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Abstract: 

 

The molecular structures of the trimorphous basic copper phosphate minerals 

pseudomalachite, ludjibaite and reichenbachite have been studied using a 

combination of infrared emission spectroscopy and Raman spectroscopy.  

Infrared emission spectra have been obtained over the temperature range 100 to 

1000°C. Infrared emission spectra of the three minerals are different, in line with 

differences in crystal structure and composition. IR emission spectra show that 

the minerals are completely dehydroxylated by 550°C.  The thermal 

decomposition patterns for the three minerals are different and reflect their 

stability. Raman spectra are similar, particularly in the stretching region, but 

characteristic differences in the deformation regions are observed.  Differences 

are also observed in the phosphate stretching and bending regions.   

 

Key words: copper, phosphate, pseudomalachite, ludjibaite, reichenbachite, infrared 

emission, Raman  

 

Introduction 

 

 Many examples of molecular assembly occur in Nature and when minerals 

crystallize (particularly those containing phosphate and arsenate), they may display 

end-member composition or solid solution behaviour. Phosphates and arsenates are 
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ubiquitous in the mineral kingdom and are found in all kinds of mineralogical 

settings.(ANTHONY JW 2000) Phosphate formation is controlled by factors such as 

pH and concentration(WILLIAMS 1990) and these variables can lead to very 

complex stoichiometries. Elaboration of these stoichiometries is at its greatest in the 

oxidized zones of base metal ore bodies. Our attention has been drawn to certain 

classes of secondary phosphates, particularly those of copper(II), because of their 

widespread nature and importance with respect to geochemical exploration and 

aspects of mineral processing. More particularly their presence is often the only 

surface indicator of underlying base and/or noble metal ore bodies. 

 

 Normal copper(II) phosphate is not known as a naturally occurring mineral. 

However a number of basic double salts of copper and phosphate are well known; 

these include pseudomalachite, Cu5(PO4)2(OH)4,(ANTHONY JW 2000) and its 

polymorphs reichenbachite and ludjibaite. Pseudomalachite is comparatively 

common, being frequently accompanied by libethenite, Cu2PO4(OH); a rather rarer 

congener is cornetite, Cu3PO4(OH)3.(BRAITHWAITE 1983; BRAITHWAITE & 

RYBACK 1994; HYRSL 1991; LHOEST 1995)  These minerals have been 

structurally characterised and their relative stabilities determined.(WILLIAMS 1990) 

Pseudomalachite and reichenbachite are both monoclinic, space group P21/a, but with 

significantly different cells, whereas ludjibaite is triclinic, space group P1.  Table 1 

summarises crystallographic information1 for the three polymorphs. The crystal 

structures of the polymorphs are very similar, consisting of layers of edge-sharing, 

copper-containing polyhedra linked in the third dimension by PO4 tetrahedra and 

hydrogen bonds. The copper layers contain frameworks which may be derived from a 

layer of close-packed, edge-sharing octahedra from which 1/3 of the octahedra have 

been removed as edge-sharing pairs. Studies of the bond distances, coordination and 

bond valence sums and probable locations of H bonds prove that the formation of 

hydrogen bonds is important in stabilizing the pseudomalachite structure.   

 

Pseudomalachite is aptly named and is frequently overlooked or confused with 

other green secondary copper minerals, especially malachite, 

Cu2CO3(OH)2.(WILLIAMS 1990) The vibrational spectroscopy of many of these 

minerals has received little detailed attention although Farmer reported the spectra of 
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libethenite, cornetite and pseudomalachite.(FARMER 1974) Raman spectra of 

aqueous phosphate oxyanions show a symmetric stretching mode (ν1) at 938 cm-1, an 

antisymmetric stretching mode (ν3) at 1017 cm-1, a symmetric bending mode (ν2) at 

420 cm-1 and the ν4 mode at 567 cm-1. The pseudomalachite vibrational spectrum 

consists of ν1 at 953, ν2 at 422 and 450 cm-1, ν3 at 1025 and 1096 and ν4 at 482, 530, 

555 and 615 cm-1.(FARMER 1974) Infrared spectra of reichenbachite and ludjibaite 

have been briefly reported.(BRAITHWAITE & RYBACK 1994) As part of a 

comprehensive study of the IR and Raman properties of minerals containing 

oxyanions, we report here the vibrational spectroscopy of the pseudomalachite 

polymorphs pseudomalachite, ludjibaite and reichenbachite using a combination of 

infrared emission and Raman spectroscopy.  

 

EXPERIMENTAL 

 

Minerals 

 

Specimens of ludjibaite from Ludjiba, Zaire, in association with 

pseudomalachite and libethenite, and together with reichenbachite from Shituru, 

Shaba, Zaire, plus pseudomalachite and reichenbachite from Kipushi, Shaba, Zaire, 

were purchased from Summit Minerals, Albuquerque, NM, USA.  Minerals were 

analyzed by electron probe and X-ray diffraction to check for phase purity and 

composition and were found to be contain negligible other substituting species, other 

than traces of As in the African material. Pure pseudomalachite from the West Bogan 

mine, Collerina Hall, NSW, Australia, was obtained from the collection of one of the 

authors (PAW). 

 

Infrared emission spectroscopy 

 

FTIR emission spectroscopy was carried out on a Nicolet spectrophotometer 

equipped with a TGS detector, which was modified by replacing the IR source with 

an emission cell. A description of the cell and principles of the emission experiment 

have been published elsewhere.(FROST et al. 1995; FROST et al. 1999a; FROST et 

al. 1999b; FROST & VASSALLO 1996; FROST & VASSALLO 1997)15 

Approximately 0.2 mg of basic copper phosphate mineral was spread as a thin layer 
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(approximately 0.2 microns) on a 6 mm diameter platinum surface and held in an inert 

atmosphere within a nitrogen-purged cell during heating.  

 

In the normal course of events, three sets of spectra are obtained: first the 

black body radiation over the temperature range selected at the various temperatures, 

secondly the platinum plate radiation at the same temperatures and thirdly spectra 

from the platinum plate covered with the sample.  Normally only one set of black 

body and platinum radiation data is required. The emittance spectrum (E) at a 

particular temperature was calculated by subtraction of the single beam spectrum of 

the platinum backplate from that of the platinum + sample, and the result ratioed to 

the single beam spectrum of an approximate blackbody (graphite).  The following 

equation was used to calculate the emission spectra. 

 

CPt
SPtE

−
−

−= log*5.0  

 

This manipulation is carried out after all the data is collected.  Emission 

spectra were collected at intervals of 50°C over the range 200 - 750 °C.   The time 

between scans (while the temperature was raised to the next hold point) was 

approximately 100 seconds.  It was considered that this was sufficient time for the 

heating block and the powdered sample to reach thermal equilibrium.  Spectra were 

acquired by co-addition of 64 scans for the whole temperature range (approximate 

scan time 45 seconds), with a nominal resolution of 4 cm-1. Good quality spectra can 

be obtained providing the sample thickness is not too large.  If too large a sample is 

used then spectra become difficult to interpret because of the presence of combination 

and overtone bands. Spectroscopic manipulation such as baseline adjustment, 

smoothing and normalisation was performed using the GRAMS® software package 

(Galactic Industries Corporation, Salem, NH, USA).  

 

Raman Spectroscopy 

 

Crystals of the basic copper phosphate minerals were placed and orientated on 

a polished metal surface on the stage of an Olympus BHSM microscope, which is 

equipped with 10x and 50x objectives. The microscope is part of a Renishaw 1000 
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Raman microscope system, which also includes a monochromator, a filter system and 

a Charge Coupled Device (CCD). Raman spectra were excited by a Spectra-Physics 

model 127 He-Ne laser (633 nm) at a resolution of 2 cm-1 in the range between 100 

and 4000 cm-1.  Repeated acquisitions using the highest magnification were 

accumulated to improve signal-to-noise ratios. Spectra were calibrated using the 520.5 

cm-1 line of a silicon wafer. Spectra at liquid nitrogen temperature were obtained using 

a Linkam thermal stage (Scientific Instruments Ltd, Waterfield, Surrey, England).   

 

Spectroscopic manipulation was carried out as described above. Band 

component analysis was undertaken using the Jandel ‘Peakfit’ software package, 

which enabled the type of fitting function to be selected and allowed specific 

parameters to be fixed or varied accordingly. Band fitting was done using a Gauss-

Lorentz cross-product function with the minimum number of component bands used 

for the fitting process. The Gauss-Lorentz ratio was maintained at values greater than 

0.7 and fitting was undertaken until reproducible results were obtained with squared 

correlations of r2 greater than 0.995. 

 

Results and discussion 

 

Theory 

 

Factor Group analysis of pseudomalachite and reichenbachite 

 

Table 2 Factor group analysis of the phosphate ion in pseudomalachite and 

reichenbachite 

 

Point group Site group Crystal 

Td C1 5
2hC  

A1 

E 

2T2 

 

9A 

9Ag 

9Au 

9Bg 

9Bu 
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Table 3 Factor group analysis of the Cu(I) lattice modes in pseudomalachite and 

reichenbachite 

 

Site group Crystal 

Cu(I)  

Ci 

 

3Au 

5
2hC  

3Au 

3Bu 

 

 

 

Table 4 Factor group analysis of the Cu(II), Cu(III), PO4, OH(I), and OH(II)  lattice 

modes in pseudomalachite and reichenbachite. 

 

Site group Crystal 

Cu(II), Cu(III), PO4, OH(I), and OH(II)  

C1 

 

24A 

5
2hC  

24Ag 

24Au 

24Bg 

24Bu 

 

 

 

Γ = 23Ag + 22Bg + 26Au+ 25Bg 

 

The factor group analysis predicts 36 vibrations for the phosphate ion in 

pseudomalachite represented by Γ = 23Ag + 22Bg + 26Au+ 25Bg.  For the factor group 

analysis for the prediction of the Raman spectra, we must use a value of Z = 2. The 

reason for this is that there are two phosphate ions in the unit cell.  The PO4 splitting 

should be the same for reichenbachite but will have different lattice vibrations due to 

different splitting patterns and different bond lengths.  Thus the vibrational modes for 
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the phosphate ion in pseudomalachite is given by:  factor group analysis predicts 36 

vibrations for the phosphate ion represented by Γ = 9Ag + 9Au + 9Bg + 9Bu.  Thus 

there should be 18 Raman active modes and 18 infrared active modes for the 

phosphate ion for pseudomalachite.   

 

Factor Group analysis of Ludjibaite 

 

Table 5 Factor group analysis of the phosphate ion in ludjibaite 

 

Point group Site group Crystal 

Td C1 Ci 

A1 

E 

2T2 

 

9A 

9Ag 

9Au 

 

 

Table 6 Factor group analysis of the Cu(I), Cu(II) and Cu(III) lattice modes in 

ludjibaite 

 

Site group Crystal 

Cu(I) , Cu(II), and Cu(III) 

Ci 

9Au 

Ci 

9Au 

 

 

 

Table 7 Factor group analysis of the Cu(IV), PO4, OH(I), and OH(II)  lattice 

modes in ludjibaite 

 

Site group Crystal 

Cu(IV), PO4, OH(I), and OH(II)   

C1 

 

21A 

Ci 

21Ag 

21Au 
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Γ = 27Ag + 18Au 

 

 

The irreducible representation is given by: Γ = 27Ag + 18Au.   Predictably the 

vibrational spectra of ludjibaite will be different because in the unit cell Z=1.  For the 

phosphate ion there should be 9 Raman and 9 infrared active modes for ludjibaite. 
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Infrared emission spectroscopy of the hydroxyl stretching vibrations 

 

Infrared emission spectra of the hydroxyl-stretching region of 

pseudomalachite, ludjibaite and reichenbachite are shown in Figures 1-3.  Results of 

band component analysis are reported in Table 8.   The table reports band centres and 

relative normalised band intensities.  In the spectroscopic profile of pseudomalachite 

hydroxyl-stretching bands are observed at 3440, 3430, 3382, 3352 and 3021 cm-1.  

Figure 4 displays the Raman spectra of the hydroxyl-stretching region of 

pseudomalachite, ludjibaite and reichenbachite. Raman bands for the hydroxyl-

stretching vibrations of pseudomalachite are observed at 3434 and 3385 cm-1.  The 

positions of these two bands are in excellent agreement with the two IES bands at 

3430 and 3382 cm-1.  In the infrared absorption spectrum of pseudomalachite bands 

are observed at 3442, 3388 and 3357 cm-1.  It is probable that the band at 3440 cm-1 is 

infrared active-Raman inactive, and may be attributed to antisymmetric stretching.  

Factor group analysis predicts two Raman active and two infrared active modes for 

the hydroxyl-stretching region.  Two Raman modes and four infrared modes are 

observed.  Figure 5 displays the variation in intensity of the hydroxyl stretching 

vibrations of pseudomalachite as a function of temperature. In accordance with Figure 

1, there is a steady decrease in intensity of the hydroxyl-stretching bands as the 

temperature is increased until at around 450°C no intensity remains.  Significant 

changes in intensity are observed as dehydroxylation of the pseudomalachite takes 

place between 400 and 450°C.  Such changes are indicative of significant changes in 

the structure of the material such as occurs with a phase change.   

 

Infrared emission spectra of ludjibaite show a strong band at 3422 cm-1 and 

minor component bands at 3213 and 3151 cm-1.  These low intensity bands may be 

due to the presence of adsorbed water. Infrared absorption spectra of ludjibaite show 

bands at 3470, 3446 and 3401 cm-1 and the Raman spectra show a single band at 3473 

cm-1.  Factor group analysis predicts one Raman active and one infrared active mode.  

Here, as predicted, we observe one Raman active (3473 cm-1) and one infrared active 

mode (3422 cm-1). Intensities of the bands are constant up to 250°C, and then 

decreases until no intensity remains at 400°C (Figure 5b).  The dehydroxylation 
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behaviour of ludjibaite appears to be somewhat different to that of pseudomalachite in 

that decomposition starts at a lower temperature.  High-resolution differential 

thermogravimetric analysis confirms this result.  Infrared emission spectra of 

reichenbachite show a strong band at 3407 cm-1 with a component band at 3397 cm-1.  

Infrared absorption spectra display bands at 3441 and 3397 cm-1 and the Raman 

spectra of reichenbachite displays two bands at 3438 and 3389 cm-1.  The positions of 

the bands in the infrared absorption and Raman spectra are in good agreement.  Factor 

group analysis predicted 2 Raman active and two infrared active modes.  The 

observations in both the IES and Raman spectra of two bands are thus in excellent 

agreement.  Dehydroxylation occurs over the 400 to 450°C range and at 550°C no 

intensity remains in the hydroxyl stretching bands.  Thermal decomposition behaviour 

of reichenbachite is different again from that of either pseudomalachite or ludjibaite.  

Decomposition starts at quite low temperatures (200°C) and is complete at 400°C.  

The decomposition patterns as indicated by the loss of intensity of the hydroxyl 

stretching bands as a function of temperature are an indication of the relative 

stabilities of the phases.  It is apparent that the most stable phase is pseudomalachite 

followed by ludjibaite.  The behaviour of reichenbachite gives every indication of an 

unstable phase.  Such behaviour is reflected in the occurrence of these polymorphs in 

nature in that pseudomalachite is by far the most commonly found species of the 

three. 

 

Infrared emission spectroscopy of the hydroxyl-deformation vibrations 

 

 Infrared emission spectra of the 650 to 1450 cm-1 region of pseudomalachite, 

ludjibaite and reichenbachite are shown in Figures 6-8.  Raman spectra of the 

hydroxyl-deformation region are displayed in Figure 9.   Data for band component 

analysis of the IES spectra of the 650 to 1450 cm-1 region are reported in Table 9.  In 

IES spectra of pseudomalachite bands are identified at 756, 816 and 885 cm-1.  The 

intensities of these bands decrease as temperature is increased such that no intensity 

remains at 450°C. The behaviour of these bands thus parallels that of the hydroxyl-

stretching vibrations. Consequently it is proposed that these bands are attributable to 

hydroxyl deformation modes.  In the Raman spectrum of pseudomalachite three bands 

are observed at 752, 805 and 875 cm-1.  These correspond well with the three IES 
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bands.  The fact that three bands are observed for pseudomalachite in the hydroxyl-

stretching region harmonises well with the three bands in the hydroxyl deformation 

region.   

 

 In the IES spectrum of ludjibaite, two bands are observed at 766 and 832 cm-1.  

The intensities of these bands decrease and they are thus assigned to hydroxyl 

deformation modes as above. Two bands are observed in the Raman spectrum at 760 

and 820 cm-1.  Hence the observation of the two Raman bands harmonises well with 

the observation of the two infrared bands. In the IES spectrum of reichenbachite, 

bands are observed at 749, 770, 800 and 834 cm-1.  The Raman spectrum of the 

mineral shows three bands at 749, 804 and 866 cm-1. In IES spectra only the band at 

834 cm-1 appears to decrease in intensity approaching the dehydroxylation 

temperature.  The other bands may be due to the presence of very low levels of 

arsenate.  Such isomorphous substitution is very likely and not unexpected.  The 

identification of the arsenate bands amply demonstrates the power of Raman 

spectroscopy in determining the presence of oxyanions.  Figure 10 displays the 

variation of intensity of these hydroxyl deformation modes as a function of 

temperature.  Fundamentally, there is a steady decrease in intensity of the bands for 

pseudomalachite and reichenbachite such that at 400°C, little intensity remains.   The 

dehydroxylation behaviour of ludjibaite using the hydroxyl deformation mode appears 

somewhat different.  Intensity is constant up to 300°C and then decreases up to the 

dehydroxylation temperature. 

 

Phosphate vibrational modes 

 

 The spectra illustrated in Figures 6, 7 and 8 show the phosphate stretching 

vibrations, found between 900 and 1100 cm-1.  For pseudomalachite IES bands are 

observed at 949, 990, 1039 and 1107 cm-1.  Figure 11 displays Raman spectra of the 

phosphate stretching vibrations of the three polymorphs.    In the Raman spectrum 

bands are observed at 970, 995, 1053 and 1085 cm-1.  The 970 cm-1 Raman band is the 

most intense and is assigned to the phosphate symmetric stretching vibration.  The 

other low intensity bands are assigned to antisymmetric stretching modes.  Thus in the 

IES data the two bands at 949 and 990 cm-1 may be ascribed to symmetric stretching 
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modes and the bands at 1053 and 1085 cm-1 to antisymmetric stretching modes.  

These observations are in harmony with the predictions of factor group analysis where 

two infrared-active and two Raman-active modes are predicted.  

 

 For ludjibaite IES bands are observed at 936, 981 and 1044 cm-1.  The Raman 

spectrum of ludjibaite displays bands at 974, 1006 and 1020 cm-1.  Low intensity 

bands are also observed in the Raman spectrum at 1052 and 1067 cm-1.  The IES 

spectrum of reichenbachite bands are observed at 956, 963, 988, 1035, 1045 and 1096 

cm-1.  In the Raman spectrum, bands are observed at 972, 1000, 1061 and 1083 cm-1.  

The most intense band is at 972 cm-1 and is assigned to the symmetric stretching 

vibration.  Figure 12 displays variations in band positions of the phosphate as a 

function of temperature.  The clearly shows (compared with the variation of the 

hydroxyl stretching and deformation modes) that the positions of the bands are 

constant up 650°C. Changes in the positions of the bands alter after this temperature 

suggesting some further phase change.   

 

 

CONCLUSIONS  

 

 Application of infrared emission and Raman spectroscopy has enabled the 

molecular structure of the three polymorphous basic copper phosphates of 

pseudomalachite composition to be probed.  A comparison is made between the 

molecular structures of these three related phases.  Infrared emission spectroscopy 

was used to explore the dehydroxylation of the minerals and confirm the band 

position of the hydroxyl deformation modes.  The loss of intensity of the hydroxyl 

deformation modes parallelled that of the hydroxyl stretching vibrations and 

approached zero at the dehydroxylation temperature.  Phase changes were also 

observed through variation in the band centres and the peak width of selected bands.   

Such spectroscopic studies are significant as not only are the basic copper phosphates 

indicators of precious metal ore bodies but also basic copper phosphates are found in 

environmental situations such as in the drinking water pipes.  These vibrational 

spectroscopic techniques enable offer a method of analysis of these complex basic 

copper phosphate phase systems. 
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Mineral Crystal 

structure 
Space 
group

a/Å b/Å c/Å α/o β/o γ/o Z

Pseudomalachite Triclinic P21/a 17.02-
17.08 

5.75-5.77 4.47-
4.50 

 90.95-
91.52 

 2

Ludjibaite Triclinic P1 4.446(3) 5.871(4) 8.680(7) 103.9(2) 90.3(2) 93.2(2) 1
Reichenbachite Monoclinic P21/a 9.186(2) 10.684(2) 4.461(2)  92.31(1)  2

 
Table 1 Comparison of crystallographic data for pseudomalachite, ludjibaite and reichenbachite 
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Table 8 Band component analysis of the hydroxyl-stretching region of the 
infrared emission spectra of pseudomalachite, ludjibaite and reichenbachite. 
 
 

Mineral 
  

Temp 
/°C 100 150 200 250 300 350 400 450 500 

 
 
550 

Band Centre/cm-1 
Relative Intensity/% 

ν1 
 

3021 
19.6 

2965 
12.7 

2959 
12.1 

2957 
10.5 

2958 
9.6 

3013 
9.9 

3045 
9.6 

3146 
16.9 

2999 
39.3 

 

Band Centre/cm-1 
Relative Intensity/% 

ν2 
 

3352 
37.4 

3259 
26.7 

3266 
24.3 

3277 
24.0 

3272 
24.0 

3299 
26.4 

3307 
27.5 

3366 
7.5 

3272 
18.8 

 

Band Centre/cm-1 
Relative Intensity/% 

ν3 
 

3382 
12.6 

3419 
37.6 

3387 
25.4 

3376 
22.5 

3370 
20.7 

3362 
15.1 

3356 
12.5 

3397 
50.5 

3412 
28.3 

 

Band Centre/cm-1 
Relative Intensity/% 

ν4 
 

3430 
12.1 

3441 
9.7 

3442 
19.5 

3440 
24.1 

3438 
26.6 

3435 
30.0 

3433 
32.7 

3430 
19.4 

3431 
4.7 

 

 

Ps
eu

do
m

al
ac

hi
t

Band Centre/cm-1 
Relative Intensity/% 

ν5 
 

3440 
18.4 

3567 
13.4 

3545 
18.7 

3549 
19.0 

3554 
19.2 

3559 
18.6 

3564 
17.7 

3637 
5.6 

3595 
8.9 

 

Band Centre/cm-1 
Relative Intensity/% 

ν1 
    

3032 
10.0 

3076 
12.1  

3083 
25.7 

3097 
4.9 

3062 
6.9  

Band Centre/cm-1 
Relative Intensity/% 

ν2 
 

3151 
31.1 

3130 
17.5 

3129 
17.9   

3115 
14.8   

3132 
7.8 

3127 
18.6 

Band Centre/cm-1 
Relative Intensity/% 

ν3 
 

3213 
6.6 

3312 
27.4 

3318 
27.8 

3266 
22.0 

3249 
21.1 

3248 
21.9 

3234 
17.0 

3237 
24.0 

3281 
26.9 

3290 
22.4 

Band Centre/cm-1 
Relative Intensity/% 

ν4 
  

3412 
28.2 

3419 
5.1 

3407 
38.9 

3408 
45.3 

3406 
7.5 

3418 
46.6 

3403 
50.2 

3402 
43.5 

3397 
47.0 

Band Centre/cm-1 
Relative Intensity/% 

ν5 
 

3422 
62.2 

3424 
6.3 

3420 
30.2 

3410 
19.7 

3409 
11.3 

3408 
45.8 

3565 
6.7 

3405 
8.4 

3531 
14.9 

3519 
12.0 

Band Centre/cm-1 
Relative Intensity/% 

ν6 
  

3535 
20.5 

3548 
19.1 

3551 
9.4 

3560 
10.2 

3562 
10.1 

3786 
1.7 

3561 
11.6   

 

Lu
dj

ib
ai

te
 

Band Centre/cm-1 
Relative Intensity/% 

ν7 
     

3876 
2.4 

3763 
0.9    

Band Centre/cm-1 
Relative Intensity/%

ν1 
 

3045
8.4  

Band Centre/cm-1 
Relative Intensity/%

ν2 
 

3170
5.4

3158
9.0

3161
10.2

3134
12.9

3154 
10.7 

Band Centre/cm-1 
Relative Intensity/%

ν3 
 

3277
30.0

3334
22.0

3215
16.0

3311 
15.2 

Band Centre/cm-1 
Relative Intensity/%

ν4 
 

3407
70.0

3408
47.9

3406
43.3

3403
50.2

3398
44.5

3395
49.5

3388
41.7  

 

R
ei

ch
en

ba
ch

i
t

Band Centre/cm-1 
Relative Intensity/%

ν5 
 

3424
21.7

3412
40.6

3404
44.4

3403
46.6

3402
40.3

3401
45.4

3401 
74.1 
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Table 9 Band component analysis of the phosphate-stretching region of the 
infrared emission spectra of pseudomalachite, ludjibaite and 
reichenbachite. 

 
 

 Band Parameters 

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 
Band Centre/cm-1 

Relative 
Intensity/% 

608 
8.4 

606 
8.1 

607 
8.0 

606 
8.9 

606 
7.2 

605 
6.4 

604 
3.6 

599 
2.7         

663 
12.8 

859 
5.6 

Band Centre/cm-1 
Relative 

Intensity/%                 
716 
13.1  

Band Centre/cm-1 
Relative 

Intensity/%                 
772 
8.4  

Band Centre/cm-1 
Relative 

Intensity/% 
756 
8.4 

756 
8.4 

756 
8.3 

755 
8.0 

756 
9.3 

755 
8.0 

753 
7.5 

752 
4.2  

792 
0.8    

798 
4.0 

799 
5.1 

805 
8.7 

800 
1.9  

Band Centre/cm-1 
Relative 

Intensity/%                 
807 
3.9  

Band Centre/cm-1 
Relative 

Intensity/%                 
822 
1.5  

Band Centre/cm-1 
Relative 

Intensity/% 
816 
7.9 

816 
8.3 

817 
8.2 

818 
8.1 

820 
7.2 

818 
8.8 

817 
8.9 

815 
6.0 

831 
4.1 

831 
2.9 

821 
2.9 

818 
3.1 

821 
5.0      

Band Centre/cm-1 
Relative 

Intensity/% 
885 
8.0 

883 
7.6 

881 
7.1 

881 
6.9 

879 
7.4 

881 
7.5 

881 
7.4 

886 
7.9 

893 
3.2   

901 
22.9 

894 
20.8 

886 
21.1 

881 
21.8 

874 
20.0 

863 
17.0 

915 
13.3 

Band Centre/cm-1 
Relative 

Intensity/% 
949 
9.9 

948 
10.3 

948 
10.9 

945 
10.3 

946 
11.3 

945 
11.6 

945 
12.6 

945 
16.2 

941 
23.4 

925 
24.0 

928 
25.6 0.0 

962 
6.2 

958 
4.5 

946 
6.0 

940 
10.1 

939 
9.4 

929 
22.1 

Band Centre/cm-1 
Relative 

Intensity/% 
990 
11.6 

989 
11.8 

987 
9.9 

991 
13.7 

985 
9.7 

985 
9.9 

984 
10.0 

989 
10.5 

987 
2.4 

982 
5.4 

979 
5.6 

964 
6.5 

1018 
33.2 

1021 
32.9 

1025 
29.6    

Band Centre/cm-1 
Relative 

Intensity/% 
1039 
10.8 

1038 
10.8 

1038 
12.6 

1038 
10.2 

1038 
13.2 

1035 
13.8 

1033 
14.3 

1034 
17.7 

1032 
27.3 

1033 
28.0 

1033 
30.5 

1022 
32.4 

1109 
10.7 

1106 
8.0 

1131 
18.8 

1041 
26.1 

1031 
17.4 

1032 
37.3 

Band Centre/cm-1 
Relative 

Intensity/% 
1089 
7.6 

1087 
6.4 

1087 
6.4 

1092 
16.5 

1084 
5.8 

1082 
4.7 

1079 
2.6 

1078 
3.0 

1081 
7.0 

1081 
6.9 

1089 
6.9 

1094 
5.5 

1148 
19.1 

1149 
18.9 

1162 
4.2 

1152 
20.2 

1148 
8.8 0.0 

Band Centre/cm-1 
Relative 

Intensity/% 
1107 
10.7 

1104 
11.8 

1107 
11.4  

1105 
11.6 

1102 
13.0 

1097 
15.8 

1100 
17.3 

1128 
22.1 

1130 
21.4 

1135 
23.1 

1140 
23.3  

1208 
7.3 

1203 
11.6 

1203 
8.4 

1197 
3.9 

1170 
21.7 

Ps
eu

do
m

al
ac

hi
te

 

Band Centre/cm-1 
Relative 

Intensity/% 0.0 0.0 
1164 
1.4 

1158 
2.4 

1164 
3.0 

1166 
3.5 

1165 
4.8 

1165 
7.9 

1199 
5.0 

1193 
5.6    

1785 
0.7     

Band Centre/cm-1 
Relative 

Intensity/% 
766 
12.7 

767 
12.7 

768 
13.1 

769 
15.0 

769
16.1

767
14.6

751
8.7

767
14.5

764
8.6

799
2.6    

683
4.8

869
21.3

Band Centre/cm-1 
Relative 

Intensity/% 
832 
9.6 

832 
9.6 

833 
9.4 

831 
11.7 

830
12.6

828
12.1

815
13.5

827
10.7

819
7.5

896
12.6

874 
10.4   

865
26.2

968
24.9

Band Centre/cm-1 
Relative 

Intensity/% 
936 
14.6 

933 
13.2 

932 
13.8 

939 
17.0 

948
18.9

941
19.9

913
13.0

945
23.1

929
24.6

921
23.8

930
28.9

902
13.6

905 
17.9 

906 
21.2 

923 
32.5 

912
38.3

956
8.8

Band Centre/cm-1 
Relative 

Intensity/% 
981 
0.8 

981 
0.8 

979 
0.9 

981 
4.9 

976
1.1

978
1.6

975
0.6

970
6.8

973 
14.2   

Band Centre/cm-1 
Relative 

Intensity/% 
1044 
13.9 

1030 
0.7 

1028 
0.6 

1026 
1.8 

0
0.0

1022
1.3

1008
11.9

1020
1.4

1025
8.6

1028 
12.5 

1001 
10.6 

1027 
21.9 

1030
18.1

Lu
dj

ib
ai

te
 

Band Centre/cm-1 
Relative 

Intensity/%  
1053 
16.2 

1056 
17.4 

1045 
14.0 

1046
14.2

1050
14.7

1072
20.7

1062
39.0

1048
46.7

1059
45.1

1062
32.9

1069 
23.2 

1062 
17.3 0.0 

1130
30.8

1101
28.3

1080
21.2
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Band Centre/cm-1 
Relative 

Intensity/%  
1086 

0.3 
1088 

1.0  
1073

3.9
1132

7.9
1132
14.3

1139
18.8

1142
17.4

1138 
16.3 

1162 
32.1 

1135 
34.7 

1154
8.2

1176
29.1

1174
31.0

Band Centre/cm-1 
Relative 

Intensity/% 
1114 
15.2 

1114 
11.5 

1116 
10.3 

1106 
16.6 

1104
17.3

1107
17.1

1114
22.3

1116
8.0   

1283 
3.9 

Band Centre/cm-1 
Relative 
Intensity/%  

729 
0.1 

692 
0.4 

691 
0.3      

684 
1.2       

709 
0.0 

705 
7.9 

Band Centre/cm-1 
Relative 
Intensity/% 

770 
7.6 

771 
8.1 

772 
8.2 

774 
8.8 

775 
8.7 

774 
8.2 

780 
11.7 

783 
10.1 

784 
11.3 

785 
9.7 

783 
8.8 

782 
10.1 

778 
10.4 

778 
13.5 

774 
11.5 

773 
11.2 

773 
6.6 

767 
9.5 

Band Centre/cm-1 
Relative 
Intensity/% 

800 
1.4 

798 
1.8 

798 
1.5 

797 
0.9 

795 
0.7 

793 
1.1 

836 
2.9 

836 
3.6           

Band Centre/cm-1 
Relative 
Intensity/% 

834 
5.5 

835 
4.6 

835 
4.4 

835 
4.4 

835 
4.4 

834 
3.7             

Band Centre/cm-1 
Relative 
Intensity/% 

919 
0.8 

921 
0.7 

923 
1.2 

925 
1.6 

924 
1.1       

894 
5.0 

884 
13.2 

877 
17.1 

877 
9.9 

876 
10.2 

862 
13.3 

861 
14.8 

Band Centre/cm-1 
Relative 
Intensity/% 

956 
2.3 

954 
2.5 

952 
3.1 

951 
3.4 

950 
14.4 

942 
16.6 

950 
17.6 

935 
20.5 

931 
8.8 

946 
19.0 

1009 
67.1 

1009 
58.9 

1011 
50.1 

1013 
39.7 

1011 
33.2 

1005 
32.2 

1007 
10.4 

1013 
28.8 

Band Centre/cm-1 
Relative 
Intensity/% 

963 
13.8 

959 
12.8 

955 
12.2 

952 
13.4 

950 
2.6 

950 
3.8             

Band Centre/cm-1 
Relative 
Intensity/% 

988 
6.9 

988 
9.9 

987 
11.3 

985 
11.7 

984 
11.7 

983 
9.0             

Band Centre/cm-1 
Relative 
Intensity/% 

1035 
2.4 

1035 
2.1 

1034 
1.8 

1033 
1.5 

1031 
1.1 

1030 
19.1 

1033 
4.5 

1052 
51.1 

1038 
71.9 

1052 
63.4         

Band Centre/cm-1 
Relative 
Intensity/% 

1045 
17.5 

1043 
14.3 

1041 
14.5 

1039 
15.8 

1036 
15.3  

1035 
31.4 

1146 
2.4           

Band Centre/cm-1 
Relative 
Intensity/% 

1096 
18.4 

1096 
19.2 

1094 
20.6 

1092 
22.2 

1089 
24.6 

1086 
24.3 

1082 
14.1    

1130 
16.5 

1130 
14.8 

1131 
13.3 

1034 
3.2 

1042 
13.1 

1040 
13.5 

1039 
35.0 

1041 
7.7 

Band Centre/cm-1 
Relative 
Intensity/% 

1161 
1.0 

1161 
1.6 

1160 
1.8 

1160 
2.2 

1157 
2.2 

1174 
7.3 

1169 
11.2 

1208 
5.8 

1213 
2.0 

1227 
1.9 

1221 
3.9 

1204 
5.9 

1196 
7.5 

1156 
20.3 

1181 
26.9 

1178 
28.2 

1184 
8.1 

1165 
20.4 

R
ei

ch
en

ba
ch

ite
 

Band Centre/cm-1 
Relative 
Intensity/% 

1193 
2.9 

1194 
3.7 

1194 
3.5 

1195 
3.9 

1193 
4.3              
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