

QUT Digital Repository:
http://eprints.qut.edu.au/

Nantes, Alfredo and Brown, Ross A. and Maire, Frederic D. (2008) A Framework
for the Semi-Automatic Testing of Video Games. In Proceedings 4th Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2008),
Stanford, California, USA.

 © Copyright 2008 Association for the Advancement of Artificial
Intelligence

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10883911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Framework for the Semi-Automatic Testing of Video Games

Alfredo Nantes, Ross Brown and Frederic Maire

Faculty of Information Technology

Queensland University of Technology

a.nantes@qut.edu.au, r.brown@qut.edu.au, f.maire@qut.edu.au

Abstract

Game environments are complex interactive systems that
require extensive analysis and testing to ensure that they are
at a high enough quality to be released commercially. In
particular, the last build of the product needs an additional
and extensive beta test carried out by people that play the
game in order to establish its robustness and playability.
This entails additional costs from the viewpoint of a
company as it requires the hiring of play testers. In the
present work we propose a general software framework that
integrates Artificial Intelligence (AI) Agents and Computer
Vision (CV) technologies to support the test team and help
to improve and accelerate the test process. We also present a
prototype shadow alias detection algorithm that illustrates
the effectiveness of the framework in developing automated
visual debugging technology that will ease the heavy cost of
beta testing games.

Keywords: Video Game Testing, Synthetic Image
Debugging, Virtual Environment Testing, Artificial
Intelligence (AI), Computer Vision (CV).

1. Introduction

Video Games cover a large component of the
entertainment industry running into billions of dollars spent
annually (Riley, 2007). Present games differ from early
generations where the graphics consisted of very few
polygons and the user-game interaction was restricted to
few commands entered through the keyboard. Today
games provide remarkably realistic graphics with highly
interactive scenarios held together by complex software
that requires large development and testing teams. The
more complex the software, the more crucial the effort of
the companies in testing their product in order to ensure a
high enough quality in terms of functionality, stability and
robustness in general. Furthermore, a computer game is not
only expected to work properly but it has to be, amongst
other things, fun, challenging, realistic and well animated.

In the light of all these aspects we can then split the
testing problem for a game into three sub problems which
we can name: Entertainment Inspection, Environment
Integrity Inspection and Software Inspection. The former
aims, at a high level, to check playability issues against
playability heuristics such as story progression, gameplay

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

functionality, game usability and game mechanics
(Desurvire, Caplan, & Toth, 2004). The Environment
Integrity Inspection aims to look for perceptual anomalies
such as sound, textures, meshes, lighting and shadowing
malfunctions. Finally, the Software Inspection validates the
software interfaces amongst components and the integrity
of the components itself. This includes code inspection,
data analysis and algorithm specific testing. Entertainment
and Environment Integrity inspection is usually performed
by the Quality Assurance (QA) personnel, whereas the
Software inspection is responsibility of the development
team (Irish, 2005).

Irish points out how QA and game testing are two very
important steps in bringing a video game to completion
before its commercial release and that rushing these steps
could affect the functionality and the playability of the
product. On the other hand, testing is also a time
consuming and frustrating activity especially with early
software builds when the game cannot run for more than a
few minutes before crashing. In addition, making testers
play the same game over and over again could push them
to overlook defects for the haste of getting their job done.
This entails an additional cost from the viewpoint of a
company as it requires the hiring of a sufficient number of
play testers during the test-cycle in order to test the game
thoroughly for release.

Although the burden of debugging graphical
applications is usually lightened by performance analysis
and shader debugging tools such as Microsoft PIX®1 and
GLIntercept®2, to the best of our knowledge there has been
little contribution to assisting the higher level
Entertainment and Environment game testing. In this
paper, we propose a general framework for addressing the
automation of the game testing problem by using Artificial
Intelligence (AI) and Computer Vision (CV) technologies.
The implementation of such architecture can bring
important benefits to the game industry. Indeed it will
bring costs savings by decreasing the number of play
testers required during the test process. Moreover, it will
increase the robustness of the product to release by
allowing the coverage of a far larger set of test cases
currently performed only by human players.

In Section 2 we review the AI technology that has been
applied to computer games and human-agent systems.

1 http://msdn2.microsoft.com/
2 http://glintercept.nutty.org/index.html/

Section 3 presents a list of visual anomalies that often
affect virtual environments. The general framework is
presented in Section 0. In Section 5 we show an
implementation of a visual bug detection agent.

2. Related Work

Many approaches have been proposed for improving the
game design in terms of its entertainment factors.
Researchers have also studied human-machine cooperation
for solving tedious and difficult tasks or operating in
hostile environments. These two research areas are
reviewed in the following section.

2.1. Human Entertainment and Computer Games

Abundant literature exists (Laird, 2001; Merrick & Maher,
2006) aiming to provide non-playing characters (NPCs)
with a convincing human-like behavior by using Artificial
Intelligence to improve the entertainment features of a
game.

Also research in AI has investigated human
entertainment models for measuring qualitative factors
such as challenge and curiosity (Yannakakis & Hallam,
2006) and approaches for analyzing and reasoning about
the user experience when interacting with virtual
environments (Yang, Marsh, & Shahabi, 2005). Recently
self-playing experiments have been applied to computer
games with the aim of modeling the integrity and fairness
in rudimentary computer games, assisting the game design
(Macleod, 2005). Denzinger et al. (2004) have applied
similar systems to a complex game (FIFA-99) showing
how their agents, employing a genetic algorithm (GA),
were able to find faults in the game mechanics.

Although all these results could be used for automating
the game testing process, they do not address Environment
Integrity issues that surely affect playability and gameplay
functionality or in general the human experience when
interacting with the Environment. In our work we propose
to extend the previous research to encompass also lower
level, yet important Environment Inspection issues in order
to thoroughly address the automation of the game testing
problem.

2.2. Human-Agent teaming

In modern AI research, agents are seen as assistants in
advisory and decision support roles in critical or high
workload situations. An agent is a computer system having
the ability to provide simple autonomy, sociability,
reactivity or sensing capability and pro-activeness
(Wooldridge & Jennings, 1995).

In their work Urlings et al. (2006) showed how human-
agent teaming architectures are being explored with
growing interest due to their high capability to adapt to
unpredictable tasks environment, yet with a commonly
agreed need for human supervision. These ideas have been
successfully applied in fields like system analysis, design
and engineering, information processing and computer

games. In particular Urlings et al. applied the Belief-
Desire-Intention (BDI) syntax and JACK – a commercial
BDI agent development language architecture – to
demonstrate their teaming framework of human-agent
coordination within the commercial computer game Unreal
Tournament (UT).

Seeing the promising results obtained from such
architectures it is reasonable to think that they can be
adapted or extended to accommodate also autonomous
game inspection problems, in that autonomous agent
systems could be built in a similar manner to cooperate
with humans for improving and accelerating the testing
phase of video games.

3. Perceptual Anomalies in Virtual

Environments

In order to have a more general and comprehensive view of
the Environment Inspection problem we briefly list here
possible environment issues classified by typology. Such a
list has been drawn up thanks to the support of the QA
team of the game company THQ® Australia:

• Graphics: textures may become corrupted, may
disappear or flicker, they may appear distorted or
discolored. Items could appear floating in the air,
sticking out or through walls. Shading may also cause
effects like aliasing or acne;

• Camera: a character may be obscured by another object
or seen at an awkward angle; the camera may allow clip
through effects letting the user to view objects from
inside;

• Collision: the objects in the game may intersect each
other or do not intersect appropriately; barriers may exist
in inappropriate places or may not exist where they
should (for instance the character would be able to walk
through walls and objects);

• Sound: a sound or music may not play when expected or
it may contain imperfections; the game may play music
or sound effects at inappropriate levels or may not play
them at all;

• Framerate: when the framerate drops down the action on
the screen will appear in slow motion.

All the above mentioned anomalies surely affect the play
experience; hence they need to be fixed early on in the
development phase so that the product can be assessed
against higher level playability or entertainment issues. In
the rest of this document we present an approach for
dealing with the automatic detection of environment
anomalies and, more generally for making the video game
testing process semi-automatic.

4. General Framework

In section 2 we presented an overview of AI techniques
that we identified as good candidates for approaching our
Game Inspection problem. This section aims to extend

those concepts by combining those techniques with
Computer Vision technologies in order to build a unified
game inspection framework. To this end we will first show
the way such system could fit into a real game production
scenario; then we will point out two approaches that can
assist the building of such a general architecture. Finally
we will show how to combine different Computer Vision
techniques for producing a shadow aliasing game
inspection agent.

4.1. Game Inspection Agents in a real scenario

In the games production literature one of the most flexible
game production processes is referred to as the iterate-
until-you-drop method (Irish, 2005). In its original
conception, the testing task of such workflow is the one
which steers the fun part of the game towards the required
direction.

In the hypothesis of a human-agent orchestration or
synchronization, we would replace that task with the two
new QA factors previously introduced, namely the
Entertainment and Environment inspection (see Fig.1). The
AI agent software would then be coordinated by the QA
team in such a way as to cope with certain tasks, such as
wandering about detecting perceptual bugs (Environment
Inspection) or measuring the challenge level of a map
(Entertainment Inspection). Although we have shown here
how such framework can fit into a real case scenario, this
human-agent coordination can also be applied to any other
production method in which the testing task can always be
replaced by human-agent orchestration.

4.2. Two approaches for building a Game

Inspection Agent

One of the early stages of any framework development
process is the specification of its requirements. In the case
of the human-agent coordination it would desirable for the
system to be:

• abstract: shall not depend on a particular implementation
or architecture;

• configurable: the model shall allow the selection of
anomalies to be checked and the planning of test cases;

• agent based: once the test plan has been worked out by
the QA team, the software should have autonomous,
social and sensing features. Indeed it will need to make
autonomous decisions when traversing and inspecting
the environment, and to interact with other agents or
humans for performing complex tasks or test cases;

• extendible: the model shall be easily integrated with new
modules for the detection of new anomalies, and for
large scale environments;

• independent from the product to test: this would avoid
the design of a new testing system for each title to be
released.

If the agent ideally were given all possible information
about the internal architecture of the game – such as the
scene-graph, the object-space and its mechanics – via some
communication language, it would be able to perform a
wide range of complex test cases. Indeed if the low level
data such as vertices, polygons and textures were translated
into high level abstract information such as symbols, terms,
assertions and quantifiers, the agent could accomplish high
level inference and deal with tasks of abstract meaning
such as “check the accessibility of all secret areas” or “kill
the guard before he triggers the alarm”. If the language
and interfaces used for conveying such information were
also game and platform-independent our system would also
be product and platform-independent. Unfortunately
providing such a “symbolic translator” could be costly in
terms of time and resources from the point of view of the
game development. After all, the amount of information
that the game should disclose to the agent and the
communication language that best serves this goal are not
known yet.

Nevertheless not all test cases require abstraction and
context awareness to be performed. For instance we can
look for environment anomalies such as shadow aliasing or
image flickering in a flight simulator, an adventure game
or in a first person shooter. The peculiar characteristic of
the bug – such as its awkward shape or its spatiotemporal
pattern – in this case can be detached from the context in
which the bug appears. This is where Computer Vision
comes in useful, as it provides techniques that aim at
making useful decisions about real and physical objects
and scenes based on sensed images (Shapiro & Stockman,
2001).

In the light of these considerations and the
aforementioned software requirements, a solution to the
automation of the game testing problem can be sought by
following two different, although not exclusive
approaches. Indeed the research can start with the
investigation of communication and representation
languages that best support the user-agent coordination and
the building of a complete ontology of the game in terms of
objects, events and relationships that can be found in the
virtual world. Once such languages have been identified,
techniques similar to the ones presented in Section 2 can be
investigated for measuring high level entertainment issues

Figure 1: the iterate-until-you-drop method modified to accommodate
the human-agent teaming coordination.

like challenge, fairness and curiosity of the game. We
name this the Representational approach.

Likewise, the design can start up considering the low
level information generally disclosed by video games –
namely the low level output data and the user activity – and
combine it with AI and Computer Vision techniques in
order to provide the agent with visual bug detection
capabilities. We call this approach the Sub-
Representational approach.

Both Representational and Sub-Representational
approaches aim to solve the same problem at different
levels, namely at the Entertainment and at the Environment
level respectively, hence for achieving a general unique
solution both approaches should be further investigated.

4.3. A Sub-Representational approach for building

the system

Our preliminary study has been focused on the Sub-
Representational approach which aims to give the agent
vision-debugger features combining techniques from AI
and Computer Vision along with data disclosed by the
game. To this end, in order for the agent to be attentive to
visual bugs in a human-like manner, it needs to analyze the
same images perceived by a human player. Through the
GPU pipeline modern computer games not only disclose
that information but also the data that the GPU needs for

rendering that scene. This includes object-space geometry,
image-space buffers, all textures and all transforms to
which each vertex and pixel is subjected during the
rendering process as well as source code from any shader
for programming vertex and fragment processors.
Moreover, through the user interface it is also possible to
track the user activity during a game session (see Fig. 2).

In Computer Vision, real images are processed in order
to extract some characteristic information to be used for
controlling processes, detecting events and modeling the
perceived environment. In a very similar way, we aim at
evaluating the integrity of a virtual environment by
processing the same image perceived by the human player

but with the enormous advantage of working with noiseless
data as it comes directly from the GPU pipeline and the
drivers and not from real sensors.

Access to the graphic pipeline can be achieved by
modifying the graphic drivers in such a way as to store the
traffic that passes through. In this way the pipeline can be
read without either modifying the application output or
requiring the programmer to make extensive modifications
to the code for debug.

However, to enable the agent to use this extra
information effectively each bug needs to be adequately
characterized. Such characterization generally consists of
building a technique or a set of techniques to use for
processing the image so that the bug can be recognized in
an unambiguous manner. Sometimes, for bugs particularly
complex to characterize it may be useful to pre-process the
image in order to highlight or isolate characteristic objects
or features in such a way as to facilitate the detection
process, hence making it more robust. This will result in a
new “characteristic” image different from the one produced
by the application that the agent can use for making better
inferences. In the next section we will show how to
perform both the pre-processing and pattern recognition
stages.

5. The Visual Bug Detection process

Following the Sub-Representational approach, our agent is
designed as a two-module system: the Pre-Processing
module and the Computer Vision module. The former aims
at emphasizing the objects of interest in support of the
second module which processes the image using the
appropriate techniques for detecting the target. Note (Fig.
2) that both modules may use data from the pipeline and
from the user interface if needed. In the next sections we
apply our theoretical framework to a common visual bug
for proving the effectiveness of the cooperation of the two
aforementioned modules.

5.1. A case study: Shadow Map Artifacts

The Shadow Map is a relatively recent technique for
casting shadows on arbitrary meshes. Its efficiency and
versatility make this algorithm the preferred method for
generating shadowing effects both in the film industry and
for many computer games.

However, as it is an image-space algorithm, it is prone to
various kind of artifacts that usually go under the name of
aliasing and acne effects (Wolfgang, 2006). Our
preliminary work focused on the detection of perspective
aliasing effects peculiar to the standard version of the
algorithm. As shown in Fig. 3 the anomaly consists of
blocky shadows visible in those regions whose distance
from the camera is far less than the one from the light
source. The magnitude of the effect depends on the size of
the shadow map chosen.

Figure 2: illustration of the Sub-Representational approach and the
information available from the user activity and the GPU pipeline.

5.2. The Pre-processing stage

The obvious point of preprocessing the image for this
particular bug is to remove all non-shadow objects from
the image to let the CV module only process the objects of
interest. This reduces both the possibility of detecting false
positives and the computational load. The result of such
operation is shown in Fig. 3.

Although we preprocessed the image by manually
modifying the pixel shader there is at least one way of
making this approach automatic. A picture containing only
shadows can be obtained from an exclusive-nor (XNOR)
between the original shadowed image and a non-shadowed
version of it. A trivial way of generating the non-shadowed
image, while still using the same code for rendering the
scene, is to modify the shadow map in such a way as to set
all values to the global maximum of the current map plus a
certain bias. In this way there will be no pixels considered
in shadow as the distance of each pixel seen by the camera
from the light spot will be surely smaller than the related
distance written in the shadow map. This process is
depicted in Fig. 4.

5.3. The Pattern Recognition stage

Perspective aliasing effects can be regarded as series of
corners grouped as to form jagged edges of different
length, shape and magnitude. In Computer Vision fairly
robust techniques for detecting corners of different size and
shape base their principle on a multi-scale descriptor of the
image structure known as second moment matrix (Harris &
Stephens, 1988).

Our solution combines the Harris corner measure based
on such descriptor and the Canny edge detector algorithm
(Canny, 1986) for indentifying jagged edges within an
image. A jagged edge can be thought of as a line bending
through a set of corner points displaced within a certain
distance from each other. To detect such lines it is useful to
consider the Harris response R, which combines the trace

()Mtr and the determinant ()Mdet of the second moment
matrix:

)(tr)det(
2

MkMR −=

where 0>k is a parameter.
It can be noted that the thresholding of R produces a

blob-like structure where the size of the blobs depends
mainly on the size of the Gaussian filter used for
convolving the matrix M. Likewise, it is easy to see that
each blob will contain at least a Harris corner point.

It turns out that by choosing the proper size of the filter,
it is possible to group all corners points of a jagged line
within the same blob. Such a line is the Canny edge
passing through those corner points. The minimum
number of jags in an edge can be controlled by counting
the corners nearby the detected Canny segment, whereas
the minimum jag size can be parameterized by the size of
the filter used for computing R. The bigger the filter, the
bigger will be the smallest aliasing effect that can be
detected by the algorithm. In fact, in order to detect
artifacts of different magnitudes and to make the algorithm
robust to small variations in sizes, we compute the second
moment matrix at different scales.

Figure 3: example of a scene affected by perspective aliasing (left) and
the related preprocessed image (right) containing only shadows.

Figure 5: detection of the shadow map aliasing. Columns (a) and (b)
show a buggy and a bug free version of the same game respectively.
Rows two and four show how blocky shadows are detected (white lines)
by the algorithm.

Figure 4: extraction of shadows from an image. A XNOR operation
performed between the original image (a) and a non-shadowed version of
it (b) produces an image containing only shadows (c).

5.4. Experimental Results

Figure 5 shows some preliminary results of the two-stage
approach described before. The game used as test-bed is a
shadow map sample taken from the Microsoft DirectX® 10
SDK. For the extraction of the frame-buffer form the GPU
pipeline we used the tool Microsoft PIX. In this paper we
only show the input images from the game and the final
outcome of the algorithm leaving out the intermediate pre-
processed images filtered out from non-shaded textures. In
column (a) the shadows are affected by aliasing due to the
too low resolution of the shadow map (112x112). Column
(b) shows the same scene rendered with a higher shadow
map resolution (512x512) in order to reduce the artifact.
The behavior of the algorithm is shown in rows two and
four; the white lines indicate those regions recognized as
anomalies. It is interesting to note that since the algorithm
processes only the final frame-buffer, its efficiency and
detection rate do not depend on the number of light spots,
nor on the complexity of the environment.

6. Conclusion and Future Work

We have introduced a framework for making video game
testing a semi-automatic process by combining Artificial
Intelligence and Computer Vision technology. Such a
Framework needs to be built on the basis of two different,
non exclusive approaches that bring a unique, robust and
complete solution. The results we have achieved following
the Sub-Representational approach provide evidence that
an agent featuring Computer Vision capabilities can
effectively deal with the detection of some environment
anomalies. Moreover agents provided with GPU-Vision
Debugger features, combined with the monitoring of the
user activity can result in useful automatic regression test
tools. For instance, the agent can replicate the user actions,
previously tracked in an older version of the game, to
check for visual anomalies in a never build of the same
game. This is a way to make the regression test process for
environments completely automatic with no need for any
other information about the internal architecture of the
game. However, the pattern detection capabilities of the
agent may not suffice for test cases belonging to what we
have called Entertainment Inspection. To include these
testing activities, the Representational Approach needs to
be investigated to enable the agent to make more abstract
inferences and therefore deal with tasks that require
planning of activities, knowledge of the environment and
awareness of the game typology under test.

7. References

Canny, J. (1986). A computational approach to edge

detection. In IEEE Transactions on Pattern Analysis and

Machine Intelligence (Vol. 8, pp. 679-698): IEEE

Computer Society.

Denzinger, J., Chan, B., Gates, D., Loose, K., & Buchanan,

J. (2004). Evolutionary behavior testing of commercial

computer games. Paper presented at the 2004 IEEE

Congress on Evolutionary Computation.

Desurvire, H., Caplan, M., & Toth, J., A. (2004). Using

heuristics to evaluate the playability of games. Paper

presented at the CHI '04 extended abstracts on Human

factors in computing systems.

Harris, C., & Stephens, M. (1988). A combined corner and

edge detector. Paper presented at the ALVEY Vision

Conference, Cambridge, UK.

Irish, D. (2005). The Game Producer's Handbook. Boston,

MA: Course Technology Press.

Laird, J. E. (2001). Using a Computer Game to Develop

Advanced AI. Computer, 34(7), 70-75.

Macleod, A. (2005). Game design through self-play

experiments. Paper presented at the 2005 ACM SIGCHI

International Conference on Advances in computer

entertainment technology.

Merrick, K., & Maher, M. L. (2006). Motivated

reinforcement learning for non-player characters in

persistent computer game worlds. Paper presented at the

ACM SIGCHI international conference on Advances in

computer entertainment technology.

Riley, D. M. (2007). 2006 U.S. Video Game and PC Game

retail sales reach $13.5 billion exceeding previous record

set in 2002 by over $1.7 billion. The NPD Group Press

Release Retrieved August 15th 2007, from

http://www.theesa.com/

Shapiro, L. G., & Stockman, G. C. (2001). Computer

Vision. Upper Saddle River, New Jersey: Prentice Hall.

Urlings, P., Sioutis, C., Tweedale, J., Ichalkaranje, N., &

Jain, L. (2006). A future framework for interfacing BDI

agents in a real-time teaming environment. J. Netw.

Comput. Appl., 29(2), 105-123.

Wolfgang, E. (2006). Shader X4: Advanced Rendering

Techniques. Hingham, MA: Charles River Media, Inc.

Wooldridge, M. J., & Jennings, N. R. (1995). Intelligent

Agents: Theory and Practice. The Knowledge

Engineering Review, 10(2), 115-152.

Yang, K., Marsh, T., & Shahabi, C. (2005). Continuous

archival and analysis of user data in virtual and

immersive game environments. Paper presented at the

ACM workshop on Continuous archival and retrieval of

personal experiences.

Yannakakis, G. N., & Hallam, J. (2006). Towards

capturing and enhancing entertainment in computer

games. In Advances in Artificial Intelligence,

Proceedings (pp. 432-442). Berlin: Springer-Verlag.

