detailed in Section 3.4. One
advantage of using MCMC is that credible intervals
for any quantity of interest can be formed. Figure 1
gives a 99% pointwise credible interval for the transfer
function on the Bode magnitude plot.
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Fig. 1. Bode plot: The true transfer function (solid)
and 99% pointwise credible intervals (dashed).

We note that although the intervals appear tight at the
low frequencies, the true transfer function is contained
within the 99% pointwise credible intervals.



5.2 Nominal model estimation

The nominal model was formed using the following
set of bases:

F (z; ξ) =
ξ1

1− 0.7z−1
+

ξ2

1− 0.4z−1
+

ξ3

1− 0.2z−1
(29)

For simplicity theL2 norm on transfer functions is
used as the loss function in this example. The posterior
expected loss is evaluated from the MCMC output and
can be minimized by solving the normal equations
for ξ. For other forms of loss and nominal models
with nonlinear parameters the posterior expected loss
can be minimized numerical, for example with the
Nelder-Mead simplex algorithm. The estimated nom-
inal model together with the optimal model and true
transfer function are given in Figure 2.
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Fig. 2. Bode plot: The true transfer function (dashed),
optimal nominal model (dotted), estimated nom-
inal model

Comparing to the 99% pointwise credible interval on
the Bode plot the estimated nominal model is seen to
break the credible interval at log|ω| ≈ 0.5, but only
just.

6. CONCLUSION

This paper proposes a Bayesian-decision theoretic
methodology for the quantification of uncertainty in
the estimation of a transfer function and choice of
nominal model. Its connection to set membership
identification has been demonstrated. In the example
it was demonstrated that, at least for LTI systems,
the method gives a reasonable quantification of the
uncertainty. There are still a number of issues to be
investigated for the approach. In particular it is impor-
tant to understand the behaviour of the methodology
for when the true system is possibly non-linear or
time-varying. Other areas requiring further investiga-
tion include sensitivity analysis, diagnostics for obser-
vational noise structure and the use of loss functions
which may be better suited to control.
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Akçay, H., H. Hjalmarsson and L. Ljung (1996). On
the choice of norms in system identification.
IEEE Trans. on Automatic Control41, 1367–
1372.

Berger, J.O. (1985).Statistical Decision Theory and
Bayesian Analysis, 2nd Ed.. Springer-Verlag.
New York.

Brooks, S.P., P. Guidici and G.O. Roberts (2003).
Efficient construction of reversible jump Markov
chain Monte Carlo proposal distributions.J. R.
Statist. Soc. B.65, 3–55.

Garulli, A., A. Vicino and G. Zappa (2000). Con-
ditional central algorithms for worst case set-
membership identification and filtering.IEEE.
Trans. on Automatic Control45, 14–23.

Ghosal, S. and A.W. van der Vaart (2005). Conver-
gence rates of posterior distributions for non iid
observations.Ann. Statist. (accepted).

Ghosh, J.K. and R.V. Ramamoorthi (2003).Bayesian
nonparametrics. Springer. New York.

Green, P. (1995). Reversible jump MCMC com-
putation and Bayesian model determination.
Biometrika82, 711–732.

Hildebrand, R. and M. Gevers (2003). Identification
for control: optimal input design with respect to
a worst-caseν-gap cost function.SIAM J. Control
Optim.41, 1586–1608.

Hjalmarsson, H. (2005). From experiment design to
closed-loop control.Automatica41, 393–438.

Juloski, A.L., S. Weiland and W.P Heemels (2004).
A Bayesian approach to identification of hybrid
systems. In:Proceedings of the 43rd IEEE Con-
ference on Decision and Control. Atlantis, Par-
adise Island, Bahamas. pp. 13–19.

Milanese, M. and A. Vicino (1991). Optimal estima-
tion theory for dynamic systems with set mem-
bership uncertainty: An overview.Automatica
27, 997–1009.

Muller, P. and F.A. Quintana (2004). Nonparamet-
ric Bayesian data analysis.Statistical Science
19, 95–110.

Ninness, B., S. Henriksen and T. Brinsmead (2002).
System identification via a computational
Bayesian approach. In:Proceedings of the 41st
IEEE Conference on Decision and Control. Las
Vegas, Nevada, USA. pp. 1820–1825.

Reinelt, W., A. Garulli and L. Ljung (2002). Compar-
ing different approaches to model error modeling
in robust identification.Automatica38, 787–803.

Robert, C.P. and G. Casella (2004).Monte Carlo sta-
tistical methods. Springer. New York.

Šḿıdl, V., A. Quinn, M. Kárny and T.V. Guy (2005).
Robust estimation of autoregressive processes us-
ing a mixture-based filter-bank.Systems& Con-
trol Letters54, 315–323.


