
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

Tritilanunt, Suratose and Boyd, Colin A. and Foo, Ernest and Gonzalez Nieto, 
Juan M. (2007) Toward Non-parallelizable Client Puzzles. In Bao, Feng and Ling, 
San and Okamoto, Tatsuaki and Wang, Huaxiong and Xing, Chaoping, Eds. 
Proceedings 6th International Conference, CANS 2007: Cryptology and Network 
Security LNCS 4856/2007, pages pp. 247-264, Singapore. 

 
          © Copyright 2007 Springer 
This is the author-version of the work. Conference proceedings published, by 
Springer Verlag, will be available via SpringerLink. 
http://www.springer.de/comp/lncs/ Lecture Notes in Computer Science 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10884037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Toward Non-Parallelizable Client Puzzles

Suratose Tritilanunt, Colin Boyd,
Ernest Foo, and Juan Manuel González Nieto
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Abstract. Client puzzles have been proposed as a useful mechanism
for mitigating denial of service attacks on network protocols. Several dif-
ferent puzzles have been proposed in recent years. This paper reviews
the desirable properties of client puzzles, pointing out that there is cur-
rently no puzzle which satisfies all such properties. We investigate how
to provide the property of non-parallelizability in a practical puzzle. Af-
ter showing that obvious ideas based on hash chains have significant
problems, we propose a new puzzle based on the subset sum problem.
Despite some practical implementation issues, this is the first example
that satisfies all the desirable properties for a client puzzle.

Keywords: Denial of Service Attacks, Client Puzzles, Non-Parallelizable
Cryptographic Puzzles

1 Introduction

Cryptographic puzzles, or client puzzles, have been proposed as a mech-
anism to defeat resource exhaustion denial of service (DoS) attacks in
network protocols, particularly in key exchange protocols. Client puzzles
counterbalance computational usage between client and server machines.
By forcing the client to solve a computational puzzle before attending to
a request, the server ensures that the client spends sufficient resources be-
fore committing its own. In particular, an adversary who wishes to flood
a server with connection requests will have to solve a huge number of puz-
zles. The idea of using cryptographic puzzles in computer networks was
first introduced by Dwork and Naor [5] for combating junk emails. Juels
and Brainard [10] extended the concept of puzzles to thwart Denial-of-
Service (DoS) attacks in network protocols. Recently, Moskowitz devel-
oped the host identity protocol (HIP) [16], which employs a client puzzle
mechanism for protecting the server against resource exhaustion attacks.

Although a variety of client puzzles have been proposed to solve DoS
attacks, limited analysis of these proposals has appeared in the litera-
ture. An exception is the work of Price [17], who introduces a generic



attack against hash-based client puzzles. Another investigation of hash-
based client puzzles has been carried out by Feng et al. [7]. They examine
client puzzles based on six parameters: unit work, range, mean granular-
ity, maximum granularity, exact control and parallel computation.

A client puzzle is non-parallelizable if the solution to the puzzle can-
not be computed in parallel. Non-parallelizable client puzzles can be used
to defend against distributed denial-of-service (DDoS) attacks, where a
single adversary can control a large group of compromised machines and
launch attacks to the targeted server from those machines. If the client
puzzle is parallelizable, such an adversary could distribute puzzles to other
compromised machines to obtain puzzle solutions faster than the time
expected by the server. A client puzzle is said to provide fine granular-
ity if it allows servers to adjust the solution time precisely. Both non-
parallelizability and fine granularity are important properties of good
puzzles. A survey of existing client puzzles reveals that only time lock
puzzles [19] are able to provide both non-parallelizability and fine-grained
control. However, these puzzles suffer from being computationally expen-
sive in puzzle construction and verification.

In this paper we propose a new puzzle construction based on the
subset sum problem. The primary strengths of this puzzle over others are
the simple and cheap construction and verification for the server, as well
as non-parallelizability. The main contributions of this work are:

– to provide a summary and analysis of client puzzles for DoS-resistance;
– to compare strengths and weaknesses of existing client puzzles;
– to propose a new construction, called Subset Sum Client Puzzles.

In the next section we will summarise existing proposals for client puz-
zles and review their properties. Section 3 examines possible ways to use
hash chains as non-parallelizable puzzles and then Section 4 introduces
and analyses our new puzzle.

2 Survey and Analysis of Client Puzzles Approaches

Client puzzles functioning as proofs of work can be constructed from a
number of underlying problems. Although many puzzles have been pro-
posed using different techniques, all of them should satisfy seven impor-
tant properties described by Aura et al. [2]; for instance puzzles should
be easy and cheap to construct and verify for the server, but lead to a
significant computational effort for adversaries who attempt to flood a
large number of bogus requests to the server.

Feng et al. [7] proposed some additional criteria for evaluating effi-
ciency and resolution of cryptographic puzzles. As defined by Feng et



al. [7], the puzzle efficiency represents speed of puzzle generation and ver-
ification on the server’s machine compared to the puzzle solving on the
client’s machine. Meanwhile, the resolution or puzzle granularity repre-
sents the ability of the server to finely control the amount of work done by
calibrating the puzzle difficulty to the client. The following list represents
the properties that we examine in this paper.

Unit Work represents the type of operations required to solve the puz-
zles on the client’s machine. For the CPU-bound puzzle, several differ-
ent operations including hash, modular addition, modular multiplica-
tion, as well as modular exponentiation are used in these techniques.

Server’s Cost identifies the computational effort on the server’s ma-
chine. This factor is divided into three subcategories consisting of
pre-computation cost, construction cost, and verification cost.

Client’s Cost represents the amount of computational effort on the
client’s machine. We assume that the server and the client have similar
resources regarding both CPU and memory units to process these
puzzles. We note that this may not be realistic in some applications;
for example, some legitimate clients may have restricted resources.

Non-parallelizability describes whether the client puzzles can be dis-
tributed and solved in parallel computation. In some circumstances,
non-parallelizable puzzles can prevent coordinated adversaries from
distributing puzzles to a group of high performance machines to ob-
tain solutions quicker than the specified period assigned by the server.
Consequently, the server becomes overloaded by a huge amount of at-
tack traffic and unable to process any upcoming legitimate messages.

Granularity represents the ability of the server to finely adjust puz-
zle difficulty to different levels. Indirectly, this parameter also affects
the traffic flow of arriving packets to the connection queue within a
certain time. Three different types of granularity; linear, polynomial,
and exponential are compared. Linear granularity is the best that we
hope to deal with, while an exponential one is the worst case.

We now conduct a short survey and comparison in term of strengths
and weaknesses of existing proposals for client puzzles.

Hash-based Reversal Puzzles: In 1999, Juels and Brainard [10] in-
troduced the construction of client puzzles using a hash function; clients
need to calculate a reverse one-way hash value of a puzzle generated by
the server. In this technique, the server is able to adjust the difficulty level
of the client puzzle by increasing or decreasing the number of hidden bits
of the pre-image sent to clients in the puzzle. The client performs a brute-
force search to find missing bits of pre-image whose output is given by



hashing each pattern until matching the answer. To verify the solution,
the server needs to perform only a single hash operation.

An alternative construction was proposed by Aura et al. [2]. Differ-
ent from Juels and Brainard’s construction, the puzzle generation re-
quires only a single hash instead of two hash operations as in Juels and
Brainard’s scheme. Given part of the pre-image and the length (k) of
zero bits at the beginning of the hashed output, clients need to perform
a brute-force search to find a matching solution.

In summary, the major strength of these two hash-based reversal
schemes is the simple and fast construction and verification. On the other
hand, the weaknesses are that they are parallelizable and their granular-
ity is exponential which brings a difficult task to the server to control and
adjust the incoming rate of requests.

Hint-Based Hash Reversal Puzzles: As the granularity of hash-based
reversal schemes is too coarse, Feng et al. [6] proposed the idea of hint-
based hash reversal puzzles to allow the granularity to be linear. The
technique of this mechanism is that the server provides extra information
called hints attached to the puzzle. Instead of checking every possible
solution, the client searches for a solution within a range of a given hint.
Apart from this action, all remaining processes are similar to the original
work from Juels and Brainard [10]. Hence, the simple puzzle generation
and verification as well as the linear granularity for fine grained control
are the strengths of this construction. However, it is still susceptible to
distribution and parallel processing attacks, as is the original hash-based
reversal scheme.

Repeated-Squaring or Time-Lock Puzzles: Time-lock puzzles were
developed by Rivest et al. [19] in 1996. The major goal of this technique
is to defeat the high-end adversaries who attempt to solve puzzles more
quickly by using parallel computers. Time-lock puzzles rely on the notion
that a client has to spend a pre-determined amount of computation time
performing repeated squaring to search for a solution. To achieve this goal,
the server estimates the performance of a client by the number of squaring
operations a client can perform in a certain period, and determines the
amount of time it expects a client to spend solving the puzzle.

To solve the puzzle, the client is required to compute a modular squar-
ing operation repeatedly. This computation must be calculated sequen-
tially so it cannot be distributed and solved in parallel. Since the period
of solving the puzzle is easily controlled and determined by the server
at puzzle generation time, we can conclude that the time-lock puzzles
have a linear granularity. Another strength of this scheme is its non-
parallelizable characteristic because it requires an inherently sequential



operation to solve a puzzle. In the original paper, the major purpose of
this scheme is the long term protection of secret information, for example,
in the application of the on-line auction. However, the primary concern of
this scheme in DoS mitigation applications is the high-computation in the
construction and verification because the underlying technique requires
the server to perform a costly modular exponentiation.

DH-based Puzzles: Diffie-Hellman based puzzles were proposed by Wa-
ters et al. [25] in 2004. The construction requires an expensive Diffie-
Hellman operation, while the verification could be simply done via table
lookup, which is considered a cheap operation, because the server has
already generated puzzle solutions at the construction and stores them in
the memory. Therefore, the expensive construction would be a drawback,
while the cheap verification would be the major positive characteristic.

Given the range of a solution as in hint-based schemes, the client
searches for a solution by testing each candidate value in the range until
it finds a correct solution. Similar to other hint-based puzzles, this scheme
then provides a linear-grained control to the server. Considering the non-
parallelizability, because clients require a specific range of attempt to find
a correct solution, the puzzle can be distributed and computed in parallel
to obtain a correct solution. As a result, this scheme does not support
non-parallelizability.

Trapdoor RSA-based and DH-based Puzzles: Gao [8] developed two
puzzle mechanisms based on trapdoor functions to overcome weaknesses
over the hash-based construction. By pre-computing some parameters
and expensive operations before starting the protocol, Gao’s implemen-
tation can reduce the overhead of puzzle construction. However, this pre-
computation workload is a disadvantage to these types of puzzles.

On the positive side, the protocol computes and stores the solutions
at puzzle generation time to save workload at verification. As a result, the
server requires only a single comparison in order to check validity of the
solution from the client. In the puzzle solving, the client is given a range
of candidates to run a brute-force search for a correct solution. Hence,
the granularity of these two constructions is linear-grained.

On the negative side, both trapdoor-function based schemes can be
distributed and solved in parallel by a group of adversaries as for other
hint-based puzzles. Moreover, these schemes involve modular arithmeti-
cal operations which are more expensive than hash functions. Although
Gao [8] suggested to perform pre-computations to avoid CPU burden at
construction time, puzzle generation still requires a number of modular
exponentiations.



Table 1 compares seven cryptographic puzzle constructions based on
the analysis criteria previously discussed. For purposes of comparison,
we include our new subset sum puzzles in the table. Details will be dis-
cussed in Section 4.1. The highlighted field (displayed as the bold and
italic style) in individual columns represents the best candidate for each
analysis criterion. In the server’s and client’s cost entry, we use the num-
ber of operations as a measurement for comparison. More precisely, the
hash-based cryptographic puzzles require a number of hash function com-
putations displayed as hash in the table, while the arithmetic-based puz-
zles require a number of modular exponentiations represented by mod exp
and modular multiplications represented by mod mul. Modular arithmetic
consumes much greater resources than hash functions. Hence, the prefer-
ence for this entry would be the technique which expends a small number
of hash operations. We can conclude that the puzzle construction based
on hash-based reversal would be the most effective technique.

Table 1. Comparison of existing Client Puzzles for DoS Resistance

Puzzle Type
Server’s Cost

Client’s Cost
Non

Granularity

Pre-Compute Construction Verification
Parallel

Hash-based Reversal - 1 hash 1 hash O(2k) hash No Exponential

Hint-Based Hash Reversal - 1 hash 1 hash O(k) hash No Linear

Repeated-Squaring - 2 mod mul 2 mod mul O(k) mod mul Yes Linear

DH-based - 1 mod exp 1 comparison O(k) mod exp No Linear

Trapdoor RSA
1 mod exp 3 mod mul

1 comparison O(k) mod exp No Linear
1 mod mul 2 additions

2 mod mul

Trapdoor DLP 1 mod exp 1 comparison O(k) mod exp No Linear
3 additions

Subset Sum n hash 1 hash 1 comparison L3 reduction Yes Polynomial

or 1 summation

The non-parallelizability characteristic plays an important role for de-
fending against coordinated adversaries who attempt to distribute puz-
zles to other users or high-performance machines in order to obtain puz-
zle solutions quicker than the specified time without wasting their own
resources. Since non-parallelizability has not been defined as a primary
requirement in the original work [2, 10], most existing techniques lack
this characteristic. From the evaluation shown in Table 1 only repeated-



squaring puzzles can thwart this type of attack strategy. Unfortunately,
high computation of the puzzle construction causes this technique to be
susceptible to flooding attacks. As a result, this gap becomes the most
interesting point for our work to develop new schemes which achieve non-
parallelizability, while the puzzle construction and verification are also
simple and cheap.

3 Hash Chain Puzzles

We have seen in the previous section that currently only time-lock puzzles
can provide the characteristic of non-parallelizability but they suffer from
an expensive set up operation for the server. One promising method to
prevent adversaries from distributing and computing a puzzle in parallel
would be a chaining technique. Because the characteristic of chaining
requires the previous value for constructing the next consecutive items,
it will defeat those coordinated adversaries who attempt to solve puzzles
by parallel computing. Recently, there are two constructions using the
chaining technique based on hash functions proposed by Ma [14] in 2005
and by Groza and Petrica [9] a year later. The aim of these constructions
is slightly different from what we have in mind, since they are interested
in partial solving of the chained puzzles. Nevertheless it is interesting to
examine whether they will be useful as stand-alone puzzles. Following are
short descriptions of these two puzzles and an analysis of their suitability.

Ma’s Hash Chain Reversal Puzzles : The concept of hash chain
puzzles was introduced by Ma [14] in 2005 as password puzzles for use
in the IP layer. The construction begins with a random number chosen
as an initial value h0. Then the server applies a one-way function to h0

repeatedly to generate a hash chain h0, h1, . . . , hk where hi+1 = hash(hi)
and k is the desired length of the chain. According to Ma, this computa-
tion would lead to an advantage for the server by storing the entire hash
chain for future use. Because the server knows a corresponding solution in
advance, the server saves computation and time when verifying the puzzle
solution by reducing the cost of verification to a single table lookup.

For puzzle solving, given a puzzle challenge containing the last value
of a hash chain (hk) along with an index value k, a client is required
to compute a hash reversal starting from index k back to the beginning
point h0 to obtain the entire hash chain. A characteristic of hash chain
operation is that an output from the former state is required to be fed
to the next state as an input, similar to a recursion in programming. We
conclude that this scheme is a non-parallelizable technique, and the cost
of the verification requires k hash operations similar to the construction.



This is a simple and intuitive construction, but there are a number of
practical problems. First, it requires the server to store every value of the
entire hash chain in order to be able to verify the solution. Although this
has an advantage in verification effort, this scheme is susceptible to mem-
ory exhaustion attacks. Second, when used with a typical cryptographic
hash function the scheme will be too difficult to invert for even one hash
value, let alone a chain of many values. Therefore some mechanism must
be chosen to make the individual steps in the chain invertible with rea-
sonable effort. Ma [14] suggested that a hash function be used which has
16-bit outputs, but this does not seem to be an acceptable requirement
since such a function can be easily stored completely in a look-up ta-
ble which makes solving the puzzle as easy as constructing it. A more
plausible mechanism is used in the next construction that we consider.

Groza and Petrica’s Hash Chain Puzzles : This puzzle scheme [9]
was constructed from a hash chain of random numbers. Generally, the idea
is similar to the puzzle auction proposed by Wang and Reiter [24]; i.e. the
more links of the chain computed on a client’s machine, the more services
from a server a client obtains. At the beginning, the server generates the
first element by choosing two state-dependent random numbers, ρ and
r, and concatenating them to obtain a value σ. The first output, P0,
is constructed by double hashing σ0. Hence, the parameter σ0 serves as
an input to the next state of the chain. The rest of the puzzle will be
created by XORing two new state-dependent values with hashed output
of σ from the previous state. Thus, the puzzle elements challenged to
the client would be a series of pairs [(P0, r0), (P1, r1), . . . , (Pn, rn)], where
n ≥ 1 is the length of the hash chain. Meanwhile, the client is required to
perform a forward process of reconstructing the hash chain by searching
for ρi values, which is σi = ρi ‖ ri.

Unfortunately, this scheme has a major drawback which risks resource
exhaustion attacks on the server because it requires three hash operations
per state for producing a series of hashes chained either in the construction
or verification phase. This action requires a similar amount of computa-
tional effort as the solving task on the client’s machine. This circumstance
violates the fundamental requirement; i.e. client puzzles should be easy
to generate and verify by the server but hard to solve by the client. Fur-
thermore, the high-bandwidth consumption required to transmit a puzzle
challenge is another drawback vulnerability of this scheme.

In summary, we have seen that the hash chain puzzle has a major
strength in non-parallelizability and linear-grained control because of its
structure. Light-weight verification by one comparison is another interest-
ing potential property. However, the proposals so far using this technique



require high computation in the construction, high-bandwidth connection
for communication, and huge storage to cache an entire chain for avoiding
CPU burden at the verification. Therefore, currently it seems impractical
to use hash chains as client puzzles and we look for an alternative.

4 Subset Sum Puzzles

Hash based puzzles are the most prevalent due to their simple construc-
tion and cheap verification. However, other puzzle constructions can over-
come the drawbacks of such techniques. As shown in Section 2, most puz-
zles are susceptible to coordinated attacks because they do not provide
the non-parallelizability property. In this section, we propose a technique
called subset sum puzzles. The predominant characteristic of this new ap-
proach is not only a simple construction and verification as cheap as hash
based puzzles, but also a non-parallelizable characteristic.

A subset sum (or knapsack) system associates a given set of items
which have specified weight, with a knapsack which can carry the number
of items no more than a certain weight. The solver is required to search for
a maximum value by picking as many items as the knapsack can carry in
terms of weight. To find whether a solution exists for a specified weight,
this becomes a decision problem and the knapsack falls into the NP-
completeness category which means no polynomial algorithm can break
the knapsack problem within polynomial time as long as P 6= NP. This
is why the knapsack problem was long considered a promising underlying
technique for constructing a public-key based cryptosystem.

A famous tool used to successfully break subset sum cryptosystems is
the lattice reduction. There are several lattice reduction algorithms but
the best method so far for breaking the subset sum problems is the LLL or
L3 algorithm (details are provided in Appendix A) developed by Lenstra
et al. [13] in 1982. The interesting characteristic of the LLL scheme is
that it is a polynomial time and non-parallelizable algorithm because
it requires highly sequential computation on an iterative function. We
remark that practical application of our construction requires clients to
implement the LLL algorithm. While this is not a major problem on PC
platforms it may be undesirable, particularly on low-powered platforms.
Therefore we regard our construction as more a proof-of-concept that
non-parallelizable puzzles are feasible, rather than as an ideal solution.

4.1 A New Proposal: Subset Sum Puzzles

We first introduce the notation used in the puzzle challenge-response
protocol. I represents a client and R represents a server of the protocol.



Communicating messages used in the protocol execution will carry the
subscript I or R representing whose these messages are; for instance, IDI

represents the identity of the client and NR represents a nonce generated
by the server. A secret parameter is denoted as s and puzzle difficulty
by k. The desired weight of the subset sum problem is W , while the set
of candidate weights is w1, w2, . . . , wn. Finally, H(·) represents a hash
operation on arbitrary length input messages, and LSB(·, k)2 obtains the
k least significant bits from the output of hash function.

Puzzle Construction
To establish a secure connection to a server, I sends a request contain-
ing an identity (IDI) along with a random nonce (NI) to R. The server
chooses a secret parameter s randomly in order to make the output unique
for each communication, and decides a puzzle difficulty k depending on
the workload condition. The value of k should be selected to be at least 25
(refer to Table 2 for a comparison of the experimental result) to guarantee
that the coordinated adversaries approximately requires over a thousand
compromised machines to brute-force search or over a hundred compro-
mised machines to run bounding algorithm on the subset sum puzzles at
the equivalent proportion to the legitimate user performing LLL lattice
reduction. As a practical choice we suggest to take a value of k between
25 and 100 and then if weights are chosen to be of length 200 bits we can
ensure that the generated knapsack has density at most 0.5. Practical
experimental tests are shown in Section 4.2 which support our proposal.

To construct a puzzle R computes a hash operation (H(·)), and com-
putes (LSB((·), k)2) to obtain k bits from the output of hash function.
In practice H could be implemented by truncating the output of SHA-
256. Finally, R forms a puzzle by computing a desired weight (W ) that it
wants a client to solve from a pre-computed set of random weight (wn).
To save on protocol bandwidth, the weights can be generated given the
initial random weight w1 by iterative hashing. Hence, a puzzle contains
an initial value of weight of the first item (w1), a desired weight (W ), and
puzzle difficulty (k). The construction of the subset sum puzzle requires
only one hash operation and addition. Figure 1 demonstrates the puzzle
challenge-response protocol.

Puzzle Solving
To ensure that the client follows our requirement, we have to configure the
puzzle difficulty so that the efficient LLL method of solving is more effi-
cient than brute-force searching, even when the latter is divided amongst
many parallel attacking machines. As mentioned above in the description
of puzzle construction, when k is in the range between 25 to 100 we can



I R

Precomputed parameters

set of random weight wn

wn = H (wn−1 )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1) send request
IDI ,NI−−−−−−−→ choose secret s ∈R Zn

choose puzzle difficulty k → 25 ≤ k ≤ 100

C = LSB(H (IDI ,NI , IDR,NR, s)), k)2

W =
∑k

i=1 Ci · wi

2) verify IDI ,NI IDI ,NI , puzzle = (w1 ,W , k)

generate wk = H (wk−1 )
IDR,NR, puzzle←−−−−−−−

form a Basis Set B

run LLL Reduction → get C’

check W
?
=

∑k
i=1 C ′

i · wi

3) return C ′ IDI ,NI , IDR, check C ′ ?
= C

NR, puzzle,C ′
−−−−−−−→

Fig. 1. Subset Sum Puzzles

expect that a puzzle would not be solved faster by brute-force technique.
Moreover, when k is around 50 or larger the LLL method is more efficient
than brute-force search even when the latter is divided amongst 10000
parallel machines in approximation.

By using the LLL algorithm, users can simply treat the subset sum
schemes as a lattice problem. In 1985, Lagarias and Odlyzko [11] an-
nounced the first successful attack on low density1 subset sum cryp-
tosystems; i.e. a density below 0.6464 in approximately. A few years
later, Coster et al. [4] proposed the improved version of the Lagarias and
Odlyzko technique. They claimed that their method was able to break
almost all subset sum problems having density below 0.9408 in polyno-
mial time. This result guarantees that our subset sum puzzle would be
solvable in polynomial time by using LLL algorithm.

Consider the client’s job when receiving a puzzle challenge from a
server. It begins to generate a series of random weights, (w1, w2, . . . , wk),
by computing a hash chain on an initial value w1. Then, the client con-
structs a basis reduction set B as follows.

b1 = (1, 0, . . . , 0, w1); b2 = (0, 1, . . . , 0, w2)

1 The density is defined as n
log(max an)

, where n is a number of items and max an is
the maximum item value.



...
bk = (0, 0, . . . , 1, wk); bk+1 = (0, 0, . . . , 0,−W )

Finally, the client runs a L3 lattice reduction [13] which is known from
the community to be the most effective method to find moderately short
lattice vectors in polynomial time. The algorithm guarantees to return a
set of outputs in which one is a solution of the puzzle. To the best of our
knowledge, almost all subset sum problems having density below 0.9408
can be effectively solved by the improved LLL version of Coster et al. [4].
In addition, this improved version is a highly sequential process because
the underlying algorithm requires recursive computation as explained in
Appendix A, so the puzzle cannot be distributed for parallel computation.

In terms of the puzzle granularity, there are two possible options for
the server to adjust the puzzle difficult; 1) adjusting the item size (n),
or 2) adjusting the density (which will cause a change in B because the
density refers to the maximum weight of the items). Both modifications
affect the running time by a factor (nα · logβ B), where α and β are
real numbers dependent on the version of LLL basis reduction. Since the
complexity of LLL basis reduction is a polynomial function, we conclude
that our subset sum puzzles provide a polynomial granularity.

Puzzle Verification
Puzzle verification is a simple and cheap task for a server which elimi-
nates the risk of puzzle solution flooding attacks. Generally, there are two
options for the verification process;

1. avoiding CPU usage: this case minimizes CPU usage at verification
time. By storing the value of C and W corresponding to the client’s
identity (IDI , NI), the verification requires only a table lookup for
comparing the claimed solution from a client to the stored solution.

2. avoiding memory usage: this option eliminates memory usage prior to
verification. The server uses a stateless connection in which no infor-
mation is stored until the puzzle is solved. Once the server receives
a solution, it is required to re-generate C and W from the arriving
message. This process is a very cheap and fast computation that costs
little more than a single hash computation, which is the typical cost
of verification for hash-reversal puzzles.

We conclude that the upper bound of computational complexity in
the former case is O(1 ) for the table lookup, whereas the upper bound
for computational complexity in the latter case is O(k) additions which
is similar to the construction of the first state. The evaluation and com-
parison of the subset sum puzzles is previously shown in Table 1.



4.2 Experimental Results

To demonstrate how LLL lattice reduction and the subset sum problems
work in practice on client machines, we set up an experiment to create a
random set of subset sum problems based on different criteria including
density and a number of chosen items. In terms of hardware, we simulated
the LLL reduction algorithm using a Sun Enterprise 420R computer op-
erating with four UltraSPARC-II 450 MHz CPUs with 4096 MB of RAM
running on Sun Solaris 9 (Sparc). We created MATLAB source code for
generating random subset sum problems which have different densities
between 0.3 and 0.8 for a range of instance sizes between 20 and 100. To
solve these problems we wrote a subset sum solving function for testing
the LLL implementation provided in MAGMA. The version of MAGMA
installed on our testing machine was a full version patch number V2.13-11
released on April 5, 2007 (details at http://magma.maths.usyd.edu.au).
The LLL version provided in MAGMA is based on the floating point
arithmetic version (FP-LLL) proposed by Schnorr and Euchner [21].

The following briefly provides the methods that we used to evaluate
our new scheme. Two different searching methods, a backtracking and
a branch & bound algorithm [15], are taken into account for comparing
with the LLL lattice reduction method.

Backtracking or Brute Force Searching: This is the simplest method
which is also known as exhaustive search because it gathers all pos-
sible solutions and then checks for one satisfying the solution. This
guarantees that it will always return an optimal solution. However,
this technique consumes more CPU power as well as running time.

Branch & Bound Technique: To reduce the time-consuming of the
brute force searching, pruning techniques can be used for avoiding
some unnecessary nodes during the searching process. By storing and
traveling only to states whose total weight does not exceed the limit,
it can generate a specified solution faster than brute force. The bound-
ing technique is one of those pruning methods. It specifies an upper
bound on the output, so any descendant tracks having value above or
not below their ascendant node will be eliminated from the possible
solution. This can reduce running time and storage space.

LLL Lattice Reduction: This advanced tool, explained in Appendix
A, can efficiently solve subset sum problems. This method can solve
the subset sum puzzle within polynomial time rather than exponen-
tial time as the two previous techniques do. Recently, there have been
many implementations for accelerating the running time of LLL reduc-
tion. In our experiment, we use two techniques: the first one, Int-LLL,
is the original developed in 1982 by Lenstra et al. [13] provided in



Mathematica, while the second one, FP-LLL, developed by Schnorr
and Euchner [21], is a modified version using floating point arithmetic
and provided in MAGMA.

Table 2 shows the experimental result compared among the brute force
searching, bounding technique, and LLL Lattice Reduction examining on
puzzles having small size between 5 and 30.

Table 2. Average Running Time of The Subset Sum Puzzle on the specified methods

Number Average Running Time (seconds)

of Items Backtracking Branch & Bound LLL

(n) Data 1 Data 2 Data 3 Data 1 Data 2 Data 3 Data 1 Data 2 Data 3

5 0.034 0.034 0.025 0.049 0.049 0.053 0 0 0

10 0.086 0.083 0.083 0.06 0.064 0.082 0 0 0

15 1.70 1.69 1.67 0.134 0.40 0.137 0 0 0

20 51.85 52.74 53.74 2.633 3.691 1.43 0 0 0.01

25 2320.70 2262.80 2428.60 315.743 456.97 602.81 0.01 0.01 0.01

30 – – – 1437.758 1865.001 1647.246 0.01 0.01 0.01

By evaluating the result from Table 2, we summarize that the rea-
sonable range of puzzle difficulty would be at least 25 for preventing co-
ordinated adversaries who can control number of compromised machines
to obtain puzzle solutions at the same capacity to the legitimate user
performing LLL lattice reduction.

Before illustrating the second experimental result, we need to briefly
explain the reasoning behind our configuration. By investigating the pri-
mary result comparing between FP-LLL and Int-LLL, we have found that
Int-LLL works well for low density problems with data size below 100.
Once the density grows, the Int-LLL performance drops gradually and
becomes ineffective when we run it on high density examples. This be-
haviour was also observed by LaMacchia [12] as well as by Schnorr and
Euchner [21]. Due to this degradation of Int-LLL with large instance and
high density problems, we suggest to use FP-LLL in the puzzle solving to
avoid the situation that legitimate users are unable to solve their puzzles.
The reason is that a floating point arithmetic returns the Gram-Schmidt
coefficient in the reduction process more precisely than integer arithmetic.
As a result, the FP-LLL reduction provides a more correct output.



Table 3 shows the result of puzzles having size between 60 and 100.
We restrict to this range because we are only interested in the values
where the LLL performs faster than brute force searching, otherwise the
protocol would be vulnerable to parallel attacks if the adversaries are able
to run a brute force searching. The table shows that there is a good range
of puzzle times suitable for practical use.

Table 3. The Experimental Result of The Subset Sum Puzzle

Number Average Running Time (seconds)

of Random Set 1 Random Set 2 Random Set 3

Items Density Density Density

(n) 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8

60 0.10 0.12 0.23 1.02 2.42 77.11 0.16 0.28 0.19 0.31 3.64 3.70 0.14 0.22 0.21 0.61 0.64 3.21

65 0.14 0.14 0.29 1.59 4.09 190.68 0.18 0.29 0.23 0.57 6.53 6.86 0.17 0.23 0.26 1.70 2.19 18.94

70 0.15 0.15 0.32 2.94 7.33 342.53 0.18 0.29 0.28 1.34 12.97 26.30 0.21 0.25 0.27 2.29 2.29 41.72

75 0.20 0.14 0.78 5.23 13.47 663.24 0.24 0.31 0.38 1.95 27.23 35.65 0.23 0.25 0.34 3.49 4.37 92.37

80 0.27 0.22 0.89 9.63 26.17 1745.97 0.25 0.33 0.52 2.75 58.70 87.12 0.26 0.29 0.45 5.66 8.82 226.76

85 0.37 0.25 1.24 17.38 49.22 4158.73 0.29 0.37 0.72 4.44 120.44 208.86 0.28 0.32 0.62 9.40 18.15 1315.29

90 0.50 0.29 1.63 31.44 96.39 9435.02 0.39 0.40 1.17 7.58 250.52 509.60 0.30 0.37 0.89 16.42 37.75 1344.35

95 0.59 0.34 2.34 55.68 173.30 21351.72 0.43 0.43 1.75 12.78 504.88 1158.45 0.36 0.43 1.28 28.14 79.36 3160.86

100 0.70 0.40 3.43 98.39 317.27 51124.86 0.46 0.47 2.87 21.45 1008.23 2737.79 0.41 0.50 2.03 46.63 168.72 7451.26

5 Discussion and Open Problem

As our main objective has been to design non-parallelizable puzzles, sub-
set sum problems with the LLL lattice reduction bring us this character-
istic and fulfill our requirement. However, simplicity and performance of
the existing LLL schemes are a concern for deploying them in general ap-
plications. As several experiments have shown the failure of original LLL
in dealing with the large instance and high density problems, recently
several attempts have been made to scale down the computation time of
the size reduction process as well as increase the accuracy for dealing with
the large instances. One example was using dynamic approximation and
heuristic technique [3] to speed up the reduction process. To our knowl-
edge, the fastest LLL reduction scheme for solving subset sum problems
is the segmentation FP-LLL proposed by Schnorr [20] that minimizes the
running time to be O(n3 log n).

For the concern regarding to the parallelization of the LLL lattice re-
duction, one paper that discussed this property was Parallel lattice basis



reduction proposed by Villard [23]. The idea of that paper is to select non-
overlapping parameters and separate them into two independent phases
in order to speed up the exchange of parameters during the size reduction
of the lattice basis. Thus, these outputs might be able to be computed in
parallel by using n ·m processors, and dividing them into n columns of
m processors. Villard claimed that the running time complexity of this
technique may be reduced to O(n5 log3 B) binary arithmetic steps and
O(n4 log2 B) binary communication steps by using O(n) processors. This
running time complexity could be improved by the factor of n by in-
creasing the number of processors to O(n2) units. However, the unclear
efficiency of the algorithm and the requirement for the larger size of pa-
rameters than in the original LLL algorithm [13] are the most concern for
the future investigation and development.

Another disadvantage of the subset sum puzzle is the memory require-
ment. By investigating instances when the item size n exceeds 100, we
found that the memory resource is exhausted in some trials. That is be-
cause the LLL reduction constructs a n×n lattice matrix and allocates it
into reserved memory. As a result, the practical range of puzzle difficulty
would be up to n = 100 for avoiding memory exhaustion. In addition, the
running time within this range would be reasonable and acceptable for
most users. When we compare this bound with the hash-based reversal
puzzles, the reasonable puzzle difficulty for hash-based reversal schemes
would have k between 0 and 40 which results in a smaller length puzzle
than our construction.

Since we are concerned with the problem of puzzle distribution and
parallelizability, we focus on resolving the parallelizable characteristic
rather than implementing linear granularity. However, even though our
new scheme has coarser granularity than other hint-based schemes, it does
offer polynomial granularity which is better than exponential granularity
found in hash-based reversal puzzles recently used in some client puzzle
protocols. As a result, our new design can be easier to control than many
existing ones.

Comparing our construction with repeated squaring (Table 1) we find
that, although repeated squaring offers non-parallelism and linear-grained
control to the user, it suffers from high computation at construction time
which means that a server using these puzzles would be susceptible to
flooding attacks. As a result, an interesting open problem for the research
community is to explore techniques to find new puzzles providing both
non-parallelization and linear granularity.



References

1. L M. Adleman. On Breaking Generalized Knapsack Public Key Cryptosystems. In
the 15th Annual ACM Symposium on Theory of Computing, pages 402–412, 1983.

2. T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication with client
puzzles. In Security Protocols Workshop 2000, pages 170–181. Cambridge, Apr
2000.

3. W. Backes and S. Wetzel. Heuristics on Lattice Basis Reduction in Practice.
Journal of Experimental Algorithmics (JEA), 7:1–21, 2002.

4. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. Schnorr, and
J. Stern. Improved low-density subset sum algorithms. Computational Complexity,
2(2):111–128, 1992.

5. C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. In
the 12th Annual International Cryptology Conference on Advances in Cryptology,
pages 139 – 147. Springer-Verlag, 1992. Lecture Notes In Computer Science; Vol.
740.

6. W. Feng, E. Kaiser, W. Feng, and A. Luu. The Design and Implementation of
Network Layer Puzzles. In Proceedings of IEEE Infocom 2005, 13-17 Mar 2005.

7. W. Feng, A. Luu, and W. Feng. Scalable, Fine-grained Control of Network Puzzles.
Technical report 03-015, OGI CSE, 2003.

8. Y. Gao. Efficient Trapdoor-Based Client Puzzle System against DoS Attacks.
Master of Computer Science by Research, School of Information Technology and
Computer Science, University of Wollongong, Wollongong, Australia, 2005.

9. B. Groza and D. Petrica. On Chained Cryptographic Puzzles. In 3rd Romanian-
Hungarian Joint Symposium on Applied Computational Intelligence (SACI),
Timisoara, Romania, May 25-26 2006.

10. A. Juels and J. Brainard. Client Puzzles: A Cryptographic Defense Against Con-
nection Depletion Attacks. In the 1999 Network and Distributed System Security
Symposium (NDSS ’99), pages 151–165, San Diego, California, USA, Feb 1999.
Internet Society Press, Reston.

11. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems.
Journal of the ACM (JACM), 32(1):229–246, 1985.

12. Brian A. LaMacchia. Basis Reduction Algorithms and Subset Sum Problems. Mas-
ter Thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1991.

13. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring Polynomials with
Rational Coefficients. Mathematische Annalen, 261(4):515–534, Dec 1982.

14. M. Ma. Mitigating denial of service attacks with password puzzles. In Inter-
national Conference on Information Technology: Coding and Computing, 2005.
(ITCC 2005), volume 2, pages 621–626, 2005.

15. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, Inc., 1990.

16. R. Moskowitz. The Host Identity Protocol (HIP). Internet Draft, Internet
Engineering Task Force, Feb 2007. http://www.ietf.org/internet-drafts/

draft-ietf-hip-base-07.txt.

17. G. Price. A General Attack Model on Hash-Based Client Puzzles. In 9th IMA In-
ternational Conference on Cryptography and Coding, pages 319 – 331, Cirencester,
UK, 16-18 Dec 2003. Springer-Verlag.

18. S. Radziszowski and D. Kreher. Solving subset sum problems with the L3 al-
gorithm. Journal of Combinatorial Mathematics and Combinatorial Computing,
3:49–63, 1988.



19. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and Timed-release
Crypto. Technical Report TR-684, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 10 Mar 1996.

20. C. P. Schnorr. Fast LLL-type Lattice Reduction. Information and Computation,
204(1):1–25, 2006.

21. C. P. Schnorr and M. Euchner. Lattice Basis Reduction: Improved Practical Al-
gorithms and Solving Subset Sum Problems. In FCT ’91: Proceedings of the 8th
International Symposium on Fundamentals of Computation Theory, pages 68–85,
London, UK, 1991. Springer-Verlag.

22. N. Smart. Cryptography: An Introduction. Mcgraw-Hill College, 2nd edition, 2006.
23. G. Villard. Parallel Lattice Basis Reduction. In ISSAC ’92: The International

Symposium on Symbolic and Algebraic Computation, pages 269–277, New York,
NY, USA, 1992. ACM Press.

24. X. Wang and M. K. Reiter. Defending Against Denial-of-Service Attacks with
Puzzle Auctions (Extended Abstract). In the 2003 IEEE Symposium on Security
and Privacy (SP’03), pages 78–92, Berkeley, CA, USA, 11-14 May 2003.

25. B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New Client Puzzle
Outsourcing Techniques for DoS Resistance. In the 11th ACM Conference on
Computer and Communications Security (CCS 2004), pages 246–256, Washington
DC, USA, 2004. ACM Press.

Appendix

A A Brief Overview of Lattice Reduction

LLL lattice basis reduction is a polynomial time algorithm developed
by Lenstra et al. [13] in 1982. The concept was originally used to solve
the shortest vector problem (SVP) and closet vector problem (CVP) of
a lattice. Adleman [1] seems to have been the first researcher to apply
LLL lattice basis reduction as a cryptanalysis tool to successfully break
the subset sum problem. By using the LLL, users simply treat the subset
sum schemes as a lattice problem. Since its original use, many researchers
have improved not only the performance of the algorithm, but also its
accuracy when dealing with large instances of the lattice dimension.

LLL lattice basis reduction algorithm has been widely used in break-
ing subset sum cryptosystems because the algorithm is able to termi-
nate in polynomial time. Moreover, it is highly sequential because an
underlying program requires recursive computation. From this perspec-
tive, LLL is a promising technique to fulfill our requirement in terms of
non-parallelizability and thwart coordinated adversaries from distribut-
ing the client puzzle to calculate the solution in a parallel manner. To
explain the LLL lattice basis reduction, we refer to materials provided in
Smart’s book: Cryptography: An Introduction (2nd edition) [22].

Definition 1. Let {b1, b2, . . . , bn} be a set of vectors in Zn that are lin-
early independent over R. Then the set of all integer linear combinations
of {b1, b2, . . . , bn} is called an integer lattice. In a formula:



B =

{
n∑

i=1

ai · bi | ai ∈ Z, 1 ≤ i ≤ n

}
(1)

Definition 2. The Gram-Schmidt algorithm transforms a given basis
{b1, b2, . . . , bn} into a basis {b∗1, b∗2, . . . , b∗m} which is pairwise orthogonal.
The algorithm uses equations

µi,j =

〈
bi, b

∗
j

〉
〈
b∗j , b

∗
j

〉 for 1 ≤ j < i ≤ n (2)

where µi,j is called a Gram-Schmidt coefficient.

b∗i = bi −
i−1∑

j=1

µi,j b∗j (3)

Definition 3. A basis {b1, b2, . . . , bm} is called LLL reduced if the asso-
ciated Gram-Schmidt basis {b∗1, b∗2, . . . , b∗m} satisfies

|µi,j | ≤ 1
2

for 1 ≤ j < i ≤ m (4)

‖b∗i ‖2 ≥
(

3
4
− µ2

i,i−1

)∥∥b∗i−1

∥∥2
for 1 < i ≤ m (5)

Equation (4), so called size reduction, ensures that we obtain a basis
in which the vectors are short in length, while equation (5), so called the
Nearly Orthogonal Condition, guarantees that the obtained vectors are
nearly orthogonal. The LLL algorithm works as follows (also in Fig. 2);

1. We examine a fixed column k in which k starts at k = 2
2. If equation (4) does not hold, we need to perform size reduction by

modifying the basis B;
3. If equation (5) does not hold for column k and k − 1 (it means the

obtained vectors are non-orthogonal), we have to swap those columns
and decrease a value of k by one (unless k is already equal to two).
Otherwise, we increase k by one.

4. Once k reaches to m, the algorithm stops.

Since attacks on the subset sum problem using LLL reduction were
proposed, there have been several experiments set up to compare the
practical performance with the theoretical limits. The first such exper-
iment was published by Radziszowski and Kreher [18] in 1988 to run a
performance test of LLL on subset sum problems that have an item size



Fig. 2. LLL Lattice Reduction Process

(n) between 26 and 98 with different densities. The experimental result
showed that when n grows up to 98, their implementation succeeded at
density below 0.3 which is lower than the theoretical value proposed by
Lagarias and Odlyzko [11]. Later, LaMacchia [12] set up an empirical
test on problem sizes between 26 and 106. The result showed that the
original LLL worked well for all problems with n ≤ 26 and density ≤
0.6408, but the accuracy degraded quickly when n grows above 50. By
running on the improved version, the performance was improved up at
n = 106 with density 0.3. In the meantime, Schnorr and Euchner [21]
proposed a way to speed up the reduction step by using floating point
instead of integer arithmetic as in the original LLL, plus adding the deep
insertion technique to their scheme. In comparison with LaMacchia [12],
they claimed that their experimental result had higher success rate at the
same data range. In this paper, our experiment was set up and tested us-
ing the implementation of the Schnorr and Euchner [21] version provided
in MAGMA (http://magma.maths.usyd.edu.au).


